TW200533759A - Collapsin response mediator protein-1 (crmp-1) transcriptional regulatory nucleic acid sequences - Google Patents

Collapsin response mediator protein-1 (crmp-1) transcriptional regulatory nucleic acid sequences Download PDF

Info

Publication number
TW200533759A
TW200533759A TW94104487A TW94104487A TW200533759A TW 200533759 A TW200533759 A TW 200533759A TW 94104487 A TW94104487 A TW 94104487A TW 94104487 A TW94104487 A TW 94104487A TW 200533759 A TW200533759 A TW 200533759A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
gene
crmp
item
patent application
Prior art date
Application number
TW94104487A
Other languages
Chinese (zh)
Other versions
TWI356849B (en
Inventor
Pan-Chyr Yang
Tse-Ming Hong
Jeremyj W Chen
Cheng-Chung Wu
Jin-Yuan Shih
Yi Jen Lee
Original Assignee
Advpharma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advpharma Inc filed Critical Advpharma Inc
Publication of TW200533759A publication Critical patent/TW200533759A/en
Application granted granted Critical
Publication of TWI356849B publication Critical patent/TWI356849B/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

This invention provides a transcription unit which is isolated from the upstream nucleic acid sequence of the collapsing response mediator protein-1 (CRMP-1) gene, an invasion-suppressor gene. The transcription unit contains a nucleic acid regulatory sequence which demonstrates promoter and/or regulatory activities (such as providing a transcription factor binding site) to enhance the expression of the CRMP-1 and/or a reporter protein. The invention also provides a DNA construct containing this transcription unit which can be transected into a host cell. Additionally, the invention provides methods to enhance the expression of CRMP-1 and/or the reporter gene. The over-expression of CRMP-1 in a cancer cell can inhibit the metastasis of the cancer cell.

Description

200533759 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種轉錄單元,其係分離自一腦衰蛋 白反應媒介蛋白-1 (CRMP-1)基因的上游核酸調控序列,較 佳者為人類CRMP-1基因或。CRMP-1基因為一種 侵入抑制者基因(invasion-suppressor gene),其可防止癌症 φ 轉移。該轉錄單元包含一核酸調控序列,其具有啟動子及/ 或調控活性(例如,提供一轉錄因子結合位),以增加 CRMP-1及/或一經操作而與該轉錄單元(如一報導蛋白)連 接的外源基因的表現。本發明亦提供一包含該轉錄單元與 一載體的DNA構築體。該DNA構築體可轉染一宿主細胞。 此外,本發明提供促進CRMP-1及/或其報導蛋白表現的方 法。CRMP-1在一癌症細胞中的過度表現可抑制癌症細胞 的轉移。 鲁【先前技術】 腦哀蛋白反應媒介蛋白(Collapsin response mediator proteins,CRMPs)屬於磷酸蛋白家族,其可媒介膜蛋白 (semaphorin)/腦哀蛋白所誘發的生長椎(growth cone)衰 退,被認為與軸突引導和神經分化二者有密切關聯。CRMPs 主要表現於神經系統,尤其是在胚胎發生時期。免疫化學 研究顯示CRMPs分佈於生長椎的層足(lameUipodia)及絲狀 偽足(filopodia)、轴突的輛幹與神經細胞本體中。雖然目前 200533759 仍不清楚它們作用的分子機制,但其表現與磷酸化會在發 展期間作時間空間的調控。 CRMPs的成員帶有一種與線蟲蛋白UNC-33同源的 序列’右其缺乏會引起線蟲(Caewor/zflM/沿e/egfl/w)的轴突 異常延伸及不協調的運動(Liet al.,Genetics(1992), 132(3):675_689)。CRMP的家族成員具有50%至70%的胺 基酸序列同源性。多個實驗室均已獨立地選殖出能轉譯成 φ 接近60至66 kDa蛋白質的CRMP基因家族中的五個成員 (crmp-J,cfmp-2, crmp-3, crmp_4, crmp-5)。每個 CRMP 均被 認為具有獨特的功用。CRMP家族的成員被稱為CRMP(腦 衰蛋白反應媒介蛋白)、TOAD-64(在64-kDa蛋白分裂後開 啟)、Ulip(UNC-33類磷酸蛋白)、DRP(二氫嘧啶酶相關蛋 白)以及TUC(TOAD/Ulip/CRMP)。儘管如此,在醫學文獻 中最常被使用的名稱為CRMP。 CRMP基因的轉錄被分化調控(Katoet al·,Histochem. φ Cell Biol· (2000),97(11):6212-6217 ; Matsuoet al·,J· Biol· Chem. (2000), 275(22):16560-16568 ; Quachet al·,200533759 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a transcription unit that is isolated from the upstream nucleic acid regulatory sequence of a brain serotonin response mediator protein-1 (CRMP-1) gene, preferably the one For human CRMP-1 gene or. The CRMP-1 gene is an invasion-suppressor gene that prevents cancer φ metastasis. The transcription unit contains a nucleic acid regulatory sequence, which has a promoter and / or regulatory activity (for example, provides a transcription factor binding site) to increase CRMP-1 and / or is linked to the transcription unit (such as a reporter protein) upon manipulation. Of foreign genes. The invention also provides a DNA construct comprising the transcription unit and a vector. The DNA construct can be transfected into a host cell. In addition, the present invention provides a method for promoting the expression of CRMP-1 and / or its reporter protein. CRMP-1 overexpression in a cancer cell can inhibit cancer cell metastasis. [Prior technology] Collapsin response mediator proteins (CRMPs) belong to the family of phosphoproteins, and their growth cones induced by semaphorin / brain cryptin are considered to be associated with Axon guidance and neural differentiation are closely related. CRMPs are mainly manifested in the nervous system, especially during embryogenesis. Immunochemical studies have shown that CRMPs are distributed in laminUipodia, filopodia, axons, and nerve cell bodies in growing vertebrae. Although 200533759 is still unclear about the molecular mechanism of their effects, their performance and phosphorylation will be regulated in time and space during development. Members of CRMPs carry a sequence that is homologous to the nematode protein UNC-33, and its lack will cause axonal extension and uncoordinated movement of nematodes (Caewor / zflM / e / egfl / w) (Liet al. Genetics (1992), 132 (3): 675_689). CRMP family members have 50% to 70% amino acid sequence homology. Five laboratories have independently cloned five members of the CRMP gene family (crmp-J, cfmp-2, crmp-3, crmp_4, crmp-5) that can translate into proteins with a diameter of approximately 60 to 66 kDa. Each CRMP is considered to have a unique function. The members of the CRMP family are called CRMP (brain failure protein response mediator protein), TOAD-64 (turned on after 64-kDa protein division), Ulip (UNC-33 phosphoprotein), DRP (dihydropyrimidinase-related protein) And TUC (TOAD / Ulip / CRMP). Nevertheless, the most commonly used name in the medical literature is CRMP. The transcription of the CRMP gene is regulated by differentiation (Katoet al., Histochem. Φ Cell Biol. (2000), 97 (11): 6212-6217; Matsuoet al., J. Biol. Chem. (2000), 275 (22): 16560-16568; Quachet al ·,

Gene(2000),242(1-2):175-182)。小鼠的 CRMP-1、CRMP-4 與CRMP-5主要表現於胚胎的腦部,而非成年小鼠的腦部 中。另一方面,CRMP-2與CRMP-3於胚胎與成年小鼠的 腦部中均有表現。然而,在成年小鼠中,CRMP-3是位於 小腦内。在PC-12細胞中,經由神經生長因子NGF誘發神 經分化後,CRMP-4強烈地向上調控(up-regulated),而 200533759 CRMP-1與CRMP-2僅少許增加,crMP-3則向下調控 (down-regulated) (Byket al·,Eur·】· Biochem· (1998), 254(1):14-24)。此時,僅有人類CRMP-4的啟動子曾被分 離並分析(Matsuoet al·,J· Βϋ Chem. (2000), 275(22):16560-16568)。CRMP家族其他成員的調控元素並 未被研究過。 腦衰蛋白反應媒介蛋白-l(CRMP-l),又名二氫嘧啶酶 φ 相關蛋白_1(DRP-1),為分子量62k〇a的磷酸蛋白。CRMP-1 最初於大腦組織中發現,被視為於神經發展時與腦衰蛋白 所誘發的生長椎衰退有密切關聯(Torreset al·, DNA Res.(1998)? 5(6):393-395) 〇 近來,本發明之發明人發現編碼CRMP-1基因(以下 稱為’’CRMP-1基因”)之表現量會反向地影響癌症侵入與轉 移(亦即表現量越高,癌症侵入與轉移的發生率就越低), CRMP -1基因因而成為侵入抑制基因(Shihet al·,J· Natl· φ Cancer Inst. (2001), 93(18):1392-1400 ; Chuet al.? Am. J. Respir· Cell Mol· (1997),17:353-360 ; Shihet al·,Clinical & Exper. Metastasis(2003),20:69-76)。上述文獻内容將於此處 併入作為參考文獻。本發明的發明人發現CRMP-1表現量 低的病人,其病程較為惡化,且有淋巴結轉移,而CRMP-1 表現量高的病人則有明顯較長的無病存活期(disease-free survival period)與總存活期(overall survival period) 〇 200533759 本發明以下說明將揭露與CRMP-1基因相關的核酸 调控元素/序列的發現。這些核酸調控元素/序列包含但不限 於,啟動子(promoter)、基礎轉錄調控區域(basal transcription regulatory region),以及位於上游且以操作與 CRMP-1基因連接的轉錄因子結合位(transcription factor binding sites)。對CRMP-1基因表現調控的理解將引導治療 癌症病人的新策略’而能中止癌症的轉移。 【發明内容】 \ 本發明提供一種轉錄單元,其包含一核酸調控序列, 該序列係分離自編碼腦衰蛋白反應媒介蛋白-l(CRMP-l)基 因的上游區域(亦即位於基因的i端鄰近區域)。該核酸調 控序列的特徵在於其具有調控CRMP-1基因及/或一經操作 而與該核酸調控序列連接的外源基因表現的能力。較佳的 CRMP-1基因為人類CRMP-1基因。該CRMP-1基因的核 酸序列可自 SWISS-PROT 資料庫 entry Q14194、GenBank 資料庫 locus D78012 與 locus BAA11190 獲得。 於本發明的一實施例中,核酸調控序列包含一核酸序 列SEQ ID NO:2,其包含位於CRMP-1基因上游-1920至+50 的核苷酸。該核酸序列代表整個啟動子區域。CRMP-1基 因的轉錄啟始核酸被指定為+ 1,ATG的啟動密碼子為+ 151 至+153 。 200533759 本發明的另一實施例中,核酸調控序列包含一核酸序 列SEQ ID NO:3,其包含位於CRMP-:!基因上游]80至+5〇 的核苷酸。該核酸序列代表最小啟動子序列。 本發明的另一實施例中,核酸調控序列包含一核酸序 列SEQ ID NO:5,其包含位於CRMP-1基因上游-133至-122 的核苷酸。此核酸序列包含一具有GGGAGGAG核酸序列 的第一調控因子結合位。此核酸序列的短少或突變會造成 φ CRMP-1基因及/或外源性基因的表現量大幅減少。 本發明的又一實施例中,核酸調控序列包含一核酸序 列SEQIDNO:6,其包含位於CRMP-1基因上游-115至_1〇〇 的核苷酸。此核酸序列包含一具有CTCCTCCC核酿^巧的 第二調控因子結合位,其為第一調控因子結合位的 GGGAGGAG序歹,J的倒置序歹,J。除第一調控因子(seq出 NO:5)之外,第二調控因子(SEQ ID NO:6)的短少會造成 CRMP-1基因及/或外源基因的表現更加減少。然而,第一 • 調控因子的突變並不會影響CRMP-1基因及/或外源式闲 轉錄活性。 ^ 該經操作而與核酸調控序列連接的外源基因可彳乍$ 一報導基因(reporter gene),例如螢火蟲冷光酵素基因 (firefly luciferase gene)或是綠色螢光蛋白基因 fluorescent protein gene) ° 本發明亦提供一包含如SEQ ID N0:2、 ΝΌ··3、SEQ ID N0:4或SEQ ID N〇:5核酸調控序列與—^ 200533759Gene (2000), 242 (1-2): 175-182). CRMP-1, CRMP-4, and CRMP-5 in mice are mainly expressed in the brain of embryos, not in the brains of adult mice. On the other hand, CRMP-2 and CRMP-3 are expressed in the brains of embryos and adult mice. However, in adult mice, CRMP-3 is located in the cerebellum. In PC-12 cells, after nerve differentiation induced by NGF, CRMP-4 is strongly up-regulated, while 200533759 CRMP-1 and CRMP-2 are only slightly increased, and crMP-3 is down-regulated (down-regulated) (Byket al., Eur.). Biochem. (1998), 254 (1): 14-24). At this time, only the promoter of human CRMP-4 was isolated and analyzed (Matsuoet al., J. B. Chem. (2000), 275 (22): 16560-16568). The regulatory elements of other members of the CRMP family have not been studied. Cerebral failure protein response mediator protein-1 (CRMP-1), also known as dihydropyrimidinase φ-related protein_1 (DRP-1), is a phosphoprotein with a molecular weight of 62 kOa. CRMP-1 was originally found in brain tissue and was thought to be closely related to brain failure protein-induced growth vertebral decay during neural development (Torreset al ·, DNA Res. (1998)? 5 (6): 393-395 ) 〇 Recently, the inventors of the present invention have found that the expression level of the CRMP-1 gene (hereinafter referred to as the "CRMP-1 gene") will adversely affect cancer invasion and metastasis (that is, the higher the expression level, the cancer invasion and The lower the incidence of metastasis), the CRMP-1 gene thus becomes an invasion suppressor gene (Shihet al., J. Natl. Φ Cancer Inst. (2001), 93 (18): 1392-1400; Chuet al.? Am. J. Respir · Cell Mol · (1997), 17: 353-360; Shihet al ·, Clinical & Exper. Metastasis (2003), 20: 69-76). The contents of the above documents are incorporated herein by reference. The inventors of the present invention found that patients with low CRMP-1 expression had worse disease course and lymph node metastasis, while patients with high CRMP-1 expression had significantly longer disease-free survival period. ) And overall survival period (200533759) The following description of the present invention will disclose and CRMP-1 Due to the discovery of related nucleic acid regulatory elements / sequences. These nucleic acid regulatory elements / sequences include, but are not limited to, a promoter, a basal transcription regulatory region, and are located upstream to operate with the CRMP-1 gene. Linked transcription factor binding sites. Understanding of the regulation of CRMP-1 gene expression will lead to a new strategy for treating cancer patients and can stop cancer metastasis. [Summary of the Invention] \ The present invention provides a transcription unit, It contains a nucleic acid regulatory sequence, which is isolated from the upstream region of the gene encoding the brain failure protein response mediator protein-1 (CRMP-1) (that is, it is located near the i-terminus of the gene). The nucleic acid regulatory sequence is characterized by its Has the ability to regulate the expression of the CRMP-1 gene and / or foreign genes linked to the nucleic acid regulatory sequence upon manipulation. The preferred CRMP-1 gene is the human CRMP-1 gene. The nucleic acid sequence of the CRMP-1 gene can Obtained from SWISS-PROT database entry Q14194, GenBank database locus D78012 and locus BAA11190. In one embodiment of the present invention, the nucleic acid regulatory sequence includes a nucleic acid sequence of SEQ ID NO: 2, which includes nucleotides -1920 to +50 upstream of the CRMP-1 gene. This nucleic acid sequence represents the entire promoter region. The transcription initiation nucleic acid of the CRMP-1 gene is designated as +1, and the start codon of the ATG is +151 to +153. 200533759 In another embodiment of the present invention, the nucleic acid regulatory sequence comprises a nucleic acid sequence SEQ ID NO: 3, which comprises nucleotides 80 to +50 located upstream of the CRMP- :! gene. This nucleic acid sequence represents the smallest promoter sequence. In another embodiment of the present invention, the nucleic acid regulatory sequence comprises a nucleic acid sequence of SEQ ID NO: 5, which comprises nucleotides -133 to -122 upstream of the CRMP-1 gene. The nucleic acid sequence includes a first regulatory factor binding site having a GGGAGGAG nucleic acid sequence. The shortness or mutation of this nucleic acid sequence will cause the expression of φ CRMP-1 gene and / or exogenous gene to be greatly reduced. In yet another embodiment of the present invention, the nucleic acid regulatory sequence comprises a nucleic acid sequence of SEQ ID NO: 6, which comprises nucleotides -115 to 100 upstream of the CRMP-1 gene. This nucleic acid sequence includes a second regulatory factor binding site with a CTCCTCCC nuclear gene, which is the GGGAGGAG sequence of the first regulatory factor binding site, the inverted sequence of J, J. In addition to the first regulatory factor (seq NO: 5), the shortage of the second regulatory factor (SEQ ID NO: 6) will cause the performance of the CRMP-1 gene and / or foreign genes to be further reduced. However, the first • Mutations in regulatory factors do not affect CRMP-1 gene and / or exogenous free transcriptional activity. ^ The exogenous gene linked to the nucleic acid regulatory sequence can be a reporter gene, such as a firefly luciferase gene or a green fluorescent protein gene ° The present invention Also provided is a nucleic acid regulatory sequence comprising SEQ ID NO: 2, ΝΌ · 3, SEQ ID NO: 4 or SEQ ID NO: 5 and ^ 200533759

體(vector)的DNA構築體(dna construct)。用以製備該DNA 構築體的載體的例子為pGL3-基本載體,其包含螢火蟲冷 光酵素基因。 本發明進一步提供一經轉染的細胞(transfected cell) ’其係於一宿主細胞中包含該具有核酸調控序列的 DNA構築體,例如人類細胞,且較佳者為人類癌症細胞, 例如人類肺腺癌細胞或人類直腸癌細胞。 i 此外’本發明提供一用以增加CRMP-1基因及/或外 源性基因在宿主細胞中的表現量的方法。該方法包括以含 有該轉錄單元的DNA構築體轉染宿主細胞。較佳的宿主細 胞為人類細胞。 最後,本發明提供一用以抑制人類癌症細胞轉移的方 法。該方法包含以含有該轉錄單元的DNA構築體轉染宿主 細胞。 φ 【實施方式】 為了清楚地描述本發明,文中採用以下特定用語。然 而,本發明並非僅限於這些特定用語。其應理解為每個特 定元素均包含所有技術上的均等物,其可由相似的手段達 成相近的目的。 「梭酸序列(nucleic acid sequence)」一詞在此意指 DNA、cDNA或RNA分子,亦指一大型聚核苷酸構築體 (large polynucleotide construct)的分離片段或部份分子。 10 200533759 「基因(gene)」一詞在此意指一核苦酸聚合體 (nucleotides polymer),此核苷酸係編碼一具有方向性之線 型多胜肽(如酵素)所構成的胺基酸。該「基因」可為單股(如 RNA)或雙股(如DNA)。舉例而言,cDNA可為以酵素將信 使RNA(mRNA)反轉錄所得之cDNA、由染色體 (chromosome)而來的基因體 DNA(genomic DNA),或為化 學合成的DNA。 「核酸調控序列(nucleic acid regulatory sequence)」一 詞在此意指可影響基因轉錄與表現的上游5’端鄰近區 DNA、cDNA或RNA片段。此類核酸調控序列可包含一用 以調控基因轉錄區(coding region)轉錄的啟動子區 (promoter region),一影響該啟動子區的增強子(enhancer), 以及其他的調控因子結合位(如TATA Box、CCAAT Box、 APl、Spl或NF-κΒ結合位等轉錄因子結合位)與内含子 (intron)或其類似區域。該核酸調控序列與基因的直接連接 為可有可無。 「啟動子(promoter)」一詞在此意指可與RNA聚合酶 (RNA polymerase)結合而啟動基因轉錄的一段DNA序列。 啟動子可能連接於其天然相關基因,也可能功能性地連接 一段外源性基因(exogenous gene)。於此處,「外源性基因」 是指編碼一段基因產物的核酸序列,但該產物之生成並非 天然地源自於此啟動子序列。 200533759 「以操作連接(operatively linked)」一詞在此意為核酸 調控序列與基因有功能性的連接,如核酸調控序列可調控 基因的表現。 「報導基因(reporter gene)」在分子生物學上可作為基 因表現活性的指標。報導基因一般為轉形至宿主細胞(h〇st cell)或生物體中的基因,且此基因所編碼之酵素活性在原 宿主細胞(host cell)或生物體中並不存在。藉由測量或偵測 _ 酵素活性,其可作為新引入基因表現存在的指標或「報 ‘」。報導基因可置於具有影響基因表現的調控序列,如啟 動子元素。報導基因產物的成功表現可作為調控元素活性 的指標。 本發明說明一段新穎的核酸調控序列,其影響編碼人 類腦衰蛋白反應媒介蛋白-l(CRMP-l)基因的表現。部分 CRMP-1的基因體序列,包括CRMP-1基因體序列的5,端 鄰近區域之序列,在文中定為SEQ ID N0:1。SEQ ID N0:1 _ 包含CRMP·1基因從-1920到+ 189的核酸序列。此核酸序 列具有全部的啟動子區域、數個調控因子結合位與CRMP-1 基因的外子序列1 (exon 1)(其位於CRMP-1基因的+ 1至 + 189序列)’该表現區域包含轉譯曱硫胺酸⑽以^丨⑽丨]^)的 w 啟動密碼子(start codon)ATG(其位於 SEQ ID ΝΟ:1 的+ 151 至+153)。 位於CRMP-1基因上游-1920至+50序列的核酸序列 在文中定為SEQ ID NO:2。該核酸序列包含全部啟動子區 200533759DNA constructs of vectors. An example of a vector used to prepare the DNA construct is a pGL3-basic vector, which contains a firefly cold light enzyme gene. The present invention further provides a transfected cell, which is a DNA construct having a nucleic acid regulatory sequence in a host cell, such as a human cell, and preferably a human cancer cell, such as a human lung adenocarcinoma Cell or human rectal cancer cell. i In addition, the present invention provides a method for increasing the expression amount of a CRMP-1 gene and / or an exogenous gene in a host cell. The method includes transfecting a host cell with a DNA construct containing the transcription unit. Preferred host cells are human cells. Finally, the present invention provides a method for inhibiting human cancer cell metastasis. The method comprises transfecting a host cell with a DNA construct containing the transcription unit. [Embodiment] In order to clearly describe the present invention, the following specific terms are used in the text. However, the invention is not limited to these specific terms. It should be understood that each specific element contains all technical equivalents, which can be used for similar purposes by similar means. The term "nucleic acid sequence" here means a DNA, cDNA or RNA molecule, and also an isolated fragment or part of a molecule of a large polynucleotide construct. 10 200533759 The term “gene” here means a nucleotides polymer, which encodes an amino acid composed of a directional linear peptide (such as an enzyme) . The "gene" can be single-stranded (such as RNA) or double-stranded (such as DNA). For example, cDNA can be cDNA obtained by reverse transcription of messenger RNA (mRNA) with enzyme, genomic DNA from chromosome, or chemically synthesized DNA. The term "nucleic acid regulatory sequence" is used herein to mean a DNA, cDNA, or RNA fragment upstream of the 5 'end adjacent region that can affect gene transcription and expression. Such nucleic acid regulatory sequences may include a promoter region for regulating transcription of a gene's transcription region, an enhancer that affects the promoter region, and other regulatory factor binding sites (such as TATA Box, CCAAT Box, APl, Spl, or NF-κΒ binding sites (such as transcription factor binding sites) and introns (intron) or similar regions. The direct link between the nucleic acid regulatory sequence and the gene is optional. The term "promoter" means a DNA sequence that can bind to an RNA polymerase to initiate gene transcription. Promoters may be linked to their naturally associated genes, or they may be functionally linked to an exogenous gene. As used herein, "exogenous gene" refers to a nucleic acid sequence that encodes a gene product, but the product is not naturally derived from this promoter sequence. 200533759 The term "operatively linked" means that the nucleic acid regulatory sequence is functionally linked to the gene. For example, the nucleic acid regulatory sequence can regulate the expression of the gene. The "reporter gene" can be used as an indicator of gene expression activity in molecular biology. The reporter gene is generally a gene transformed into a host cell or organism, and the enzyme activity encoded by this gene does not exist in the host cell or organism. By measuring or detecting _ enzyme activity, it can be used as an indicator or "report" of the presence of newly introduced genes. Reporter genes can be placed with regulatory sequences that affect gene performance, such as promoter elements. The successful performance of the reported gene product can be used as an indicator of the activity of the regulatory element. The present invention illustrates a novel nucleic acid regulatory sequence that affects the expression of a gene encoding human brain failure protein response mediator protein-1 (CRMP-1). Part of the CRMP-1 genomic sequence, including the sequence at the 5 end of the CRMP-1 genomic sequence, is designated as SEQ ID NO: 1 in the text. SEQ ID NO: 1_ contains a nucleic acid sequence of the CRMP · 1 gene from -1920 to +189. This nucleic acid sequence has the entire promoter region, several regulatory factor binding sites and the exon sequence 1 (exon 1) of the CRMP-1 gene (which is located in the +1 to +189 sequence of the CRMP-1 gene). The translation “thionine” starts with the start codon ATG (which is located at +151 to +153 of SEQ ID NO: 1). The nucleic acid sequence located in the -1920 to +50 sequence upstream of the CRMP-1 gene is identified herein as SEQ ID NO: 2. This nucleic acid sequence contains the entire promoter region 200533759

ATG 域、數個難因子結合位與CRMp_i基因外子序列ι(_ !) 的部分序列。然、而,並不包含CRMP-1基因的啟動密碼子 位於〇匿_1基因上游_18〇至+5〇序列的核酸序列在 文定為SEQ ID N〇:3。該核酸序列包含核心啟動子區域 以及調控因子結合位。 位於CRMIM基因上糾8〇至_1〇 =文中定為SEQID_。該核酸序列包含最小啟動子區 域以及調控因子結合位。 位於 CRMP-1 其 L _ 土 口上耜-133至-122序列的核酸序列 在文中定為SEQ τη χτα ^ D Ν〇:5。該核酸序列包括一且有 GGGAGGAG核酸序列的第-調控因子結合位。 位於 CRMP-1 其 ra L ” 土上私_115至-100序列的核酸序列 在文中U SEQ ID N〇:6。該核酸且 CTCCTCCC核酸相的第二調控因子結合位 j GGGAGGAG核酉楚庠列々^ ,、节為匕3 夂序列之弟一調控因子結合位的反向序列 (inverted sequence) 〇 匕3 SEQ ID N〇:i-6的核酸調控序 CRMP-1基因的表現,介叮印从 1 一控 見亦可用於調控以操作連接於該核酸 調控序列的外源基因。該外源基因可為-報導基因。報導 基因的例子包括★火蟲冷光酵素(lu价⑽㈣基因與綠色 光蛋白(GFP)基因。 200533759 螢火蟲冷光酵素(luciferase)基因是目前已知常 報導基因。螢火蟲Ayra/以)冷光酵素的纟扁石 的 (coding sequence)被選殖放入pr〇mega公司所販隹从序列 ϋ 的 pGLl 冷光酵素報導載體中。此種報導基因可提供調控 因表現因子的定量分析的基礎。在PGL3冷光酵素報^基 體(亦為周知的pGL3基本載體)中,螢火蟲冷光酵素基因=ATG domain, several difficult factor binding sites and partial sequence of CRMp_i gene exon sequence ι (_!). However, the nucleic acid sequence which does not contain the start codon of the CRMP-1 gene is located upstream of the __1 gene and the sequence of _18 to +50 is designated herein as SEQ ID NO: 3. The nucleic acid sequence includes a core promoter region and regulatory factor binding sites. It is located on the CRMIM gene from 80 to 10 = SEQ ID_ in the text. The nucleic acid sequence includes a minimal promoter region and regulatory factor binding sites. The nucleic acid sequence of the 耜 -133 to -122 sequence located on the L_ soil of CRMP-1 is designated as SEQ τη χτα ^ D NO: 5 in the text. The nucleic acid sequence includes a -regulatory factor binding site having a GGGAGGAG nucleic acid sequence. The nucleic acid sequence located at CRMP-1 and its ra L "on the soil _115 to -100 sequence is in the text U SEQ ID NO: 6. This nucleic acid and the second regulatory factor binding site of the CTCCTCCC nucleic acid phase j GGGAGGAG nuclear sequence 々 ^, the section is the inverted sequence of the regulatory site of the regulatory factor binding site. The expression of the CRMP-1 gene of the nucleic acid regulatory sequence of SEQ ID NO: i-6, which is described in detail. It can also be used to control foreign genes that are linked to the nucleic acid regulatory sequence. The foreign gene can be a reporter gene. Examples of reporter genes include the fireworm cold light enzyme (lu-valence gene and green light) Protein (GFP) gene. 200533759 The firefly luciferase gene is currently known and commonly reported. The firefly Ayra / low-temperature light-enzyme-encoding olivine (coding sequence) was selected for sale by prOmega. From the pGLl cold light enzyme reporter of sequence ϋ. This reporter gene can provide a basis for the quantitative analysis of regulatory factors. In the PGL3 cold light enzyme reporter substrate (also known as the pGL3 basic vector), the firefly cold light enzyme group Cause =

碼區域已被設計成適於監控在轉染真核細胞中的轉錄、、舌 性。此報導基因的分析快速、靈敏且可定量。 綠色、螢光蛋白(green fluorescent protein,GFP)基因為The coding region has been designed to monitor transcription, linguality in transfected eukaryotic cells. The analysis of this reporter gene is fast, sensitive and quantifiable. The green and fluorescent protein (GFP) genes are

另一已知常用的報導基因。GFP為水母產生之蛋 白,其螢光在較短的可見光波長下呈現綠色。GFP基因已 被分離出,並經由建構一個由目標蛋白基因以及與目標蛋 白基因相連結的綠色及不同顏色變化的螢光蛋白基因所組 成的敌合基因(chimeric gene)結構,而成為使表現蛋白呈現 螢光的有效工具。由於其為動物體内Wvo)之螢光蛋白, 因此可應用於其他活體系統中。GFP有數種不同顏色變 形。此用於基因選殖與構築體的GFP與其顏色變形載體系 講自Clontech公司。 報導基因可經由載體在操作上與本發明的核酸調控 序列連接,以形成一 DNA或表現構築體,而後被轉染進入 宿主細胞中。可用於形成DNA構築體的特定載體,且為此 領域人士所熟知者,包含質體(plasmid)或病毒載體(virus carrier)。使用螢火蟲冷光酵素基因為報導基因時,較佳者 200533759 為Promega公司的pGL3冷光酵素報導載體。使用綠色勞 光蛋白基因為報導基因時,較佳者為Clontech公司的pGpp 載體。 在設計DNA構築體時,並不需要含有cRMpq基因 之整個啟動子與其他調控區域的全部核酸調控序列(位於 -1920至+50的SEQ ID NO:2)。核心啟動子區域(位於-18〇 至+50的SEQ ID NO:3)或最小啟動子區域(位於_ι⑽至⑻ φ 的SEQIDNO:4),已顯現出在CRMP-1或報導蛋白產物上 具有顯著的調控效果。另外,SEQ ID NO:5(位於-133至-122) 核酸序列包含一具有5’-GGGAGGAG-3,核酸序列的調控因 子結合位,較佳者為包含於DNA構築體中。 調控因子結合位可以包含一轉錄因子結合位,例如轉 錄因子Spl的結合位。Spl轉錄調控序列於許多病毒與細 胞啟動子中被發現,包含人類免疫缺乏病毒長終端重覆序 歹’J(HIV long terminal repeat)。Spl轉錄因子包含可供特定 籲 DNA結合活性的鄰接鋅指狀結構(zinc finger motif)。Spl 轉錄因子可經由保持不同活性的機制來刺激最小啟動子的 基礎活性。 於後述實施例六、七中,如電泳位移分析 (electrophoretic mobility shift assay ; EMSA)、競爭位移分 析(competition mobility shift assay)、抗體結合取代分析 (antibody supershift assay)和反轉錄-聚合酶鏈鎖反應法 (reverse transcription-polymerase chain reaction, RT-PCR)戶斤 200533759 示,本發明的核酸調控序列具有與多種蛋白結合的能力。 與夕種蛋白結合會影響核酸調控序列的調控能力,其可能 會輪流影響CRMP-1基因的表現。 以下貝驗设汁為舉例說明,但並不限制本發明之範 圍。對所有沾智本領J:或之人士來說,可於不脫離本發明的 精神和範圍内,對此做合理的變化。 卫_如例一 CRMP-1基屈域之選殖輿重組質體 之構築 pCRMP-U_1920/+189_l之構签 取得一段含有人類腦衰蛋白反應媒介蛋白 -l(hCRMP-l)基因5’端鄰近區域(位於hcRMP-Ι基因-1920 至+ 189序列,[SEQ ID ΝΟ:1])的2.1_kb DNA片段,此處係 以聚合酶鏈鎖反應(PCR)的方法,並利用下述兩段引子 (primer)(R0Che富含GC之PCR系統)進行複製來獲得: •⑴ 5’_CCGCTCGAGGCTTTGTACCGGCGAAATCT-3, (互補序列位於-1920至-1901,5’端附有一個人造核酸 限制酶Xhol的切點位置,[SEQ ID N〇:7]);以及 (2) 5’-CCCAAGCTTCGTGATTGTGCGGGATGCTCT-3, (位於+ 170至+ 189,5’端附有一個人造核酸限制酶Hind III 的切點位置,[SEQ ID NO:8])。 採用人類BAC選殖株RPll-69D13(Invitrogen生產) 作為DNA模板(template)。該複製片段被兩種核酸限制酶 16 200533759Another commonly used reporter gene. GFP is a protein produced by jellyfish, and its fluorescence appears green at a short wavelength of visible light. The GFP gene has been isolated, and has become a expressed protein by constructing a chimeric gene structure composed of the target protein gene and green and differently colored fluorescent protein genes linked to the target protein gene. Effective tool for rendering fluorescence. Because it is a fluorescent protein in animals, it can be used in other living systems. GFP has several different color variants. This GFP and its color variant vector for gene selection and constructs are from Clontech. The reporter gene can be operatively linked to the nucleic acid control sequence of the present invention via a vector to form a DNA or a performance construct, and then transfected into a host cell. Specific vectors that can be used to form DNA constructs, and are well known to those skilled in the art, include plasma or virus carriers. When the firefly cold light enzyme gene is used as the reporter gene, 200533759 is the pGL3 cold light enzyme reporter vector of Promega. When using the green light protein gene as the reporter gene, the pGpp vector of Clontech is preferred. When designing a DNA construct, it is not necessary to include the entire promoter of the CRMPq gene and all the nucleic acid regulatory sequences of other regulatory regions (SEQ ID NO: 2 at -1920 to +50). The core promoter region (SEQ ID NO: 3 at -18 to +50) or the smallest promoter region (SEQ ID NO: 4 at _ι⑽ to ⑻ φ) has been shown to have on CRMP-1 or reporter protein products Significant regulatory effect. In addition, the nucleic acid sequence of SEQ ID NO: 5 (located at -133 to -122) includes a regulatory factor binding site having 5'-GGGAGGAG-3, a nucleic acid sequence, and is preferably contained in a DNA construct. The regulatory factor binding site may include a transcription factor binding site, such as the binding site of the transcription factor Spl. Spl transcriptional regulatory sequences have been found in many viral and cellular promoters, including the human immunodeficiency virus long terminal repeat sequence 歹 'J (HIV long terminal repeat). The Spl transcription factor contains contiguous zinc finger motif for specific DNA binding activity. The Spl transcription factor can stimulate the basic activity of the smallest promoter via a mechanism that maintains different activities. In Examples 6 and 7 described later, such as electrophoretic mobility shift assay (EMSA), competition mobility shift assay, antibody supershift assay, and reverse transcription-polymerase chain reaction The reverse transcription-polymerase chain reaction (RT-PCR) method 200533759 shows that the nucleic acid regulatory sequence of the present invention has the ability to bind a variety of proteins. Binding to a protein will affect the regulatory capacity of the nucleic acid regulatory sequence, which may in turn affect the performance of the CRMP-1 gene. The following examples are provided as examples, but do not limit the scope of the present invention. For all those who have the knowledge of J: or, they can make reasonable changes to this without departing from the spirit and scope of the present invention. Wei _ For example, Example 1 Construction of the CRMP-1 basal domain and the construction of recombinant plastids pCRMP-U_1920 / + 189_l Signed to obtain a segment containing the human brain failure protein response mediator protein-l (hCRMP-1) gene 5 ' 2.1_kb DNA fragment of the adjacent region (sequence -1920 to +189 of the hcRMP-1 gene, [SEQ ID NO: 1]), here is the polymerase chain reaction (PCR) method, using the following two paragraphs Primer (R0Che GC-rich PCR system) was copied to obtain: • ⑴ 5'_CCGCTCGAGGCTTTGTACCGGCGAAATCT-3, (complementary sequence is located at -1920 to -1901, 5 'end is attached with a cut point of the artificial nucleic acid restriction enzyme Xhol [SEQ ID NO: 7]); and (2) 5'-CCCAAGCTTCGTGATTGTGCGGGATGCTCT-3, (located at +170 to +189, the 5 'end is attached with a cut point of the artificial nucleic acid restriction enzyme Hind III, [SEQ ID NO :8]). A human BAC selection strain RP11-69D13 (produced by Invitrogen) was used as a DNA template. This replicated fragment was blocked by two nucleic acid restriction enzymes 16 200533759

Xhol以及Hindlll處理後,插入pGL3-基本載體(Progema 生產)的冷光酵素基因上游端Xhol/Hindlll的位置上。該構 築體被設計為pCRMP-l(-1920/+189),而且序列的複製片 段係以序列分析加以纟忍。 PCRMP-U-1920/+50)之構築 hCRMP-Ι基因5f端鄰近區域(位於hCRMP-Ι基因 -1920至+50序列,[SEQIDNO:2])係以下列兩段PCR引子 進行複製:、 (1) 5?-CGCTAATTACGCCAGCCCAAG-3r (位於 pGL3_基本載體的 5023 至 5042, [SEQ ID NO:9]) 以及 (2) 5,-CCCAAGCTTCCGGGAGGGATAGAGACAC-3, (位於+32至+50,5’端附有一個人造核酸限制酶Xhol 的切點位置,[SEQ ID NO:10])。 採用質體pCRMP-l(-1920/+189)作為DNA模板。此 複製的DNA片段先經核酸限制酶Notl與Hindlll處理後, 再插入pGL3-基本載體(Progema生產)的Notl/Hindlll位置 上。此構築體被設計為pCRMP-1(-1920/+50),而且序列的 複製片段係以序列分析加以確認。. 复座短暫轉染和報導基因冷光酵素分析 在轉染前,將人類肺腺癌細胞(CLu)以每孔lxl〇5細 胞的細胞密度植入6孔盤中,並於含有10%胎牛血清 17 200533759 (FBS ; Invitrogen 生產)的 RPMI 1640 培養液(PRMI 生產) 中培養 24 小時。將 1 pg 的 pCRMP-l(-1920/+50) DNA 和 1 pg的内在控制組質體DNA (pSV-P-galactosidase)溶解於 含有不含血清的RPMI 1640培養液以及10 μΐ的轉染試劑 Lipofectamine (Invitrogen生產)中。在力口入至CLu細胞之 前,將此DNA/微脂粒複合物,於室溫下靜置45分鐘。細 胞在含有5%二氧化碳的37°C培養箱中,與該複合物培養 | 6小時進行共轉染。移除培養液,並以PBS緩衝液將細胞 清洗兩次後,將含有10%胎牛血清的2 ml RPMI 1640培 養液加入細胞,並培養於含有5%二氧化碳的37°C培養箱 中。培養36小時後回收細胞,並以每孔250μ1的溶離試劑 (Tropix生產)獲取細胞萃取物。 依據此領域人士所熟知的步驟培養人類直腸癌細 胞。根據上述步驟,以含有CRMP-1啟動子(-1920/+50)全 長的pCRMP-Ι轉染並回收細胞。 Φ 為檢測冷光酵素與β-半乳糖酵素(β-galactosidase)的 活性,分別使用20μ1的細胞萃取物。該分析係以冷光酵素 分析套組(Luciferase assay kit,Tropix生產)及半乳糖酵素分 析套組(Galacto_Light Plus™系統,Tropix生產)在冷光分析 儀(BERTHOLD Detection Systems Type Sirius 2C? Pforzheim,Germany)上進行分析。 18 200533759 以下所提及的冷光酵素活性已經以半乳糖酵素 (β-galactosidase)的活性加以校正。冷光酵素活性在含有指 示性報導DNA構築體的細胞中作為基因表現的指標。 實施例三CRMP-1基因的核酸調控序列之分析 CRMP-1某因上游5’端鄰近區的遠讀截斷(truncation) CRMP-1基因的連續缺失5’端調控序列突變株係使用 φ 下列方法來構築,並用以檢測hCRMP-Ι調控元素的功能。 所有的步驟是依據Exo Mung Bean偵測套組(Stratagene生 產)的說明,並經過某些修飾而進行。簡言之,首先以核酸 限制酶Xhol水解pCRMP-l(-1920/+50)。然後將線型化的 質體以核酸外切酶III (exonuclease III)在37°C下以不同的 日t間進行反應。在有機溶劑盼-氯仿(phenol-chloroform)萃 取後,自-1920的位置起,可得到9段不同大小的質體片 段。以核酸外切酶III在68。0培養15分鐘去活化之後,這 _ 些戴斷的貝體片段以綠显核酸水解酶(mung bean nuclease) 於37°C下反應30分鐘。沉殿所得到的質體片段,並以τ4 DNA接合酶(Τ4 DNA ligase)進行接合反應。每個截斷構築 體以短暫轉染方式進入CLk細胞中,且其相關的冷光酵素 ,活性是以實施例二的方法加以檢測。 复驗結果 备個不同截斷調控序列的轉錄活 19 200533759 這些不同的構築體及其在轉染細胞的相關冷光酵素 活性顯不於圖1。冷光酵素活性先以半乳糖酵素的活性加 以校正。以控制組質體PGL3-基本質體轉染細胞的冷光酵 素活性作為基準線。 與CLl·0細胞中的質體pCRMP-1(-1920/+50)相比,核 普酸-1920至-180的刪除並未顯著地變更轉錄活性。_18〇 至+50的片段表現啟動子活性。與含有pGL3_基本載體的 ,控制組細胞相比,以含有報導基因與位於_99至_18〇調控 區之DNA、構築體轉染的細胞,顯示其可提高30至60倍的 轉錄活性。具體地說,含有位於-99至-180核苷酸的dna 構柴體pCRMP-1(-180/+50)之轉錄活性,比 pCRMP-1(-99/+50)的活性增加5倍。 實施例四調控因子結合位的鑑定 CRMP-1基因5’端鄰近區的主要序列分析顯示其為不 含TATA的啟動子。可以利用一個轉錄元素搜尋系統網站 _ Transcription Element Search System TESS (http://www.cbil.upenn.edu/cgi-bin/tess/tess7RQ-WELCOM E)預測某些位於-180至-99區間的調控因子結合位,例如 Spl結合位。兩個含有GGGAGGAG-序列片段的調控因子 結合位被鑑定出。此序列片段是利用電腦進行的足跡法 (phylogenetic footprinting)(請參閱 Blanchette,M. and Tompa,Μ.(2002): Discovery of requlatory elements by a computational method for phylogenetic footprinting. Genome 20 200533759After Xhol and Hindlll were processed, they were inserted at the position of Xhol / Hindlll on the upstream side of the cold light enzyme gene of pGL3-basic vector (progema). The structure was designed as pCRMP-1 (-1920 / + 189), and the sequence fragments were tolerated by sequence analysis. PCRMP-U-1920 / + 50) Construction of the 5f-terminal vicinity of the hCRMP-1 gene (located in the sequence of hCRMP-1 gene -1920 to +50, [SEQIDNO: 2]) was replicated with the following two PCR primers :, ( 1) 5? -CGCTAATTACGCCAGCCCAAG-3r (located at 5023 to 5042 of the pGL3_ base vector, [SEQ ID NO: 9]) and (2) 5, -CCCAAGCTTCCGGGAGGGATAGAGACAC-3, (located at +32 to +50, 5 'end attached There is a cut point position of the artificial nucleic acid restriction enzyme Xhol, [SEQ ID NO: 10]). A plastid pCRMP-1 (-1920 / + 189) was used as a DNA template. This copied DNA fragment was treated with the nucleic acid restriction enzymes Notl and Hindlll, and then inserted into the Notl / Hindlll position of the pGL3-basic vector (progema). This construct was designed as pCRMP-1 (-1920 / + 50), and the duplicated sequence was confirmed by sequence analysis. Multi-site transient transfection and reporter gene cold light enzyme analysis. Prior to transfection, human lung adenocarcinoma cells (CLu) were implanted into a 6-well plate at a cell density of 1 x 105 cells per well and contained in 10% fetal calf. Serum 17 200533759 (FBS; manufactured by Invitrogen) was cultured in RPMI 1640 medium (manufactured by PRMI) for 24 hours. Dissolve 1 pg of pCRMP-l (-1920 / + 50) DNA and 1 pg of intrinsic control histone plastid DNA (pSV-P-galactosidase) in serum-free RPMI 1640 medium and 10 μΐ of transfection reagent Lipofectamine (manufactured by Invitrogen). The DNA / liposome complex was allowed to stand at room temperature for 45 minutes before being inserted into CLu cells. Cells were co-transfected with the complex for 6 hours in a 37 ° C incubator containing 5% carbon dioxide. After removing the culture medium and washing the cells twice with PBS buffer, 2 ml of RPMI 1640 medium containing 10% fetal bovine serum was added to the cells and cultured in a 37 ° C incubator containing 5% carbon dioxide. After culturing for 36 hours, the cells were recovered, and a cell extract was obtained with 250 μl of a dissolution reagent (manufactured by Tropix) per well. Human rectal cancer cells are cultured according to procedures well known to those skilled in the art. According to the above procedure, cells were transfected with pCRMP-1 containing the full length of the CRMP-1 promoter (-1920 / + 50) and recovered. Φ To measure the activity of cold light enzymes and β-galactosidase, 20 μ1 of cell extracts were used. This analysis was performed on a cold light analyzer (BERTHOLD Detection Systems Type Sirius 2C? Pforzheim, Germany) with a cold light enzyme analysis kit (Luciferase assay kit, manufactured by Tropix) and a galactosidase analysis kit (Galacto_Light Plus ™ system, manufactured by Tropix). Perform analysis. 18 200533759 The cold-light enzyme activity mentioned below has been corrected for β-galactosidase activity. Cold light enzyme activity is used as an indicator of gene expression in cells containing indicative reporter DNA constructs. Example 3 Analysis of the Nucleic Acid Regulatory Sequence of the CRMP-1 Gene CRMP-1 Some mutant lines of the 5′-terminal regulatory sequence of the CRMP-1 gene due to the long-distance reading truncation of the adjacent 5 ′ end upstream region The following method was used To construct and test the function of hCRMP-1 regulatory elements. All steps were performed according to the Exo Mung Bean Detection Kit (manufactured by Stratagene) with some modifications. Briefly, pCRMP-1 (-1920 / + 50) was first hydrolyzed with the nucleic acid restriction enzyme Xhol. The linearized plastids were then reacted with exonuclease III at 37 ° C for different days t. After extraction with organic solvent phenol-chloroform, from the position of -1920, 9 plastid fragments of different sizes can be obtained. After inactivation with exonuclease III at 68.0 for 15 minutes, these broken shellfish fragments were reacted with mung bean nuclease at 37 ° C for 30 minutes. The plastid fragments obtained by Shen Dian were subjected to a ligation reaction with τ4 DNA ligase. Each truncated construct entered CLk cells in a transient transfection manner, and its associated cold-light enzyme activity was measured by the method of Example 2. Results of the re-examination: Preparation of transcription activities with different truncated regulatory sequences 19 200533759 These different constructs and their associated cold-light enzyme activity in transfected cells are not as shown in Figure 1. Cold light enzyme activity was first corrected for galactase activity. Take the control of histoplasmic PGL3-basal plastid-transfected cells as the baseline. Compared to plastid pCRMP-1 (-1920 / + 50) in CL10 cells, the deletion of nucleotides -1920 to -180 did not significantly alter transcriptional activity. The -1880 to +50 fragment showed promoter activity. Compared with cells containing the pGL3_ basic vector and control group, cells transfected with the reporter gene and DNA and constructs located in the _99 to _180 regulatory region have been shown to increase their transcriptional activity by 30 to 60 times. Specifically, the transcriptional activity of pCRMP-1 (-180 / + 50), which contains a DNA containing DNA located at -99 to -180 nucleotides, is five-fold greater than that of pCRMP-1 (-99 / + 50). Example 4 Identification of Regulatory Factor Binding Sites The major sequence analysis of the 5'-end vicinity of the CRMP-1 gene revealed that it is a promoter that does not contain TATA. A Transcription Element Search System TESS (http://www.cbil.upenn.edu/cgi-bin/tess/tess7RQ-WELCOM E) can be used to predict certain regulation in the range -180 to -99 Factor binding sites, such as Spl binding sites. Two regulatory factor binding sites containing GGGAGGAG-sequence fragments were identified. This sequence fragment is a phylogenetic footprinting using a computer (see Blanchette, M. and Tompa, M. (2002): Discovery of requlatory elements by a computational method for phylogenetic footprinting. Genome 20 200533759

Research; http://www.gen0me.0rg/cgi/d0i/l 0.110 l/gr.69〇2) 列出推定的(putative)調控序列片段。第一調控因子結合位 是位於-133 $--122(5’-GGGAGGAGCTGT-3,, SEQ ID N〇:5) 的區間。第二調控因子結合位是位於-115至q〇〇 (5,-CCCCCTCCTCCCGCC-3’,SEQ ID NO:6)的區間,其包 含一 GGGAGGAG相反序列的反向序歹U,此序列係與其他 推定的Spl結合位重疊。 貫驗結果 \ 調控因子結合位的缺失研究 兩個缺失DNA的構築體,pCRMP-l(-116/+50)以及 pCRMP-l(-99/+50),分別被設計為移除第一調控因子結合 位與二個調控因子結合位。如表一所示,含有第一調控因 子結合位的-180至-117間的片段缺失,會導致相對冷光酵 素活性減少幾乎60% (pCRMP-l(-l 16/+50))。如表一所示, ^ 移除二個調控因子結合位後的pCRMP-l(-99/+50),其冷光 酵素活性會進一步減少至75%。這些結果顯示這二個調控 因子結合位對於CRMP-1基因啟動子的基本轉錄活性是必 須的。 200533759 藉由在DNA構築體上加入一段含第一調控因子結合位之 人造重複序列恢復韓錄活性 DNA構築體pCRMP-l-M12包含位於-99至+50的原 始核酸調控序列,以及兩個位於CRMP-1基因上游-133至 -122的附加人造第一調控因子之重覆序列。 以合成化學法合成具有Xhol核酸限制序列 (5,-ccgctcgag|gggaggagctgt| [gggaggagctgt CTCGAGCGG-3,,SEQ ID N0:11)的一段短鏈寡核苷酸及其 \ 反向序列,而形成一段短的雙股DNA。經修飾的DNA構 築體(亦即PCRMP-1-M12)係藉由具有核酸内切酶xh〇I的 雙股寡核苷酸水解後,再接合至線狀DNA構築體 pCRMP-1 (-99/+50)(亦使用核酸内切酶Xhol水解)而得。與 野生型DNA的構築體相比,此突變型DNA構築體之相對 冷光酵素活性為其114%(茶考表一)。此結果明確地顯示兩 個第一調控因子的附加不僅可恢復活性,事實上還可提高 pCRMP-1(-99/+50)的表現活性至野生型DNA構築體 pCRMP_l(-180/+50)的表現活性。(見表一) 未含有第一調控因子結合位的 pCRMP-l(-99/+50)DNA構築體,顯示僅有24%的相對冷光 酵素活性並作為負控制組,而野生型DNA構築體 pCRMP-1(-180/+50)則作為正控制組(亦即 pCRMP-l(-180/+50)的冷光酵素活性作為1〇〇%h見表一)。 此結果進一步提出該第一調控因子結合位對CRMP-1基因 200533759 的轉錄與表現是重要的。更特別的是,該第一調控因子結 合位的兩個人造重複序列可取代原來序列的區域,而對相 對冷光酵素活性沒有任何影響。再者,第一調控因子結合 位的轉錄及表現活性,與CRMP-1基因的轉錄啟動位置(亦 即CRMP-1基因的外子l(exon-l)的ATG啟動密碼子)並無 明顯相關。 實施例五徒用定點突變法的hCRMP-Ι某磔啟動子功能益 • 姐 、 將定點突變法(site_directed mutagenesis method)應用 於位於CRMP-1基因上游-180至-100的核酸調控序列的可 能(或推定)結合位的進一步研究。 方法輿結旲 製作突變DNA構築體的方法顯示於以下的說明中, 而且這些突變DNA構築體及其相對冷光酵素活性的結果 • 列於表二。 第一調括闵孑钴合位的突轡(位於-133至-122) 根據野生型DNA構築體pCRMP-l(-180/+50)來設計含 有冷光酵素報導基因的五個突變DNA構築體。它們分別為 pCRMP-1 M3、m3-2、m3_3、m3-4 和 m3-5 〇 如表二所示, 除了每一個所提出的突變株在-133至-122間有一個點突變 或核酸的轉換外,它們都有與DNA構築體 pCRMP-1(-180/+50)相同長度的5’端CRMP-1啟動子。如表 23 200533759 二所示,突變株M3與m3-4和野生型DNA構築體 pCRMP-l(-180/+50)相比,相對冷光酵素活性都大幅地減少 約至一半。另外,突變株m3-2與m3-3分別顯示出其轉錄 與表現活性減少至約70%與60% (見表二)。再者,雖與 pCRMP-1 M3有相同突變的突變構築體Mil,即使其DNA 建構體具有完整的1.9 kb的上游調控序列,但相對冷光酵 素活性卻明顯受損(50%)。 第二調控因子結合位的突變(位於-115至-100) 第二調控因子結合位含有一個GGGAGGAG的反向 序列。當位於-115至-100區域(亦即pCRMP-1 DNA構築體 M4和M5)的序列結構被打亂時,對於轉錄活性而言,並無 任何明顯的影響(見表二)。 二個調控因子結合位之外的其它突變體 與野生型DNA構築體pCRMP-1 (-180/+50)相比,於 -171和-170位置進行突變的突變構築體pCRMP-1 Ml(將 AG轉換成GA),其轉錄活性減少至60% (見表二)。在-119 和-118的位置將GC轉換成AT時,僅有少量(即,約20%) 的轉錄活性損失(見表二)。另外,當突變位於-146和-145 的位置(即,將CT轉換成TC)(見表二中的M2),-135和-134 的位置(即,將CC轉換成TT)(見表二中的m3-6)以及-121 和-120的位置(即,將CT轉換成TC)(見表二中的m3-5)時, 均不影響CRMP-1基因的轉錄活性。 24 200533759 綜上所言,點突變實驗的結果確認位於-133至-122 (5’-GGGAGGAGCTGT-3’,SEQ ID NO:5)的第一調控因子結 合位對於CRMP-1基因的轉錄及/或表現活性的調控是必須 的。 實施例六CRMP-1基因核酸調控片段的DNA結合蛋白之 分析 , 材料和方法 在crm/7-i調控片段的核酸萃取物中鑑定特定的結合蛋 白複合物,所用的主要技術為電泳位移分析法 (electrophoretic mobility shift assay,EMSA)。其相關方法, 抗體結合取代分析(antibody supershift assay)將進一步確 認在CRMP-1基因核酸調控序列中所囊括的結合蛋白(亦即 在DNA-蛋白複合物形成中的蛋白)。 電泳位移分析(EMSA)或膠體位移分析(gel shift assay) • 可提供一個偵測DNA-結合蛋白,例如轉錄因子,的簡單方 法(Buratowskiet al·,Current Protocols in Molecular Biology, (1996): 12·2· 1-12.2.11)。此分析係基於在非變性的聚丙烯醯 胺膠體(a non-denaturing polyacrylamide gel)上移動時,可 觀察到DNA-蛋白複合物的速度會比游離的DNA片段(free DNA fragment)或雙股寡核苦酸(oligonucleotides)來得慢。 膠體位移分析(gel shift assay)是將經純化的蛋白質或蛋白 質的複合混合物(例如來自細胞核的萃取物),與含有調控 25 200533759 因子結合位並經32P標定的DNA片段一起反應。用於調控 因子結合位的DNA-結合蛋白之專一性係以競爭性實驗來 確認,此競爭性實驗是使用未經32P標定的DNA片段,或 是含有CRMP-1基因調控因子結合位的寡核苷酸或其他無 關的DNA序列。 核酸萃取物的製備 此分析使用兩種不同細胞核萃取物,分別來自He]^a (Promega生產,美國)和CLu兩種人類癌細胞株。製備方 法是依據 Dignam 等人的方法(1983) (Dignamet al.,Nuclei。 Acids Res·,(1983),11,1475-1489)。 DNA探針和放射性元素標定 三條雙股DNA探針是特別設計用於位移分析(motility shift assay)。係利用化學合成法,並經互補寡核苷酸 (complementary oligonucleotides)黏合(annealing)而得0 ^AJUtA含有第一調控因子結合位序列中的一段重 複序列(5^GGGAGGAGCTGTGGGAGGAGCTGT-3T. SEQ ID NO:12) 〇 DN.A缓對B是位於-117至-100的片段,含有一段 GGGAGGAG^^ 反向序列(5,-AGCCCCCTCCTCCCGCCC-3,, SEQ ID NO:13) 〇 26 200533759 DNA探針 C 是位於-137 至-100 的片段, (5,-CGCCGGGAGGAGCTGTCTGCAGCCCCCTCCTCCCG CCC-3,,SEQ ID N〇:14)。 DNA探針的放射性元素標定是根據Promega公司(美 國)生產的 Gel Shift Assay Systems (Technical Bulletin No. 110)來製備。 DNA-蛋白結合反應與電泳的實驗程序是以Promega Ϊ 公司(美國)生產的 Gel Shift Assay Systems(Technical Bulletin編號110)為基礎,並加以部分修飾。標準的DNA-蛋白結合反應是將1至20 pg HeLa或CLi-o的細胞核萃取 物,在進行結合反應的緩衝溶液(4%甘油(glycerol),ImM MgCl2,0.5mM EDTA,0.5mM DTT,50mM NaCl,10mM Tris-HCl (pH 7.5),0.05mg/ml poly(dI-dC)*poly(dI-dC))中, 於室溫下反應10分鐘。然後,每個反應的混合物與32p標 定探針混合後,並在室溫下繼續反應20分鐘。將含有 φ 250mM Tris-HCl(pH 7.5)、0.2% 溴驗藍(bromophenol blue) 以及40%甘油的10倍體積的凝膠充填緩衝液(gel l〇ading buffer)加入於每個反應混合物。測試物先行於1倍TBE緩 衝液中以及4%聚丙烯醯胺膠體(PAGE gel)中進行電泳,再 以100伏特電壓於4°C下進行電泳分析。 競爭位移分析(Competition mobility shift assay) 藉由競爭結合分析可以評估蛋白質和DNA間交互作 用的核酸序歹,J 專一性(Carthewet al·,Cell(1985), 27 200533759 =:439-448)。將用於競爭分析的未標定DNA探針與細胞核 萃取物在結合反應的緩衝液中先行培養,然後再加入已標 疋P的DNA权針。在此分析中,除了加入三個dna探 針(即DNA探針A、B與c)用於標準結合反應外,一個外 加的突變DNA探針也被使用於競爭分析來確認dna-蛋白 複合物的專一性。該突變DNA探針的序列為 5f-AAAGGGGACTACAAAGGGGACTAC^3T(SEQ ID NO: I 15),其含有數個DNA探針A的取代核苷酸。 抗體結合取代分析(Antibody supershift assav) 一種位移DNA-結合分析的變化是使用抗體來確認出 現在蛋白質-DNA複合物中的蛋白質(Kristieet al.,proc. Natl· Acad· Sci· USA (1986),83:3218-3222) 〇 於結合反應中 加入一特定的抗體以確定此蛋白質是否為所猜測的蛋白 質,例如轉錄因子在膠體位移研究中是否與DNA-蛋白質複 合物的形成有關。當被抗體所識別的蛋白質與複合物的形 • 成無關時,將被當作沒有影響作用。可預見的有兩種不同 的情形,不是複合物的形成被抑制,就是形成一個抗體-蛋 白-DNA三種組合的複合物。後者將導致蛋白質-DNA複合 物的移動進一步減少(亦即supershift)。 純化的重組Spl蛋白質自Promega公司(美國)購得。 Spl抗體(購自Santa Cruz Biotechnology公司)與細胞核萃 取物及DNA探針反應30分鐘。 f驗結果 28 200533759 圖3A至3D所顯示者為,在特定DNA-蛋白質複合體 在CRMP-1啟動子(promoter)區域内的結合。此研究係以實 施例六的電泳位移分析(EMSA,electrophoretic mobility shift assay),競爭位移分析(competition mobility shift assay) 以及抗體結合取代分析(antibody supershift assay)進行。三 條雙股DNA探針被設計用於位移分析。DNA探針A包含 第一推定結 合位的 重複序 列 • (5,-GGGAGGAGCTGTGGGAGGAGC TGT_3,,SEQ ID NO:12)。底線序列標示為第一推定結合位序歹ij。DNA探針 B 包含 -117 至 -100 的片段 (5,-AGCCCCCTCCTCCCGCCC-3,,SEQ ID NO: 13),其包含 GGGAGGAG的反轉序歹ij。DNA探針C包含-137至-100的 片段(5,-CGCCGGGAGGAGCTGTCTGCAGCCCCCTCCT CCCGCCC-3f,SEQ ID NO: 14)。所有用於標準結合反應的 DNA探針均經32p標定。 ,DNA探針A的位移分妍 在HeLa細胞核萃取物中,利用含有第一調控因子結 合位的重複序列之DNA探針A來確認具有專一性的DNA-蛋白質複合物(PI、P2和P3)(圖3A第1攔)。然而,在競 爭位移分析(competition mobility shift assay)中,當過量的 50倍與1〇〇倍的未經32P標定的Dna探針A加入競爭時, 這些DNA-蛋白質複合物消失(圖3A第2、3欄)。DNA-蛋 白質複合物P3亦可被含有GGGAGGAG的反向序列的未經 29 200533759 J2P標定DNA探針B所抑制(圖从第6、7攔)。如同預期, 未經〃 P彳示定之突變DNA探針沒有呈現競爭抑制現象(圖 3 A第4、5欄)。由於DNA探針a與DNA探針B含有相 同的序列,此分析的結果顯示形成於複合物p3中的蛋白質 可能對GGGAGGAG序列具有專一性。 在CLu細胞核萃取物中,發現兩個特定的dna-蛋 白質複合物。它們可能與複合物P1&P3相同(圖3八第9 φ 欄)或為其近似物,並且與使用HeLa細胞核萃取物的結合 反應一致;因為它們在電泳膠體上呈現相似的移動反應。 DNA探針B的位移分析 使用含32P標定DNA探針8,在HeLa* CLi〇細胞核 萃取物中均可偵測出一個主要的DNA_蛋白質複合物p4 (分別在圖3B第卜8欄)。在使用相同未經32p標定的DNA 片段分別以過量的50倍與1〇〇倍競爭分析後,膠體位移分 析顯不此DNA-蛋白質複合物具專一性(分別在圖3B第2、 _ 3欄)。當過量的50倍和100倍之未經32p標定的DNA探 針A分別加入時,此DNA-蛋白複合物便消失(分別在圖3B 第4、5欄)。以一個過量且突變的DNA探針的結合反應作 為負控制組,其不能與專一性的DNA結合蛋白競爭(分別 在圖3B第6、7列)。膠體位移分析進一步確認DNA探針 A和DNA探針B具有相同的競爭能力,因為它們都含有相 同的序列(GGGAGGAG)。更具體的說,複合物P3和料可 能由相同的成分所組成。 30 200533759 Μ A莲身c的位移分析Research; http: //www.gen0me.0rg/cgi/d0i/l 0.110 l / gr.69 (2)) List putative regulatory sequence fragments. The first regulatory factor binding site is an interval located at -133 $-122 (5'-GGGAGGAGCTGT-3 ,, SEQ ID NO: 5). The second regulatory factor binding site is an interval from -115 to q〇〇 (5, -CCCCCTCCTCCCGCC-3 ', SEQ ID NO: 6), which contains a reverse sequence of the opposite sequence of GGGAGGAG 歹 U, this sequence and other The putative Spl binding sites overlap. Results of the test \ Deletion of regulatory factor binding sites Two constructs with missing DNA, pCRMP-l (-116 / + 50) and pCRMP-l (-99 / + 50), were designed to remove the first regulation Factor binding site and two regulatory factor binding sites. As shown in Table 1, deletion of a fragment between -180 and -117 containing the first regulatory factor binding site results in a relative cold photoenzyme activity decrease of almost 60% (pCRMP-1 (-l 16 / + 50)). As shown in Table 1, after removing the two regulatory factor binding sites, pCRMP-1 (-99 / + 50), its cold light enzyme activity will be further reduced to 75%. These results show that these two regulatory factor binding sites are necessary for the basic transcriptional activity of the CRMP-1 gene promoter. 200533759 Restore the Hanlu active DNA construct pCRMP-l-M12 by adding an artificial repeat sequence containing the first regulatory factor binding site to the DNA construct containing the original nucleic acid regulatory sequences located at -99 to +50, and two located at Repeated sequence of additional artificial first regulators from -133 to -122 upstream of CRMP-1 gene. A synthetic short-chain oligonucleotide with the Xhol nucleic acid restriction sequence (5, -ccgctcgag | gggaggagctgt | [gggaggagctgt CTCGAGCGG-3, SEQ ID N0: 11) and its reverse sequence were formed by a synthetic chemistry method to form a short Double-stranded DNA. The modified DNA construct (ie, PCRMP-1-M12) was hydrolyzed by a double-stranded oligonucleotide with an endonuclease xh〇I, and then ligated to the linear DNA construct pCRMP-1 (-99 / + 50) (also hydrolyzed with endonuclease Xhol). Compared to the wild-type DNA construct, the relative cold-light enzyme activity of this mutant DNA construct was 114% (Tea Table 1). This result clearly shows that the addition of the two first regulatory factors not only restores the activity, but also actually increases the performance activity of pCRMP-1 (-99 / + 50) to the wild-type DNA construct pCRMP_l (-180 / + 50) The performance of the activity. (See Table 1.) The pCRMP-1 (-99 / + 50) DNA construct without the first regulatory factor binding site showed only 24% relative cold light enzyme activity and served as a negative control group, while the wild-type DNA construct pCRMP-1 (-180 / + 50) was used as the positive control group (ie, the cold light enzyme activity of pCRMP-1 (-180 / + 50) was shown as Table 1 as 100% h). This result further suggests that the first regulatory factor binding site is important for the transcription and expression of CRMP-1 gene 200533759. More specifically, the two artificial repeats at the binding site of the first regulatory factor can replace the region of the original sequence without any effect on the relative photoenzyme activity. Furthermore, the transcription and expression activity of the first regulatory factor binding site is not significantly related to the transcription initiation position of the CRMP-1 gene (ie, the ATG start codon of exon-1 of the CRMP-1 gene). . Example 5 Function of hCRMP-1 promoter using site-directed mutagenesis • Sister, it is possible to apply the site-directed mutagenesis method to the nucleic acid regulatory sequence -180 to -100 upstream of the CRMP-1 gene ( Or presumed) further study of binding sites. Methodology The methods for making mutant DNA constructs are shown in the description below, and the results of these mutant DNA constructs and their relative cold photoenzyme activity are listed in Table 2. The first tuned Mino-cobalt-forming ridge (located at -133 to -122) was designed based on the wild-type DNA construct pCRMP-1 (-180 / + 50) to design five mutant DNA constructs containing a reporter gene for cold light enzymes. They are pCRMP-1 M3, m3-2, m3_3, m3-4, and m3-5. As shown in Table 2, except that each proposed mutant has a point mutation or a nucleic acid between -133 and -122. Except for the transformation, they all have the 5 'end CRMP-1 promoter of the same length as the DNA construct pCRMP-1 (-180 / + 50). As shown in Table 23, 200533759 II, compared with m3-4 and the wild-type DNA construct pCRMP-1 (-180 / + 50), the relative cold-light enzyme activity was significantly reduced by about half. In addition, mutants m3-2 and m3-3 showed reductions in their transcription and expression activities to approximately 70% and 60%, respectively (see Table 2). Furthermore, although the mutant construct Mil, which has the same mutation as pCRMP-1 M3, has a complete 1.9 kb upstream regulatory sequence in its DNA construct, the relative cold light enzyme activity is significantly impaired (50%). Mutation of the second regulatory factor binding site (located at -115 to -100) The second regulatory factor binding site contains a GGGAGGAG reverse sequence. When the sequence structure located in the region -115 to -100 (that is, pCRMP-1 DNA constructs M4 and M5) was disrupted, there was no significant effect on transcriptional activity (see Table 2). Mutants other than the two regulatory factor binding sites were compared to the wild-type DNA construct pCRMP-1 (-180 / + 50), and the mutant construct pCRMP-1 Ml (- AG to GA), and its transcriptional activity was reduced to 60% (see Table 2). When GC was converted to AT at positions -119 and -118, only a small amount (ie, about 20%) of the transcriptional activity was lost (see Table 2). In addition, when the mutations are at positions -146 and -145 (ie, CT is converted to TC) (see M2 in Table 2), positions -135 and -134 (ie, CC are converted to TT) (see Table 2 M3-6) and the positions of -121 and -120 (ie, convert CT to TC) (see m3-5 in Table 2) did not affect the transcriptional activity of the CRMP-1 gene. 24 200533759 In summary, the results of the point mutation experiment confirmed that the first regulatory factor binding site at -133 to -122 (5'-GGGAGGAGCTGT-3 ', SEQ ID NO: 5) is responsible for the transcription and / Or regulation of performance is necessary. Example 6 Analysis of DNA Binding Proteins of CRMP-1 Gene Nucleic Acid Regulatory Fragments, Materials and Methods To identify specific binding protein complexes in the nucleic acid extract of crm / 7-i regulatory fragments, the main technique used is electrophoretic shift analysis (electrophoretic mobility shift assay, EMSA). A related method, antibody supershift assay will further confirm the binding proteins (ie, proteins in the formation of DNA-protein complexes) contained in the CRMP-1 gene nucleic acid regulatory sequence. Electrophoretic shift analysis (EMSA) or gel shift assay • Provides a simple method for detecting DNA-binding proteins such as transcription factors (Buratowskiet al ·, Current Protocols in Molecular Biology, (1996): 12 · 2 · 1-12.2.11). This analysis is based on the observation that when moving on a non-denaturing polyacrylamide gel, the speed of DNA-protein complexes is faster than free DNA fragments or double-stranded oligosaccharides. Oligonucleotides come slowly. Gel shift assay is the reaction of purified protein or a complex mixture of proteins (such as extracts from the nucleus) with a DNA fragment containing regulatory 25 200533759 factor binding sites and 32P calibration. The specificity of the DNA-binding protein used for the regulatory factor binding site was confirmed by a competitive experiment using a DNA fragment that has not been calibrated to 32P or an oligonucleotide containing the regulatory factor binding site of the CRMP-1 gene. Or other unrelated DNA sequences. Preparation of nucleic acid extracts This analysis used two different nuclear extracts from He] ^ a (promega, USA) and CLu, two human cancer cell lines. The preparation method is based on the method of Dignam et al. (1983) (Dignamet al., Nuclei. Acids Res., (1983), 11, 1475-1489). DNA probe and radioactive element calibration Three double-stranded DNA probes are specifically designed for motility shift assays. 0 ^ AJUtA contains a repeat of the first regulatory factor binding site sequence (5 ^ GGGAGGAGCTGTGGGAGGAGCTGT-3T. SEQ ID NO: 0 ^ AJUtA using chemical synthesis and complementary oligonucleotides). 12) 〇DN.A slow pair B is a fragment located at -117 to -100 and contains a GGGAGGAG ^^ reverse sequence (5, -AGCCCCCTCCTCCCGCCC-3 ,, SEQ ID NO: 13) 〇26 200533759 DNA probe C is The fragment at -137 to -100, (5, -CGCCGGGAGGAGCTGTCTGCAGCCCCCTCCTCCCGCCC-3, SEQ ID NO: 14). The radioactive element calibration of the DNA probe was prepared according to Gel Shift Assay Systems (Technical Bulletin No. 110) manufactured by Promega Corporation (USA). The experimental procedure of DNA-protein binding reaction and electrophoresis is based on Gel Shift Assay Systems (Technical Bulletin No. 110) manufactured by Promega (R) Corporation (USA), and is partially modified. The standard DNA-protein binding reaction is to use 1 to 20 pg of HeLa or CLi-o nuclear extract in a buffer solution (4% glycerol, ImM MgCl2, 0.5mM EDTA, 0.5mM DTT, 50mM). NaCl, 10 mM Tris-HCl (pH 7.5), 0.05 mg / ml poly (dI-dC) * poly (dI-dC)), and reacted at room temperature for 10 minutes. Then, each reaction mixture was mixed with a 32p calibration probe, and the reaction was continued at room temperature for 20 minutes. A 10-fold volume of gel filling buffer containing φ 250 mM Tris-HCl (pH 7.5), 0.2% bromophenol blue, and 40% glycerol was added to each reaction mixture. The test object was electrophoresed in 1x TBE buffer and 4% polypropylene gel (PAGE gel), and then electrophoretic analysis was performed at 4 ° C at 100 volts. Competition mobility shift assay. A competitive binding assay can be used to evaluate nucleic acid sequence interactions between proteins and DNA. J specificity (Carthewet al., Cell (1985), 27 200533759 =: 439-448). Unlabeled DNA probes and nuclear extracts used for competitive analysis were cultured in the binding reaction buffer, and then DNA spikes labeled with 疋 P were added. In this analysis, in addition to adding three DNA probes (ie DNA probes A, B and c) for standard binding reactions, an additional mutant DNA probe was also used in competition analysis to confirm the DNA-protein complex. Specificity. The sequence of this mutant DNA probe is 5f-AAAGGGGACTACAAAGGGGACTAC ^ 3T (SEQ ID NO: I 15), which contains several substituted nucleotides of DNA probe A. Antibody supershift assav A variant of shifted DNA-binding analysis is the use of antibodies to identify proteins that appear in protein-DNA complexes (Kristieet al., Proc. Natl · Acad · Sci · USA (1986), 83: 3218-3222) 〇 A specific antibody is added to the binding reaction to determine whether the protein is a predicted protein, such as whether transcription factors are involved in the formation of DNA-protein complexes in colloidal displacement studies. When the protein recognized by the antibody has nothing to do with the formation of the complex, it is considered to have no effect. There are two different situations that can be foreseen. Either the formation of the complex is inhibited or an antibody-protein-DNA complex is formed. The latter will result in a further reduction in the movement of the protein-DNA complex (ie supershift). Purified recombinant Spl protein was purchased from Promega Corporation (USA). Spl antibody (purchased from Santa Cruz Biotechnology) was reacted with nuclear extracts and DNA probes for 30 minutes. f Test results 28 200533759 Figures 3A to 3D show the binding of a specific DNA-protein complex in the CRMP-1 promoter region. This study was performed using the electrophoretic mobility shift assay (EMSA), competition mobility shift assay, and antibody supershift assay in Example 6. Three double-stranded DNA probes are designed for displacement analysis. DNA probe A contains a repeat sequence of the first putative binding site • (5, -GGGAGGAGCTGTGGGAGGAGC TGT_3, SEQ ID NO: 12). The underlined sequence is labeled as the first putative binding sequence 歹 ij. DNA probe B contains a fragment of -117 to -100 (5, -AGCCCCCTCCTCCCGCGCCC-3, SEQ ID NO: 13), which contains the reverse sequence 歹 ij of GGGAGGAG. DNA probe C contains a fragment of -137 to -100 (5, -CGCCGGGAGGAGCTGTCTGCAGCCCCCTCCT CCCGCCC-3f, SEQ ID NO: 14). All DNA probes used for standard binding reactions were calibrated at 32p. Shift analysis of DNA probe A in HeLa cell nuclear extracts. DNA probe A containing a repeat sequence of the first regulatory factor binding site was used to confirm specific DNA-protein complexes (PI, P2, and P3). (Figure 3A first block). However, in a competition mobility shift assay, these DNA-protein complexes disappeared when 50-fold excess and 100-fold unlabeled DNA probe A were added to the competition (Figure 3A, 2nd) , 3 columns). The DNA-protein complex P3 can also be suppressed by DNA probe B containing the reverse sequence of GGGAGGAG without 29 200533759 J2P calibration (Figures 6 and 7). As expected, mutated DNA probes that were not identified by "P" did not exhibit competitive inhibition (columns 4 and 5 in Figure 3A). Since DNA probe a and DNA probe B contain the same sequence, the results of this analysis indicate that the protein formed in complex p3 may be specific to the GGGAGGAG sequence. In CLu nuclear extracts, two specific DNA-protein complexes were found. They may be the same as the complexes P1 & P3 (Fig. 3, column 9 φ) or their approximations, and they are consistent with the binding reaction using HeLa nuclear extracts; because they exhibit similar movement responses on electrophoretic colloids. Displacement analysis of DNA probe B. Using a 32P-calibrated DNA probe 8, a major DNA-protein complex p4 can be detected in HeLa * CLi0 nuclear extracts (respectively in column 3 of FIG. 3B). After using the same non-32p-calibrated DNA fragment to compete with a 50-fold excess and a 100-fold competition analysis, the colloidal shift analysis showed no specificity for this DNA-protein complex (shown in columns 2 and 3 of Figure 3B, respectively) ). This DNA-protein complex disappeared when 50-fold excess and 100-fold excess of the non-32p-calibrated DNA probe A were added (see columns 4 and 5 in Figure 3B, respectively). The binding reaction of an excess and mutated DNA probe was used as a negative control group, which could not compete with the specific DNA binding protein (in columns 6 and 7 of Figure 3B, respectively). Colloidal shift analysis further confirms that DNA probe A and DNA probe B have the same competitiveness because they both contain the same sequence (GGGAGGAG). More specifically, the compound P3 and the material may be composed of the same ingredients. 30 200533759 Μ A displacement analysis of lotus body c

HeLa細胞核萃取物與32P標定的〇ΝΑ探針c進行交 互作用後,呈現四個分子量依序遞減的DN冬蛋白質複合物 P5、P6、P7與P8(第3C圖第一欄)。其中三個(p5、p6與 P7)呈現專一性,因為他們(P5、P6與P7)在使用過量的1〇〇 倍和200倍相同的未經32P標定的DNA.探針C時,均無法 測到(分別在圖3C第2、3欄)。以過量的突變DNA探針進 • 行競爭分析的結果顯示,其與標準結合分析有相同的DNA-蛋白質複合物型式(圖3C第6、7欄)。DNA-蛋白質複合物 P5和P6會受到過量的100倍和200倍含有第一調控因子 元素重複序列的DNA探針A的專一性競爭,(圖3C第4、 5欄),而DNA探針b則否(圖3C第8、9欄)。因為DNA_ 蛋白質複合物P7於競爭分析結果中消失,因此可推斷其對 DNA楝針B具有專一性(圖3 C第8、9欄)。可能有其他對 第一調控因子結合位有專一性的蛋白質或轉錄因子。 # 在CLi-〇細胞核萃取物中,有三個DNA-蛋白質複合 物能與DNA探針c結合。其與HeLa細胞核萃取物中的複 合物P5、P6與p8有非常相似的結果(圖3C第11欄)。 充體結金要 在結合反應中加入抗-Sp丨抗體會使得DNA-蛋白質複 合物P1的移動最慢(圖3A第8攔)。在含有DNA探針c 的結合反應中也有相同的效應(圖3C第10欄)。DNA-蛋白 質複合物所產生的最慢速移動的遲滯效應,係藉由將CLU0 31 200533759 的細胞核萃取物和DNA探針A與DNA探針C 一起反應而 加以確認(結果未顯示)。 外加Spl果白之位移分析 利用外加Sp 1的蛋白質位移分析,進行進一步的研究 以確認Spl蛋白質-形成複合物(SP1 pr〇tein_f〇rmj complex)是否出現。在HeU細胞核萃取物和η DNA探針A或DNA探針C中分別外加5 P檁定的 組Spl蛋白質,並進行結合反應。在膠體位二5〇 ng的重 探針A和歷探針C因DNA.蛋白複合^上,冰a 明顯的位移遲滯現象(分別在圖3第 Μ加而 欄^因為若無細胞核萃取物存在,則無蝴及苐4心 此可精由與其他因子的關聯而使SP1蛋白j到訊銳,因 子結合位上(圖3D第7、8攔)。 、、、、°合在調控因 上述結果顯示,藉由使 少可能有-種特定的Spl蛋白: 的抗¥ 形成有關。並可進-步得到下面的結論,^質複合 子的轉錄活性調控上,至少右 CRMp 、 …人此a 夕有兩種其他特定的h 1啟動 復合物疋必要的。 的疋 、蛋白質 麵纽倾缝缝处輕虹㈣ ^ 抗 轉錄調抟 工 材料與方法 32 200533759 報導_DNA構築體與Spl蛋白表現_構築體的短暫共轉染 為使細胞内Spl蛋白的表現量升高,兩種DNA構築 體pCRMP-l(-180/+50)及pCRMP·l(-99/+50)分別與DNA構 築體pSG5-Spl進行短暫共轉染。在CLu細胞中的DNA 構築體pSG5作為負控制組。兩種DNA構築體pSG5-Spl 和pSG5係由Robert Tjian博士所贈。 反轉錄-聚合酶鐽銷反應法(RT-PCR) 收集、經過24小時培養後的CLu細胞,以市售的 RNA-Bee™試劑套組將RNA分離。先以lpg的總量RNA 進行反轉錄反應,再取反轉錄反應產物1/25的體積進行聚 合酶鏈鎖反應(PCR) (Invitrogen生產)。設計三對用於 hCRMP-;l、Sp-Ι與(¾類似基因表現研究的特定引子,引子 之序列如下所示: hCRMP-Ι引子對: 同義股引子 5,-ATGCCCTGAGCAGACCTGAAGAGC-3,(SEQ ID NO:16) 以及 反義股引子 5f-AGTAATGGGTGCCATCGGTCCGCAG-3?(SEQ ID NO:17)After the interaction between HeLa nuclear extract and 32P-labeled ONA probe c, four DN winter protein complexes P5, P6, P7, and P8 with decreasing molecular weight were presented (Figure 3C, first column). Three of them (p5, p6, and P7) were specific because they (P5, P6, and P7) were unable to use 100 times and 200 times the same amount of uncalibrated DNA. Probe C failed. Measured (in columns 2 and 3 of Figure 3C). Competitive analysis with excess mutant DNA probes revealed that it had the same DNA-protein complex pattern as the standard binding analysis (Figures 3C, columns 6 and 7). The DNA-protein complexes P5 and P6 are subject to specific competition from 100-fold and 200-fold excess DNA probe A containing the repeating sequence of the first regulatory element, (columns 4 and 5 of Figure 3C), while DNA probe b No (columns 8 and 9 in Figure 3C). Because the DNA_protein complex P7 disappeared from the competition analysis results, it can be inferred that it is specific for DNA needle B (Figures 3C, columns 8 and 9). There may be other proteins or transcription factors specific for the first regulatory factor binding site. # In CLi-O nuclear extract, there are three DNA-protein complexes that can bind to DNA probe c. It has very similar results to the complexes P5, P6 and p8 in the HeLa nuclear extract (Figure 3C, column 11). For full-body gold deposition, the addition of anti-Sp 丨 antibodies to the binding reaction will make the DNA-protein complex P1 move the slowest (Figure 3A, Block 8). The same effect was observed in the binding reaction containing DNA probe c (Figure 3C, column 10). The slowest-moving hysteresis effect of the DNA-protein complex was confirmed by reacting the nuclear extract of CLU0 31 200533759 with DNA probe A and DNA probe C (results not shown). Displacement analysis with extra Spl fruit whitening Using protein shift analysis with Sp 1 added, further studies were performed to confirm the presence of the Spl protein-forming complex (SP1 protein_fommj complex). The Spl protein of 5 P 檩 was added to the nuclear extract of HeU cells and η DNA probe A or DNA probe C, respectively, and a binding reaction was performed. At the colloidal position of 50 ng heavy probe A and probe C due to the DNA. Protein complex, the obvious shift lag of ice a (as shown in the third column of Figure 3, respectively, because if no nuclear extract is present Therefore, there is no need for butterfly and 心 4 to make the SP1 protein j to the signal sharpness and the factor binding site by the association with other factors (Figure 3D, Nos. 7 and 8). ,,,, and ° are combined in the regulation due to the above The results show that by making it possible to prevent the formation of a specific Spl protein: the anti- ¥ formation can be further-and the following conclusions can be obtained-the regulation of the transcriptional activity of the proton complex, at least the right CRMp, ... In the evening, there are two other specific h 1 starter complexes necessary. 疋, light noodles at the protein seam and crevices ^ Anti-transcriptional modulation materials and methods 32 200533759 report _DNA constructs and Spl protein performance_ The transient co-transfection of the constructs increased the expression of Spl protein in the cells. pSG5-Spl was transiently co-transfected. The DNA construct pSG5 in CLu cells served as a negative control group. Two DNA constructs pSG5-S pl and pSG5 were donated by Dr. Robert Tjian. Reverse Transcription-Polymerase Reaction (RT-PCR) CLu cells were collected and cultured for 24 hours, and RNA was isolated using a commercially available RNA-Bee ™ reagent kit. Reverse transcription reaction was performed with the total RNA of lpg, and then 1/25 of the reverse transcription reaction product was taken for polymerase chain reaction (PCR) (Invitrogen). Three pairs were designed for hCRMP-; l, Sp- I and ¾ specific primers for similar gene expression studies, the sequence of the primers is as follows: hCRMP-1 primer pair: synonymous strand primer 5, -ATGCCCTGAGCAGACCTGAAGAGC-3, (SEQ ID NO: 16) and antisense strand primer 5f-AGTAATGGGTGCCATCGGTCCGCAG -3? (SEQ ID NO: 17)

Sp-1引子對: 同義股引子 5,-GAGAGTGGCTCACAGCCTGTC-3’(SEQ ID NO:18)以及 33 200533759 反義股引子 5,-GTTCAGAGCATCAGACCCCTG_3,(SEQ ID N〇:19) 類似之引子對(Shanet al·,Mol. Cell· Biol· (1992) 12, 5620-5631): 同義股引子 5’-GTATGGAACCTGGCTAACTG-3,(SEQ ID NO:20)以及 _ 反義股引子 5?-TACTGATAACTTCTTGCTTC-3f(SEQ ID NO:21) 為了控制RNA的品質’以類似基因的表現作為内 &控制組。所有的結果是以漠化酿液(ethidium bromide)染 色後觀察而得。 SPl蛋白對crmp-/啟動子呈現負面調控。相對冷光 參 酵素’舌性被用作為過度表現(〇ver-expressed)的Spl蛋白質 對於影響調控活性效果的指標。與沒有過度表現的Spl蛋 白貝的細胞相比較,過度表現的Spl蛋白質與報導構築體 pcrmp-ig180/+50)共轉染的細胞中,其相對冷光活性酵 素減少近50%。如同預期,因為在報導DNA構築體上不含 所2疋的SP1結合位,因此無論是否有過度表現的Spl蛋 白貝,對於轉染pCRMP-l(-99/+50)的細胞均無特別影響。 α反轉錄-聚合酶鏈鎖反應法(RT-PCR)是用來評估 RMP-i、Spl及G々類似基因的rna量。當spi蛋白質在 34 200533759 細胞中過量表現時,CRMP-1的RNA量會顯著地減少(圖 4)。Q類似基因(宿主基因(house keeping gene)在此作為實 驗控制組)呈現相似的RNA量(圖4)。如同預期,被Spl過 度表現的DNA構築體所轉染的細胞中,Spl的RNA量明 顯較高。這些結果確認Spl蛋白可能對CRMP-1的表現是 一個負向調控者。 本發明已藉由實施例與較佳實施例加以說明,應被瞭 解的是本發明並非僅限於在此所揭露的實施例。相反地, 本發明意在涵蓋對於熟習本領域之人士顯而易見的各種不 同的修飾。因此,申請專利範圍應符合廣義的解釋,以囊 括所有類似的修飾。Sp-1 primer pair: Synonymous strand primer 5, -GAGAGTGGCTCACAGCCTGTC-3 '(SEQ ID NO: 18) and 33 200533759 Antisense strand primer 5, -GTTCAGAGCATCAGACCCCTG_3, (SEQ ID No. 19) Similar primer pairs (Shanet al ·, Mol. Cell · Biol · (1992) 12, 5620-5631): Synonymous strand primer 5'-GTATGGAACCTGGCTAACTG-3, (SEQ ID NO: 20) and _Antisense strand primer 5? -TACTGATAACTTCTTGCTTC-3f (SEQ ID NO: 21) In order to control the quality of RNA, the expression of similar genes was used as an internal & control group. All results were observed after staining with ethidium bromide. The SPl protein negatively regulates the crmp- / promoter. Relative cold light ginseng enzyme's tongue is used as an indicator of the effect of the over-expressed Spl protein on the effect of regulating activity. Compared to cells with no overexpressed Spl protein, overexpressed Spl protein was co-transfected with the reporter construct pcrmp-ig180 / + 50), and its relative cold-light active enzyme was reduced by nearly 50%. As expected, since the reported SP1 binding site was not included in the reported DNA construct, there was no particular effect on cells transfected with pCRMP-1 (-99 / + 50), regardless of the presence of overexpressed Spl protein. . Alpha reverse transcription-polymerase chain reaction (RT-PCR) is used to evaluate the amount of RNA of RMP-i, Spl, and G々-like genes. When the spi protein is overexpressed in 34 200533759 cells, the amount of CRMP-1 RNA is significantly reduced (Figure 4). Q-like genes (house keeping genes are used here as experimental control groups) present similar amounts of RNA (Figure 4). As expected, the amount of RNA in Spl was significantly higher in cells transfected with DNA constructs overexpressed by Spl. These results confirm that the Spl protein may be a negative regulator of CRMP-1 expression. The present invention has been described by way of examples and preferred embodiments, and it should be understood that the present invention is not limited to the embodiments disclosed herein. On the contrary, the invention is intended to cover various modifications that will be apparent to those skilled in the art. Therefore, the scope of patent application should conform to the broad interpretation to include all similar modifications.

35 200533759 【圖式簡單說明】 圖1顯示將含有人類CRMP-1(腦衰蛋白反應媒介蛋白-1) 基因上游特定核酸調控序列的DNA構築體經轉染進 入肺腺癌(lung adenocarcinoma)支系CLu細胞株 後’ CRMP-1基因的5*端鄰近區域(5’flanking region) 之一系列核苷酸缺失所導致的相對冷光酵素活性 (luciferase activity)。此相對冷光酵素活性係經半乳糖 φ 水解酵素的活性(万-galactosidase)校正,且依序將此 值與控制質體(亦即僅有pGL3-基本載體而不含 CRMP-1上游核酸調控序列)的平均值比較後,以決定 相對於控制組的表現量的百分比。 圖2顯示代表人類CRMP-1基因5,端鄰近區域的一部份核 酸序列。人類CRMP-1基因的部分外子!(ex〇nl)_ 示於方框中。潛在轉錄因子Spl)結合位係以 鲁 底線標示的序列表示。「*」代表4個核苷酸GAGC。 圖3A :第1欄,使用HeLa細胞核萃取物與經32p標定的 DNA探針A的標準結合分析;第2、3襴,在加 一 22 乂 經P標定的DNA探針A之前,分別加入5〇倍及 1〇〇倍之未經32P標定的DNA探針A的競爭分析; 第4、5襴,在加入經32p標定的DNA探針a之前, 分別加入50倍及1〇〇倍之未經32p標定的突變探 針(包含重複序列AAAGGGGACTAC,SEQ Id N〇:15)的競爭分析;第6、7攔,在加入經32p榡 36 200533759 定DNA探針A之前,分別與50倍及loo倍之未 經32P標定的DNA探針B反應的競爭分析;第8 攔,以0.8 pg的Spl抗體進行抗體結合取代分析; 第9攔,使用CLu〇細胞核萃取物進行標準結合分 析。 圖3B :第1欄,HeLa細胞核萃取物與DNA探針b的標準 結合反應,第2、3攔,在加入經32P標定DNA探 針B之前,分別加入50倍及1〇〇倍的未經32p標 定的DNA探針B的競爭結合分析;第4、5攔, 在加入經32P標定DNA探針B之前,分別加入5〇 倍及100倍之未經32P標定的DNA探針A的競爭 結合分析;第6、7欄,加入經32P標定DNA探針 B之前,分別以50倍及1〇〇倍之未經32p標定的突 變探針(包含重複序列AAAGGGGACTAΓ SEQ ID N〇:15)的競爭分析;第8列,以CLw細胞核萃取 物進行標準結合分析。 圖3 C :第1襴,HeLa細胞核萃取物的標準結合反應;第 2、3攔,加入經32p標定的DNA探針c之前,分 別加入100倍及200倍之未經32P標定的DNA探 針C與HeLa細胞核萃取物作用的競爭結合分析; 第4、5攔,在加入經32p標定的DNA探針c之前, 分別加入100倍及200倍之未經32P標定的DNA 探針A與HeLa細胞核萃取物作用的競爭結合分 37 200533759 析;第6、7欄,在加入經32P標定DNA探針C之 前,分別以100倍及200倍之未經32P標定的突變 才朱針與HeLa細胞核萃取物作用的競爭分析,弟8、 9欄,以100倍及200倍之未經32p標定的DNA探 針B與HeLa細胞核萃取物作用的競爭分析;第1〇 欄,以0.8 pg的Spl抗體進行抗體結合取代分析; 第11欄:以CLm細胞核萃取物進行標準結合分析。 • 圖3D :使用不同濃度的重組Spl蛋白質進行膠體位移分 析,每個結合反應的混合物包含經32P標定的DNA 板針(如下所示),HeLa細胞核萃取物以及外加的重 組Spl蛋白質。第1至3欄,經32P標定的DNA 探針A分別與0、5ng與50 ng的重組Spl蛋白質 混合;第4至6欄,經32P標定的DNA探針C分 別與0、5ng與50 ng的重組Spl蛋白質混合;第7、 8欄,不含HeLa細胞核萃取物的結合反應混合物。 • 圖4 顯示Spl蛋白質在CL^o細胞株中對CRMP-1基因 的轉錄具有抑制作用。二個DNA構築體pSG5(控 制組)與pSG5-Spl(可過度表現Spl蛋白)可分別以 共轉染(co_transfection)的方式進入CLi-o細胞中, 此細胞CLk含有pCRMP-1 DNA構築體(此構築體 包含報導冷光酵素基因以及位於-180至+50的 CRMP-1調控序歹丨J)。左搁:洋菜膠體電泳(agarose gel electrophoresis)間接證明在 pSG5 與 pCRMP-1 38 200533759 共轉染的CLi_〇細胞中,相對應CRMP-l、Spl以 及Gs類似蛋白質的DNA量。半定量分析是在第一 反應時,取1 pg的總量RNA進行反轉錄(reverse transcription,RT),而後再取第一反應的1/25的體 積進行PCR。右欄:在pSG5與pCRMP-Ι共轉染 的CLk細胞中,相對應於CRMP-1、Spl以及<3沒 類似蛋白質的mRNA量。所有的結果均經溴化醯 液(ethidiumbromide)染色觀察而得。35 200533759 [Schematic description] Figure 1 shows that a DNA construct containing specific nucleic acid regulatory sequences upstream of the human CRMP-1 (brain failure response response protein-1) gene was transfected into lung adenocarcinoma branches. Relative luciferase activity caused by deletion of a series of nucleotides in the 5 * flanking region of the CRMP-1 gene after the CLu cell line. This relative cold light enzyme activity was corrected for galactosidase hydrolysis enzyme activity (10,000-galactosidase), and this value was sequentially compared with the control plastid (ie, only the pGL3-basic vector and no CRMP-1 upstream nucleic acid regulatory sequence) ) After comparing the average values to determine the percentage of performance relative to the control group. Figure 2 shows a part of the nucleotide sequence representing the human CRMP-1 gene 5, a nearby region. Some exons of the human CRMP-1 gene! (Ex〇nl) _ is shown in the box. The potential transcription factor (Spl) binding site is indicated by the underlined sequence. "*" Represents 4 nucleotides GAGC. Figure 3A: In column 1, the standard binding analysis of HeLa cell nuclear extract with 32p-calibrated DNA probe A was performed; for the second and third steps, before adding 22 ° C to DNA probe A calibrated with P, 5 was added separately. Competitive analysis of DNA probe A that has not been calibrated by 32P and 100 times; For the 4th and 5th, before adding DNA probe a that is calibrated by 32p, 50 times and 100 times of the Competitive analysis of 32p-calibrated mutant probes (including the repeat sequence AAAGGGGACTAC, SEQ Id No. 15); Blocks 6 and 7, before adding DNA probe A that was determined by 32p 榡 36 200533759, 50 times and loo, respectively Competitive analysis of DNA probe B response without the 32P calibration; Block 8 for antibody binding substitution analysis with 0.8 pg of Spl antibody; Block 9 for standard binding analysis using CLuO nuclear extract. Figure 3B: In column 1, the standard binding reaction between HeLa nuclear extract and DNA probe b, blocks 2 and 3, before adding DNA probe B calibrated with 32P, add 50 times and 100 times of Competitive binding analysis of 32p-calibrated DNA probe B; For the fourth and fifth blocks, before adding 32P-calibrated DNA probe B, add 50-fold and 100-fold competitive binding of DNA probe A without 32P-calibration, respectively. Analysis; columns 6 and 7, before adding 32P-calibrated DNA probe B, competition with 50-fold and 100-fold non-32p-calibrated mutant probes (containing the repeat sequence AAAGGGGACTAΓ SEQ ID NO: 15), respectively Analysis; column 8, standard binding analysis with CLw cell nuclear extracts. Figure 3C: Standard Binding Reaction of HeLa Cell Nuclear Extraction in Section 1; Sections 2 and 3, before adding DNA probe c calibrated with 32p, add 100 times and 200 times DNA probe without 32P calibration, respectively. Competitive binding analysis of the effects of C and HeLa cell nuclear extracts; Blocks 4 and 5, before adding the DNA probe c calibrated with 32p, add 100 times and 200 times the unlabeled DNA probe A and HeLa cell nucleus, respectively. Competitive binding analysis of extract action 37 200533759; in columns 6 and 7, before adding 32P-calibrated DNA probe C, 100 times and 200-fold mutations without 32P calibration were used before the needle and HeLa cell nuclear extract, respectively. Competitive analysis of the effects, column 8 and column 9, 100 times and 200 times of the unlabeled DNA probe B and HeLa cell nuclear extract competition analysis; column 10, 0.8 pg Spl antibody antibody Binding substitution analysis; Column 11: Standard binding analysis with CLm nuclear extracts. • Figure 3D: Colloidal shift analysis using different concentrations of recombinant Spl protein. Each binding reaction mixture contains a 32P-calibrated DNA plate needle (shown below), HeLa cell nuclear extract, and additional recombinant Spl protein. In columns 1 to 3, 32P-labeled DNA probe A is mixed with 0, 5ng, and 50 ng recombinant Spl proteins; in columns 4 to 6, 32P-labeled DNA probe C is mixed with 0, 5ng, and 50 ng, respectively. Recombinant Spl protein mix; Columns 7 and 8, binding reaction mixtures without HeLa nuclear extract. • Figure 4 shows that the Spl protein inhibits CRMP-1 gene transcription in CL ^ o cell lines. The two DNA constructs pSG5 (control group) and pSG5-Spl (which can overexpress the Spl protein) can be co-transfected (co_transfection) into CLi-o cells, and this cell CLk contains the pCRMP-1 DNA construct ( This construct contains a reported cold light enzyme gene and a CRMP-1 regulatory sequence located at -180 to +50 (J). Left shelf: Agarose gel electrophoresis indirectly proves that in CLi_O cells co-transfected with pSG5 and pCRMP-1 38 200533759, the amounts of DNA corresponding to CRMP-1, Spl, and Gs-like proteins were corresponding. For semi-quantitative analysis, 1 pg of total RNA was taken for reverse transcription (RT) during the first reaction, and then 1/25 of the volume of the first reaction was taken for PCR. Right column: In CLk cells co-transfected with pSG5 and pCRMP-1, the amount of mRNA corresponding to CRMP-1, Spl and < 3 no similar proteins. All results were obtained by ethidiumbromide staining.

39 200533759 表一:含有轉譯冷光酵素之報導基因的缺失與修飾 DNA構築體及其相對冷光酵素活性 報導構築體 說明 相對冷光 酵素活性 比例(%) pCRMP-l(-180/+50) 在突變實驗中,定為含有核心啟動 子序歹“core promoter sequence)的 野生型(wild type)DNA建構體 100 pCRMP-l(-99/+50) 缺失序列的主要功能序列 24 土 10 pCRMP-U-116/+50) 在-180至-117間有片段缺失 (含有第一調控因子結合位) 42 土 3 pCRMP-l-M12 在 pCRMP-l(-99/+50)DNA 構築體 的5’端加上第一調控因子結合位的 重複序列 114 士 4 附註·· Rel· A(luc)=相對冷光酵素活性(Reiative Luciferase Activity) 〇 41 200533759 表二:點突變法的hCMRP-l基礎啟動子的功能性分 析結果 相對冷光酵素活f生*2 DNA建構體” (luc) 突變位置 取代驗基 Wt 100 * *氺 Ml 65 土 6 -171, -170 AG 二 GA M2 115 士 7 -146,-145 CT=>TC M3 43 土 2 -127,-126 AG=>GA m3-2 73 士 10 -131,-130 GA=>AG m3-3 63 士 4 -123, -122 GT=>AC m3-4 49 土 7 -133,-132 GG=>AA m3-5 103 ± 38 -121,-120 CT=>TC m3-6 108 土 23 -135,-134 CC=>TT m3-7 80 士 10 -119, -118 GC=>AT M4 85 ± 22 -113, -111, -109 C=>T, C=>T, C=>T M5 107 土 19 -105,-103, -101 C=>T, G=>T, C=>T Mil 51 ± 7 -127,-126 ag=>ga ”:代表「突變報導DNA構築體」的簡稱。除了 Mil是依 據pCRMP-l(-1920/+50)外,其餘係基於以野生型DNA 構築體pCRMP-l(-180/+50)進行點突變實驗。 *2 :代表「相對冷光酵素活性」是以百分比(%)方式表示。 除了 Mil是以野生型DNA構築體pCRMP-1(-1920/+50) 定為100%外,其餘DNA突變構築體皆以野生型DNA 構築體pCRMP-l(-180/+50)定為100%進行計算。 *** 代表沒有進行點突變與沒有鹼基之取代。 42 200533759 序列表 < 11 ο >怡發科技股份有限公司 <12〇> CRMP-1 (Collapsin Response Mediator Protein-Ι,腦衰蛋白反應媒介蛋白-1)轉錄調控核 酸序列 <130> AD7040862001 <150> US 60/544,682 <151> 2004-02-17 <160> 22 <170> Patentln version 3.3 <210> 1 <211> 2109 <212> DNA <213> Homo sapiens (現代智人) <400> 139 200533759 Table 1: Deletion and modification of DNA constructs containing reporter genes containing cold light enzymes and their relative cold light enzyme activity The reported constructs show the relative cold light enzyme activity ratio (%) pCRMP-1 (-180 / + 50) in mutation experiments The main functional sequence of the wild type DNA construct 100 pCRMP-1 (-99 / + 50) with a core promoter sequence identified as "core promoter sequence" was deleted. 24 1010 pCRMP-U-116 / + 50) There is a fragment deletion between -180 and -117 (including the first regulatory factor binding site). 42 3 pCRMP-l-M12 is added at the 5 'end of the pCRMP-1 (-99 / + 50) DNA construct. Repetitive sequence of the first regulatory factor binding site 114 ± 4 Remarks · Rel · A (luc) = Reiative Luciferase Activity 〇41 200533759 Table 2: Function of hCMRP-1 basic promoter by point mutation method The results of sexual analysis are relatively cold photoenzyme live f2 * 2 DNA construct "(luc) mutation position to replace the test base Wt 100 * * Ml 65 soil 6 -171, -170 AG II GA M2 115 J 7 -146, -145 CT = > TC M3 43 soil 2 -127, -126 AG = &GA; GA m3-2 73 people 10 -131, -1 30 GA = > AG m3-3 63 Taxi 4 -123, -122 GT = > AC m3-4 49 Soil 7 -133, -132 GG = &AA; AA m3-5 103 ± 38 -121, -120 CT = &TC; TC m3-6 108 soil 23 -135, -134 CC = > TT m3-7 80 ± 10 -119, -118 GC = > AT M4 85 ± 22 -113, -111, -109 C = > T, C = > T, C = > T M5 107 soil 19 -105, -103, -101 C = > T, G = > T, C = &T; T Mil 51 ± 7 -127 , -126 ag = > ga ": Abbreviation for" mutation reporter DNA construct ". Except that Mil is based on pCRMP-1 (-1920 / + 50), the rest are based on point mutation experiments with the wild-type DNA construct pCRMP-1 (-180 / + 50). * 2: Represents "relative cold light enzyme activity" expressed as a percentage (%). Except for Mil, which was determined as 100% with the wild-type DNA construct pCRMP-1 (-1920 / + 50), all other DNA mutant constructs were determined with the wild-type DNA construct pCRMP-1 (-180 / + 50) as 100. %Calculation. *** represents no point mutation and no base substitution. 42 200533759 Sequence Listing < 11 ο > Yifa Technology Co., Ltd. < 12〇 > CRMP-1 (Collapsin Response Mediator Protein-I) Transcription Regulatory Nucleic Acid Sequence < 130 > AD7040862001 < 150 > US 60 / 544,682 < 151 > 2004-02-17 < 160 > 22 < 170 > Patentln version 3.3 < 210 > 1 < 211 > 2109 < 212 > DNA < 213 > Homo sapiens (Modern Homo sapiens) < 400 > 1

gctttgtacc ggcgaaatct gcttgggagc agcgatctgt ttggccagtg gcaggcggat 60 gctcctcccc ctgatacgca cgtggtcttg tcccttgctg taggggcttt ctgctcagat 120 ctccagactg acccagggaa acgccctggt acggggaacc taggacttaa caactccaag 180 gaagggagtg taggagttgg ggagggacag tgtccccatc tgcaatttcc ggtcattgac 240 agggatttta ggccccgctg agagccaggg atgcatgaat*gcgtggaggg aaatgagttg 300 taaacagagt gtaggggaac ctggcatctc catgctgctt tgctgcagct aatatgtttt 360 gcacccgggg tacatcattt tacctctgta agcctcaatt tcctgtctgt aaaa'tgggaa 420 aattatgcct agtgttcctg ggatactgag ctggcttctc tgtgaagcta aaacctcacc 480 200533759 tctattttaa ggcccaggtg tctctggcct cctgccctgg attaggggac tggcccctgg ggtggtgaag gtcagggccc cagcccccaa ccacagtgct gggggagctg taccaagcct aggccaccct cgctctggat ggcaacttga aagcagaaaa gatgagtagt ttcataggac ctgtggggtt ggatttcgca tgcagaaaat gaacaacgaa gtggtggaca aggttggtgt tttattctgc ctgggaactt ggggcacctg tccagtgagg ttggggcttg ctggggctcc cccttttcct ccatcttctt tcatcttttc ccctctgctg ttacggacct tgtcaagctggctttgtacc ggcgaaatct gcttgggagc agcgatctgt ttggccagtg gcaggcggat 60 gctcctcccc ctgatacgca cgtggtcttg tcccttgctg taggggcttt ctgctcagat 120 ctccagactg acccagggaa acgccctggt acggggaacc taggacttaa caactccaag 180 gaagggagtg taggagttgg ggagggacag tgtccccatc tgcaatttcc ggtcattgac 240 agggatttta ggccccgctg agagccaggg atgcatgaat * gcgtggaggg aaatgagttg 300 taaacagagt gtaggggaac ctggcatctc catgctgctt tgctgcagct aatatgtttt 360 gcacccgggg tacatcattt tacctctgta agcctcaatt tcctgtctgt aaaa ' tgggaa 420 aattatgcct agtgttcctg ggatactgag ctggcttctc tgtgaagcta aaacctcacc 480 200533759 tctattttaa ggcccaggtg tctctggcct cctgccctgg attaggggac tggcccctgg ggtggtgaag gtcagggccc cagcccccaa ccacagtgct gggggagctg taccaagcct aggccaccct cgctctggat ggcaacttga aagcagaaaa gatgagtagt ttcataggac ctgtggggtt ggatttcgca tgcagaaaat gaacaacgaa gtggtggaca aggttggtgt tttattctgc ctgggaactt ggggcacctg tccagtgagg ttggggcttg ctggggctcc cccttttcct ccatcttctt tcatcttttc ccctctgctg ttacggacct tgtcaagctg

tgacctggct tcctgcccac ctccctctgg agcaacatct ggatcatgga ctccggggct ggtgtccaca gtgctgggag gcaggagcac cctagtcctc ctcctgaccc ccagcttgtc cccagggctg tggagacctt ggtgccagtg gcccagccct ccaaacacct gctgtcttgg aggcaattct gtggggtgac ctggtggccc cagtgtcagg ctgctgtgtg atgagggagc tgctgttgga gtagaacagg tcagcattaa ttaaggccgt acccttctgt ccctgctgtt ccctctgcca gttagggggc tccaccttag aggcccccag ggagggctgg ttcaatgctatgacctggct tcctgcccac ctccctctgg agcaacatct ggatcatgga ctccggggct ggtgtccaca gtgctgggag gcaggagcac cctagtcctc ctcctgaccc ccagcttgtc cccagggctg ggtgccagtg gcccagccct ccaaacacct gctgtcttgg aggcaattct gtggggtgac ctggtggccc cagtgtcagg ctgctgtgtg atgagggagc tgctgttgga gtagaacagg tcagcattaa ttaaggccgt ccctgctgtt ccctctgcca gttagggggc tccaccttag aggcccccag ggagggctgg ttcaatgcta tggagacctt acccttctgt

ggatggagag ggtggcaggg agaggcttcg tggtggggaa ggcattggag atgggtctag gggagtggac aggcttttgt ctggggtaga ctattcaggg agagggtaca gcgtgaataa aggcttgggg tccgagatgg aaaaagtgct tggtgcattc agggagaggc actcgggaag gataaacgga ggctatggaa ggagaggcaa gaggggagcg^gtccttgggc gcgatcctgg agggacaaga acgttcccag cagcttgggc cgatccttgg cccccgtccc acactccctc cccccacacc cccgcagatg ttccggggag gcctccagac gcgcggccac acacctgtgg 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 cgccgcccgc gggccctgac cgcgccgtct ttttctttta aaggagccct gaaaaccata 1620 200533759 ctctctggat cgcgagagcg aggccagggc ccgccaaggg cgtgtgcgca gggcgggggt cggcggggct gggcgggtgg ggggcggggg gcggggtggg agatcggaag ggaagcgctt cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccggg aggagctgtc tgcagccccc tcctcccgcc ctcgcctctc cctcctcctt ctcccgccct cctcgccgat ccgggcggtg ctggcagccg gagcggcggc gggcgggccg agcagccggg gcagccgcgc gtgggcatcc acgggcgccg agcctccgtc cgtgtctcta tccctcccgg gcctttgtcaggatggagag ggtggcaggg agaggcttcg tggtggggaa ggcattggag atgggtctag gggagtggac aggcttttgt ctggggtaga ctattcaggg agagggtaca gcgtgaataa aggcttgggg tccgagatgg aaaaagtgct tggtgcattc agggagaggc actcgggaag gataaacgga ggctatggaa ggagaggcaa gaggggagcg ^ gtccttgggc gcgatcctgg agggacaaga acgttcccag cagcttgggc cgatccttgg cccccgtccc acactccctc cccccacacc cccgcagatg ttccggggag gcctccagac gcgcggccac acacctgtgg 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 cgccgcccgc gggccctgac cgcgccgtct ttttctttta aaggagccct gaaaaccata 1620 200533759 ctctctggat cgcgagagcg aggccagggc ccgccaaggg cgtgtgcgca gggcgggggt cggcggggct gggcgggtgg ggggcggggg gcggggtggg agatcggaag ggaagcgctt cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccggg aggagctgtc tgcagccccc tcctcccgcc ctcgcctctc cctcctcctt ctcccgccct cctcgccgat ccgggcggtg ctggcagccg gagcggcggc gggcgggccg agcagccggg gcagccgcgc gtgggcatcc acgggcgccg agcctccgtc cgtgtctcta tccctcccgg gcctttgtca

gcgcgcccgc tgggagcggg gccgagagcg ccggttccag tcagacagcc ccgcaggtca gcggccgggc cgagggcgcc agagggggcc atgtcgtacc agggcaagaa gagcatcccg cacatcacg 1680 1740 1800 I860 1920 1980 2040 2100 2109 <210> 2 <211〉 1970 <212> DNA <213> Homo sapiens (現代智人)gcgcgcccgc tgggagcggg gccgagagcg ccggttccag tcagacagcc ccgcaggtca gcggccgggc cgagggcgcc & agagggggcc atgtcgtacc agggcaagaa gagcatc &&; 210 &210; 210 &212; 210 < 210 < 210

<400> 2 gctttgtacc ggcgaaatct gcttgggagc agcgatctgt ttggccagtg gcaggcggat gctcctcccc ctgatacgca cgtggtcttg tcccttgctg taggggcttt ctgctcagat ctccagactg acccagggaa acgccctggt acggggaacc taggacttaa caactccaag gaagggagtg taggagttgg ggagggacag tgtccccatc tgcaatttcc ggtcattgac agggatttta ggccccgctg agagccaggg atgcatgaat gcgtggaggg aaatgagttg 60 120 180 240 300 taaacagagt gtaggggaac ctggcatctc catgctgctt tgctgcagct aatatgtttt 360 200533759 gcacccgggg tacatcattt tacctctgta agcctcaatt tcctgtctgt aaaatgggaa aattatgcct agtgttcctg ggatactgag ctggcttctc tgtgaagcta aaacctcacc tctattttaa ggcccaggtg tctctggcct cctgccctgg attaggggac tggcccctgg ggtggtgaag gtcagggccc cagcccccaa ccacagtgct gggggagctg taccaagcct aggccaccct cgctctggat ggcaacttga aagcagaaaa gatgagtagt ttcataggac ctgtggggtt ggatttcgca tgcagaaaat gaacaacgaa gtggtggaca aggttggtgt≪ 400 > 2 gctttgtacc ggcgaaatct gcttgggagc agcgatctgt ttggccagtg gcaggcggat gctcctcccc ctgatacgca cgtggtcttg tcccttgctg taggggcttt ctgctcagat ctccagactg acccagggaa acgccctggt acggggaacc taggacttaa caactccaag gaagggagtg taggagttgg ggagggacag tgtccccatc tgcaatttcc ggtcattgac agggatttta ggccccgctg agagccaggg atgcatgaat gcgtggaggg aaatgagttg 60 120 180 240 300 taaacagagt gtaggggaac ctggcatctc catgctgctt tgctgcagct aatatgtttt 360 200533759 gcacccgggg tacatcattt tacctctgta agcctcaatt tcctgtctgt aaaatgggaa aattatgcct agtgttcctg ggatactgag ctggcttctc tgtgaagcta aaacctcacc tctattttaa ggcccaggtg tctctggcct cctgccctgg attaggggac tggcccctgg ggtggtgaag gtcagggccc cagcccccaa ccacagtgct gggggagctg taccaagcct aggccaccct cgctctggat ggcaacttga aagcagaaaa gatgagtagt ttcataggac ctgtggggtt ggatttcgca tgcagaaaat gaacaacgaa gtggtggaca aggttggtgt

tttattctgc ctgggaactt ggggcacctg tccagtgagg ttggggcttg ctggggctcc cccttttcct ccatcttctt tcatcttttc ccctctgctg ttacggacct tgtcaagctg tgacctggct tcctgcccac ctccctctgg agcaacatct ggatcatgga ctccggggct ggtgtccaca gtgctgggag gcaggagcac cctagtcctc ctcctgaccc ccagcttgtc cccagggctg tggagacctt ggtgccagtg gcccagccct ccaaacacct gctgtcttgg aggcaattct gtggggtgac ctggtggccc cagtgtcagg ctgctgtgtg atgagggagc tgctgttgga gtagaacagg tcagcattaa ttaaggccgt acccttctgt ccctgctgtttttattctgc ctgggaactt ggggcacctg tccagtgagg ttggggcttg ctggggctcc cccttttcct ccatcttctt tcatcttttc ccctctgctg ttacggacct tgtcaagctg tgacctggct tcctgcccac ctccctctgg agcaacatct ggatcatgga ctccggggct ggtgtccaca gtgctgggag gcaggagcac cctagtcctc ctcctgaccc ccagcttgtc cccagggctg tggagacctt ggtgccagtg gcccagccct ccaaacacct gctgtcttgg aggcaattct gtggggtgac ctggtggccc cagtgtcagg ctgctgtgtg atgagggagc tgctgttgga gtagaacagg tcagcattaa ttaaggccgt acccttctgt ccctgctgtt

ccctctgcca gttagggggc tccaccttag aggcccccag ggagggctgg ttcaatgcta ggatggagag ggtggcaggg agaggcttcg tggtggggaa ggcattggag atgggtctag gggagtggac aggcttttgt ctggggtaga ctattcaggg agagggtaca gcgtgaataa aggcttgggg tccgagatgg aaaaagtgct tggtgcattc agggagaggc actcgggaag gataaacgga ggctatggaa ggagaggcaa gaggggagcg gtccttgggc gcgatcctgg 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 agggacaaga acgttcccag cagcttgggc cgatccttgg cccccgtccc acactccctc 1500 200533759 cccccacacc cccgcagatg ttccggggag gcctccagac gcgcggccac acacctgtgg cgccgcccgc gggccctgac cgcgccgtct ttttctttta aaggagccct gaaaaccata ctctctggat cgcgagagcg aggccagggc ccgccaaggg cgtgtgcgca gggcgggggt cggcggggct gggcgggtgg ggggcggqgg gcggggtggg agatcggaag ggaagcgctt cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccggg aggagctgtc tgcagccccc tcctcccgcc ctcgcctctc cctcctcctt ctcccgccct cctcgccgatccctctgcca gttagggggc tccaccttag aggcccccag ggagggctgg ttcaatgcta ggatggagag ggtggcaggg agaggcttcg tggtggggaa ggcattggag atgggtctag gggagtggac aggcttttgt ctggggtaga ctattcaggg agagggtaca gcgtgaataa aggcttgggg tccgagatgg aaaaagtgct tggtgcattc agggagaggc actcgggaag gataaacgga ggctatggaa ggagaggcaa gaggggagcg gtccttgggc gcgatcctgg 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 agggacaaga acgttcccag cagcttgggc cgatccttgg cccccgtccc acactccctc 1500 200533759 cccccacacc cccgcagatg ttccggggag gcctccagac gcgcggccac acacctgtgg cgccgcccgc gggccctgac cgcgccgtct ttttctttta aaggagccct gaaaaccata ctctctggat cgcgagagcg aggccagggc ccgccaaggg cgtgtgcgca gggcgggggt cggcggggct gggcgggtgg ggggcggqgg gcggggtggg agatcggaag ggaagcgctt cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccggg aggagctgtc tgcagccccc tcctcccgcc ctcgcctctc cctcctcctt ctcccgccct cctcgccgat

ccgggcggtg ctggcagccg gagcggcggc gggcgggccg agcagccggg gcagccgcgc gtgggcatcc acgggcgccg agcctccgtc cgtgtctcta tccctcccgg 1560 1620 1680 1740 1800 1860 1920 1970 <210〉 3 <211〉 230ccgggcggtg ctggcagccg gagcggcggc gggcgggccg agcagccggg gcagccgcgc gtgggcatcc acgggcgccg agcctccgtc cgtgtctcta tccctcccgg 1560 1620 1680 1740 1800 1860 1920 1970 < 210>

<212> DNA <213> Homo sapiens (現代智人) <400> 3 cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccggg aggagctgtc< 212 > DNA < 213 > Homo sapiens (modern Homo sapiens) < 400 > 3 cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccggg aggagctgtc

60 120 180 tgcagccccc tcctcccgcc ctcgcctctc cctcctcctt ctcccgccct cctcgccgat ccgggcggtg ctggcagccg gagcggcggc gggcgggccg agcagccggg gcagccgcgc gtgggcatcc acgggcgccg agcctccgtc cgtgtctcta tccctcccgg <210> 460 120 180 tgcagccccc tcctcccgcc ctcgcctctc cctcctcctt ctcccgccct cctcgccgat ccgggcggtg ctggcagccg gagcggcggcgggcgggccg agcagccggggcagccgccgc cgtgggctccccacg

<211> 81 <212> DNA <213> Homo sapiens (現代智人) 4 <4〇〇> 230 81 200533759 cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccggg aggagctgtc tgcagccccc tcctcccgcc c <21〇> 5< 211 > 81 < 212 > DNA < 213 > Homo sapiens (Hyundai Homo sapiens) 4 < 4〇〇 > 230 81 200533759 cctggttcga gccgagaggg gcgaatccgg cttcgctccg cgccgccgcc < tgcagccccc > tcc

<211> 12 <212> DNA <213> Homo sapiens (現代智人) 12 16 <4〇〇〉5 gggaggagct gt< 211 > 12 < 212 > DNA < 213 > Homo sapiens (Modern Homo sapiens) 12 16 < 4〇〇〉 5 gggaggagct gt

\\

<210〉 6 <211> 16 <212> DNA <213> Homo sapiens (現代智人) <4〇〇> 6 ccccctcctc ccgccc <210> 7 <211> 29 <212> DNA <213〉人造序列 <22〇> <223〉pCRMP-1 (-192 0/ + 189)的弓1 子 <4〇〇> 7 ccgctcgagg ctttgtaccg gcgaaatct <210〉 8 <211> 30< 210> 6 < 211 > 16 < 212 > DNA < 213 > Homo sapiens (Modern Homo Sapiens) < 4〇〇 > 6 ccccctcctc ccgccc < 210 > 7 < 211 > 29 < 212 > DNA < 213 > Artificial Sequence < 22〇 > < 223> pCRMP-1 (-192 0 / + 189) Bow 1 < 4〇〇 > 7 ccgctcgagg ctttgtaccg gcgaaatct < 210> 8 < 211 > 30

<212> DNA 29 200533759 <213> 人造序列 <22〇> <223> pCRMP-Ι (-1920/ + 189〉的弓| 子 <40〇> 8 cccaagcttc gtgattgtgc gggatgctct< 212 > DNA 29 200533759 < 213 > Artificial sequence < 22〇 > < 223 > Bow of pCRMP-1 (-1920 / + 189> | Child < 40〇 > 8 cccaagcttc gtgattgtgc gggatgctct

<210> 9 <211> 21 <212> DNA <213> 人造序列 <220〉 、 <223> pCRMP-1 (-1920/ + 50)的弓 1子 <400> 9 cgctaattac gccagcccaa g <210> 10 <211> 28 <212> DNA <213> 人造序列 <22〇> <223> pCRMP-1 (-1920/ + 50)的弓 1子 <4〇〇> 10 cccaagcttc cgggagggat agagacac <210〉 11 <211〉 42 <212> DNA <213> 人造序列< 210 > 9 < 211 > 21 < 212 > DNA < 213 > Artificial Sequence < 220> < 223 > pCRMP-1 (-1920 / + 50) Bow 1 < 400 > 9 cgctaattac gccagcccaa g < 210 > 10 < 211 > 28 < 212 > DNA < 213 > artificial sequence < 22〇 > < 223 > pCRMP-1 (-1920 / + 50) bow 1 < 4 〇〇 > 10 cccaagcttc cgggagggat agagacac < 210〉 11 < 211〉 42 < 212 > DNA < 213 > artificial sequence

200533759 <22〇> <22 3> 鄰近有Xhol核酸限制酶序列的寡核苷酸 <400> 11 ccgctcgagg ggaggagctg tgggaggagc tgtctcgagc gg <210> 12 <211> 24 <212> DNA <213〉人造序列 <22〇> <223〉DNA 探針 A \ <400> 12 gggaggagct gtgggaggag ctgt <210〉 13 <211> 18 <212> DNA <213〉人造序列 <220> <223〉DNA 探針 B <4〇〇> 13 agccccctcc tcccgccc <21〇> 14 <211〉 38 <212> DNA <213〉 人造序列 <220>200533759 < 22〇 > < 22 3 > Oligonucleotide adjacent to Xhol nucleic acid restriction enzyme sequence < 400 > 11 ccgctcgagg ggaggagctg tgggaggagc tgtctcgagc gg < 210 > 12 < 211 > 24 < 212 > DNA < 213> artificial sequence < 22〇 > < 223> DNA probe A \ < 400 > 12 gggaggagct gtgggaggag ctgt < 210> 13 < 211 > 18 < 212 > DNA < 213> artificial sequence <; 220 > < 223> DNA Probe B < 4〇〇 > 13 agccccctcc tcccgccc < 21〇 > 14 < 211〉 38 < 212 > DNA < 213> Artificial Sequence < 220 >

<223> DNA 探針 C 38 200533759 <400> 14 cgccgggagg agctgtctgc agccccctcc tcccgccc< 223 > DNA probe C 38 200533759 < 400 > 14 cgccgggagg agctgtctgc agccccctcc tcccgccc

<210> 15 <211> 24 <212> DNA <213> 人造序列 <220> <223〉 突變DNA探針 <4〇0> 15 aaaggggact acaaagggga ctac <210〉 16 <211〉 24 <212> DNA <213> 人造序列 <220> <223> hCRMP-1的同義股引子 <4〇〇> 16 atgccctgag cagacctgaa gage <210> 17 <211> 25 <212> DNA <213〉 人造序列 <220> <223> hCRMP-Ι的反義股引子 <4〇〇> 17 24 24 200533759 agtaatgggt gccatcggtc cccag <210> 18 <211> 21 <212> DNA <213> 人造序列 <22〇> <223> Sp-1的同義股引子 <4〇0> 18 gagagtggct cacagcctgt c <210> 19 <211> 21 <212> DNA <213> 人造序列 <22〇> <223> Sp-1的反義股引子 <4〇〇> 19 gttcagagca tcagacccct g <210> 20 <211> 20 <212> DNA <213> 人造序列 <22〇> <223> Gp類似物的同義股引子 <4〇〇> 20 gtatggaacc tggctaactg 200533759 <210> 21 <211> 20 <212> DNA <213> 人造序列 <220> <223〉 Gp類似物的反義股引子 <40〇> 21 tactgataac ttcttgcttc< 210 > 15 < 211 > 24 < 212 > DNA < 213 > Artificial sequence < 220 > < 223〉 Mutant DNA probe < 4〇0 > 15 aaaggggact acaaagggga ctac < 210> 16 < 211> 24 < 212 > DNA < 213 > Artificial sequence < 220 > < 223 > Synonymous strand primer of hCRMP-1 < 4〇〇 > 16 atgccctgag cagacctgaa gage < 210 > 17 < 211 > 25 < 212 > DNA < 213> Artificial sequence < 220 > < 223 > Antisense strand primer of hCRMP-1 < 4〇〇 > 17 24 24 200533759 agtaatgggt gccatcggtc cccag < 210 > 18 < 211 > 21 < 212 > DNA < 213 > Artificial sequence < 22〇 > < 223 > Sp-1 synonymous primers < 4〇0 > 18 gagagtggct cacagcctgt c < 210 > 19 < 211 > 21 < 212 > DNA < 213 > Artificial sequence < 22〇 > < 223 > Sp-1 antisense strand primer < 4〇〇 > 19 gttcagagca tcagacccct g < 210 > 20 < 211 > 20 <; 212 > DNA < 213 > Artificial sequence < 22〇 > < 223 > Gp analogue synonymous primer < 4 〇 > 20 gtatggaacc tggctaactg 200533759 < 210 > 21 < 211 > 20 < 212 > DNA < 213 > Artificial sequence < 220 > < 223> Antisense strand primer of Gp analogue < 40〇 > 21 tactgataac ttcttgcttc

Claims (1)

200533759 十、申請專利範圍: 1. 一種轉錄單元,其包含分離自編碼腦衰蛋白反應 媒介蛋白-l(CRMP-l)基因之上游的一核酸調控 序列,其中該核酸調控戽列之特徵為,其具有調 控該CRMP-1基因及/或一經操作而與該核酸調 控序列連接的外源性基因表現的能力。 2. 如申請專利範圍第1項所述之轉錄單元,其中該 CRMP-1基因為人類CRMP-1基因。 3. 如申請專利範圍第1項所述之轉錄單元,其中該 CRMP-1基因包含一含有ATG密碼子的核酸序 列。 4. 如申請專利範圍第1項所述之轉錄單元,其中該 核酸調控序列包含SEQ ID NO:2的核酸序列。 5. 如申請專利範圍第1項所述之轉錄單元,其中該 核酸調控序列包含SEQ ID NO:3的核酸序列。 6. 如申請專利範圍第1項所述之轉錄單元,其中該 核酸調控序列包含SEQ ID NO:4的核酸序列。 7. 如申請專利範圍第1項所述之轉錄單元,其中該 核酸調控序列包含SEQ ID ΝΟ·.5的核酸序列。 43 200533759 8. 如申請專利範圍第7項所述之轉錄單元,其中該 核酸調控序列的一突變會降低該CRMP-1基因 及/或該外源性基因的表現。 9. 如申請專利範圍第1項所述之轉錄單元,其中該 核酸調控因子結合位包含GGGAGGAG的核酸 序列。 10. 如申請專利範圍第1項所述之轉錄單元,其中該 核、酸調控序列包含SEQ ID ΝΟ:6的核酸序列。 11. 如申請專利範圍第1項所述之轉錄單元,其中該 外源性基因為一報導基因。 12. 如申請專利範圍第11項所述之轉錄單元,其中 該報導基因為一編碼螢火蟲冷光酵素的基因。 13. 一 DNA構築體,其包含如申請專利範圍第1項 所述之轉錄單元與一載體。 14. 如申請專利範圍第13項所述之DNA構築體, 其中該載體為pGL3-基本載體。 15. 一種經轉染的細胞,其包含如申請專利範圍第 13項所述之DNA構築體於一宿主細胞中。 44 200533759 16·如申請專利範圍第15項所述之經轉染的細胞, 其中該細胞為人類細胞。 Π·如申請專利範圍第I6項所述之經轉染的細胞, 其中該人類細胞為人類癌症細胞。 18. 如申請專利範圍第17項所述之_染_^ 其中該人類癌症細胞為人類肺腺癌細胞或人類 直腸癌細胞。 、 、 19. 種用於在—宿主細胞中促進CRMP-1基因表 現的方法,#包含以如申請專利範圍帛13項; 述之包含該轉錄單元的DNA構築體轉染該宿主 細胎。 2〇· 2請專利範圍第19項所述之用於在一宿主細胞200533759 10. Scope of patent application: 1. A transcription unit comprising a nucleic acid regulatory sequence isolated upstream of a gene encoding brain failure protein response mediator protein-1 (CRMP-1), wherein the characteristics of the nucleic acid regulatory queue are: It has the ability to regulate the expression of the CRMP-1 gene and / or an exogenous gene linked to the nucleic acid regulatory sequence upon manipulation. 2. The transcription unit according to item 1 of the scope of patent application, wherein the CRMP-1 gene is a human CRMP-1 gene. 3. The transcription unit according to item 1 of the patent application, wherein the CRMP-1 gene comprises a nucleic acid sequence containing an ATG codon. 4. The transcription unit according to item 1 of the patent application, wherein the nucleic acid regulatory sequence comprises the nucleic acid sequence of SEQ ID NO: 2. 5. The transcription unit according to item 1 of the patent application, wherein the nucleic acid regulatory sequence comprises the nucleic acid sequence of SEQ ID NO: 3. 6. The transcription unit according to item 1 of the scope of patent application, wherein the nucleic acid regulatory sequence comprises the nucleic acid sequence of SEQ ID NO: 4. 7. The transcription unit according to item 1 of the scope of patent application, wherein the nucleic acid regulatory sequence comprises the nucleic acid sequence of SEQ ID NO. · 5. 43 200533759 8. The transcription unit described in item 7 of the scope of patent application, wherein a mutation in the nucleic acid regulatory sequence reduces the performance of the CRMP-1 gene and / or the exogenous gene. 9. The transcription unit according to item 1 of the scope of patent application, wherein the nucleic acid regulatory factor binding site comprises a nucleic acid sequence of GGGAGGAG. 10. The transcription unit according to item 1 of the scope of patent application, wherein the nuclear and acid regulatory sequence comprises the nucleic acid sequence of SEQ ID NO: 6. 11. The transcription unit according to item 1 of the scope of patent application, wherein the exogenous gene is a reporter gene. 12. The transcription unit according to item 11 in the scope of the patent application, wherein the reporter gene is a gene encoding a firefly cold light enzyme. 13. A DNA construct comprising a transcription unit as described in item 1 of the patent application scope and a vector. 14. The DNA construct according to item 13 of the scope of patent application, wherein the vector is a pGL3-basic vector. 15. A transfected cell comprising a DNA construct as described in claim 13 of a patent application in a host cell. 44 200533759 16. The transfected cell according to item 15 of the scope of patent application, wherein the cell is a human cell. Π. The transfected cell according to item 16 of the scope of the patent application, wherein the human cell is a human cancer cell. 18. As described in item 17 of the scope of the patent application, wherein the human cancer cell is a human lung adenocarcinoma cell or a human rectal cancer cell. 19. A method for promoting the expression of the CRMP-1 gene in a host cell, # comprising transfecting the host fetus with a DNA construct containing the transcription unit as described in item 13 of the patent application; 20.2 Please use it in a host cell as described in item 19 of the patent 促進CRMP-1基因表現的方法,其 胞為人類細胞。 =於在#主細胞巾促進外源性基因表現 、J ,其包含以如申請專利範圍第13項所述 ^含該轉錄單元的舰構築體轉染該宿主細 胞0 如曱#專利範圍第2&、+、 ^ 乐2項所述之用於在一宿主細 胞中促進外原性其生 λ® 表現的方法,其中該外源性 基口為—螢火_冷光酵素基因。 45 22. 200533759 23. 一種用於抑制人類癌症細胞轉移的方法,其包含 以如申請專利範圍第13項所述之包含該轉錄單 元之DNA構築體轉染該人類癌症細胞。A method for promoting the expression of the CRMP-1 gene. The cell is a human cell. = 于 在 # Host cell towel promotes the expression of exogenous genes, J, which includes transfecting the host cell with a ship construct containing the transcription unit as described in item 13 of the scope of the patent application. ;, +, ^ The method described in item 2 for promoting the expression of exogenous λ® in a host cell, wherein the exogenous base is the —firefly_cold light enzyme gene. 45 22. 200533759 23. A method for inhibiting metastasis of human cancer cells, comprising transfecting the human cancer cells with a DNA construct comprising the transcription unit as described in item 13 of the scope of the patent application. 4646
TW94104487A 2004-02-17 2005-02-16 Collapsin response mediator protein-1 (crmp-1) tra TWI356849B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54468204P 2004-02-17 2004-02-17

Publications (2)

Publication Number Publication Date
TW200533759A true TW200533759A (en) 2005-10-16
TWI356849B TWI356849B (en) 2012-01-21

Family

ID=46728125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94104487A TWI356849B (en) 2004-02-17 2005-02-16 Collapsin response mediator protein-1 (crmp-1) tra

Country Status (1)

Country Link
TW (1) TWI356849B (en)

Also Published As

Publication number Publication date
TWI356849B (en) 2012-01-21

Similar Documents

Publication Publication Date Title
Zhang et al. The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals
Nishiyama et al. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene
Russell et al. A human putative lymphocyte G0/G1 switch gene containing a CpG-rich island encodes a small basic protein with the potential to be phosphorylated
Hwung et al. The COUP transcription factor binds to an upstream promoter element of the rat insulin II gene
Chen et al. BCL11A represses HBG transcription in K562 cells
Martens et al. Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice
Raho et al. The gas 5 gene shows four alternative splicing patterns without coding for a protein
Zhang et al. Molecular characterization of the cyclin-dependent kinase inhibitor p27 promoter
US6472515B1 (en) Response element
Iannello et al. Temporal and tissue-specific interactions involving novel transcription factors and the proximal promoter of the mouse Pdha-2 gene.
Zeng et al. Exon/intron structure and alternative transcripts of the CUTL1 gene
Kaufmann et al. The interaction of DNA with the DNA‐binding domain encoded by the Drosophila gene fork head
Kaufmann et al. The N-terminal splice product NF1-10a-2 of the NF1 gene codes for a transmembrane segment
Miao et al. The rat ortholog of the presumptive flounder antifreeze enhancer‐binding protein is a helicase domain‐containing protein
Schrick et al. Characterization of the lung Krüppel-like transcription factor gene and upstream regulatory elements
Cai et al. hnulp1, a basic helix-loop-helix protein with a novel transcriptional repressive domain, inhibits transcriptional activity of serum response factor
Fiucci et al. Genomic organization and expression of mouse Tpt1 gene☆
CN106831975B (en) Application of heat shock transcription factor 1 in regulation and control of expression of 15kDa selenoprotein
King et al. Analysis of the 5′ end of the mouse Elavl1 (mHuA) gene reveals a transcriptional regulatory element and evidence for conserved genomic organization
Kim et al. Characterization of the murine cyclin D2 gene: exon/intron organization and promoter activity
TW200533759A (en) Collapsin response mediator protein-1 (crmp-1) transcriptional regulatory nucleic acid sequences
Lee et al. Cloning and characterization of the rat Hsf2 promoter: a critical role of proximal E-box element and USF protein in Hsf2 regulation in different compartments of the brain
WO1997045542A2 (en) Cell growth regulatory genes
Kato et al. Induction of truncated form of tenascin-X (XB-S) through dissociation of HDAC1 from SP-1/HDAC1 complex in response to hypoxic conditions
CN106701764B (en) Promoter of 15kDa selenoprotein gene, core region and application thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees