TW200526914A - Thermal separation method with thermoelectric module - Google Patents

Thermal separation method with thermoelectric module Download PDF

Info

Publication number
TW200526914A
TW200526914A TW093129101A TW93129101A TW200526914A TW 200526914 A TW200526914 A TW 200526914A TW 093129101 A TW093129101 A TW 093129101A TW 93129101 A TW93129101 A TW 93129101A TW 200526914 A TW200526914 A TW 200526914A
Authority
TW
Taiwan
Prior art keywords
thermoelectric
indirectly
directly
heat
adsorption
Prior art date
Application number
TW093129101A
Other languages
Chinese (zh)
Inventor
Klaus Kuehling
Hans-Josef Sterzel
Michael Remmele
Patrick Deck
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Ag filed Critical Basf Ag
Publication of TW200526914A publication Critical patent/TW200526914A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0017Use of electrical or wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • F26B21/086Humidity by condensing the moisture in the drying medium, which may be recycled, e.g. using a heat pump cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

In thermal separation methods in which a material separation is carried out by the spatially separate input and extraction of heat, the input of heat occurs by means of the hot side of a current-carrying thermoelectrical module and the extraction of heat occurs by means of the cold side of a current-carrying thermoelectrical module.

Description

200526914 九、發明說明: 【發明所屬之技術領域】 本發明係關於用熱電組件進行之熱分離方法 【先前技術】 …、刀離方法之貝例為乾燥、蒸餾、吸附、吸收、昇華或 結晶作用。該等熱分離方法的不同之處在於,在該方法的 一個階段期間輸入埶,日A彳 …、且在與该方法第一階段為空間性或 臨時性分離的該方法另一階 白叙期間移除熱。熱輸入和熱移 除均要耗費能量。例如,在蒗 在尤顧中,欲經蒸餾的混合物需 要加熱至沸騰,且為鞾搵、入 巧&侍冷凝液,由此放出的蒸氣需要在 他處再冷凝。 ν ά |匁、句必受0 1夕!J如,在 組合家用絲機和乾燥機巾,首先需藉供應能量蒸發水, 而所得之水蒸氣需要在他處冷凝,以使過量水蒸氣不放出 及逸散到周圍環境中。 因此,所有熱分離方法妗&0〜 乃凌杓為旎®密集型。加熱和冷卻一 般在不同能量迴路中進杆。也丨 _ 仃例如,對於實驗室規模的蒸餾 而言,通常藉助於電操竹66 ^… ’、、力…、套進行蒸發,而藉助於冷 卻水予以冷凝。 【發明内容】 ’其中熱輸入和熱排除 可減少總能量花費。 法中使用熱電組件而達 本發明一目的為提供熱分離方法 係經偶合,因而與已知方法相較, 本發明此目的係藉由在熱分離方 成0 96203.doc 200526914 -亥目的又可由一種熱分離方法達成,其中物質分離係由. 空間上相互分離的熱輸入及熱排除進行,且熱輸入經由載 電流熱電組件之熱側進行,而熱排除經由載電流熱 之冷側進行。 【實施方式】 在本文中’物叙分離”描述自物質混合物分離一種物質 或使物質混合物分離成不同組成的兩種物質混合物。熱分 離方法為熟諳此藝者所熟悉。本發明之熱分離方法之實例 為乾燥、蒸餾、吸附、吸收、昇華、結晶或該等方法之二鲁 種或多種之組合。 以下首先描述熱電組件或配置,隨後描述熱分離方法。 熱電配置如帕爾帖(Peltier)元件為熱果,其操作不需任何 需要費用維修之移動元件。當對熱電材料施加DC電壓時, 此等熱電材料形成溫差。典型組件由具有優良熱導率的兩 塊薄陶瓷板組成,陶瓷板包含在其間以空間串聯的具有最 大熱電效應之p-型及η-型導電半導體。陶竟板為電絕緣體, 且用以保持塊形半導體在適當位置。 熱電組件包含南達數百個此等ρ_型和心型導電塊。當所 施加之直流的電子自Ρ-型導電材料通過導電連接進入心型 導電材料時,它們進入更高能態。為克服此能量差,因此 自環境吸取熱能,且此側變冷。電子隨後流動通過η_型導 電材料之晶格。在通到Ρ-型導電材料的接續點,其返回到 較小能態,且以熱量釋出而放棄此能量差。 因此,在最後,熱電組件的一側變熱,而另一側變冷。 96203.doc 200526914 熱量自一側傳到另一側。 如果電机方向相卩,則熱流亦相反。當使用熱電組件加 熱日卞不僅輸入之電能轉變成熱量,而且能量亦自熱側菜 浦到冷側。這減少加熱所需的能量。 本t明的基本重點為雙重使用此效應,即,在此方法中, 其中能量為加熱所需,且同時能量為冷卻所需。 最後此等方法均為熱分離方法,如乾燥、蒸館、吸附、 吸收、幵華或結晶作用,這將在以下更詳細解釋。 在祀據本^明之熱分離方法中,物質分離以空間上相互 分離的熱輸人及熱排除進行。然後在欲分離的物質混合物 及已分離的物質混合物中分別進行熱輸入及熱輸出。在此 例中刀離⑤味自物質混合物分離一種組分或物質,或使 種物貝此合物分離成不同組成的兩種物質混合物。在熱 分離方法期間輪入熱量之場所及排除熱量之場所為熟諸: 藝者所熟悉,日膝^丨、/ nr丄 曰 且肘以下由貫例關於乾燥、蒸餾、吸附、吸 收、昇華和結晶作用% 、、 曰曰作用呪明。本發明之方法中,熱輸入經由 載電流熱電組件之故彳丨 > _ 之,、、、側進仃,而熱排除經由載電流熱電組 •進行熱輸入和熱排除較佳經由相同熱電組件之 熱側和冷側進行。 在熱分離戶斤用士·、、上士 μ 用方法中併入熱電組件之方式對熟諳此蓺 顯而易見。可使埶雷έ ^ , 之熟冤組件之熱側和冷側直接與欲加熱或欲 々部的物貝或物質混合物接觸。接觸可選擇性經由另—種 ^轉移媒介物進行。可將結構設計為相關熱分離方法之功 月匕及用於其的裝置之功能。例如,在蒸餾之例中,物質混 96203.doc 200526914 空間上相互分離 口物之加熱及蒸發與冷凝在空間上分離 __________…導 的加熱和冷卻區域所用之熱輸入或熱排除可由適合熱載體 ' 例如,可使在實驗室蒸餾裝置申慣用於冷凝器部分 、-''卩Jc與熱電組件之冷側接觸,以使冷卻水在熱電組件 “ 7側Q卻。然後使冷卻水在蒸餾裝置的習知冷凝器和熱 2組件的冷側之間循環。可對應對熱電組件之熱側輸入熱 里,例如,包含欲經蒸發之混合物之蒸餾裝置之燒瓶。 因此,可由熱轉移媒介物使熱分離裝置或熱分離方法t :熱源位置及熱排除位置分別連接至或接觸載電流熱電組 件之熱側和冷側。 ^熱乾燥自濕固體分離液體,通常為水。乾燥過程由 兩個_人步驟組成: h由熱輸入使液體轉變成蒸氣態。 2 ·移除蒸氣。 件同時發生熱和物質轉移而區分,且物理條 二1=期間變化。只要物質表面足夠濕,則此 ^及/、中乾爍速率僅視熱能強度 空教)盥刼Μ主=Μ 钇备媒介物(例如,乾燥 間之物質轉移而定之表面蒸發過程。如果 乾“某"物之熱態和流體動 速率亦恒定。在低Μ範心料^定,則乾燦 ^ , …,、、圍内,即,落在低於所謂的X必 夤濕氣後,乾燥速率實質由 · 、 f 定。關鍵材料性能則為熱導 :::和物質傳輸決 乾燥器不僅在工業製程技術領域;:透重率要:及濕性能。 人家財亦重要。紐合式洗務機和乾燥機料大在個 96203.doc 200526914 且在乾燥期間放出的水蒸汽通tf要冷凝,因為局 不允許放出大量水蒸汽。為使蒸氣冷凝,需要新鮮水作為 冷部媒介物,4需要大量冷卻空氣。根據本發明,再 必要」乾燥所需的空氣在熱電組件之熱側加熱,而水蒸汽 則冷卻於冷側。 ' 大為增加 考慮到改良熱轉移,熱電組件之表面較佳具有 有效表面積之翼片及類似者。200526914 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a thermal separation method using a thermoelectric component [prior art] .... Examples of knife-off methods are drying, distillation, adsorption, absorption, sublimation or crystallization . The thermal separation method differs in that 埶, 彳 A 彳 are input during one stage of the method, and during the second stage of the method, which is spatially or temporarily separated from the first stage of the method Remove heat. Both heat input and heat removal use energy. For example, in 蒗 and 顾, the mixture to be distilled needs to be heated to a boil, and the condensate is 鞾 搵, and the vapour thus emitted needs to be condensed elsewhere. ν ά | 匁, sentence must receive 0 1 night! J, for example, in the combination of household silk dryer and dryer towel, you must first supply energy to evaporate water, and the resulting water vapor needs to be condensed elsewhere so that excess water vapor does not Release and escape into the surrounding environment. Therefore, all thermal separation methods 妗 & 0 ~ Nailing are 旎 ® dense. Heating and cooling are generally performed in different energy circuits. Also 丨 _ 仃 For example, for laboratory-scale distillation, evaporation is usually carried out by means of electric manipulators 66,…,…, and the jacket, and condensed by means of cooling water. [Summary of the Invention] 'wherein heat input and heat removal can reduce the total energy cost. One purpose of the present invention is to use thermoelectric components in the method. To provide a thermal separation method, which is coupled, and compared with known methods, this object of the present invention is to obtain the thermal separation method by 96 96.doc 200526914- A method of thermal separation is achieved in which material separation is performed by heat input and heat removal separated from each other in space, and the heat input is performed by the hot side of the current carrying thermoelectric component, and the heat removal is performed by the cold side of the current carrying heat. [Embodiment] In this context, the "material separation" describes separating a substance from a substance mixture or separating a substance mixture into two substance mixtures of different compositions. The thermal separation method is familiar to those skilled in the art. The thermal separation method of the present invention Examples are drying, distillation, adsorption, absorption, sublimation, crystallization, or a combination of two or more of these methods. The following first describes the thermoelectric component or configuration, and then describes the thermal separation method. Thermoelectric configuration such as Peltier The element is a hot fruit, and its operation does not require any moving parts that require maintenance. When a DC voltage is applied to a thermoelectric material, these thermoelectric materials form a temperature difference. Typical components are composed of two thin ceramic plates with excellent thermal conductivity. The plate contains p-type and η-type conductive semiconductors with the largest thermoelectric effect in series in space. The ceramic plate is an electrical insulator and is used to keep the bulk semiconductor in place. Thermoelectric components include hundreds of Equivalent ρ-type and heart-shaped conductive blocks. When the applied DC electrons enter the heart-shaped from the P-type conductive material through the conductive connection When they are electrical materials, they enter a higher energy state. In order to overcome this energy difference, heat energy is drawn from the environment, and this side becomes cold. The electrons then flow through the lattice of the η-type conductive material. At the connection point, it returns to a smaller energy state and releases this energy difference with heat release. Therefore, at the end, one side of the thermoelectric component becomes hot and the other side becomes cold. 96203.doc 200526914 Heat from one side Passed to the other side. If the motors are in opposite directions, the heat flow is also reversed. When using a thermoelectric component to heat the sundial, not only the input electric energy is converted into heat, but the energy is also transferred from the hot side to the cold side. This reduces the heating required. The basic emphasis of the present invention is to double use this effect, that is, in this method, where energy is required for heating and at the same time energy is required for cooling. Finally, these methods are all thermal separation methods, such as drying, Steaming, adsorption, absorption, liming, or crystallization will be explained in more detail below. In the thermal separation method according to the present invention, the material separation is performed by thermally transporting people and removing heat from each other spatially. After that, the heat input and heat output are respectively performed in the substance mixture to be separated and the separated substance mixture. In this example, the knife is separated. ⑤ A component or substance is separated from the substance mixture, or the species is separated into A mixture of two substances of different compositions. The places where heat is turned in and the place where heat is removed during the thermal separation method are familiar: The artist is familiar with sun knees, ^ 丨, / nr 丄, and below the elbow, there are conventional examples about drying, The effects of distillation, adsorption, absorption, sublimation and crystallization are described in the following. In the method of the present invention, the heat input is via the current-carrying thermoelectric component. &> Exclude the thermoelectric unit through the carrier current • The heat input and heat removal are preferably performed through the hot side and the cold side of the same thermoelectric module. In the method of thermal separation, the thermoelectric module is incorporated into the thermoelectric module. Familiar with this is obvious. The hot and cold sides of the cooked components can be brought into direct contact with the shells or substance mixtures to be heated or heated. Contacting can optionally be performed via another transfer vehicle. The structure can be designed as a function of a related thermal separation method and a device for the same. For example, in the case of distillation, the material mixture 96203.doc 200526914 is separated from each other in space. Heating and evaporation and condensation are separated in space. __________... The heat input or heat removal used in the heating and cooling areas can be adapted to the heat carrier. '' For example, it can be used in the condenser part of the laboratory distillation device,-'' 卩 Jc is in contact with the cold side of the thermoelectric component, so that the cooling water is on the thermoelectric component "7 side Q. Then the cooling water is placed in the distillation device. Circulation between the conventional condenser and the cold side of the hot 2 module. It can correspond to the input of heat to the hot side of the thermoelectric module, for example, a flask containing a distillation device for the mixture to be evaporated. Therefore, it can be caused by a heat transfer medium Thermal separation device or thermal separation method t: The location of the heat source and the location of heat removal are connected to or in contact with the hot and cold sides of the current-carrying thermoelectric component, respectively. ^ Heat-drying separates liquids from wet solids, usually water. The drying process consists of two_ The human steps consist of: h The liquid is transformed into a vapor state by heat input. 2 • The vapor is removed. The parts are distinguished by simultaneous heat and material transfer, and physical bar 2 1 = period change. Only If the surface of the material is sufficiently wet, then this and / or the rate of intermediate dry flicker only depends on the intensity of thermal energy. The main evaporation process is based on the yttrium preparation medium (for example, the surface evaporation process depending on the material transfer between drying. If dry " The thermal state and fluid dynamic rate of a certain object are also constant. In the low M range, it is determined that the dry can,… ,,, and the surrounding, that is, after falling below the so-called X must be moisture, The drying rate is essentially determined by ·, f. The key material property is thermal conductivity ::: and material transfer dryers are not only in the field of industrial process technology ;: Permeability rate: and wet performance. Household wealth is also important. The aircraft and dryer materials are large in 96203.doc 200526914 and the water vapor released during drying must be condensed, because the bureau does not allow a large amount of water vapor to be emitted. In order to condense the steam, fresh water is required as a cold medium, 4 A large amount of cooling air is required. According to the present invention, it is necessary to "air-dry the heating air on the hot side of the thermoelectric module, while the water vapor cools it on the cold side." Considering improved heat transfer, the surface of the thermoelectric module is better Of effective surface area Tablets and the like.

蒸館為蒸發欲經分離或純化液體混合物的一或多種組 刀在此例中,蒸氣一般在冷凝後作為液態顧出物獲得。 簡單:蒸餾器由經加熱的煮滞器和冷凝器組成。自煮涛器上 升的蒸氣係送過冷卻器,並在此液化,然後在容器中收集 所得的冷凝液。 精館為多重蒸館,且液體和蒸德以逆流一起直接接觸。 在此例中,分離效果優於蒸顧。連續精餾器管柱具有一或 夕個進料及瘵發器,通常在管柱的較低端,此產生向上流 、工吕柱的大里蒸氣。在頂部冒出的蒸氣部分冷凝並以回流籲 、"且邛刀以瘵氣或液態作為餾出物回收。液態底部產 物自蒸館裔内底部取出。由此使進料分離成德出物及底部 產物。 々果液體混合物中的平衡蒸氣組成不同於液態組成,則 僅可由蒸餘和精館實現分_。因在匕,分離視欲分離的混合 物之平衡性質而定。 本I明亦可節省蒸餾和精餾過程所用的熱能,並可避免 使用用於冷卻的冷卻水。 96203.doc 10 200526914 、品要由蒸餘使鹽水及/或海水轉化成飲用水之乾燥區 域,這特別重要。 吸附方法復適用於其中需要自大為過量之不可吸附或不 易吸附此合物組分分離以低濃度出現的可吸附組分之分離 作例如,此等分離工作為自廢空氣回收溶劑、氣體乾 無、自空氣或分離有味物質、及溶液脫色。,吸附方 法不限於此類分離工作。其以此方式處理不利的濃度水平 由既有之其他分離方法限制於上限範圍,%有之其他方法 技術上至少有效而且經濟,而在下限範圍由於極低濃度仍 可處理而無限制。 類似於冷凝過程,吸附過程伴隨焓變化。物質的吸附熱 量大於其冷凝熱,但一般低於化學反應之焓變化。物質一 般在低溫吸附於媒介物。進行冷卻以移除吸附之熱。為使 物質解吸,將媒介物加熱到物質釋放。因此,使用熱電組 件亦對吸附理想。 極類似考慮亦應用於吸收作用·· 吸收作用指在通過洗滌液體(吸收劑)時完全或部分吸收 氣體或蒸氣(欲吸收的物質)。氣體溶解度可受所謂物理洗蘇 中的物理力(分子吸引)或由所謂化學洗滌之例中的純化學 鍵結支配。(氣體組分由固體物質化學鍵結(例如,硫化氨由 氧化鐵鍵結)為化學吸附,且同樣涵蓋於*政 盈於本發明之吸收術 語)0 吸收的主要應用領域為氣體純化或痛辦、、曰人 又風體混合物分離。技 術上的氣體吸收或洗滌系統係由兩個曹旅加八y 丨口里要部分組成,為吸 96203.doc 200526914 收的的氣體洗滌塔以及其中自載有氣體的洗㈣使氣體解 j ’、p置換且使洗膝劑可再利用白勺所謂再生器、。在經濟可 灯^允$之特殊例中’基於簡化理由,洗務劑僅用於吸收 人且作為廢洗滌媒介物丟棄。 氣體在低,皿吸收於吸收劑中。為使其解吸,將吸收劑加 熱:為本發明使㈣電組#的理想領域。 昇華指不經過液體物理狀態,物質自固相直接轉化成氣 相。此過程通常與逆過程密切關聯,#,蒸氣直接冷凝成 口體有時同樣稱為昇華,但更準確應稱為去昇華。在無 液相出現日寸’包括固體蒸發和隨後蒸氣冷凝成固體的整個 匕寿同樣稱為昇華。液體蒸發和蒸氣直接冷凝成固體稱為 假昇華。 口。各汁華系、統由昇華器和冷凝器組成。昇華器需要比蒸發 器投入更大量熱,因為昇華熱總是大於蒸發熱。 人蒸餾、精餾或萃取類似,結晶作用為包括相生成的熱 刀離方法,因為至少一個固相自溶液、熔融物或蒸氣產生。 /、係種熱方法,因為在結晶過程中一般通過壁或直接接 蜀斤匕έ的相來轉移顯著熱量,而且因為即使沒有熱效 應,可達成的結果仍基本上視僅由熱動力學考慮針對的相 平衡而定。 除製造具有特定性質的單晶外,進行結晶作用著眼於以 下一種主要任務:純化、分離、產生特定晶體形式。如果 粗產物包含不溶於溶劑的雜質,則欲純化的物質可由溶於 /♦剤、濾去溶液(視需要加適合吸附劑)及隨後自污染物結晶 96203.doc -12- 200526914 出而分離。即使在結晶作用前不過濾溶液,隨後獲得的晶 體通常仍包含較少雜質及粗結晶,因為在晶體生長不太快 速時,結晶比雜質更快速結晶(自我純化能力)。特定晶形可 由適當修改物理變數(溫度、超飽和等)或由加入產率改良物 質而獲得。 ^ 在熔融結晶作用中,當污染物使純物質之熔點降低時, 結晶總是比與其平衡時之熔融物更純;如果使其熔點增加 (較不普遍),則熔融物更純。當全部熔融物固化時,例如, 呈薄片形式時,則結晶作用純粹為成形方法。 在所有熱分離方法中,使用熱電組件帶來多種優點:相 車父於先前技藝,比較節省能量及冷卻媒介物。 可在本發明之應用中使用標準熱電組件。例如,此等描 述於EP-A-ll02 334號及EP-A-1 289 026號。以下舉例本發 明可使用的熱電組件之實例。 對熱電產生器或組件已瞭解很長時間。在一側加熱而在 另一側冷卻的p-型和η-型摻雜半導體經由外電路傳輸電 荷’由電路中負載做出電功。由此對熱量轉化成電能達成 的效率在熱力學上受到卡諾(Carnot)效率限制。利用在熱側 1000 K及,,冷側,,400 K之溫度,因此可能有(W00-400)/ 1000=60%之效率。遺憾的是,至今只達成至多1〇%之效率。 例如,1993年,11月8曰,曰本,橫濱(Yokohama),克羅 尼因(Ci*onin)B·文寧(Vining),熱電學ITS短期課程(ITS Short Course on Thermoelectricity)對效果和可用材料做出 令人滿意的回顧。 96203.doc -13- 200526914 σ及熱導率κ, z因數(性能係數)為熱電組件之特性。 利用賽貝克(Seebeck)係數α,電導率 Ζ = α2·σ 其遵循由以 自更詳細分析,利ffiM=[1+z(T高彳低)/2]0.5 下公式給出的效率π : η = -Τ低'Μ-\ 7高 Μ + ί (亦參見 Mat· Sci.和 Eng. Β29(1995)228)。 根據本舍明,較佳提供具有最大ζ值及可實現高溫差 料。 例如,目如所用材料代表多個兼顧,如丁以、抑丁^或 SiGe。例如,合金的電導率降低小於導熱率降低。因此, 較佳使用如美國專利第5,448,1〇9號所述的合金,如 (Bi2Te3)90(Sb2Te3)5(Sb2Se3)5 或 Bi12Sb23 Te65。 對於具有高效率之熱電材料,較佳亦應滿足其他限制。 首先匕們必須在應用範圍熱穩定,以使它們能夠操作數 年而不實質損失效率。這預示本身的(高)溫度穩定相(穩定 相組成)’且合金組分可忽略地擴散進入鄰接接觸材料。 例如’有利的熱電產生器可為具有P-型或n-型摻雜半導 月且材料者’且半導體材料為以下物質種類之一的至少三元 材料(由混合該物質種類的至少兩種化合物而獲得): (1)石夕化物 96203.doc •14- 200526914 U3Si5、BaSi2、CeSi2、GdSi、NdSi2、CoSi、CoSi2、CrSi2、 FeSi、FeSi2、MnSi、MoSi2、WSi2、VSi、TiSi2、ZrSi2、 VSi2、NbSi2及 TaSi2 (2) 硼化物 UB2、UB4、UB12、CeB6、A1B12、CoB、CrB2、CrB4、 FeB、MnB、MnB2、MnB12、MoB、MoB4、SiB4、SiB6、SiB12、 TiB2、VB2、YB4、ZrB2、CuB24、NiB12、BaB6、MgB2、MgB4 以及MgB12,其中,含鋁之硼化物亦可為每個B原子含一個 碳原子, (3) 鍺化物 U5Ge3、BaGe、GdGe、Dy5Ge3、Fr5Ge3 以及 Ce3Ge5 (4) 碌化物、硫化物及碰化物The steam room is one or more sets of knives that evaporate the liquid mixture to be separated or purified. In this example, the vapor is generally obtained as a liquid condensate after condensation. Simple: The distiller consists of a heated boiler and condenser. The steam rising from the boiler is sent to a cooler, where it is liquefied, and the resulting condensate is collected in a container. Jingjing is a multiple steaming hall, and the liquid and steaming German are in direct contact with each other in countercurrent. In this case, the separation effect is better than steaming. The continuous rectifier column has one or two feeds and an aerator, usually at the lower end of the column, which produces upward flow, gully vapor. The vapor emerging from the top partly condenses and is recovered as a reflux, and the trowel is recovered as distillate with radon or liquid. The liquid bottom product is taken from the bottom of the steaming house. This separates the feed into German products and bottoms. The equilibrium vapor composition in the capsule fruit liquid mixture is different from the liquid composition, and the separation can be achieved only by the distillate and the essence. Depending on the balance of the mixture to be separated, the separation depends on the balance. The present invention also saves heat energy used in the distillation and rectification process, and avoids the use of cooling water for cooling. 96203.doc 10 200526914 It is particularly important to dry the area where the steam and / or seawater is converted into drinking water by steam distillation. The adsorption method is suitable for the separation of non-adsorbable or difficult-to-adsorb components that require a large excess. Separation of the adsorbable components that occur at low concentrations. For example, these separations are used to recover solvents from waste air and dry None, decolorization from air or separation of odorous substances, and solutions. The adsorption method is not limited to this type of separation work. Its ability to deal with unfavorable concentration levels in this way is limited to the upper limit range by other existing separation methods, and other methods are at least technically effective and economical, while the lower limit range can be processed without limitation due to extremely low concentrations. Similar to the condensation process, the adsorption process is accompanied by a change in enthalpy. The heat of adsorption of a substance is greater than its heat of condensation, but is generally lower than the enthalpy change of a chemical reaction. Substances are generally adsorbed on the medium at low temperatures. Cooling is performed to remove the heat of adsorption. To desorb the substance, the vehicle is heated until the substance is released. Therefore, the use of thermoelectric components is also ideal for adsorption. Very similar considerations also apply to absorption ... Absorption refers to the complete or partial absorption of gas or vapor (the substance to be absorbed) when passing through a washing liquid (absorbent). Gas solubility can be dominated by physical forces (molecular attraction) in so-called physical washing or by pure chemical bonding in the so-called chemical washing example. (The gas components are chemically bonded by solid substances (for example, ammonium sulfide is bonded by iron oxide) and are also chemically adsorbed, and are also covered by * Zhengying's absorption terms in the present invention.) 0 The main application area of absorption is gas purification or pain The mixture of human and wind is separated. The technical gas absorption or scrubbing system is composed of two main components in the mouth of Cao Lujia and Ya. The gas scrubbing tower that absorbs 96203.doc 200526914 and the self-loaded scrubbing gas decomposes the gas. , P replaces and makes the knee washer reusable the so-called regenerator. In the special case of economically acceptable lamps, for reasons of simplification, detergents are only used to absorb people and discarded as waste washing media. The gas is low and the dish is absorbed in the absorbent. In order to make it desorb, the absorbent is heated: this is an ideal field for the electricity generation group # of the present invention. Sublimation refers to the direct transformation of a substance from a solid phase into a gas phase without going through the physical state of the liquid. This process is usually closely related to the inverse process. The direct condensation of steam into the mouth is sometimes also called sublimation, but more accurately it should be called desublimation. The appearance of the liquid phase in the absence of a liquid phase 'includes the evaporation of solids and the subsequent condensation of vapors into solids, which is also referred to as sublimation. The evaporation of liquids and the direct condensation of vapors into solids are called pseudo-sublimation. mouth. Each juice bloom is composed of a sublimator and a condenser. The sublimator requires a larger amount of heat than the evaporator, because the heat of sublimation is always greater than the heat of evaporation. Similar to human distillation, rectification, or extraction, crystallization is a hot-knife method that includes phase formation because at least one solid phase is produced from a solution, melt, or vapor. /, This kind of thermal method, because in the crystallization process generally transfers significant heat through the wall or directly connected to the phase, and because even without thermal effects, the achievable results are still basically based on thermodynamic considerations. Depends on the phase balance. In addition to manufacturing single crystals with specific properties, crystallization is focused on the following main tasks: purification, separation, and generation of specific crystal forms. If the crude product contains solvent-insoluble impurities, the substance to be purified can be separated by dissolving it in water, filtering off the solution (adding a suitable adsorbent if necessary), and then crystallizing from the pollutant 96203.doc -12- 200526914. Even if the solution is not filtered before crystallization, the subsequent crystals usually contain fewer impurities and coarse crystals, because when crystals grow less quickly, they crystallize faster than impurities (self-purification ability). The specific crystal form can be obtained by appropriately modifying the physical variables (temperature, supersaturation, etc.) or by adding a yield-improving substance. ^ In melt crystallization, when a contaminant reduces the melting point of a pure substance, the crystal is always purer than the melt when it is in equilibrium; if the melting point is increased (less common), the melt is more pure. When the entire melt is solidified, for example, in the form of flakes, the crystallization is purely a forming method. In all thermal separation methods, the use of thermoelectric components brings a variety of advantages: compared to previous techniques, the car driver is more energy efficient and cools the media. Standard thermoelectric components can be used in applications of the present invention. For example, these are described in EP-A-ll02 334 and EP-A-1 289 026. The following are examples of thermoelectric components that can be used in the present invention. Thermoelectric generators or components have been known for a long time. The p-type and η-type doped semiconductors which are heated on one side and cooled on the other side transmit electric charge 'via an external circuit to make electrical work from the load in the circuit. The efficiency with which heat is converted into electricity is thus thermodynamically limited by Carnot efficiency. Using a temperature of 1000 K on the hot side and 400 K on the cold side, it is possible to have (W00-400) / 1000 = 60% efficiency. Unfortunately, only up to 10% efficiency has been achieved so far. For example, on November 8, 1993, Yokohama, Yokohama, Ci * onin B. Vining, ITS Short Course on Thermoelectricity A satisfactory review of available materials. 96203.doc -13- 200526914 σ and thermal conductivity κ, z factor (coefficient of performance) are characteristics of thermoelectric components. Using the Seebeck coefficient α, the electrical conductivity Z = α2 · σ which follows the efficiency given by the formula given by MM = [1 + z (THigh 彳 Low) / 2] 0.5: η = -Τlow'M- \ 7highM + (see also Mat. Sci. and Eng. B29 (1995) 228). According to the present invention, it is preferable to provide a material having a maximum zeta value and high temperature difference. For example, the material used for the purpose represents multiple considerations, such as Ding Yi, Yi Ding, or SiGe. For example, the decrease in electrical conductivity of the alloy is less than the decrease in thermal conductivity. Therefore, it is preferable to use an alloy as described in U.S. Patent No. 5,448,109, such as (Bi2Te3) 90 (Sb2Te3) 5 (Sb2Se3) 5 or Bi12Sb23 Te65. For thermoelectric materials with high efficiency, other restrictions should preferably be met. First, the knives must be thermally stable in the application area so that they can operate for years without substantial loss of efficiency. This indicates its own (high) temperature stable phase (stable phase composition) 'and the alloy components diffuse negligibly into the adjacent contact material. For example, 'favorable thermoelectric generators may be those having P-type or n-type doped semiconducting moons and materials' and the semiconductor material is at least a ternary material (by mixing at least two of the substance types) Obtained from compounds): (1) Shixiu 9696.doc • 14- 200526914 U3Si5, BaSi2, CeSi2, GdSi, NdSi2, CoSi, CoSi2, CrSi2, FeSi, FeSi2, MnSi, MoSi2, WSi2, VSi, TiSi2, ZrSi2 VSi2, NbSi2 and TaSi2 (2) Borides UB2, UB4, UB12, CeB6, A1B12, CoB, CrB2, CrB4, FeB, MnB, MnB2, MnB12, MoB, MoB4, SiB4, SiB6, SiB12, TiB2, VB2, YB4, ZrB2, CuB24, NiB12, BaB6, MgB2, MgB4, and MgB12, among which aluminum-containing borides can also contain one carbon atom for each B atom, (3) Germanium compounds U5Ge3, BaGe, GdGe, Dy5Ge3, Fr5Ge3, and Ce3Ge5 ( 4) Compounds, sulfides and bumps

LaS、NdS、Pr2S3、DyS、USe、BaSe、GdSe、LaSe、Nd3Se4、 Nd2Se3、PrSe、FrSe、UTe、GdTe、LaTe、NdTe、PrTe、SmTe、 DyTe及 ErTe (5) 銻化物 USb、CeSb、GdSb、LaSb、NdSb、PrSb、DySb、AlSb、 CoSb、CrSb、FeSb、Mg3Sb2、Ni5Sb2和 CoSb3及 NiSb3 (6) 鉛化物LaS, NdS, Pr2S3, DyS, USe, BaSe, GdSe, LaSe, Nd3Se4, Nd2Se3, PrSe, FrSe, UTe, GdTe, LaTe, NdTe, PrTe, SmTe, DyTe, and ErTe (5) Antimony compounds USb, CeSb, GdS LaSb, NdSb, PrSb, DySb, AlSb, CoSb, CrSb, FeSb, Mg3Sb2, Ni5Sb2, CoSb3 and NiSb3 (6) Lead compounds

CePb、Gd5Pb3、La5Pb3 及 Dy5Pb4;在物質種類(1)至(6)中, 如果它們未在組合中,則至多10原子%之元素可經Na、K、 Rb、Cs、Ζη、Cd、Α卜 Ga、Zr、Mg、S、Cu、Ag、Au、 Ti、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni或此 等之混合物置換。 96203.doc -15- 200526914 (7)半導體氧化物 U〇2、Bi2〇3、CuO、Cu2〇、SnO、PbO、ZnO、In2〇3、 W03、V205、Sb2〇3、CoO、NiO、co3〇4、FeO、Fe2〇3、Nb02、 CeOjBaO, 其中至多10莫耳%之氧化物可經Na2〇、K2〇、CdO、MgO、 CaO、SrO、Al2〇3、Ga2〇3、Cr2〇3或此等之混合物置換。半 導體材料較佳為不置換所示氧化物或元素的物質種類至 (6)之一的二元或三元合金或物質種類(乃之二元氧化物。根 據另一種程序,為獲得熱電活性物質,可使3〇至5〇、較佳 35至40重置。/。之半導體元素b、Si、Ge、sb、Bi、s、Se和 之或夕種與50至7〇、較佳60至65重量%之元素Mg、A1、 e Ni Co、Zn、Cd、Τι、Zr、Y、Cu、V、Mo、W、Μη、 # U之或多種組合及反應。如以下所述,此等物 質以適合組合方式组人力—如 ^ 、 、σ在一起,且使元素混合物隨後在升 溫反應而藉固離及廡花;a 棺口心夂應形成確實熱電活性物質。 合金中摻雜元素之比例為 20 j馮^·1原子/。,或每立方釐米ι〇υ 至1〇20個載荷子。較高載荷子 十 <而#、 j 丁 /辰没屋生不利重組,因此,導 致電何流動性降低。推雜 之元辛進r m 中導致電子過剩或缺乏 之兀f進仃,例如,在㊅ 體使用;^,f+ 4. 或3/6半導體時,對η-型半導 體使用蛾對ρ-型半導體使用驗土元素。 另一種摻雜的可能性ΑCePb, Gd5Pb3, La5Pb3, and Dy5Pb4; in substance types (1) to (6), if they are not in the combination, up to 10 atomic% of the elements can be passed through Na, K, Rb, Cs, Zn, Cd, Αb Ga, Zr, Mg, S, Cu, Ag, Au, Ti, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni or a mixture thereof. 96203.doc -15- 200526914 (7) Semiconductor oxides U02, Bi203, CuO, Cu20, SnO, PbO, ZnO, In203, W03, V205, Sb203, CoO, NiO, co3. 4. FeO, Fe203, Nb02, CeOjBaO, of which up to 10 mole% of the oxide can pass through Na2O, K2O, CdO, MgO, CaO, SrO, Al2O3, Ga2O3, Cr2O3 or this And so on. The semiconductor material is preferably a binary or ternary alloy or a substance type (that is, a binary oxide) which does not replace the substance type of the oxide or element shown to one of (6). According to another procedure, in order to obtain a thermoelectric active substance It can reset 30 to 50, preferably 35 to 40. The semiconductor elements b, Si, Ge, sb, Bi, s, Se, and / or the kind of semiconductor elements are 50 to 70, preferably 60 to 65% by weight of elements Mg, A1, e Ni Co, Zn, Cd, Ti, Zr, Y, Cu, V, Mo, W, Mn, #U or more combinations and reactions. As described below, these substances Group manpower in a suitable combination—such as ^,, σ, and make the element mixture subsequently react with the temperature and react by solidification and sacrifice; a. The coffin should form a thermoelectrically active substance. Proportion of doped elements in the alloy It is 20 von ^ · 1 atoms /., Or ιου to 1020 charge carriers per cubic centimeter. Higher charge carriers ten < and #, j 丁 / 辰 不 屋 生 unfavorable reorganization, therefore, it leads to electricity How the fluidity is reduced. In the elementary element sine rm, the excess or lack of electrons is caused, such as when used in the body; ^, f + 4. When 3/6 of the semiconductor, for η- type semiconductor moth-earth element used to test semiconductor ρ- Another possibility doped Α

f 為用次或超化學計量组八物刿立HI 導電洞或電子進入姑袓 _ 1里、、且口物刻思引 另外τΙ! 節省額外摻雜步驟。 另外,可由金屬鹽之水性溶液引入播 合物中乾燥。隨後使 ”素奴後在混 曼使-屬%離子還原,例如,在高溫由氫 96203.doc •16- 200526914 :原:或在不還原下保留在材料中。 物之置比進行P·轉雜或㈣摻雜,或 ^擇此化合 雜及用Sb、Bi、ς 了 双孟屬進行Ρ-型摻 92/1381 1)。 义备雜(參閱W0 最佳使用已知具有低功量之重f is used to sub- or super-stoichiometric group eight objects to stand HI conductive holes or electrons into the 袓 _ 1 li, and the mouthpiece is thoughtful. In addition τΙ! Save additional doping steps. Alternatively, an aqueous solution of a metal salt can be introduced into the pod for drying. Subsequent to "Suo Nu" in the mixed man to reduce-%% ions, for example, at high temperature from hydrogen 96203.doc • 16- 200526914: original: or remain in the material without reduction. The ratio of the material to P · transfer Doping or erbium doping, or choosing this compound doping and P-type doping with Sb, Bi, or Bi-mongonium 92/1381 1). Preparation of doping (see W0 Best use of known low-work weight

ττ Ώ · 〇 此等之主要實例A U、Bl、Se、Te、Ce、Ba。 π ]為 例如’以下二元合金作為具高2 之鹼較引人注意: a皿度之熱電材料 物質 熔點(°c) ub2 2385 ub4 2495 ub12 2235 U5Ge3 1670 USb 1850 U3Si5 1770 USe 1990 UTe BaGe 1145 BaSe BaSi2 1180 具有高熱穩定性的其他適合二元物質(括弧内的炼點為 °C )-為:鍺化物 GdGe(1790)、Dy5Ge3(1 825)、Er5Ge3(1950); 銻化物 GdSb(2130)、LaSb( 1690)、NdSb(2100)、PrSb(2170)、 DySb(2170);鉛化物 CePb(1380)、Gd5Pb3(1670)、 96203.doc 200526914ττ Ώ · 〇 Main examples of these are A U, Bl, Se, Te, Ce, Ba. π] is, for example, 'The following binary alloy is more noticeable as a base with a high 2: a melting point of thermoelectric material (° c) ub2 2385 ub4 2495 ub12 2235 U5Ge3 1670 USb 1850 U3Si5 1770 USe 1990 UTe BaGe 1145 BaSe BaSi2 1180 Other suitable binary materials with high thermal stability (the melting point in parentheses is ° C)-is: germanide GdGe (1790), Dy5Ge3 (1 825), Er5Ge3 (1950); antimony compound GdSb (2130), LaSb (1690), NdSb (2100), PrSb (2170), DySb (2170); Lead compounds CePb (1380), Gd5Pb3 (1670), 96203.doc 200526914

La5Pb3(1450)、Dy5Pb4(1695);矽化物 GdSi(2100)、 NdSi2(1757);硒化物 GdSe(2170)、LaSe(1950)、Nd3Se4、 Nd2Se3、PrSe(2100)、ErSe(1630);碲化物 GdTe(1825)、 LaTe(1720)、NaTe(2025)、PrTe(1950)、SmTe(1910)、 DyTe(1850)、ErTe(1790)及硫化物 LaS(2300)、NdS(2200)、 Pr2S3(1 795)及 DyS(2370)。 亦可使用:La5Pb3 (1450), Dy5Pb4 (1695); silicides GdSi (2100), NdSi2 (1757); selenides GdSe (2170), LaSe (1950), Nd3Se4, Nd2Se3, PrSe (2100), ErSe (1630); telluride GdTe (1825), LaTe (1720), NaTe (2025), PrTe (1950), SmTe (1910), DyTe (1850), ErTe (1790) and sulfide LaS (2300), NdS (2200), Pr2S3 (1 795) and DyS (2370). Can also be used:

CeB6CeB6

Ce3Ge5Ce3Ge5

CeSbCeSb

CeSi2CeSi2

CeTeCeTe

Ce4Bi3Ce4Bi3

CePb 以此等為基礎的適合物質描述於EP-A-1 102 334號。 此物質係由已知方法製備,例如,在高溫但低於熔點之 溫度燒結元素粉末製備元素化合物’或在高真空中經電弧 、j:容融且隨後磨粉及燒結或自溶融物製備。例如,氧化物由 燒結個別氧化物之粉末混合物而合成。 熱電活性混合氧化物可藉由在高溫於空氣中反應性燒結 對應金屬混合物而製備。基於經濟理由,使用氧化物和金 屬之混合物較有利。極具反應性且因此昂貴及難以處理的 金屬(如,U、Ba、Ce)係以U〇2、BaO或Ce02使用,同樣, Na 係以 Na2〇、Na2C03 或 NaOH使用,K係以 K〇2、KOH 或 96203.doc -18- 200526914 K2C〇3使用,Sr係以SrO或SrC〇3使用,Ga係以Ga2〇3使用。 適用熱電材料之說明亦可見於(例如)美國專利第 6,225,550 號及 EP-A-1 102 334號。美國專利第 6,225,55〇 號 基本上關於由MgxSbz製成之材料,此等材料進一步用另一 種元素摻雜,較佳為過渡金屬。 EP-A-1 102 334號揭示p-型或n_型摻雜的半導體材料,此 等材料代表自砍化物、棚化物、鍺化物、碌化物、硫化物 和硒化物、銻化物、鉛化物及半導體氧化物物質種類的至 少三元物質。 根據EP-A-1 289 026號,熱電活性物質係選自, 由通式(I)之三元化合物製成的p-型或心型摻雜半導體材 料:CePb A suitable substance based on this is described in EP-A-1 102 334. This material is prepared by known methods, for example, sintering elemental powders at high temperatures but below the melting point to prepare elemental compounds' or by arcing in a high vacuum, j: tolerate and then milling and sintering or automelting. For example, oxides are synthesized by sintering a powder mixture of individual oxides. Thermoelectrically active mixed oxides can be prepared by reactively sintering the corresponding metal mixture at high temperatures in the air. For economic reasons, it is advantageous to use a mixture of oxides and metals. Metals that are highly reactive and therefore expensive and difficult to handle (eg U, Ba, Ce) are used as U02, BaO or Ce02. Similarly, Na is used as Na2O, Na2C03 or NaOH, and K is used as K. 2. KOH or 96203.doc -18- 200526914 K2C03 is used, Sr is used as SrO or SrC03, Ga is used as Ga203. Descriptions of suitable thermoelectric materials can also be found in, for example, US Patent No. 6,225,550 and EP-A-1 102 334. U.S. Patent No. 6,225,55 is basically about materials made of MgxSbz. These materials are further doped with another element, preferably a transition metal. EP-A-1 102 334 discloses p-type or n-type doped semiconductor materials. These materials represent self-cutting compounds, shed compounds, germanium compounds, sulfides and selenium compounds, antimonides, lead compounds. And at least ternary species of semiconductor oxide species. According to EP-A-1 289 026, the thermoelectric active material is selected from p-type or heart-type doped semiconductor materials made of a ternary compound of the general formula (I):

MexSAySBz (I) 其中MexSAySBz (I) where

Me H、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、 C〇、Ni、Cii 或 Ag, S,SB = B、C、Si、Ge、Sb、Se或 Te 在此,sA* sB分別來自週期表的不同族, x、y和Z相互獨立,且在〇·〇1至1之範圍内, 其中以部半導體材料表示,SA和SB合計重量比大於30%, (根據一具體實施例,排除三元化合物A1Bij0SiB6) 或通式(II)之混合氧化物: [(CaO)u.(SrO)v.(BaO)w (1/2 Bi2〇3)x]f ({^}MenO^{2-A;} Men+aOw+J (Π) 2 96203.doc 200526914 其中,Me H, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cii or Ag, S, SB = B, C, Si, Ge, Sb, Se or Te Here, sA * sB are from different families of the periodic table, and x, y, and Z are independent of each other, and are in the range of 0.001 to 1, in which semiconductor materials are expressed, and the total weight ratio of SA and SB is greater than 30%, (according to A specific embodiment excludes the ternary compound A1Bij0SiB6) or a mixed oxide of the general formula (II): [(CaO) u. (SrO) v. (BaO) w (1/2 Bi2〇3) x] f ({ ^} MenO ^ {2-A;} Men + aOw + J (Π) 2 96203.doc 200526914 where

Me = Fe、Cu、v、Μη、Sn、Ti n = 1至6之整數, a = 1 或 2, 0.2至5之數, 卜〇.01至2之數,較佳〇.〇1至199,例如 U + V + w + X = l 〇 在通式(I)之三元化合物中 Sb和 Te 。 佳選自 B、c、Ge、 在此半導體材料中,Me較佳選自以下群組之一: 0 Al3 Ti5 Zr 2) V,Nb,TaMe = Fe, Cu, v, Mn, Sn, and Ti n = integers from 1 to 6, a = 1 or 2, a number from 0.2 to 5, and a number from 0.01 to 2, preferably 0.01 to 199. For example, U + V + w + X = l 〇 In the ternary compound of general formula (I), Sb and Te. It is preferably selected from B, c, Ge. In this semiconductor material, Me is preferably selected from one of the following groups: 0 Al3 Ti5 Zr 2) V, Nb, Ta

3) Cr,Mo, W 4) Mn,Fe,Co, Ni 5) Cu,Ag 〇 在此例中,以上所給評註應用於摻雜。 7此等物質較佳根據所述的已知方法或在高真空熔融且隨 後磨粉及燒結或熔融元素粉末混合物及冷卻而製備。 在通式(II)之混合氧化物中,11表示金屬Mei氧化態,f 表示化學計量因數。f具有在〇2至5範圍之數值,較佳0.5至 2 ’特佳1。a表示Me兩種不同氧化態間之差。 對於化學計量因數f,自0.2至0.99之數、數值1、自j 至2之數及2 · 01至5之數可顯示為較佳範圍。此等分別為本 發明之較佳具體實施例。 96203.doc -20- 200526914 k表示不同氧化態之比例。 較佳化合物述於EP-A-1 289 026號。 其他適用熱電材料描述於美國,麻塞諸塞州,波士頓, 1998年11月30日-12月3日舉行的學術討論會,賓夕法尼 亞,滄侖德爾,1 999,材料研究學會學術討論會論文集第 545卷,’’熱電材料1998-小規模冷凍和粉化發生應用所用的 新一代材料"(’’Thermoelectric materials 1998-the next generation materials for small-scale refrigeration and powered generation applications’’, symposium held November 30- December 3,1998,Boston,Massachusetts, U.S., Materials Research Society Symposium Proceedings volume 545,Warrendale,Pennsylvania,1999) 〇 其中作為適 用熱電材料述及(例如PbTe/PbhEuxTe、AgBiTe2-Ag2Te複 合物、Si/Ge 和 Si/SiGe 結構、SrBiTe3、AgPbBiQ3 (Q=S,Se,Te)、B4C 陶瓷、二矽化鐵、ReSi!.75 薄膜、 Ce5Cu】9Pi2、Bi卜xBei+x、Cs2Bi7.33Sei2、A2BigSii3(A=Rb,Cs)、 Ba4_xBi6+2/3xSe13、Ba3+xPb3+xBi6Se15、Re6Te15_xSex(0<x<8)、 Re6MnxTei5(x=0,1,2 ; M=Ga,In,A g)、三元及四元驗金屬-絲硫族化物、Bii_xSex合金、CoSb3、BiSb3、CqSo西化物、 摻雜鐵的CoSb3方鈷礦、Si/SibxGex、GaAs/AlAs超晶格、過 渡金屬五碲化物、(Zr,Hf)(Ni,Pd)Sn、RNiRb(R=Ho, Er,Tm, Yb,Y)、Ge46籠形物和相關MxGayGe46_yPbTe超晶格及其它 材料。 此等中較佳為 Bi2Te3、PbTe、SiGe、NaCo204、Ca3Co409、 96203.doc -21 - 200526914 形成MX3之方鈷礦(m=c〇,Rh & CuSb3)以及 ReFe^CXsb!2(填充 B4C 、 CaB6 、 SrB6 、 BaB6 、 (AgSbTe2)x 〇 ,且 As, 的方鈷礦)、Mg2SixsnNx3) Cr, Mo, W 4) Mn, Fe, Co, Ni 5) Cu, Ag 〇 In this example, the comments given above apply to doping. 7 These materials are preferably prepared according to the known methods described or melted in a high vacuum and subsequently ground and sintered or molten element powder mixture and cooled. In the mixed oxide of the general formula (II), 11 represents the Mei Mei oxidation state, and f represents a stoichiometric factor. f has a value in the range of 02 to 5, preferably 0.5 to 2 ', particularly preferably 1. a represents the difference between two different oxidation states of Me. For the stoichiometric factor f, a number from 0.2 to 0.99, a number 1, a number from j to 2, and a number from 2.01 to 5 can be displayed as a preferable range. These are the preferred embodiments of the present invention. 96203.doc -20- 200526914 k represents the ratio of different oxidation states. Preferred compounds are described in EP-A-1 289 026. Other suitable thermoelectric materials are described in the United States, Boston, Massachusetts, Symposium, November 30-December 1998, Canglund, Pennsylvania, 1 999, Proceedings of the Society for Materials Research Volume 545, "Thermoelectric materials 1998-the next generation materials for small-scale refrigeration and powered generation applications", symposium held November 30- December 3, 1998, Boston, Massachusetts, US, Materials Research Society Symposium Proceedings volume 545, Warrendale, Pennsylvania, 1999) 〇 Among them are mentioned as suitable thermoelectric materials (for example, PbTe / PbhEuxTe, AgBiTe2-Ag2Te complex, Si / Ge and Si / SiGe structures, SrBiTe3, AgPbBiQ3 (Q = S, Se, Te), B4C ceramics, iron disilicide, ReSi! .75 film, Ce5Cu] 9Pi2, Bibu xBei + x, Cs2Bi7.33Sei2, A2BigSii3 (A = Rb, Cs), Ba4_xBi6 + 2 / 3xSe13, Ba3 + xPb3 + xBi6Se15, Re6Te15_xSex (0 < x < 8), Re6MnxTei5 (x = 0,1,2,2; M = Ga, In, Ag), ternary and quaternary metal-wire chalcogenide, Bii_xSex alloy, CoSb3, BiSb3, CqSo Western compound, iron-doped CoSb3 galvanite, Si / SibxGex, GaAs / AlAs supercrystal Lattice, transition metal pentatelluride, (Zr, Hf) (Ni, Pd) Sn, RNiRb (R = Ho, Er, Tm, Yb, Y), Ge46 cages and related MxGayGe46_yPbTe superlattices and other materials. This Among them, Bi2Te3, PbTe, SiGe, NaCo204, Ca3Co409, 96203.doc -21-200526914 are preferred to form scobaltite (m = c0, Rh & CuSb3) and ReFe ^ CXsb! 2 (filled B4C, CaB6). , SrB6, BaB6, (AgSbTe2) x 〇, and As, the skutterite), Mg2SixsnNx

Sb)(較佳 £ "zn4Sb3 及(GeTe) 為 之結構。 已知,並可見於關於熱電材料和 前述中已描述熱電組件 適用配置為熟諳此藝者 組件的一般技術文獻中。Sb) (preferably zn4Sb3 and (GeTe) are of the structure. They are known and can be found in the general technical literature on thermoelectric materials and the thermoelectric components already described in the foregoing, which are suitable for the configuration of those skilled in the art.

本發明亦關於具有至少-個熱電組件之乾燥器(欲^ :的:料由其直接或間接加熱,且在乾燥期間放出的水或 2劑蒸氣由其直接或間接冷卻)、用於蒸餾、精㈣昇華的 具有至少一個熱電組件之裝置(欲經分離的物質混合物由 其直接或間接加熱,且至少部分蒸發及所得的蒸氣由其直 接或間接至少部分冷卻)以及用於結晶作用的具有至少— 個熱電組件之裝置(欲經結晶化的物質混合物由其直接或 間接冷卻’且以此方式獲得的晶體由其直接或間接加熱)。The invention also relates to a dryer with at least one thermoelectric component (for: the material is directly or indirectly heated by it, and the water or 2 doses of steam released during the drying are directly or indirectly cooled by it), used for distillation, Sublimation device having at least one thermoelectric component (the mixture of substances to be separated is directly or indirectly heated by it, and at least partly evaporated and the resulting vapor is at least partially cooled directly or indirectly by it), and at least — A device for thermoelectric components (by which the mixture of substances to be crystallized is cooled directly or indirectly 'and the crystals obtained in this way are heated directly or indirectly by it).

96203.doc 22-96203.doc 22-

Claims (1)

200526914 十、申請專利範圍: 1 /刀m方法,其中物質分 ^ 離係糟由空間上相互分雜,A =及熱排除進行,其中熱輪入經由載電流熱電組件之 熱側進仃,而熱排除經由載 干之 戟电机熱電組件之冷側進行。 2·根據铂求項1之方法,豆中 ,、中°亥熱輸入和熱排除係經由該同 一熱電組件之熱和冷側進行。 门 3. 根據睛求項1或2之 餾、精餘、吸附、 二或多種之組合。 方法,其中該熱分離方法為乾燥、蒸 及收昇華、結晶方法或該等方法之 4. 一:具有至少一個熱電組件之乾燥器,欲經乾燥的材料 由”直接或間接加熱,且在乾_間放出的水或 氣由其直接或間接冷卻。 … 5. 根據,求項5之乾燥器,其中該乾燥器為組合的洗務機和 乾煉益H亥欲經乾燥之材料為洗好的衣物。 6· -種具有至少-個熱電組件之用於蒸館、精餾或昇華之裝 置,:經分離的物質混合物由其直接或間接加熱,且至: 部分洛發及所得的蒸氣由其直接或間接至少部分冷卻。 7· -種具有至少-個熱電組件之用於吸收及解吸或吸附及 解吸之裝置,欲經分離的物質混合物在吸收或吸附期間 由其直接或間接冷卻,且在解吸期間由其直接或間接加 熱0 8. 一種具有至少一個熱電組件之用於結晶作用之裝置,欲 經結晶之物質混合物由其直接或間接冷卻,而以此方式 獲得的晶體由其直接或間接加熱。 96203.doc 200526914 七、指定代表圖: (一) 本案指定代表圖為:(無)。 (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 96203.doc200526914 10. Scope of patent application: 1 / knife method, in which the material separation and separation are separated from each other in space, A = and heat removal are performed, wherein the hot wheel is entered through the hot side of the current-carrying thermoelectric component, and The heat removal is performed through the cold side of the thermoelectric components of the Halberd motor. 2. According to the method of platinum item 1, the heat input and heat removal in the bean and the medium are carried out through the hot and cold sides of the same thermoelectric module. Door 3. Distillation, residua, adsorption, a combination of two or more of items 1 or 2 depending on the eye. Method, wherein the thermal separation method is a method of drying, steaming and sublimation, crystallization or a method thereof 4. One: a dryer having at least one thermoelectric component, the material to be dried is directly or indirectly heated by "and The water or gas released by _ is cooled directly or indirectly by it.… 5. According to the dryer of item 5, the dryer is a combined washing machine and the dried material. The materials to be dried are washed. 6 · A device for steaming, rectifying or sublimating with at least one thermoelectric component: the separated substance mixture is directly or indirectly heated by it, and to: part of Luofa and the resulting steam is It is at least partially cooled directly or indirectly. 7-a device for absorption and desorption or adsorption and desorption with at least one thermoelectric component, the substance mixture to be separated is directly or indirectly cooled by it during absorption or adsorption, and It is heated directly or indirectly during desorption. 0 8. A device for crystallization with at least one thermoelectric component, from which the mixture of substances to be crystallized is cooled directly or indirectly. The crystal obtained by this method is directly or indirectly heated by it. 96203.doc 200526914 VII. Designated representative map: (1) The designated representative map in this case is: (none). (II) The component symbols of this representative map are simply explained: If there is a chemical formula, please disclose the chemical formula that best shows the characteristics of the invention: (none) 96203.doc
TW093129101A 2003-09-26 2004-09-24 Thermal separation method with thermoelectric module TW200526914A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10344791A DE10344791A1 (en) 2003-09-26 2003-09-26 Thermal separation process with thermoelectric module

Publications (1)

Publication Number Publication Date
TW200526914A true TW200526914A (en) 2005-08-16

Family

ID=34353101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093129101A TW200526914A (en) 2003-09-26 2004-09-24 Thermal separation method with thermoelectric module

Country Status (3)

Country Link
DE (1) DE10344791A1 (en)
TW (1) TW200526914A (en)
WO (1) WO2005031060A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761777B2 (en) 2013-09-09 2017-09-12 Lg Chem, Ltd. Thermoelectric materials
CN108905244A (en) * 2018-08-01 2018-11-30 相城区黄桥宜智机电技术服务部 A kind of semiconductor heat pump type honey thickener
CN116287990A (en) * 2023-03-02 2023-06-23 宁波合鑫标准件有限公司 Corrosion-resistant fastener material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009038174B4 (en) * 2009-08-20 2011-07-14 Wilhelm, Richard, 86529 Reaction device for sublimation and / or thermal desorption and / or distillation and / or extraction of substances

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036383A (en) * 1958-08-26 1962-05-29 Philco Corp Drying apparatus
GB2094961B (en) * 1981-02-13 1984-09-26 Perlino Antonio Drying apparatus
US5507103A (en) * 1993-11-16 1996-04-16 Merritt; Thomas Thermoelectric hair dryer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761777B2 (en) 2013-09-09 2017-09-12 Lg Chem, Ltd. Thermoelectric materials
CN108905244A (en) * 2018-08-01 2018-11-30 相城区黄桥宜智机电技术服务部 A kind of semiconductor heat pump type honey thickener
CN116287990A (en) * 2023-03-02 2023-06-23 宁波合鑫标准件有限公司 Corrosion-resistant fastener material and preparation method thereof
CN116287990B (en) * 2023-03-02 2024-01-02 宁波合鑫标准件有限公司 Corrosion-resistant fastener material and preparation method thereof

Also Published As

Publication number Publication date
DE10344791A1 (en) 2005-04-21
WO2005031060A1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
Liu et al. Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance<? format?> of n-Type Mg 2 Si 1-x Sn x Solid Solutions
US8716589B2 (en) Doped lead tellurides for thermoelectric applications
Guin et al. High thermoelectric performance in tellurium free p-type AgSbSe 2
US5747728A (en) Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation
JP5468554B2 (en) Semiconductor materials containing doped tin telluride for thermoelectric applications
US7728218B2 (en) High efficiency thermoelectric power generation using Zintl-type materials
Zhou et al. Lead-free tin chalcogenide thermoelectric materials
JP2002270907A (en) Thermoelectric conversion material and device using the same
JP2013179322A (en) Thermoelectric conversion material, production method therefor and thermoelectric conversion element
Mohanraman et al. Influence of In doping on the thermoelectric properties of an AgSbTe 2 compound with enhanced figure of merit
Kosuga et al. Thermoelectric properties of stoichiometric Ag1− xPb18SbTe20 (x= 0, 0.1, 0.2)
JP2007523998A (en) Method for producing high performance thermoelectric material indium-cobalt-antimony
JP2011510479A (en) Method for producing thermoelectric intermetallic compound
Li et al. Developments in semiconductor thermoelectric materials
Pathak et al. Vacancy controlled nanoscale cation ordering leads to high thermoelectric performance
Chang et al. High-entropy thermoelectric materials emerging
TW200526914A (en) Thermal separation method with thermoelectric module
WO2004095594A1 (en) Thermoelectrically transducing material, thermoelectric transducer using the material, and generating method and cooling method using the transducer
JP2004119648A (en) p-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT USING IT
CN106025056A (en) Preparation method of tin-sulfur compound thermoelectric material
US7554029B2 (en) Complex oxide having p-type thermoelectric characteristics
JP2004356476A (en) Composite oxide with outstanding thermoelectric transformation performance
Xhaxhiu et al. Thermoelectric properties tuning in mixed valence inorganic solid compound-In5S5Br by oriented mutual chalcogenide substitutions
JP3950956B2 (en) Method for producing complex oxide single crystal
CN103050618A (en) Thermoelectricity material and preparation method thereof