TW200531322A - Optimized piezoelectric transformer apparatus with maximum energy conversion efficiency - Google Patents

Optimized piezoelectric transformer apparatus with maximum energy conversion efficiency Download PDF

Info

Publication number
TW200531322A
TW200531322A TW94106441A TW94106441A TW200531322A TW 200531322 A TW200531322 A TW 200531322A TW 94106441 A TW94106441 A TW 94106441A TW 94106441 A TW94106441 A TW 94106441A TW 200531322 A TW200531322 A TW 200531322A
Authority
TW
Taiwan
Prior art keywords
piezoelectric transformer
efficiency
efficiency piezoelectric
item
modal
Prior art date
Application number
TW94106441A
Other languages
Chinese (zh)
Inventor
Yu-Hsiang Hsu
Wen-Hsin Shiao
Wen-Jong Wu
Chih-Kung Lee
Original Assignee
Chih-Kung Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/793,837 external-priority patent/US20040174098A1/en
Application filed by Chih-Kung Lee filed Critical Chih-Kung Lee
Publication of TW200531322A publication Critical patent/TW200531322A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A piezoelectric transformer apparatus is disclosed for converting electrical input energy into output for driving a load under optimized conditions. The transformer apparatus comprises at least one actuator section and at least one sensor section. The at least one actuator section has a modal-shaped electrode for optimized electrical-to-mechanical energy conversion for exciting mechanical vibration in the apparatus. The at least one sensor section has a sensor electrode with the electrical impedance of output static capacitance thereof matched to impedance of the load for optimized conversion of the energy of said excited mechanical vibration into electrical energy for driving said load.

Description

200531322 玖、發明說明: 發明背景 【發明所屬之技術領域】 本發明領域主要著眼於以壓電材料所製作之具最佳化條件之高效率壓 電換能裝置,易言之,本發明提出使一壓電變壓器於附載的狀況下,控制 其工作在最大能量傳輸效率的創新設計方法及流程。 【先前技術】 自壓電效應被發現至今,其在各個領域上的應用及發展已趨成熟,隨 著材料科學及微電子的成熟發展,以壓電材料所製作的元件已經成為可量 產的商業化產品,以具高能量轉換能力的壓電變壓器為其中最受各界矚目 的產品之一,其在各種可攜式的電子產品的電源供應系統中佔有極重要的 地位,諸如筆記型電腦(notebook),個人數位助理(personaldigitalassistant· PDA),手機(ceMar ph〇nes),數位照相機(digitalstm camera),及數位攝影 機(digital video camera)等。 ▲壓電變壓器是一個力電耦合的機電系統,於一特定的工作結構共振模 態下,由其致動器將輸入的電能轉換成機械能,儲存在所工作的機械共振 模態中,再藉由感應子將所儲存的機械能輸出成為所需特定形式之電能, 是一種電能規格轉換的重要基礎元件。 此 耦合效應 、由於壓電變壓器主要考量點為其電能輸入及輸出的能力,其界面電路 並不同於一般訊號用的壓電界面電路,諸如電荷放大器及電流放大器以虛 接地(persudo-ground)的方式,避除壓電元件的力電耦合效應,單純的取出 壓電元件本身的機械振動資訊,然而一壓電變壓器的界面電路為了能有效 的將電能輸入及輸出,必須匹配其所界面的壓電元件本身與電路間^力^ 壓電變壓器的原型是由C.A.R〇seri於1956年提出,其基本架構是_ 邊界條件皆為自由端的狹長型壓電陶瓷塊,以橫向的第二共振頻為其2作 200531322 模態’並以此共振模態的節點為其元件扶持區,後人稱此種形式的壓電變 壓器為Rosen型壓電電壓器(R〇sen切e 比如咖加㈤,圖一之11 為Rosen型壓電變壓器的示意圖,12及13分別為其致動器與感應子,由於 Rosen型壓電變壓器是工作在其結構的第二共振模態,由圖一所示之應變和 位移叮知’其内部成一全波的駐波(贫肪出叩wave)形式,其基本設計理念為 應用刚半週期的應變分布,用致動器將電能輸入成為機械能,再用另一半 週期的應變分布,域應子將機械能轉成電能。 根據C· A. R0sen所提出的設計理念,新型的壓電變壓器工作在不同 的^振模態的設計也相繼被提出,其中最具代表性的有如圖二(A)所示之三 尸白橫向模匕、變壓 |§ (third order longitudinal mode piezoelectric transformer),圖 一(B)所示之父替極化型變壓器(aitematep〇iiedpiez〇咖ctrictransformer),及 圖一(C)所示之中央驅動半波長型變壓器(central drive-type half lambda mode piezoelectric transformer),然而這三種設計基本上只是R〇sen型壓電變壓器 的變化型,並沒有真正達到設計上的突破,只是將原有的設計理念應用在 不同工作模態上而已。 傳統上,壓電變壓器的分析與設計皆引入電子等效電路理論,將其機械 共振的電子特性以-等效電賴擬,以便能直接把此_#效電路直接置入 驅動電路_為設計錄,其整馳财㈣為—f微分練(Grdinary differential equation)所表示的 RLC振盪電路(RLC res〇nam drcuit),然而這 一系列傳統的設計方法只考慮壓電變壓器於工作模態的電子特性,並沒有 將其他的共振模態納入,所以傳統的壓電變壓器的電路設計有先天上的缺 陷,由於不能完全確保其能工作在所設計的共振模態,許多複雜的驅動電 路也相繼被提出,使得其製造成本無法壓低,再者,壓電材料的機電特性 為其,作環境的參數,其品質因素(qUality fact〇r)和共振頻丨仿奶助拉也以沉) 會隨著%境的溫度和濕度而飄移,此一複雜的材料特性使其整體系統含有 不穩定因素,大大阻礙了以壓電變壓器為主要元件的電源供應模組於市場 上的普遍性。 200531322 【發明之概要】 壓盤電變=的本體是-個機械結構,其所有的機電特性皆為時間和空間 的函數’之’其統御方程式是一偏微分方程咖耐碰咖廊 equation) ’佩以等效電路财极計賴電變麵之所❹ 工作效率的賴,即壓電變壓器空關資訊,在設計之初就已被等效= 忽略,相反的’本案屏除傳統的設計方法,從壓電變壓器的_方 發,針對麵振動及電性魏做最佳化設計,由本案所提出之創 · 計方法,可使壓電變壓器達到其的最大能量傳輸效率。 ,、' 叹 本案所新發明之具最佳化條件之高效率壓電變壓器,可以_细或多 致動器,應用其電極可在娜中提供權重函數,以模態致動器將所有的電 能輸入賴奴的工作共振模射,-城乡_鮮料效輸出阻 抗匹配-組或多組不_喊阻抗,將所有存在壓電變壓⑽機械量完全 灌入附载巾’達成本案驗ϋ{之具最佳化齡的高效輪量雜設叶此 -創新設計可迫使壓輕㈣X作在其最佳能量傳輸鱗的共振模態。 本新發明所提出之在附載的狀況下,確保壓電變壓器能工作在最佳化 狀態的條件’以妙!最冑之;^電能轉翻^,本發_基本設計架構包含: 最少一組致動器和最少一組感應子設置在一壓電變壓器上,此—制動器以 模態致動器為其電極形狀,達成電能轉機械能的最佳化設計,而所存又的 能量由阻抗㈣的缝子’以最佳化能量傳輸條件,將機械能轉為電能灌 入附載中。 本發明並提出一系統化的壓電變壓器的設計方法與流程,此一創新設 計方法可確保壓電變壓器能以最佳能量傳輸效率,將所輸入的電能轉換成 所需規格之電壓電流型式,灌入不同負載電路,是為一可直接置入量產的 壓電變壓器電源供應系統。 【圈式簡單說明】 圖1、為一邊界條件皆為自由端的R〇sen型壓電變壓器及其所工作的 第二共振模態的應變和位移的示意圖。 圖2(A)、為一邊界條件皆為自由端的三階橫向模態壓電變壓器及其所 200531322 工作的第三共振模態的應變和位移的示意圖。 圖2(B)、為一邊界條件皆為自由端的交替極化型壓電變壓器及其所工 作的第二共振模態的應變和位移的示意圖。 八 圖2(C)、為一邊界條件皆為自由端的中央驅動半波長型壓電變壓器及 其所工作的第一共振模態的應變和位移的示意圖。 圖3(A)、為一厚度為極化方向的壓電薄板側視圖。 圖3(B)、為一極化方向為橫向的壓電薄板側視圖。 圖4(A)、為一以本案所提出之創新設計方法所設計之積層式 壓電變壓器的示意圖。 圖4(B)、為一以本案 壓電變壓器的示意圖。 所提出之創新設計方法所設計之積層式面對面型 ^圖5(A)、為一表示壓電變壓器驅動電路的示意圖,其中包含以變頻調 變(Vrc) ’脈衝調變(pwm)及自激(seifiresonance)的驅動方式。 圖5(B)、為一本案所新發明在第二模態工作的面對面壓電變壓器上視 圖,其有效電極形狀為脑本案所提出之難致動器及模態感應子。 圖6、為一自激式壓電變壓器之習知技術示意圖。 w 一圖7為本案所^^出之工作在第二模態之自激式Rosen型壓電變壓 、圖8、為圖7中迴授感應子轉移函數圖,其中黑圓點表示本案所提出 之迴授感應子能以電娜狀及空間位置調變其轉移函數。 圖9、為-本案所提出之I作在第—模態效率之自激式_央 長型壓電變壓器示意圖。 干反 、圖10、為圖9中迴授感應子轉移函數圖,其中黑圓點絲本案所提出 之迴授感應子㈣電極形狀及空間位置機其轉移函數。 圖11(A)、為本案所提出之具最佳化條件之—玉作在第二模態積層 壓電變壓器之最佳實施例示意圖。 圖11(B)為本案所提出之具最佳化條件之_ 壓電變壓ϋ之最佳實施例示_。 抑弟魏、積層式 圖12、(Α)與(Β)為尺寸為44mmx65mm><22mm的⑽如型壓電變壓器 200531322 電變壓器轉 電源供應系統習 轉移函數圖,(C)與(D)為尺寸為4〇mmx5mmx2咖的&咖 移函數。 圖13、為一傳統以壓電變壓器為電能規袼轉換元件的 知示意圖。 圖 【較佳實施例之詳細說明】 壓電材料的統御方程式可表示為200531322 发明 Description of the invention: Background of the invention [Technical field to which the invention belongs] The field of the present invention mainly focuses on high-efficiency piezoelectric transducers with optimized conditions made of piezoelectric materials. In other words, the present invention proposes to use An innovative design method and process for a piezoelectric transformer to control its operation at the maximum energy transmission efficiency under the load condition. [Previous technology] Since the piezoelectric effect was discovered, its application and development in various fields have matured. With the maturity of materials science and microelectronics, components made of piezoelectric materials have become mass-producible Commercial products, with piezoelectric transformers with high energy conversion capability as one of the most popular products, occupy a very important position in the power supply system of various portable electronic products, such as notebook computers ( notebook), personal digital assistant (PDA), cell phone (ceMar phones), digital camera (digitalstm camera), and digital video camera (digital video camera). ▲ Piezoelectric transformer is a mechanical-electrical coupling electromechanical system. Under a specific working structure resonance mode, its actuator converts the input electrical energy into mechanical energy, stores it in the working mechanical resonance mode, and then The output of the stored mechanical energy into the required specific form of electrical energy by an inductor is an important basic element for the conversion of electrical energy specifications. This coupling effect, because the main consideration of a piezoelectric transformer is its ability to input and output electrical energy, its interface circuit is not the same as the piezoelectric interface circuit for general signals, such as charge amplifiers and current amplifiers with a virtual ground (persudo-ground). Method to avoid the force-electric coupling effect of the piezoelectric element and simply take out the mechanical vibration information of the piezoelectric element itself. However, the interface circuit of a piezoelectric transformer must match the voltage of the interface in order to effectively input and output electrical energy. The force between the electrical component itself and the circuit ^ The prototype of the piezoelectric transformer was proposed by CAROseri in 1956. Its basic structure is a narrow piezoelectric ceramic block with boundary conditions at the free end, and the transverse second resonant frequency as The second mode is 200531322 mode, and the node of this resonance mode is its component support area. Later, this type of piezoelectric transformer is called Rosen type piezoelectric voltage regulator (Rosensen e. One of 11 is a schematic diagram of a Rosen-type piezoelectric transformer, and 12 and 13 are its actuators and inductors, respectively. Because Rosen-type piezoelectric transformers work at the second resonance of their structure State, as shown by the strain and displacement shown in Figure 1. 'The interior is a full-wave standing wave (fat out wave). The basic design concept is to apply a half-cycle strain distribution and use an actuator to convert electrical energy. The input becomes mechanical energy, and then the strain distribution in the other half of the cycle is used to convert the mechanical energy into electrical energy. According to the design concept proposed by C. A. Rosen, the new piezoelectric transformer works in different vibration modes. Designs have also been proposed one after another. Among them, the most representative are the three-dimensional longitudinal mode piezoelectric transformers as shown in Figure 2 (A), and the third order longitudinal mode piezoelectric transformer, and the father shown in Figure 1 (B). A polarization transformer (aitematep〇iied Piez〇ctric transformer), and the central drive half-wavelength transformer (central drive-type half lambda mode piezoelectric transformer) shown in Figure 1 (C), but these three designs are basically only R. The variation of the sen type piezoelectric transformer did not really achieve a breakthrough in design, but only applied the original design concept to different working modes. Traditionally, the analysis of piezoelectric transformers The design introduces the theory of electronic equivalent circuit, and the electronic characteristics of its mechanical resonance are based on -equivalent electrical equivalent, so that this _ # Effective circuit can be directly placed into the drive circuit_ for design records. f RLC res〇nam drcuit represented by the Grindary differential equation. However, this series of traditional design methods only consider the electronic characteristics of the piezoelectric transformer in the working mode, and do not consider other resonant modes. The circuit design of the traditional piezoelectric transformer has inherent defects. Because it cannot fully ensure that it can work in the designed resonance mode, many complex driving circuits have also been proposed one after another, making its manufacturing cost impossible to reduce. In addition, the electromechanical characteristics of piezoelectric materials are environmental parameters. The quality factor (qUality factor) and resonance frequency (imitation of milk assisted pulling and sinking) will drift with the temperature and humidity in the environment. This complex material characteristic makes the whole system contain unstable factors, which greatly hinders the universality of power supply modules with piezoelectric transformers as the main components in the market. 200531322 [Summary of the invention] The body of the platen electric transformer = is a mechanical structure, and all its electromechanical characteristics are functions of time and space. 'The' governing equation is a partial differential equation (Kanabe Kalang equation). ' I believe that the equivalent circuit financial plan relies on the electrical transformation of the work efficiency, that is, the piezoelectric transformer air clearance information has been equivalent at the beginning of the design = Ignored, on the contrary 'this case eliminates the traditional design method, From _ Fang Fa of the piezoelectric transformer, to optimize the design for surface vibration and electrical characteristics, the innovative method proposed by this case can make the piezoelectric transformer reach its maximum energy transmission efficiency. ", Sigh, the newly-invented high-efficiency piezoelectric transformer with optimized conditions can be fine or multi-actuators. The application of its electrodes can provide a weight function in Na, and all of the The working resonance injection of electric energy input Lainu,-urban and rural _ fresh material effect output impedance matching-group or multiple groups do not _ shout impedance, fully inject all existing piezoelectric transformers, mechanical quantities into the attached towel, and reach the cost case inspection { Highly efficient round-bundled leaves with optimized age. This innovative design can force X to be used as the resonance mode of its optimal energy transmission scale. The conditions proposed by the new invention to ensure that the piezoelectric transformer can work in an optimized state under the conditions of loading are 'Yiao Miao! The best of all; ^ Electric energy transfer ^, the basic design framework of the present invention includes: At least one group The actuator and at least one set of inductors are arranged on a piezoelectric transformer. The brake uses modal actuators as its electrode shape to achieve the optimal design of converting electrical energy to mechanical energy, and the stored energy is determined by impedance ㈣ The slit 'converts mechanical energy into electrical energy into the load to optimize energy transmission conditions. The invention also proposes a systematic piezoelectric transformer design method and process. This innovative design method can ensure that the piezoelectric transformer can convert the input electric energy into a voltage and current type of a required specification with the best energy transmission efficiency. Different load circuits are filled, which is a piezoelectric transformer power supply system that can be directly inserted into mass production. [Simplified description of the loop type] FIG. 1 is a schematic diagram of strain and displacement of a Rosen piezoelectric transformer and a second resonance mode in which a boundary condition is a free end. Figure 2 (A) is a schematic diagram of the strain and displacement of a third-order transverse modal piezoelectric transformer with its boundary conditions at the free end and the third resonant mode in which it works. Fig. 2 (B) is a schematic diagram showing the strain and displacement of an alternate polarization piezoelectric transformer and a second resonance mode in which the boundary conditions are all free ends. Fig. 2 (C) is a schematic diagram of the strain and displacement of a centrally driven half-wavelength type piezoelectric transformer and the first resonance mode in which the boundary conditions are all free ends. FIG. 3 (A) is a side view of a piezoelectric thin plate having a thickness in a polarization direction. Fig. 3 (B) is a side view of a piezoelectric thin plate whose polarization direction is transverse. Figure 4 (A) is a schematic diagram of a multilayer piezoelectric transformer designed with the innovative design method proposed in this case. Fig. 4 (B) is a schematic diagram of the piezoelectric transformer in this case. Laminated face-to-face type designed by the proposed innovative design method ^ Figure 5 (A) is a schematic diagram showing a piezoelectric transformer driving circuit, which includes variable frequency modulation (Vrc) 'pulse modulation (pwm) and self-excitation (seifiresonance) drive. Fig. 5 (B) is a view on a face-to-face piezoelectric transformer in which the new invention works in the second mode. The shape of the effective electrode is the difficult actuator and modal inductor proposed by the case. FIG. 6 is a schematic diagram of a conventional technique of a self-excited piezoelectric transformer. Figure 7 shows the self-excited Rosen-type piezoelectric transformer working in the second mode of this case. Figure 8 shows the transfer function of the feedback inductor in Figure 7, where the black dots indicate the location of the case. The proposed feedback inductor can modulate its transfer function in the form of an electro-nano and space. Fig. 9 is a schematic diagram of the self-excited-central long-type piezoelectric transformer with the first mode of the mode efficiency proposed in this case. Fig. 10 shows the transfer function of the feedback inductor in Fig. 9. Among them, the shape of the feedback inductor and the spatial position machine proposed by the black dot wire in this case and its transfer function. FIG. 11 (A) is a schematic diagram of a preferred embodiment of a piezo-transformed piezoelectric transformer of Yu Zuo in the second mode with optimized conditions proposed in this case. FIG. 11 (B) shows the optimal embodiment of the piezoelectric transformer with optimized conditions proposed in the present case. Yi Di Wei, Laminated Figures 12, (A) and (B) are 44mmx65mm < < 22mm Zanru type piezoelectric transformers 200531322 electric transformer to power supply system habit transfer function diagram, (C) and (D) Is a & coffee shift function with a size of 40 mm x 5 mm x 2 coffee. FIG. 13 is a schematic diagram of a conventional piezoelectric transformer as an energy regulation conversion element. Figure [Detailed description of the preferred embodiment] The governing equation of the piezoelectric material can be expressed as

Jijj = P^i ? Dj,j = 0, (la) (lb) 其中《為位移’ Γ和Z)分別為應力和電位移,p為材料密度, 到3的整數,由於只有考慮橫向方向的振動,式⑴中的體力細y 經被忽略,另外壓電材料本身不具自由電子,所以式⑽的自由電 (free charge density)已被移除’從式⑴中可知壓電材料的統御方程式是一= 偏為分方程式(partial differential equations),並非傳統以一個單一為分 方程式(ordinary differential function)所表示的等校電路可直接概括的书由刀 可知傳統壓電變壓器的設計有敍上的缺陷,因為在設計之她已把其= 間中的資訊完全忽略,以致於無法達到壓電變壓器的最佳化條件。/、工 由圖1及圖2(A)(B)(C)所示之壓電變壓器習知設計可知,壓電變壓器 ,由一組或多組的致動器和感應子所銜接而成的機械結構,工作在一個選 疋的工作模態,將所輸入的電能轉換成所需的電壓電流規袼,其基本的組 成可分為圖3(A)及圖3(B)所示之壓電薄板,分別為以厚度方向度方二 為其極化方向,是為致動器12和感應子13之基本架構。 口 由於壓電變壓器是一個邊界條件皆為自由端的狹長型薄板,工作在其 橫向方向上的共振模態,可視為一個一維的結構,其基本的假設為其長^ 遠大於寬度和厚度,電極的厚度遠小於結構的厚度,使得所考慮的&向= 200531322 振模態的波長看不到寬度及厚度方向的結構資訊,而只受到長度方向的邊 界條件影響,即自由端,且其整體位移的分布均為對壓電薄板的中性軸作 對稱分布,如圖3(A)及圖3(B)。 根據前面所提出之一維假設,圖3(A)及圖3(B)所示之一維壓電薄板的 統御方程式(governing equation)及本構方程式(c〇nstitute eq皿tion)分別為 (2a) (2b) (3a) (3b) 的統御方程式(governing CA^U\= 5 Τχ -cnux x -me31(V3) mtD3=e3luu^mss33(V,y (4Jijj = P ^ i? Dj, j = 0, (la) (lb) where "is displacements' Γ and Z) are stress and electrical displacement, respectively, p is the material density, an integer up to 3, because only the lateral direction is considered. Vibration, the physical force y in formula 经 is ignored, and the piezoelectric material itself does not have free electrons, so the free charge density of formula ⑽ has been removed. From formula 可, we can see that the governing equation of the piezoelectric material is One = partial differential equations, which is not traditionally represented by a single differential equation (ordinary differential function). The book can be summarized directly. The knife shows that the design of traditional piezoelectric transformers has narrative flaws. , Because in the design, she has completely ignored the information in it, so that the optimization conditions of the piezoelectric transformer cannot be reached. /. The design of the piezoelectric transformer shown in Figures 1 and 2 (A) (B) (C) shows that the piezoelectric transformer is composed of one or more groups of actuators and inductors. The mechanical structure works in a selected working mode to convert the input electric energy into the required voltage and current gauge. Its basic composition can be divided into Figure 3 (A) and Figure 3 (B). The piezoelectric thin plates are respectively polarized in the direction of the thickness direction, and are the basic structures of the actuator 12 and the inductor 13. Since the piezoelectric transformer is a thin and long thin plate with boundary conditions at both free ends, the resonance mode working in its transverse direction can be regarded as a one-dimensional structure. The basic assumption is that its length is much larger than its width and thickness. The thickness of the electrode is much smaller than the thickness of the structure, so that the structural information in the width and thickness directions cannot be seen at the wavelength of the & direction = 200531322 mode, but is only affected by the boundary conditions in the length direction, that is, the free end, and its The overall displacement distribution is symmetrically distributed on the neutral axis of the piezoelectric thin plate, as shown in Figure 3 (A) and Figure 3 (B). According to the one-dimensional assumption proposed earlier, the governing equations and constitutive equations of the one-dimensional piezoelectric thin plates shown in Figures 3 (A) and 3 (B) are ( The governing equation of 2a) (2b) (3a) (3b) (governing CA ^ U \ = 5 Τχ -cnux x -me31 (V3) mtD3 = e3luu ^ mss33 (V, y (4

^33(^3) A =^3,3+4(4) 其中式(2)和式⑶分別為致動器12和感應子13 equation)及本構方程式(constitute equati〇n)。 圖4(A)及圖4(B)分別為本案所提出之最佳實施例,分別為積層式R〇sen 型壓電變壓器41及積層式面對面型壓電變壓器42,其中43和45分別為積 層式致動器及積層式感應子,而44為感應子,值得注意的是,Rosen型壓 電變壓器是由-健電薄板内具有兩個不_極化方向所形成,並非由兩 個不同極化方向的壓電薄板相接而成,這表示不同形式的壓電變壓器可於 塊壓電薄板中施加不同的極化方向來製造,本案基於此一設計參數,提 出以致動H 43和感應子44的電極於空財提供_權重函數,即所謂的有 效表面電極(effective smface electrode),引入本案所提出之以模態致動器及 模態感應子於空間中匹配其共振模態的應變分布,達成空間中機電能互換 的最佳化設計。易言之,壓電變壓器機械部分的最佳化設計,是由空間中 所引入的有效表面電極形狀,匹配其工作模態的應變分布,以迫使所輸入 的電能皆灌入所指定的機械共振模態中,以及將所存入在此一工作模態的 電能完全的送入負載的電路中。 目刖麼電變麼器大都採用鍅鈦酸鉛(leadzirc〇natetitanate)的配方製造, 疋一種6mm對稱的陶瓷材料(cer〇mic),而本案所提出之壓電變壓器是一個 狹長^/的薄板工作於面内共振的橫向模態中(l〇ngi加dinai vibrati〇ns),戶斤以 11 200531322 當在χ3方向施加電場時,只有在主軸方向上會產生正向應力(normal stress),以下即由此一材料及機械特性所導出之考慮壓電變壓器整體力電輪 合條件的轉移函數(transfer function)和輸入阻抗(inpUt impedance),說明本案 所提出之創新壓電變壓器設計。 壓電變壓器的通解^ 33 (^ 3) A = ^ 3,3 + 4 (4) where equations (2) and (3) are actuator 12 and inductor 13 equation, respectively, and a constitutive equation (constitute equation). Fig. 4 (A) and Fig. 4 (B) are the preferred embodiments proposed in this case, respectively, a multilayer Rosen-type piezoelectric transformer 41 and a multilayer face-to-face piezoelectric transformer 42, where 43 and 45 are respectively Multi-layer actuators and multi-layer inductors, and 44 are inductors. It is worth noting that Rosen-type piezoelectric transformers are formed by two non-polarized directions in a thin electrical plate, not two different ones. The piezoelectric thin plates of the polarization direction are connected, which means that different forms of piezoelectric transformers can be manufactured by applying different polarization directions in a piezoelectric thin plate. Based on this design parameter, this case proposes to actuate H 43 and induction The electrode of sub44 provides a weight function in Kong Cai, the so-called effective surface electrode, which introduces the strain that matches the resonance mode in the space with the modal actuator and modal inductor proposed in this case. Distribution, to achieve the optimal design of machine-electricity interchange in space. In other words, the optimized design of the mechanical part of the piezoelectric transformer is based on the effective surface electrode shape introduced in the space to match the strain distribution of its working mode to force the input energy into the specified mechanical resonance mode. State, and the electric energy stored in this working mode is completely sent to the circuit of the load. Most of the electric transformers are manufactured using the formula of lead zirconiatitanate, a 6mm symmetrical ceramic material (ceromic), and the piezoelectric transformer proposed in this case is a thin thin plate Working in the in-plane resonance transverse mode (10ngi plus dinai vibrati〇ns), the household weight is 11 200531322 When an electric field is applied in the χ3 direction, normal stress will only be generated in the main axis direction, the following That is, a transfer function and an input impedance (inpUt impedance) derived from a material and mechanical characteristics that take into account the overall power-on-power turn-on conditions of a piezoelectric transformer illustrate the innovative piezoelectric transformer design proposed in this case. General solution of piezoelectric transformer

由於式(2)和式⑶所引入之一維壓電薄板的統御方程式(g0Veming equation)及本構方程式(constitute equation)是由式1之偏微分方程(partial differential equations)出發,可導出包含力電耦合參數的Rosen型壓電變壓器 和面對面壓電變壓器的轉移函數(^rapSfe/ fbnction)如下列二式: 一 V j(〇ZLCs _m~^~PCs iAa^i(<X>jdx^ ^Ρ^Φί (h)] 瓦-武{1ρ)[Φί {1ρ)^Φί W) Κ Μ l^J〇)Z^Cs (心 2((加)〜2)二J一_"、n 和 K:lt jc〇ZLCs 其中fT和G分別為輸入和輸出的電壓,叫是壓電變壓器第z•個共振頻, Q和ZL分別為壓電變壓器輸出靜態電容(〇utput static capadtanCe)及負載組 抗(loadimpedance),(和p分別為壓電變壓器的阻尼值及密度,而^⑵代 第f個共振模態的空間分布。 z 式4(a)中的分別代表壓電變壓器的全長及致動器的長度,叫 代表致動器的有效表面電極的權重函數,而纖d,分別代表尺麵型壓電變 ,器的積層式致動ϋ每-層的寬度及厚度,囉的式4(b)中‘以分別代 表面對面麵電變壓㈣積層式致動器每—層的寬度及厚度,則分 別代表其積層式致動ϋ和積層式感應子的層數,*式巾4^&及& 分別為 (5a,b) (5c,d) = l<(^M(x)dx9 A, = = iSfa(x^(x)dx, S2 = lsa(x^;(x)dx^ 12 200531322Since the governing equations and constitutive equations of the one-dimensional piezoelectric thin plate introduced by equations (2) and (3) are derived from the partial differential equations of equation 1, the inclusive force can be derived. The transfer function (^ rapSfe / fbnction) of the Rosen-type piezoelectric transformer and the face-to-face piezoelectric transformer with electrical coupling parameters is as follows:-V j (〇ZLCs _m ~ ^ ~ PCs iAa ^ i (< X > jdx ^ ^ Ρ ^ Φί (h)] 瓦-武 {1ρ) [Φί {1ρ) ^ Φί W) Κ Μ l ^ J〇) Z ^ Cs (心 2 ((加) 〜2) 二 J 一 _ ", n And K: lt jc〇ZLCs, where fT and G are the input and output voltages, respectively, and are called the zth resonance frequency of the piezoelectric transformer, and Q and ZL are the output static capacitance of the piezoelectric transformer (〇utput static capadtanCe) and the load, respectively. Load impedance, (and p are the damping value and density of the piezoelectric transformer, respectively, and the spatial distribution of the f-th resonance mode in the ^ ⑵ generation. Z Equation 4 (a) represents the full length and The length of the actuator is called the weight function of the effective surface electrode of the actuator, and the fiber d represents the piezoelectric transformer of the scale surface type, and the multilayer type of the actuator The width and thickness of each layer are shown in Equation 4 (b), where the width and thickness of each layer of the face-to-face electric transformer are shown respectively. And the number of layers of the laminated inductor, the * towel 4 ^ & and & are (5a, b) (5c, d) = l < (^ M (x) dx9 A, = = iSfa (x ^ ( x) dx, S2 = lsa (x ^; (x) dx ^ 12 200531322

其中ΛΟΟ和&(x)為致動器和感應子的有效表面電極的權重函數。 另一方面,由式1之偏微分方程(partiai differential equations)出發,亦可 導出包含力電耦合參數的Rosen型壓電變壓器和面對面壓電變壓器的輪入 阻抗(input impedance),分別為 其中 i=1 JC〇Ca {ω^2ζ{]ώ)ω\-ω2)^ 1 1 e\, ^i Z- ,(6a) ω] w 4 pCa ll (-^M· (x)dx ll Aa (χ)ΦΙ(χ)άχ, (6b) 和 其中Where ΛΟΟ and & (x) are weight functions of the effective surface electrodes of the actuator and inductor. On the other hand, starting from the partial differential equations of Equation 1, the input impedance of the Rosen-type piezoelectric transformer and the face-to-face piezoelectric transformer including the force-electricity coupling parameters can also be derived, where i = 1 JC〇Ca {ω ^ 2ζ {] ώ) ω \ -ω2) ^ 1 1 e \, ^ i Z-, (6a) ω] w 4 pCa ll (-^ M · (x) dx ll Aa ( χ) ΦΙ (χ) άχ, (6b) and where

w (ο^+2ζϋω)ω「〇^— w ja^C, ^ --- ^ l + jc〇ZLCs pCv 1 2 M «+2((»;-仞2) — m w_>^_^L.〇 〇 5 'hjcoZLCsPCsSA (7a) (7b)w (ο ^ + 2ζϋω) ω 「〇 ^ — w ja ^ C, ^ --- ^ l + jc〇ZLCs pCv 1 2 M« +2 ((»;-仞 2) — m w_ > ^ _ ^ L .〇〇5 'hjcoZLCsPCsSA (7a) (7b)

由式(4)、式(6)及式(7)所示之考慮壓電力電耦合參數的壓電變壓器轉 移函數和輸入阻抗可知,壓電變壓器整體行為是致動器有效表面電極形狀 (4W)、感應子有效表面電極形狀(怂㈨)、輸出靜態電容(Q)、負載阻抗(&)、 積層式致動器層數、積層式感應子層數(mj、壓電變壓器的材料來數 ((和P),及壓電變Μ器的幾何形狀(η;、ί、&、/p)等的函數,由此可知,傳 統單以等效電路所設計的壓電變壓器,將無法提供足夠的設計參數,確保 壓電變壓器能工作在其最佳能量傳輸效率的狀態,以下將說明本案所提出 之具最佳化條件之高效率壓電變壓器創新設計。 面對面麼電變磨器之最佳化設計 不同於一般有兩個接點的壓電感應子和壓電致動器,壓電變壓器是一 個具三個以上接點的能量傳輸元件,其共振頻和升/降壓比會隨著其所=載 的阻抗而有相當大的變動,具體來說,壓電變壓器的共振頻和升/降壓比會 隨著所負載的阻抗降低而下降’而這種材料特性使得壓電變壓器成為最佳 13 200531322 因冷陰極管在還沒點亮前其阻抗趨 但點免後其阻抗馬上掉到幾百k 百伏,而壓電變壓器在這種負載的 5到10倍,如圖5之轉移函數51 驅動冷陰極管(CCFL)的能量轉換元件, 近無限大,需幾千伏的高電壓將其點亮, 歐姆(ohm),而其所須之工作電壓只需幾 阻抗下,其升/降壓比可由約2500倍降到 和轉移函數52。 由於廢電變壓器的主要考量點是其能量傳輸的能力許多習知技術皆以 麼電變於的尺寸大小來決定其所輯輸最大能量值,但減的,由本案 所提出之鑛«賴ϋ設計方法可知,—壓輕壓麟能傳輸的能量並 非只党到其尺寸大小影響,如触顏電變麵讀在最錢量傳輸效率 的狀態’才是其最主要的設計考量點,由本案所設狀最魏R_型壓 電變廢器可於職祕件下,輸出比同尺寸、同升溫值及職作環境的傳 統R_型壓電變壓器2到3倍的瓦數,以下將分別討論本案所設計之壓 電變壓器的電子性值和機械性質之最佳化設計。 以阻抗匹配達成電性之最佳能董傳輸效率 壓電變壓器的輸出阻抗是一個靜態電容㈣此^叩㈣⑽^”是為其輸 出感應子的靜態電容,其等效輸出阻抗為|1/yiyCi|,所以壓電變壓器的電性 具最佳月t*量傳輸的條件為其輸出阻抗匹配其負載阻抗ZL(i〇a(jimpe(jance), 即li/yAhz^ ’在這個條件下工作的壓電變壓器,可達到其輸出端機械能 轉電能之最佳化設計,換句話說,是其具最大能量輸出及最佳效率的工作 條件,在此最佳化條件工作的面對面型壓電變壓器的輸入阻抗及系統轉移 函數可簡化成下式伽)及肿) 十一1 (冢+ 2〇/叫黾一 ω2) ,会7^谲2+〒(》茕-仍2), (8a ma———a52 (8b) K°r _y /c〇ZrCx Λ PCs _From the equations (4), (6), and (7) of the piezoelectric transformer's transfer function and input impedance considering the piezoelectric-electrical coupling parameters, it can be seen that the overall behavior of the piezoelectric transformer is the effective surface electrode shape of the actuator (4W ), The effective surface electrode shape (induction) of the inductor, the output static capacitance (Q), the load impedance (&), the number of multilayer actuator layers, the number of multilayer inductor sublayers (mj, the material of the piezoelectric transformer) Number ((and P), and the geometric shape of the piezoelectric transformer M (η ;, ί, &, / p), etc., from this we can see that the traditional piezoelectric transformer designed solely by the equivalent circuit, will Insufficient design parameters can be provided to ensure that the piezoelectric transformer can work at its optimal energy transmission efficiency. The following will describe the innovative design of the high-efficiency piezoelectric transformer with optimized conditions proposed in this case. The optimized design is different from piezoelectric inductors and piezoelectric actuators that generally have two contacts. A piezoelectric transformer is an energy transmission element with more than three contacts. Its resonance frequency and step-up / step-down ratio Will vary considerably with the impedance it is carrying, As a matter of fact, the resonance frequency and step-up / down ratio of a piezoelectric transformer will decrease as the load impedance decreases', and this material characteristic makes the piezoelectric transformer the best 13 200531322 because the cold cathode tube is not yet lit The impedance dropped to several hundred k hundred volts immediately after the impedance was reduced, and the piezoelectric transformer is 5 to 10 times this load, as shown in the transfer function 51 of Fig. 5 to drive the energy conversion of the cold cathode tube (CCFL). The component is nearly infinite. It needs a high voltage of several thousand volts to light it, ohm, and its required working voltage only needs a few impedances, and its step-up / step-down ratio can be reduced to and transferred from about 2500 times. Function 52. Because the main consideration of the waste power transformer is its ability to transmit energy, many conventional technologies use the size of the electric power to determine the maximum energy value that it can input, but it is reduced by the mine proposed in this case. «Lai's design method knows that—the energy that can be transmitted by pressing lightly is not only affected by the size of the party, such as changing the surface of the touch to read the state of the most expensive transmission efficiency 'is its most important design consideration. , The most Wei R_ type piezoelectric transformer set in this case The device can output two to three times the wattage of a conventional R_ type piezoelectric transformer of the same size, same heating value and professional environment under the job secret. The electronic properties of the piezoelectric transformer designed in this case will be discussed separately below. The optimal design of the value and mechanical properties. The best energy transmission efficiency is achieved by impedance matching. The output impedance of the piezoelectric transformer is a static capacitance. Here ^ 叩 ㈣⑽ ^ "is the static capacitance of its output inductor. Its equivalent output impedance is | 1 / yiyCi |, so the condition for the best monthly t * transmission of the electrical properties of the piezoelectric transformer is that its output impedance matches its load impedance ZL (i〇a (jimpe (jance), that is, li / yAhz ^ 'Piezoelectric transformers working under this condition can achieve the optimal design of mechanical energy to electrical energy output, in other words, its working conditions with maximum energy output and best efficiency. The input impedance and system transfer function of a face-to-face piezoelectric transformer that works under optimized conditions can be simplified to the following formulas) and swollenness) 11 1 (tsuka + 2〇 / called 黾 一 ω2), will be 7 ^ 谲 2 + 〒 ( 》 茕 -still 2), (8a ma ——— a52 (8b) K ° r _y / c〇ZrCx Λ PCs _

Vll 1 + j^ZLCs (^2 + - ω2) 200531322 (9a) (9b) (9c) sxs” s's” ,、4 2 ts pCsVll 1 + j ^ ZLCs (^ 2 +-ω2) 200531322 (9a) (9b) (9c) sxs ”s's”, 4 2 ts pCs

K Pca s 2 ts pQ sxs2. 2('(加)辱=2((加)叫— Δ ls y^sK Pca s 2 ts pQ sxs2. 2 ('(plus) shame = 2 ((plus) call — Δ ls y ^ s

式(9)可知當輸出阻抗匹配附載阻抗時,壓電變壓器的共振頻和阻尼值 ,隨之降低,此現象即代表存在壓賴㈣的機械能被貞載吸走,形成一 =機械阻尼值出現在其機械系統中,換言之,壓電變壓器的機械特性會 隨著電子雜變動而改變,這表示壓電變壓㈣確是—個力電耦合的能量 傳輸元件’其巾值得—提的是,輸出阻抗和所附伽阻抗在壓電變壓器的 轉移函數中會產生-南通渡波器(high卞assfliter),如私如)及(处),此一高 ,慮波器會對壓電變壓H的相位產生偏移,是為輸出靜態電容匹配附載阻 抗的結果,而此_高通舰||在附姐抗低浦丨阻抗時,將會大大降低 其升/降壓比(step-up ratio)。 ▲由於愿電變壓器多選擇高品質因數(qualityfactor)的壓電陶竟材料,多 冋達2000左右’所以式(9C)的第二項在輸出阻抗匹配附載阻抗時,將會遠 大於結構本身的阻尼(,所以—面對面型壓電變壓器在最佳輸出電性匹配的 工作條件下,其整體系統的升/降壓比可簡化成下式:Equation (9) shows that when the output impedance matches the on-load impedance, the resonance frequency and damping value of the piezoelectric transformer are reduced. This phenomenon represents that the mechanical energy with pressure is absorbed by the load, forming a = mechanical damping value. Appeared in its mechanical system, in other words, the mechanical characteristics of piezoelectric transformers will change with the change of electrons, which means that the piezoelectric transformer is indeed a force-electrically coupled energy transmission element, and its towel is worth mentioning- , The output impedance and the attached gamma impedance will be generated in the transfer function of the piezoelectric transformer-Nantong crossing wave (high 卞 assfliter), such as private) and (place), this high, it is considered that the wave transformer will transform the piezoelectric The phase shift of H is the result of matching the on-load impedance for the output static capacitance, and this _ 高 通 舰 || When the sister ’s anti-low impedance, the step-up ratio will be greatly reduced ). ▲ Since electric transformers are more likely to choose piezoelectric ceramic materials with high quality factors (up to about 2000), the second term of formula (9C) will be much larger than the structure itself when the output impedance matches the load impedance. Damping (, so-the face-to-face piezoelectric transformer under the best output electrical matching working conditions, the overall system's step-up / step-down ratio can be simplified into the following formula:

一 72^4. K mA (10) 由上式(10)可知一面對面型壓電變壓器的升/降壓比是其積層式致動 器及感應子層數比和有效表面電極形狀4q的函數,由於致動器和感 應子的電極形狀是固定的,所以-崎面壓觀壓器的升/降壓比可以直接 以積層式致動器及感應子層數比來決定,以單層面對面壓電變壓器為 例,其層數筆為卜所以其升/降壓比則固定為卜〆今完全由致動器和感 應子的有效表面電擊形狀所決定,所以在設計一最佳化面對面型壓電變壓 器時,其設計餘細壓輕的尺寸大小或基層式錢子的層數來做 電子阻抗匹配的最佳化設計,再調便積層式致動器的層數調整氕/氕的比 15 200531322 值,達到所需之升/降壓比,另外,藉由積層式致動器的層數亦可調整輸入 阻抗的阻值,以匹配壓電變壓器的驅動電路的輸出阻抗,達到壓電變壓器 整體電性之最佳能量傳輸效率的設計。 根據以上對面對面型壓電變壓器的討論可知,此一最佳化的設計觀念亦 可使用在Rosen型壓電變壓器上,其系統轉移函數(式4⑻)和輸入阻抗& (6(a))亦有相同的機電耦合的效應,為一不同的是其輸出的感應子只能以幾 何形狀匹配負載阻抗,達到輸出感應子能量傳遞最佳化設計,以下將以空 間有效表面電極分佈的觀念,提出壓電變壓器機械性質能量傳輸最佳化之 創新設計概念 以匹配工作模態應變分佈達成機械性質之最佳能量傳輸效率 由式(4)、式⑹及式⑺可知,壓電變壓器整體系統特性取決於其結構 共振模態及電子等效阻抗,此關係可由式(5)、式(6b)、式(7b)及式看出, 而此一力電耦合的效應是傳統以等效電路分析的方式所無法達到的,易言 之,等效電路上所有的元件皆為壓電變壓器機械震動空間資訊的函數,二 傳統的分析方式則於一開始就忽略這個重要參數,以致無法真正達到壓電 變壓器的最佳工作點, 值得注意的是,致動器及感應子的有效表面電極分佈次⑷和^⑻會 在空間中對壓電變壓器的應變產生權重的效應,本案及基於此一特性,提 出以空間中有效表面電極的分佈,匹配結構工作模態的應變分佈,達到壓 電變壓器機械特性之最佳化設計。 模態感應子及模態致動器在柔性結構上的應用是由李世光於1978年 提出,其基本概念為利用壓電薄膜的有效表面電極的形狀,在空間中匹配 共振模態的應變分佈,以消除於柔性結構控制中模態溢出(spiu〇ver)的問 題,本案引入此一設計觀念,利用致動器及感應子的有效表面電極分佈屹㈡ 和怂W亦可於空間中對結構空間分佈(為w或產生權重效應(如式(4)、 式(6)及式(7)),以模態正交的特性,使得機械能和電能只在所指定的共振模 態互換,以達到壓電變壓器機械性質之最佳化設計其基本概念為;、、 200531322 |ί4(χΜ(χ)办=1, 當 i=J, (11) 而若by·則式(11)為零,將式中為(x)帶換成冼(x),式⑴帶換成X(x), 即為式(5)中的為和馬,則壓電變壓器致動器和感應子只會看到所選定工作 模態的機械性質,本案即以此一創新設計將所有輸入電能,由以模態致動 器完全灌入所選定的工作模態中,再以模態致動器將所灌入之電能完全送 入負載中,而達成壓電變壓器機械性質之最佳能量傳輸效率設計,換句話 說’麼電變麼器在這個條件下是一個只有單一共振頻的結構,而可以用一 般以常微分方程所表示的等效電路模擬,如同傳統的設計方法設計,則本 案所設計之具最佳化條件之高效率壓電變壓器可直接以一等效電路置入驅 動電路中,成為系整體統設計參數,圖5為一面對面型壓電變壓器之較佳 實施例的上視圖,其中以模態致動器的有效表面電極匹51配所工作之第二 模態的前半波應變分佈,並以模態致動器的有效表面電極匹52配所工作之 第一模態的後半波應變分佈。 如此一來,壓電變壓器的電子性質和機械性質的最佳化設計,分別藉由 其電子等雜抗㈣及《有效電祕崎成H具最絲條件^高 效率壓電變壓器的基本設計要件為,以感應子的輸出阻抗匹配負載阻抗了 並以模態鶴ϋ及鄕感應子㈣所収駐作觀應變分佈。、 壓電變壓器迴授感應子設計 由相同的導證方法及式⑺和式⑶的一維壓電薄板的統御方程式 equation) 子,除了可作為送出電能的輸出端外,還可 ^ ________________ 疋J以作為一迴授感應子,將壓電 :變壓器工作頻 授感應子不需考慮高能輸出’只需拿出結構振動資二; :將效應的』=輪數= 〜j IP,一3¾ 役) 變壓器的工作鶴的振動資訊傳__路,峨電 輸出端感應子的主要考量為達到最佳能; 17 200531322 =設私須考量能量不會從迴授感應子漏出,且能完整拿出所需資訊, 耗迴域應子的基本设計條件為能傳送即時結構資訊,且不會消 在壓電變壓器上設置迴授感應子以做一自激式電路 ^圖4此一習知技術,其中61為迴授感應子,公為迴授 負載阻抗’但是迴授感應子於空間中的設計參數仍尚未被提出 二 =傳統鱗效·設計紐,紐確實將峨感應子準確的置_^= ^為輯參數,而本案靖提出壓電麵㈣雜合鱗 授電路置於系統中設計,將式4⑻中面對面型壓電變壓^^ 的有效表面電極⑽視為迴賊應子,可知迴授感應子哺移函數是= 身的形狀和位置的函數,換句話說,迴授感應子的轉移函數將合 ^其工間資訊的變動而改變,本案基於此—特性,提出以迴授 二 ,表面電極形狀及其空間位置,設計—可提供驅動電 結& = 之最佳化迴授感應子。 而之、口構貝Λ 圖7為以此一創新設計理念所設計的R〇sen型壓電變壓器之一 施例,其中迴授感應子72由-界面電路71送回致動器43以驅動壓電變壓 器41,可為一自激式Rosen髓電變壓器之較佳實施例,此一空間效應可 由移動圖7的迴授感應子所量_的轉移函數洞知,圖8為所量測到二轉 移函數8卜其巾黑®點為迴授感應子漸漸賴致動器,第二和第三模態間 的零點(zero)的頻率,由圖中可之,藉由迴授感應子的空間位置,本案^設 計之具最佳化迴授感應子可提供一可設計之迴授轉移函數,如圖7 ^第= 模態可以被消除或其相位可以被轉18〇度,此一轉移函數可使用在自激^ 電路中。® 9為-驅動在第-模態的巾央驅動壓電變鞋之較佳實施例, 其迴授感應子是置於壓電變壓H中央,當其面積由大變小的實驗結果如圖 ⑺之轉移函數101,由圖10可知由於中央驅動的壓電變壓器是對中心對稱 偶數模態皆自動消去,而第三模態的相位可被消除或完全消去,此一轉移 函數可使用在自激式電路中。 前面所提出的設計方法皆可直接應用在積層式壓電變壓器中,圖11(Α) 及圖11(B)分別為驅動在第二模態和第一模態的壓電變壓器之較佳實施 18 200531322 =由變壓器可·其積層的設計,於不同層中提供不同的 二絕二崎層111即可設計出具多功能的壓電變壓器, ;J isi ium* β壬可種可錢電材料匹配的絕緣材料,以將圖U(A) 及圖11(B)中的和其能量傳輸部分分開,其中迴授感應子ιΐ2及⑴分 以第二模態及第-模態感應子所設計的最佳實施例,以此—迴授感應子所 設計之迴授感應子將只送出所讀㈣二㈣及第—鶴於轉電路中, =只有共振頻送回’壓電籠器的驅動電路可簡化其處理 件Ϊ,以達到降低成本的目標。72 ^ 4. K mA (10) From the above formula (10), it can be seen that the step-up / step-down ratio of a face-to-face piezoelectric transformer is a function of its multilayer actuator and induction sublayer ratio and the effective surface electrode shape 4q Since the electrode shapes of the actuator and the inductor are fixed, the step-up / step-down ratio of the -Saki surface pressure manometer can be directly determined by the layered actuator and the number of layers of the inductor, and it is opposite to the single layer. As an example, the piezoelectric transformer has a number of layers, so its step-up / step-down ratio is fixed to 〆. This is completely determined by the effective surface electric shock shape of the actuator and inductor, so an optimized face-to-face type is being designed. When designing a piezoelectric transformer, the size of the design is thin or light or the number of layers of the base-type coin is used to optimize the design of electronic impedance matching, and then the number of layers of the multilayer actuator is adjusted to adjust the 氕 / 氕 ratio. 15 200531322 value to achieve the required step-up / step-down ratio. In addition, the resistance of the input impedance can also be adjusted by the number of layers of the multilayer actuator to match the output impedance of the driving circuit of the piezoelectric transformer to achieve the piezoelectricity. Design of the best energy transmission efficiency of the overall electrical properties of the transformer. According to the above discussion of face-to-face piezoelectric transformers, it can be known that this optimized design concept can also be applied to Rosen-type piezoelectric transformers, whose system transfer function (Equation 4⑻) and input impedance & (6 (a)) It also has the same effect of electromechanical coupling. The difference is that the output inductor can only match the load impedance with a geometric shape to achieve the optimal design of the output inductor energy transfer. The following will be based on the concept of space-efficient surface electrode distribution. An innovative design concept for optimizing the mechanical properties and energy transmission of a piezoelectric transformer is proposed to match the working mode strain distribution to achieve the optimal energy transmission efficiency of the mechanical properties. According to Equation (4), Equations ⑹ and ⑺, we can see that the overall system characteristics of piezoelectric transformers Depending on its structural resonance mode and electronic equivalent impedance, this relationship can be seen from equations (5), (6b), (7b), and equations, and the effect of this force-electric coupling is traditionally analyzed by equivalent circuits What is impossible to achieve in this way, in other words, all the components on the equivalent circuit are a function of the spatial information of the mechanical vibration of the piezoelectric transformer. The traditional analysis method ignores this at the beginning. Important parameters, so that the optimal working point of the piezoelectric transformer cannot be truly achieved. It is worth noting that the effective surface electrode distribution times ⑷ and ^ ⑻ of the actuator and inductor will weight the strain of the piezoelectric transformer in space. Effect, this case and based on this characteristic, it is proposed to use the distribution of effective surface electrodes in space to match the strain distribution of the working mode of the structure to achieve the optimal design of the mechanical characteristics of the piezoelectric transformer. The application of modal inductors and modal actuators to flexible structures was proposed by Li Shiguang in 1978. The basic concept is to use the shape of the effective surface electrode of a piezoelectric film to match the strain distribution of resonant modes in space. In order to eliminate the problem of modal overflow in the control of flexible structures, this design concept is introduced in this case. The effective surface electrode distribution of actuators and inductors can also be used to structure space in space. The distribution (w or weight effect (such as formula (4), formula (6) and formula (7)), with the characteristics of orthogonal modes, makes mechanical energy and electric energy interchange only in the specified resonance mode, so that The basic concept to achieve the optimized design of the mechanical properties of piezoelectric transformers is: ,, 200531322 | ί4 (χΜ (χ) Office = 1, when i = J, (11) and if by ·, then formula (11) is zero, Replace the (x) band in the formula with 冼 (x), and replace the 式 band in the formula with X (x), which is Hema in formula (5), then the piezoelectric transformer actuator and inductor can only look at To the mechanical properties of the selected working mode, this case is to use this innovative design to fully input all electrical energy by the modal actuator In the selected working mode, a modal actuator is used to send the injected electric energy completely into the load, so as to achieve the optimal energy transmission efficiency design of the mechanical properties of the piezoelectric transformer, in other words, 'Electric transformer' Under this condition, it is a structure with only a single resonance frequency, and can be simulated by an equivalent circuit generally expressed by ordinary differential equations. Like the traditional design method, the high efficiency voltage with optimized conditions designed in this case The electrical transformer can be directly incorporated into the driving circuit with an equivalent circuit, which becomes the overall design parameter. Figure 5 is a top view of a preferred embodiment of a face-to-face piezoelectric transformer, in which the effective surface of the modal actuator is The electrode plate 51 matches the first half-wave strain distribution of the second mode of operation, and the effective surface electrode plate 52 of the modal actuator matches the second half-wave strain distribution of the first mode of operation. In this way, the piezoelectric The optimized design of the electronic and mechanical properties of the transformer is based on its electronic impedance and the "Electrical efficiency of the most efficient electric transformer. The basic design requirements for a high-efficiency piezoelectric transformer are: The output impedance of the inductor is matched to the load impedance, and the apparent strain distribution is collected by the modal crane and the 鄕 inductor. The piezoelectric transformer feedback inductor design is based on the same proof method and formulas ⑺ and ⑶. The governing equation of the one-dimensional piezoelectric thin plate can be used as an output terminal to send electrical energy, and can also be used as a feedback inductor, and the piezoelectric: transformer working frequency feedback inductor does not need to consider high energy The output only needs to take out the structural vibration data II;: the effect of "= number of rounds = ~ j IP, a 3¾ service) The vibration information transmission of the working crane of the transformer __ Road, the main consideration of the inductors at the output terminal of Edian is Achieving the best energy; 17 200531322 = It is necessary to consider that the energy will not leak from the feedback inductor, and can completely take out the required information. The basic design condition of the consumption domain is to be able to transmit real-time structural information without The feedback inductor will be set on the piezoelectric transformer to make a self-excited circuit. Figure 4 is a conventional technique. Among them, 61 is the feedback inductor, which is the feedback load impedance. But the feedback inductor is in space. Design parameters in It has not yet been proposed. Two = traditional scale effect. Design button. The button does set the E. inductor accurately _ ^ = ^ as a series parameter. In this case, Jing proposed the design of a piezoelectric plane hybrid hybrid scale circuit in the system. The effective surface electrode of the face-to-face piezoelectric transformer ^^ in 4⑻ is regarded as a thief responder. It can be seen that the feedback inductor feeding function is a function of the shape and position of the body, in other words, the transfer of the feedback inductor The function will be changed in accordance with the change of the information in the workshop. Based on this feature, this case proposes to design the feedback electrode, the surface electrode shape and its spatial position, and design—which can provide the optimal feedback induction for driving the electric junction & child. Fig. 7 shows an example of a Rosen-type piezoelectric transformer designed according to this innovative design concept, in which the feedback inductor 72 is sent back from the interface circuit 71 to the actuator 43 to be driven. Piezoelectric transformer 41 may be a preferred embodiment of a self-excited Rosen electromedical transformer. This spatial effect can be seen by moving the transfer function measured by the feedback inductor in FIG. 7. FIG. 8 shows the measured The second transfer function is 8 and its black point is the feedback inductor which gradually depends on the actuator. The frequency of the zero point between the second and third modes can be obtained from the figure. The spatial position, the design of the optimized feedback inductor in this case can provide a designable feedback transfer function, as shown in Figure 7 ^ the = mode can be eliminated or its phase can be turned 180 degrees, this transfer Functions can be used in self-excited circuits. ® 9 is a preferred embodiment of the center-driven piezoelectric transformer shoe driven in the first mode. The feedback inductor is placed in the center of the piezoelectric transformer H. When the area changes from large to small, such as The transfer function 101 in Figure 由 can be seen from Figure 10 because the centrally-driven piezoelectric transformer automatically cancels the central symmetrical even-numbered modes, and the phase of the third mode can be eliminated or completely eliminated. This transfer function can be used in Self-excited circuit. The previously proposed design methods can be directly applied to multilayer piezoelectric transformers. Figures 11 (A) and 11 (B) are preferred implementations of piezoelectric transformers driven in the second and first modes, respectively. 18 200531322 = The design of the transformer can be multi-layered, providing different second and second layers 111 in different layers can be used to design a multi-functional piezoelectric transformer; J isi ium * β can be used to match money and electrical materials U (A) and Figure 11 (B) and its energy transmission part, in which the feedback inductors ΐ2 and ⑴ are designed with the second and first modal inductors The preferred embodiment is that the feedback inductor designed by this feedback inductor will only send out the second and second read-out circuits, and only the resonance frequency is sent back to the driving circuit of the piezoelectric cage. It can simplify its handling parts to achieve the goal of reducing costs.

必須提出的-點是,由於自激式的電路最主要的著眼點是迴授感應子 的相位分佈,贿形式之自激式壓電變壓器,皆可以本案所提出之具可調 便轉移函數的迴授感應子設計,而皆應包含於本案之中請範圍内。/… -般可能會認麟_她麵·_se議pensatiQn咖邮應該 就足夠調籠電顏⑽迴賊應子_移函數,並不需要如本案所提出 之具空_變能力的迴_應子賴計方法,但有_基本的可證明 本案所提出之具㈣調魏力的迴賊應子賴魏力是傳統相位補償電 路所不及的,第-,壓電變壓!I本質是—個機械結構,及共振頻是以兩倍 頻出現,但電子式的濾波器只能提供10倍等級的濾波效應,並不足以將其 他非工作共振頻的模態資訊消除,第二,電子式的濾波器本身的相位變;匕 將會大大扭曲結構本身的特性,以致造成驅動電路設計上的困難,反而需 提高成本使用更多的元件來完成迴授電路的需求,所以以本案所提出之具 二間調變^力的迴授感應子的没計方法,壓電變壓器的迴授電路將可有效 的簡化並降低成本,而且其具量產相容性,因其只需於電極塗佈時,直接 圖在壓電變壓器上即可,大大降低其生產成本。 壓電變壓器的尺寸最佳化設計 所有對壓電變壓器的討論皆假設其為一個一維的狹長型結構,工作在 k向的共振頻上’但是其在較南頻的範圍基本上是一個狹長的薄板,因為 結構共振的波長(wavelength)將會看到其寬度方向的邊界效應,在一個長寬 200531322 鬲分別為4〇mmx6.5mmx2.2mm,且工作在約8〇kHz的壓電變壓器,其寬度方 向和厚度方向的共振模態約出現在百扭2和千]^2的頻率範圍,將會在輸 出,能中產生雜訊,而損耗壓電變壓器本身及其負載電路的壽命,如冷陰 極管,而這個效應並沒有辦法以以本案所提出之模態致動器和模態感應子 解決,因為他們的基本假設是架構在一個一維的狹長型結構。 ,了降低此一效應的影響,本案提出以成整數比例的長寬高比的壓電 變壓器降低此雜訊,如此一來結構的高頻共振模態將被減至最低,因其各 方向上具同波長的共振模態將出現在同一共振頻,這種尺寸效應可由圖 12的壓電變壓器的轉移函數中得知,其中圖12⑷和12(〔)為長寬高比為 • 4〇mmx6.5mmx2·2舰的一壓電變壓器的轉移函數,圖12(B)和12(D)為長寬高 比為4〇mmx5mmx2mm的一壓電變壓器的轉移函數,由圖中可知壓電變壓器 ^ 的尺寸成整數比時,其高賴態的效應被簡化,進而減少高頻雜訊的輸出, 此即為結構的退化效應(degeneracy)。 具最佳化條件之高效率壓電變壓器之設計流程 根據本案所提出之具最佳化條件之高效率壓電麵㈣各種設計參 數及條件,町提出此—壓電賴H之最佳化設計触: "The point that must be put forward is that since the main focus of self-excited circuits is the phase distribution of feedback inductors, self-excited piezoelectric transformers in the form of bribes can be used in this case with adjustable transfer functions. The feedback sensor design should be included in the scope of this case. /… -It may be possible to recognize Lin_her face. _Se discussion pensatiQn coffee post should be enough to adjust the electric power ⑽ the thief responder _ shift function, does not need the empty _ variable ability of the response _ response as proposed in this case The method of Lai Wei, but there are _ basic can prove that the thief Ying Wei Lai Wei Li proposed in this case is beyond the traditional phase compensation circuit, the first, piezoelectric transformer! I is essentially a mechanical structure, and the resonance frequency appears at twice the frequency, but the electronic filter can only provide 10 times the level of filtering effect, which is not enough to eliminate the modal information of other non-working resonance frequencies. Second, the phase change of the electronic filter itself will greatly distort the characteristics of the structure itself, which will cause difficulties in the design of the drive circuit. Instead, it will need to increase the cost to use more components to complete the feedback circuit. The proposed method of the feedback inductor with two modulation forces in this case, the feedback circuit of the piezoelectric transformer can effectively simplify and reduce costs, and it is compatible with mass production, because it only needs to be produced. When the electrode is coated, it can be directly mapped on the piezoelectric transformer, which greatly reduces its production cost. Optimizing the size of piezoelectric transformers. All discussions of piezoelectric transformers assume that they are a one-dimensional narrow structure that works at the resonance frequency in the k-direction. However, it is basically a narrow one in the south frequency range. Thin plate, because of the structural resonance wavelength (wavelength) will see the boundary effect in the width direction, in a length and width of 200531322 鬲 are 40mm x 6.5mm x 2.2mm, respectively, and a piezoelectric transformer operating at about 80kHz, The resonance modes in the width direction and thickness direction appear in the frequency range of 100 twisted 2 and 1000] ^ 2, which will generate noise in the output and energy, and loss the life of the piezoelectric transformer itself and its load circuit, such as Cold-cathode tubes, and this effect cannot be solved with the modal actuators and modal inductors proposed in this case, because their basic assumption is that they are constructed in a one-dimensional narrow structure. In order to reduce the effect of this effect, this case proposes to reduce this noise by using an integer ratio of the aspect ratio of the piezoelectric transformer, so that the structure's high-frequency resonance mode will be minimized, because all parties Resonant modes with the same wavelength will appear at the same resonant frequency. This size effect can be obtained from the transfer function of the piezoelectric transformer in Figure 12, where Figures 12⑷ and 12 ([) are the aspect ratios of • 4mmx6 The transfer function of a piezoelectric transformer of .5mmx2 · 2 ship. Figures 12 (B) and 12 (D) show the transfer function of a piezoelectric transformer with an aspect ratio of 40mmx5mmx2mm. The piezoelectric transformer can be seen from the figure ^ When the size of S is an integer ratio, the high-lying state effect is simplified, thereby reducing the output of high-frequency noise. This is the degeneracy of the structure. Design process of high-efficiency piezoelectric transformers with optimized conditions According to the various design parameters and conditions of the high-efficiency piezoelectric surface with optimized conditions proposed in this case, Machi proposed this—optimized design of piezoelectric transformers. Touch: "

A)根據負載所需之電壓/電流/瓦數的規格及 比,選擇可達到此一要求的壓電變壓器。 、眺 給電能Hi壓電變壓器的功頻率(工作模態)及其所負載電路所需之供 C)將壓電賴H的尺寸_訂為某—特定的整數比。 能此—M電變壓㈣最佳能量傳輸條件,包含模態致動器及模 it感應子的形狀設計,和所需匹配的負載阻抗值。 、 E) 以改縣電魏H尺寸或輸㈣層式觀感應子 出阻抗以匹配負載阻抗。 W登輪 F) 決定積層式致動器的層數以達到所需之升麼比或降觀。 斗夕备If定慶電變壓器驅動電路的方法,以驅使屡電懸器工作在所設 4之最佳化工作觀,此—鱗電路可由任何—種方式達成。 20 200531322 Η)應用壓電變壓器上可設置多組或多層電極的特性,增加任何可霡 化電路的電極,如減少電子元件的數量,除本案所提出之迴授感應子間 其他功能性電極亦包含在内。 〜μ ’ 具最佳化條件之高效率壓電變壓器之基本設計流程 根據本案所提出之具最佳化條件之高效率壓電變壓器的各種設計來 數及條件,以下提出一壓電變壓器之基本最佳化設計流程·· > Α)根據所需之電壓/電流/瓦數的規格,選擇適合的壓電變壓器,其包 含·· 、A) According to the specifications and ratio of voltage / current / wattage required by the load, choose a piezoelectric transformer that can meet this requirement. 2. The power frequency (working mode) of the Hi-Hi piezoelectric transformer and the supply required by the loaded circuit. C) Set the size of the piezoelectric transformer H to a certain specific integer ratio. Can this—M electric transformers: the best energy transmission conditions, including the shape design of the modal actuator and the modal it inductor, and the load impedance value to be matched. , E) To change the impedance of the H-size or input-layer observing inductor of the county power plant to match the load impedance. W boarding wheel F) Determine the number of layers of the multi-layer actuator to achieve the required lift ratio or drop view. Dou Xi prepares the method of Dingqing electric transformer drive circuit in order to drive the repeater to work in the set view of the optimized work. This scale circuit can be achieved in any way. 20 200531322 Η) Applying the characteristics of multiple sets or multi-layer electrodes on a piezoelectric transformer, adding any electrode capable of stabilizing the circuit, such as reducing the number of electronic components, in addition to other functional electrodes between the feedback inductors proposed in this case Included. ~ Μ 'Basic design flow of high-efficiency piezoelectric transformers with optimized conditions According to the various design and conditions of high-efficiency piezoelectric transformers with optimized conditions proposed in this case, the following presents the basics of a piezoelectric transformer Optimized design process ... > A) According to the required voltage / current / wattage specifications, select a suitable piezoelectric transformer, which includes ...

-以致動器的積層的層數決定其升壓比或降壓比。 -以感應子的積層的層數或壓電變壓器整體尺寸,調整輸出阻 抗以匹配負載阻抗。 ’ -選擇適合負載電路之工作共振頻及所需傳送能量的需求。 -壓電變壓ϋ的型態,可包含各種壓電變壓器,如本案所提出 之積層或單層RGsen麵電麵器、騎或單層面對面麵 電變壓器、及積層或單層中央驅動壓電變壓器的最佳實施 B) 找出所選定壓電變壓器的最佳化工作條件: -以輸出電極的等效電子阻抗匹配負載阻抗。 -以致動ϋ及錢、子的有效表面電極雜匹輯選定的工作 模態應變的分佈。 C) 選定壓電變壓器驅動電路的方法’錢到所設計之最佳化工作條 D) 增加任何可簡化電路的電極。 所以’根據本案所提出之具最佳化條件之高效率壓電 計參數及條件可知,壓電變壓器實為-力電完全搞合的機又 作在所選定的工作模態的共振頻。 所以,根據本案所提出之具最佳化條件之高效率壓電變壓器的各種設 計參數及條件可知,壓電變壓器的統御方程式是個偏微分方程式,由本案 21 200531322 慮ί力電辆合效應的統御方程式’可知壓電變壓器的轉移函數是 電子性質和機械性質的函數’並非如傳統 動的資訊忽略,本案亦基於此-特性提出舰動器及感應= 於空間中達到其最佳化的條件。 之具最佳化條件之高效率壓電變壓器的各種設 界面之驅動電路或負載電路接會影響壓電變壓器的 電子性f,細本案所提&之迴授祕子的設計理念,可由A j中的位置及電極形狀調整迴授電路所需之轉移函數,以減少迴授電路 電==其中以自激式壓電變壓器為一最佳化設計,圖13為以壓 =壓Is為基本換能元件的傳統電源供應系統之基本區塊圖其中⑶ 卜132為傳統壓電變壓器供應模組,133為負載電路圖14為本 具最佳化條件之高效轉電籠"源供應歡基本區塊圖, 接ψ 1為壓電變壓器,142林案所提出之最佳化致動11 ’ 143為本案所 ^最佳化感應子,144為接地端,145為本案所提出之迴授感應子,⑽ 马可達到壓電變壓器最佳工作鮮的驅動電路。 前述為本案所提出之最佳化設計方法 新之内谷,皆應為本案所包含之申請範圍, 附之申請專利範圍所界定者為準。 ’任何不同組合但使用本案所創 因此本發明之保護範圍當視後 22-The step-up ratio or step-down ratio is determined by the number of layers of the actuator. -Adjust the output impedance to match the load impedance based on the number of layers of the inductors or the overall size of the piezoelectric transformer. ’-Select the operating resonant frequency and the required transmission energy requirements suitable for the load circuit. -The type of piezoelectric transformer can include various piezoelectric transformers, such as a multilayer or single-layer RGsen surface electrical device, a riding or single-layer opposite surface electrical transformer, and a multilayer or single-layer central driving piezoelectric Optimal implementation of the transformer B) Find the optimal working conditions of the selected piezoelectric transformer:-Match the load impedance with the equivalent electronic impedance of the output electrode. -The distribution of modal strains selected by actuating the effective surface electrode miscellaneous series of coins and coins. C) The method of selecting the driving circuit of the piezoelectric transformer is to optimize the design work bar. D) Add any electrode that can simplify the circuit. Therefore, according to the parameters and conditions of the high-efficiency piezoelectric meter with optimized conditions proposed in the present case, it can be seen that the piezoelectric transformer is a fully integrated machine of electromechanical power and operates at the resonance frequency of the selected working mode. Therefore, according to the various design parameters and conditions of the high-efficiency piezoelectric transformer with optimized conditions proposed in the present case, the governing equation of the piezoelectric transformer is a partial differential equation. This case considers the governing effect of the combined effect of the power and electric vehicles. The equation 'It can be seen that the transfer function of the piezoelectric transformer is a function of electronic and mechanical properties' is not ignored as traditional information. This case also proposes a naval actuator and induction based on this-characteristics to achieve its optimal conditions in space. The optimized design of high-efficiency piezoelectric transformers with various interface drive circuits or load circuits will affect the electronic characteristics of the piezoelectric transformers. The design concept of the feedback tip mentioned in this case & The position and shape of the electrode in j adjust the transfer function required by the feedback circuit to reduce the feedback circuit power. == Self-excited piezoelectric transformer is an optimized design. Figure 13 is based on voltage = voltage Is. The basic block diagram of the traditional power supply system of the transducing element. Among them ⑶ 132 is the traditional piezoelectric transformer supply module, 133 is the load circuit. Figure 14 shows the basic area of the high-efficiency transfer cage with optimized conditions. Block diagram, connected to ψ 1 is a piezoelectric transformer, the optimized actuation proposed in the 142 Lin case 11 '143 is the optimized inductor in the case, 144 is the ground terminal, and 145 is the feedback inductor in the case. , ⑽ The motor can reach the best working circuit of the piezoelectric transformer. The aforementioned new inner valley of the optimized design method proposed in this case shall be the scope of the application included in the case, as defined by the scope of the attached patent application. ’Any different combination but created using this case, so the scope of protection of the present invention

Claims (1)

200531322 拾、申請專利範圍: 1. 一種具最佳化條件之高效率壓電變壓器,該高效率壓電變壓器工作在 一指定的工作模態,並可將所輸入的電能以另一種電能形式輸^到其負 載,該高效率壓電變壓器包含: 八、 至少一組模態致動器設置在該高效率壓電變壓器,該模態感應子以其 效電極形狀匹配其工作模態之應變分佈,以達到該高效率致動器電^ 機械能之最佳化設計;與 & 至少一組模態感應子設置在該高效率壓電變壓器,該模態感應子之輸出200531322 Scope of patent application: 1. A high-efficiency piezoelectric transformer with optimized conditions. The high-efficiency piezoelectric transformer works in a specified working mode and can input the input power in another form of power. ^ To its load, the high-efficiency piezoelectric transformer includes: 8. At least one set of modal actuators is disposed on the high-efficiency piezoelectric transformer, and the modal inductor matches the strain distribution of its working mode with the shape of its effective electrode. To achieve the optimized design of the electrical energy of the high-efficiency actuator; and & at least one set of modal inductors is disposed on the high-efficiency piezoelectric transformer, and the output of the modal inductors 靜態電容等效電子阻抗眺貞載阻抗,以翻觀應子機械轉電能 最佳化設計。 2·如申請專利範圍第1項之高效率壓電變壓器,其中該模態致動器係為 一積層式致動器。 ° 3.如申請專利範圍第1項之高效率壓電變壓器,其中該模態感應子係為 一積層式感應子。 4·如申請專利範圍第3項之高效率壓電變壓器,其中該積層式感應子係 以其積層的層數調整輸出阻抗值匹配該負載阻抗。 5·如申請專利範圍第1項之高效率壓電變壓器,其係以其整體尺寸大小 調整輸出阻抗值匹配該負載阻抗。 6·如申請專利範圍第1項之高效率壓電變壓器,其係為一面對面型壓電 變壓器。 7·如申請專利範圍第1項之高效率壓電變壓器,其係為一 R0sen型壓電 變壓器。 8·如申請專利範圍第1項之高效率壓電變壓器,其係為一中央驅動型壓 電變壓器。 9·如申請專利範圍第1項之高效率壓電變壓器,其中該至少一組模態致 動器及至少一組模態感應子係以一絕緣層隔開。 10.如申請專利範圍第2項之高效率壓電變壓器,其中該積層式致動器 係以其積層的層數調整該高效率壓電變壓器之升壓比或降壓比。 11·如申請專利範圍第2項之高效率壓電變壓器,其中該積層式致動器 23 200531322 係以其積層的層數調整輸入阻抗值匹配驅動電路之輪出阻抗,達到輸入 端電子特性之最佳化。 12·如申請專利範圍第1項之高效率壓電變壓器,其係以成整數比的結 構尺寸降低高頻模態效應。 13. —種具最佳化條件之高效率壓電變壓器,該高效率壓電變壓器工作 在一指定的工作模態,並可將所輸入的電能以另一種電能形式輸入到其 負載,該高效率壓電變壓器包含: 至少一組模態致動器設置在該高效率壓電變壓器,該模態感應子以其有 效電極形狀匹配其工作模態之應變分佈,以達到該高效率致動器電能轉 機械能之最佳化設計; 至少一組模態感應子設置在該高效率壓電變壓器,該模態感應子之輸出 靜態電容等效電子阻抗匹配負載阻抗,以達到該感應子機械能轉電能之 最佳化設計;與 至少一組迴授感應子,該迴授感應子的空間位置及形狀的已被指定,且 該空間位置及形狀提供一設計的訊號送回該高效率壓電變壓器之驅動電 路,以驅動該高效率壓電變壓器工作在該指定的工作模態。 14·如申請專利範圍第13項之高效率壓電變壓器,其中該模態致動器為 一積層式致動器。 15·如申請專利範圍第13項之高效率壓電變壓器,其中該模態感應子係 為’^積層式感應子。 16·如申請專利範圍第15項之高效率壓電變壓器,其中該積層式感應子 係以其積層的層數調整輸出阻抗值匹配該負載阻抗。 17·如申請專利範圍第13項之高效率壓電變壓器,其係以其整體尺寸大 小調整輸出阻抗值匹配該負載阻抗。 18·如申請專利範圍第η項之高效率壓電變壓器,其中該積層式致動器 係以其積層的層數調整該高效率壓電變壓器之升壓比或降壓比。 19·如申請專利範圍第14項之高效率壓電變壓器,其中該積層式致動器 係以其積層的層數調整輸入阻抗值匹配驅動電路之輸出阻抗,達到輸入 端電子特性之最佳化。 24 200531322 20·如申請專利範圍第13項之高效率壓電變壓器,其係以成整數比的結 構尺寸降低高頻模態效應。 ^ 21. 如申請專利範圍第13項之高效率壓電變壓器,其中該迴授感應子提 供一設計的迴授資訊給一自激式的電路。 22. 如申請專利範圍第13項之高效率壓電變壓器,其中該至少一組模態 致動器,至少一組模態感應子及至少一組迴授感應子係以絕緣層隔開。 23·如申請專利範圍第13項之高效率壓電變壓器,其係為一面對面型壓 電變壓器。 24·如申請專利範圍第13項之高效率壓電變壓器,其係為一 R〇seri型壓 | 電變壓器。 25如申請專利範圍第13項之高效率壓電變壓器,其係為一中央驅動型 壓電變壓器。 X ' 26· 一種具最佳化條件之高效率壓電變壓器,該高效率壓電變壓器工作在 * 一指定的工作模態,並可將所輸入的電能以另一種電能形式輸入到其負 載,該高效率壓電變壓器包含: 至少一組模態致動器設置在該高效率壓電變壓器,該模態感應子以其有 效電極形狀匹配其工作模態之應變分佈,以達到該高效率致動器電能轉 機械能之最佳化設計; 至少一組模態感應子設置在該高效率壓電變壓器,該模態感應子之輸出 I 靜誠容等效電子阻抗匹配貞難抗,以_域應子機械_電能之 最佳化設計;與 至少一組迴授感應子,該迴授感應子的空間位置及形狀的已被指定,且 该空間位置及形狀提供一設計的訊號送回該高效率壓電變壓器之電路, 以驅動該高效率壓電變壓器工作在該指定的工作模態;其中 該高效率壓電變壓器的結構尺寸成一整數比以降低高頻雜訊。 27·如申請專利範圍第26項之高效率壓電變壓器,其中該模態致動器係 為積層式致動器。 28·如申請專利範圍帛2㈣之高效率壓電變壓器,其中該模態感應子係 為一積層式感應子。 25 200531322 29·如申請專利範圍第28項之高效率壓電變壓器,其中該積層式感應子 係以其積層的層數調整輸出阻抗值匹配該負載阻抗。 30·如申請專利範圍第26項之高效率壓電變壓器,其係以其整體尺寸大 小調整輸出阻抗值匹配該負載阻抗。 31·如申請專利範圍第27項之高效率壓電變壓器,其中該積層式致動器 係以其積層的層數調整該高效率壓電變壓器之升壓比或降壓比。 32·如申請專利範圍第27項之高效率壓電變壓器,其中該積層式致動器 係以其積層的層數調整輸入阻抗值匹配驅動電路之輸出阻抗,達到輸入 端電子特性之最佳化。 θ 33·如申請專利範圍第26項之高效率壓電變壓器,其中該迴授咸庫早接 供一設計的迴授資訊給一自激式的電路。 心^ 34·如申請專利範圍第26項之高效率壓電變壓器,其中該至少一組模態 致動器,至少一組模態感應子及至少一組迴授感應子係以絕緣層隔開。 35·如申請專利範圍第26項之高效率壓電變壓器,其係為一面對面型壓 電變壓器。 36·如申請專利範圍第26項之高效率壓電變壓器,其係為一 R〇sen型壓 電變壓器。 37如申請專利範圍第26項之高效率壓電變壓器,其係為一中央驅動型 壓電變壓器。 ~ 丨 38· —種具最佳化條件之高效率壓電變壓器之設計方法,其步驟包含: A) 決定該高效率壓電變壓器所需提供負載之電壓/電流/瓦數的規格及 所需之升壓比或降壓比; B) 決定該高效率壓電變壓器的工作模態及該負載電路所需之供給電能 的方式; ° C) 將該高效率壓電變壓器的尺寸比例訂為某一特定的整數比; D。)找出該高鱗壓電變壓㈣最佳能量傳輸餅’包含積層式模態致動 器及積層式模態感應子的形狀設計,和所需匹配的負載阻抗; E)改變該高效率壓壓器尺寸或該積層式鶴感應子的層數,調整輸 出阻抗以匹配該負載阻抗; 26 200531322 F) 決定該積層式致動器的層數以達到所需之升壓比或降壓比; G) 選定該高效報輕壓H鶴電路的方法,以驅使該高效賴電變壓 器工作在一設計的最佳化工作模態;與 H) 設置最少-組迴授感應子’以簡化該高效率壓電變壓器電路元件數 量。 39· -種具最佳化條件之高效率壓電變壓器之設計方法,其步驟包含: a)決定該高效報電㈣n所需提供貞載之電m瓦數的規格及 所需之升壓比或降壓比; B) 決疋該南效率壓電變壓器的X作模態及該貞載電路所需之供給電能 的方式; C) 找出該高效轉f籠器的最佳能量傳輸條件,包含纖致動器及模 態感應子的形狀設計,和所需匹配的負載阻抗; D) 選定該高效率壓電變壓器驅動電路的方法,以驅使該高效率壓電變壓 器工作在一設計的最佳化工作模態;與 E) 設置最少一組迴授感應子,以簡化該高效率壓電變壓器電路元件數 ° 40.如申請專利範圍第39項之高效率壓電變壓器,其尺寸比例係為特定 整數比。 41·如申請專利範圍第39項之高效率壓電變壓器,其係以改變該高效率 壓電變壓器的尺寸而調整輸出阻抗以匹配該負載阻抗。 42·如申請專利範圍第39項之高效率壓電變壓器,其中該模態致動器係 為一積層式致動器。 43·如申請專利範圍第42項之高效率壓電變壓器,其中該積層式致動器 係以改變其層數達到所需之升壓比或降壓比。 45·如申請專利範圍第39項之高效率壓電變壓器,其中該模態感應子係 為一積層式感應子。 46·如申請專利範圍第45項之高效率壓電變壓器,其中該積層式感應子 係以改變其層數調整輸出阻抗以匹配該負載阻抗。 27The equivalent electronic impedance of the static capacitor looks at the impedance of the load, in order to look at the optimized design of the mechanical energy conversion of the reactor. 2. The high-efficiency piezoelectric transformer according to item 1 of the application, wherein the modal actuator is a multilayer actuator. ° 3. The high efficiency piezoelectric transformer according to item 1 of the patent application, wherein the modal inductor is a multilayer inductor. 4. The high-efficiency piezoelectric transformer according to item 3 of the patent application, wherein the multi-layer inductive subsystem adjusts the output impedance value to match the load impedance with the number of layers of the multi-layer inductor. 5. If the high-efficiency piezoelectric transformer in item 1 of the scope of patent application, its output impedance value is adjusted to match the load impedance with its overall size. 6. The high-efficiency piezoelectric transformer according to item 1 of the patent application scope, which is a face-to-face piezoelectric transformer. 7. The high-efficiency piezoelectric transformer according to the first patent application scope, which is a R0sen type piezoelectric transformer. 8. The high-efficiency piezoelectric transformer according to item 1 of the scope of patent application, which is a centrally driven piezoelectric transformer. 9. The high-efficiency piezoelectric transformer according to item 1 of the application, wherein the at least one set of modal actuators and the at least one set of modal inductors are separated by an insulating layer. 10. The high-efficiency piezoelectric transformer according to item 2 of the application, wherein the multi-layer actuator adjusts the step-up ratio or step-down ratio of the high-efficiency piezoelectric transformer by the number of layers of the multi-layer actuator. 11. The high-efficiency piezoelectric transformer according to item 2 of the patent application, wherein the multilayer actuator 23 200531322 adjusts the input impedance value to match the wheel output impedance of the driving circuit with the number of layers of the multilayer actuator to achieve the electronic characteristics of the input end. optimize. 12. The high-efficiency piezoelectric transformer, such as the first item in the scope of patent application, reduces the high-frequency modal effect with a structure size that is an integer ratio. 13. —A kind of high-efficiency piezoelectric transformer with optimized conditions. The high-efficiency piezoelectric transformer works in a specified working mode and can input the input electric energy to its load in another form of electric energy. The efficiency piezoelectric transformer includes: at least one set of modal actuators disposed on the high-efficiency piezoelectric transformer, and the modal inductor matches the strain distribution of its working mode with its effective electrode shape to achieve the high-efficiency actuator. Optimized design of electrical energy to mechanical energy; at least one set of modal inductors is set on the high-efficiency piezoelectric transformer, and the output static capacitance of the modal inductors is equivalent to the electronic impedance matching the load impedance to achieve the mechanical energy of the inductors. Optimized design of transfer power; and at least one set of feedback inductors, the spatial position and shape of the feedback inductors have been specified, and the spatial position and shape provide a designed signal to return the high-efficiency piezoelectric The transformer driving circuit drives the high-efficiency piezoelectric transformer to work in the specified working mode. 14. The high-efficiency piezoelectric transformer according to item 13 of the application, wherein the modal actuator is a multilayer actuator. 15. The high-efficiency piezoelectric transformer according to item 13 of the application, wherein the modal inductor is a 'multilayer inductor'. 16. The high-efficiency piezoelectric transformer according to item 15 of the application, wherein the multilayer induction system adjusts the output impedance value to match the load impedance by the number of layers of the multilayer inductor. 17. The high-efficiency piezoelectric transformer such as the 13th in the scope of patent application, which adjusts the output impedance value to match the load impedance with its overall size. 18. The high-efficiency piezoelectric transformer according to item η of the patent application range, wherein the multi-layer actuator adjusts the step-up ratio or step-down ratio of the high-efficiency piezoelectric transformer by the number of layers of the multi-layer actuator. 19. The high-efficiency piezoelectric transformer according to item 14 of the scope of patent application, wherein the multi-layer actuator adjusts the input impedance value to match the output impedance of the driving circuit by the number of layers of the multi-layer actuator, so as to optimize the electronic characteristics of the input end. . 24 200531322 20 · The high-efficiency piezoelectric transformer according to item 13 of the scope of patent application, which reduces the high-frequency modal effect with a structure size that is an integer ratio. ^ 21. The high efficiency piezoelectric transformer according to item 13 of the patent application, wherein the feedback inductor provides a designed feedback information to a self-excited circuit. 22. The high-efficiency piezoelectric transformer according to item 13 of the application, wherein the at least one set of modal actuators, at least one set of modal inductors, and at least one set of feedback inductors are separated by an insulating layer. 23. The high-efficiency piezoelectric transformer according to item 13 of the scope of patent application, which is a face-to-face piezoelectric transformer. 24. The high-efficiency piezoelectric transformer according to item 13 of the scope of patent application, which is a Roseri-type | electric transformer. 25 The high-efficiency piezoelectric transformer according to item 13 of the scope of patent application, which is a center-driven piezoelectric transformer. X '26 · A high-efficiency piezoelectric transformer with optimized conditions. The high-efficiency piezoelectric transformer operates in a specified operating mode, and can input the input power into its load in another form of power. The high-efficiency piezoelectric transformer includes: at least one set of modal actuators disposed on the high-efficiency piezoelectric transformer, and the modal inductor matches the strain distribution of its working mode with its effective electrode shape to achieve the high-efficiency piezoelectric transformer. Optimal design of the actuator's electrical energy into mechanical energy; at least one set of modal inductors is set in the high-efficiency piezoelectric transformer, and the output of the modal inductors Domain Yingzi Machinery_Optimized design of electric energy; and at least one set of feedback inductors, the spatial position and shape of the feedback inductors have been specified, and the spatial position and shape provide a designed signal to return to the A circuit of a high-efficiency piezoelectric transformer to drive the high-efficiency piezoelectric transformer to work in the specified working mode; wherein the structure size of the high-efficiency piezoelectric transformer is an integer ratio to reduce high frequency News. 27. The high-efficiency piezoelectric transformer according to item 26 of the application, wherein the modal actuator is a multilayer actuator. 28. A high-efficiency piezoelectric transformer with a patent scope of 帛 2㈣, wherein the modal inductor is a multilayer inductor. 25 200531322 29. The high-efficiency piezoelectric transformer according to item 28 of the application, wherein the multilayer induction system adjusts the output impedance value to match the load impedance with the number of layers of the multilayer inductor. 30. For the high-efficiency piezoelectric transformer according to item 26 of the patent application, the output impedance value is adjusted to match the load impedance with its overall size. 31. The high-efficiency piezoelectric transformer according to item 27 of the application, wherein the multi-layer actuator adjusts the step-up ratio or step-down ratio of the high-efficiency piezoelectric transformer by the number of layers of the multilayer actuator. 32. If the high-efficiency piezoelectric transformer according to item 27 of the patent application scope, wherein the multilayer actuator is to adjust the input impedance value to match the output impedance of the driving circuit with the number of layers of the multilayer actuator, to optimize the electronic characteristics of the input end. . θ 33. The high-efficiency piezoelectric transformer according to item 26 of the patent application scope, wherein the feedback storage is provided with a designed feedback information to a self-excited circuit. ^ 34. The high efficiency piezoelectric transformer according to item 26 of the application, wherein the at least one set of modal actuators, at least one set of modal inductors and at least one set of feedback inductors are separated by an insulating layer. . 35. The high-efficiency piezoelectric transformer, such as the scope of application for patent No. 26, is a face-to-face piezoelectric transformer. 36. The high-efficiency piezoelectric transformer according to item 26 of the patent application, which is a Rosen-type piezoelectric transformer. 37 The high-efficiency piezoelectric transformer according to item 26 of the patent application, which is a center-driven piezoelectric transformer. ~ 丨 38 · —A method for designing a high-efficiency piezoelectric transformer with optimized conditions. The steps include: A) Determine the specifications of the voltage / current / wattage of the load that the high-efficiency piezoelectric transformer needs to provide. Step-up ratio or step-down ratio; B) determine the working mode of the high-efficiency piezoelectric transformer and the way of supplying power required by the load circuit; ° C) set the size ratio of the high-efficiency piezoelectric transformer to a certain A specific integer ratio; D. ) Find out the best energy transmission cake of the high-scale piezoelectric transformer 包含 includes the shape design of the multilayer modal actuator and the multilayer modal inductor, and the load impedance required to match; E) Change the high efficiency The size of the compressor or the number of layers of the multilayer crane inductor, adjust the output impedance to match the load impedance; 26 200531322 F) determine the number of layers of the multilayer actuator to achieve the required step-up or step-down ratio G) the method of selecting the high-efficiency light-voltage H crane circuit to drive the high-efficiency electric transformer to work in a design optimized operating mode; and H) setting the minimum-group feedback inductor to simplify the high-voltage Number of efficiency piezoelectric transformer circuit elements. 39 ·-A method for designing a high-efficiency piezoelectric transformer with optimized conditions, the steps include: a) determining the specifications of the electrical m watts required for the high-efficiency power transmission and the required boost ratio Or step-down ratio; B) determine the X-mode of the South-efficiency piezoelectric transformer and the way of supplying power required by the load-bearing circuit; C) find out the optimal energy transmission conditions of the high-efficiency converter cage, Including the shape design of the fiber actuator and the modal inductor, and the matching load impedance required; D) The method of selecting the high-efficiency piezoelectric transformer driving circuit to drive the high-efficiency piezoelectric transformer to work in the most designed Optimize the working mode; and E) Set at least one set of feedback inductors to simplify the number of circuit elements of the high-efficiency piezoelectric transformer. Is a specific integer ratio. 41. The high-efficiency piezoelectric transformer according to item 39 of the scope of the patent application, which adjusts the output impedance to match the load impedance by changing the size of the high-efficiency piezoelectric transformer. 42. The high-efficiency piezoelectric transformer according to item 39 of the application, wherein the modal actuator is a multilayer actuator. 43. The high-efficiency piezoelectric transformer according to item 42 of the application for a patent, wherein the multi-layer actuator is to change the number of layers to achieve the required step-up ratio or step-down ratio. 45. The high-efficiency piezoelectric transformer according to item 39 of the application, wherein the modal inductor is a multilayer inductor. 46. The high-efficiency piezoelectric transformer according to item 45 of the application, wherein the multilayer induction system adjusts the output impedance to match the load impedance by changing the number of layers. 27
TW94106441A 2004-03-04 2005-03-03 Optimized piezoelectric transformer apparatus with maximum energy conversion efficiency TW200531322A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/793,837 US20040174098A1 (en) 2003-03-04 2004-03-04 Optimized piezoelectric transformer apparatus with maximum energy conversion efficiency

Publications (1)

Publication Number Publication Date
TW200531322A true TW200531322A (en) 2005-09-16

Family

ID=52348466

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94106441A TW200531322A (en) 2004-03-04 2005-03-03 Optimized piezoelectric transformer apparatus with maximum energy conversion efficiency

Country Status (1)

Country Link
TW (1) TW200531322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071225A (en) * 2016-03-07 2018-12-21 爱普科斯公司 It is used to prepare the method for ozone and the equipment for generating ozone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071225A (en) * 2016-03-07 2018-12-21 爱普科斯公司 It is used to prepare the method for ozone and the equipment for generating ozone
CN109071225B (en) * 2016-03-07 2022-11-04 爱普科斯公司 Method for producing ozone and device for producing ozone
US11792910B2 (en) 2016-03-07 2023-10-17 Tdk Electronics Ag Process for producing ozone and apparatus for ozone generation

Similar Documents

Publication Publication Date Title
Kim et al. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting
Uchino Piezoelectric energy harvesting systems—essentials to successful developments
Kang et al. High power magnetic field energy harvesting through amplified magneto‐mechanical vibration
Jafferis et al. Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency
US6051915A (en) Piezoelectric transformer
Zhuang et al. Power conversion efficiency and equivalent input loss factor in magnetoelectric gyrators
Liu et al. High output power density and strong vibration durability in a modified barbell-shaped energy harvester based on multilayer Pb (In1/2Nb1/2) O3–Pb (Mg1/3Nb2/3) O3–PbTiO3 single crystals
Leung et al. Enhanced stability of magnetoelectric gyrators under high power conditions
Priya High power universal piezoelectric transformer
Leung et al. A dual-output magnetoelectric gyrator
TW200531322A (en) Optimized piezoelectric transformer apparatus with maximum energy conversion efficiency
WO1997028568A1 (en) Piezoelectric transformer
JP5582261B2 (en) Piezoelectric transformer, piezoelectric transformer module and wireless power transmission system
Wu et al. An electromechanical model for a clamped–clamped beam type piezoelectric transformer
US20040174098A1 (en) Optimized piezoelectric transformer apparatus with maximum energy conversion efficiency
Hemsel et al. Model based analysis of piezoelectric transformers
KR100550848B1 (en) Piezo-electric transformer with symmetric and asymmetric electrode structures
Nations et al. Magnetoelectric Voltage Tunable Inductors for Power Electronics Applications
KR100550849B1 (en) Piezo-electric transformer with improved temperature stability
Wang et al. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design
Avadhanula et al. Finite Element Analysis and Mathematical Modelling of Rosen Piezoelectric Transformer: A Review
Su Power Enhancement of Piezoelectric Technology based Power Devices by Using Heat Transfer Technology
CN1300087A (en) Stepdown piezoelectric ceramic autotransformer and its making process
JPH10135529A (en) Driving circuit piezoelectric transformer
Su et al. Design of piezoelectric transformer-based DC/DC converter to improve power by using heat transfer equipment