TW200527102A - E-ink display with improved memory density - Google Patents

E-ink display with improved memory density Download PDF

Info

Publication number
TW200527102A
TW200527102A TW93133079A TW93133079A TW200527102A TW 200527102 A TW200527102 A TW 200527102A TW 93133079 A TW93133079 A TW 93133079A TW 93133079 A TW93133079 A TW 93133079A TW 200527102 A TW200527102 A TW 200527102A
Authority
TW
Taiwan
Prior art keywords
image information
optical state
electrophoretic display
frame
temperature
Prior art date
Application number
TW93133079A
Other languages
Chinese (zh)
Inventor
Martin J J Jak
Guofu Zhou
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200527102A publication Critical patent/TW200527102A/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/02Handling of images in compressed format, e.g. JPEG, MPEG
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device (1) is provided for improving storage density. The display device (11) is comprised of compression means (3) for temporarily compressing incoming image information data and decompression means (5) for decompressing the temporarily compressed data, in a reverse operation. By compressing the incoming image data for some number of frames, improved storage density is achieved. In this manner, the number of frames of image information available to be used in generating waveform and time parameters to effect a change of the display elements (18) from a current optical state to a predetermined next optical state is increased thus providing more accurate gray scale reproduction.

Description

200527102 九、發明說明: 【發明所屬之技術領域】 本發明有關一種雙穩顯示器,尤其有關一種用於改進此 種顯示器所用資料之儲存密度的方法及彀備。 【先前技術】 此類型的顯示裝置通常為用於如監視器、膝上型電腦、 個人數位助理(PDA)、行動電話及電子書、電子報及電子 雜誌的電泳顯示器。 電泳顯示器包含:在流體中含有帶電粒子的電泳媒介 (電子墨水);複數個配置成矩陣的顯示元件(像素);和各 像素關連的第一及第二電極;及根據所施加的電位差數值 及持續期間,用於對各像素電極施加電位差以使帶電粒子 在電極間佔用一位置的電壓驅動器,以顯示影像或其他資 序言中所提類型的顯示裝置可參考如國際專利申請案 WO 99/53373,1999年4月9日公開,申請人:美國麻薩諸 塞州劍橋的電子墨水公司(E Ink Corporation),其標題為: 「Full Color Reflective Display With Multichromatic Sub_ Pixels(具有多色子像素之全彩反射式顯示器)」。該專利申 請案揭露一種包含兩個基板(其中一個透明)的顯示器。另 一個基板則具有配置成列及行的電極。列電極與行電極之 間的交叉係與顯·示元件或像素相關。顯示元件係經由薄膜 電晶體(TFT)耦合至行電極,該電晶體之閘極係耦合至列 電極。顯示元件、TFT電晶體以及列與行電極之此配置一 96751.doc 200527102 起形成-主動㈣。此外,該㈣元件包含—像素電極。 列驅動器選擇顯示元件列,而行驅動器經由行電極及TFT 電晶體供應資料信號給所選顯示元件列。資料信號對應於 要顯示的圖形資料。 此外,電泳墨水係提供於在透明基板上提供的像素電極 與共用電極之間。電泳墨水包含多個約1〇至5〇微米的微膠 囊。各微膠囊包含懸浮在流體中的帶正電白色粒子及帶負 電黑色粒子。對共用電極施加負電場時,白色粒子移至引 向透明基板之微膠囊的側面,因而觀察者可看見顯示元 件。同時,色粒子移至微膠囊 < 對側±的像素電極’二= 觀察者看不見黑色粒子。藉由對像素電極施加負電場,黑 色粒子移至引向透明基板之微膠囊之側面上的共同電極, 且顯示元件對觀察者顯示為黑暗。#、消㉟電場時,顯示裝 置保持在所獲狀態中並展示出雙穩特性。 近來電泳顯示器技術的發展著重於改進此種顯示器中所 用之資料的儲存密度’以達到精確的灰階重現。藉由控制 移至微膠囊頂部之反電極的粒子數量,即可在顯示裝^影 像中產生灰階。例如,定義為電場強度與施加時間^乘= 的正或負電場的能*,控制了移至微膠囊頂冑的粒子數 量,使顯示元件達到所需的光學狀態。然而,應明白,這 些顯示器深受以下項目的影響:影像記錄、停留時間、溫 度、濕度、電泳箱的橫向不勻性等,所有這些項目共同使 顯示元件成為非所需之光學狀態的某種東西。尤其,為彌 補這些及其他因素並使顯示元件達到所需的光學狀態,將 96751.doc 200527102 而要矩陣查找表(LUT)或轉移矩陣。此矩陣對於所需的最 終狀態各有一個維度,對於其他狀態(初始及任何先前狀 態)也各有一個維度。根據要考慮之先前狀態的數量(隨著 驅動方法而改變),所用的查找表(LUT)會變得非常龐大。 舉一個極端的例子,試想使用顧及初始、最終及兩個先前 狀悲的演算法之256(28)灰階電泳顯示器之程序。必要的四 維查找表(LUT)將有232項目。如果各項目需要使用μ位元 (8位兀組),則LUT的總大小將約32 GB(十億位元組)。此 外,如果LUT還要補償溫度,則需要為不同溫度產生及儲 存查找表(LUT),其通常已經預定、被測量及被儲存於顯 示控制器本身及外部記憶體中。 【發明内容】 本發明的目的在於提供—種克服先前技術之儲存限制的 顯示器。 本發明的進-步目的在於提供一種改進資料之儲存密度 的顯示器。 & 本發明的更進-步目的在於提供一種改進之資料儲存密 度容許考慮裝置之-或多個先前狀態之精確灰階重現的顯 示器。 ^ 本發明的進一步目的在於提供一種改進之資料健存密度 容許透過補償廣泛溫度範圍上之溫度差異以重現精確:二 的顯示器。 & 藉由提供包括暫時壓縮傳入影像資訊之壓縮構件的顯示 器,這些及其他目的即可被本發明所達到。該顯示器’進: 96751.doc 200527102 步包括以-相反操作解ι縮該暫時被ι縮之資料以產生必 要驅動參數的解I缩構件。該顯示器進一步包括一控制哭 以用於:從查找表擷取波形及時間參數及套用該波=㈣ 間參數,以根據在目前圖框(戦收的影像資訊及在至少 :先前圖框(Μ)中接收之解壓縮的影像資訊,使《示 疋件從目W的光學狀態變更為預定的下一個光學狀態 (如’其他具體實施例可考慮兩個或多個先前圖框U、 Ν-3 等)。 根據本發明之-方面,本發明所使用的壓縮構件可以是 任何眾所皆知的不失真或失真壓縮演算法。 根據本發明之另一方面,壓縮/解壓縮程序所發生的時 間間隔’相對於在各圖框中產生必要驅動參數的所需時間 為無關緊要。 【實施方式】 在下列本發明具體實施例的說明中,將參考形成本發明 /分的附圖,且圖t藉由說明可實施本發明的特定具體 貫=例來顯示。應明白,可利用其他具體實施例,並可進 /亍1構改艾而不致脫離本發明所述具體實施例的範聋。 定義 β ⑼本文,其在影像技術中的習用意義使用用語「灰色狀 :」或灰階」,代表介於像素之兩個極端光學狀態的狀 心Τ不火代表這兩個極端狀態間的黑白轉移。例如, 以下提及的數個專利及公開申請案說明其中極端狀態為白 色及深藍色的電泳顯示器,因此中間W「灰色狀態」實際 96751.doc 200527102 上是淡藍色。確實 全然的色彩變化。 如上述,兩個極端狀態間的轉移並非 本文所用用語「雙轉,0「雜《 ' 又t」及「雙穩性」在本技術中的習 意義是指顯示器如下··句A且古 巴各具有差異至少一光學特性之第 一及第二顯示狀態的顯示元件,因此藉由有限持續期間的 定址脈衝驅動任㈣定元件1在定址脈料止後取得其 第一或第二顯示狀態後,々 、 致使狀悲肖b夠持績變更顯示元件 狀態所需定址脈衝的最低持續期間至少數倍,例如至少四 L 。申研於2002年4月2日之共同待審的申請案第 10/063,236號(另請㈣對應的國際中請㈣Wq咖79⑽ 號)顯不,一些基於粒子之具有灰階能力的電泳顯示器不 僅在其極端黑白狀態中很穩定,且在其中間的灰色狀態也 很穩定,一些其他類型的電光顯示器也是一樣。此類型的 顯示器應正確稱為「多穩」而非「雙穩」,不過為了方 便’可在本文使用涵蓋雙穩及多穩顯示器的用語「雙 穩」。 以下說明著重於經歷灰階轉移(即,從一個灰階變更為 另一個,從「初始」狀態變更為「最終」狀態)之電泳顯 示器的一或多個像素。顯而易見,初始狀態及最終狀態的 指定僅就特定時間點所考慮的轉移而言,且應明白,像素 在「初始」狀態之前已經歷過轉移,且在「最終」狀態之 後將會經歷轉移。 須在多個先前狀態之間區分時,用語「第一先前狀態」 用來代表相關像素存在於初始狀態之前一(非零)轉移的狀 96751.doc -10- 200527102 態’用語「第二先前狀態J用來代表相關像素存在於第一 先前狀態之前一(非零)轉移的狀態。 概覽 如上述’就第-假設而言,雙穩顯示器可當作脈衝轉換 器,因此像素的最終狀態不僅取決於所施加的電場及施加 此電場的時間’還取決於施加電場前的像素狀態。施加電 場前时素狀態是像素之影像記錄的結果,可定義為各像 素隨著時間所顯現的總能(或應力),即,電壓χ時間。 如熟習顯示器技術者所熟知的,可以一系列連續圖框 (即’ 1、2、…、isM、N、N+1、Ν+2等等···)對電泳顯示 裝置提供影像資訊。在各圖框中,會對顯示器的各顯示元 件產生驅動筝數(電壓χ時間)。驅動參數係部分決定於元 件目$圖框Ν(即,目前狀態)及一些先前狀態之影像記錄 中所提供的影像資訊。在一項具體實施例中,會考慮目前 狀悲(圖框N)及一先前狀態(圖框N-1)的影像資訊,以產生 必要的驅動參數,使顯示元件從目前的光學狀態變更為預 定的下一個光學狀態。 一般而言,眾所周知雙穩裝置具有極大的影像記錄,因 此’精確的灰階重現將儘可能需要許多先前狀態的資料。 另外’在補償裝置的溫度差異時,資料需求將成正比成 長。舉例而言,為了調整溫度介於-22C至+80C及1/2度解 析度的裝置’便需要兩百個以上的溫度補償查找表。因 此’就減少記憶體需求及裝置成本而言,資料需求顯然是 一項重大的挑戰。 96751.doc 200527102 經由發明背景介紹,已知先前技術中 ^ 俘有不同的資剩》 縮技術。壓縮技術可分成兩大類· ^ 石馬 、失真編碼及不失真編 不失真壓縮技術可以壓縮資料而 一 貝天貝料,以將壓縮 貢料恢復成原始資料,但不失直壓 、 …&縮肩异法的壓縮率卻有 所限制。因此,在I縮文件播案及程式檔案時,一般叶 用不失真I缩演算法(如,霍夫曼編碼、掃描長度編;、 LZW等 〇 ) 相反地,失真壓縮技術係藉由刪除資料之相對無關緊要 的部分來遷縮資料,以縮減資料的大小。因此,失真壓縮 演算法的壓縮率比不失真壓縮演算法的壓縮率高許多,但 卻無法將壓縮資料完全恢復成原始資料。因此,失真壓縮 演异法一般用於壓縮音頻及視訊檔案(如,PEG、MpEG 等)。 除了熟知的壓縮方案之外,本發明還考慮使用基於8χ8 區塊離散餘弦轉換(discrete cosine transform,DCT)之低複 雜性可擴充的影像壓縮演算法。不像習用的DCT壓縮演算 法’低複雜性可擴充的影像壓縮演算法並不使用額外的量 子化或熵。關於此演算法的完整說明,請參考Rene j. van der Vleuten、Richard P. Kleihorst 的「Low-Complexity Scalable Image Compression(低複雜性可擴充影像壓縮)」, 其内容以引用的方式併入本文中。 第一具體實施例 圖1顯示根據本發明第一具體實施例的電泳顯示裝置1。 96751.doc -12· 200527102 圖1的顯示裝置1包括:圖框記憶體9、壓縮單元3、解壓縮 單元5、顯示控制器7、儲存查找表12的記憶體丨丨、溫度感 測益13、及包含複數個電泳顯示器元件丨8的顯示裝置1 $。 顯示裝置1可在接收影像資訊(圖框資料)時執行即時資料壓 縮/解壓縮,如下所述。 繼續參考圖1,在操作中,會按照連續的時間間隔,以 一系列的連續圖框,即,1、2、..、、N、n+i、 2…寻,將影像資讯(圖框資料)提供給電泳顯示裝置 1。例如,會在時間接收及處理第個圖框的圖框資 料,然後,在時間間隔τ〇按照連續順序接收及處理第N個 圖框的圖框貧料;在時間τ+ι接收及處理第Ν+ι個圖框的圖 框資料,以此類推。 為了便於解說,將詳細說明始於時間丁0的程序,在該時 ‘·,a在輸入節點2接收第n個圖框資料並由電泳顯示裝置 1加以處理。 τ 會在顯示裝置1的輸入節點2接收和目前圖框 、的Η框資料,以下稱為第Ν個圖框資料。實質上係同 1、兩個方式處理第Ν個圖框資料。第一,會在顯示控制 的7的控制下,將第Ν個圖框資料供應至>1縮單元5。塵縮 曰处理第Ν個圖框資料,並在顯示控制器7的控制 輸出要在圖框記憶體9中儲存之壓縮的第1^個圖框資 料。 : 男、貝上和壓縮及儲存第Ν個圖框資料的操作同 日’ 土作 十 ㈢ 一 v配置顯示控制器7以使用第n個圖框資料及對 96751.doc -13- 200527102 應於至少一先前狀態的資料,以產生驅動參數2〇,使顯示 70件從目則的光學狀態(第一灰階或色值)變更為預定的下 一個光學狀態(第二灰階或色值)。 在一項具體實施例中,會根據目前第^^個圖框資料及在 上個圖框(即,時間T-i)接收的一先前狀態(即,第(N4) 個圖框資料),導出必要的驅動參數2〇。請注意,為了利 用第(N-1)個圖框資料,必須先從其先前在上一個時間間 隔以壓縮形式儲存的記憶體9#|取,再由解壓縮單元5在顯 示控制器7的控制下進行解壓縮。 士上述在本不範具體實施例中,可根據在目前圖框 (第N個圖框資料)接收的影像資訊及對應於一上一個狀態 (第1)個圖框資料)的健存圖框資料(景X象資訊)配置顯示 控制器7,以產生顯示元件18的驅動參數20(波形及時間參 數)。各狀態對應於一 4_位元數字(對應於16_階灰階)。這 些位7L在LUT 12中一起形成8位元項目。LUT 12較佳具有 至少一對應於顯示元件之上一個㈣及顯示元件之目前狀 態的位址項目。 △應明白,在另一種具體實施例中,可根據額外的先前狀 〜產生波幵/及¥間參數。例如,可根據在時間丁〇接收的第 =個圖框資料及在個別時間間隔τ·!及τ·2接收的兩個先前狀 悲(即’帛⑻1)個及第(Ν-2)個圖框資料)產生.驅動參數 2〇。請注意,在時間Τ〇,第(Ν-1)個及第(Ν_2)個圖框資料 2前已經在個別時間及τ·2,以廢縮形式儲存在圖框記 fe體9中。在用來決定時間丁。的必要驅動參數加夺,必須 96751.doc •14- 200527102 先解壓縮先前儲存的圖框資料。除了解壓縮所需的圖框資 料之外,本發明根據後進先出(last-in-first-out,LIFO)協 定新增及刪除各圖框的圖框,可進一步節省圖框記憶體 9。例如,在時間T〇,以壓縮形式儲存在圖框記憶體9的圖 框(N)資料及最近新增的圖框(圖框(n-2)資料),在所示的 範例中,會從圖框記憶體9中清除。另請注意,在此時解 壓縮圖框(N-1)資料以便使用的同時,在下一個時間間隔 T+1之前,並不會以LIFO的類似方式將其從圖框記憶體9清 除0 熟習此項技術者應明白,對於本文所述的壓縮/解壓縮 程序而言,可具有接近不失真的壓縮及解壓縮。然而,在 較佳具體實施例中,為了進一步最佳化此程序,一些控制 損失是可接受的(如,避免新增不會讓影像顯示品質更好 的精確性,如使用者所察覺的)。 如圖1所示,顯示裝置1還包括數位溫度感測器丨3,以感 測裝置的操作溫度及提供溫度補償,以減少顯示裝置之灰 階重現對於溫度的相依性。為此目的,溫度感測器1 3可產 生如代表顯示裝置之實際操作溫度的4_位元數字,且會以 額外位元擴充LUT 12的位址項目。請注意,雖將LUT 12 顯示在分開的記憶體11中,但也可在和特定具體實施例之 圖框記憶體9相同的記憶體中實現。 提供表I以進一步顯示本發明之用於壓縮/解壓縮各圖框 之圖框資料及從中產生必要驅動參數的方法。 在日守間T〇,會在輸入節點2接收在目前圖框(N)接收的資 96751.doc -15- 200527102 圖框(N)資料。此時,會以壓縮形式將圖框⑼資 料儲存在記憶體U中(第二行),實質上也將同時使用及接 收(即,以非壓縮的形式),以產生必要的驅動參數20,使 顯示元件18從目前的光學狀態變更為預定的下一個光學狀 態。請注意,在解說的具體實施例中,會根據圖框⑼資 料及對應於至少-先前狀態的圖框資料,#,圖框⑺ 資料,以產生驅動參數20(第4行)。實質上與所述操作符 合,會根據LIFO協定從記憶體9清除圖框(N_2)資料(第3 行)。200527102 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a bistable display, and more particularly, to a method and a device for improving the storage density of data used in such displays. [Prior Art] This type of display device is usually an electrophoretic display used in, for example, monitors, laptops, personal digital assistants (PDAs), mobile phones and e-books, newsletters, and electronic magazines. An electrophoretic display includes: an electrophoretic medium (electronic ink) containing charged particles in a fluid; a plurality of display elements (pixels) arranged in a matrix; first and second electrodes connected to each pixel; and according to an applied potential difference value and During the duration, a voltage driver for applying a potential difference to each pixel electrode to cause charged particles to occupy a position between the electrodes to display an image or a display device of the type mentioned in the preamble may refer to, for example, International Patent Application WO 99/53373 , Published on April 9, 1999, applicant: E Ink Corporation of Cambridge, Massachusetts, USA, entitled: "Full Color Reflective Display With Multichromatic Sub_ Pixels Color reflective display) ". The patent application discloses a display including two substrates, one of which is transparent. The other substrate has electrodes arranged in columns and rows. The intersection between the column electrode and the row electrode is related to the display element or the pixel. The display element is coupled to the row electrode via a thin film transistor (TFT), and the gate of the transistor is coupled to the column electrode. This arrangement of display elements, TFT transistors, and column and row electrodes is formed from 96751.doc 200527102-active. In addition, the unit includes a pixel electrode. The column driver selects the display element column, and the row driver supplies data signals to the selected display element column via the row electrode and the TFT transistor. The data signal corresponds to the graphic data to be displayed. In addition, an electrophoretic ink is provided between a pixel electrode and a common electrode provided on a transparent substrate. Electrophoretic ink contains multiple microcapsules of about 10 to 50 microns. Each microcapsule contains positively charged white particles and negatively charged black particles suspended in a fluid. When a negative electric field is applied to the common electrode, the white particles move to the side of the microcapsules that lead to the transparent substrate, so that the viewer can see the display element. At the same time, the color particles move to the microcapsules < pixel electrode on the opposite side ' == black particles are not visible to the observer. By applying a negative electric field to the pixel electrode, the black particles move to the common electrode on the side of the microcapsules that are directed to the transparent substrate, and the display element appears dark to the observer. # When the electric field is eliminated, the display device remains in the obtained state and exhibits a bi-stable characteristic. Recent developments in electrophoretic display technology have focused on improving the storage density of data used in such displays to achieve accurate grayscale reproduction. By controlling the number of particles of the counter electrode moved to the top of the microcapsule, a gray scale can be generated in the display device image. For example, it is defined as the electric field strength and the energy of the positive or negative electric field multiplied by the application time ^ times, which controls the number of particles moved to the top of the microcapsules, so that the display element reaches the required optical state. However, it should be understood that these displays are greatly affected by the following items: image recording, dwell time, temperature, humidity, lateral unevenness of the electrophoresis box, etc. All of these items collectively make the display element into some kind of undesired optical state thing. In particular, in order to compensate for these and other factors and achieve the required optical state of the display element, 96751.doc 200527102 will be a matrix lookup table (LUT) or a transfer matrix. This matrix has one dimension for each desired final state, and one dimension for the other states (initial and any previous states). Depending on the number of previous states to be considered (changing with the driving method), the lookup table (LUT) used can become very large. As an extreme example, consider a program using a 256 (28) gray scale electrophoretic display that takes into account the initial, final, and two previous tragedy algorithms. The necessary four-dimensional lookup table (LUT) will have 232 items. If each project requires the use of μ-bits (8-bit blocks), the total size of the LUT will be approximately 32 GB (billion bytes). In addition, if the LUT is to compensate for temperature, a lookup table (LUT) needs to be generated and stored for different temperatures, which is usually booked, measured, and stored in the display controller itself and in external memory. SUMMARY OF THE INVENTION An object of the present invention is to provide a display that overcomes the storage limitation of the prior art. A further object of the present invention is to provide a display with improved storage density of data. & A further object of the present invention is to provide an improved data storage density display which allows for accurate grayscale reproduction of one or more previous states of the device. ^ A further object of the present invention is to provide an improved data storage density that allows accurate reproduction by compensating for temperature differences over a wide temperature range: two displays. & These and other objects can be achieved by the present invention by providing a display including a compression member that temporarily compresses incoming image information. The display 'further advances: 96751.doc 200527102 The steps include decompressing the temporarily shrunk data with a reverse operation to generate a decompression component that has the necessary driving parameters. The display further includes a control cry for: acquiring a waveform and a time parameter from a look-up table and applying the wave = time parameter, based on the current image frame (the image information received and at least: the previous frame (M The decompressed image information received in) causes the display document to change from the optical state of the target W to a predetermined next optical state (e.g., for other specific embodiments, two or more previous frames U, N- 3 etc.) According to one aspect of the present invention, the compression component used in the present invention may be any well-known undistorted or distortion compression algorithm. According to another aspect of the present invention, the compression / decompression process The time interval is irrelevant to the time required to generate the necessary driving parameters in each frame. [Embodiment] In the following description of specific embodiments of the present invention, reference will be made to the drawings that form the present invention / minute, and t is shown by explaining the specific embodiments in which the present invention can be implemented. It should be understood that other specific embodiments can be used, and the structure can be modified without departing from the scope of the specific embodiments described in the present invention. Definition β. In this article, its conventional meaning in imaging technology uses the term "gray-like:" or gray-scale ", which represents the centroid between the two extreme optical states of the pixel. Black and white transfer. For example, the several patents and published applications mentioned below describe the electrophoretic display in which the extreme state is white and dark blue, so the middle “gray state” is actually light blue on 96751.doc 200527102. It ’s absolutely complete Color change. As mentioned above, the transition between the two extreme states is not the term "double turn, 0", "" t ", and" bistable "as used in this article. The conventional meaning in this technology means that the display is as follows: Sentence A In addition, Cuba has display elements with first and second display states each having at least one optical characteristic. Therefore, the address element 1 is driven by the address pulse with a limited duration to obtain its first or second display after the address pulse is stopped. After the state, 々, causing the state of sadness b to be sufficient to change the minimum duration of the addressing pulse required to display the state of the display element at least several times, such as at least four L. Shen Yan in 2002 4 The co-pending application No. 10 / 063,236 dated 2nd month (please also ㈣corresponds to the corresponding international request ㈣Wq cafe 79⑽) shows that some particle-based electrophoretic displays with grayscale capabilities are not only in their extreme black and white status. Very stable, and the gray state in the middle is also very stable, as are some other types of electro-optical displays. This type of display should be properly called "multi-stable" rather than "bistable", but for convenience 'use in this article The term “bistable” covering bistable and multistable displays. The following description focuses on the electrophoretic display undergoing a grayscale transition (ie, changing from one grayscale to another and from an “initial” state to a “final” state). One or more pixels. Obviously, the designation of the initial state and the final state is only for the transition considered at a specific point in time, and it should be understood that the pixel has undergone the transition before the "initial" state and after the "final" state Will undergo transfer. When it is necessary to distinguish between multiple previous states, the term "first previous state" is used to represent a state where the relevant pixel exists before the initial state is a (non-zero) transition 96751.doc -10- 200527102 state "the second prior State J is used to represent the state in which the relevant pixel exists in a (non-zero) transition before the first previous state. Overview As described above, 'As far as the first-hypothesis, a bi-stable display can be used as a pulse converter, so the final state of the pixel is not only Depends on the applied electric field and the time of applying this electric field. It also depends on the state of the pixel before the application of the electric field. The state of the element before the application of the electric field is the result of the image recording of the pixel and can be defined as the total energy of each pixel over time. (Or stress), that is, the voltage x time. As is well known to those skilled in display technology, a series of continuous frames (ie, '1, 2, ..., isM, N, N + 1, N + 2, etc .... ·) Provide image information to the electrophoretic display device. In each frame, the number of driving elements (voltage x time) will be generated for each display element of the display. The driving parameters are determined in part by the element head frame N (ie, Current state) and some of the image information provided in the previous state ’s image records. In a specific embodiment, the current state of sadness (frame N) and the image information of a previous state (frame N-1) are considered, In order to generate the necessary driving parameters, the display element is changed from the current optical state to the predetermined next optical state. In general, it is well known that bistable devices have great image recording, so 'accurate grayscale reproduction will be needed as much as possible Many previous state data. In addition, 'When compensating the temperature difference of the device, the data demand will increase proportionally. For example, in order to adjust the temperature of the device between -22C to + 80C and 1/2 degree resolution', two More than a hundred temperature-compensated lookup tables. Therefore, 'data requirements are obviously a major challenge in terms of reducing memory requirements and device costs. 96751.doc 200527102 Through the introduction of the background of the invention, it is known that ^ traps are different in the prior art Surplus technology. Compression technology. Compression technology can be divided into two categories. ^ Shima, distortion encoding and non-distortion coding non-distortion compression technology can compress data. A piece of material is used to restore the compressed material to the original data, but the compression rate is not limited without losing the direct pressure,… & shoulder compression and other methods. Therefore, when I shrink the file broadcast and program files, Generally, I use non-distortion I reduction algorithms (such as Huffman coding, scan length coding, LZW, etc.). Conversely, distortion compression technology shrinks data by deleting relatively insignificant parts of the data to reduce The size of the data. Therefore, the compression ratio of the distortion compression algorithm is much higher than that of the non-distortion compression algorithm, but it cannot completely restore the compressed data to the original data. Therefore, the distortion compression algorithm is generally used to compress audio and Video files (eg, PEG, MpEG, etc.) In addition to the well-known compression schemes, the present invention also considers using a low-complexity scalable image compression algorithm based on 8 × 8 block discrete cosine transform (DCT). Unlike the conventional DCT compression algorithm, the low-complexity scalable image compression algorithm does not use additional quantization or entropy. For a complete description of this algorithm, please refer to "Low-Complexity Scalable Image Compression" by Rene j. Van der Vleuten and Richard P. Kleihorst, the contents of which are incorporated herein by reference . First Embodiment FIG. 1 shows an electrophoretic display device 1 according to a first embodiment of the present invention. 96751.doc -12 · 200527102 The display device 1 of FIG. 1 includes: frame memory 9, compression unit 3, decompression unit 5, display controller 7, memory storing look-up table 12, and temperature sensing benefit 13 And a display device 1 $ including a plurality of electrophoretic display elements. The display device 1 can perform real-time data compression / decompression when receiving image information (frame data), as described below. Continuing to refer to FIG. 1, in operation, the image information will be searched in a series of continuous frames at a continuous time interval, that is, 1, 2, .., N, n + i, 2 ... Frame information) is provided to the electrophoretic display device 1. For example, the frame data of the first frame will be received and processed at time, and then the frame of the Nth frame will be received and processed at a time interval τ〇 in a sequential order; the frame will be received and processed at time τ + ι Frame data of Ν + ι frames, and so on. For the convenience of explanation, a program starting at time D0 will be described in detail. At this time, ′, a receives the n-th frame data at the input node 2 and processes it by the electrophoretic display device 1. τ will receive the data of the current frame and frame at the input node 2 of the display device 1, which is hereinafter referred to as the Nth frame data. It is essentially the same as one or two ways to process the N frame data. First, under the control of 7 of the display control, the N-th frame data is supplied to the > shrink unit 5. Dust reduction means processing the N-th frame data and outputting the compressed 1st frame data to be stored in the frame memory 9 in the control of the display controller 7. : The operation of compressing and storing the N-th frame data on the same day as the male, the shell, and the same day. 作 作 十 ㈢ One v is equipped with the display controller 7 to use the n-th frame data and the minimum value of 96751.doc -13- 200527102 should be at least A previous state data to generate a driving parameter 20 to change the display 70 items from the intended optical state (first gray level or color value) to the predetermined next optical state (second gray level or color value). In a specific embodiment, the necessary information is derived based on the current frame data and a previous state (ie, the (N4) frame data) received in the previous frame (that is, time Ti). The driving parameters are 20. Please note that in order to use the (N-1) frame data, it must first be taken from the memory 9 # | which was previously stored in compressed form at the previous time interval, and then decompressed by the decompression unit 5 in the display controller 7 Decompress under control. In the above-mentioned specific embodiment, according to the image information received in the current frame (the Nth frame data) and the healthy frame corresponding to the previous state (the 1st frame data), The data (scene X image information) is configured with the display controller 7 to generate the driving parameters 20 (waveform and time parameters) of the display element 18. Each state corresponds to a 4-digit number (corresponding to a 16-level gray scale). These bits 7L together form an 8-bit item in LUT 12. The LUT 12 preferably has at least one address item corresponding to a frame on the display element and the current state of the display element. △ It should be understood that, in another specific embodiment, the wave parameters and / or ¥ parameters can be generated according to the additional previous state. For example, according to the frame data received at time D0 and the two previous states (ie, '帛 ⑻1) and (N-2) received at individual time intervals τ ·! And τ · 2 Picture frame information). Driving parameters 20. Please note that at time T0, the (N-1) th and (N_2) th frame data 2 have been stored in frame form fe body 9 in a decompressed form at individual times and τ · 2. Used to decide time Ding. The necessary driving parameters of the driver must be added. You must first decompress the previously saved frame data. 96751.doc • 14- 200527102. In addition to the frame information required for decompression, the present invention adds and deletes frames of each frame according to a last-in-first-out (LIFO) agreement, which can further save frame memory 9. For example, at time T0, the frame (N) data and the newly added frame (frame (n-2) data) stored in the frame memory 9 in a compressed form, in the example shown, will be Clear from frame memory 9. Please also note that while decompressing the frame (N-1) data for use at this time, it will not be cleared from frame memory 9 in a similar manner to LIFO before the next time interval T + 1. 0 Familiarity Those skilled in the art should understand that for the compression / decompression procedures described herein, there may be compression and decompression that are close to undistorted. However, in a preferred embodiment, in order to further optimize this procedure, some control losses are acceptable (eg, avoiding adding new precision that will not make the image display quality better, as perceived by the user) . As shown in FIG. 1, the display device 1 further includes a digital temperature sensor 3 to sense the operating temperature of the device and provide temperature compensation to reduce the dependence of the gray scale reproduction of the display device on temperature. For this purpose, the temperature sensor 13 can generate a 4-bit number such as the actual operating temperature of the display device, and will expand the address item of the LUT 12 with additional bits. Note that although the LUT 12 is shown in a separate memory 11, it may be implemented in the same memory as the frame memory 9 of the specific embodiment. Table I is provided to further show the frame data for compressing / decompressing each frame of the present invention and the method for generating the necessary driving parameters therefrom. During day guard T0, the input node 2 will receive the data received in the current frame (N) 96751.doc -15- 200527102 frame (N). At this time, the frame data is stored in the memory U in the compressed form (second row), and it will also be used and received at the same time (ie, in uncompressed form) to generate the necessary driving parameters 20, The display element 18 is changed from the current optical state to a predetermined next optical state. Please note that in the illustrated specific embodiment, the driving parameter 20 (line 4) will be generated based on the frame data and the frame data corresponding to at least the previous state, #, frame ⑺ data. In accordance with the operation in essence, the frame (N_2) data is cleared from the memory 9 according to the LIFO protocol (line 3).

產生的驅動參數20可包含:固定持續期間及不同振幅的 脈衝、固定振幅的脈衝、在兩個極值之間交替的極性及改 、艾的持績期間、及其中脈衝長度及振幅都會改變的合成驅 動信號。對於脈衝振幅驅動信號而言,此預定的驅動參數 代表包括其正負號之驅動信號的振幅。對於脈衝時間調變 的驅動信號而言’預定的驅動參數代表組成驅動信號之脈 衝的持續期間及正負號。對於合成產生或脈衝型驅動信號 而吕,預定的驅動參數代表組成驅動脈衝之部分的振幅及 96751.doc -16- 200527102 長度例如,預疋的驅動參數可以是8-位元數字。對於查 2表12中的各項目而言,可針對選定的電子墨水類型以 實驗方式決定對應之灰階轉移及不同預定之操作溫度的驅 動參數。 第二具體實施例 圖2顯示本發明的另一項具體實施例。在本具體實施例 中,除了壓縮影像資訊以改進記憶體儲存密度之外,本具 體貝轭例可壓縮查找表貧料(LUT” 2,以提高記憶體儲存 密度。 如圖2所示,顯示器1包括圖1之顯示器的所有元件並進 一步包括:第二壓縮單元15及第二解壓縮單元17,其分別 可壓縮及解壓縮查找表資料。請注意,由於查找表資料構 成顯不益1之總資料需求的百分比較小,因此藉由壓縮查 戈資料所改進的健存欲度並不像上一個具體實施例所述壓 縮大π圖框資料(影像資訊)那麼顯著。 另外,請注意,為了補償裝置丨可能面臨的廣泛溫度差 異,其他具體實施例可能利用複數個查找表,而非所示的 早一 LUT 12。例如,為了就溫度介於·22c至+8〇c及1/2度 解析度而凋整裝置丨,便需要兩百個以上的溫度補償查找 表(LUT)車又佳以壓縮的形式將該複數個溫度補償lUT — 存在°己丨思肢11中。使用時,在決定顯示裝置1的溫度後, 會在複數個儲存的LUT中,會將對應於所偵測之裝置i之 λ度的LUT 12找出、解壓縮,然後按照上述方式,在顯示 控制器7的控制下,用來產生驅動參數20。 96751.doc 200527102 请注思,在各具體實施例中,可將壓縮及解壓縮單元 3 5 15及17併入顯不控制器7中。亦即,可將壓縮及解 堡縮早兀的功能併入題+ ^生 .、、、貞不控制态中,如此便不需要使用如 上一個具體貫施例所述的各獨立裝置。 結論 總之,從上述說明清楚可見,根據本發明之具體實施例 :电u不衣置可改進此種顯示裝置中所用之資料的儲存 益度n相對於各連續圖框中產生驅動參數的操作, 執行壓縮/解壓縮程序的所需時間便無關緊要。藉由壓缩 裝置中的影像資訊及/或LUTf#,即可以合理的成本達成 精確的灰階重現。 ,,上述說明純粹旨在解說本發明,不應視為將隨附 X請專㈣圍㈣⑷讀特定的具體實施例或具體實施 例的群組。例如,控制器7 疋根據本發明而執行的專 用處理益,或其中許多功能中σ 的通用此中”有-個根據本發明而執行 作,咬;S。處理器可利用程式部分、多個程式段操 乍2以是利用專用或多用途積體電路的硬體裝置。所 用的各糸統也可以結合進一步的 然已參考本發明特定的示範呈體實;7使用。因此,雖 明,作也m㈣特料細說明本發 離如對树_料多修改及較而不脫 離士以下申請專利範圍所述之本 ㈣。因i應將說明書及圖式^廣義、特定的精神及 不在限制隨附申請專利範圍的範:兄明方式,其意 利範圍時,應明白: ,在解說隨附的申請專 96751.doc -18- 200527102 )用U 口包έ」並不排除給定申請專利範圍中所列之外 的其他元件或作用的存在; W在一元件之前的該用語「一」並不排除存在複數個這 種元件。 C)申請專利範®中任何參考S字僅作解說之用,並不得 限制其保護範疇; f 「d)可以相同項目或硬體或軟體實施的功能結構代表數個 「構件」;及 0)各個揭露的元件可包含:硬體部分(如,離散電 路)、軟體部分(如,電腦程式設計)、或其組合。 i 【圖式簡單說明】 參考本發明結合附圖之解說性具體實施例的詳細說明, 即可明瞭本發明的上述特色,圖式中: , 圖1顯示根據本發明第一具體實施例的電泳顯示骏詈 1 ;及 ~ 圖2顯不根據本發明第二具體實施例的電泳顯示裝置1。 【主要元件符號說明】 1 電泳顯示裝置 2 輸入節點 3 壓縮單元 5 解壓縮單元 7 顯示控制器 9 圖框記憶體 11 記憶體 96751.doc -19- 200527102 12 13 15 15 17 18 20 查找表 溫度感測器 顯示裝置(圖1) 第二壓縮單元(圖2) 第二解壓縮單元 顯示元件 驅動參數 96751.doc -20-The generated driving parameters 20 may include: pulses of fixed duration and different amplitudes, pulses of fixed amplitude, alternating polarity and change between two extreme values, Ai ’s performance period, and the pulse length and amplitude of which will change. Synthesis of driving signals. For a pulse amplitude drive signal, this predetermined drive parameter represents the amplitude of the drive signal including its sign. For a pulse time modulated drive signal, the 'predetermined drive parameters' represent the duration and sign of the pulses that make up the drive signal. For synthetically generated or pulse-type driving signals, the predetermined driving parameters represent the amplitude and the length of the part making up the driving pulse. 96751.doc -16- 200527102 For example, the pre-chirped driving parameters may be 8-bit numbers. For each item in Table 2 of Table 2, the driving parameters of the corresponding gray scale shift and different predetermined operating temperatures can be determined experimentally for the selected type of electronic ink. Second Specific Embodiment Fig. 2 shows another specific embodiment of the present invention. In this specific embodiment, in addition to compressing image information to improve memory storage density, this specific yoke example can compress the lookup table lean (LUT) 2 to increase the memory storage density. As shown in FIG. 2, the display 1 includes all the elements of the display of FIG. 1 and further includes: a second compression unit 15 and a second decompression unit 17, which can compress and decompress the lookup table data. Please note that the lookup table data constitutes a significant disadvantage. The percentage of total data requirements is small, so the improvement in fitness desire by compressing Chago data is not as significant as compressing large π frame data (image information) as described in the previous embodiment. In addition, please note that In order to compensate for the wide temperature differences that the device may face, other specific embodiments may utilize multiple lookup tables instead of the earlier one shown in the LUT 12. For example, for temperatures between · 22c to + 80c and 1/2 With the resolution resolution and adjustment device, more than two hundred temperature-compensated look-up table (LUT) vehicles are required, and the plurality of temperature-compensated lUTs are stored in a compressed form in the self-thinking limb 11. In use, after determining the temperature of the display device 1, among the stored LUTs, the LUT 12 corresponding to the λ degree of the detected device i will be found, decompressed, and then displayed on the display in the manner described above. Under the control of the controller 7, it is used to generate the driving parameter 20. 96751.doc 200527102 Please note that in various embodiments, the compression and decompression units 3 5 15 and 17 can be incorporated into the display controller 7. That is to say, the functions of compression and decompression can be incorporated into the question + ^ sheng. ,,, and uncontrolled states, so that it is not necessary to use the independent devices described in the previous specific embodiment. Conclusion As can be clearly seen from the above description, according to a specific embodiment of the present invention: the electronic device can improve the storage profitability of the data used in such a display device with respect to the operation of generating driving parameters in each continuous frame, and perform compression. / The time required for the decompression process is irrelevant. By compressing the image information and / or LUTf # in the compression device, accurate gray-scale reproduction can be achieved at a reasonable cost. The above description is purely for explaining the present invention, Should not be considered as Attached X please read the specific specific embodiments or groups of specific embodiments. For example, the controller 7 的 special processing benefits performed according to the present invention, or the common use of σ in many of these functions "has- S. The processor performs operations according to the present invention, bite; S. The processor can use the program part and multiple program sections to operate 2. It is a hardware device that uses a dedicated or multi-purpose integrated circuit. The systems used can also be combined to further Of course, reference has been made to the specific demonstration of the present invention; 7 is used. Therefore, although it is clear, the details of the material are detailed as described in this article. Therefore, the description and drawings should be broad, specific, and not limited to the scope of the attached patent application: Xiongming method, and its scope of interest, it should be understood that: 96751.doc -18- 200527102) "U-bundled" does not exclude the existence of other elements or functions other than those listed in the scope of a given patent application; the word "a" before an element does not exclude the existence Plural such elementsC) Any reference S in the patent application is for illustrative purposes only and should not limit its scope of protection; f "d) functional structures that can be implemented by the same project or hardware or software represent several" components "; and 0) Each disclosed component may include a hardware portion (eg, a discrete circuit), a software portion (eg, a computer programming), or a combination thereof. i [Brief description of the drawings] The above features of the present invention can be understood with reference to the detailed description of the illustrative specific embodiments of the present invention in conjunction with the accompanying drawings. In the drawings:, FIG. 1 shows an electrophoresis according to a first specific embodiment of the present invention 2 is shown; and FIG. 2 shows an electrophoretic display device 1 according to a second embodiment of the present invention. [Description of main component symbols] 1 Electrophoretic display device 2 Input node 3 Compression unit 5 Decompression unit 7 Display controller 9 Frame memory 11 Memory 96751.doc -19- 200527102 12 13 15 15 17 18 20 Tester display device (Figure 1) The second compression unit (Figure 2) The second decompression unit displays the drive parameters of the component 96751.doc -20-

Claims (1)

200527102 十、申請專利範園: 1 · 一種電泳顯示器(1),其包含: 一顯不裝置(15),其進一步包含複數個顯示元件(18); 輸入構件(2) ’用以接收連續圖框的影像資訊; 第一壓縮構件(3) ’用以壓縮該已接收的影像資訊,以 增加该電泳顯示益(1)之儲存的可用性; 一第一記憶體(11) ’用以儲存定義波形及時間參數之 一查找表(12),其用以使該顯示元件(18)從一目前的光 學狀態變更為一預定的下一個光學狀態; 一第二記憶體(9),用以根據一後進先出(LIF〇)協定來 儲存及刪除該壓縮的已接收影像資訊; 第一解壓縮構件(5),以解壓縮該壓縮的已接收影像資 訊;及 一控制器(7),其配置成用以接收該壓縮影像資訊、儲 存該壓縮影像資訊、刪除該壓縮資訊; 該控制器(7)可進一步配置成用以:從該第一記憶體 (11)擷取該查找表(12);套用該查找表(12)中包含之該等 波形及時間參數,以根據在一目前圖框(N)中接收的影像 資訊及在至少一先前圖框(N-1)中接收的解壓縮的影像資 訊,使該顯示元件(18)從該目前的光學狀態變更為該預 定的下一個光學狀態。 2.如睛求項1之電泳顯示器’進一步包含第二壓縮構件 (15),以在該第一記憶體(11)中儲存該查找表(12)之前壓 縮該查找表(12)。 96751.doc 200527102 3. 4. 5· 6· 7. 8· 9. 10. 11. 如請求们之電泳顯示器’進一步包含第二解壓縮構件 ⑽’以解壓縮在該第-記憶體⑴)中儲存的該查找表 (12)。 Ί項1之電泳顯示器’進_步包含複數個查找表, 各-亥等複數個查找表以溫度為指標,各該等複數個查找 表^義波形及時間參數,以針對—㈣溫度,根據在該 目$圖框(Ν)接收的该影像資訊及對應於至少一先前圖框 (:-1)的影像資訊,使該顯示元件(18)從該目前的光學狀 悲變更為該下一個光學狀態。 如請求項1之電泳顯示器,進一步包含第二壓縮構件 (15) ’以在該第-記憶體⑴)中儲存該等複數個查找表之 前壓縮該等複數個查找表。 如請求項1之電泳顯示器,一步包含一溫度感測器 (13),其配置成用以測量代表該電泳顯示器(1)之一溫度 的度,及將自亥測篁的溫度傳送給該控制器(?)。 如請求項6之電泳顯示器,其中該控制器(7)係進一步配 置成用以從該溫度感測器(13)接收該測量的溫度。 如睛求項1之電泳顯示器,其中該預定的下一個光學狀 態為一灰階狀態。 如請求項1之電泳顯示器,其中該預定的下一個光學狀 怨為一彩色狀態。 如請求項1之電泳顯示器’其中該壓縮構件藉由一不失 真壓縮器執行壓縮。 如睛求項1G之電泳顯示器,其中該不失真壓縮器將一不 96751.doc 200527102 失真壓縮演算法套 訊0 用於該等連續圖框中接 收的該影像資 12·如請求項1之電泳顯示器 麼縮器執行壓縮。 ’其令該壓縮構件藉由一失真 13· 14. 如請求項12之電泳顯示器, 壓縮演算法套用於該等連續 一種用於改進一電泳顯示裝 法’其包含以下動作·· 其中該失真壓縮器將一失真 圖框中接收的該影像資訊。 置(1)中之資料儲存密度的方 連續接收連續圖框中的影像資訊; 壓縮在該等連續圖框中接收的該影像資訊,· 健存波形及時間參數,使該顯示元件(18)從一目前的 光學狀態變更為一預定的下一個光學狀態; 根據一後進先出(LIFO)協定,儲存該等連續圖框接收 的δ亥壓縮影像資訊於一第二記憶體(9)中; 對一目前接收的圖框(Ν)解壓縮在至少一先前圖框(Ν_ U中接收之該第二記憶體(9)中儲存的該壓縮影像資訊; 從該第一記憶體(11)擷取波形及時間參數,其以根據 在该目前接收之圖框(N)中接收的該影像資訊及在該至少 一先前圖框(N-1)中接收的該解壓縮的影像資訊,使該顯 不元件(18)從一目前的光學狀態變更為一預定的下一個 光學狀態;及 套用該擷取的波形及時間參數,使該顯示元件(18)從 該目前的光學狀態至該預定的下一個光學狀態之該變更 生效。 96751.doc 200527102 15. 16. 17. 18. 19. 20. 如請求項14之方法,其中該波形及時間參數係儲存在一 查找表(12)中,該查找表則儲存在_第_記憶體(ιι)中。 如請求項15之方法,進一步包含以下動作:在該第一記 體(11)中儲存該查找表(12)之前壓縮該查找表(12)。 如請求項14之方法,其中該波形及時間參數係儲存在複 數個以溫度為指標的查找表中,各該等查找表可定義波 形及時間參數,其用以針對一特定溫度,根據在該目前 圖框(N)中接收的該影像資訊及在該至少—μ圖框 ”中接收的影像資訊’使該顯示元件〇8)從該目前的光 學狀態變更為該下一個光學狀態。 女明求項17之方法,進一步包含以下動作·· 偵測代表該電泳顯示裝置⑴之溫度的一溫度,"节 糾動作的執行係藉由:㈣該㈣的溫度作為一料 ’從該第-記憶體⑴)中儲存的該等複數個查找表中^ 取一查找表。 ° 進一步包含以下動作··在該第 戈口睛衣項17之方 十思體(1 1)中儲存該等複數 饭跃惝查找表之前,壓縮該等福 個查找表-如請求項19之方法,進—步包含以下動作: 债測代表該電泳顯示裝置⑴之溫度的-溫度,盆中 擷取動作的執行係藉由:使用該偵測的溫度作為-指 ’從該第-記憶體⑴)中儲存的該等複數個查找表中 取一查找表;及 解壓縮該擷取的查找表。 96751.doc 200527102 21.如請求項12之方法,复 ’、t精由一不失直塵給哭也 縮動作。 一 %时執行該壓 22·如請求項2丨之方法, 、 ,、干5亥不失真壓縮器將一不生吉啼 縮演算法套用於兮望、去成 失一 C 、 …寺連績圖框中接收的該影像資訊。 23·如睛求項12之方法,且中葬一 、 動作。 ’、9由—失真遂縮器執行該墨縮 24·如請求項23之方法, # 其中该失真壓縮器將一失真壓縮演 异法套用於該等連續圖框中接收的該影像資訊。 25· :種用於改進"·電泳顯示裝置⑴之資料儲存密度的電腦 矛弋產〇〇 „亥電腦矛王式產品包含電腦編碼裝置,其配置 成用以: ^ 連續接收連續圖框中的影像資訊; 壓Ί亥已接收的影像資訊以增加該電泳顯示器⑴之儲 存的可用性; 儲存疋義波形及時間參數的一查找表(丨2),其用以使 該顯示元件(18)從一目前的光學狀態變更為一預定的下 一個光學狀態; 根據後進先出(LIFO)協定來儲存壓縮的接收影像資訊; 解壓縮該壓縮的接收影像資訊;及 套用包含在该查找表(12)中的該波形及時間參數,以 根據在一目前圖框(N)中接收的影像資訊及在至少一先前 圖框(N-1)中接收的解壓縮影像資訊,使該顯示元件(18) 從該目前的光學狀態變更為該預定的下一個光學狀態。 96751.doc200527102 X. Patent application park: 1. An electrophoretic display (1), which includes: a display device (15), which further includes a plurality of display elements (18); an input component (2) 'for receiving continuous graphics Frame image information; first compression component (3) 'for compressing the received image information to increase the storage availability of the electrophoretic display benefit (1); a first memory (11)' for storage definition A lookup table (12) for one of the waveform and time parameters, which is used to change the display element (18) from a current optical state to a predetermined next optical state; a second memory (9) is used to A first-in-first-out (LIF0) protocol to store and delete the compressed received image information; a first decompression component (5) to decompress the compressed received image information; and a controller (7), which Configured to receive the compressed image information, store the compressed image information, and delete the compressed information; the controller (7) may be further configured to: retrieve the lookup table (12) from the first memory (11) ); Apply the lookup The waveform and time parameters included in Table (12) are based on the image information received in a current frame (N) and the decompressed image information received in at least one previous frame (N-1), The display element (18) is changed from the current optical state to the predetermined next optical state. 2. The electrophoretic display according to item 1 further includes a second compression member (15) to compress the lookup table (12) before storing the lookup table (12) in the first memory (11). 96751.doc 200527102 3. 4. 5 · 6 · 7. 8 · 9. 10. 11. If requested, the electrophoretic display 'further contains a second decompression member ⑽' to decompress in the first-memory ⑴) The stored lookup table (12). The electrophoretic display of item 1 further includes a plurality of lookup tables, each of which includes temperature as an indicator, each of the plurality of lookup tables, and the waveform and time parameters, in order to target the temperature, according to The image information received at the picture frame (N) and the image information corresponding to at least one previous frame (: -1) cause the display element (18) to change from the current optical state to the next Optical state. The electrophoretic display of claim 1, further comprising a second compression member (15) 'to compress the plurality of lookup tables before storing the plurality of lookup tables in the -memory ii). For example, the electrophoretic display of claim 1 further includes a temperature sensor (13) configured to measure a degree representing a temperature of the electrophoretic display (1), and to transmit the temperature from the measurement to the control. (?). The electrophoretic display of claim 6, wherein the controller (7) is further configured to receive the measured temperature from the temperature sensor (13). For example, the electrophoretic display of item 1, wherein the predetermined next optical state is a grayscale state. The electrophoretic display of claim 1, wherein the predetermined next optical state is a color state. The electrophoretic display according to claim 1, wherein the compression member performs compression by an undistorted compressor. If you are looking for the 1G electrophoretic display, the non-distortion compressor will use a 96751.doc 200527102 distortion compression algorithm message 0 for the image data received in the continuous frames. The monitor performs compression. 'It causes the compression component to undergo a distortion 13. 14. As in the electrophoretic display of claim 12, a compression algorithm is applied to these consecutive types for improving an electrophoretic display device.' It includes the following actions ... where the distortion compression The device will receive the image information in a distortion frame. Set the data storage density in (1) to continuously receive the image information in the continuous frames; compress the image information received in the continuous frames, and save the waveform and time parameters to make the display element (18) Change from a current optical state to a predetermined next optical state; according to a last-in-first-out (LIFO) protocol, store the δHai compressed image information received by the continuous frames in a second memory (9); Decompress a currently received frame (N) and decompress the compressed image information stored in the second memory (9) received in at least one previous frame (N_U); retrieve from the first memory (11) The waveform and time parameters are taken to make the image information based on the image information received in the currently received frame (N) and the decompressed image information received in the at least one previous frame (N-1). The display element (18) is changed from a current optical state to a predetermined next optical state; and the captured waveform and time parameters are applied to enable the display element (18) from the current optical state to the predetermined optical state Of the next optical state The change takes effect. 96751.doc 200527102 15. 16. 17. 18. 19. 20. The method of claim 14, wherein the waveform and time parameters are stored in a lookup table (12), and the lookup table is stored in _ In the _memory (ιι). If the method of item 15 is requested, further comprising the following action: compressing the lookup table (12) before storing the lookup table (12) in the first record (11). The method of 14, wherein the waveform and time parameters are stored in a plurality of lookup tables with temperature as indicators, and each of the lookup tables can define the waveform and time parameters, which are used to target a specific temperature according to the current frame. The image information received in (N) and the image information received in the at least -μ frame "caused the display element 0) to change from the current optical state to the next optical state. Female Ming seeking item 17 The method further includes the following actions: detecting a temperature representing the temperature of the electrophoretic display device, and the "correction action" is performed by: ㈣ the temperature of the 作为 as a material 'from the first memory ⑴ ) ^ Take a lookup table from several lookup tables. ° It further includes the following actions: · Before storing the plural meal jump lookup tables in the Fang Shisi style (1 1) of the 17th item of clothing item 17, compress the Wait for a look-up table, such as the method of item 19, which further includes the following actions: Detecting the temperature representing the temperature of the electrophoretic display device-the temperature, the execution of the fetching action in the basin is performed by: using the detected Temperature as-refers to 'take a lookup table from the plurality of lookup tables stored in the -memory ⑴); and decompress the retrieved lookup table. 96751.doc 200527102 21. The method as claimed in item 12 "Fu", "t" are crying and shrinking without losing straight dust. 22% of the time, the method is executed. If the method of item 2 丨 is used, the non-distortion compressor applies a timeless algorithm to look, lose or lose a C, ... The image information received in the frame. 23. Seek the method of item 12 as soon as possible, and bury one and move. ′, 9 are performed by the distortion shrinker. 24. The method of claim 23, # wherein the distortion compressor applies a distortion compression method to the image information received in the continuous frames. 25 ·: A computer spear product for improving the data storage density of an electrophoretic display device. The computer spear king product includes a computer coding device configured to: ^ Continuously receive continuous frames Image information received; press the received image information to increase the storage availability of the electrophoretic display; a lookup table (1) for storing the waveform and time parameters, which is used to make the display element (18) from A current optical state is changed to a predetermined next optical state; the compressed received image information is stored according to a last-in-first-out (LIFO) protocol; the compressed received image information is decompressed; and the lookup table (12) is applied The waveform and time parameters in the display element (18) according to the image information received in a current frame (N) and the decompressed image information received in at least one previous frame (N-1). Change from the current optical state to the predetermined next optical state.
TW93133079A 2003-11-03 2004-10-29 E-ink display with improved memory density TW200527102A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51685903P 2003-11-03 2003-11-03

Publications (1)

Publication Number Publication Date
TW200527102A true TW200527102A (en) 2005-08-16

Family

ID=34549576

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93133079A TW200527102A (en) 2003-11-03 2004-10-29 E-ink display with improved memory density

Country Status (6)

Country Link
EP (1) EP1683131A1 (en)
JP (1) JP2007510944A (en)
KR (1) KR20060100398A (en)
CN (1) CN1875397A (en)
TW (1) TW200527102A (en)
WO (1) WO2005043504A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739510B2 (en) 2005-05-12 2010-06-15 The Invention Science Fund I, Inc Alert options for electronic-paper verification
US7669245B2 (en) 2005-06-08 2010-02-23 Searete, Llc User accessibility to electronic paper
US7774606B2 (en) 2005-01-20 2010-08-10 The Invention Science Fund I, Inc Write accessibility for electronic paper
US7856555B2 (en) 2005-01-20 2010-12-21 The Invention Science Fund I, Llc Write accessibility for electronic paper
US8281142B2 (en) 2005-01-20 2012-10-02 The Invention Science Fund I, Llc Notarizable electronic paper
US8063878B2 (en) 2005-01-20 2011-11-22 The Invention Science Fund I, Llc Permanent electronic paper
US8640259B2 (en) 2005-01-20 2014-01-28 The Invention Science Fund I, Llc Notarizable electronic paper
US7865734B2 (en) 2005-05-12 2011-01-04 The Invention Science Fund I, Llc Write accessibility for electronic paper
JP4958466B2 (en) * 2006-04-05 2012-06-20 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Display device
JP4940778B2 (en) * 2006-06-20 2012-05-30 セイコーエプソン株式会社 Electronic display device
KR101289640B1 (en) * 2008-12-03 2013-07-30 엘지디스플레이 주식회사 Electrophoresis display
JP5578400B2 (en) 2009-07-16 2014-08-27 Nltテクノロジー株式会社 Image display device and driving method used for the image display device
JP2012198287A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Integrated circuit device, electro-optical device, and electronic equipment
JP2017090892A (en) * 2015-11-11 2017-05-25 株式会社Joled Display device, correction method of display device, manufacturing method of display device, and displaying method of display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721356A (en) * 1992-12-31 1995-01-24 Eastman Kodak Co Image processor
US5568165A (en) * 1993-10-22 1996-10-22 Auravision Corporation Video processing technique using multi-buffer video memory
US5512921A (en) * 1994-06-22 1996-04-30 Microsoft Corporation Visual display system having low energy data storage subsystem with date compression capabilities, and method for operating same
US5748904A (en) * 1996-09-13 1998-05-05 Silicon Integrated Systems Corp. Method and system for segment encoded graphic data compression
US6366289B1 (en) * 1998-07-17 2002-04-02 Microsoft Corporation Method and system for managing a display image in compressed and uncompressed blocks
US6349143B1 (en) * 1998-11-25 2002-02-19 Acuson Corporation Method and system for simultaneously displaying diagnostic medical ultrasound image clips
US7012600B2 (en) * 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
JP2001143063A (en) * 1999-11-04 2001-05-25 Neucore Technol Inc Image processor

Also Published As

Publication number Publication date
EP1683131A1 (en) 2006-07-26
JP2007510944A (en) 2007-04-26
CN1875397A (en) 2006-12-06
KR20060100398A (en) 2006-09-20
WO2005043504A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
TWI309404B (en) Liquid crystal display having gray voltages and driving apparatus and method thereof
TW200527102A (en) E-ink display with improved memory density
JP5080132B2 (en) Data compensation circuit and display device having the same
KR101288986B1 (en) Data compensation circuit and liquid crystal display device having the same
TWI251693B (en) Liquid crystal display panel, liquid crystal display and driving method thereof
TWI269254B (en) Overdrive device and method thereof
US20060170648A1 (en) Electrophoretic or bi-stable display device and driving method therefor
US20120113084A1 (en) Liquid crystal display device and driving method of the same
JP2003279929A (en) Method for driving liquid crystal display device, and the liquid crystal display device
JP2004271609A (en) Driving method of display device
KR100852036B1 (en) Liquid crystal display element driving method and liquid crystal display using the same
US9214117B2 (en) Display control circuit, liquid crystal display apparatus having the same, and display control method
US20070195040A1 (en) Display device and driving apparatus thereof
US20140062850A1 (en) Electro-optical device
TWI230369B (en) Driving circuit of a liquid crystal display and driving method thereof
WO2018188203A1 (en) Compression algorithm verification method, storage medium and display device
US20060139273A1 (en) Display driving device and display apparatus comprising the same
JP2002244623A (en) System and circuit for driving liquid crystal display device
TWI374430B (en) Apparatus for improving qualities of moving images on a liquid crystal display and method thereof
KR101230302B1 (en) Liquid crystal display and method of modifying image signals for liquid crystal display
JP5571893B2 (en) Display device driving apparatus and driving method thereof
US20090195564A1 (en) Driving method in liquid crystal display
US20100097394A1 (en) Method for clearing blur images of a monitor
KR20020010216A (en) A Liquid Crystal Display and A Driving Method Thereof
KR101030546B1 (en) Curcuit and method for over driving liquid crystal display device