TW200532283A - Liquid crystal display with high brightness - Google Patents

Liquid crystal display with high brightness Download PDF

Info

Publication number
TW200532283A
TW200532283A TW93107350A TW93107350A TW200532283A TW 200532283 A TW200532283 A TW 200532283A TW 93107350 A TW93107350 A TW 93107350A TW 93107350 A TW93107350 A TW 93107350A TW 200532283 A TW200532283 A TW 200532283A
Authority
TW
Taiwan
Prior art keywords
optical lens
liquid crystal
crystal display
item
scope
Prior art date
Application number
TW93107350A
Other languages
Chinese (zh)
Inventor
Yu-Cheng Hung
Original Assignee
Display Optronics Corp M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Display Optronics Corp M filed Critical Display Optronics Corp M
Priority to TW93107350A priority Critical patent/TW200532283A/en
Publication of TW200532283A publication Critical patent/TW200532283A/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A liquid crystal display with high brightness is described, having at least a micro lens formed on an upper substrate, at least a reflective electrode formed on a lower substrate, and a resin formed on the surface of the micro lens. The resin is further used to adjust the focus of the micro lens. In addition, the micro lens mentioned above may be composed of at least a hemi-cylindrical lens or of at least a hemi-spherical lens, which condenses much more external light to the reflective electrode regardless of the type thereof.

Description

200532283 玖、發明說明 【發明所屬之技術領域】 本發明是有關於一種平面顯示器,且特別是有關於一 種半穿透反射式之薄膜電晶體液晶顯示器。 【先前技術】 近年來光電相關技術不斷地推陳出新,加上數位化時 代的到來’進而推動了液晶顯不器(Liquid Crystal Display ; LCD)市場的蓬勃發展。液晶顯示器具有高畫質、 體積小、重量輕、低驅動電壓、與低消耗功率等優點,因 此被廣泛應用於個人數位助理(perSonai digital assistant ; PDA)、行動電話、攝錄放影機、筆記型電腦、 桌上型顯示器、車用顯示器、及投影電視等消費性通訊或 電子產品,並逐漸取代陰極射線管(Cath〇de Ray Tube; CRT)而成為顯示器的主流。 液晶顯示器初期以發展穿透式液晶顯示器為主,其光 源係内建於顯示器的背面,即背光模組(back Hght)。由於 穿透式液晶顯示器的耗電量大部分消耗於背光模組,因而 旋即發展無背光模組之反射式液晶顯示器。反射式液晶顯 示器的取光來源為外在的自然光源或人工光源,且顯示電 極必須為可反射外來光線的材料。為了達到較好的反射效 果,顯示電極的表面通常為凹凸不平的突點(bump)或為不 規則狀的斜面(slant)。然而,當外來光源亮度不夠時,反 射式液晶顯示器將無法清晰地顯示影像,因此半穿透反射 200532283 (transHective)式的液晶顯示器應運而生。 第1圖為習知半穿透反射式薄膜電晶體(thin film transistor ; TFT)液晶顯示器之示意圖。TFT-LCD顯示器 主要有彩色濾光膜基板、陣列基板與背光板模組(未顯示) 等三個部分,其中彩色濾光膜基板主要零組件之一為彩色 濾光片(color jfilter ; CF)l〇4。如第1圖所示,彩色滤光片 104係將具有紅(R)、綠(G)、藍(B)三顏色點(color dot)之 彩色層(color laye〇126製作到一上基板12〇上,並在彩色 層126上形成一透明導電膜122。陣列基板則是將TFT元 件製作於一下基板162上,其上更具有反射元件166來反 射外界光源180’及穿透區以允許背光通過,而達到半穿 透反射之目的。另一方面,上基板12〇、下基板162間夾 著一層液晶1 08,當外加電壓時,液晶1 〇8分子便開始偏 轉,其偏轉程度可用來決定外界光源丨8〇通過的方向與總 量。 半穿透反射式液晶顯示器是中、小尺寸顯示器之趨 勢’然而’隨著對液晶顯示器性能要求的提高,如高解析 度、高對比、高亮度、視角廣等,如何兼顧顯示品質並達 省電效果’已成為新的課題之一,因此對其相關的解決技 術及方法有強烈的需求。 【發明内容】 本發明之目的就是在提供一種半穿透反射式薄膜電 晶體液晶顯示器,具有高亮度之顯示特性且兼具低耗電之 200532283 特點。 根據本發明之上述目的,本發明之一態樣係提出一種 同時具有背光穿透式與外界光反射式的液晶顯示器,並在 上玻璃基板内侧或外側加上微型光學透鏡,用以增加外界 光的有效入射量,進而提高反射光強度,以解決亮度不足 時顯示品質變差的問題。 依照本發明之一較佳實施例,每一微型光學透鏡附加 在上基板之内側或外側,並覆蓋一透明樹脂層於微型光學 透鏡表面側,如此可收集更多的外界光並導引至反射元件 上’因而提高反射光強度並增加顯示亮度。另外,微型光 學透鏡的焦平面可由調整填充的透明樹脂厚度控制其位 置。再者,隨著反射光強度的增加,反射元件的面積亦可 隨之縮小,進而提高了背光穿透率,因此可降低背光燈源 的使用而減少耗電量。 本發明之另一態樣係提出一種具有高亮度之半穿透 反射式液晶顯示器,其將彩色層做成微型光學透鏡型式, 因此彩色層除了顯色之外,更具有聚光的功能。此種型式 之彩色層可將大範圍的外界光聚集引導至反射元件上,故 可有效提高反射光強度及反射率,而提供高亮度之顯示晝 質。 — 依照本發明之另一較佳實施例,將彩色層與微型光學 透鏡結合成為一具微型透鏡型式之彩色層,且其可由具有 色彩之一樹脂所構成。其中透鏡型式之彩色層可由半柱狀 的光學透鏡或由半球形或近球形的光學透鏡所構成,並藉 200532283 由調整填充樹脂之a 之厚度而控制光學透鏡的焦平面位置。 用此種彩色層不§ μ 仏也、 仁了顯色,更可有效提高入射光及反射光 -’進而提高反射率並增加顯示亮度。 叫t ί述可知,應用本發明之半穿透反射式的液晶顯示 器可提同反射率而提供高亮度的顯示性能。此外,更可縮 小反射兀件之面積而提高穿透率,如此可減少使用背光燈 源而降低液晶顯示器的耗電量。 【實施方式】 本發明之高亮度液晶顯示器的較佳實施例,將參照附 件圖式詳述如下。 參”、、第2Α圖,其為依照本發明第1較佳實施例之單 一畫素之剖面示意圖。微型光學透鏡211形成於一上基板 220之内側,此微型光學透鏡具有一折射率,且η1介 於1.4〜2·5之間。一折射率為n2之透明樹脂層25 1並覆 蓋於微型光學透鏡211的表面,其中n2需小於ni,而使 微型光學透鏡211具備聚集外界光280之功能。除此之 外,亦可藉由調整透明樹脂層25 1之厚度以控制微型光學 透鏡211之焦平面位置。接著,形成一透明導電膜204 於透明樹脂層251之上。另一方面,在下基板26〇上形成 如薄膜電晶體元件(未顯示)或薄膜二極體元件(未顯示)等 之開關元件、反射元件266、穿透區276、及透明導電膜 210,並分別在上、下基板220、260形成一配向膜232、 234,中間再夾以一液晶層236即完成一半穿透反射式液 200532283 晶顯示。如第2A圖所示,每一微型光學透鏡211設置 於上基板220内側,用來收集更多的外界光280並導引至 反射元件266上,以提高反射光強度及反射率。 另一方面,可如第2B圖所示之依照本發明之第2較 佳實施例,將一彩色層206形成於上基板220與微型光學 透鏡2 11之間,然後依序形成上述之透明樹脂層25丨、透 明導電膜204及配向膜232。如此將其應用於彩色液晶顯 示器,亦能收集並引導外界光280至反射元件266上。 此外,可如第2C圖所示之依照本發明之第3較佳實 施例,將一彩色層206形成於上基板220之上表面側,然 後於上基板220之下表面側依序形成微型光學透鏡211、 透明樹脂層251、透明導電膜204及配向膜232。如此將 其應用於彩色液晶顯示器,亦能收集、引導外界光28〇 至反射元件266。 再者’亦可如第2D圖所示之依照本發明之第4較佳 實施例,將微型光學透鏡211形成於上基板220下表面, 然後依序形成透明樹脂層25 1、彩色層206、透明導電膜 204及配向膜232。如此將其應用於彩色液晶顯示器,亦 能收集、引導外界光280至反射元件266。 第2E圖繪示依照本發明之第5較佳實施例,其將微 型光學透鏡211形成於上基板220下表面,然後依序形成 一具色彩之樹脂層255、透明導電臈204及配向膜232。 如此將其應用於彩色液晶顯示器,亦能收集、引導外界光 280至反射元件266。 200532283 或者,可如第2F圖所示之依照本發明之第6較佳實 施例,將微型光學透鏡211形成於上基板22〇下表面,然 後延著微型光學透鏡211塗佈一色彩層256,其可為具色 彩之染料或為具色彩之樹脂,接著依序形成透明樹脂層 251透明導電膜204及配向膜232。如此將其應用於彩 色液晶顯示器,亦能收集及引導外界光280至反射元件 266 〇 亦或參照第2G圖,其為依照本發明之第7較佳實施 例的單一畫素之剖面示意圖。將一具微型光學透鏡型式之 彩色層213形成於上基板22 0之下表面,其中具微型光學 透鏡型式之彩色層213可由一具有色彩之樹脂所形成。然 後依序形成透明樹脂層251、透明導電膜2〇4及配向膜 232。如此將其應用於彩色液晶顯示器,亦能收集、引導 外界光280至反射元件266。 由上述之較佳實施例可知,由於已提高了反射光強 度’因此更可縮小反射元件2 6 6的面積來提高背光穿透 率。如此不但可以提高顯示之亮度,還可因亮度提高而減 少背光燈源的使用,故可減少耗電量。另外,上述之較佳 實施例雖均以一晝素内配置一微型光學透鏡為例,然實際 實施時,一晝素内亦可配置複數個微型光學透鏡。200532283 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a flat display, and more particularly to a transflective thin film transistor liquid crystal display. [Previous technology] In recent years, new technologies related to optoelectronics have been continuously developed, coupled with the advent of the digital age ', which has further promoted the booming development of the Liquid Crystal Display (LCD) market. Liquid crystal displays have the advantages of high picture quality, small size, light weight, low driving voltage, and low power consumption, so they are widely used in personal digital assistants (PDAs), mobile phones, camcorders, and notes. Computers, desktop monitors, automotive monitors, and projection televisions are consumer communications or electronic products that have gradually replaced Cathode Ray Tubes (CRTs) and become mainstream displays. In the early days, liquid crystal displays were mainly developed for transmissive liquid crystal displays. The light source was built into the back of the display, namely the backlight module (back Hght). Since most of the power consumption of the transmissive liquid crystal display is consumed by the backlight module, a reflective liquid crystal display without a backlight module was developed immediately. The reflective liquid crystal display takes light from an external natural light source or artificial light source, and the display electrode must be a material that can reflect external light. In order to achieve a better reflection effect, the surface of the display electrode is usually bumps or irregular slants. However, when the brightness of the external light source is insufficient, the reflective liquid crystal display will not be able to clearly display the image, so the transflective 200532283 (transHective) liquid crystal display came into being. FIG. 1 is a schematic diagram of a conventional transflective thin film transistor (TFT) liquid crystal display. The TFT-LCD display mainly has three parts: a color filter substrate, an array substrate, and a backlight module (not shown). One of the main components of the color filter substrate is a color filter (CF). l04. As shown in FIG. 1, the color filter 104 is made of a color layer (color laye〇126) having three color dots of red (R), green (G), and blue (B) to an upper substrate 12 〇, and a transparent conductive film 122 is formed on the color layer 126. The array substrate is made of a TFT element on the lower substrate 162, which further has a reflective element 166 to reflect the external light source 180 'and the penetrating area to allow backlight. Through, the purpose of semi-transparent reflection is achieved. On the other hand, a layer of liquid crystal 108 is sandwiched between the upper substrate 120 and the lower substrate 162. When a voltage is applied, the molecules of the liquid crystal 108 begin to deflect, and the degree of deflection can be used to Determine the direction and total amount of external light source passing through. 80. Transflective reflective liquid crystal displays are a trend for small and medium size displays. However, as the performance requirements of liquid crystal displays increase, such as high resolution, high contrast, high Brightness, wide viewing angle, etc., how to take into account display quality and achieve power-saving effects has become one of the new issues, so there is a strong demand for related solutions and methods. [Abstract] The purpose of the present invention is to improve A transflective reflective thin-film transistor liquid crystal display is provided, which has high-brightness display characteristics and low power consumption characteristics of 200532283. According to the above-mentioned object of the present invention, one aspect of the present invention proposes a backlight transmission Type and external light reflection type liquid crystal display, and a micro optical lens is added inside or outside of the upper glass substrate to increase the effective incident amount of external light, thereby increasing the intensity of the reflected light, in order to solve the problem of poor display quality when the brightness is insufficient. Question: According to a preferred embodiment of the present invention, each micro-optical lens is attached to the inside or outside of the upper substrate and is covered with a transparent resin layer on the surface side of the micro-optical lens, so that more external light can be collected and guided. 'On the reflecting element', thereby increasing the intensity of the reflected light and increasing the display brightness. In addition, the focal plane of the micro-optic lens can be controlled by adjusting the thickness of the transparent resin filled. Furthermore, as the intensity of the reflected light increases, the area of the reflecting element also increases. It can be reduced accordingly, which increases the backlight transmittance, so the use of backlight can be reduced. Reduce power consumption. Another aspect of the present invention is to provide a transflective liquid crystal display with high brightness. The color layer is made into a micro optical lens type. Light function. This type of color layer can guide a large range of external light to the reflective element, so it can effectively improve the intensity and reflectance of the reflected light, and provide high-brightness display daylight quality. — According to another aspect of the present invention In a preferred embodiment, the color layer is combined with the micro optical lens into a color layer with a micro lens type, and it can be composed of a resin having a color. The color layer of the lens type can be a semi-cylindrical optical lens or It is composed of a hemispherical or near-spherical optical lens, and the position of the focal plane of the optical lens is controlled by adjusting the thickness of a filled with resin by 200532283. With such a color layer, the color is not developed, and the incident light and reflected light can be effectively improved-', thereby improving the reflectance and increasing the display brightness. It can be known that the transflective liquid crystal display device of the present invention can provide high-brightness display performance with the same reflectance. In addition, the area of the reflective element can be reduced to increase the transmittance, which can reduce the use of the backlight and reduce the power consumption of the liquid crystal display. [Embodiment] The preferred embodiment of the high-brightness liquid crystal display of the present invention will be described in detail with reference to the attached drawings. Refer to FIG. 2 and FIG. 2A, which are schematic cross-sectional views of a single pixel according to the first preferred embodiment of the present invention. A micro optical lens 211 is formed inside an upper substrate 220. The micro optical lens has a refractive index, and η1 is between 1.4 and 2.5. A transparent resin layer 25 1 with a refractive index n2 covers the surface of the micro optical lens 211, where n2 needs to be smaller than ni, so that the micro optical lens 211 has Function. In addition, the focal plane position of the micro optical lens 211 can be controlled by adjusting the thickness of the transparent resin layer 251. Then, a transparent conductive film 204 is formed on the transparent resin layer 251. On the other hand, On the lower substrate 26, a switching element such as a thin film transistor element (not shown) or a thin film diode element (not shown), a reflective element 266, a penetrating region 276, and a transparent conductive film 210 are formed, respectively, on the upper, The lower substrates 220 and 260 form an alignment film 232 and 234, and a liquid crystal layer 236 is sandwiched between them to complete a half-transmissive reflective liquid crystal display 200532283. As shown in FIG. 2A, each micro optical lens 211 is disposed on the upper surface. The inside of the plate 220 is used to collect more external light 280 and guide it to the reflective element 266 to improve the intensity and reflectance of the reflected light. On the other hand, as shown in FIG. 2B, the second comparison according to the present invention can be performed. In a preferred embodiment, a color layer 206 is formed between the upper substrate 220 and the micro-optical lens 21, and then the above-mentioned transparent resin layer 25, the transparent conductive film 204, and the alignment film 232 are sequentially formed. In this way, it is applied to color The liquid crystal display can also collect and guide external light 280 onto the reflective element 266. In addition, as shown in FIG. 2C, a color layer 206 can be formed on the upper substrate 220 according to the third preferred embodiment of the present invention. On the surface side, a micro optical lens 211, a transparent resin layer 251, a transparent conductive film 204, and an alignment film 232 are sequentially formed on the lower surface side of the upper substrate 220. In this way, it can also collect and guide external light when applied to a color liquid crystal display. 280 to the reflective element 266. Furthermore, as shown in FIG. 2D, according to the fourth preferred embodiment of the present invention, a micro optical lens 211 is formed on the lower surface of the upper substrate 220, and then a transparent resin layer is sequentially formed. 2 5 1. Color layer 206, transparent conductive film 204, and alignment film 232. In this way, if it is applied to a color liquid crystal display, it can also collect and guide external light 280 to the reflective element 266. Figure 2E shows a fifth comparison according to the present invention. In a preferred embodiment, a micro optical lens 211 is formed on the lower surface of the upper substrate 220, and then a colored resin layer 255, a transparent conductive film 204, and an alignment film 232 are sequentially formed. In this way, it can also be applied to a color liquid crystal display. Collects and guides external light 280 to the reflective element 266. 200532283 Alternatively, as shown in FIG. 2F, according to the sixth preferred embodiment of the present invention, a miniature optical lens 211 is formed on the lower surface of the upper substrate 22 and then extended. The micro optical lens 211 is coated with a color layer 256, which may be a colored dye or a colored resin, and then sequentially forms a transparent resin layer 251, a transparent conductive film 204, and an alignment film 232. If it is applied to a color liquid crystal display in this way, it can also collect and guide external light 280 to the reflective element 266. Or refer to FIG. 2G, which is a schematic cross-sectional view of a single pixel according to the seventh preferred embodiment of the present invention. A color layer 213 having a micro optical lens type is formed on the lower surface of the upper substrate 220, and the color layer 213 having a micro optical lens type may be formed of a resin having a color. Then, a transparent resin layer 251, a transparent conductive film 204, and an alignment film 232 are sequentially formed. When it is applied to a color liquid crystal display in this way, it can also collect and guide external light 280 to the reflective element 266. As can be seen from the above-mentioned preferred embodiments, since the reflected light intensity has been increased ', the area of the reflective element 26 can be further reduced to increase the backlight transmittance. This can not only increase the brightness of the display, but also reduce the use of the backlight due to the increased brightness, so the power consumption can be reduced. In addition, although the above-mentioned preferred embodiments all take one micro-optical lens as an example, in practice, a plurality of micro-optical lenses can also be arranged in one day.

再者,上述之微型光學透鏡211可為如第3A圖所示 之半球形光學透鏡301或其組合物,其AA,截面為一曲 面;或為如第3B圖所示之近球形光學透鏡3〇3或其組合 物,其BB’截面及CC’截面均為一曲面;亦或為如第3C 10 200532283 圖所示之半柱狀光學透鏡305或其組合物。半柱狀光學透 鏡305於畫素内之配置更可如第3D圖所示,來配置成一 回字形於一晝素區域302,或將半柱狀光學透鏡配置成如 第3E圖所示之橫向或如第3F圖所示之縱向的排列方 式。如此更可依使用需求及畫素的排列方式來選擇不同型 式的微型光學透鏡2 11。例如,用於電腦顯示器時,畫素 通常以直條型(stripe)的方式排列,故選擇半柱狀光學透 鏡3 0 5可便於液晶顯示器之製作。或者當顯示器做為視聽 應用時,如電視,畫素通常以三角型(delta)或馬賽克型 (mosaic)的方式排列,則可選擇半球形光學透鏡3〇1或近 球开》光學透鏡303來作為其應用。不論是何種型式的光學 透鏡,功能在於聚集外界光至反射元件上,是以凡具有曲 面凸起物之光學透鏡均可應用,本發明不限於此。另外, 藉由調整樹脂層的厚度可控制微型光學透鏡焦平面之座 落位置。 參照第4A圖,其繪示本發明之高亮度液晶顯示器的 第8較佳實施例之單一晝素之剖面示意圖。微型光學透鏡 411形成於一上基板42〇之外側,此微型光學透鏡具有一 折=IU,且nl介於14〜2·5之間。一折射率為μ之透 明樹脂層451並覆蓋於微型光學透鏡411的表面’其中 U需^於ru,而使微型光學透鏡411具備聚集外界光"ο 接著在上基板420之内側形成一透明導電膜 4〇4。另一方面,在下基板46〇上形成如薄膜電晶體元件 (未顯示)或薄臈二極體元件(未顯示)等之開關元件、反射 200532283 元件466、穿透區476及一透明導電膜410。並分別在上、 下基板420、460形成一配向膜432、434,中間再夾以一 液晶層436即完成^一半穿透反射式液晶顯示器。如第4A 圖所示,每一微型光學透鏡411設置於上基板420之外 側,用來聚集更多的外界光480並導引至反射元件466 上,以提高反射光強度及反射率。 另一方面,可如第4B圖所示之依照本發明之第9較 佳實施例,於上基板420之上表面依序形成一彩色層 406、微型光學透鏡411、及一透明樹脂層45 1於微型光 學透鏡411的表面。然後於上基板420之下表面形成一透 明導電膜404及一配向膜432。如此將其應用於彩色液晶 顯示器,亦能收集、引導外界光480至反射元件466。 此外,可如第4C圖所示之依照本發明之第1 〇較佳 實施例,於上基板420之上表面形成一微型光學透鏡 411 ’再覆蓋一透明樹脂層451於微型光學透鏡411的表 面。然後於上基板420之下表面側依序形成一彩色層 406、一透明導電膜404及一配向膜432,如此將其應用 於彩色液晶顯示器,亦能收集及引導外界光480至反射元 件 466。 再者’可如第4D圖所示之依照本發明之第π較佳 實施例’於上基板420之上表面形成一微型光學透鏡 411 ’再覆蓋一透明樹脂層451於微型光學透鏡411的表 面’並於透明樹脂層451之上形成一彩色層406。然後於 上基板420之下表面側形成一透明導電臈4〇4及一配向膜 12 200532283 432,如此將其應用於彩色液晶顯示器,亦能收集、引導 外界光480至反射元件466。 第4E圖為依照本發明之第1 2較佳實施例之單一書素 的剖面示意圖,其將微型光學透鏡411形成於上基板42〇 之上表面,並覆蓋一具色彩之樹脂層455,且於上基板 下表面側形成一透明導電膜404及一配向膜432。如此將In addition, the above-mentioned miniature optical lens 211 may be a hemispherical optical lens 301 or a composition thereof as shown in FIG. 3A, and its AA cross section is a curved surface; or it may be a near-spherical optical lens 3 as shown in FIG. 3B. 〇3 or its composition, the BB 'cross-section and CC' cross-section are both curved; or a semi-cylindrical optical lens 305 or a composition thereof as shown in FIG. 3C 10 200532283. The arrangement of the semi-cylindrical optical lens 305 in the pixel can be arranged in a zigzag pattern in the day-time prime region 302 as shown in FIG. 3D, or the semi-cylindrical optical lens can be arranged in a horizontal direction as shown in FIG. 3E. Or the vertical arrangement as shown in Figure 3F. In this way, different types of micro optical lenses 2 11 can be selected according to the use needs and the arrangement of pixels. For example, when used in a computer monitor, the pixels are usually arranged in a stripe pattern, so the choice of a semi-cylindrical optical lens 3 0 5 can facilitate the production of liquid crystal displays. Or when the display is used as an audiovisual application, such as a television, the pixels are usually arranged in a delta or mosaic style, you can choose a hemispherical optical lens 301 or a near spherical optical lens 303. As its application. Regardless of the type of optical lens, the function is to collect external light onto the reflective element, and any optical lens having a convex surface can be applied. The present invention is not limited to this. In addition, the position of the focal plane of the micro optical lens can be controlled by adjusting the thickness of the resin layer. Referring to FIG. 4A, a schematic cross-sectional view of a single day element of the eighth preferred embodiment of the high-brightness liquid crystal display of the present invention is shown. The micro optical lens 411 is formed on the outer side of an upper substrate 42. The micro optical lens has a fold = IU, and nl is between 14 and 2.5. A transparent resin layer 451 with a refractive index of μ covers the surface of the micro-optical lens 411, where U needs to be greater than ru, so that the micro-optical lens 411 has the ability to collect external light. Then, a transparent is formed inside the upper substrate 420 Conductive film 40. On the other hand, a switching element such as a thin film transistor element (not shown) or a thin diode element (not shown), a reflection 200532283 element 466, a penetration region 476, and a transparent conductive film 410 are formed on the lower substrate 46. . An alignment film 432, 434 is formed on the upper and lower substrates 420, 460, respectively, and a liquid crystal layer 436 is sandwiched between them to complete the half-transmissive reflective liquid crystal display. As shown in FIG. 4A, each micro optical lens 411 is disposed outside the upper substrate 420, and is used to collect more external light 480 and guide the external light 480 to the reflective element 466 to improve the intensity and reflectance of the reflected light. On the other hand, as shown in FIG. 4B, according to the ninth preferred embodiment of the present invention, a color layer 406, a micro optical lens 411, and a transparent resin layer 45 1 are sequentially formed on the upper surface of the upper substrate 420. On the surface of the miniature optical lens 411. Then, a transparent conductive film 404 and an alignment film 432 are formed on the lower surface of the upper substrate 420. When it is applied to a color liquid crystal display in this way, it can also collect and guide external light 480 to the reflective element 466. In addition, according to the 10th preferred embodiment of the present invention, as shown in FIG. 4C, a micro optical lens 411 'is formed on the upper surface of the upper substrate 420, and then a transparent resin layer 451 is covered on the surface of the micro optical lens 411. . Then, a color layer 406, a transparent conductive film 404, and an alignment film 432 are sequentially formed on the lower surface side of the upper substrate 420. In this way, if it is applied to a color liquid crystal display, it can also collect and guide external light 480 to the reflective element 466. Furthermore, 'a micro-optical lens 411 can be formed on the upper surface of the upper substrate 420 as shown in FIG. 4D according to the π preferred embodiment of the present invention' and then a transparent resin layer 451 is covered on the surface of the micro-optical lens 411 'And a color layer 406 is formed on the transparent resin layer 451. Then, a transparent conductive film 504 and an alignment film 12 200532283 432 are formed on the lower surface side of the upper substrate 420. In this way, it can also collect and guide external light 480 to the reflective element 466 when it is applied to a color liquid crystal display. FIG. 4E is a schematic cross-sectional view of a single book element according to the 12th preferred embodiment of the present invention. A micro optical lens 411 is formed on the upper surface of the upper substrate 42 and is covered with a colored resin layer 455. A transparent conductive film 404 and an alignment film 432 are formed on the lower surface side of the upper substrate. So will

其應用於彩色液晶顯示器,亦能收集、引導外界光48〇 至反射元件466上。 或者,可如第4F圖所示之本發明之高亮度液晶顯开 器的第13較佳實施例,將微型光學透鏡411形成於上遵 板420之上表面,並延著微型光學透鏡4ιι表面塗佈一色 彩層456,其可為具色彩之染料或為具色彩之樹脂。接著 覆蓋一透明樹脂層451於上基板42〇之上表面側,且於上 基板420之下表面側形成一透明導電膜4〇4及一配向膜It is applied to a color liquid crystal display, and can also collect and guide external light 480 to the reflective element 466. Alternatively, as shown in FIG. 4F, the thirteenth preferred embodiment of the high-brightness liquid crystal display device of the present invention, the micro optical lens 411 is formed on the upper surface of the upper compliance plate 420, and extends along the surface of the micro optical lens. A color layer 456 is applied, which may be a colored dye or a colored resin. Then, a transparent resin layer 451 is covered on the upper surface side of the upper substrate 420, and a transparent conductive film 400 and an alignment film are formed on the lower surface side of the upper substrate 420.

432,如此將其應用於彩色液晶顯示器,亦能收集、引導 外界光480至反射元件466。 亦或參照帛4G ® ’其為依照本發明之帛14較佳實 施例的單畫素之剖面示意圖。於上基板42〇上表面形成 一具微型光學透鏡型式之彩色層413,並覆蓋一透明樹脂 層451於其上。其中’具微型光學透鏡型式之彩色層41: 可由一具有色彩之樹脂所形成。另外,於上基板42〇之下 表面側依序形成一透明導電膜4〇4及一配向膜432。如此 將其應用於彩色液晶顯示器,亦能彳H g導外界光_ 至反射元件466。 13 200532283 由上述之較佳實施例可知,由於已提高了反射光強 度’因此可縮小反射元件4 6 6的面積來提高背光穿透率。 如此不但可以提高顯示之亮度,還可因亮度提高而減少背 光燈源的使用,故可減少耗電量。此外,上述之較佳實施 例雖均以一畫素内配置一微型光學透鏡為例,然實際實施 時,一畫素内亦可配置複數個微型光學透鏡,本發明不限 於此。 再者’上述之微型光學透鏡411亦可為如第3A圖所 示之半球形光學透鏡301或其組合物,其AA,截面為一曲 面’或為如第3B圖所示之近球形光學透鏡3〇3或其組合 物,其BB’截面及CC,截面均為一曲面;亦或為如第% 圖所示之半柱狀光學透鏡305或其組合物。其中,半柱狀 光學透鏡305於晝素内之配置更可如第3D圖所示來配置 成一回字形於一畫素區域,或將半柱狀光學透鏡配置成如 第3E圖之橫向或如第3F圖之縱向的排列方式。不論是 何種型式的光學透鏡,功能在於聚集外界光至反射元件 上,是以凡具有曲面凸起物之光學透鏡均可應用於本發 明,本發明不限於此。 由上述本發明之較佳實施例可知,應用本發明可提高 反射=並可縮小反射元件之面積而提高背光穿透率,如此 2仁此提i、同冗度的顯示性能,更能減少使用背光燈源而 降低液晶顯示器的耗電量。 雖然本發明已以彩色液晶顯示器為較佳實施例揭露 如上,’然其並㈣以限定本發明,本發明之高亮度液晶顯 14 200532283 示器亦可應用於習知的黑白顯示器。任何熟習此技藝者, 在不脫離本發明之精神和範圍内,當可作各種之更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 【圖式簡單說明】 為讓本發明之上述與其他目的、特徵、和優點能更明 顯易懂,配合所附圖示,加以說明如下: 第1圖係繪示習知半穿透反射式薄膜電晶體液晶顯 示器; 第2A至2G圖係繪示依照本發明第i至7較佳實施 例之單一晝素的剖面示意圖; 第3 A至3 C圖係繪示本發明較佳實施例之不同光學 透鏡型式的示意圖; 第3 D至3 F圖係繪示依照本發明較佳實施例之半柱 狀光學透鏡於畫素區域的不同排列方式;以及 第4A至4G圖係纟會示依照本發明第$至14較佳實施 例之單一畫素的剖面示意圖。 【元件代表符號簡單說明】 104 彩色渡光片 108 液晶 120 上基板 122 透明導電膜 126 彩色層 162 下基板 166 反射元件 180 外界光源 200532283 204 > 404 透明導電膜 206 ^ 406 彩色層 210、 410 透明導電膜 211、 411 微型光學透鏡 213、 413 微型光學透鏡型式之彩色層 220 > 420 上基板 232、 234 - 432 、 434 配向膜 236、 436 液晶層 251、 451 樹脂層 255、 455 具色彩之樹脂層 256 ^ 456 色彩層 260 > 460 下基板 266 ' 466 反射元件 276 > 476 穿透區 280 ' 480 外界光 301 半球形光學透鏡 302 畫素區域 303 近球形光學透鏡 305 半柱狀光學透鏡 16432, so that it is also applied to a color liquid crystal display, and can also collect and guide external light 480 to the reflective element 466. Or refer to 帛 4G ® ′, which is a schematic cross-sectional view of a single pixel according to the 帛 14 preferred embodiment of the present invention. A color layer 413 having a micro optical lens type is formed on the upper surface of the upper substrate 42, and a transparent resin layer 451 is covered thereon. Among them, the color layer 41 having a miniature optical lens type: may be formed of a resin having color. In addition, a transparent conductive film 400 and an alignment film 432 are sequentially formed on the lower surface side of the upper substrate 42. If it is applied to a color liquid crystal display in this way, it can also guide external light to the reflective element 466. 13 200532283 From the above-mentioned preferred embodiments, it can be known that since the reflected light intensity has been increased ', the area of the reflective element 4 6 6 can be reduced to increase the backlight transmittance. This can not only increase the brightness of the display, but also reduce the use of the backlight source due to the increased brightness, so the power consumption can be reduced. In addition, although the above-mentioned preferred embodiments all take a micro-optical lens in one pixel as an example, in actual implementation, a plurality of micro-optical lenses may be configured in one pixel, and the present invention is not limited thereto. Furthermore, the above-mentioned miniature optical lens 411 may also be a hemispherical optical lens 301 or a combination thereof as shown in FIG. 3A, and its AA and a cross-section are a curved surface, or a near-spherical optical lens as shown in FIG. 3B. 303 or its composition, and its BB ′ cross section and CC, both have a curved surface; or it is a semi-cylindrical optical lens 305 or a composition thereof as shown in FIG. Among them, the arrangement of the semi-cylindrical optical lens 305 in the daylight can be arranged in a pixel shape as shown in FIG. 3D, or the semi-cylindrical optical lens can be arranged horizontally as shown in FIG. 3E or as shown in FIG. 3E. Figure 3F. Vertical arrangement. Regardless of the type of optical lens, the function is to collect external light onto the reflective element. Any optical lens with a curved projection can be applied to the present invention, and the invention is not limited thereto. According to the above-mentioned preferred embodiments of the present invention, it can be known that the application of the present invention can improve the reflection =, and can reduce the area of the reflective element and increase the backlight transmittance. Thus, the performance of the same redundant display can be reduced, and the use can be reduced. The backlight reduces the power consumption of the LCD display. Although the present invention has been disclosed with the color liquid crystal display as the preferred embodiment, as described above, it is not intended to limit the present invention. The high-brightness liquid crystal display of the present invention may also be applied to a conventional black and white display. Anyone skilled in this art can make various modifications and improvements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be determined by the scope of the attached patent application. [Brief Description of the Drawings] In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the accompanying drawings are described as follows: FIG. 1 shows a conventional transflective film Transistor liquid crystal display; Figures 2A to 2G are schematic cross-sectional views of a single daylight element according to the preferred embodiments i to 7 of the present invention; Figures 3 A to 3C are the differences of the preferred embodiment of the present invention Schematic diagram of optical lens types; Figures 3D to 3F show different arrangements of semi-cylindrical optical lenses in the pixel area according to a preferred embodiment of the present invention; and Figures 4A to 4G are shown in accordance with this A schematic cross-sectional view of a single pixel of the preferred embodiments from $ to 14 of the invention. [A brief description of the element representative symbols] 104 color dome 108 liquid crystal 120 upper substrate 122 transparent conductive film 126 color layer 162 lower substrate 166 reflective element 180 external light source 200532283 204 > 404 transparent conductive film 206 ^ 406 color layer 210, 410 transparent Conductive film 211, 411 micro optical lens 213, 413 micro optical lens type color layer 220 > 420 upper substrate 232, 234-432, 434 alignment film 236, 436 liquid crystal layer 251, 451 resin layer 255, 455 resin with color Layer 256 ^ 456 Color layer 260 > 460 Lower substrate 266 '466 Reflective element 276 > 476 Penetration area 280' 480 External light 301 Hemispherical optical lens 302 Pixel area 303 Near spherical optical lens 305 Semi-cylindrical optical lens 16

Claims (1)

200532283 拾、申請專利範圍 1· 一種高亮度液晶顯示器,具有一上基板與一下基 板,該液晶顯示器至少包含: 至少一反射元件,形成於該下基板上;以及 至少一微型光學透鏡,形成於該上基板之内側,用以 聚集一外界光源至該反射元件。 2·如申請專利範圍第1項所述之液晶顯示器,更包 含一樹脂層,形成於該微型光學透鏡之表面側,用以調整 該微型光學透鏡之焦平面。 3·如申請專利範圍第2項所述之液晶顯示器,其中 上述之樹脂層之折射率係小於該微型光學透鏡之折射率。 4 ·如申清專利範圍第2項所述之液晶顯示器,更包 含一彩色層’形成於該微型光學透鏡與該上基板之間。 5 ·如申睛專利範圍第2項所述之液晶顯示器,更包 含一彩色層,形成於該樹脂層之表面側。 6·如申請專利範圍第2項所述之液晶顯示器,更包 含一彩色層,形成於該微型光學透鏡與該樹脂層之間。 17 200532283 7·如申請專利範圍第2項所述之液晶顯示器,更包 含一彩色層,形成於該上基板之上表面側。 8·如申請專利範圍第2項所述之液晶顯示器,其中 - 上述之樹脂層係為一透明樹脂層或為一具有色彩之樹脂 層。 9·如申請專利範圍第i項所述之液晶顯示器,其中 _ 上述之微型光學透鏡係由具有色彩之一樹脂所構成。 10·如申請專利範圍第1項所述之液晶顯示器,其中 上述之微型光學透鏡係由至少一半柱狀的光學透鏡所形 成0 11 ·如申清專利範圍第1項所述之液晶顯示器,其中 上述之微型光學透鏡係由至少一半球形的光學透鏡所構 _ 成。 12·如申請專利範圍第1項所述之液晶顯示器,其中 上述之微型光學透鏡係由至少一近球形的光學透鏡所構 成。 13· -種尚*度之半穿透反射式液晶顯示器,具有一 上基板與一下基板,該液晶顯示器至少包含· 18 200532283 至少一反射元件,形成於該下基板上; 至乂、破型光學透鏡,形成於該上基板之外側,用以 聚集一外界光源至該反射元件;以及 一樹脂層,形成於該微型光學透鏡之表面側,用以 整該微型光學透鏡之焦平面。 。 14·如申請專利範圍第13項所述之液晶顯示器,其 中上述之樹脂層之折射率係大於該微型光學透鏡之折 率。 研 1 5 ·如申請專利範圍第13項所述之液晶顯示器,更 包含一彩色層,形成於該微型光學透鏡與該上基板之間。 16·如申請專利範圍第13項所述之液晶顯示器,更 包含一彩色層,形成於該上基板之下表面。 17·如申請專利範圍第13項所述之液晶顯示器,更 包含一彩色層,形成於該樹脂層之表面側。 18·如申請專利範圍第13項所述之液晶顯示器,更 包含一彩色層,形成於該微型光學透鏡與該樹脂層之間。 19·如申請專利範圍第13項所述之液晶顯示器,其 中上述之樹脂層係為一透明樹脂層或為一具有色彩之樹 19 200532283 脂層。 20·如申請專利範圍第 中上述之微型光學透鏡係由 13項所述之液晶顯示器, σ ’其 具有色彩之一樹脂所形成。 21 ·如申請專利範圍第i 3 中上述之微型光學透鏡係由至 構成。 項所述之液晶顯示器,其 少一半柱狀的光學透鏡所200532283 Patent application scope 1. A high-brightness liquid crystal display having an upper substrate and a lower substrate. The liquid crystal display includes at least: at least one reflective element formed on the lower substrate; and at least one micro optical lens formed on the lower substrate. The inner side of the upper substrate is used to collect an external light source to the reflective element. 2. The liquid crystal display according to item 1 of the scope of patent application, further comprising a resin layer formed on the surface side of the micro optical lens to adjust the focal plane of the micro optical lens. 3. The liquid crystal display according to item 2 of the scope of patent application, wherein the refractive index of the resin layer is smaller than the refractive index of the micro optical lens. 4. The liquid crystal display as described in item 2 of the application for a patent, further comprising a color layer 'formed between the micro optical lens and the upper substrate. 5. The liquid crystal display as described in item 2 of the Shenjing patent range, further comprising a color layer formed on the surface side of the resin layer. 6. The liquid crystal display according to item 2 of the scope of patent application, further comprising a color layer formed between the micro optical lens and the resin layer. 17 200532283 7. The liquid crystal display according to item 2 of the scope of patent application, further comprising a color layer formed on the upper surface side of the upper substrate. 8. The liquid crystal display according to item 2 of the scope of patent application, wherein-the resin layer is a transparent resin layer or a resin layer having a color. 9. The liquid crystal display as described in item i of the patent application scope, wherein the micro optical lens is made of a resin having a color. 10. The liquid crystal display according to item 1 of the scope of patent application, wherein the aforementioned micro optical lens is formed by at least half of a cylindrical optical lens. 0 11 · The liquid crystal display according to item 1 of the scope of patent application, wherein The above-mentioned miniature optical lens is composed of at least a hemispherical optical lens. 12. The liquid crystal display according to item 1 of the scope of patent application, wherein the above-mentioned micro-optical lens is composed of at least one near-spherical optical lens. 13 ·-A semi-transmissive reflective liquid crystal display with an upper substrate and a lower substrate. The liquid crystal display includes at least · 18 200532283 at least one reflective element formed on the lower substrate; A lens is formed on the outer side of the upper substrate to gather an external light source to the reflective element; and a resin layer is formed on the surface side of the micro optical lens to adjust the focal plane of the micro optical lens. . 14. The liquid crystal display according to item 13 of the scope of the patent application, wherein the refractive index of the resin layer is greater than the refractive index of the micro optical lens. Research 1 5 · The liquid crystal display according to item 13 of the scope of patent application, further comprising a color layer formed between the micro optical lens and the upper substrate. 16. The liquid crystal display according to item 13 of the scope of patent application, further comprising a color layer formed on the lower surface of the upper substrate. 17. The liquid crystal display according to item 13 of the scope of patent application, further comprising a color layer formed on the surface side of the resin layer. 18. The liquid crystal display according to item 13 of the scope of patent application, further comprising a color layer formed between the micro optical lens and the resin layer. 19. The liquid crystal display according to item 13 of the scope of the patent application, wherein the resin layer is a transparent resin layer or a colored tree. 19 200532283 Lipid layer. 20. The micro-optical lens described above in the scope of the patent application is formed of the liquid crystal display according to item 13, σ 'which is a resin having a color. 21 · The micro optical lens as described above in the scope of application for patent i 3 is composed of to. The liquid crystal display device described in the item above has at least half a cylindrical optical lens. 22·如申請專利範圍第13 中上述之微型光學透鏡係由至 構成。 項所述之液晶顯示器,其 少一半球形的光學透鏡所 23·如申請專利範圍第13 中上述之微型光學透鏡係由至 構成。 項所述之液晶顯示器,其 少〜近球形的光學透鏡所22. The micro optical lens as described above in the scope of application for patent No. 13 is composed of to. The liquid crystal display device described in the item has at least half of a spherical optical lens 23. The micro optical lens as described in the patent application scope No. 13 is composed of to. The liquid crystal display according to the item is less than a spherical optical lens. 2020
TW93107350A 2004-03-18 2004-03-18 Liquid crystal display with high brightness TW200532283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93107350A TW200532283A (en) 2004-03-18 2004-03-18 Liquid crystal display with high brightness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93107350A TW200532283A (en) 2004-03-18 2004-03-18 Liquid crystal display with high brightness

Publications (1)

Publication Number Publication Date
TW200532283A true TW200532283A (en) 2005-10-01

Family

ID=52348561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93107350A TW200532283A (en) 2004-03-18 2004-03-18 Liquid crystal display with high brightness

Country Status (1)

Country Link
TW (1) TW200532283A (en)

Similar Documents

Publication Publication Date Title
TW562974B (en) Liquid crystal display device
KR100529264B1 (en) Liquid crystal display device
JP4927851B2 (en) Liquid crystal display panel with microlens array, manufacturing method thereof, and liquid crystal display device
WO2018161650A1 (en) Display panel and display device
US6912027B2 (en) Transflective liquid crystal display device and fabricating method thereof
US20110051046A1 (en) Optical sheet, backlight unit and liquid crystal display device having the same and method of fabricating optical sheet
TW548463B (en) Liquid crystal display device
US20050275767A1 (en) Flat panel display
US20100039583A1 (en) Liquid crystal display panel with micro-lens array and liquid crystal display device
JPH11326612A (en) Reflecting plate and liquid crystal display device
JP2001272674A (en) Liquid crystal display device
JPWO2008155878A1 (en) Liquid crystal display
JPWO2008038453A1 (en) Liquid crystal display panel with microlens array, manufacturing method thereof, and liquid crystal display device
CN108363235B (en) Antireflection film, preparation method thereof, array substrate and display device
WO2009141953A1 (en) Liquid crystal display device
JP2001075091A (en) Semitransmitting liquid crystal display device
CN106054469B (en) Ultra-thin liquid crystal display
JPH09146093A (en) Illumination device and liquid crystal display device using it
CN1979284A (en) Liquid-crystal display
JP2002062526A (en) Reflection type liquid crystal display device
JP2000193969A (en) Reflective liquid crystal display device
TW200532283A (en) Liquid crystal display with high brightness
US20090290112A1 (en) Display device
JPH09179113A (en) Liquid crystal display device
JP5269861B2 (en) Liquid crystal display