TW200527105A - Mechanism for controlling independent motion of a video camera in three axes and method for controlling same - Google Patents

Mechanism for controlling independent motion of a video camera in three axes and method for controlling same Download PDF

Info

Publication number
TW200527105A
TW200527105A TW93102980A TW93102980A TW200527105A TW 200527105 A TW200527105 A TW 200527105A TW 93102980 A TW93102980 A TW 93102980A TW 93102980 A TW93102980 A TW 93102980A TW 200527105 A TW200527105 A TW 200527105A
Authority
TW
Taiwan
Prior art keywords
camera
vector
link
angle
video camera
Prior art date
Application number
TW93102980A
Other languages
Chinese (zh)
Other versions
TWI235277B (en
Inventor
Ying-Xing Xiao
Original Assignee
Ying-Xing Xiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ying-Xing Xiao filed Critical Ying-Xing Xiao
Priority to TW93102980A priority Critical patent/TWI235277B/en
Application granted granted Critical
Publication of TWI235277B publication Critical patent/TWI235277B/en
Publication of TW200527105A publication Critical patent/TW200527105A/en

Links

Landscapes

  • Studio Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

This invention provides a mechanism for controlling independent motion of a video camera in three axes and a method for controlling same. The mechanism includes three degrees of freedom, is of low inertia, high stability and allows highly dynamic operation. The mechanism allows the video camera to perform motion like an eyeball so as to allow faster and wider applications. The objects are to be implemented in applications of instantaneous tracking, isometric visions or active visual servers. In addition to the mechanism for controlling independent motion of a video camera in three axes, this invention further discloses a method for controlling such mechanism for controlling independent motion of a video camera in three axes, so as to feature the video camera that is mounted on the mechanism for controlling independent motion of a video camera in three axes, with the functions of visual tracking and active motion control. If the video camera is replaced with a mirror, a laser, and tools alike, it can also be implemented in different fields of applications.

Description

200527105 五、發明說明(1) 【發明所屬之技術領域】 …本發明係有關一種具備三個自由《,擁 、古 穩定性與高動熊運隸笼姓A f貝f生、咼 w、土 轉4特色’且可應用於即時追蹤、立俨 視覺或者主動視謦仞服楚知Μ + ^ 立體 、笛也^服4相關應用領域上之三軸獨立平杆 運動的攝影機控制機構。 平灯 【先前技術】 f年來因為電腦硬體快速發展,讓快速 貫見舉凡工廠製程、國防科技、保全龄批笠 :所視覺的應用例子,的視覺= 制已由傳統的被動視覺伺服朝向主動視覺伺服發展。 的影像飼服控制為例,可以將攝影機架設 標中某—個固定點上,以被動模式觀測機械臂的 此為固定式攝影機座標;亦可將攝影機架設 3械臂的末端’或者架設在其他可移動的機構上,根據 定移動模式’觀測機械臂的狀態,稱此為動態攝影 :it兩種系統說明了攝影機主動視覺伺服以及被動 視覺伺服的區別。 控制主動視覺伺服的攝影機運動機構,其自由度 (Degree of Freed〇m ,簡稱D〇F)可分成:移動自由度及轉 動自由度’這兩種自由度都分別涵蓋三個獨立變數,意即 攝影機在三維的空間運動可以有六個D〇F 。不幸地,:於 攝影機架設機構的限制,一般機構通常不足六個d〇f ,或 者為了保留D0F卻縮減了其他D0F的操作空間與致動力。200527105 V. Description of the invention (1) [Technical field to which the invention belongs]… The present invention relates to a kind of three kinds of freedoms, including, ancient stability, and high-activity bears. Turn 4 features' and can be applied to the camera control mechanism of three-axis independent flat-rod motion in the related application fields of real-time tracking, Rich Vision or active vision service M + ^ Stereo, 也 also 笛 service 4 related applications. Flat Light [Previous Technology] Because of the rapid development of computer hardware in the past f years, it has made rapid observations of factory processes, national defense technology, and full-time approval: the application examples of vision, vision = the system has shifted from traditional passive visual servo to active vision Servo development. As an example, you can set the camera rack at a fixed point in the camera frame and observe the robot arm in passive mode. This is the fixed camera coordinate; you can also set the camera frame at the end of the 3 arm or other On a movable mechanism, the state of the robotic arm is observed according to the fixed movement mode, which is called dynamic photography: it two systems illustrate the difference between active visual servoing and passive visual servoing of the camera. The degree of freedom (Degree of Freedom, D0F) of the camera movement mechanism that controls the active visual servoing can be divided into: freedom of movement and freedom of rotation 'These two degrees of freedom each include three independent variables, which means that The camera can move in six dimensions in three dimensions. Unfortunately, due to the limitation of the photography frame setting mechanism, the general mechanism is usually less than six dof, or in order to retain the DOF, the operating space and driving force of other DOF are reduced.

m 第5頁 200527105 五、發明說明(2) 目前,大部分的 D〇F ,可自由操控攝 2 - D0F運動機構需要 方程式或奇異點分析 攝影機視角可由水平 有視軸方向的自轉。 機構,直觀的做法便 入自轉機構,如此勢 機構配線而縮減機構 立平行的運動機構及 制0 攝影機主動 影機水平及 的製作成本 ,就能適當 角與垂直角 若想要製作 疋在2 - D〇F 必造成控制 的轉動空間 其控制方法 視覺伺服 垂直方向 少,無須 地加以控 來定義, 有視轴方 運動機構 馬達負載 。因此, 可以解決 機構都只有2個 的運動。通常’ 推導複雜的運動 制,此種機構的 鏡頭不會也無法 向的3-D0F運動 的内部或外部加 負荷過大,或因 本發明的三轴獨 上述的缺點及限m page 5 200527105 V. Description of the invention (2) At present, most DOFs can be manipulated freely. 2-D0F motion mechanism requires equation or singular point analysis. The camera's angle of view can be rotated by the horizontal and boresight direction. The mechanism, the intuitive method, will be incorporated into the rotation mechanism, so that the wiring of the mechanism can reduce the mechanism of the parallel motion mechanism and the production cost of the active camera. The appropriate angle and vertical angle can be produced. DOF will cause a controlled turning space, and its control method has less visual servo vertical direction, which need not be controlled to define. There is a motor load of the boresight-side movement mechanism. Therefore, it can be solved that the mechanism has only 2 movements. In general, a complex motion system is derived. The lens of such a mechanism will not and cannot move the internal or external load of the 3-D0F motion too much, or the above-mentioned disadvantages and limitations of the three-axis alone of the present invention

&衣作成本與操作簡易度上,固然2 — D0F運動機構較 炎’然而在應用層面上卻遠不及三轴獨立平行運動機 、。為了縮短即時追蹤的延遲問題,需善用該結構的高靈 1,,為了提幵動態影像擷取的品質,需善用該結構的高 穩疋性;為了方便置換不同規格的攝影裝置,需善用該結 構充足的裝配空間;為了模擬人類的視覺系統,需善用該 結構的自旋特性,諸如這些優勢,都不是2_D〇F運動機構 或者一般3-D0F運動機構可以辦到的,本發明的三轴獨立 平行運動機構具有上述的基本特性。 【發明内容】 本發明之主要目的,係提出一種高性能且能達到即時 飼服控制的三轴獨立平行運動機構,此機構可讓攝影機有& Cost of clothing and ease of operation, although 2 — D0F kinematic mechanism is more inflamed ', but in terms of application, it is far less than the three-axis independent parallel motion machine. In order to reduce the delay problem of real-time tracking, it is necessary to make good use of this structure. In order to improve the quality of dynamic image capture, it is necessary to make good use of the high stability of the structure. Make good use of the sufficient assembly space of the structure; in order to simulate the human visual system, it is necessary to make good use of the spin characteristics of the structure, such as these advantages, are not available for 2_DOF motion mechanism or general 3-D0F motion mechanism. The invented three-axis independent parallel motion mechanism has the above-mentioned basic characteristics. [Summary of the invention] The main purpose of the present invention is to propose a high-performance and three-axis independent parallel motion mechanism capable of real-time feeding control. This mechanism allows the camera to have

200527105 五、發明說明(3) 3-D0F的轉向控制裝置。本發明設計的機構具3_D〇p球 平打運動,有最佳動態特性準則··(〗)對稱性, 間最大化,(3)均向性。再考慮旋轉慣量,避免整體ς 的敏捷度降低,故將球面連桿設計成四分之一且 佳=敏⑨’且致動能力良好。此一機構具備最敏捷的: 何參數,若儘可能減輕結構材料與負载機件的 設法降低關節轴的磨擦係數,球面 度 = ,可以得到非常卓越的運動表現。此-三轴獨::行2 ίί轉Ϊΐΐ和Ϊ的眼球十分相近’在正負3°。範圍的轴 二==高;速/由於此-機構具有 。 逆動稳疋度其角速度可以達到1〇〇〇 /sec ,角加速度也可以達到2〇〇〇〇 。/sec2以上, 機的運動控制上是絕佳的伺服機構, ^ 理機的技術,製作出此運動機構的控制:…利用微處 【實施方式】 合圖,將本創作較佳實施例詳細說明如下: 。f= 一疋^發明所設計的三轴獨立平行運動機構圖 九达# 一正二角形基板作為裝配馬達20的底座,稱之 了代夺ΐ ,再以另一個正三角形基板當成受控基板30 法2影機的受控圓盤31,此三角形基板的中心點 的二4 ί :制攝影機的鏡頭中心轴線,因此攝影機框架 梯形方體表示馬達置於 貝點’連接二個馬達2〇轉轴的是,相同 200527105 五、發明說明(4) ' ' ' 半徑的球面形運動連桿,稱之為外連桿41,再選擇半徑較 小的球面形運動連桿與外連桿4丨固定連結,稱之為中連桿 4 2,接著以半杈更小的球面形運動連桿,以活動連結方式 ^連接末端的受控基板30與中連桿42,稱此連桿為内連桿 一 特,將第一圖中的一軸的三個連桿41、42、43展開表 示,如第二圖所示。由於外連桿41與中連桿42以固定方式 連結,故可視為一體,稱之為受控連桿4〇1 ,同理,内連 桿43與中連桿42以軸承連結可以稱為活動連桿4〇2 ,圖中 的關節轴40即為受控連桿401與活動連桿4〇2的連結處, 内連桿43與受控圓盤31也是經轴承連結。此一機構^有三 個固定驅動軸以及六個活動轴,三個馬達2〇便是藉著改變 三個受控連桿401的轉角,間接控制受控基板3〇的法線方 向,意即本發明的攝影機視角方向。所以,本發明的3_ D0F的意義,便是藉由控制三馬達2〇的轉轴角度,來決定 攝影機視角的水平運動、垂直運動以及自旋運動。其中, 三角形受控基板30係裝設在受控圓盤3丨底部。 ’、 為了方便說明三軸獨立平行運動機構的幾何關係,將 第-圖簡化如第三圖所示。由此圖可以觀察到整個3一_ 運動機構的:心位置,意即第一圖的中空地帶。若將此機 構中心看成球心位置,則受控連桿4〇1肖活動連桿4〇2的 動作空間集合’便形1¾兩個同心球的球殼,兩個基板ι〇、 30便彷拂兩塊沿著球面滑動的三角板,而三個固定驅動軸 及六個活動轴的轴向方向向量’亦設定成以同一 第8頁 200527105 五、發明說明(5) 點向外延伸。 ,因此稱之為 能力且沒有動 由於此結 何定義上,只 關節軸40的方 性。因此,為 板1 〇設計成等 向向量夾角, 向量夾角。由 依變數,兩者 sin 整個機構最重要的特色就是共球心結構設計 球形平行機構,也是此機構具備全方位致動 作奇異點的主因。 構圖的實際尺寸可依比例放大或縮小,在幾 要決定基板10、30的立體結構角度,以及各 向向量,即可決定此一機構的型式與運作特 了便利設計與分析,將受控基板3〇和底座基 同的立體角度參數·· y為兩任意馬達轴的轴 召為任一馬達轴的轴向向量與基板中心法線 於基板為正三角形之故,所以万和 . 之間的幾何關係可用下式表示: ^ # ----------(1) 接著,將三支受控連桿張·開的弧角以心表示,三 開的弧角以α2表示;用1表示各馬達驅動::輛 3早位向量,Wi表示受控連桿與活動連桿接合處之活的| 卽轴的轴向單位向量,簡稱為受控連桿關節向量,ν 一 1動連桿連結受控基板處之活動關節轴的轴向單位^ β不 簡稱為活動連桿關節向量,i則表示該轴向單旦=, 之馬達序號1、2、3。 门里連結 最後,當設定r、a、%三個角度之後,即可決〜一 個固定向量Ui,再搭配三馬達的轉軸角度,或者由已、知又三 攝影機視角向量起頭,利用下列幾何關係,來尋求:的 量R以及Vi的值: 動向200527105 V. Description of the invention (3) 3-D0F steering control device. The mechanism designed by the present invention has a 3-Dop ball flat play motion, and has the best dynamic characteristic criterion (...) symmetry, maximum time, and (3) homogeneity. Considering the moment of inertia again to avoid the decrease of the overall agility, the spherical link is designed to be a quarter and good = Min 'and the actuation ability is good. This mechanism has the most agile: what parameters, if the structural materials and load components are reduced as much as possible, try to reduce the friction coefficient of the joint shaft, spherical degree =, you can get very excellent sports performance. This-three-axis independence :: Line 2 ίίΪΐΐ Ϊΐΐ and Ϊ's eyeballs are very close 'at plus or minus 3 °. Axis of range two == high; speed / due to this-the body has. The angular velocity of the reverse motion stability can reach 1000 / sec, and the angular acceleration can also reach 20000. Above / sec2, the motion control of the machine is an excellent servo mechanism. ^ The technology of the machine is used to make the control of this motion mechanism: ... using the micro-details [Embodiment] Combining the drawings, the preferred embodiment of this creation will be described in detail as follows: . f = 一 疋 ^ Invented three-axis independent parallel movement mechanism Figure Jiuda # A regular-diagonal base plate is used as the base of the assembling motor 20, which is referred to as ΐ, and another regular triangular base plate is used as the controlled base plate 30 Method 2 The controlled disc 31 of the camera, two 4 of the center point of this triangular base plate: the lens's central axis of the camera, so the trapezoidal cube of the camera frame indicates that the motor is placed at the point, which connects the two motors to the 20 axis of rotation. Yes, the same 200527105 V. Description of the invention (4) The spherical motion link with a radius is called outer link 41, and then a spherical motion link with a smaller radius is fixedly connected to the outer link 4 丨It is called the middle link 42, and then a half-twig smaller spherical motion link is used to connect the controlled base plate 30 at the end with the middle link 42. This link is called the inner link. , The three links 41, 42, 43 of one axis in the first figure are developed and shown, as shown in the second figure. Because the outer link 41 and the middle link 42 are connected in a fixed manner, they can be regarded as a whole, which is called a controlled link 4101. Similarly, the connection between the inner link 43 and the middle link 42 with a bearing can be called a movable The connecting rod 402, the joint shaft 40 in the figure is the connection point between the controlled link 401 and the movable link 402, and the inner link 43 and the controlled disc 31 are also connected via bearings. This mechanism has three fixed drive shafts and six movable shafts. The three motors 20 indirectly control the normal direction of the controlled substrate 3 by changing the rotation angles of the three controlled links 401, which means Invented camera perspective. Therefore, the meaning of 3_D0F of the present invention is to determine the horizontal, vertical, and spin motions of the camera's viewing angle by controlling the rotation angle of the three motors 20. The triangular controlled substrate 30 is mounted on the bottom of the controlled disc 3. To simplify the explanation of the geometric relationship of the three-axis independent parallel motion mechanism, the first figure is simplified as shown in the third figure. From this figure, you can observe the entire 3_ movement mechanism: the heart position, which means the hollow area of the first picture. If the center of this mechanism is regarded as the position of the center of the ball, the action space of the controlled link 401 and the movable link 402 is assembled into a ball shell of two concentric balls, and two base plates, 30 and 30. Imitate two triangular plates sliding along a spherical surface, and the axial direction vectors of three fixed driving shafts and six movable shafts are also set to extend outward with the same point on page 8 200527105 5. Invention Description (5). Therefore, it is called ability and does not move. Because of this definition, only the squareness of the joint axis 40. Therefore, the plate 10 is designed to have an isotropic vector angle and a vector angle. From the dependent variable, the most important feature of the entire mechanism of the two sins is the common spherical center structure design. The spherical parallel mechanism is also the main reason for this mechanism to have a full range of actuation singularities. The actual size of the composition can be scaled up or down according to the proportion. You must determine the three-dimensional structure angles of the substrates 10 and 30 and the vectors in each direction. You can determine the type and operation of this mechanism. It facilitates design and analysis, and controls the substrate. 30. The same three-dimensional angle parameter as the base. Y is the axis of two arbitrary motor shafts. The axial vector of any motor shaft and the center normal of the substrate and the substrate are regular triangles. The geometric relationship can be expressed by the following formula: ^ # ---------- (1) Next, the arc angles of the three controlled connecting rods opened and opened are represented by the center, and the arc angles of the three opened are represented by α2; Use 1 to represent each motor drive :: 3 early-position vectors, Wi represents the active joint of the controlled link and the movable link | the axial unit vector of the stern axis, referred to as the controlled link joint vector, ν-1 The axial unit ^ β of the movable link connected to the movable joint axis at the controlled substrate is not simply referred to as the movable link joint vector, i represents the axial single denier =, and the motor numbers 1, 2, and 3. At the end of the door connection, after setting the three angles of r, a, and%, you can determine a fixed vector Ui, and then match the rotation angle of the three motors, or start from the vector camera perspective vector, using the following geometric relationship, Come to find the value of R and Vi:

200527105 五、發明說明(6) 订1 % = '、= cos y — ^i-cosa, 〜(2) Wi Vi = cos 〇; 2 _____—〜(3 ) 選擇r=9。·、 〜(4) ui ~ ^ 、a = 9CT iu ll 機構的結構參數。 2 马此一三軸獨立平行運動 作控制方法,u=立平行運動的攝影機控制機構之操 由攝景> 機視角向量金二 現此一機構承載控制攝影機耗角度的關係’來實 達控制軸的關係如第四八^ 2法。攝影機視角與馬 度,P是攝影機上下俯仰掃二是攝影·水平掃描的角 ”透過活動連桿關節的广2度;/是攝景:機自旋的角 的幾何關係里:尋V】/、3和受控連上關節向 機構座標定Γ 、m3的對應關係。 動機構的中::不二;γ平面與底座基板平行’ 〇為此運 量為(1 0 0) 界座標的原點,X方向的單位向 向量為(。:0,1);圖5:二位向量為(°,1,0),z方向的單位 ,延伸Z轴的自6古6 Z即為本機構參考的世界座標 點即是麻H 會與底座基板相交於一點0,,此 P疋底座基板的中心點。 第/、圖是以負z軸方向正視底座基板的圖形,圓柱體 π馬達,底座基板中心0,和機構中心〇重疊在一點,” i是200527105 V. Description of the invention (6) Order 1% = ', = cos y — ^ i-cosa, ~ (2) Wi Vi = cos 〇; 2 _____ — ~ (3) Select r = 9. ·, ~ (4) ui ~ ^, a = 9CT iu ll Structure parameters of the mechanism. 2 The three-axis independent parallel motion is used as the control method. The camera control mechanism of u = vertical parallel motion is controlled by the camera > camera angle vector. This mechanism carries the relationship of controlling the angle of the camera's consumption to achieve the control. The relationship of the axes is as the 48th ^ 2 method. Camera angle of view and horse degree, P is the camera ’s pitch up and down, and P is the angle of photography and horizontal scanning. ”It is 2 degrees through the joint of the moving link; , 3, and the corresponding relationship between the controlled joint and the joint to the mechanism coordinates Γ and m3. The middle of the moving mechanism :: Fuji; the γ plane is parallel to the base substrate '〇 For this reason, the original transport capacity is (1 0 0). Point, the unit vector in the X direction is (.: 0, 1); Figure 5: the two-bit vector is (°, 1,0), the unit in the z direction, which extends the Z axis from 6 to 6 Z is the body The reference point of the world is the point where hemp H will intersect with the base substrate at a point 0, which is the center point of the base substrate. Figure / / The figure is the figure of the base substrate when viewed in the negative z-axis direction, a cylindrical π motor, and the base The center of the substrate 0 and the center of the organization 0 overlap at a point, "i is

200527105 :9〇· 五、發明說明(7) 向S I投影到底座基板與X軸投影到底座基板的 定的幾何參數可知:1==-30- 向量K以召與 V i 取代如下所示 Γυ.— IX sin β cos η . ^ TJ. ψ = sin β siii η . IJ. L iz J -cos β η3 = 210_ 夾角,由既 以可將 如第七圖所示,暫時先不考慮自 ,Py, Ρζ)表示攝影機視角方向的單"位向量,X音 平面的法線向量,《為向量Ρ與正ζ軸二夾g 機視角向量遠離Z轴的偏移角度,0則為攝影^ 偏移角度是攝影機視角的垂直偏移角度 如下所示: p P tan 0 = —tan φ = 一Σ.Pl Pa (6) 再由第七圖的幾何關係可以得到攝 軸的關係,此一機構最大操作空間至少^ 偏移,則可由/C推得0和少的邊界條‘2d 以向量P(PX 7受控基板 也就是攝影 i視角的水平 兩者的關係 角向量與Z 的中心轴 下式所示:200527105: 9〇. V. Description of the invention (7) The fixed geometric parameters of the projection onto the base substrate from SI and the projection from the X axis to the base substrate can be known: 1 ==-30- The vector K is replaced by the call Vi as shown below Γυ . — IX sin β cos η. ^ TJ. Ψ = sin β siii η. IJ. L iz J -cos β η3 = 210_ The included angle is as shown in the seventh figure. , (Pζ) represents a single bit vector of the camera's viewing direction, the normal vector of the X sound plane, "is the vector P and the positive z axis two g camera angle vector away from the Z axis, 0 is the camera ^ bias The shift angle is the vertical offset angle of the camera's viewing angle as follows: p P tan 0 = —tan φ = one Σ.Pl Pa (6) The relationship of the camera axis can be obtained from the geometric relationship of the seventh figure, which is the largest in this mechanism. If the operating space is at least ^ offset, 0 and few boundary bars' 2d can be pushed by / C. The relationship between the angle vector and the central axis of Z is given by the vector P (PX 7 controlled substrate, that is, the level of the perspective of the camera i). As shown:

:cos K: cos K

S⑺ 其中,cos70。< cos /c < 1 式中,向量z表示正z轴的單位向量〇 ι 在定義攝影機視角向量的方向後,接著 旋的表示法。受控基板中心點的初始位置^ j > j 攝影機自 世界座標S⑺ Among them, cos70. < cos / c < 1 In the formula, the vector z represents the unit vector of the positive z-axis. After defining the direction of the camera's view vector, it is followed by the representation of rotation. Initial position of the center point of the controlled substrate ^ j > j Camera from world coordinates

第11頁Page 11

200527105 五、發明說明(8) 原點和底座基板中心點成一直線,如第八圖所示,當受控 基板離開初始位置的運動過程中,受控基板的法線向量恒 為攝影機視角向量P ,在垂直視角向量P的受控基板平面200527105 V. Description of the invention (8) The origin and the center point of the base substrate are aligned, as shown in the eighth figure, when the controlled substrate moves away from the initial position, the normal vector of the controlled substrate is always the camera view vector P , Controlled substrate plane at vertical viewing angle vector P

上,可以得到同時垂直Y軸以及單位向量P的單位向量L ’亦可以得到同時垂直單位向量P以及單位向量的單位 向量Ργ,Pxz為該平面上的水平分量,意即在受控基板平面 上和X-Z平面平行的單位向量,Ργ則是在該平面上的垂直 分量,意即Υ軸投影到該平面的單位向量。結合單位向 及Λ位/量Ργ為座標基底,可以建構出受控基板平面 上的運動座標系,其表示如下: 攸十面 Υ X ρAbove, you can get the unit vector L 'of the vertical Y axis and the unit vector P simultaneously. You can also get the unit vector Pγ of the vertical unit vector P and the unit vector at the same time. A unit vector parallel to the XZ plane, and Pγ is the vertical component on the plane, which means the unit vector projected by the Υ-axis to the plane. Combining the unit direction and Λ position / quantity Pγ as the coordinate base, a kinematic coordinate system on the plane of the controlled substrate can be constructed, which is expressed as follows: 十 面 Υ X ρ

0 (9) PVP.0 (9) PVP.

V 式中於ΓΛ〜γ軸的單二量(。―乂? 於第八圖中,Ρ, V里、心丄,。 受控基板的中心點;ν、、早立向ip過該平面的交點,也是 受控基板平面的交' V2 ' %為單位向量I、V2、v3通過 P,為中心的轉動角度。基:在ρ“平面上以 動角度或是觀率繞Γ 觀察党控基板的轉 板轉動…轉動的角度,都可以得到受3 (l,〇。至此’才得以完整表達攝影機視角向ΪΡ基為In the V equation, a single binary quantity on the axis of ΓΛ ~ γ (. — 乂? In the eighth figure, P, V, and 丄, the center point of the controlled substrate; ν, and the vertical direction ip passing through the plane The intersection point, which is also the intersection of the controlled substrate plane, 'V2'% is the rotation angle centered on the unit vector I, V2, v3 through P. Base: Observe the party-controlled substrate on the ρ "plane at a moving angle or viewing rate around Γ The rotation of the turntable ... The angle of rotation can be obtained by 3 (l, 0. At this point, it is possible to fully express the camera's perspective to the ΪΡ 基

1ϋ^ 第12頁 2005271051ϋ ^ Page 12 200527105

五、發明說明(9) 如第九圖所示,向量Ui為第i個馬達的軸向單位向量 ’ϋ為早位向置Ui與馬達轴線垂直的平面的交點。相似、 圖8中的Pxz向量以及Ργ向量,在馬達軸線垂直的平面上可: 得到兩個單位向量UiXY和Uiz,UiXY為該軸線垂直的平面上的 水平分量,意即在該平面和X-Y平面平行的單位向量 則為在該轴線垂直的平面上的垂直分量,意即由z轴投$ zV. Explanation of the invention (9) As shown in the ninth figure, the vector Ui is the axial unit vector of the i-th motor ′ ϋ is the intersection point of the plane where the Ui is perpendicular to the motor axis in the early position. Similarly, the Pxz vector and Pγ vector in Fig. 8 can be obtained on a plane perpendicular to the motor axis: two unit vectors UiXY and Uiz are obtained, and UiXY is the horizontal component on the plane perpendicular to the axis, that is, the plane and the XY plane A parallel unit vector is the vertical component on a plane perpendicular to the axis, which means that $ z is cast from the z-axis

到該平面的單位向量,結合單位向量UiXY以及單位向量U 為座標基底,可以建構出馬達轴線垂直的平面上的固定12座 標系。利用第三圖、第六圖與第九圖的幾何關係,可以得 到UiXY以及uiz的表示式如下·· fThe unit vector to this plane, combined with the unit vector UiXY and the unit vector U as the coordinate base, can construct a fixed 12 coordinate system on a plane perpendicular to the motor axis. Utilizing the geometric relationship between the third, sixth and ninth graphs, the expressions of UiXY and uiz can be obtained as follows: f

-sin η i cos η i-sin η i cos η i

cos β cos η i cos /3 sin η i —」------(12) 式中,向量Z表示正Z轴的單位向量(〇,〇,i)。cos β cos η i cos / 3 sin η i — ”(12) In the formula, the vector Z represents a positive Z-axis unit vector (0, 〇, i).

本發明將第三圖中的A設計成90。,表示向量%正好 落在UiXY-Uiz平面上,因此,Wi隨著馬達轉轴角度mi而^, 換句話說,第九圖中馬達轉動的角度叫就是受控連桿的擺 動角度,為了容易得到叫的大小,考慮機構的初始位置, 將iiii以向量Wi與UiXY的角度瓜丨來表示:In the present invention, A in the third figure is designed as 90. , Indicates that the vector% falls exactly on the UiXY-Uiz plane. Therefore, Wi varies with the motor shaft angle mi. In other words, the angle of the motor rotation in the ninth figure is called the swing angle of the controlled link. Get the size of the call. Considering the initial position of the mechanism, let iiii be represented by the angle between the vector Wi and UiXY:

200527105 五、發明說明(10) __ m i = mi,+ 4 5。---------(13) 至此,已將世界座標X —γ —z,馬 影機視角向量p (PX,Py,Pz)和P ( 0 由的軸向向量Ui,攝 mi作明確的定義,後續將藉由上’述P定^ )以及馬達的轉軸角廣 運動控制與自主運動控制的轉換方弋,介紹此機構追蹤 追蹤運動控制 … 當攝影機架設於此一三轴獨立平 三個馬達讓攝影機指向世界座標的某一運動機構後,控制 種運動控制稱為追蹤運動控制。 點或某一軌跡,此 首先說明第四圖中的關係式A, Vt v V)的古汰 r ^ . m ㊀,Ψ,τ、轉換至( 卜,ν2, ν3>»的方法。如弟七圖所示, 世界庙椤rp ρ d、七主- 辦〜機視角向量P可用 世界座心(Px,Py,Pz)來表不。可以藉著攝 、 求得單位向量Ρ(Ρχ,P” Pz),其關係式如下α φ lph + ι\2 = 1 將式(6)帶入上式後可得: 1 — (14) P. + tau 2β + tan 2φ ' (15) tail 〇 “ 一(16) + tan 2Θ + tan 2φ200527105 V. Description of the invention (10) __m i = mi, + 4 5. --------- (13) So far, the world coordinates X — γ — z, the horse's eye view angle vectors p (PX, Py, Pz) and P (0 are the axial vectors Ui, taken by mi To make a clear definition, the following will introduce the tracking and tracking motion control of this mechanism by using the above-mentioned P determination ^) and the conversion method of the motor's rotating shaft angle wide motion control and autonomous motion control ... When the photography rack is set up in this three-axis independent After the three motors are made to point the camera at a certain motion mechanism of world coordinates, the control motion control is called tracking motion control. Point or a certain trajectory, this first explains the relationship between the equation A, Vt v V) in the fourth figure, ^. M ㊀, Ψ, τ, the method of conversion to (b, ν2, ν3 > ». Rudi As shown in Figure 7, the world temple 椤 rp ρ d, the seven master-office-machine perspective vector P can be represented by the world center (Px, Py, Pz). The unit vector P (Pχ, P can be obtained by photography. "Pz), the relationship is as follows: α φ lph + ι \ 2 = 1 After taking formula (6) into the above formula, we can get: 1 — (14) P. + tau 2β + tan 2φ '(15) tail 〇" One (16) + tan 2Θ + tan 2φ

P tan φ ________ . , 0 N (17) 其中,因為攝影機視角向量永遠指向底座基板前方, 即正Z轴方向,故Pz恆大於零。接著,藉由第八圖定義的兩P tan φ ________., 0 N (17) Where, because the camera's perspective vector always points in front of the base substrate, that is, in the positive Z axis direction, Pz is always greater than zero. Next, the two

第14頁 200527105 五、發明說明(11) 個向量Pxz、Ργ來決定單位向量 (18) P'= cos ψιΡχι + sin ψίΡγ ---- 將式(9 )與式(l 〇 )代入上式可得: P'v, (cosy. 0 + sin ψϊ Ρχ2 +Pa2 --A- -PyPa 2π . (19) 其中Page 14 200527105 V. Explanation of the invention (11) Pxz, Pγ to determine the unit vector (18) P '= cos ψιΡχι + sin ψίργ ---- Substituting equations (9) and (l 〇) into the above equation may Obtain: P'v, (cosy. 0 + sin ψϊ Ρχ2 + Pa2 --A- -PyPa 2π. (19) where

Vi = T1"y+r --------------(20) 最後,經由第三圖與式(l)的幾何定義,藉著受控基 板為正三角形與指定的7和点角度,可以將活動連桿關節向 量Vi以攝影機視角向量P與向量斤表示如下: cos β F -l· sin β P# v 將式(1 9 )代入上式得: (21) V.Vi = T1 " y + r -------------- (20) Finally, through the geometric definition of the third figure and formula (l), the controlled substrate is a regular triangle and the specified 7 and point angles, the joint vector Vi of the movable link can be expressed in terms of camera angle vector P and vector as follows: cos β F -l · sin β P # v Substituting equation (1 9) into the above equation: (21) V .

V£ = cos β pxpy IV £ = cos β pxpy I

YilYil

OTO-R.X sinvi ρχ αΤ P7 p* P* (22) 到目前為止,只要將式(15)、(16)以及式(17)代入上 式即可得到活動連桿關節向量%與攝影機視角向量p (0,妒,r )的轉換關係。 接下來說明第四圖中的關係式B,由(V" y2, v3)轉換至 (I,%,wo的方法。由已定義的結構幾何參數& =3α2 = 9〇。代 入式(3)、(4),可以利用下列關係式得到單位1向量^的表 示式(詳見附錄): 1OTO-RX sinvi ρχ αΤ P7 p * P * (22) So far, as long as Equations (15), (16), and (17) are substituted into the above equations, the movable link joint vector% and the camera perspective vector p (0, jealous, r). Next, the relationship B in the fourth figure will be described, from (V " y2, v3) to (I,%, wo). From the defined structural geometric parameters & = 3α2 = 90. Substitute into the formula (3 ), (4), the following expressions can be used to obtain the unit 1 vector ^ expression (see the appendix for details): 1

第15頁 200527105 五、發明說明(12)Page 15 200527105 V. Description of the invention (12)

得到單位向量Wi後,最後說明第四圖中的關係式c,將 (Wi,W2,W3)轉換至(,in2,m3)的方法。因為 9 0。,向量 % 正好在UiXY-Uiz平面上,如第九圖所示,可以由%與UiXY及Uiz 的内積得到角度叫’如下: ,=tan Ua ) mi Wi Uixr -------(24) 將上式代入式(1 3)後可得控制馬達的轉動角度mi如下:After obtaining the unit vector Wi, finally explain the relationship c in the fourth figure, and convert (Wi, W2, W3) to (, in2, m3). Because 9 0. The vector% is exactly on the UiXY-Uiz plane. As shown in the ninth figure, the angle can be obtained from the inner product of% and UiXY and Uiz. It is called as follows:, = tan Ua) mi Wi Uixr ------- (24 ) Substituting the above formula into the formula (1 3), the rotation angle mi of the control motor can be obtained as follows:

\\V -)+45- (25) 其中,將式(11)、(12)以及式(23)代入上式後可得 受控連桿關節向量I與控制馬達轉動角度叫的關係(詳見 附錄)。 綜合以上的描述,要攝影機追蹤位於世界座標(χ,y,z )的目標,可經由式(22)、(23)及式(25)求得控制馬達的 轉軸角度叫。反之,因為式(22)、(23)以及式(25)無法直 接逆轉換,若想知道當馬達轉轴角度叫時,攝影機指向 何處,必須另外建立逆向關係,此一關係稱為自主運動控 制,說明如後。 自主運動控制 此一機構的自主運動,意指三個控制馬達轉動後,攝 影機會如何運動。首先說明第四圖中的關係式C中由( 轉換至(Wi,W2,W3)的方法。由第九圖得知從馬達 轉軸角度nii逆向推得向量Wi的關係式如下:\\ V-) + 45- (25) Among them, after substituting equations (11), (12), and (23) into the above equation, the relationship between the controlled link joint vector I and the rotation angle of the control motor (detailed See Appendix). Based on the above description, if the camera is to track the target located at the world coordinates (χ, y, z), the angle of the rotation axis of the control motor can be obtained by formulas (22), (23) and (25). Conversely, because equations (22), (23), and (25) cannot be directly reversed, if you want to know where the camera is pointing when the angle of the motor shaft is called, you must also establish a reverse relationship. This relationship is called autonomous motion Control is explained later. Autonomous motion control The autonomous motion of this mechanism means how the camera moves after the three control motors are turned. First, the method of converting from (to (Wi, W2, W3)) in the relational expression C in the fourth diagram is described. According to the ninth diagram, the relational expression of the vector Wi, which is reversely pushed from the motor shaft angle nii, is as follows:

----(26)200527105 五 '發明說明(13) ^^ = 003(111^45 )UOT + sin(m 45β)υ.. 將式(11)及式(1 2)代入上式可得·· cos(n^~45°) -sirnii cosqi + sinCrrii - 45°) cos^co^T οοεβεΐηη. _ 0 _ sinjg ---(27) 接下來說明第四圖中的關係式6,將(Wi,W2,W3)轉換至 (%,V2,V3)的方法:迭代解法。 本機構將第二圖中的6¾2及γ設計成g 〇。 有下列的關係’暫定為一未知常數: 故向量Vi與1---- (26) 200527105 Five 'invention description (13) ^^ = 003 (111 ^ 45) UOT + sin (m 45β) υ .. Substituting formula (11) and formula (1 2) into the above formula can be obtained Cos (n ^ ~ 45 °) -sirnii cosqi + sinCrrii-45 °) cos ^ co ^ T οοεβεΐηη. _ 0 _ sinjg --- (27) Next, we will explain the relationship 6 in the fourth figure. Wi, W2, W3) to (%, V2, V3) method: iterative solution. This mechanism designs 6¾2 and γ in the second figure as g0. Has the following relationship ’is tentatively determined as an unknown constant: therefore the vectors Vi and 1

Vi =ki (W , > ^ v2) v2 =k 2 2 ,V3) V3 =k3 丨(W 3 ^ V,) (28) ,中W1與V2的夾角變化範固為◦。〜180。,當攝影機 9。。,此時-旦機構運動離。開丄時,與%的丈:角為 v2的向量積怪與向量、同向且絕對值 u <立時,向重Wl與 η诚 口 丄、丄, τ值小於1,意即h恆大於1 ,同,另兩式中的k2以及k3條件亦同。接菩,蔣々( 相互代入推導後可得到下列關係: ' V1 = k( X (w2 X (Wf x Y,))) V2 = k(W2 x (W3 x (W, x V2))) V, = k( W3 x (Wj x (W2 x V3})) (29) 其中,式(29)形成一齊次方程式,雖缺v沒 有唯一解,但可以將向量1單位化以取代式(29)的解\因 此’可將式(29)用迭代的形式表示如下· ΙΒΙΊβ· 第17頁 200527105Vi = ki (W, > ^ v2) v2 = k 2 2, V3) V3 = k3 丨 (W 3 ^ V,) (28), the range of the angle between W1 and V2 is fixed as ◦. ~ 180. When the camera 9. . At this time, the -Dan mechanism moves away. At the time of opening and closing, the vector product with the angle v2 is strange to the vector, the same direction and the absolute value u < immediately, the weights W1 and η are equal to 丄, 丄, and the value of τ is less than 1, which means that h is always greater than 1, same, k2 and k3 conditions in the other two formulas are the same. Jie Pu, Jiang Yan (the following relationship can be obtained after substituting for each other: 'V1 = k (X (w2 X (Wf x Y,))) V2 = k (W2 x (W3 x (W, x V2))) V , = k (W3 x (Wj x (W2 x V3))) (29) where equation (29) forms a homogeneous equation, although v lacks a unique solution, you can unitize vector 1 to replace equation (29) The solution \ Therefore, the equation (29) can be expressed in an iterative form as follows · ΙΒΙΊβ · Page 17 200527105

五、發明說明(14) vi|〇i = W.xCW.xCW 1拉-1】〉) W2x(W3x(WlXY2|iil】》 W3x(W1x(W2xV^.11)) V. (30) 其中,η為迭代的次數,每次迭代計算後都要將向量 [η]單位化’經過η次迭代計算後,若與非常接 近’則可將Vi[n]視為式(29 )的解。迭代計算的過程,以 0 = P = τ =0。時的Vi為初始值Vi⑷開始迭代計算 的次數,應該視精密度的需求而定。 最後,說明第四圖中的關係式A ,將(V" V2, V3)轉換至 (Θ, p,r)的方法。由受控基板為正三角形的幾何特性, 攝影機視角方向向量p(px,py,PZ)與活動連桿關節向量v的 關係可用下式表示: 1 V; 至於迭代 (31) 得到攝影機視角方向向量P(Px,Py,Pz)後,可利用式(6) 攝影水平偏移角度與垂直偏移角度(0,少)。又從第八 田侍知,可由向量Ϋ7?Τ在Ρχζ-Ργ平面上的斜率得到攝影機 的自旋角度7:,其關係式如下 (V7-V2> ρ~ (32) 八I其中,受制於反三角函數的值域區間限制,應該注意 1 : kΡχι若為負號,得到的Γ值必須再加上1 8 0。才是 <解。 ,合以上的轉換方法,在第四圖中除了轉換關係Β的 °呆作外,其餘都有精確的數學表示式,所以可以獲得V. Description of the invention (14) vi | 〇i = W.xCW.xCW 1 pull-1]>) W2x (W3x (WlXY2 | iil)》 W3x (W1x (W2xV ^ .11)) V. (30) where, η is the number of iterations. After each iteration calculation, the vector [η] must be unitized. After η iteration calculations, if it is very close to, then Vi [n] can be regarded as the solution of equation (29). Iteration The calculation process is based on 0 = P = τ = 0. Vi is the initial value. Vi⑷ The number of iterations to start iterative calculations should depend on the demand for precision. Finally, the relationship A in the fourth figure will be described. (V & quot V2, V3) to (Θ, p, r). From the geometric characteristics of the controlled substrate being a regular triangle, the relationship between the camera viewing direction vector p (px, py, PZ) and the moving link joint vector v is available The following formula is expressed: 1 V; As for iteration (31) to obtain the camera viewing direction vector P (Px, Py, Pz), you can use formula (6) to photograph the horizontal offset angle and vertical offset angle (0, less). From the knowledge of Eighth Field, the camera's spin angle 7 can be obtained from the slope of the vector Ϋ7ΫΤ on the χχ-ργ plane: Its relationship is as follows (V7-V2 > ρ ~ (32) Eight I, which is restricted Due to the limitation of the range of the inverse trigonometric function, it should be noted that 1: if kρχι is negative, the value of Γ must be added to 1 8 0. It is the < solution. The combination of the above conversion methods is shown in the fourth figure. Except for the conversion of the relationship B, the rest have accurate mathematical expressions, so you can get

ΗΗ

第18頁 200527105 五、發明說明(15) ----- 正確的控制,關於轉換關係6的逆向操作,也可以用前述 迭代解法求出精確的控制量。 追蹤運動控制範例 、、第十圖所示,是以攝影機視角向量沿一正方形路徑, ,逆時針方向作等速運動,做為追蹤運動控制的範例。將 打經路徑等距分割成兩百個取樣點作控制計算,此一正方 形路徑的水平視角及直直視角的變化,如第十一圖及第十 二圖所示,表示控制攝影機視角向量的水平及垂 圍為± 20。。 且逆勁粑 攝影機自旋角度分別設定為〇。以及± 1 5。,計算三 馬達軸的控制量,其計算結果如第十三圖至第十五圖所 不 ° 自主運動控制範例 、,此自主運動控制的控制範例,可以表示出此三轴獨 立平行運動機構的均向性。如第十六圖、第十七圖及第十 八圖所不’將三轴馬達的轉動路徑控制為各相差12〇。的正 弦運動,隨著三轴馬達的轉動,攝影機視角向量0、%、r 的變化如第十九圖、第二十及二十一圖所示。此一控制是 以兩百個等距取樣點對整個控制路徑做計算。 結論 口本發明的三軸獨立平行運動機構不同於一般的3_d〇f 的操作機構,該結構的奇異點不存在於操作空間,運動空 間I達最大化,其結構的對稱性使動作全面均向性。除了 可回速運轉以及瞬間加速外,在靈敏度與穩定性上也將承Page 18 200527105 V. Description of the invention (15) ----- For the correct control, the inverse operation of the conversion relation 6 can also be obtained by the foregoing iterative solution method to obtain the precise control amount. Examples of tracking motion control Figures 10 and 10 show an example of tracking motion control in which a camera's view vector moves along a square path in a counter-clockwise direction at a constant speed. The warp path is equally divided into two hundred sampling points for control calculation. The changes in the horizontal and straight viewing angles of this square path are shown in Figures 11 and 12, which represent how to control the camera's viewing vector. The horizontal and vertical dimensions are ± 20. . And the camera spin angle is set to 0. And ± 1 5. Calculate the control amount of the three-motor axis. The calculation results are as shown in Figures 13 to 15. ° Example of autonomous motion control. This control example of autonomous motion control can show the three-axis independent parallel motion mechanism. Uniformity. As shown in the sixteenth, seventeenth, and eighteenth drawings, the rotation paths of the three-axis motors are controlled to differ by 120. With the rotation of the three-axis motor, the changes in the camera's viewing angle vector 0,%, and r are shown in Figure 19, Figure 20, and Figure 21. This control uses two hundred equally spaced sampling points to calculate the entire control path. Conclusion The three-axis independent parallel motion mechanism of the present invention is different from the ordinary 3_d0f operation mechanism. The singularity of the structure does not exist in the operation space, and the motion space I is maximized. The symmetry of the structure makes the movement fully uniform. Sex. In addition to revolving speed and instant acceleration, it will also support sensitivity and stability.

第19頁 200527105 五、發明說明(16) 受負載的影響減至最低,是一種極佳的控制機構。 控制此一三軸獨立平行運動機構的方法是,找出三軸 馬達轉角與攝影機視角的對應關係來完成。如文中所述, 其中有非唯一解的問題,本發明用迭代解法求解,並以追 蹤運動控制及自主運動控制為範例,證明在設定的操作區 間内,此一三轴獨立平行運動機構是可行的,而且是可以 適當的加以控制。Page 19 200527105 V. Description of the invention (16) The influence of the load is minimized, which is an excellent control mechanism. The method of controlling this three-axis independent parallel motion mechanism is to find out the correspondence between the rotation angle of the three-axis motor and the camera's viewing angle. As described in the text, there is a non-unique solution to the problem. The present invention uses an iterative solution to solve the problem, and uses tracking motion control and autonomous motion control as examples. It proves that this three-axis independent parallel motion mechanism is feasible in the set operation interval. And it can be controlled appropriately.

第20頁 200527105Page 20 200527105

圖式簡單說明 圖式說明 第一 第二 第三 第四 第五 第六 第七 第八 第九 第十 第十 第十 第十 第十 第十 圖··本發明三軸獨立平行運動機構纽人圖 圖:本發明三轴獨立平行運動機構的;:結構圖 〇 圖:本發明三軸獨立平行運動機構之幾何示意圖 〇 圖·本發明表示攝影機視角向罝與馬達控制軸角 度關係方塊圖。 圖:本發明機構參考之世界座標示意圖。 圖:本發明機構之底座基板負z軸方向視圖。 圖·攝影機視角向量示意圖。 · 圖·攝影機自旋角度示意圖。 圖·馬達轉軸角度示意圖。 f i追蹤運動控制路徑示意圖。 二追蹤運動控制的攝影機水平視角Θ圖。 "•追蹤運動控制的攝影機蚕直視角φ的變化 二圖:追蹤運動控制一號馬達轉角ml的運動變化Brief description of the drawings Brief description of the drawings First, second, third, fourth, fifth, sixth, seventh, eighth, tenth, tenth, tenth, tenth, tenth and tenth illustrations · Three-axis independent parallel movement mechanism of the present invention Figure: The three-axis independent parallel motion mechanism of the present invention ;: Structure diagram. Figure: Geometrical schematic diagram of the three-axis independent parallel motion mechanism of the present invention. Figure. The present invention is a block diagram showing the relationship between the camera angle of view and the angle of the motor control axis. Figure: Schematic diagram of world coordinates referenced by the organization of the present invention. Figure: Negative z-axis view of the base plate of the mechanism of the present invention. Figure · Camera perspective vector diagram. · Figure · Camera spin angle diagram. Figure · Schematic diagram of motor shaft angle. f i Schematic diagram of tracking motion control path. The horizontal angle of view Θ of the two tracking motion control camera. " • Tracking the change of the angle of view φ of the camera of motion control

四圖 · A •追蹤運動控制二號馬達轉角%的運動變化 五圖:追蹤運動控制三號馬達轉角叫的運動變化 第十六圖: 主運動控制一號馬達轉角mi的變化。 200527105 第十八圖 第十九圖 第二十圖 第二十一 圖號說明: 圖式簡單說明 第十七圖··自主運動控制 自主運動控制 自主運動攝影 自主運動攝影 圖:自主運動攝 一號馬達轉角m2的變化。 一號馬達轉角m3的變化。 機水平視角0的運動結果。 機水平視角P的運動結果。 影機水平視角r的運動結果 底座基板— — — 10馬達. 受控圓盤一-31 μ 2〇受控基板一 —30 活動連桿-40 2 — 受控連桿—401 内連桿——43 連梓-----41中連桿——42 兩任意馬達軸之軸向向一 任一馬達轴的轴向一一了 三支受控連桿張基板匕法線向量夹角1 桿張開的弧角——仏 受控連桿關節向量〜位向里 活動連桿關節向量〜〜 Wi 攝影機水平掃描的角7二二一一一-一一一一 1 攝影機上下俯X θ 攝影機自旋的Π描1角度 活動連桿關節向量〜 r 受控連桿關節向量、V2、V3 控制馬達的轉軸角产' 'n 巧度〜—nh、m2、m3Figure 4 · A • Tracking motion change of motor control No. 2 motor rotation angle% Figure 5: Tracking motion control of motor control No. 3 motor rotation angle change Figure 16: Main motion control motor No. 1 motor rotation angle mi change. 200527105 Eighteenth figure Nineteenth figure Twentyth figure Twenty-first figure number description: The figure briefly explains the seventeenth figure ·· Autonomous motion control Autonomous motion control Autonomous motion photography Autonomous motion photography Figure: Autonomous motion photography number one Change of motor rotation angle m2. The change of motor angle m3. Movement result of machine level view 0. The result of the machine level view P. Motion results of the camera's horizontal viewing angle r Base plate — 10 motors. Controlled disc 1 -31 μ 2〇 Controlled substrate 1 — 30 movable link -40 2 — controlled link — 401 inner link — 43 Lianzi ----- 41 Middle Link——42 The axial direction of two arbitrary motor shafts to the axial direction of any one motor shaft Open arc angle-仏 Controlled link joint vector ~ Inwardly moving link joint vector ~ ~ Angle of the horizontal scanning of the Wi camera 7 2211-1-1 1 1 Camera tilt down X θ Camera spin Π drawing 1 angle of the movable link joint vector ~ r controlled link joint vector, V2, V3 control motor rotation axis angle production '' n cleverness ~ -nh, m2, m3

200527105 附錄 文中,式(23)的'<1^的展開式如下:200527105 Appendix In the text, the expansion of '&1; 1 ^ in equation (23) is as follows:

VjxU^VjxU ^

= cosiS px py sin pz osi p·/ px -Pycos^-Pzsin^sin η.{ P^iniScos^ +Pxcos)S ?%8Ϊηβ5ΐηηί -P sin β cost?. A n= cosiS px py sin pz osi p · / px -Pycos ^ -Pzsin ^ sin η. {P ^ iniScos ^ + Pxcos) S?% 8Ϊηβ5ΐηηί -P sin β cost ?. A n

I p_p';py,Rv-+p.z % p+p n 4 n ,-ρχ2νβSi叫—issi * M ^sinco'in 1p_sin,p.sz SISI +px + siny. )]x sin β cos ηι sin β sin η.χ -cos β sin^sinyj -Px 2cos ^ - Pz cos ^ + Py Pzsin β sin -PyPzsin cos - PxPycos β -Px Pysin 冷 sin % — Px2sin β cos % - Pz2sin 冷 cos 文中,式(25)括號内的分式,將分子與分母化簡後可展開如下: wruiz N(px?prpz)I p_p '; py, Rv- + pz% p + pn 4 n, -ρχ2νβSi is called —issi * M ^ sinco'in 1p_sin, p.sz SISI + px + siny.)] X sin β cos ηι sin β sin η .χ -cos β sin ^ sinyj -Px 2cos ^-Pz cos ^ + Py Pzsin β sin -PyPzsin cos-PxPycos β -Px Pysin Cold sin% — Px2sin β cos%-Pz2sin Cold cos In the text, the formula (25) is in parentheses The simplification of numerator and denominator can be expanded as follows: wruiz N (px? Prpz)

Wi-Uixv 一 D(Px,Py,Pz) 其中, N(Px>PyJPz)=:cos^(Pxsin7?i ~ PyC0S 7?i) + —[PzCosvj/iSin "i - simj/i(Px2cos + Pz2cos % + PXP sin %)] »2 D(Px>Py»Pz) = °°δ (PXC0S β cos η{ + Pycos β sin η{ + Pzsin β) + sm$—一{(X)SY.(~Pxsin ^ + Pzcos )8 cos +sin\|/i[cos ^ sin %(ΡΧ2 + Pz2)-PxPycos 石 cos % - PyPzsin 沒]} Vpx2+pzWi-Uixv D (Px, Py, Pz) where N (Px > PyJPz) =: cos ^ (Pxsin7? I ~ PyC0S 7? I) + — [PzCosvj / iSin " i-simj / i (Px2cos + Pz2cos% + PXP sin%)] »2 D (Px > Py» Pz) = °° δ (PXC0S β cos η {+ Pycos β sin η {+ Pzsin β) + sm $ — 一 ((X) SY. ( ~ Pxsin ^ + Pzcos) 8 cos + sin \ | / i [cos ^ sin% (Ρχ2 + Pz2) -PxPycos stone cos%-PyPzsin not]} Vpx2 + pz

Claims (1)

200527105 /、申請專利範圍 1、一種三軸獨立平行運動的攝影機控制機構及控制方 法’包括: 一底座基板係呈正三角形,其三頂點係各裝配有一馬達; 了裝設在底座基板上方之另—呈正=角形之受控基板,該 =1基板係裝設在一受控圓盤底部;三相同半徑球面形外 之ί t ί:ΐ別連接於三馬達之轉軸;三半徑小於外連桿 之球面形中連桿上端係分別固定連結三外一 = :連桿之球面形内連桿底部係分別與三中連; 底邛活動連結,上端則呈㈣$ # /迷才干 盤係代表裝置攝影貞;外連桿*中 ,®盤,該文控圓 遠捏•由、由拍a ^ T運才于間的連結稱A 俾:;!;内連桿間的連結稱為活動連桿; :接控制受控基板的法線方向捍的轉角, 的:;=、垂直運動以及自旋影機視 j機控制機構,其中 ;:獨立平行運動的 3、如 連 攝 影機控制機構,Α由 、达之—轴獨立平行運動Μ 構其中,内連桿與受㈣心“ 第23頁200527105 / Application for patent scope 1. A camera control mechanism and control method for a three-axis independent parallel movement 'includes: a base substrate is a regular triangle, and its three vertices are each equipped with a motor; Positive = angle-shaped controlled substrate, the = 1 substrate is installed on the bottom of a controlled disc; three spheres with the same radius outside ί t: don't connect to the shaft of the three motors; the three radii are smaller than those of the outer link The upper end of the spherical middle link is fixedly connected to the three outer one =: the bottom of the spherical inner link of the link is connected to the three middle respectively; the bottom is active and the upper end is ㈣ $ # / 迷 才干 盘 系 Representative photography ;; Outer connecting rod * in the middle, ® disk, the text control Yuanyuan pinch • You, You beat a ^ T Yuncai between the connection called A 俾:;! ; The connection between the inner links is called a movable link;: Connects to control the rotation angle of the normal direction of the controlled substrate, where: =, the vertical movement and the control mechanism of the video camera of the spin projector, among which: independent parallel 3, such as the camera control mechanism, A by, Da Zhi-axis independent parallel movement M structure, the inner link and the receiving center "page 23
TW93102980A 2004-02-10 2004-02-10 Mechanism for controlling independent motion of a video camera in three axes and method for controlling same TWI235277B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93102980A TWI235277B (en) 2004-02-10 2004-02-10 Mechanism for controlling independent motion of a video camera in three axes and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93102980A TWI235277B (en) 2004-02-10 2004-02-10 Mechanism for controlling independent motion of a video camera in three axes and method for controlling same

Publications (2)

Publication Number Publication Date
TWI235277B TWI235277B (en) 2005-07-01
TW200527105A true TW200527105A (en) 2005-08-16

Family

ID=36637614

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93102980A TWI235277B (en) 2004-02-10 2004-02-10 Mechanism for controlling independent motion of a video camera in three axes and method for controlling same

Country Status (1)

Country Link
TW (1) TWI235277B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504492B (en) * 2013-04-30 2015-10-21 Hiwin Tech Corp Spherical Linkage Surgical Arm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504492B (en) * 2013-04-30 2015-10-21 Hiwin Tech Corp Spherical Linkage Surgical Arm

Also Published As

Publication number Publication date
TWI235277B (en) 2005-07-01

Similar Documents

Publication Publication Date Title
Bederson et al. A miniature pan-tilt actuator: the spherical pointing motor
CN111801198B (en) Hand-eye calibration method, system and computer storage medium
US7804224B2 (en) Piezoelectric motor and piezoelectric motor system
US20210263394A1 (en) Method for controlling handheld gimbal, and handheld gimbal
CN105555222A (en) Medical robot arm device, medical robot arm control system, medical robot arm control method, and program
Zhang et al. Real-time spin estimation of ping-pong ball using its natural brand
TWI735830B (en) Tracking system and tracking method using the same
CN109794961A (en) Robot and robot system
WO2020249061A1 (en) Compact bionic eye device based on electromagnetically-driven rotating mechanism having two degrees of freedom
JP2021525902A (en) Small variable focus configuration
Koestler et al. Mobile robot simulation with realistic error models
Vunder et al. Improved situational awareness in ros using panospheric vision and virtual reality
Marchand et al. Visual servoing through mirror reflection
Kim et al. Dynamic Model and Motion Control of a Robotic Manipulator.
Bederson et al. Two miniature pan-tilt devices
Li et al. A flexible calibration algorithm for high-speed bionic vision system based on galvanometer
TW200527105A (en) Mechanism for controlling independent motion of a video camera in three axes and method for controlling same
JP2023500382A (en) Articulated body with three degrees of freedom for robots and corresponding control method
Kim et al. Dynamic modeling and motion control of a three-link robotic manipulator
Streckel et al. Lens model selection for visual tracking
Hafez et al. Path planning approach to visual servoing with feature visibility constraints: A convex optimization based solution
Trasloheros et al. Using a 3dof parallel robot and a spherical bat to hit a ping-pong ball
JP4229316B2 (en) Image generation system, program, and information storage medium
Tsujita et al. Design and development of a high speed binocular camera head
JP3516377B2 (en) Method for generating motion image of articulated structure, recording medium recording the same, and motion image generation device using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees