TW200534632A - Spatial spreading in a multi-antenna communication system - Google Patents

Spatial spreading in a multi-antenna communication system Download PDF

Info

Publication number
TW200534632A
TW200534632A TW93139437A TW93139437A TW200534632A TW 200534632 A TW200534632 A TW 200534632A TW 93139437 A TW93139437 A TW 93139437A TW 93139437 A TW93139437 A TW 93139437A TW 200534632 A TW200534632 A TW 200534632A
Authority
TW
Taiwan
Prior art keywords
data
block
steering
data symbol
transmission
Prior art date
Application number
TW93139437A
Other languages
Chinese (zh)
Other versions
TWI394396B (en
Inventor
Jay Rodney Walton
John W Ketchum
Mark S Wallace
Steven J Howard
Li-Zhong Zheng
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200534632A publication Critical patent/TW200534632A/en
Application granted granted Critical
Publication of TWI394396B publication Critical patent/TWI394396B/en

Links

Landscapes

  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Spatial spreading is performed in a multi-antenna system to randomize an "effective" channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND ≥ 1 and NM < 1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L<1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.

Description

200534632 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於資料通信,且更具體言之,係關 於用於在多天線通信系統中傳輸資料之技術。 【先前技術】 多輸入多輸出(ΜΙΜΟ)通信系統在一傳輸實體處使用多 個(^個)傳輸天線且在一接收實體處使用多個(Nr個)接收 天線來傳輸資料且被表示為(NT,NR)系統。可將由Ντ個傳輸 天線及NR個接收天線形成之ΜΙΜΟ通道分解成Ns個空間通 道,其中Ns $ min{NT,NR}。Ns個空間通道可用來以一方式 傳輸資料以達成該系統之較大的可靠性及/或較高的總流 通量。 ΜΙΜΟ通道之Ns個空間通道可經歷不同的通道條件(例 如:不同的衰減(fading)、多路徑、及干擾效應)且可達成不 同的訊號對雜訊及干擾比(SNR)。空間通道之S,NR&amp;定其傳 輸性能,該傳輸性能一般由可在空間通道上可靠地傳輸之 時變(time variant)MIMO通 特定資料傳輸率來量化。對於一 道而言’通道料隨時間改變且每一空間通道之snr亦隨 時間改變。為了最大化流通量,MIM0系統可利用某種形式 之反饋’由此’接收實體評估空間通道並提供指示每一空 間通道之傳輸性能之反饋資訊 ^ ^ _ 久頭貝巩。然後,傳輸實體將基於該 反饋負訊调整空間通道上之資料傳輸。 然而,由於多種原因,此反餹 ϋ久謂貝訊可能不可用。舉例而 言,ΜΙΜΟ系統也許不支持來自 曰银收貫體之反饋之傳輸。作 98367.doc 200534632 二二實例,mIM0通道可比接收實體估計通 反饋…速率改變得更快。無論如何,若傳輸實= 在其可能需要以一非常低的速率傳輪資料, 資_。===收實體亦能”地解碼 支配。 π °亥糸、统之^將由預期的最壞通道條件來 【發明内容】 在貫施例中,描述了 —種用於在 __通信系統中處理資料傳輸 二= 資料以獲取至少—資料^田,在❹法中處理 _ 貝枓付號塊。用铍數個導引矩陣對該至 &gt;、一資料符號塊執行空間虛 1處獲取用於複數個傳輸天線 2傳輸符號之複數個序列,其中該等複數個導引矩陣為該 道了一資料符號塊隨機化由接收實體觀測之有效ΜΙΜΟ通 在另一實施例中,h π 7 ^ 描述了一種在無線多輸入多輸出 ,)通信系統中之裝置’其包括-用以處理資料以獲取 至少-資料符號塊的資料處理器、及一用以用複數個導引 2對至少一資料符號塊執行空間處理以獲取用於複數個 :天線之傳輪符號之複數個序列的空間處理器,其中該 等複數個導引矩卩鱼主 為至〉、一 ^料符號塊隨機化由接收實體 觀測之有效ΜΙΜΟ通道。 只施例中’描述了一種在無線多輸入多輸出 置’其包括歸處理資料以獲取至 貝料符琥塊之構件、及用於用複數個導引矩陣對該至 98367.doc 200534632 少一資料符號塊執行空間處理以獲取用於複數個傳輸天線 之傳輸符號之複數個序列之構件,其中該等複數個導引矩 陣為該至少一資料符號塊隨機化由接收實體觀測之有效 ΜΙΜΟ通道。 在另一貫施例中,描述了一種用於處理資料以便在無線 多輸入單輸出(MISO)通信系統中傳輸之方法,在該種方法 中處理資料以獲取一資料符號塊。用複數個導引向量對該 資料符號塊執行空間處理以獲取用於複數個傳輸天線之傳 輸符號之複數個序列,其中該等複數個導引向量為該資料 符號塊隨機化由接收實體觀測之有效MIS〇通道。 在另一實施例中,描诚了 _括® 士人+ a a丄. 、200534632 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates generally to data communication, and more specifically, to a technology for transmitting data in a multi-antenna communication system. [Prior Art] A multiple-input multiple-output (MIMO) communication system uses multiple (^) transmission antennas at a transmitting entity and multiple (Nr) receiving antennas at a receiving entity to transmit data and is denoted as ( NT, NR) system. The MIMO channel formed by Nτ transmitting antennas and NR receiving antennas can be decomposed into Ns spatial channels, where Ns $ min {NT, NR}. The Ns spatial channels can be used to transmit data in a way to achieve greater reliability and / or higher total flux of the system. The Ns spatial channels of the MIMO channel can experience different channel conditions (such as different fading, multipath, and interference effects) and can achieve different signal-to-noise and interference ratios (SNR). The S, NR &amp; of a spatial channel determines its transmission performance, which is generally quantified by a time variant MIMO communication specific data transmission rate that can be reliably transmitted on the spatial channel. For a channel, the channel material changes with time and the snr of each spatial channel also changes with time. In order to maximize the throughput, the MIM0 system may utilize some form of feedback ‘from’ the receiving entity to evaluate the spatial channels and provide feedback information indicating the transmission performance of each spatial channel. ^ ^ _ 九 头 贝 巩. Then, the transmitting entity will adjust the data transmission on the spatial channel based on the negative feedback. However, for a number of reasons, this response has long been said that Besson may not be available. For example, the MIMO system may not support the transmission of feedback from a silver receiver. As an example of 98367.doc 200534632, the mIM0 channel can change the rate faster than the receiving entity's estimated feedback ... In any case, if the transmission is real, it may be necessary to transfer data at a very low rate. === Receiving entities can also dominate decoding. Π ° 糸, Tongzhi ^ will be determined by the expected worst channel conditions. [Summary of the Invention] In the embodiment, a kind of __ communication system is described Processing data transmission 2 = data to obtain at least-data ^ field, processing in the method _ 枓 枓 pay number block. Use a number of beryllium steering matrices to the>, a data symbol block to perform spatial imaginary 1 acquisition A plurality of sequences of symbols are transmitted on the plurality of transmission antennas 2, where the plurality of steering matrices randomize a block of data symbols for the track. The effective MIMO observed by the receiving entity is passed. In another embodiment, h π 7 ^ A device in a wireless multiple-input multiple-output communication system is described, which includes-a data processor for processing data to obtain at least-data symbol blocks, and a pair of guides for at least one data The symbol block performs spatial processing to obtain a space processor for a plurality of sequences of antenna: wheel symbols of the antenna, wherein the plurality of steering moments are master to>, and a randomized symbol block is received by the receiver. Effectiveness of physical observations ΜΙΜΟ channel. In the example only, "describes a wireless multi-input multiple-output device" which includes a component for processing data to obtain a block, and for using a plurality of steering matrices to 98367.doc 200534632 At least one data symbol block performs spatial processing to obtain a component of a plurality of sequences of transmission symbols for a plurality of transmission antennas, wherein the plurality of steering matrices are randomized for the at least one data symbol block as observed by a receiving entity. MIMO channel. In another embodiment, a method for processing data for transmission in a wireless multiple input single output (MISO) communication system is described, in which data is processed to obtain a block of data symbols. Steering vectors perform spatial processing on the data symbol block to obtain a plurality of sequences of transmission symbols for a plurality of transmission antennas, wherein the plurality of steering vectors randomize the data symbol block to a valid MIS observed by a receiving entity 〇Channel. In another embodiment, the description of _ 括 ® 士人 + aa 丄.,

......通逼及複數個導引矩陣 所形成之有效ΜΙΜΟ通道之通道回應估計。藉由該通道回應 估計對接㈣之資料符純行接收處㈣獲取用於 S亥至少一資料符號塊之資料符號估計。 一種在無線多輸入多輸出... Estimation of the channel response of the effective MIMO channel formed by the general approximation and a plurality of steering matrices. By using the channel response to estimate the connection of the data symbol, the pure symbol receiving location does not obtain a data symbol estimate for at least one data symbol block. Multi-input multi-output in wireless

在另一實施例中,描述了 (ΜΙΜΟ)通信系統中之裝置,身 其獲取接收到之資料符號,該 經由一 ΜΙΜΟ通道傳輸之前藉 98367.doc 200534632 十;及一空間處理器,其用以用該通道回應估計對該 專接收到之資料符號執行接收器空間處理以獲 少-資料符號塊之資料符號估計。 ° 在另一實施例中,&gt;, 田述了一種在無線多輸入多輸出 ,則)通信系統中之裝置,其包括:獲取接收到之資料符 號之構件,_等接收到之資料符號用於在,㈣—應〇通道 傳輸之前藉由複數個導引矩陣加以空間處理之至少一資料 符號塊1於獲取飾通道及複數個料矩陣所形成之 有效贿⑽道之通道回應估収構件;及用於藉由通道回 應估§十對接收到之資料符號執行接收器空間處理以獲取用 於該至少一資料符號塊的資料符號估計之構件。 在另-實施例中’描述了一種在無線多輸入單輸出 (MISO)通信系統中接收資料傳輸之方法,在該種方法中獲 取接收到之資料符號’該等接收到之資料符號用於在經由 通道傳輸之前藉由複數個導引向量加以空間處理的 -資料符號塊。獲取由MIS〇通道及複數個導引向量所形成 之有效Μ助通道之通道回應估H藉由該通道回應估計 對接收到的資料符號執行债測以獲取用於該資料符號塊的 資料符號估計。 【實施方式】 本文所用詞語,,例示性&quot;意謂&quot;用作一實例、例子、或說明”。 不必將本文描述為”例示性”之任何實施例解釋為比其它實 施例較佳或有利。 本文描述在多天線通信系統中執行空間擴張之技術。多 98367.doc 200534632 天線通信系統可為MIM。系統或多輸人單輸出(mis〇)系 統。空間擴張係指可能以由用於_資料符號(其為資料之調 變符號)之導y向量所決定之不同的振幅及/或相位同時自 多個傳輸天線傳輸該資料符號之傳輸。亦可將空間擴張稱 為傳輸導引、偽隨機傳輸導引、導引分集 diversity)、矩陣偽隨機導引、向量偽隨機導引等等。空間 處理技術可為由傳輸實體傳輸之每—資料符號塊隨機= ▲由接收實體觀測之&quot;有效&quot;瞧〇或聰〇通道,使得系統效 月&amp;並非由最壞通道條件支配。 在臟〇系統中以空間擴張傳輸資料之實施例中,傳輸實 體處理(例如··編碼及交錯)用於%個資料流之資料且產生 ND個編碼資料塊,其中…。亦可將-編码資料塊稱為 一碼塊或-編碼資料封包。將每一碼塊在傳輪實體處單獨 編碼且在接收實體處翠獨解碼。符號映射每-碼塊以獲取 =之資枓符號塊。將用於%個碼塊之〜個資料符號塊分 d成nm個資料符號子塊以在〜個傳輸範圍内傳輸,每 内子塊’其中NM &gt; i。如以下所述,傳輸範圍可 涵盍時間及/或頻率維。為〜個資料符號子塊中的每一 選擇(例如,自L個導引矩陣之集合之中選擇)一導引矩陣。 對母-育料符號子塊用為該子塊所選之導引矩陣進行*門 處理以產生傳輸符號’該等傳輸符號經進—步處理並= 個傳輸範圍内經由NHig傳鲶;括你认 ^ 輪天線傳輸。實際上,用NM個導 引矩陣對ND個資料符號塊進行空間處理且該等%個資= 符號塊因此觀測通道之全體’其與所有塊觀測同一通道相 98367.doc -10- 200534632 反。用於空間擴張之導引矩陣為具有正交的行或向量之么 正矩陣(unitary matrix)且可如以下描述產生其。 如以下所述,MI S Ο系統亦可以空間擴張傳輸資料。以下 以進一步的細節描述本發明之多種態樣及實施例。 本文所描述之空間擴張技術可用於ΜΙΜΟ及MISO系統。 該等技術亦可用於單載波及多載波系統。可用正交頻分多 工(OFDM)、某些其它多載波調變技術、或某些其它建構獲 得多載波。OFDM有效地將總的系統頻寬分割成多個(^^個) 正交的子頻帶(subband),其亦被稱為音調(tone)、副載波、 區間(bin)、及頻率通道。使用〇fdM,每一子頻帶與一可 調變有資料之各別副載波有關聯。 1 ΜΙΜΟ系統 對於一單載波ΜΙΜΟ系統而言,由傳輸實體處之Ντ個傳 輸天線及接收實體處之NR個接收天線形成之ΜΙΜ0通道可 由一 NRxNT通道回應矩陣η表現其特徵,可將該矩陣表達In another embodiment, a device in a (ΜΙΜΟ) communication system is described, which obtains the received data symbols, which is borrowed 98367.doc 200534632 ten before being transmitted via a MIMI channel; and a space processor which is used to Use the channel response estimation to perform receiver space processing on the data symbols received specifically to obtain the data symbol estimates of the less-data symbol block. ° In another embodiment, &gt; describes a device in a wireless multiple-input multiple-output, then) communication system, including: a means for obtaining a received data symbol, At least one data symbol block 1 which is spatially processed by a plurality of steering matrices before the transmission of the 应-应 channel, and a channel response estimation component for obtaining an effective bridging channel formed by the decoration channel and the plurality of material matrices; And means for performing receiver space processing on the received data symbols by channel response estimation § to obtain data symbol estimates for the at least one data symbol block. In another embodiment, a method for receiving data transmission in a wireless multiple-input single-output (MISO) communication system is described. In this method, received data symbols are obtained. The received data symbols are used in A block of data symbols that has been spatially processed by a plurality of steering vectors before being transmitted via a channel. Obtain a channel response estimate of an effective M-assisted channel formed by the MIS0 channel and a plurality of steering vectors. Perform a debt test on the received data symbol by the channel response estimation to obtain a data symbol estimate for the data symbol block. . [Embodiment] The words used herein, illustrative &quot; means &quot; are used as an example, example, or illustration. "It is not necessary to interpret any embodiment described herein as" exemplary "as being better than other embodiments or Beneficial. This article describes techniques for performing spatial expansion in a multi-antenna communication system. Many 98367.doc 200534632 The antenna communication system can be a MIM. System or multiple-input single-output (mis0) system. Spatial expansion refers to the possible use of _The different amplitude and / or phase determined by the derivation y vector of the data symbol (which is the modulation symbol of the data) transmits the transmission of the data symbol from multiple transmission antennas at the same time. Space expansion can also be referred to as transmission guidance, Pseudo-random transmission guidance, guidance diversity diversity), matrix pseudo-random guidance, vector pseudo-random guidance, etc. Spatial processing technology can be random for every data symbol block transmitted by the transmitting entity = ▲ observed by the receiving entity & quot Effective &quot; Look at 0 or Cong 0 channels, making the system effective month &amp; not dominated by the worst channel conditions. In the embodiment of the dirty 0 system to transmit data with space expansion The transmission entity processes (e.g., encoding and interleaving) the data for% data streams and generates ND encoded data blocks, among which ... the encoded data block may also be referred to as a code block or an encoded data packet. Each code block is separately encoded at the transmitting entity and decoded separately at the receiving entity. Symbol maps every-code block to obtain = the resource symbol block. The data symbol blocks for% code blocks are divided into d Form nm data symbol sub-blocks for transmission within ~ transmission range, each inner sub-block 'where NM &gt; i. As described below, the transmission range can encompass time and / or frequency dimensions. For ~ data symbol sub-blocks Each selection in (for example, a selection from a set of L steering matrices) is a steering matrix. The parent-feeder symbol sub-block is gated with the steering matrix selected for that sub-block to generate Transmission symbols: These transmission symbols are further processed and transmitted via NHig within a transmission range; including antenna transmission. In fact, the ND data symbol blocks are spatially processed with NM steering matrices and The% individual data = the symbol block and therefore the entirety of the observation channel ' The same channel with all block observations is 98367.doc -10- 200534632. The steering matrix used for spatial expansion is a unitary matrix with orthogonal rows or vectors and can be generated as described below. As shown below As mentioned, the MI S 0 system can also be used for space expansion to transmit data. The following describes the various aspects and embodiments of the present invention in further detail. The space expansion technology described herein can be used in MIMO and MISO systems. These technologies can also be used in Single-carrier and multi-carrier systems. Multi-carriers can be obtained using orthogonal frequency division multiplexing (OFDM), some other multi-carrier modulation techniques, or some other constructs. OFDM effectively divides the total system bandwidth into multiple ( ^^) Orthogonal subbands, which are also referred to as tones, subcarriers, bins, and frequency channels. With 0fdM, each sub-band is associated with a separate subcarrier that can be modulated with data. 1 ΜΙΜΟ system For a single-carrier MIMO system, the MIMO channel formed by Nτ transmitting antennas at the transmitting entity and NR receiving antennas at the receiving entity can be characterized by an NRxNT channel response matrix η, which can be expressed as

h〗,NT ^2,Nt hNR,NT 方程式(1) hl,l h!2 H= ;,2 • · _hNR,l hNR,2 其中,項1^(1=1...&gt;^且卜1. &gt;^)表示傳輸天線〗與接收天線1 之間之耦合或複合增益(c〇mplex 。 在ΜΙΜΟ系統中可以多種方式傳輪資料。在一簡單傳輸方 案中,不進行任何空間處理自每_傳輸天線傳輸_資料符 唬抓且自Ντ個傳輸天線同時傳輪高達&amp;個資料符號流。 98367.doc 200534632 可將此傳輸方案之ΜΙΜΟ系統之模式表達為· E = Hs + n 5 一 方程式(2) 其中’i為一 NTxi向量,其具有用於Ns個資料符號之A個非 零項,該等NS個資料符號將在空間通道上傳 輸; L為一NRx^量’其具有用於經由化個接收天線獲取 之NR個接收到之符號的項;且 ΪΙ為在接收實體處觀測到之雜訊向量。 可假定該雜訊為具有一零均值向量及一協方差矩陣 4 = σ2Ι之加成性白色高斯雜訊(AWGN),其中y為雜訊之方 差且ί為恒等矩陣(identity matrix)。 自Ντ個傳輸天線傳輸之化個資料符號流在接收實體處彼 此干擾。自一傳輸天線傳輸之一給定資料符號流一般由所 有的NR個接收天線以不同的振幅及相位接收。每一接收到 的符號流包括每一該等Ns個經傳輸的資料符號流之一分 1。NR個接收到之符號流將共同包括所有該等仏個資料符 號流。然而,該等Ns個資料符號流分散於Nr個接收到之符 號流之中。接收實體對Nr個接收到之符號流執行接收器空 間處理以恢復由傳輸實體發送之乂個資料符號流。 ΜΙΜΟ系統可達成之效能(在很大程度上)取決於通道回 應矩陣Η。右Η内存在南度的相關性,則每一資料符號流將 觀測到大里來自其它流之干擾。此干擾或串擾不可在接收 實體處藉由空間處理來移除。高水準之干擾會降級每一受 影響的資料符號流之SNR,有可能將其降級到資料符號流 98367.doc -12- 200534632 不能由接收實體正確解碼之地步。 對於給定的通道回應矩陣过而言,當傳輸實體使用源自 Η之特徵向量(eigenvect〇r)在MIM〇通道之K個特徵模式 (或正《空間通道)上傳輸資料時可達成;2 能:若接收實體可向傳輸實體提供完全的抑或部分的通道 狀態資訊(CSI),則傳輸實體可以最大化該等流之總流通= 之方式(例如,藉由使用每__資料流之最佳或接近最佳的資 料傳輸率)處理f料流。^,料輸實體未料知或被誤 通知—inf。騰d),則為資料流所使用之該(等)資料傳輸率 可在通道實現(Channel realizati〇n)中導致一定百分比之訊 T或碼塊錯誤。舉例而言,當顧示出高度的相關性或當無 ^通道中存在不足的散射、多路徑(大相干頻寬(c〇h⑽“ 她))及/或時間衰減(大相干時間㈣价⑽如⑼ 時,可發生”不良&quot;通道回應。&quot;不良”通道之發生為隨機的, 且對於-給定資料傳輸率選擇而言需要最小化可發生此情 況之時間百分比。 對於^些職㈣統而言,效能可由最壞通道條件支配。 牛例而言,若接收實體 丧收貫體不可發送反饋資訊來指示用於每- ^符號流之適當的資料傳輪率(例如,因為反饋不被系統 小I 条件比反饋速率改變得更快),則傳輸實體可能 ::低速率傳輸資料符號流,以使得甚至在最壞通道條 條俾古㈣等流。因而系統效能將由預期的最壞通道 條件支配,此為非常不理想的。 空間擴張可用來隨機化由接收實體觀測之有效Μ_通 98367.doc 200534632 道,使得系統效能不由最壞通道條件支配。使用空間擴張, 傳輸實體用不同的導引矩陣執行空間處理以有效地隨機化 mIM〇通道,使得用於每—資料流之每—碼塊可觀測通道之 全體而不會長時間停留在一不良通道上。 可將用於空間擴張之在傳輸實體處之空間處理表 ♦)_)♦), 方程式⑺· 迗之 其中,i(m)為一Nsxl向量,其具有將在傳輸範圍爪中發 Ns個資料符號; Y(m)為用於傳輸範圍m之NTxNs導引矩陣;且 _ 2L(m)為一 NTxl向量,其具有將在傳輸範圍历中自化 個傳輸天線發送之Ντ個傳輸符號。 -般而言’使龍㈣之Ns個空間通道可同時傳輸高達ν 個資料符號流。為簡明起見’以下大量描述假定同8h〗, NT ^ 2, Nt hNR, NT Equation (1) hl, lh! 2 H =;, 2 • · _hNR, l hNR, 2 where, the term 1 ^ (1 = 1 ... &gt; ^ and b 1. &gt; ^) indicates the coupling or composite gain (complex) between the transmitting antenna and the receiving antenna 1. In the MIMO system, wheel data can be transmitted in multiple ways. In a simple transmission scheme, no spatial processing is performed. Each _transmission antenna transmits _ data symbols to capture and simultaneously transfer up to &amp; data symbol streams from Nτ transmission antennas. 98367.doc 200534632 The mode of the MIMO system of this transmission scheme can be expressed as · E = Hs + n 5 One formula (2) where 'i is an NTxi vector with A non-zero terms for Ns data symbols, and these NS data symbols will be transmitted on the spatial channel; L is an NRx ^ quantity' which has Terms for NR received symbols obtained through the receiving antennas; and Ϊ1 is the noise vector observed at the receiving entity. It can be assumed that the noise has a zero mean vector and a covariance matrix 4 = Additive white Gaussian noise (AWGN) of σ2I, where y is the variance of the noise and ί is the identity matrix (iden tity matrix). The data symbol streams transmitted from Nτ transmission antennas interfere with each other at the receiving entity. A given data symbol stream transmitted from a transmission antenna is generally received by all NR receiving antennas with different amplitudes and phases. Each received symbol stream includes a fraction of each of these Ns transmitted data symbol streams. The NR received symbol streams will collectively include all such data symbol streams. However, these Ns The data symbol streams are scattered among the Nr received symbol streams. The receiving entity performs receiver space processing on the Nr received symbol streams to recover the one data symbol stream sent by the transmitting entity. The performance that the MIMO system can achieve (To a large extent) Depends on the channel response matrix Η. There is a correlation of south degrees in the right Η, then each data symbol stream will observe interference from other streams in Dali. This interference or crosstalk cannot be borrowed at the receiving entity. Removed by spatial processing. A high level of interference will degrade the SNR of each affected data symbol stream, possibly downgrading it to the data symbol stream 98367.doc -12- 200534 632 The point where the receiving entity cannot correctly decode. For a given channel response matrix, when the transmitting entity uses the feature vector (eigenvectr) derived from 在 in the K feature patterns (or positive space) of the MIM0 channel Channel) can be achieved when transmitting data; 2 Yes: if the receiving entity can provide the transmission entity with complete or partial channel state information (CSI), the transmitting entity can maximize the total flow of these streams = way (for example, Process the f-stream by using the best or near-optimal data transfer rate per stream. ^, The input entity was not known or was notified by mistake-inf. Teng d), the data transmission rate used by the data stream can cause a certain percentage of T or code block errors in the channel realization. For example, when Gu shows a high degree of correlation or when there is insufficient scattering in the no channel, multipath (large coherence bandwidth (c0h⑽ “)) and / or time decay (large coherence time (price) For example, the "bad" channel response can occur. The occurrence of the "bad" channel is random, and for a given data rate selection, it is necessary to minimize the percentage of time that can occur. For some jobs In general, performance can be governed by the worst channel conditions. For example, if the receiving entity cannot send feedback information to indicate the appropriate data transfer rate for each-^ symbol stream (for example, because of feedback Without being changed by the system's small I condition faster than the feedback rate), the transmitting entity may :: transmit the data symbol stream at a low rate, so that even in the worst channel stripe, etc., the system performance will be changed from the expected maximum The bad channel conditions dominate this, which is very unsatisfactory. Spatial expansion can be used to randomize the effective M_pass 98367.doc 200534632 channels observed by the receiving entity, making the system performance not dominated by the worst channel conditions. With spatial expansion, the transmitting entity performs spatial processing with different steering matrices to effectively randomize the mIM0 channel, so that the entire channel can be observed for each code block of each data stream without staying in a bad channel for a long time. The space processing table at the transmission entity can be used for space expansion. ♦) _) ♦), where i (m) is an Nsxl vector, which has Nsxl to be transmitted in the transmission range claw. Data symbols; Y (m) is the NTxNs steering matrix for the transmission range m; and _ 2L (m) is an NTxl vector with Nτ transmission symbols to be transmitted from the transmission antennas in the transmission range calendar -In general, 'enables Ns spatial channels to transmit up to ν data symbol streams at the same time. For the sake of brevity', the following large number of descriptions assume the same as 8

Ns個資料符號流。 1 、J j頻年維。舉例ππΐ,在單載波 顧0系統巾,傳輪範討對應於—符號_,其為傳輪/一 資料符號之持續時間。作A黑 與 別Ns data symbol streams. 1, J j frequency of years. For example, ππΐ, in a single-carrier Gu0 system, the pass-through argument corresponds to the —symbol_, which is the duration of the pass-through / a data symbol. Make A Black and Don't

作為另一實例,在諸如利用OFDM 之ΜΙΜΟ系統之多載波職⑽、統中,傳輸範圍可對應於一 〇醜符號週期中之—子頻帶。傳輸㈣亦可涵蓋^符 週期及/或多個子頻帶。因此,爪可為時間及/或頻率之; :等亦可將傳輸範圍稱為傳輸區間、訊號傳輸區間、日心 可如以下描述產生L個導弓丨矩陣之集合且將其 擴張。此導引矩陣集合表示為㈣⑴…),其;;: 98367.doc _ 14· 200534632 T為大於1之任何整數。可為每—傳輸範圍m選擇該集合中 的個‘引矩陣。然後,傳輸實體將為每一傳輸範圍m用為 該傳輸範圍所選之導弓I矩陣Y(m)執行空間處理,其中 Y(m)e {父}。空間處理之結果為Ντ個傳輸符號流,其經進一 步調節並自Ντ個傳輸天線傳輸。 可將經空間擴張的在接收實體處的接收到之符號表達 為: r(m)=H(m).V(m).s(m)+n(m)^ ,方程式(4) 其中,H(m)為用於傳輸範圍m2NRXNT通道回應矩陣,· iLff(m)為用於傳輸範圍效通道回應矩 陣,其為Heff(m)=Ji(m)Km); [(m)為一NRxl向量,其具有傳輸範圍爪之^個接收 到之符號;且 il(m)為傳輸範圍m之雜訊向量。 如方程式(4)中所展示,由於由傳輸實體執行之空間擴 張,Ns個資料符號流觀測有效通道回應而不是實際 通道回應iKm)。因此將每一資料符號流在而不是 ii(m)之一空間通道上發送。可選擇導引矩陣使得每一資料 符號流觀測S(m)之空間通道之全體。此外,若跨越一碼塊 使用不同的導引矩陣’則用於該碼塊之資料符號將跨越該 碼塊觀測不同的通道。 接收實體可用有效通道回應矩陣之估計對接收到之符號 執行接收器空間處理以恢復所傳輪之資料符號流。若接收 實體瞭解傳輸實體用於每一傳輸範圍m之導引矩陣,則接收 98367.doc »15- 200534632 貝版可估。t通相應矩陣(例如,基於接收到之引導符號) 並按計算_估計的有效通道回應矩陣,其 二指示實際矩陣之估計。或者,接收實體可直接估計有 放L道回應矩陣iieff(m),例如,基於已使用灿)傳輸之接 收到之引導符號。引莫&amp; % 導付唬為用於引導之調變符號,其為 由傳輸與接收實體二者事先得知之資料。As another example, in a multi-carrier system, such as a MIMO system using OFDM, the transmission range may correspond to one of the sub-bands in a 100 symbol period. The transmission frame may also cover periods and / or multiple sub-bands. Therefore, the claws can be time and / or frequency; etc. The transmission range can also be referred to as the transmission interval, signal transmission interval, and heliocentric. As described below, a set of L guide bows can be generated and expanded. This set of steering matrices is denoted as ㈣⑴ ...), where ;;: 98367.doc _ 14.200534632 T is any integer greater than 1. One &apos; prime matrix in the set can be selected for each transmission range m. Then, the transmission entity will perform spatial processing for each transmission range m with the guide bow I matrix Y (m) selected for that transmission range, where Y (m) e {parent}. The result of the spatial processing is Nτ transmission symbol streams, which are further adjusted and transmitted from Nτ transmission antennas. The space-expanded received symbol at the receiving entity can be expressed as: r (m) = H (m) .V (m) .s (m) + n (m) ^, Equation (4) where, H (m) is the response matrix for the transmission range m2NRXNT channel, · iLff (m) is the response matrix for the transmission range effect channel, which is Heff (m) = Ji (m) Km); [(m) is an NRxl A vector having ^ received symbols of a transmission range claw; and il (m) is a noise vector of a transmission range m. As shown in equation (4), due to the spatial expansion performed by the transmitting entity, Ns data symbol streams observe the effective channel response instead of the actual channel response iKm). Each data symbol stream is therefore sent on a spatial channel instead of ii (m). The steering matrix can be selected so that each data symbol stream observes the entire space channel of S (m). In addition, if different steering matrices are used across a code block, the data symbols used for that code block will observe different channels across the code block. The receiving entity may perform receiver space processing on the received symbols using the estimation of the effective channel response matrix to recover the transmitted data symbol stream. If the receiving entity knows the steering matrix used by the transmitting entity for each transmission range m, then the receiving 98367.doc »15- 200534632 shell version can be estimated. t Pass the corresponding matrix (for example, based on the received pilot symbol) and calculate the _estimated effective channel response matrix, and the second indicates the estimate of the actual matrix. Alternatively, the receiving entity may directly estimate the L-channel response matrix iieff (m), for example, based on the received pilot symbol of the used CAN transmission. Induction &amp;% is a modulation symbol used for guidance, which is information that is known in advance by both the transmitting and receiving entities.

般而a,可經由ΜΙΜΟ通道同時傳輸任何數目之队個) 資料流’其中1 °舉例而言,若ND=Ns,則可在心f(m) 之Nsm間通道之每—上傳輸_資料流。若仏=1,則可解 多工(demuUipiex)-資料流並在匕咖)之所有的Ns個空間 通道上傳輸其。無論如何,如以下所描述,處理(例如 '編 碼、交錯 '及調變)每一資料流以獲取資料符號,且將用於 所有的ND個資料流之資料符號解多卫為用於^(啦乂個 工間通道之Ns個資料符號流。一導引矩陣用於一傳輸範圍 之工間處理,其可涵蓋一或多個資料符號向量。Generally a, any number of teams can be transmitted simultaneously via the MIMO channel) Data stream 'of which 1 ° For example, if ND = Ns, it can be transmitted on each of the channels between Nsm of heart f (m) _Data stream . If 仏 = 1, demuUipiex-data stream can be solved and transmitted on all Ns spatial channels. In any case, as described below, each data stream is processed (e.g., 'encoded, interleaved', and modulated) to obtain data symbols, and the data symbols used for all ND data streams are demultiplexed for ^ ( There are Ns data symbol streams in a work channel. A steering matrix is used for work processing in a transmission range, which can cover one or more data symbol vectors.

圖1展不用於以空間擴張傳輸資料之程序i 〇〇。初始地, 處理資料以獲取用於N D個資料流的N D個資料符號塊之集 合,-個塊用於一資料流(塊112)。每一資料符號塊包含自 :編碼資料之-碼塊(或-經編碼之資料封包)產生之資料 符唬可如以下描述執行資料處理。將nd個資料符號塊分 割成將在Nm個傳輸範圍内傳輸2Nm個資料符號子塊,每一 傳輸範圍中&quot;'子塊(塊⑴)。NM亦稱為塊長度且Nm&gt;1。每一 子鬼了 3來自母一該等ND個塊之一或多個資料符號。舉 例而5,若ND=NS ,則每一子塊可包含來自用於Ns個資料 98367.doc -16 - 200534632 流之Ns個塊之Ns個資料符號。作為另一實例,若ND=l,則 每一子塊可包含來自用於一資料流之一個塊之Ns個資料符 號。將用來表示資料符號塊之當前集合之傳輸範圍之指數m 設定為1(塊116)。 使用一導引矩陣父(m)來針對每一傳輸範圍m進行空間處 理。此導引矩陣Y(m)可選自L個導引矩陣之集合汉}(塊 118)。然後,用導引矩陣對資料符號子塊㈤執行空間處 理以獲取傳輸符號(塊120)。若傳輸範圍m涵蓋一個資料符 號向量,則如方程式(3)所展示,由資料符號子塊m形成一 具有多達Ns個資料符號之向量並用導引矩陣y(m)對其 進行空間處理以獲取對應的傳輸符號向量ym)。若傳輸範 圍m涵蓋多個(Nv個)資料符號向量,則由資料符號子塊⑺形 成Nv個向量ι1(ιη)(1=1…Nv),且用相同的導引矩陣公⑷對每 向1 ii(m)進行空間處理以獲取對應的傳輸符號向量 l(m)。無論如何,相同的導引矩陣y(m)用於針對傳輸範圍 m中之所有的資料符號向量之空間處理,且對所得的傳輸符 號向量進行處理並在傳輸範圍瓜中經由Nτ個傳輸天線傳輸 (塊 122)。 然後,做資料符號子塊是否已經處理並傳輸之判定 (意即’是否m=NM)(塊124)。若答案為”否,,,則為下一子塊 /傳輸範圍而將指數⑽(塊126),且程序返回塊ιΐ8。若針 對塊124之答案為”是&quot;,則做一是否存在待傳輸之更多資料 ==(塊叫。若答案為,•是&quot;,則程序返回塊112來開始處 里貝料符號塊之下一集合。否則,程序終止。 98367.doc 200534632 如圖1中所展示,用nm個導引矩陣對各個資料符號塊集合 進行二間處理以獲取化個傳輸符號序列。在個傳輸範圍 中將每一傳輸符號序列經由該等Nτ個傳輸天線中的各別天· 線予以傳輸。個導引矩陣為Nd個資料符號塊隨機化了由 接收實體觀測之有效MIM0通道。MIM〇通道之隨機化係由 針對不同的傳輸範圍使用不同的導引矩陣而產生,不必借 助於導引矩陣之元素的隨機性。 如以上所5兒明,可將傳輸範圍界定為涵蓋一或多個符號 週期及/或-或多個子頻帶。A 了改良效能,需要選擇盡可_ 能小的傳輸範圍,以使得(1)更多的導引矩陣可用於每一資 料符號塊且(2)接收實體可為每一資料符號塊獲取盡可能多 的ΜΙΜΟ通道之”外觀(丨〇〇k)”。傳輸範圍亦應比MIM〇通道之 相干時間更短,該相干時間係可假定MIM〇通道於其中近似 地為靜恶之持續時間。類似地,對於基於〇FDm之系統而 言’傳輸範圍應比通道之相干頻寬更小。 圖2展示了用空間擴張來接收資料之程序2〇〇。初始地將 才曰數m設定成1 (塊212),該指數m用於表示資料符號塊之當 月il集合的傳輸範圍。自Nr個接收天線為資料符號子塊㈤獲 取接收到的資料符號(塊214)。判定由傳輸實體為子塊㈤使 用之導引矩陣Y(m)(塊216),且將該矩陣用於導出由子塊m 觀測之有效ΜΙΜΟ通道的通道回應估計。然後,將此通道回 應估計用於對接收到之資料符號執行接收器空間處理,以 便為子塊m獲取偵測到之符號(或資料符號估計)(塊218)。 然後’做是否已接收到當前的資料符號塊集合個資 98367.doc -18 - 200534632 ,枓付號子塊之衫(意_,是否m=NM)(塊22Q)。若答案為 广,則為下一子塊/傳輸範圍而將指數m加1(塊222),且程 返回塊214。若針對塊22()之答案為”是,,,則處理⑽如·· 2調變、解交錯、及解碼)用於所有〜個子塊之細之符 〜乂獲取田别貝料付號塊集合之經解碼資料(塊以)。铁 後’做是否存在更多的待接收之資料之判定(塊叫。若: ^為&quot;是”,則程序返⑽212以開始接收資料符號塊之下二 集合。否則,程序終止。 Α·導引矩陣選擇 二:上所祝明’可產生L個導引矩陣之集合並將其用於空 間擴張。可以多種方式撰摆隹人 #裡万〜擇集合中之導引矩陣來使用。在 、她例巾方式自集合中選擇導引矩陣。舉 例而言’可循環於L個導引矩陣中且以順序來選擇之·· 一導引矩陣則開始、後為第:導引料助、等等、 ==末導引矩陣m)。在另一實施例中,以 方式自集合中選擇導引矩陣。舉例而言,可基於— 或導引矩㈣f⑻)來選擇用於每一傳輸範圍也之導引矩 陣,該函數f(m)會偽隨機輯擇該等⑽導引㈣中之一 者。在另-實施例中’以”完全變化”的方式自該集 導引矩陣。舉例而言,可循環於L個導引矩陣中且㈣序來 選用之。然而’可以偽隨機方式選擇每一次循環之肝導 :矩:,而不總是將第—導引矩陣γ⑴當作 :之:::多種其它方式來選_導引矩陣,且此在本發 98367.doc -19- 200534632 導引矩陣之選擇亦可取決於集合中之導引矩陣之數目 (L)及塊長度(nm)。一般而言,導引矩陣之數目可大於、等 於、或小於塊長度。可如以下所述來執行在該等三種狀況 下的導引矩陣之選擇。Fig. 1 shows a procedure i OO that is not used for transmitting data by space expansion. Initially, the data is processed to obtain a set of N D data symbol blocks for N D data streams, one block for one data stream (block 112). Each data symbol block contains data generated from-code blocks (or-coded data packets) of coded data. Data processing can be performed as described below. Divide the nd data symbol blocks into 2Nm data symbol sub-blocks that will be transmitted in Nm transmission ranges, with &quot; 'subblocks (blocks) in each transmission range. NM is also called block length and Nm> 1. Each child has 3 data symbols from the mother-one or more of these ND blocks. For example, if ND = NS, each sub-block can contain Ns data symbols from Ns blocks for Ns data 98367.doc -16-200534632 stream. As another example, if ND = 1, each sub-block may contain Ns data symbols from one block for a data stream. The index m used to represent the transmission range of the current set of data symbol blocks is set to 1 (block 116). A steering matrix parent (m) is used for spatial processing for each transmission range m. This steering matrix Y (m) may be selected from the set of L steering matrices} (block 118). The steering matrix is then used to perform spatial processing on the data symbol sub-blocks ㈤ to obtain transmission symbols (block 120). If the transmission range m covers a data symbol vector, as shown in equation (3), a vector of up to Ns data symbols is formed from the data symbol sub-block m and spatially processed by the steering matrix y (m) to Obtain the corresponding transmission symbol vector ym). If the transmission range m covers multiple (Nv) data symbol vectors, Nv vectors ι1 (ιη) (1 = 1 ... Nv) are formed from the data symbol sub-blocks 且, and the same steering matrix common ⑷ is used for each direction 1 ii (m) performs spatial processing to obtain the corresponding transmission symbol vector l (m). In any case, the same steering matrix y (m) is used for spatial processing of all data symbol vectors in the transmission range m, and the resulting transmission symbol vector is processed and transmitted through Nτ transmission antennas in the transmission range. (Block 122). Then, a determination is made as to whether the data symbol sub-block has been processed and transmitted (i.e., 'whether m = NM') (block 124). If the answer is "No", then the index ⑽ (block 126) will be used for the next sub-block / transmission range, and the program returns to block ιΐ 8. If the answer to block 124 is "Yes", do one exist? More data transmitted == (The block is called. If the answer is, • Yes &quot;, the program returns to block 112 to start the set under the Ribbey symbol block. Otherwise, the program terminates. 98367.doc 200534632 As shown in Figure 1 As shown in the figure, two sets of data symbol blocks are processed with nm steering matrices to obtain a plurality of transmission symbol sequences. Each transmission symbol sequence is passed through each of the Nτ transmission antennas in each transmission range. The antennas are transmitted by antennas. The steering matrix is randomized by Nd data symbol blocks. The effective MIM0 channel observed by the receiving entity is randomized. The randomization of the MIM0 channel is generated by using different steering matrices for different transmission ranges. It is not necessary to rely on the randomness of the elements of the steering matrix. As explained above, the transmission range can be defined to cover one or more symbol periods and / or multiple sub-bands. A To improve performance, you need to choose as many as you can. _ Can be small Transmission range so that (1) more steering matrices are available for each data symbol block and (2) the receiving entity can obtain as many MIMO channels as possible for each data symbol block (丨 〇k ) ". The transmission range should also be shorter than the coherence time of the MIM0 channel, which can be assumed to be approximately the duration of silence and evil in the MIM0 channel. Similarly, for a 0FDm-based system, 'transmission The range should be smaller than the coherent bandwidth of the channel. Figure 2 shows the procedure for receiving data using spatial expansion 2000. The number m is initially set to 1 (block 212), and the index m is used to represent the data symbol The transmission range of the block il set for the current month. Obtain the received data symbols from the Nr receiving antennas as data symbol sub-blocks (block 214). Determine the steering matrix Y (m) (block) used by the transmission entity as the sub-block. 216), and use this matrix to derive the channel response estimate of the effective MIMO channel observed by subblock m. Then, use this channel response estimate to perform receiver space processing on the received data symbols in order to obtain for subblock m Detected Symbol (or data symbol estimate) (block 218). Then 'do whether you have received the current data symbol block collection data 98367.doc -18-200534632, and pay the number sub-shirt (meaning _, whether m = NM ) (Block 22Q). If the answer is wide, the index m is increased by 1 for the next subblock / transmission range (block 222), and the process returns to block 214. If the answer to block 22 () is "yes ,, , Then processing (such as 2 modulation, de-interleaving, and decoding) is used for all ~ sub-blocks of the fine sign ~ 乂 to obtain the decoded data (blocks) of the set of Tianbeibei material number. Determine whether there is more data to be received (block is called. If: ^ is &quot; yes, '' the program returns to 212 to start receiving the two sets below the data symbol block. Otherwise, the program terminates. A. Steering matrix selection 2: The above wished to produce a set of L steering matrices and use it for spatial expansion. You can compose 撰 人 in many ways # 里 万 ~ Select the steering matrix in the set to use. Select the steering matrix from the set in. For example, ′ can be cycled through L steering matrices and selected in order ... A steering matrix starts, followed by the first: guidance material, etc., == end steering matrix m). In another embodiment, the steering matrix is selected from a set in a manner. For example, a steering matrix for each transmission range can be selected based on-or the steering moment ㈣f⑻), and the function f (m) will pseudo-randomly select one of these ⑽ steering ㈣. In another embodiment, the matrix is steered from this set in a "complete change" manner. For example, it can be looped through L steering matrices and selected sequentially. However, 'the liver guide: moment: of each cycle can be selected in a pseudo-random manner, instead of always taking the first-guide matrix γ⑴ as ::::: many other ways to choose the _ guide matrix, and this is here. 98367.doc -19- 200534632 The choice of steering matrix can also depend on the number (L) and block length (nm) of the steering matrix in the set. In general, the number of steering matrices can be greater than, equal to, or less than the block length. The selection of the steering matrix in these three situations can be performed as described below.

若L=NM’則導引矩陣之數目與塊之長度匹配。在此則 況下’可為用於傳輸資料符號塊之集合的nm個傳輸範圍1 之每-傳輸範圍選擇一個不同的導引矩陣。如以上所者 =可以確定性、偽隨機、或完全變化的方式為NM個傳輕 ::選:NM個導引矩陣。舉例而言,可為各個資料符號场 塊集合使用相同的(預選的)二:其中為各個資料符號 導引矩陣。 ^的)或不同的(偽隨機選擇的)開始 長度比集合中之導引矩陣之數目更大 為母一資料符號塊集合重複使 陣且可如上所述地選擇其。 人若l&gt;nm,則將導引矩陣之子集用於每If L = NM ', the number of steering matrices matches the length of the block. In this case, a different steering matrix may be selected for each of the nm transmission ranges 1 for a set of data symbol blocks to be transmitted. As above = NM can be transmitted in a deterministic, pseudo-random, or completely variable manner :: select: NM steering matrices. For example, the same (preselected) two can be used for each data symbol field block set: where the steering matrix is for each data symbol. ^) Or different (pseudo-randomly selected) start lengths are greater than the number of steering matrices in the set. Repeat the matrix for the mother-data symbol block set and select it as described above. If l &gt; nm, a subset of the steering matrix is used for each

U。用於每-資料符號塊集合之特定子集之、:擇:‘ 性的或偽隨機的。舉例 -k擇可為確 第一個導引矩陣可為用於二=2資料符號塊集合 導弓丨矩陣之後的導引矩陣。、彳唬塊集合之最末- B·系統 圖3展示ΜΙΜΟ系統300中之 之方塊圖。在傳_訾别實體3 W及接收實體35 闕在傳輸貫體310處,傳 收並處理(例如··編碼、交#、專輪(TX)—貝料處理器320名 曰及调變)用於ND個資料流以 98367.doc -20. 200534632 流量資料且提供化個資料符號流,其中Ns2NDy。τχ空間-處理器330接收並空間處理^個資料符號流以進行空間擴 張、多工入(multiplex in)引導符號、並將A個傳輪符號流’ 提供至ΝΤ個傳輸器單元(丁332t。以下描述由丁X 資料處理器320進行之處理,^τχ空間處理器33〇進行之 空間處理如以上所描述。各個傳輸器單元332調節(例如: 轉換成類比 '濾波、放大、及頻率向上轉換)各別的傳輸符 號流以產生經調變訊號β Ντ個傳輸器單元332&amp;至332丨分別 提供用於自ΝΤ個天線㈣至334t傳輸之Ντ個經調變:訊籲 號。 在接收實體350處,Nr個天線352d 352r接收化個經傳輸 之ΓΓ,且各個天線352將—接收到之訊號提供至各別的^ ,器單元(rCVr)354。每一接收器單元354執行與由傳輸器 ^ 332所執行之處理互補之處理,且⑴將接收到之資料符 號提供至接收(RX)空間處理器36〇並⑺將接收到之引導符 號提供至控制器380内之通道估計器384。藉由來自通道估 =3料之通道估計,接收空間處理器36〇對來自〜個接收籲 益羊元354a至354aNR個接收到之符號流執行空間處理, 且提供乂個_到之符號流,該等符號流是由傳輸實體㈣ 發送之乂個資料符號流之估計值。然:後,RX資料處理物〇 ,理(例如:解映射、解交錯、及解竭)該等Ns㈣測到之. 付號流且提供Nd個經解碼之資料流,該等經解碼之資料流. 是^個資料流之估計。 ^ 控制器340及380分別控制傳輸實體31〇及接收實體㈣處 98367.doc -21 - 200534632 之多種處理單元之操作。記憶體單元342及382分別儲存由 控制器340及380使用之資料及/或程式碼。 圖4展示傳輸實體310處之處理單元之方塊圖。對於圖々 中所展示之實施例而m資料處理器32G包括用於%個 資料流{山}(其中卜匕…“的ND個資料流處理器410&amp;至 41〇nd。在每一資料流處理器41〇内,一編碼器412接收資料 流{dl}並基於一編碼方案將其編碼並提供碼位元。該編碼方 案可包括循環冗餘檢查(CRC)產生、迴旋編碼(㈣⑽此嶋! coding)、渴輪碼編碼(Turb〇 c〇ding)、低密度同位檢查 (LDPC)編碼、區塊編碼(bl〇ckc〇ding)、其它種編碼、或其 組合。通道交錯器414基於一交錯方案來交錯(意即重新排 序)該等碼位元,以達成頻率、時間、及/或空間分集。符號 映射單元416基於一調變方案來映射該等經交錯之位元,且 提供資料符號{ s流。單元416將每B個經交錯之位元分入一 組以形成B位元值(其中By),且基於所選之調變方案(例 如:QPSK、M_PSK、4M_qAM,其中m=2B)而進一步將每 一 B位兀值映射至一特定調變符號。一般對每—資料流{山} 中之每貝料封包獨立地執行編碼以獲取一對應的經編碼 的資料封包或碼塊,且然後對每一碼塊執行符號映射以獲 取一對應的資料符號塊。 在圖4中Nd個資料流處理器410a至41 Ond處理nd個資料 流且為Nm個傳輸範圍之每個塊長度提供ND個資料符號 塊。單個資料流處理器410亦可(例如)以一分時多工(TDM) 方式處理ND個資料流。可為該等ND個資料流使用相同的或 98367.doc -22- 200534632 不同的編碼及調變方案。此外,可為該等Nd個資料流使用 相同的或不同的資料傳輸率。多工器/解多工器 (Mnx/DemuX)420接收用於ND個資料流之資料符號並將其 多路傳輸/解多路傳輸成Ns個資料符號流,过eff(m)*之每一 空間通道一資料符號流。若nd=ns,則多工器/解多工器42〇 可簡單地將用於每一資料流之資料符號作為一個資料符號 流來提供。若ND=1,則多工器/解多工器42〇將用於一個資 料流之資料符號解多工成乂個資料符號流。 TX二間處理器330為NM個傳輸範圍之每個塊長度自τχ 資料處理H 32G接收Ns個資料符號塊且自控制器34〇接收 NM個導引矩p車;^_(m)。s玄等導引矩陣可榻取自記憶體單元 342内之導引矩陣(SM)儲存器442或由控制器34()視需要產 生。TXS間處理器33G藉由用於各傳輸範圍@之導引矩陣 Y(m)來對各傳輸範圍狀資料符號執行空間處理且提供用 Η傳輸範圍的傳輸符號。取間處理器咖將用於每一 傳輸範Dm的傳輸符號多卫化以獲取〜個傳輸符號序列, 其將在—或多個符號週期中及/或在-或多個子頻帶上自 NT個傳輸天線發送。取間處理器33。進一步將該等A個 傳輸符斜列夕化以用於不同的傳輸範圍,且為A個傳 輸天線提供Ντ個傳輸符號流{xj}(j==i..NT)。 /5展示接收實體35Q處之處理單元之^塊圖鳴個接收 =兀354a至354r將接收到之引導符蝴(Μ ...Μ提供至 通道估計器384。在一眘#加士 在實軛例中,通道估計器384基於接收 到之引導符號而導屮福 、回應矩陣ii(m)之估計这(m)。通道 98367.doc .23· 200534632 估計器384進一步接收用於每一傳輸範圍m的導引矩陣 , 父(m)且按照包eff(m)=^m).Y(m)導出估計得的有效通道回應 , 矩陣。對於此實施例,接收及傳輸實體經同步,以使得兩 _ 個實體為每一傳輸範圍m使用相同的導引矩陣y(m)。在另 一實施例中,通道估計器384基於接收到之引導符號而直接 ‘出有效通道回應矩陣iieff(m)之估計包eff(m)。對於該等兩 個實施例而言,通道估計器384都將所估計之有效通道回應 矩陣这eff(m)提供至RX空間處理器36〇。 RX空間處理器360亦自NR個接收器單元354&amp;至35打獲取籲 接收到之資料符號⑷(ί=ι···Νι〇。RX空間處理器36〇藉由 也ff(m)並使用此項技術中已知之許多接收器空間處理技術 中之任一技術來對接收到之資料符號執行接收器空間處 理。RX空間處理器360將偵測到之符號(或:身料符號估計) 提供至RX資料處理器370。 對於圖5中所展示之實施例而言,RX資料處理器37〇包括 多工器/解多工器(MUX/DemUX)508及用於Nd個資料流之Ν〇 個資料流處理器51〇a至51_。多工以解多工器谓接收 Km)中的乂個㈣通道之乂則貞測到之符號流並將其多 解多工成用於ND個資料流之〜則貞測到之符號流。多工 器/解多工器508以與圖4中之傳輸實體31〇處之多工器/解多 :器倒互補的方式操作。在每—資料流處理器5_,^ 獲取相關聯的資料流,符號解映射單元512根據用於該流之 5周變方案來解調變偵測到之符號’且提供經解調變的資 料。通道解交錯器514解交錯該等經解調變之資料,其解交 98367.doc •24· 200534632 =方式與由傳輸實體3_該流所執行之交錯過程互補。然 後,解碼态516解碼經解交錯資 者麯U » /、解碼方式與由傳輸 只體310對该流所執行之編碼過程互補。舉例而言,若在傳 1貝,31G處刀別執行渴輪碼編碼或迴旋編碼,則可將渦輪 解馬益或維特比解碼器⑽㈣七⑶叫用作解碼器川喷 碼器516為每-資料符號塊提供一經解碼之資料封包。 C MIMO-OFDM 系統 使用OFDM,可於每一〇腕符號週期中在〜個子頻帶上 傳輸多達〜個調變符號。在傳輸之前,使用Νρ點反向快速 傅立葉轉換(IFFT)將該等調變符號轉換到時間域以產生一 包含㈣時間域碼片之,,經轉換,,符號。為了抵抗由頻率選 擇性衣減導致之符號間干擾(ISI),重複每一經轉換之符號 中的-部分(或Nep個碼片)以形成一對應的〇簡符號。每 - OFDM符號在一個〇聰符號週期(Nf+〜個碼片週期舛 予以傳輸,其中Ncp為循環字首長度。 對於一㈣OFDM之MIM〇系統(意即,mim〇 〇fdm系 統)而言,可為用於資料傳輸之每一子頻帶執行空間擴張。 因此用於傳輸範圍之指數印被以k、η替代(子頻帶让及 〇讀符號週期n)。可為每— 〇FDM符號週期n中的每一子 頻帶k形成-個向量咖)。每一向量狀啦〇聰符號週 期η中為子頻帶k包含用於經由匕也啦乂個空間通道來 傳輸的多達Ns個資料符號。可於一個〇FDM符號週期中在 NF個子頻帶上同時傳輸多達Νρ個向量啦,n)㈣.鳥)。 在MIMO-OFDM系統中可以多種方式傳輸Nd個資料符號 98367.doc -25· 200534632 塊之集合。舉你丨-r· ^ 頻帶中…&quot;料符號塊可作為用於Nf個子 =物子頻帶的向量齡一個項來傳輸。在此種U. For a specific subset of the per-data symbol block set, select: ‘sexual or pseudo-random. For example, the -k option can be determined. The first steering matrix can be a steering matrix for a set of two = 2 data symbol blocks, a guide matrix, and a matrix. The end of the bluffing block set-B. System Figure 3 shows a block diagram of the MIMO system 300. At the transmitting entity 3 W and the receiving entity 35 (at the transmitting entity 310), transmitting and processing (for example, encoding, communication #, special round (TX)-320 material processor and modulation) Used for ND data streams with 98367.doc -20. 200534632 traffic data and provides a data symbol stream, of which Ns2NDy. The τχ space-processor 330 receives and spatially processes ^ data symbol streams for space expansion, multiplexing in pilot symbols, and providing A round symbol streams' to NT transmitter units (332t). The following describes the processing performed by D X data processor 320, and the spatial processing performed by ^ τχ spatial processor 33 is as described above. Each transmitter unit 332 adjusts (for example: conversion to analog 'filtering, amplification, and frequency up conversion ) Separate transmission symbol streams to generate modulated signals β Ντ transmitter units 332 &amp; to 332 丨 provide τ modulated signals for signal transmission from NT antennas 334 to 334t, respectively. At the receiving entity At 350, Nr antennas 352d and 352r receive the transmitted ΓΓ, and each antenna 352 provides the received signal to a respective receiver unit (rCVr) 354. Each receiver unit 354 performs and transmits by ^ 332 performs complementary processing and ⑴ provides the received data symbols to the receiving (RX) space processor 36 〇 and ⑺ provides the received pilot symbols to the channel estimation in the controller 380 384. Based on the channel estimation from the channel estimation = 3, the receiving space processor 36 performs spatial processing on the received symbol streams from ~ 354a to 354aNR, and provides _ to Symbol streams, which are estimated values of a data symbol stream sent by the transmission entity 然. Then, the RX data processing object 0, (for example: demapping, deinterleaving, and depletion) of these Ns㈣ Measured. The number stream is provided and Nd decoded data streams are provided. These decoded data streams are estimates of ^ data streams. ^ The controllers 340 and 380 control the transmission entity 31 and the receiving entity respectively. 98367.doc -21-200534632 operation of various processing units. Memory units 342 and 382 store data and / or code used by controllers 340 and 380, respectively. Figure 4 shows a block diagram of processing units at transmission entity 310 For the embodiment shown in Figure VII, the m data processor 32G includes ND data stream processors 410 &41; In the stream processor 41, an encoder 412 receives The data stream {dl} is coded and provided with code bits based on a coding scheme. The coding scheme may include cyclic redundancy check (CRC) generation, convolutional coding (here !! coding), and thirsty round coding (Turb〇). coding), low-density parity check (LDPC) coding, block coding (bloccoding), other coding, or a combination thereof. The channel interleaver 414 interleaves (meaning, reorders) the channel based on an interleaving scheme. Equal code bits to achieve frequency, time, and / or space diversity. The symbol mapping unit 416 maps the interleaved bits based on a modulation scheme and provides a data symbol {s stream. Unit 416 groups each B interleaved bits into a group to form a B-bit value (where By), and further based on the selected modulation scheme (eg, QPSK, M_PSK, 4M_qAM, where m = 2B) Each B-bit value is mapped to a specific modulation symbol. Generally, encoding is performed on each shell packet in each data stream {山} independently to obtain a corresponding encoded data packet or code block, and then symbol mapping is performed on each code block to obtain a corresponding data symbol. Piece. In Fig. 4, Nd data stream processors 410a to 41 Ond process nd data streams and provide ND data symbol blocks for each block length of Nm transmission ranges. A single data stream processor 410 may also process ND data streams, for example, in a time-division multiplexing (TDM) manner. The same or 98367.doc -22- 200534632 different encoding and modulation schemes can be used for these ND data streams. In addition, the same or different data transmission rates can be used for these Nd data streams. The multiplexer / demultiplexer (Mnx / DemuX) 420 receives data symbols for ND data streams and multiplexes / demultiplexes them into Ns data symbol streams. Each time eff (m) * One space channel and one data symbol stream. If nd = ns, the multiplexer / demultiplexer 42 can simply provide the data symbol for each data stream as a data symbol stream. If ND = 1, the multiplexer / demultiplexer 42 will demultiplex the data symbols for one data stream into one data symbol stream. The TX interprocessor 330 receives each block length of NM transmission ranges from τχ data processing H 32G and receives Ns data symbol blocks and receives NM steering moments p from the controller 34; ^ _ (m). The steering matrix such as suan can be taken from the steering matrix (SM) memory 442 in the memory unit 342 or generated by the controller 34 () as needed. The inter-TXS processor 33G performs spatial processing on each transmission range-like data symbol by using a steering matrix Y (m) for each transmission range @ and provides transmission symbols using a transmission range. The deinterleaving processor will multi-guard the transmission symbols for each transmission range Dm to obtain ~ transmission symbol sequences, which will be transmitted from NT in one or more symbol periods and / or in multiple sub-bands. Transmission antenna transmission. Take the processor 33. The A transmission symbols are further skewed for different transmission ranges, and Nτ transmission symbol streams {xj} (j == i..NT) are provided for the A transmission antennas. / 5 shows a block diagram of the processing unit at the receiving entity 35Q. A reception = 354a to 354r will provide the received guide character (M ... M to the channel estimator 384. 一 cen # 加士 在 实In the yoke example, the channel estimator 384 guides the estimation of the response matrix ii (m) based on the received pilot symbol (m). Channel 98367.doc .23 · 200534632 The estimator 384 further receives for each transmission A steering matrix in the range m, parent (m) and the estimated effective channel response matrix, derived from the package eff (m) = ^ m) .Y (m). For this embodiment, the receiving and transmitting entities are synchronized so that the two entities use the same steering matrix y (m) for each transmission range m. In another embodiment, the channel estimator 384 directly ′ outs the estimated packet eff (m) of the effective channel response matrix iieff (m) based on the received pilot symbols. For both of these embodiments, the channel estimator 384 provides the estimated effective channel response matrix eff (m) to the RX space processor 36. The RX space processor 360 also fetches the received data symbols from the NR receiver units 354 & to 35. The RX space processor 36〇 also uses ff (m) and uses Any of many receiver space processing techniques known in the art to perform receiver space processing on received data symbols. The RX space processor 360 will provide the detected symbols (or: body symbol estimates) to provide To the RX data processor 370. For the embodiment shown in Figure 5, the RX data processor 37 includes a multiplexer / demultiplexer (MUX / DemUX) 508 and N for Nd data streams. Data stream processors 51〇a to 51_. Multiplexing means demultiplexing means receiving a channel of one of the channels in m) and demultiplexing it into ND data streams. ~~ is the symbol stream detected by the chastity. The multiplexer / demultiplexer 508 operates in a complementary manner to the multiplexer / demultiplexer at the transmission entity 31 in FIG. 4. At each data stream processor 5_, ^ obtains the associated data stream, and the symbol demapping unit 512 demodulates the detected symbols according to the 5-cycle variation scheme used for the stream, and provides the demodulated data . The channel deinterleaver 514 deinterleaves the demodulated data, and the deinterleaving thereof is performed in a manner complementary to the interleaving process performed by the transmission entity 3_the stream. Then, the decoding state 516 decodes the de-interleaved investor song U »/, and the decoding method is complementary to the encoding process performed by the transport body 310 on the stream. For example, if the knife performs thirteen round coding or gyro coding at 31G, you can use Turbo Decoder or Viterbi Decoder ⑽㈣ 七 ⑶ to be called as Decoder Chuan Coder 516 for each -The data symbol block provides a decoded data packet. C MIMO-OFDM system uses OFDM, which can transmit up to ~ modulation symbols on ~ sub-bands in every 0 wrist symbol period. Prior to transmission, these modulation symbols are converted to the time domain using Nρ-point inverse fast Fourier transform (IFFT) to produce a, transformed, symbol that includes a time-domain chip. In order to resist the inter-symbol interference (ISI) caused by frequency selective subtraction, the-part (or Nep chips) in each converted symbol is repeated to form a corresponding 0-symbol. Each-OFDM symbol is transmitted in one 0 Cong symbol period (Nf + ~ chip periods), where Ncp is the cyclic prefix length. For a MIM〇 system (meaning a mim〇fdm system) of OFDM, it can be Spatial expansion is performed for each sub-band used for data transmission. Therefore, the index used for the transmission range is replaced by k, η (sub-band yield and 0 read symbol period n). It can be Each sub-band k forms a vector vector). Each vector-shaped La Cong symbol period η is a sub-band k containing up to Ns data symbols for transmission via a spatial channel. Up to Np vectors can be simultaneously transmitted on NF subbands in one OFDM symbol period, n) birds. In a MIMO-OFDM system, Nd data symbols can be transmitted in various ways. 98367.doc -25 · 200534632 A set of blocks. For example, in the -r · ^ frequency band, the symbol block can be transmitted as a term of the vector age for the Nf sub-bands. In this

料符號塊在所有叫個子頻帶上傳輸且達 \刀*母—貧料符號塊可進—步跨越-或多個0FDM 此’每—資料符號塊可跨越頻率及/或時間維 (由系統設計)外加空間維(用空間擴張)。 對於MIM0-0FDM系統而言,亦可以多種方式選擇導引 矩陣。如以上所描㉛,可以確錢、偽隨機、或完全變化 的方式為子頻帶選擇導引矩陣。舉例而言,可循環於集合 中之=導引矩陣中且以順序選擇其(為0職符號週期η中 的子頻V 1至①進行S擇、然後為〇FDM符號週期n + J中的 子頻V 1至NF進行選擇、等等)。可將傳輸範圍界定為涵蓋 一或多個子頻帶及一或多個〇FDM符號週期。集合中之導引 矩陣之數目可小於、等於、或大於子頻帶之數目。以上所 描述之三種狀況卜Nm、l&lt;Nm、及l&gt;Nj^可應用於子頻帶, 其中以NF取代NM。 對於MIMO-OFDM系統而言,每一傳輸器單元332對用於 相關聯的傳輸天線之所有Nf個子頻帶的傳輸符號執行 OFDM調變,以獲取對應的0FDM符號流。每一傳輸器單元 332進一步調節0FDM符號流以產生經調變之訊號。每一接 收器單元354對其接收到之訊號執行互補的〇]?1:)1^解調變, 以獲取接收到之資料符號及接收到之引導符號。OFDM調變 及解調變為此項技術所習知且本文不加以描述。 D.導引矩陣產生 98367.doc -26- 200534632 用於空間擴張之導引矩束 件 51矩陣應為么正矩陣且滿足以下條 YH(i).Y(i) = j(卜 j . L), 其中”H”表示共輛轉置(c〇njUgate trans 方备式(5)The material symbol block is transmitted on all sub-bands and reaches \ knife * mother-lean material symbol block can be advanced-step across-or multiple 0FDM. This' per-data symbol block can span the frequency and / or time dimension (designed by the system ) Plus spatial dimension (using space expansion). For the MIM0-0FDM system, there are multiple ways to select the steering matrix. As described above, the steering matrix can be selected for the subbands in a reliable, pseudo-random, or completely variable manner. For example, it can be looped in the = steering matrix in the set and selected in order (for the sub-frequency V 1 to ① in the 0 symbol period η to perform S selection, and then to 0 in the FDM symbol period n + J Sub frequencies V 1 to NF are selected, etc.). The transmission range can be defined to cover one or more sub-bands and one or more OFDM symbol periods. The number of steering matrices in the set may be less than, equal to, or greater than the number of sub-bands. The three conditions described above, Nm, l &lt; Nm, and l &gt; Nj ^, can be applied to the sub-band, where NF is used instead of NM. For a MIMO-OFDM system, each transmitter unit 332 performs OFDM modulation on transmission symbols for all Nf sub-bands of an associated transmission antenna to obtain a corresponding OFDM symbol stream. Each transmitter unit 332 further adjusts the OFDM symbol stream to generate a modulated signal. Each receiver unit 354 performs complementary 0]? 1:) 1 demodulation on the received signal to obtain the received data symbol and the received pilot symbol. OFDM modulation and demodulation are known in the art and are not described here. D. Steering matrix generation 98367.doc -26- 200534632 The steering moment beam 51 matrix used for spatial expansion should be a positive matrix and satisfy the following YH (i). Y (i) = j (Buj.L ), Where "H" represents a total vehicle transposition (c〇njUgate trans square preparation (5)

^ NS^t „ „ ^ 4 ; J 行’方程式(5)中的條件指示(_)之每-—有早位長度’ 4养㈣·爆1㈣...NS),且(2_ =兩行…共輕(Η—)内…零,或 b=1』s’且a外此條件確保使用導 引矩陣观來同時傳輪之队個資料符號具有相同的功率 (power)且在傳輸之前彼此正交。 亦可將某些導引矩陣不相關化(une。㈣价#,以使得任 何兩個經不相關化的導引矩陣之間之相關性為零或一低 值。可將此條件表達為: • D YLU十L.L、且⑹,方程式⑹ 其中’ £(ij)為γ⑴與γ⑴之相關矩陣且立是全為〇之矩陣。 使集合中之所有導引矩陣皆滿足方程式⑷中之條件可能 很難。可導出導引矩陣,使得所有可能的導引矩陣對之相 關矩陣之最大旎$為最小化的。可如方程式⑹中所示計算 :、給定導J丨矩陣對之相關矩陣以⑴。可按照 E(lj)=1-(lj| =szkn6rtt#c(ij)^i&amp;t, ^ tcmjn(ij)^c(ij) 之第m列及第n行之元素。能量E(ij)亦為⑴⑹卿之跡 (trace)及(2)以ij)之弗羅貝尼烏斯範數(巧以印丨則n〇r叫之平 方。產生導引矩陣使得所有對導引矩陣之最大能量E(⑴為 98367.doc •27- 200534632 最小4匕的。 可以多種方式產生L個導引矩陣{幻之集合,以下描述其 中之一些。可在傳輸及接收實體處預計算並儲存導引矩陣 之集合且其後視需要而擷取其來使用。或者,可視需要即 時計算該等導引矩陣。^ NS ^ t „„ ^ 4; J line 'Each of the conditional indication (_) in equation (5)-has an early bit length' 4 support ㈣ · burst 1 ㈣ ... NS), and (2_ = two lines … All light (Η—) inside… zero, or b = 1 『s' and a outside this condition ensures that the steering matrix concept is used to simultaneously transfer the data symbols of the team of the wheel and have the same power before transmission Orthogonal. Some steering matrices can also be uncorrelated (une. ㈣ #, so that the correlation between any two uncorrelated steering matrices is zero or a low value. This condition can be Expressed as: • D YLU ten LL, and ⑹, equation ⑹ where '£ (ij) is the correlation matrix of γ⑴ and γ⑴ and is a matrix that is all 0. Make all the guiding matrices in the set satisfy the equation ⑷ The conditions may be difficult. The steering matrix can be derived so that the maximum 旎 $ of the correlation matrix of all possible steering matrix pairs is minimized. It can be calculated as shown in equation :: given a derivative J 丨 matrix pair correlation The matrix is given by ⑴. Elements in column m and row n of E (lj) = 1- (lj | = szkn6rtt # c (ij) ^ i &amp; t, ^ tcmjn (ij) ^ c (ij). Energy E (ij) also The Frobenius norm (trace) and (2) as ij) of Fröbenius norm (which is called the square of India and n0r. Generate the steering matrix so that the maximum energy E of all the steering matrices E (⑴ is 98367.doc • 27- 200534632 with a minimum of 4 daggers. L steering matrices can be generated in a variety of ways. {Magic set, some of which are described below. Pre-calculation and storage of steering matrices can be performed at the transmitting and receiving entities. And use them as needed, or calculate these steering matrices as needed.

圖6展示用於產生導引矩陣之集合之第一方案之例示 性程序600。初始地,為將產生之第一引導矩陣將指數丨設 定成1(塊612)。然後產生隨機變數之NsxNi^陣迅塊614)。 Q之元素為獨立同態分佈(IID)的複高斯隨機變數,其各具 有零均值及單位方差。然後,按照來計算辽之ΝτχΝτ 相關矩陣(塊616)。 緊接著, r = e-d-eh 執行G之相關矩陣之特徵值分解(塊618)如下: ’ 方程式(7) 其中’一為特徵向量R的NTXNS么正矩陣;且 &amp;為特徵值R的NSXNS對角矩陣。FIG. 6 shows an exemplary procedure 600 for a first scheme for generating a set of steering matrices. Initially, the index 丨 is set to 1 for the first steering matrix to be generated (block 612). Then a random variable NsxNi ^ array block is generated 614). The elements of Q are complex Gaussian random variables of independent homomorphic distribution (IID), each of which has zero mean and unit variance. Then, the Nτ × Nτ correlation matrix is calculated according to (block 616). Next, r = ed-eh performs the eigenvalue decomposition (block 618) of the correlation matrix of G as follows: 'Equation (7) where' one is the NTXNS positive matrix of the eigenvector R; and &amp; is the NSXNS of the eigenvalue R diagonal matrix.

對角矩陣D包含沿對角線之非負實值及別處之零。該等對 角項被稱為特徵值r且表示辽之仏個特徵模式之功率增益。 然後檢查特徵向量矩陣E與已為集合產生之每一導引矩 陣之間的相關性(塊62〇)。對於第一導引矩陣而言跳過塊 62〇。該檢查可(例如)藉由以下步驟來實現:(1)計算矩陣E 與已產生之每一導引矩陣Y(j)G= 之間之相關矩陣 —(j),(2)如以上所描述計算每一相關矩陣以』)之能量;(3) 將每相關矩陣之能量與一臨限值相比較;及(4)若所有的 i_l個相關矩陣之能量小於該臨限值則宣佈低相關性。亦可 98367.doc -28· 200534632 使用檢查低相關性之其它測試,且此在本發明之範疇内。 然後,為特徵向量矩陣1做是否符合低相關性標準之判定 (塊622)。若矩陣E與任何先前產生的導引矩陣之間之相關 性超過了臨限值,則不符合低相關性標準。若為此種狀況, 則程序返回塊614以產生另一矩陣〇。否則,若符合低相關 性標準,則設定引導矩陣乂⑴等於矩陣运(塊624)。如方程式 (7)中所展示,因為矩陣E係經由特徵值分解而獲得,所以 導引矩陣父⑴為一么正矩陣。 然後,做是否已產生用於該集合之所有L個導引矩陣之判 定(塊626)。若答案為”否,,,則指數丨加丨(塊628),且程序返 回塊614以產生下一導引矩陣。否則,程序終止。 可藉由以下步驟來改良用程序6〇0產生之導引矩陣: 識別出一對導引矩陣,其相關矩陣具有最高能量;及(2)藉 由以么正矩陣自左乘(pre_multiply)該等兩個導引矩陣來,, 分離该等導引矩陣(使得所得矩陣亦為么正矩陣)。可選擇 用於自左乘之么正矩陣來以確定性或隨機的方式修改該等 兩個導引矩陣。可重複該程序直到相關矩陣之最大能量不 可進一步減少。 在第二方案中,基於(l〇g2L)+l個獨立各向同性分佈 (independent isotropically distributed)的么正矩陣之集合來 產生L個導引矩陣之集合。一隨機么正矩陣若在被任何確定 f生的NTXNT么正矩陣自左乘時其概率密度(pr〇babiUty density)不變,則該隨機么正矩陣為各向同性分佈的。可將 集口中之導引矩陣之指數1表示為i=lil2...lQ,其中Q=log2L, 98367.doc 200534632 li為指數i之第一位元,1q為指數i之最末位元,且每一位元 的值可為0或1。然後,可如下產生L個導引矩陣: Υ(Λ^...^)=ΩνΩ^....Ω^.ν〇 , (^^2?...5^€{〇51}).方程式(8) 其中,為NTXNS獨立各向同性分佈么正矩陣;且 纪(卜1…Q)為NTXNT獨立各向同性分佈么正矩陣。 可將矩陣Υο定義為(例如)冗,其中心為NsXNs恆等 矩陣。T.L· Marietta等人在 2002年 4月之&quot;Structured Unitary Space-Time Autocoding Constellations5^IEEE Transaction on Information Theory,第48卷,第4號中以進一步的細節 描述了第二方案。 在第三方案中,藉由在&gt;^維複空間(c〇mplex space)中逐 步旋轉一初始麼正導引矩陣來產生L個導引矩陣之集 合,如下: 方程式(9) 其可定義如下·· 方程式(10)The diagonal matrix D contains non-negative real values along the diagonal and zeros elsewhere. These diagonal terms are called eigenvalues r and represent the power gain of the eigenmodes. The correlation between the eigenvector matrix E and each steering matrix that has been generated for the set is then checked (block 62). Block 62 is skipped for the first steering matrix. This check can be achieved, for example, by the following steps: (1) calculating the correlation matrix between matrix E and each steering matrix Y (j) G = that has been generated— (j), (2) as above Describe the calculation of the energy of each correlation matrix with ""); (3) compare the energy of each correlation matrix with a threshold value; and (4) declare the energy of all i_l correlation matrices to be lower than the threshold value Correlation. 98367.doc -28 · 200534632 Other tests that check for low correlation can also be used, and this is within the scope of the present invention. A determination is then made as to whether the feature vector matrix 1 meets the low correlation criterion (block 622). If the correlation between matrix E and any previously generated steering matrix exceeds a threshold, then the low correlation criterion is not met. If this is the case, the program returns to block 614 to generate another matrix 0. Otherwise, if the low correlation criterion is met, the steering matrix 乂 ⑴ is set equal to the matrix operation (block 624). As shown in equation (7), since the matrix E is obtained by eigenvalue decomposition, the parent matrix is a positive matrix. A determination is then made as to whether all L steering matrices have been generated for the set (block 626). If the answer is "No," then the index is added (block 628), and the program returns to block 614 to generate the next steering matrix. Otherwise, the program terminates. The following steps can be used to improve the generated by program 600. Steering matrix: A pair of steering matrices are identified, and their correlation matrices have the highest energy; and (2) the two steering matrices are premultiplied by the positive matrix to separate them. Matrix (so that the resulting matrix is also a positive matrix). You can choose to multiply the positive matrix from the left to modify the two steering matrices in a deterministic or random manner. This process can be repeated until the maximum energy of the correlation matrix It cannot be further reduced. In the second scheme, a set of L steering matrices is generated based on a set of (10g2L) + 1 independently isotropically distributed symmetric positive matrices. A random symmetric positive matrix If the probability density (pr0babiUty density) does not change when multiplying the NTXNT positive matrix generated by f, the random positive matrix is isotropically distributed. The steering matrix in the set can be Index 1 Expressed as i = lil2 ... lQ, where Q = log2L, 98367.doc 200534632 li is the first bit of the index i, 1q is the last bit of the index i, and the value of each bit can be 0 or 1. Then, L steering matrices can be generated as follows: Υ (Λ ^ ... ^) = ΩνΩ ^ .... Ω ^ .ν〇, (^^ 2? ... 5 ^ € {〇51} ). Equation (8) where is the positive matrix of the NTXNS independent isotropic distribution; and Ji (b.1 ... Q) is the positive matrix of the NTXNT independent isotropic distribution. The matrix Υο can be defined as (for example) redundant, which The center is the NsXNs identity matrix. TL · Marietta et al. In April 2002 "Structured Unitary Space-Time Autocoding Constellations 5 ^ IEEE Transaction on Information Theory, Volume 48, No. 4 describes the second in further detail Solution: In the third solution, a set of L steering matrices is generated by gradually rotating an initial normal steering matrix in a> ^ dimensional complex space (complex space), as follows: Equation (9) which Can be defined as follows: · Equation (10)

处 + 1) = 0丨.別,(i=i&quot;_L_l), 其中受1為NTXNT對角么正矩陣 V2〜/L 〇 ... 〇 Ί 0 ej2〜/L … Λ+ 1) = 0 丨. (I = i &quot; _L_l), where 1 is the NTXNT diagonal diagonal positive matrix V2 ~ / L 〇 ... 〇 Ί 0 ej2 ~ / L… Λ

0 0 ... ei^^NT-i/L ui U2、…、unt為Ντ個不同的值,各自在〇至乙]之範圍 内,挑選其使得用矩陣皆產生之所得導引矩陣之間的相關 性盡可能的低。箜之Ντ個對角元素為紅個單位根(謂t 〇f umty)。可用NtXNt傅立葉矩陣泛之化個不同行來形成初始 麼正¥ ’其中給出第(n,m)個項U ·· 〜(η={1···Ντ}且 m={1.NT}),方程式⑴) 98367.doc -30- 200534632 其中’ η為列指數且行指數。B M H〇chwald等人在2〇〇〇 年 9 月之 Systematic Design of Unitary Space-Time onstellations, IEEE Transaction on Information Theory j 第46卷,第6號中以進一步的細節描述了第三方案。 在第四方案中’以基底矩陣B及不同的純量來產生L個導 引矩陣之集合。基底矩陣可為沃爾什矩陣(Walsh matrix)、 傅立葉$陣;或某些其它矩陣。可將一2χ2沃爾什矩陣表達 2x2 一 1 可自較小的沃爾什矩陣置形成較大的沃 爾什矩陣!2Νχ2Ν,如下: 方程式(12) W2Nx2N = ΓWNxN Ί 〇 --ΝχΝ 一^^ ΝχΝ _ 。玄等沃爾什矩陣的維數為2的乘方。如方程式⑴)中所展 Γ、可开/成具有4壬平方維數(square⑽)(例如:2、 3、4、5等)之傅立葉矩陣。 NTXNT沃爾什矩較、傅立葉矩陣&amp;、或某些其它矩陣可 用作基底矩陣㈣形成其它㈣㈣。可將基底矩陣之第2 至…列中的每一列獨立地與撾個不同的可能的純量之一相 乘其中M&gt;卜自用於該等nh列的M個純量之欧】種不同 的排列可獲取心個不同的導引矩陣。舉例而言,第2至A 列中厂的每一列可與純量+1、-卜小或,立地相乘,其中 j - V^T。對於Ντ=4且Μ=4,可用叩細丁门 用四個不同的純量自基底矩陣 產生64個不同的導引矩陣。可用其它純量(例如: Γ:?二等等)產生額外的導引矩陣。-般而η 之母列可與具有e之形式(其中0可為任何相位值)的任 98367.doc • 31 - 200534632 何純量相乘。可按照亦gNT._產生ΝτΧΝ^引矩陣,其中 gNT 且sxo為用基底矩陣达產生之第丨個矩陣。由知來 定標確保了又⑴之每—行具有單位功率(unit p〇wer)。 其它方案亦可用於產生導引矩陣之集合,且此在本發明 之範疇内。一般而言,可以偽隨機方式(例如,諸如第一方 案)或確定性方式(例如,諸如第二及第三方案)產生導引矩 陣。 E.效能 圖7展示了在一例示性MIM〇系統中所達成之總頻譜效率 之累積分佈函數(CDF)之曲線。對於mMIM〇系統,傳輸實 體配備有四個傳輸天線(Ντ=4),且接收實體配備有四個接 收天線(NR=4)。假定ΜΙΜ〇通道如以上針對方程式(1)所描 述。假定接收到之SNR為20 dB,則該接收到的SNR為在進 灯接收斋空間處理之前所接收到的符號之SNR。假定接收 實體使用最小均方誤差(MMSE)接收器空間處理技術。 曲線710展示未執行空間擴張之狀況下之總頻譜效率之 CDF。以每赫茲中位元/秒(bps/Hz)之單位給出頻譜效率。 對於給^的頻譜效率χ,咖指示了總頻譜效率比χ差之概 率。舉例而言,點712指示不進行空間擴張時總頻譜效率比 9 bps/Hz差的概率為百分之一(1〇·2)。若傳輸實體以$ bps/Hz 之總速率編碼並傳輸資料,則接收實體不能正確地解碼資 料之概率為百分之一。通常將此概率稱為,,中斷”概率。 曲線720、730及740展示分別使用4、16及64個導引矩陣 進行空間擴張而達成之總頻譜效率之CDF。點722、732及 98367.doc -32· 200534632 742指示了分別在使用4、1 6及64個導引矩陣時,總頻譜效 率分別劣於12.5、14.6及15.8 bps/Hz之概率為百分之一。對 於百分之一的中斷概率而言,空間擴張之使用將該例示性 ΜΙΜΟ系統之總頻譜效率自9 bps/Hz改良至近似為15.8 bps/Hz(用64個導引矩陣)。線750代表50%的概率且可參考 其來判定該等四種狀況的平均總頻譜效率。 圖7展示具有某些具體假定之例示性MIM〇系統之效能。 一般而言,改良的量可取決於多種因素,諸如(例如)mim〇 通道之特徵、傳輸及接收天線之數目、在接收實體處所使 用之空間處理技術、用於資料傳輸之編碼及調變方案等等。 2 MISO系統 MIS〇系統在傳輸實體處使用多個(Ντ個)傳輸天線且在接 收貫體處使用單一接收天線來傳輸資料。由Ντ個傳輸天線 及單一接收天線形成之MISO通道由單一空間通道組成。 MISO通道可由丨ΧΝΤ通道回應列向量l表現其特徵, klM2···、;!,其中項hj(卜1 ···&amp;)表示傳輸天線j與單一接收 天線之間的耗合。 空間擴張可用於隨機化由單一天線接收實體觀測之有效 MISO通道,以使得效能不會受到最壞通道條件的支配。對 於剛〇系統而言,傳輸實體用導引向量之集合執行空間處 理。 用於在MISO系統中進行空間擴張而在傳輸實體處進行 之空間處理可表達為: 方程式(13) 98367.doc 200534632 其中S(m)為將在傳輸範圍m中發送之資料符號,· m中自Ντ 兄(m)為用於傳輸範圍m之Ντχ 1導引向量;且 心^(111)為化\1向量,其具有將在傳輸範圍 個傳輸天線發送之Ντ個傳輸符號。 • Ή L個導引向4之集合且將其表$為ω或 ! 0(卜1 .&quot;L)。可為每一傳輸範圍_擇集合中之一個導引 向量(例如’以偽隨機或確定性方式,類似於以上針對導引 矩陣所指述之方式)。針對每—傳輸範圍m,傳輸實體用為 該傳輸範圍所選之導引向量♦)來執行空間處理。0 0 ... ei ^^ NT-i / L ui U2, ..., unt are Nτ different values, each in the range of 0 to B], and it is selected such that the resulting steering matrix is generated by using the matrix. The correlation is as low as possible. Nt diagonal elements of 为 are red unit roots (referred to as tfumty). You can use the NtXNt Fourier matrix to generalize the different rows to form the initial Modulus ¥ 'where the (n, m) th term U ·· ~ ~ (η = {1 ··· Nτ} and m = {1.NT} ), Equation ii) 98367.doc -30- 200534632 where 'η is a column index and a row index. The third solution is described in further detail by BH Hochwald et al., Systematic Design of Unitary Space-Time onstellations, IEEE Transaction on Information Theory, Vol. 46, No. 6, September 2000. In the fourth scheme, 'the basis matrix B and different scalars are used to generate a set of L guide matrices. The base matrix may be a Walsh matrix, a Fourier matrix, or some other matrix. A 2χ2 Walsh matrix can be expressed as 2x2-1. A larger Walsh matrix can be formed from a smaller Walsh matrix! 2Νχ2Ν is as follows: Equation (12) W2Nx2N = ΓWNxN 〇 〇 --ΝχΝ a ^^ ΝχΝ _. The dimension of the mysterious Walsh matrix is a power of two. As shown in equation ⑴), Γ can be opened / formed into a Fourier matrix with a square dimension (eg, 2, 3, 4, 5, etc.). NTXNT Walsh moment comparison, Fourier matrix &, or some other matrix can be used as base matrix ㈣ to form other ㈣㈣. Each of the 2nd to ... columns of the basis matrix can be independently multiplied by one of the different possible scalars in Laos where M &gt; from the M scalars for the nh columns] The permutation can obtain different guiding matrixes. For example, each of the plants in columns 2 to A can be multiplied by a scalar +1, -or, or, where j-V ^ T. For Nτ = 4 and M = 4, it is possible to generate 64 different steering matrices from the base matrix using four different scalars. Other scalars (eg, Γ:? 2, etc.) can be used to generate additional steering matrices. -The general column of η can be multiplied by any scalar that has the form e (where 0 can be any phase value). The Nτ × N ^ matrix can be generated according to gNT._, where gNT and sxo are the first matrix generated by using the base matrix. Knowing the calibration ensures that every row has unit power. Other schemes can also be used to generate the set of steering matrices, and this is within the scope of the present invention. In general, the steering matrix can be generated in a pseudo-random manner (for example, such as the first scheme) or in a deterministic manner (for example, such as the second and third schemes). E. Efficiency Figure 7 shows a plot of the cumulative distribution function (CDF) of the total spectral efficiency achieved in an exemplary MIM0 system. For the mMIM0 system, the transmitting entity is equipped with four transmitting antennas (Nτ = 4), and the receiving entity is equipped with four receiving antennas (NR = 4). It is assumed that the MIMO channel is as described above for equation (1). Assuming that the received SNR is 20 dB, the received SNR is the SNR of the symbols received before the light receiving space processing. It is assumed that the receiving entity uses minimum mean square error (MMSE) receiver space processing techniques. Curve 710 shows the CDF of the total spectral efficiency without performing spatial expansion. Spectral efficiency is given in units of medians per second (bps / Hz). For the given spectral efficiency χ, 咖 indicates the probability that the total spectral efficiency is worse than χ. For example, point 712 indicates that the probability that the total spectral efficiency is worse than 9 bps / Hz without spatial expansion is one hundredth (10.2). If the transmitting entity encodes and transmits data at a total rate of $ bps / Hz, the probability that the receiving entity cannot correctly decode the data is one percent. This probability is commonly referred to as the "interruption" probability. Curves 720, 730, and 740 show the CDF of the total spectral efficiency achieved by spatial expansion using 4, 16, and 64 steering matrices, respectively. Points 722, 732, and 98367.doc -32 · 200534632 742 indicates that when 4, 16, and 64 steering matrices are used, respectively, the probability that the total spectral efficiency is inferior to 12.5, 14.6, and 15.8 bps / Hz is 1%. For 1% In terms of outage probability, the use of spatial expansion improves the overall spectral efficiency of this exemplary MIMO system from 9 bps / Hz to approximately 15.8 bps / Hz (using 64 steering matrices). Line 750 represents a 50% probability and is available Refer to it to determine the average total spectral efficiency of these four conditions. Figure 7 shows the performance of an exemplary MIM0 system with certain specific assumptions. In general, the amount of improvement can depend on a number of factors, such as, for example, mim 〇 The characteristics of the channel, the number of transmitting and receiving antennas, the space processing technology used at the receiving entity, the coding and modulation scheme for data transmission, etc. 2 MISO system MIS〇 The system uses multiple (Nτ) at the transmitting entity. Each) Transmitting antenna and using a single receiving antenna at the receiving body to transmit data. The MISO channel formed by Nτ transmitting antennas and a single receiving antenna is composed of a single spatial channel. The MISO channel can be characterized by the column vector l of the channel response response, klM2 ···;!, Where the term hj (bu 1 ·· &amp;) represents the loss between the transmission antenna j and a single receiving antenna. Spatial expansion can be used to randomize the effective MISO channel observed by a single antenna receiving entity, So that the performance is not subject to the worst channel conditions. For rigid systems, the transmitting entity performs spatial processing with a set of steering vectors. It is used for spatial expansion in the MISO system and spatial processing at the transmitting entity. It can be expressed as: Equation (13) 98367.doc 200534632 where S (m) is the data symbol to be transmitted in the transmission range m, and since m in π is the ττ 1 steering vector for the transmission range m ; And the heart ^ (111) is a vector of \ 1, which has Nτ transmission symbols to be transmitted by the transmission antennas in the transmission range. • Ή L sets to 4 and lists them as ω or! 0 ( Bu 1. &Quot; L). A steering vector in the set can be selected for each transmission range (for example, 'in a pseudo-random or deterministic manner, similar to the manner described above for the steering matrix). For each- The transmission range m is used by the transmission entity to perform spatial processing using the steering vector ♦) selected for the transmission range.

可將在接收實體處用空間擴張接收到 中r(m)為傳輸範圍m之接收到之符號; 之符號表達為: 方程式(14) heff(m)為傳輸範圍m之有效通道回應,其為 n(m)為傳輸範圍❿之雜訊。 如方程式(14)中所展示,因為由傳輸實體執行空間擴張, 所以資料符號流觀測有效通道回應heff(m),其包括實際通 道回應k(m)及導引向量z(m)。接收實體可用有效通道回應 估計iieff(m)來對接收到之符號r(m)執行偵測(例如,匹配濾 波或均衡)以獲取偵測到之符號§(m),此為此項技術所習 知。接收實體進一步處理(例如:解調變、解交錯、及解碼) 偵測到之符號r(m)以獲取經解碼之資料。 在MISO糸統中用於空間擴張之導引向量應具有相等的 能量(例如,|Y(i|2=YH(i).Y(i) = 1(i=l.&quot;L》,以使得用於資料符號 98367.doc • 34 - 200534632 之傳輸功率不會由空間擴張改變。亦可將某些導引向量不. 相關化,使得任何兩個經不相關化的導引向量之間之相關 性為零或一低值。可將此條件表達為·· ⑴.丄,j = l L,且⑼,方程式⑴) 其中,C(lj)為導引向量乂(1)與以」·)之間之相關性。 可以夕種方式(例如,以偽隨機或確定性方式,類似於以 上針對導引矩陣所描述之方式)產生L個導引向量之集合。 如以上所描述而產生之導引矩陣之行可用於導引向量以進 行空間擴張。 讀 可用多種方式實施本文所描述之空間擴張技術。舉例而 。可在硬體、I人體、或其組合中實施該等技術。對於硬 體實轭而。,用來在傳輸實體處執行空間擴張之處理單元 可:施於一或多個特殊應用積體電路(ASIC)、數位訊號處 r ( SP)數位δί1號處理裝置(dspd)、可程式化邏輯裝置The received symbol with space expansion received at the receiving entity with r (m) as the transmission range m can be expressed as: Equation (14) heff (m) is the effective channel response for the transmission range m, which is n (m) is the noise in the transmission range. As shown in equation (14), since the spatial expansion is performed by the transmitting entity, the data symbol stream observes the effective channel response heff (m), which includes the actual channel response k (m) and the steering vector z (m). The receiving entity can use the effective channel response estimation iieff (m) to perform detection (for example, matched filtering or equalization) on the received symbol r (m) to obtain the detected symbol § (m). Learn. The receiving entity further processes (eg, demodulates, deinterleaves, and decodes) the detected symbol r (m) to obtain decoded data. The guidance vectors used for spatial expansion in the MISO system should have equal energies (for example, | Y (i | 2 = YH (i) .Y (i) = 1 (i = l. &Quot; L ", So that the transmission power used for the data symbol 98367.doc • 34-200534632 will not be changed by the spatial expansion. Some steering vectors can also be uncorrelated, so that between any two uncorrelated steering vectors The correlation is zero or a low value. This condition can be expressed as ... ⑴. 丄, j = l L, and ⑼, equation ⑴) where C (lj) is the steering vector 乂 (1) and "" ). The set of L steering vectors can be generated in various ways (for example, in a pseudo-random or deterministic manner, similar to that described above for the steering matrix). Generated as described above The rows of the steering matrix can be used to guide the vector for spatial expansion. Read the space expansion techniques described in this article in a variety of ways. For example, these techniques can be implemented in hardware, the human body, or a combination thereof. For hardware The yoke is a processing unit used to perform spatial expansion at the transmitting entity: it can be applied to one or more Special application integrated circuit (ASIC), digital signal processing unit (SP) digital δ1 No. 1 processing device (dspd), programmable logic device

、處理器、控制器、 設計來執行本文所描述之功能之其 内。用來在接收實體處執行空間處 一或多個ASIC、DSP、處理器等 對於軟體實施而言,可用 可用執行本文所描述之功能夕指知, Processor, controller, and are designed to perform the functions described in this article. Used to execute space at the receiving entity One or more ASICs, DSPs, processors, etc. For software implementation, available Available to perform the functions described in this document

巩仃兵。可在處理 在於處理器外部建構記憶 98367.doc •35· 200534632 體單兀之狀況下,可經由此項技術所習知之多種方式將記 憶體單兀通信地耦接至處理器。 本文所包括之標題用於參考及幫助定位特定部分。不希 望該等標題限制其下所描述之概念之範疇,且該等概念亦 可應用在整個專利說明書全文之其它部分中。 提供對所揭示之實施例的先前描述來使任何熟習此項技 術者可製作或使用本發明。對於彼等熟習此項技術者而言 對該等實施例之多種修改將顯而易見,且在不脫離本發明 之精神或範喻的情況下可將本文所界定之通用原則應用於 其它實施例。因此,並不希望本發明被限制於本文所展示 之實施例,而希望本發明符合與本文所揭示之原則及新穎 特點一致之廣闊範鳴。 【圖式簡單說明】 圖1展示用於以空間擴張傳輸資料之程序。 圖2展示用於以空間擴張接收資料之程序。 圖3展示一 ΜΙΜΟ系統中之一傳輸實體及一接收實體。 圖4展示在傳輸實體處之處理單元。 圖5展示在接收實體處之處理單元。 圖6展示用於產生用於空間擴張之導引矩陣之集合之程 序。 圖7展示一 4x4 ΜΙΜΟ系統所達成之總頻譜效率之曲線。 【主要元件符號說明】 概率 頻譜效率 1 、 10-1 、 10-2 、 10-3 6 、 8 、 10 、 12 、 14 、 16 、 18 、 20 、 22 98367.doc -36 - 200534632 100 程序 200 程序 300 ΜΙΜΟ系統 310 傳輸實體 320 傳輸資料處理器 330 傳輸空間處理器 332a至332t 傳輸單元 334a至334t 天線 340 控制器 342 記憶體 350 接收實體 352a至352r 天線 354a至354r 接收器單元 360 接收空間處理器 370 接收資料處理器 380 控制器 382 記憶體 384 通道估計器 4 1 0a至 41Ond 資料流處理裔 412a至412nd 編碼器 414a至414nd 通道交錯器 416a至416nd 符號映射單元 420 多工器/解多工器 442 導引矩陣儲存器 98367.doc • 37- 200534632 508 多工器/解多工器 510a至 510nd 貧料流處理器 512a至 512nd 符號解映射單元 514a至 514nd 通道解交錯器 516a至 516nd 解碼器 710 、 720 、 730 、 740 曲線 712 、 722 、 732 、 742 點 750 線 98367.doc 38-Gong Yanbing. Under the condition that the processing is to construct the memory outside the processor 98367.doc • 35 · 200534632, the memory unit can be communicatively coupled to the processor through various methods known to this technology. The headings included in this article are for reference and help locate specific sections. It is not intended that such headings limit the scope of the concepts described below, and that these concepts may also be applied throughout the entire patent specification. The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Many modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the spirit or analogy of the invention. Therefore, it is not intended that the present invention be limited to the embodiments shown herein, but rather that the present invention conform to a broad spectrum of principles consistent with the principles and novel features disclosed herein. [Schematic description] Figure 1 shows the procedure for transmitting data with space expansion. Figure 2 shows a procedure for receiving data with space expansion. Figure 3 shows a transmitting entity and a receiving entity in a MIMO system. Figure 4 shows the processing unit at the transmitting entity. Figure 5 shows the processing unit at the receiving entity. Figure 6 shows a procedure for generating a set of steering matrices for spatial expansion. Figure 7 shows a curve of the total spectral efficiency achieved by a 4x4 MIMO system. [Description of Symbols of Main Components] Probability Spectrum Efficiency 1, 10-1, 10-2, 10-3 6, 8, 8, 10, 12, 14, 14, 16, 18, 20, 22 98367.doc -36-200534632 100 Program 200 Program 300 ΜΙΜΟ system 310 transmission entity 320 transmission data processor 330 transmission space processor 332a to 332t transmission unit 334a to 334t antenna 340 controller 342 memory 350 receiving entity 352a to 352r antenna 354a to 354r receiver unit 360 receiving space processor 370 Receive data processor 380 controller 382 memory 384 channel estimator 4 1 0a to 41Ond data stream processor 412a to 412nd encoder 414a to 414nd channel interleaver 416a to 416nd symbol mapping unit 420 multiplexer / demultiplexer 442 Steering matrix memory 98367.doc • 37- 200534632 508 Multiplexer / demultiplexer 510a to 510nd lean stream processor 512a to 512nd symbol demapping unit 514a to 514nd channel deinterleaver 516a to 516nd decoder 710, 720, 730, 740 curve 712, 722, 732, 742 point 750 line 98367.doc 38-

Claims (1)

200534632 十、申請專利範圍: 1β 一種處理用於在一無線多輸入多輸出(ΜΙΜΟ)通信系統中 傳輸之資料之方法,其包含: 處理資料以獲取至少一資料符號塊;及 用複數個導引矩陣對該至少一資料符號塊執行空間處 理’以獲取用於複數個傳輸天線的傳輸符號之複數個序 列,其中該等複數個導引矩陣為該至少一資料符號塊隨 機化—由一接收實體觀測之有效ΜΙΜΟ通道。 2·如睛求項1之方法,其中該處理資料以獲取該至少一資料 符號塊包含: 編石馬資料以產生至少一編碼資料塊,且 符號映射每一編碼資料塊以獲取一對應的資料符號 塊。 3 ·如凊求項1之方法,其進一步包含: 、:至夕、貧料付號塊分割成複數個資料符號子塊』 資料符號子塊選擇—導引矩陣,且其中該利 至少-資料符號塊執行空間處理包含:藉由為每一資中 =子塊所選定之導引矩陣來對該子塊執行空間處理。 .分之方法,其中該對該至少―資料符號塊進行之 另字 」 — 口口 主早-資料符號塊分割成複數個資料符號子塊。 •明’項3之方法,其中該對該至 分割包含: 貝杆付唬塊進行之 將硬數個資料符號塊分割成複數個資料符號子塊。 98367.doc 200534632 6·如請求項3之 分割包含·〉’其中該對該至少—資料符號塊進行之 將该至少一次★、丨Λ/Γ 使得每一貝;?付號塊分割成複數個資料符號子塊, 號。子塊包括來自該至少-塊中的每-塊之資料符200534632 10. Scope of patent application: 1β A method for processing data for transmission in a wireless multiple-input multiple-output (MIMO) communication system, comprising: processing data to obtain at least one data symbol block; and using a plurality of guides The matrix performs spatial processing on the at least one data symbol block to obtain a plurality of sequences of transmission symbols for a plurality of transmission antennas, wherein the plurality of steering matrices randomize the at least one data symbol block—by a receiving entity Observed effective MIMO channel. 2. The method as described in item 1, wherein the processing data to obtain the at least one data symbol block comprises: compiling stone data to generate at least one coded data block, and symbolically mapping each coded data block to obtain a corresponding data Symbol block. 3. The method of seeking item 1, further comprising:,: to the evening, the poor material number block is divided into a plurality of data symbol sub-blocks "Data symbol sub-block selection-a steering matrix, and wherein the benefit is at least-data Performing spatial processing on the symbol block includes performing spatial processing on the sub-block by using a steering matrix selected for each asset = sub-block. A method of dividing, wherein the at least `` data symbol block '' is added to another word-the mouth of the main early-data symbol block is divided into a plurality of data symbol sub-blocks. • The method of item 3, wherein the to-segmenting includes: performing a beating block to divide a hard number of data symbol blocks into a plurality of data symbol sub-blocks. 98367.doc 200534632 6 · If the segmentation of claim 3 includes ·> ', where the at least-data symbol block is performed at least once ★, 丨 Λ / Γ are made to each shell; The number block is divided into a plurality of data symbol sub-blocks, number. The sub-block includes data symbols from each of the at least-blocks 8. 如請:項3之方法,其進一步包含:^在複數個傳輸範圍巾傳輸該等複數個 付子塊’每—傳輸範圍中-子塊。 如明求項3之方法,其進一步包含: 經空間處理資料 自該等複數個傳輸天線將每一 塊在一符號週期中進行傳輸。 經空間處理資料符號子 9. 10. 如請求項3之方法,其進一步包含:::等複數個傳輸天線將每一經空間處理資料符號子 ^ 少一子頻帶之一各別群上進行傳輸。 如請求項1之方法,其進一步包含:自遠等複數個傳輸天線傳輸傳輸符號之該等複數個序 η·如請求们之方法,其進一步包含: 自L個㈣矩陣之—集合之中選擇該等複數個導引矩 Ρ ,其中L為一大於1之整數。 12·如%求項1之方法,其進一步包含: 以一確定性方式自L個導引矩陣之一集合之中選 等複數個導引矩陣,其中L為一大於1之整數。 ’ 13·如請求項1之方法,其進一步包含: 98367.doc 200534632 藉由以順序循環於該等L個導y矩陣中而自該等£個導 引矩陣之一集合之中選擇該等複數個導引矩陣,其中乙為 一大於1之整數。 14.如請求項〗之方法,其進一步包含·· 以-偽隨機方式自L個導引矩陣之一集合之中選擇該 等複數個導引矩陣,其中L為一大於〗之整數。 15·如請求項3之方法,其進一步包含: 為該等複數個資料符號子塊之每一資料符號子塊選擇 一不同的導引矩陣。 16.如請求項3之方法,其進一步包含: =等複數個子塊中的L個子塊之每一子集選擇不同 顺序的L個導引矩陣,其中L為-大於以整數。 ::求項1之方法,其中該等複數個導引矩陣為么正矩 個導ft::車之方法,其中該等複數個導引矩陣中的任何兩 個導引矩陣之間具有低相關性。 19.如請求項1之方法,其進-步包含: 用一基底矩陣及複數個 陣。 A里來產生該等複數個導引矩 2〇.如請求項1之方法’其進-步包含: 基於一初始么正矩陣及一 陣來產生該等複數個㈣料個單位根之對角矩 21·如請求項〗之 八中L為一大於1之整數。 其认 法其進-步包含: 土;獨立各向同性分佈么 正矩陣之一集合來產生該等 98367.doc 200534632 複數個導引矩陣。 22.如請求们之方法,其進_步包含: 工 處理傳輸符號之該等複數個 (OFDM) 〇 β幻以用於正父頻分多 23·如請求項1之方法,其進一步包含: 為用於資料傳輸之複數個子頻帶之每一子頻帶選擇 不同的導引矩陣。 卞领▼選擇一 24.如請求項丨之方法,其進_步包含: 每符號塊分割成複數個資料符號子塊, 子塊被指派心在至少—子頻帶之一各別 二該等複數個傳輸天線傳輸,且其中該執行空間 :…藉由該等複數個導引矩陣中的-各別導引矩 空間處理。子頻K母-群之資料符號子塊執行 25 -種在-無線多輸人多輸出(M細)通信系統中之裝置, 其包含: 貝料處理器,其處理資料以獲取至少一資料符號 塊;及 、,二間處理器,其藉由複數個導引矩陣對該至少一資 ;斗符5虎塊執行空間處理,以獲取用於複數個傳輸天線的 傳輸付唬:複數個序列,其中該等複數個導引矩陣為該 父 &gt; 料付號塊隨機化一由一接收實體觀測之有效 ΜΙΜΟ通道。 26·如請求項25之I置’其中資料被編碼以產生至少-編碼 98367.doc 200534632 資料塊’且其中每一編石馬 資料符號塊。 資料塊被映射 以獲取一對應的 27·如請求項25之裝置 陣。 其中該等複數個導引矩陣為么正矩 28.如請求項25之褒置,其中該空間處理器將該至少一資料 符號塊分割成複數㈣料符號子塊並藉由該等複數個導 引矩陣之一來對該等複數個資料符號子塊中的每一資料 符號子塊執行空間處理。 29·如請求項28之裝置,其進一步包含: 一控制器’其為該等複數個資料符號子塊之每一資料 符號子塊自L個導引矩陣之一集合之中選擇—導引矩 陣’其中L為一大於1之整數。 3〇·如請求項29之襄置,其中該控制器以一確定性方式自[個 導引矩陣之該集合之中選擇該等複數個導引矩陣。 31·如晴求項29之裝置,其中該控制器以一偽隨機方式自l個 導引矩陣之該集合之中選擇該等複數個導引矩陣。 32.如睛求項28之裝置,其中該MIM〇系統利用正交頻分多工 (OFDM) 〇 33· 一種在一無線多輸入多輸出(ΜΙΜΟ)通信系統中之裝置, 其包含: 用於處理資料以獲取至少一資料符號塊之構件;及 用於藉由複數個導引矩陣來對該至少一資料符號塊執 行空間處理以獲取用於複數個傳輸天線的傳輸符號之複 數個序列之構件,其中該等複數個導引矩陣為該至少一 98367.doc 200534632 接收貫體觀測之有效ΜΙΜΟ通 貧料符號塊隨機化_由 道。 34. 如請求項33之裝置,其進一步包含. 塊==少―資料符號塊分割成複數個資料符號子 塊資料符號子塊中之每-資料符號子 之構件’且其中該用於執行空間處理 資料符::塊=㈣複數個資料符號子塊中之每-理之構; U導引矩陣來對該子塊執行空間處 35. ::求項33之裴置,其中該等複數個導引矩陣為么正矩 36. 如請求項33之裝置,其進一步包含: 擇::以一確定性方式自L個導引矩陣之-集合之令選 擇㈣複數個導引矩陣之構件,其中 37. 如請求項33之裝置,其進_步包含: 38 用於以-偽隨機方式|L個導引矩陣之一集合之中選 擇該等複數個導引矩陣之構件,其中L為-大於!之整數。 種處理用於在-無線多輸入單輸出⑽s〇)通信系統中 傳輸之資料之方法,其包含·· 處理資料以獲取-資料符號塊;及 藉由複數個導引向量來對該資料符號塊執行空間處 以獲取用於複數個傳輸天線的傳輸符號之複數個序 歹J 〃中β亥等複數個導引向量為該資料符號塊隨機化一 98367.doc 200534632 由一接收實體觀挪之有效MIS〇通道。 39.如請求項38之方法,其進一步包含. ==號塊分割成複數個資料符號子塊;及 擇為」導=資料符號子塊中之每一資料符號子塊選 包含.,由:$且其中该對該資料符號塊執行空間處理 二二等複數個資料符號子塊中之每-資料符 40 ST 導引向量來對該子塊執行空間處理。 =:38之方法’其中該等複數個導引向量中的任何 導引向Ϊ對具有低相關性。 41_如請求項38之方法,其進一步包含: 用 基底矩陣及至少一幼吾办立a· » 曰 、、、屯里來產生邊4複數個導引向 篁0 42·如請求項38之方法,其進一步包含: 等選㈣ 43·如請求項38之方法,其進一步包含·· ★=一偽隨機方式自L個導引向量之一集合之中選擇該 等複數個導引向量,其中L為一大於丨之整數。 44. 一種在一無線多輸入多輸出(mim〇)通信系統中接收—資 料傳輸之方法,其包含·· 、 獲取接收到之資料符號,其用於在經由一MIM〇通道傳 輸之如藉由複數個導引矩陣加以空間處理之至少—:欠 負料 獲取由該ΜΙΜΟ通道及該等複數個導引矩陣所形成之 98367.doc 200534632 一有效ΜΙΜΟ通道之一通道回應估計;及 藉由該通道回應估計來對該等接收到之資料符號勃^于 接收器空間處理’以獲取用於該至少一資料符號塊的資 料符號估計。 4 5 ·如請求項4 4之方法,其進一步包含: 為每一傳輸範圍選擇一導引矩陣,且其中該執行接收 裔空間處理包含:基於為每一傳輸範圍所選定之導引矩 陣來對用於該傳輸範圍之該等接收到之資料符號執行接 收器空間處理。 46.如請求項44之方法,其進一步包含: 處理用於該至少一資料符號塊的該等資料符號估計, 以獲取用於該至少一資料符號塊的經解碼之資料。 47·如請求項44之方法,其中該等複數個導引矩陣為么正矩 陣。 48· —種在一無線多輸入多輸出(ΜΙΜ〇)通信系統中之裝置, 其包含: 複數個接收器單元,其用以獲取接收到之資料符號, 该等接收到之資料符號用於在經由一 ΜΙΜΟ通道傳輸之 前藉由複數個導引矩陣加以空間處理之至少一資料符號 塊; ; 一通道估計器,其用以獲取由該ΜΙΜΟ通道及該等複數 個導引矩陣所形成之一有效ΜΙΜΟ通道之一通道回應估 計;及 ^ 一空間處理器,其用以藉由該通道回應估計來對該等 98367.doc 200534632 接收狀資料符號執行接收器空間處理,以獲取用於該 至少一貢料符號塊的資料符號估計。 49·如請求項48之裝置,其中該等複數個導引矩陣為么正矩 陣。 50« -種在-無線多輸人多輸出(Μιμ〇)通信系統中之裝 其包含: ~ 詩獲取接㈣之資料符號之構件,該等接收到之資 料符號用於在經由—M細通道傳輸之前藉由複數個二 引矩陣加心間處理之至少_資料符號塊; 、用於獲取由該ΜΙΜΟ通道及該等複數個導引矩陣所形 成之一有效ΜΙΜΟ通道之-通道回應估計之構件;及 用於藉由該通道回應估計來對該等接收到之資料符號 2純器空間處理以獲取用於該至少—f料符號塊的 一貝料付號估計之構件。 5L如請求項50之裝置,其進一步包含: 用於為每一傳輸範圍自L個導引矩陣之_ 52 擇-導引矩陣之構件,其中乙為_大於ι之整數,且其中 :用於執行接收器空間處理之構件包含:基於為每二傳 輸範圍所選定之導引矩陣來對用於該傳輪範圍之咳 收到之資料符號執行接收器空間處理之構件。 -無線多輸入單輸出⑽s〇)通信系統中接收一資 科傳輸之方法,其包含·· 接收到之資料符號,該等接收到之資料符號用於 由—廳〇通道傳輸之前藉由複數個導引向量加以 98367.doc -9- 200534632 空間處理之資料符號塊; 獲取由該MISO通道及該等複數個導引向量所形成之一 有效MIS Ο通道之一通道回應估計;及 、藉由該通道回應估計對料接收収f料符號執行谓 測,以獲取用於該資料符號塊的資料符號估計。 53·如請求項52之方法,其進一步包含: 一集合之中選擇一 且其中基於用於每 取用於該傳輸範圍 為每一傳輸範圍自L個導引向量之 導引向量,其中L為一大Kit整數, 一傳輸範圍之所選定的導引向量來獲 之通道回應估計。 98367.doc8. If so: The method of item 3, further comprising: ^ transmitting the plurality of sub-blocks in each transmission range to each sub-block in the transmission range. If the method of finding item 3 is further specified, it further comprises: spatially processing the data from each of the plurality of transmission antennas to transmit each block in a symbol period. Spatially processed data symbols 9. 10. The method of claim 3, further comprising :: transmitting a plurality of transmission antennas for each of the spatially processed data symbols ^ at least one sub-band to transmit on a separate group. The method as claimed in claim 1, further comprising: transmitting the plurality of order η of the transmission symbol from a plurality of transmission antennas such as far. As the method of the request, it further comprises: selecting from the set of L unitary matrices-a set The plurality of steering moments P, where L is an integer greater than 1. 12. The method of% finding item 1, further comprising: selecting a plurality of steering matrices from a set of L steering matrices in a deterministic manner, where L is an integer greater than 1. '13. The method of claim 1, further comprising: 98367.doc 200534632 selecting the complex numbers from one of the £ steering matrices by cycling through the L derived y matrices in order. Steering matrices, where B is an integer greater than 1. 14. The method according to the item of claim, further comprising: selecting the plurality of steering matrices from a set of L steering matrices in a pseudo-random manner, where L is an integer greater than. 15. The method of claim 3, further comprising: selecting a different steering matrix for each data symbol sub-block of the plurality of data symbol sub-blocks. 16. The method of claim 3, further comprising: = each subset of L sub-blocks in the plurality of sub-blocks selects L steering matrices in a different order, where L is-greater than by an integer. :: Method of finding term 1, where the plurality of steering matrices are derivatives of positive moment ft :: Car, in which any two of the plurality of steering matrices have a low correlation between the steering matrices Sex. 19. The method of claim 1, further comprising: using a base matrix and a plurality of matrices. A to generate the plurality of guiding moments 20. The method of claim 1 'its further steps include: based on an initial positive matrix and a matrix to generate the diagonal moments of the plurality of unit roots 21. In the eighth item of the request, L is an integer greater than 1. The method includes the following steps: soil; independent isotropic distribution, a set of positive matrices to generate these 98367.doc 200534632 plural steering matrices. 22. The method as requested, which further includes: processing the plurality of (OFDM) symbols of the transmission symbol for the positive parental frequency division 23. The method as claimed in claim 1, further comprising: A different steering matrix is selected for each of the plurality of sub-bands used for data transmission.卞 Collect ▼ Select the method as requested in item 24, which further includes: each symbol block is divided into a plurality of data symbol sub-blocks, and the sub-blocks are assigned at least-one of the sub-bands and two or more of these plurals Transmission antennas, and where the execution space: ... is processed by -individual steering moment spaces in the plurality of steering matrices. Sub-frequency K mother-group data symbol sub-block execution 25-a device in a wireless multi-input multi-output (M-thin) communication system including: a shell processor that processes data to obtain at least one data symbol Block; and, two processors that perform spatial processing on the at least one resource by a plurality of steering matrices; the bucket 5 tiger block performs spatial processing to obtain a transmission payment for a plurality of transmission antennas: a plurality of sequences, The plurality of steering matrices are randomized by the parent &gt; material number block, a valid MIMO channel observed by a receiving entity. 26. As set in item 25 of claim 25, wherein the data is coded to generate at least-coded 98367.doc 200534632 data blocks, and each of which is a block of data symbols. The data blocks are mapped to obtain a corresponding 27. device array such as item 25. Wherein the plurality of steering matrices are positive moments 28. As set in claim 25, wherein the spatial processor divides the at least one data symbol block into complex data symbol sub-blocks and uses the plurality of derivative Index one of the matrices to perform spatial processing on each of the plurality of data symbol sub-blocks. 29. The device of claim 28, further comprising: a controller that selects each data symbol sub-block of the plurality of data symbol sub-blocks from a set of L steering matrices-a steering matrix 'Where L is an integer greater than 1. 30. As set forth in claim 29, wherein the controller selects the plurality of steering matrices from the set of steering matrices in a deterministic manner. 31. The device according to item 29, wherein the controller selects the plurality of steering matrices from the set of l steering matrices in a pseudo-random manner. 32. The device of item 28, wherein the MIM〇 system utilizes orthogonal frequency division multiplexing (OFDM). 33. A device in a wireless multiple-input multiple-output (MIMO) communication system, comprising: A means for processing data to obtain at least one data symbol block; and a means for performing spatial processing on the at least one data symbol block by a plurality of steering matrices to obtain a plurality of sequences of transmission symbols for a plurality of transmission antennas , Where the plurality of steering matrices are randomized by the at least one valid MIMO symbol block that is effective for receiving at least 97367.doc 200534632 body observations. 34. The device of claim 33, further comprising: block == less-the data symbol block is divided into a plurality of data symbol sub-blocks, each of the data symbol sub-blocks is a member of the data symbol sub-block ', and wherein it is used for execution space Processing data symbols :: block = 每 per-rational structure in a plurality of data symbol sub-blocks; U guides the matrix to perform space at 35. :: for the sub-block 33, where these plural The steering matrix is a positive moment. 36. The device of claim 33, further comprising: Optional: selecting a component of a plurality of steering matrices from a set of L steering matrices in a deterministic manner, where 37. The device of claim 33, further comprising: 38 a means for selecting the plurality of steering matrices in a set of-pseudo-random | one of the L steering matrices, where L is-greater than !! Integer. A method for processing data for transmission in a -wireless multiple-input-single-output ss) communication system, comprising: processing data to obtain a -data symbol block; and a plurality of steering vectors to the data symbol block The execution space is used to obtain a plurality of sequences of transmission symbols used for a plurality of transmission antennas. A plurality of steering vectors, such as β 〃 in β, are randomized for the data symbol block. 98367.doc 200534632 Effective MIS moved by a receiving entity 〇Channel. 39. The method of claim 38, further comprising: the == block is divided into a plurality of data symbol sub-blocks; and each data symbol sub-block in the data-data sub-block is optionally included. $ And wherein the data symbol block is subjected to spatial processing, and each of the data symbol subblocks in the second or second class of the data symbol 40 ST steering vector is used to perform spatial processing on the subblock. == 38's method 'wherein any of the plurality of steering vectors has a low correlation. 41_ The method of claim 38, further comprising: using a base matrix and at least one entity to create a, »,,, and tun to generate edges 4 plural guides to 篁 0 42. As in claim 38 Method, further comprising: equal selection 43. The method as in item 38, further comprising: ★ = a pseudo-random manner selecting the plurality of steering vectors from a set of L steering vectors, wherein L is an integer greater than 丨. 44. A method for receiving-data transmission in a wireless multiple-input-multiple-output (mim〇) communication system, comprising ... acquiring data symbols received for transmission via a MIM〇 channel such as by At least one of the plurality of steering matrices to be spatially processed: a negative response to obtain a channel response estimate formed by the MIMO channel and the plurality of steering matrices 98367.doc 200534632 an effective MIMO channel; and by using the channel Respond to the estimation to process the received data symbols in the receiver space to obtain a data symbol estimate for the at least one data symbol block. 45. The method of claim 4, further comprising: selecting a steering matrix for each transmission range, and wherein performing the receiving spatial processing comprises: comparing the steering matrix based on the steering matrix selected for each transmission range. The received data symbols for the transmission range perform receiver space processing. 46. The method of claim 44, further comprising: processing the data symbol estimates for the at least one data symbol block to obtain decoded data for the at least one data symbol block. 47. The method of claim 44, wherein the plurality of steering matrices are positive matrices. 48 · —A device in a wireless multiple input multiple output (MIMO) communication system, comprising: a plurality of receiver units for obtaining received data symbols, and the received data symbols are used for At least one data symbol block which is spatially processed by a plurality of steering matrices before being transmitted through a MIMO channel; a channel estimator for obtaining an effective one formed by the MIMO channel and the plurality of steering matrices Channel response estimation for one of the MIMO channels; and ^ a space processor for performing receiver space processing on the 98367.doc 200534632 received state data symbol by the channel response estimation to obtain the at least one tribute Material symbol estimates for material symbol blocks. 49. The device of claim 48, wherein the plurality of steering matrices are positive matrices. 50 «-A device in a wireless multiple-input multiple-output (MIMO) communication system, which includes: ~ a component that obtains the data symbols of the poem, and the received data symbols are used in the -M fine channel A component of at least _data symbol block processed by a plurality of two-quote matrices and inter-heart processing before transmission; a means for obtaining a channel response estimate of a valid MIMO channel formed by the MIMO channel and the plurality of steering matrices And a means for processing the received data symbol 2 purifier space by the channel response estimation to obtain an estimate of a symbol number for the at least -f symbol block. 5L The device as claimed in claim 50, further comprising: means for selecting a steering matrix of _ 52 for each transmission range from L steering matrices, where B is an integer greater than _, and wherein: The means for performing receiver space processing includes means for performing receiver space processing on data symbols received for the transmission range based on a steering matrix selected for every two transmission ranges. -Wireless multiple-input single-output (ss) method for receiving an asset transmission in a communication system, which includes the received data symbols, and the received data symbols are used for transmission by the-hall 0 channel by a plurality of Steering vector plus 98367.doc -9- 200534632 spatially processed data symbol block; obtain a channel response estimate of an effective MIS 0 channel formed by the MISO channel and the plurality of steering vectors; and, by the The channel response estimation performs a pre-test on the received symbol and the received symbol to obtain a data symbol estimate for the data symbol block. 53. The method of claim 52, further comprising: selecting one of a set and wherein a steering vector based on L steering vectors for each transmission range for each transmission range is used, where L is A large Kit integer, a selected steering vector of a transmission range, to obtain a channel response estimate. 98367.doc
TW93139437A 2003-12-17 2004-12-17 Spatial spreading in a multi-antenna communication system TWI394396B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53102103P 2003-12-17 2003-12-17

Publications (2)

Publication Number Publication Date
TW200534632A true TW200534632A (en) 2005-10-16
TWI394396B TWI394396B (en) 2013-04-21

Family

ID=48803340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93139437A TWI394396B (en) 2003-12-17 2004-12-17 Spatial spreading in a multi-antenna communication system

Country Status (1)

Country Link
TW (1) TWI394396B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405416B (en) * 2009-05-19 2013-08-11 Mediatek Inc Method and system for detecting data from multiple antennas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757845A (en) * 1994-02-10 1998-05-26 Ntt Mobile Communications Network Adaptive spread spectrum receiver
US6363121B1 (en) * 1998-12-07 2002-03-26 Lucent Technologies Inc. Wireless transmission method for antenna arrays using unitary space-time signals
US6804307B1 (en) * 2000-01-27 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient transmit diversity using complex space-time block codes
US7050510B2 (en) * 2000-12-29 2006-05-23 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405416B (en) * 2009-05-19 2013-08-11 Mediatek Inc Method and system for detecting data from multiple antennas

Also Published As

Publication number Publication date
TWI394396B (en) 2013-04-21

Similar Documents

Publication Publication Date Title
US11171693B2 (en) Spatial spreading in a multi-antenna communication system
KR101298307B1 (en) Method and apparatus for implementing space time processing with unequal modulation and coding schemes
TWI373935B (en) Data transmission with spatial spreading in a mimo communication system
TWI392259B (en) Broadcast transmission with spatial spreading in a multi-antenna communication system
TWI294226B (en) Multiple input multiple output multicarrier communication system and methods with quantized beamforming feedback
CA2727089C (en) Transmit diversity using low code rate spatial multiplexing
BRPI0706987A2 (en) Method and apparatus for performing upper link transmissions in single-pass, multiple-output multiple-carrier multiple access system
JP2012178727A (en) Receiver, transmitter, reception method, transmission method, program, and radio communication system
JP2010288260A (en) Sttc encoder for single-antenna wave transceivers
JP2009147939A (en) Method of constituting orthogonal codes to be paired in cdma system
TW200534632A (en) Spatial spreading in a multi-antenna communication system
DK2257008T3 (en) Method and transmitter for radio transmission with spatial spread in a multi-antenna communication system