TW200524983A - An polyhedral oligomeric silsesquioxanes nanocomposites - Google Patents

An polyhedral oligomeric silsesquioxanes nanocomposites Download PDF

Info

Publication number
TW200524983A
TW200524983A TW94100916A TW94100916A TW200524983A TW 200524983 A TW200524983 A TW 200524983A TW 94100916 A TW94100916 A TW 94100916A TW 94100916 A TW94100916 A TW 94100916A TW 200524983 A TW200524983 A TW 200524983A
Authority
TW
Taiwan
Prior art keywords
epoxy resin
polyhedral
epoxy
oligomer
modified
Prior art date
Application number
TW94100916A
Other languages
Chinese (zh)
Inventor
Ying-Gev Hsu
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW94100916A priority Critical patent/TW200524983A/en
Publication of TW200524983A publication Critical patent/TW200524983A/en

Links

Abstract

The invention is directed to a epoxy nanocomposites obtained by the reaction of modified polyhedral oligomeric silsesquioxanes with epoxy. The modified polyhedral oligomeric silsesquioxanes were prepared by the reaction of polyhedral oligomeric silsesquioxanes (POSS) with respective allyl glycidyl ether (AGE) or spiro orthoester (SOE). The epoxy nanocomposites exhibit improved shrink control during the curing reaction, and thermal and mechanical properties.

Description

200524983 九、發明說明: 【發明所屬之技術領域】 面體矽氧烷 烧寡聚物之魏樹脂奈米複合材料 本發明係利用多面體石夕氧燒絲物分別 =形原,改質成為兩種含有機官能基改質之多=㈣稀 .11 μ „別細讀脂反絲成不同结構的含衫面體發氧 【先前技術】 環氧樹脂、壓克力樹脂、不飽和聚醋等泛用熱固性樹脂在人 類生社佔有㈣要的齡,由於其相_性及雜良好,價格 便且且適用於大多數的加工製程,故其在複合材料領域中廣泛的 被使用。然而,此等樹脂在其硬化(curing)加工過程中,會有大枰 的收縮現象it}現,_聽使得在加謂程巾造成困擾,也使^ 成口π產生瑕痴·難以滿足工程技術上的要求,使其應用受到 φ 一定限制,例如··環氧樹脂,在用作半導體封裝材料時, 其薄膜會在樹脂硬化時因收縮造成應力集中而變形 (deformation)或破裂(cracking),因此為了提升熱固性樹脂 之加工及使用層次,則解決樹脂硬化收縮提高物性的問 題,在近幾年來開始受到相當的重視。 1975年時W· J. Bailey研究以螺形原酸酯(spir〇 orthoester,SOE)等雙環化合物(bicyclic compound)開環反 應合成高分子,可使高分子在聚合過程中達到零收縮(甚至 膨脹)的地步。在2003年時M· Shimbo等人甚至將含螺形 200524983 原酸酯基團之化合物和環氧樹脂混合 =形成共聚物來達到降低環氧樹腊 收縮率及内應力的目的。將此結構引 匕,令的 成複合材料,來克服環氧樹脂本身的的缺二3、曰土材中形 近年來奈米補強材料多面體矽 oligomeric silsesquioxanes,p〇ss )在研究上以 ^ ( Mhedml 廣泛的注意;由於傳統的太f 在應用上受到 散於基材間,兩者皆有分散不均勻的問題體 可透過奈綠翻料下具村聚物 ::價鍵結,無機結構是分子層次的分散,如此:= ^有改=。,其獨特的耐雛、抗氧化性,以及尺寸安定性等, 【發明内容】 米複種含有多面體魏絲聚物之環氧樹脂奈 口枓,八、、且成係包含有機官能基改質之多面體矽氧 =奈米粒子及環氧樹脂。其中該有機官能基改質之多面二夕= 烷券聚物係彻2_丙_氧丙_ (Allylglyddyletheu 螺形=酸脂(Spiro orth〇ester, s〇E)將多面體石夕氧燒寡聚二 Q 〇 y edral 〇llgomeric silsesqui〇xanes,p〇ss )分別改 含f機官能基改質之多面體魏錄聚物,再將重量百分比為2〇 wU以下的含有機官能基改質之多面體石夕氧烧寡聚物分別與環氧 200524983 樹脂反應形成不_構的含有多面體 米複合材料。該環氧樹脂奈米複合材料二=氧m奈 在用作半導體難撕時 、咐讀縮功效, 力集令而_或破裂,並解辦好:^f日魏_收縮造成應 解决衣乳树月日硬化收縮的問題。 卜,在本案中所使用的螺形原酸脂其係 烯酸(AGE)與戊内酯混合,並在三氟化硼一乙美却環氧丙 的催化下断域城動^触__; 本發明以含有機官能基改質之多面财 脂經由收縮實驗後,可以發現縣樹脂加人了經氧樹 機官舻其拎併〇 絲物分別改質成為兩種含有 匕土 3 #面體矽氧烷寡聚物的環氧樹 :基:質之多面體嫩寡聚物所形成的高分歧二:: 3^=0 _含树敍舰分刊段,能餘奈米層級 :彳材:子鏈段進行反應,不僅提高了有機與無機相間的相容 …顯著的降低了基材的體積收縮率,使本發明所製成的一種 含有多面體魏絲㈣之縣旨奈錢合材·紐異的抗 收縮效果。 【實施方式】 本發明將利用2-丙烯環氧丙烯醚 (Allyl glycidyl ether, AGE)或螺形原酸脂(Spir〇 〇rth〇ester,s〇E)改質多面體矽氧烷 寡聚物成為兩種含有機官能基改質之多面體矽氧烷寡聚物 (M-P0SS ),將其用來改進環氧档懷之抗收縮性。 200524983 效。椎,„實施例’進一步詳述本發明的特點及功 發明之範i :熟、纟日即僅_於說明本發明之特點而非以侷限本 T ^ U ^ A 35! Jt IIDiglycidyl ether of bisphenol 寘聲ΓΕΒΑ)為基材’加入含有機官能基改質之多面體石夕氧燒 f物(M_P()SS)之奈米粒子,以共價鍵結的方式,聚合形 成環氧樹脂奈米複合材料。 在含有機官能基改質之多面體石夕氧烧寡聚物的製備過程是 枰取0.5克的(12.5 wt/重1百分比)多面财紐寡聚物置於反 應觀中,依序加人約2.5克(62.5 wt%重量百分比)的無水甲苯與i 克(25 wt%重量百分比)的有機官能基改制,如2_丙稀環氧丙 烯醚(Allyl glyddyl ether,AGE)或螺形原酸脂(Spir〇 〇池。娜 S〇E),擾拌約5分鐘後再加入〇 ls毫升的始金屬催化劑,在室 溫下勝,並以薄層色層分析>;(TLC)、紅外線光譜儀(IR)追 蹤反應,反應時間約1小時。反應結束後,加入活性碳攪拌%分 鐘,再用0.45毫米的過濾頭過濾,所得的濾液為產物,並以真= 幫浦抽乾溶劑,即可完成含有機官能基改質之多面體矽氧烷窠聚 物的製備,形成如圖1所示含有2-丙烯環氧丙稀趟改質之多面 體矽氧烷募聚物(P0SS-AGE)或螺形原酸脂改質之多面瘕矽氧烷 寡聚物(P0SS-S0E)。 Λ 此外,上述反應中所用的螺形原酸脂係由2-丙稀環氧丙稀 醚(AGE)與戊内酯混合,並在三氟化硼-二乙基氧(BF3_〇Et ) 的催化下進行加成反應後所製備成的螺環化合物。製傷日夺先針 筒取2.15毫升的戊内酯溶液置於反應瓶中,依序加入12·5毫升的 200524983 無水四氯化碳(CGU)和0.125毫升的三氟化硼(BFr〇Et2),在 7〜10 C下緩慢地加入4·25毫升的2-丙稀環氧丙稀職(age),30 分鐘加料加完後,在同樣的溫度下攪拌約5小時,並以薄層色層分 析片(TLC)追跟反應。待反應5小時後,加入ο %毫升的三乙 基胺(triethylamine)去除三氟化聲二乙基氧(BF3_〇Et2),水洗 兩,後加入硫酸鎖(MgS〇4)。倒出反應物至過濾漏斗,抽氣過濾, 所付的舰為產物,並喊空幫雜乾溶劑。最後再以減麼蒸館 的方式(壓力為7 ton*,溫度為14()。〇進行純化,即可獲得本^ 所需的螺形原酸脂。 〃 將含有機官能基改質之多面财滤絲物(2_㈣環氧丙 峨質之多面體魏絲聚物或螺形驗脂改質之多面體 养聚物)、環氧樹脂與硬化劑三氟曱基石黃酸鏡⑺(㈣3)之二 3溶=财1㈣比繼罐,她下均勻的混 胸與螺形原酸脂之有機官能基改 至實施例5 慰錢赚,射實施例2 2.5 wt%至1〇二;二之夕面體魏烷寡聚物的比例含量為 環氧丙__2^ b°細脑絲的二齡有2, °南溶劑後,形成黏^明^⑽下減壓(180㈣除去四氫咬 聚物的環氧=^=_細旨改㈣_魏寡 200524983 有機官能基改質之多面體矽氧烷寡聚物的環氧比例 實施例 組成含量 實施例1 實施例2 實施例3 實施例4 實施例5 多面體矽氧烷寡聚物 ^—--— --— 重量百分比Wt% 0 2.5 5 7.5 10 環氧樹脂重量(克) 2.970 2.895 2.820 ---- 2.745 9 #λ7Π 多面體矽氧烷 寡聚物重量(克) -———__ 0.000 0.075 0.150 ---- 0.225 ----— ^•0 / U 0.300200524983 IX. Description of the invention: [Technical field to which the invention belongs] Wei resin nanocomposite of polyhedral siloxane-burning oligomers The present invention uses polyhedron stone oxy-firing filaments = shape former, which has been modified into two types. Modification of organic functional groups = ㈣ thin. 11 μ „Do not read lipids and anti-filaments into different structures of the body-containing body oxygen [prior technology] Epoxy resin, acrylic resin, unsaturated polyacetate, etc. Thermosetting resins are an important age in human health clubs. Because of their good compatibility and heterogeneity, the price is convenient and suitable for most processing processes, they are widely used in the field of composite materials. However, these resins During the curing process, there will be a shrinkage phenomenon. It is difficult to meet the requirements of engineering technology. Its application is limited by φ. For example, when epoxy resin is used as a semiconductor packaging material, its film will deform or crack due to stress concentration due to shrinkage when the resin is hardened. The processing and use of solid resins have solved the problem of resin hardening and shrinking to improve physical properties. In recent years, W. J. Bailey has studied the use of spiral orthoester (SOE). And other bicyclic compounds (bicyclic compounds) ring-opening reaction to synthesize polymers, the polymer can reach the point of zero shrinkage (or even expansion) during the polymerization process. In 2003, M. Shimbo et al. Even contained a spiro 200524983 orthoester The compound of the group and the epoxy resin are mixed to form a copolymer to achieve the purpose of reducing the shrinkage and internal stress of the epoxy wax. This structure is used to make a composite material to overcome the lack of the epoxy resin itself. 3. In the middle of the earth, the nano-reinforced material polyhedral silicon oligomeric silsesquioxanes (p0ss) has been widely paid attention in research in recent years (Mhedml); because the traditional too f has been scattered between the substrates in application, both Both have problems with uneven dispersion. The polymer can be formed through the nano-green material :: valence bonding, the inorganic structure is molecular-level dispersion, so: = ^ 有 改 =., Its unique resistance , Oxidation resistance, and dimensional stability, etc. [Summary of the invention] Rice complex containing polyhedral Weisi polymer epoxy resin Naiguchi, eight, and the system contains organic functional groups modified polyhedron silicon oxygen = nanometer Particles and epoxy resins. Among them, the modified polyfunctional polyhedral function of the organic functional group = alkane copolymer is 2_propyl_oxypropyl_ (Allylglyddyletheu Spiral = acid ester (Spiro orthester, so)) Shi Xi oxygen oligomerization oligomeric two Q 〇 edral 〇llgomeric silsesquioxanes (p〇ss) respectively modified f-functional functional group modified polyhedral Wei recorded polymer, and then the weight percentage of less than 20wU containing organic functional groups modified The polyhedral stone sintered oxygen oligomers react with epoxy 200524983 resin to form non-structural polyhedral rice-containing composite materials. The epoxy nano-composite material 2 = oxygen m nano When it is used as a semiconductor, it is difficult to tear, it is required to read the shrinkage effect, force to make it _ or rupture, and solve it well: ^ f 日 魏 _ shrinkage caused by clothing should be resolved The problem of hardening and shrinking the tree moon. Bu, the spiro orthoester used in this case is a mixture of enoic acid (AGE) and valerolactone, and it breaks into the ground under the catalysis of boron trifluoride-acetic acid but propylene oxide ^ _; In the present invention, after the shrinkage test is performed on the multi-faceted fat modified with organic functional groups, it can be found that the county resin has been added with the oxygen tree machine, and its silk is modified to two kinds of dagger-containing 3 #hedrons. High divergence formed by the epoxy tree: base: polyhedral tender oligomer of the siloxane oligomer: 2: 3 ^ = 0 _Including the tree segment of the ship, the energy can be made nanometer level: The sub-segment reactions not only improve the compatibility between organic and inorganic phases ... significantly reduce the volume shrinkage of the substrate, so that a polyhedron containing the polyhedron Weisizhizhi County prefecture made of the present invention. Different anti-shrink effect. [Embodiment] In the present invention, a polyhedral siloxane oligomer modified by 2-propylene epoxyidyl ether (AGE) or Spirorthester (soe) is modified into two A polyhedral siloxane oligomer containing modified organic functional groups (M-POSS) is used to improve the shrink resistance of epoxy resins. 200524983 effective. The "Example" further details the features of the present invention and the scope of the invention. I: When you are familiar with it, the following day is only to illustrate the features of the present invention and not to limit it. T ^ U ^ A 35! Jt IIDiglycidyl ether of bisphenol Put ΓΕΒΑ) as the base material, and add polyhedrons containing organic functional group modified polyhedral oxidized sintered oxygen (M_P () SS) nano particles to polymerize covalently to form epoxy nano composites. Materials. In the process of preparing polyhedral oxo-fired oligomers containing modified organic functional groups, 0.5 g (12.5 wt / weight 1%) of polyhedral oligo oligomers are placed in the reaction view and added sequentially. Approximately 2.5 grams (62.5 wt% by weight) of anhydrous toluene and i grams (25 wt% by weight) of organic functional groups, such as 2-propylene epoxy allyl ether (AGE) or spiro orthoester (Spir 00. Na SOE), stir for about 5 minutes and then add 0 ml of starting metal catalyst, win at room temperature, and analyze with thin layer color layer (TLC), infrared spectrometer (IR) Track the reaction, the reaction time is about 1 hour. After the reaction is completed, add activated carbon to stir Mix for 5% minutes, and then filter through a 0.45 mm filter head. The obtained filtrate is the product, and the solvent is drained with true = pump to complete the preparation of polyhedral siloxane polymer containing organic functional groups and form As shown in Figure 1, a polyhedral siloxane oligomer (P0SS-AGE) modified with a 2-propylene-epoxypropylene or a spiro orthoester modified oligomeric siloxane oligomer (P0SS-S0E) Λ In addition, the spiro orthoester used in the above reaction is a mixture of 2-propylene oxide glyceryl ether (AGE) and valerolactone, and then mixed with boron trifluoride-diethyloxy (BF3_〇Et) Spiro compounds prepared after the addition reaction under the catalysis of the catalyst. 2.15 ml of the valerolactone solution was placed in the reaction bottle in the syringe on the day of injury, and 12.5 ml of 200524983 anhydrous tetrachloride were added sequentially. Carbon (CGU) and 0.125 ml of boron trifluoride (BFr0Et2), slowly add 4.25 ml of 2-propylene-epoxypropylene age at 7 ~ 10 C, and finish adding in 30 minutes Then, stir at the same temperature for about 5 hours, and follow the reaction with a thin layer chromatographic slice (TLC). After 5 hours of reaction, add ο% ml of three Triethylamine removes triethyl fluorinated diethyloxy (BF3_〇Et2), washed two with water, and then added sulfuric acid lock (MgS〇4). Pour out the reactants to the filter funnel, suction filter, For the product, and call the dry mixed solvent. Finally, the method of reducing steam (7 ton * pressure, temperature 14 ().) Purification, you can obtain the spiron orthoester. 〃 Modified polyhedral filters containing organic functional groups (2_㈣polyhedral Weisi polymer of propylene oxide or polyhedral nutrient modified by helical lipid test), epoxy resin and hardener trifluoro 曱Cornerstone xanthan acid (㈣3) of the second 3 solution = Cai 1㈣ than following the pot, the organic functional group of the uniform mixed chest and spiro orthoester was changed to Example 5 to make money, shot Example 2 2.5 wt% To 102; the proportion of the content of the hexahedral weiran oligomers on the second night is propylene oxide _2_2 b ° thin brain filaments have a second age of 2, ° South solvent, the pressure is reduced ^ ^^ (180 ° Epoxy Removal from Tetrahydrobite = ^ = _ 细 要 改 ㈣ weiwei 200524983 Organic functional group modified polyhedral siloxane oligomer epoxy ratio Example composition contains Example 1 Example 2 Example 3 Example 4 Example 5 Polyhedral Siloxane Oligomers ^-------% Wt% 0 2.5 5 7.5 10 Epoxy resin weight (g) 2.970 2.895 2.820- --- 2.745 9 # λ7Π Weight of polyhedral siloxane oligomer (g) -————__ 0.000 0.075 0.150 ---- 0.225 ----— ^ • 0 / U 0.300

將本發明的含有2-丙烯環氧丙烯醚改質之多面體石夕氧烧寡聚 物的環氧樹脂與含有螺形原酸脂改質之多面體矽氧烧寡聚物的環 氧樹脂利用掃描式電子顯微鏡(SEMS360)來進行表面分析,可以 分別觀察到本發明的兩種環氧樹脂奈米複合材料之表面形態。圖2 為利用掃描式電子顯微鏡(SEM S360)分析本發明中兩種含有多面 體矽氧烷寡聚物之環氧樹脂奈米複合材料圖片,其中含有 丙烯環氧丙烯醚改質之多面體矽氧烷寡聚物的環氧樹脂奈米複合 2料;(b)含有螺形原酸脂改質之多面體矽氧烷寡聚物的環氧樹 月夕旨奈米複合材料,其中環氧樹脂含有7.5 wt%重量百分比的改質1 二面體石夕氧烧券聚物(如實施例4)。由圖2的結果所示,本發明 3有多面體矽氧烷寡聚物之環氧樹脂奈米複合材料均具光滑平整 的表面。 、 正 將本發明的含有2_丙烯環氧丙烯醚改質之多面體矽氧烷寡聚 氧樹,與含有螺形原酸脂改質之多面體魏絲聚物的ς ^对脂^用高解析度場發射描式電子顯微鏡(JSM-6500F)來進 料表Γ77析’可以分職察到本發明的兩觀氧樹脂奈米複合材 "之微細結構。圖3為利用高解析度場發射描式電子顯微鏡 200524983 (=[㈣吧分析本發财兩種含有多 知_ — 樹脂奈米複合材料圖片,其尹(a)人 夕氧烷寡聚物之環氧 多面體矽魏絲物的縣樹^ 3有2=歸魏钟醚改質之 酸脂改質之多面體魏 =材料’·⑻含有螺形原 環氧樹脂含有7.5w^t==t米複合材料,其中 (如實施例4)。_ 3 _麵示 績貌寡聚物 聚物之職樹齡料合㈣之微^ 财氧絲 2-丙稀環氧丙_與螺形原酸脂改的平滑,且經由 =:;,奈米層級均勻的埋;環 1成3有夕_魏私雜之魏翻旨奈錢合材料。 將本案含有多面體石夕氧烧寡聚物之環 表1所配製的實施例!至5進行抗收 j腹5材料依 ㈣ 驗式驗。本案抗收縮性試 驗錢方法捕樣喊μ麵巾,爾密度p卜之 150C硬化1小時後之相同重量之樣品,以水重儀測量硬化後之穷 度 P2),再以公式(收縮率(%) = (1/ρ2-1/ρι)/(1/ρι) = (ρι/ρ2)^) 測定含有多面體石夕氧烧寡聚物之環氧樹脂奈米複合材料在硬化過 程中之收縮率’來瞭解多面體石夕氧烧寡聚物對環氧樹月旨收縮率之 影響。如表2所示含有多面體矽氧烷寡聚物之環氧樹脂奈米複合 材料的抗收縮率都隨著多面體矽氧烷寡聚物粒子含量的增加而有 不同的改變;其中,實施例4時之多面體矽氧烷寡聚物粒子含量 粒子含量為7.5 wt%重量百分比時,其抗收縮效果最佳。而其他實 施例亦具有相當優異的抗收縮效果。 11 200524983 表2不同多面體矽氧烷募聚物含量的環氧樹脂之體積收縮率 實施例1 實施例2 實施例3 實施例4 實施例5 含有2-丙烯環氧丙烯 醚改質之多面體矽氧烷募 聚物的環氧;f封脂奈米複合 材料之收縮率(%) 3.68 ±0.09 2.77 土 0.06 2.73 ± 〇.〇4 2.58 ±0.05 2.69 士 0.09 含有螺形原酸脂改質 •^多面體矽氧烷募聚物的 環氧樹脂奈米複合材料之 3.68 土 0.09 3.40 士 〇.〇5 3.18 ±〇.〇2 2.35 ±0.05 2·59±0_09 >經過收縮效應的實驗後,可以發現當環氧樹脂加人了多面體 =烧寡聚物後’此—高分歧型奈米級粒子由於含有特殊反應性 :二=:=級下舆基材分子鏈段進行反應’顯著的 福人本發明—種含有多面體魏烧寡聚物之環氧樹脂奈米 。;斗’可以經纟2-丙烯環氧丙烯贼 桃寡聚物進行改質,再將含有機官能基奸之多面體 旨反應形成含有多面體嫩寡 : 200524983 f圖式簡單說明】 圖 ^本發明中含有2-兩烯環氧丙胸改質之多 物⑻SS-A㈤與含有螺形原酸脂改質 物⑽S刪的結構示意圖。 面體石夕贼券聚 一礙物: IN 3有螺形原酸脂改曾夕 寡聚物的環氧樹脂奈米複合材料。 之夕面體石夕氧炫 圖3為利用高解析度場發射描 本發明中兩種含有多面體錢==!魏6_)分析 材料圖片,复中W人右2 ^物之%氣樹脂奈米複合 氧炫寡聚物的環氧樹:奈米複合:質之多面财 改質之多面私氧絲聚物的環氧樹脂原酸脂The epoxy resin containing the 2-polypropylene epoxy propylene ether modified polyhedron stone oxyfiring oligomer and the epoxy resin containing the spiral polyorthoester modified polyhedron silicon oxyfiring oligomer according to the present invention are scanned by a scanning method. An electron microscope (SEMS360) was used for surface analysis, and the surface morphology of the two epoxy resin nanocomposites of the present invention can be observed separately. Fig. 2 is a picture of two types of epoxy resin nanocomposite materials containing polyhedral siloxane oligomers in the present invention analyzed by a scanning electron microscope (SEM S360). The polyhedral siloxane containing modified propylene oxide propylene ether is contained therein. Polyester epoxy nano composites with oligomers; (b) Epoxy resin composites containing polyhedral siloxane oligomers modified with spiro orthoesters, in which the epoxy resin contains 7.5 wt. % By weight of modified 1 dihedron oxidized oxidized copolymer (as in Example 4). As shown in the results of Fig. 2, the epoxy resin nanocomposite material having polyhedral siloxane oligomers of the present invention 3 has a smooth and flat surface. 2. The polyhedral siloxane oligomeric tree containing the 2-propylene propylene oxide propylene ether modified by the present invention and the polyhedral Wei silk polymer containing the spiral orthoester modified are used. A field emission tracing electron microscope (JSM-6500F) came to the feed table Γ77 to analyze the 'fine structure of the two-spectrum oxygen resin nanocomposite material of the present invention'. Figure 3 is a high-resolution field emission tracing electron microscope 200524983 (= [㈣ 吧 analyze the two kinds of polyphenols containing polyphenols — resin pictures of the present invention, the Yin (a) of the oxane oligomer Prefectural tree of epoxy polyhedron silicon weirs ^ 3 has 2 = Polyhedron modified by acid and fat modified by Wei Zhongzhong ether = Materials' · ⑻ Contains helical original epoxy resin containing 7.5w ^ t == t meter composite material, Among them (as in Example 4). _ 3 _ Shows the appearance of the oligomers. The age of the material is very small. ^ Choi oxygen silk 2- propylene oxide propylene _ and smooth spiro orthoesters, and Via =:;, the nano-layers are buried uniformly; the ring is 1 to 3 and there is a _ _ Wei private miscellaneous Wei Fanzhi Nai coin materials. The implementation of the case containing the polyhedron stone oxo-fired oligomer ring Table 1 implementation For example, the anti-retraction test of 5 materials is performed according to the test method. The shrinkage resistance test method of this case captures samples called μ face towels, and the density is 150C. The samples of the same weight after hardening for 1 hour are weighed with water. The degree of hardness P2 after hardening is measured with a meter, and then the formula (shrinkage (%) = (1 / ρ2-1 / ρι) / (1 / ρι) = (ρι / ρ2) ^) Widow Polymer shrinkage rate of epoxy resin nanocomposite materials during the hardening process' to understand the effect of polyhedral stone sintering oligomers on the shrinkage of epoxy resins. As shown in Table 2, the anti-shrinkage ratio of epoxy nano-composites containing polyhedral siloxane oligomers has different changes as the content of polyhedral siloxane oligomers increases; of which, Example 4 When the polyhedral siloxane oligomer particle content is 7.5% by weight, the anti-shrinkage effect is the best. The other embodiments also have quite excellent anti-shrinkage effects. 11 200524983 Table 2 Volume shrinkage of epoxy resins with different polyhedral siloxane aggregation content Example 1 Example 2 Example 3 Example 4 Example 5 Polyhedral silicon oxide modified with 2-propylene epoxy propylene ether Epoxy of alkane polymer; shrinkage ratio of f-sealable nanocomposite material (%) 3.68 ± 0.09 2.77 ± 0.06 2.73 ± 〇〇〇〇〇〇〇〇〇2.58 ± 0.05 2.69 士 0.09 Modified with spiral orthoester The epoxy resin nanocomposite of the epoxy polymer nanocomposite material 3.68 soil 0.09 3.40 ± 0.05 3.18 ± 0.02 2.35 ± 0.05 2.59 ± 0_09 > After the experiment of the shrinkage effect, it can be found that the ring Oxygen resin is added with polyhedron = burned oligomers. 'This — Highly-different nano-scale particles contain special reactivity: two =: = level under the substrate molecular molecule segment to react.' An epoxy resin nano containing a polyhedron Wei oligomer. ; Dou 'can be modified by 纟 2-propylene epoxy propylene oligomeric oligomer, and then the polyhedron containing organic functional groups will be reacted to form polyhedral tender oligo: 200524983 f Schematic illustration] Figure ^ In the present invention Schematic diagram of the structure of the modified substance containing 2-diene-epoxypropylene chest (SS-A) and the modified substance containing spiro orthoester. Polyhedral Shixi thief bondage polymerization One obstacle: IN 3 has a helical orthoester modified Zengxi oligomer epoxy resin nanocomposite. Figure 3 is a high-resolution field emission depiction of two polyhedron-containing polyhedra in the present invention ==! Wei 6_) analysis of the material picture, Fuzhong W people right 2 ^% of the gas resin nano Epoxy tree of composite oxygen oligomer: nano composite: epoxy resin orthoester of modified multi-faceted private oxygen silk polymer

Claims (1)

200524983 十、申請專利範圍: 1· 一種含有多面體石夕氧燒裳 包含α5至2〇順量;:=氧樹脂奈米複合材料,其係 睹。 我的多雜魏轉聚物與環氧樹 2. 如申請專利範圍第1項之環氧樹脂奈米複 樹脂為雙酚Α型環氧樹脂。 ,一中該環氧200524983 10. Scope of patent application: 1. A kind of polyhedral stone sintered ox-fired skirt containing α5 to 20 cis ;; = oxygen resin nano-composite. My Duoweiwei Transpolymer and Epoxy Tree 2. For example, the epoxy resin nano-resin of the first patent application scope is bisphenol A epoxy resin. , One in the epoxy 面 3. 如申請專利範圍第1項之環氧樹脂奈米複合材 體石夕氧烧寡聚物的含量為〇.5至娜重量百分比:中該夕 面 4. 如申請專概圍第丨項之環氧樹脂奈米複合材二,夕 體石夕氧烧寡聚物的含量為2.5至1〇重量百八比^亥夕 5. 如申請專利範圍第1至4項中任—項之環氧樹Γ旨奈米複合材 料,其中該多面體石夕氧燒寡聚物可經由利用2喝稀環 將多面體石夕氧烧寡聚物進行改質形成含有2_丙歸環氧^文 質之多面體矽氧烷寡聚物。 6.如申請專利範圍第丨至4項中任—項之環氧樹脂奈米複合材 料,其中該多面體石夕氧烧寡聚物可經由利用螺形原酸脂將多面 體矽氧烷寡聚物進行改質形成含有螺形原酸脂改質之多面體矽 氧烷寡聚物。 ' 7·如申請專利範圍第6項之環氧樹脂奈米複合材料,其中該螺形 原酉文脂係由2-丙烯環氧丙烯醚與戊内醋混合,並在三氟化、石朋_ 二乙基氧的催化下進行加成反應後所製備成的螺環化合物。 8· —種含有多面體矽氧烷寡聚物的環氧樹脂奈米複合材料之製備 方去,其步驟包括:(a)將多面體石夕氧烧寡聚物、無水甲苯與 200524983 有機官能基改質劑混合反應;⑻添加翻 (C)添加活性碳攪拌、過 :催化刮h合攪拌; 9.如申請專利範圍第8項之環ΐ樹脂:二二:::與硬化劑。 其中步驟(a)含有1G至15_重封‘,製備方法, 聚物、6〇至65 4重量百分比的無水甲_ 魏寡 百分比的有機官能基改質劑。 〃至30wt/6重量 10·如申請專利範圍第8或9項之環氧樹脂夺 法,其_ (㈣她基^=::=備方 如申請專利範圍第8或9項之環氡樹脂奈米複合 法,其巾辦(a)之有齡能級f __猶脂。版傷方 12.如申請專利範圍第8或9項之環氧樹脂奈米複合 法,其中步驟(d)之該環氧樹脂為雙酚A型環氧衣備方 D.如申請專利範圍第8或9項之環氧樹脂奈米複合材料之9制 法,其中步驟(d)之該硬化劑為三氟曱基磺酸镱。衣方 15Surface 3. If the content of the patented epoxy resin nanocomposite material Xixian sintered oxygen oligomer content is 0.5 to 50% by weight: the surface of the surface 4. If you apply for an exclusive summary Item 2 of epoxy resin nanocomposite material, the content of oxygen-burning oligomers of Xi Shi Shi Xi is 2.5 to 10 weight percent ^ Hai Xi 5. If any of the items 1 to 4 of the scope of patent application-any of the Epoxy tree Γ nano-composite material, wherein the polyhedral stone burner oligomer can be modified to form a polyhedral stone burner oligomer by using 2 dilute rings. Polyhedral siloxane oligomer. 6. The nano-epoxy resin composite material according to any one of the claims 1-4, wherein the polyhedron oxo-fired oligomer can be processed by using a spiro orthoester to make the polyhedral siloxane oligomer. Modified to form a polyhedral siloxane oligomer containing a modified spiro orthoester. '7. For example, the epoxy resin nanocomposite material in the scope of the patent application No. 6 wherein the helical protostilbite is composed of 2-propylene epoxy propylene ether and valerolactone, and is trifluorinated, Spiro compounds prepared after an addition reaction under the catalysis of diethyloxy. 8 · —The preparation method of an epoxy resin nanocomposite material containing a polyhedral siloxane oligomer, the steps include: (a) the polyhedral stone oxidized oligomer, anhydrous toluene and 200524983 organic functional group modification Mixing reaction of agent; (4) Adding activated carbon and stirring (over): catalytic scraping and stirring; 9. For example, the ring resin of item 8 of the scope of patent application: 22 ::: and hardener. Wherein step (a) contains 1G to 15_reseal ', a preparation method, a polymer, 60 to 65 4% by weight of anhydrous methyl group and an organic functional group modifier. 〃 to 30wt / 6 weight 10 · If the application of the patent scope of the 8th or 9th epoxy resin method, its _ (㈣ 基 ^ = :: = preparation side such as the patent scope of the 8th or 9th ring resin Nano composite method, the aged energy level f _ _ Ju Zhi of the towel office (a). Injured side 12. If the patent application scope of the epoxy resin nano composite method, step (d) The epoxy resin is a bisphenol A epoxy coating. Preparation method D. For example, the method for preparing the epoxy resin nano composite material No. 8 or 9 of the patent application scope, wherein the hardener in step (d) is three. Europium fluorenylsulfonate. Clothing side 15
TW94100916A 2005-01-12 2005-01-12 An polyhedral oligomeric silsesquioxanes nanocomposites TW200524983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94100916A TW200524983A (en) 2005-01-12 2005-01-12 An polyhedral oligomeric silsesquioxanes nanocomposites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94100916A TW200524983A (en) 2005-01-12 2005-01-12 An polyhedral oligomeric silsesquioxanes nanocomposites

Publications (1)

Publication Number Publication Date
TW200524983A true TW200524983A (en) 2005-08-01

Family

ID=52348070

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94100916A TW200524983A (en) 2005-01-12 2005-01-12 An polyhedral oligomeric silsesquioxanes nanocomposites

Country Status (1)

Country Link
TW (1) TW200524983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596951A (en) * 2018-05-23 2019-12-20 青岛海信电器股份有限公司 Mini LED lamp panel, preparation method and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596951A (en) * 2018-05-23 2019-12-20 青岛海信电器股份有限公司 Mini LED lamp panel, preparation method and display device

Similar Documents

Publication Publication Date Title
Yamamoto et al. New horizon of nanoparticle and cluster catalysis with dendrimers
Ahmed et al. Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications
Mera et al. Ceramic nanocomposites from tailor-made preceramic polymers
Han et al. High-strength boehmite-acrylate composites for 3D printing: reinforced filler-matrix interactions
Shragin et al. Novel approach to synthesis of monodisperse polymeric microspheres: heterophase polymerization of styrene and methyl methacrylate in presence of water-insoluble functional PDMSS
Bentz et al. Chain Dispersity Effects on Brush Properties of Surface-Grafted Polycaprolactone-Modified Silica Nanoparticles: Unique Scaling Behavior in the Concentrated Polymer Brush Regime
Walczak et al. Synthesis of bifunctional silsesquioxanes (RSiMe2O)∼ 4 (R′ SiMe2O)∼ 4Si8O12 via hydrosilylation of alkenes
Chen et al. Microemulsion synthesis of nanosized calcium sulfate hemihydrate and its morphology control by different surfactants
Li et al. Raspberry-Like polysilsesquioxane particles with hollow-spheres-on-sphere structure: Rational design, controllable synthesis, and catalytic application
Viard et al. Superparamagnetic silicon carbonitride ceramic fibers through in situ generation of iron silicide nanoparticles during pyrolysis of an iron-modified polysilazane
Arkhireeva et al. A versatile route to silsesquioxane nanoparticles from organically modified silane precursors
Branda et al. Solvent-free one-pot synthesis of epoxy nanocomposites containing Mg (OH) 2 nanocrystal–nanoparticle formation mechanism
Han et al. Nanosized Organo-Silica Particles with “Built-In” Surface-Initiated Atom Transfer Radical Polymerization Capability as a Platform for Brush Particle Synthesis
TW200524983A (en) An polyhedral oligomeric silsesquioxanes nanocomposites
Lu et al. Controllable synthesis of hierarchical polysilsesquioxane surfaces: From spheres-on-sphere to bowls-on-sphere structure
Coiai et al. Dispersion of few-layer black phosphorus in binary polymer blend and block copolymer matrices
CN101337975B (en) Polyhedral silsesquioxane nano-wires
CN108822302B (en) Janus nano-particle and preparation method and application thereof
Fiorati et al. Dispersions of zirconia nanoparticles close to the phase boundary of surfactant-free ternary mixtures
CN105016347A (en) W/O/W multiphase emulsion and method for preparing hierarchical pore SiO2 microspheres using W/O/W multiphase emulsion as formwork
Nagao et al. Unsymmetric dumbbell-shaped polyhedral oligomeric silsesquioxane (POSS) compound as a single-component POSS hybrid
Martin et al. Influence of Thermal Treatment on Preceramic Polymer Grafted Nanoparticle Network Formation: Implications for Thermal Protection Systems and Aerospace Propulsion Components
Kickelbick Introduction to sol-gel nanocomposites
Gavgani et al. Synthesis of Polymer Nanoparticles in the Presence of Diatoms as Sustainable Bio-Templates
Branda et al. Sol–Gel Approach for Fabricating Silica/Epoxy Nanocomposites