TW200522613A - Cooperative autonomous and scheduled resource allocation for a distributed communication system - Google Patents

Cooperative autonomous and scheduled resource allocation for a distributed communication system Download PDF

Info

Publication number
TW200522613A
TW200522613A TW93123528A TW93123528A TW200522613A TW 200522613 A TW200522613 A TW 200522613A TW 93123528 A TW93123528 A TW 93123528A TW 93123528 A TW93123528 A TW 93123528A TW 200522613 A TW200522613 A TW 200522613A
Authority
TW
Taiwan
Prior art keywords
current power
access
grant
access terminal
access network
Prior art date
Application number
TW93123528A
Other languages
Chinese (zh)
Other versions
TWI358218B (en
Inventor
Christopher G Lott
Naga Bhushan
Rashid A Attar
Ji-Lei Hou
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200522613A publication Critical patent/TW200522613A/en
Application granted granted Critical
Publication of TWI358218B publication Critical patent/TWI358218B/en

Links

Abstract

An access terminal (206) configured for wireless communication with an access network (204) within a sector (1032). The access terminal (206) includes a transmitter (2608) for transmitting a reverse traffic channel to the access network (204), an antenna (2614) for receiving signals from the access network (204), a processor (2602) and memory (2604) in electronic communication with the processor (2602). Instructions stored in the memory (2604) implement a method of determining whether a current power allocation grant (1374) for a flow (1216) on the access terminal (206) has been received from the access network (204). If the current power allocation grant (1374) is still active, a current power allocation (1338a) for the flow is set equal to the current power allocation grant (1374). If the current power allocation grant (1374) has not been received, the current power allocation (1338a) for the flow is determined.

Description

200522613 九、發明說明: 35U.S.C· §119規定之優先權要求 本專利申請案亦要求臨時專利申請案第6〇/493,782號之 優先權,其名稱為「分散式通信系統之合作自律及排程之 資源配置」’申請日期為2003年8月6日,而且係讓渡給本專 利申睛案之受讓者並於此明示以引用的方式併入本文中 本專利申請案亦要求臨時專利申請案第6〇/527,〇81號之 優先權,其名稱為「通信系統之多流程反向鏈路MAc」,申 请曰期為2003年12月3日,而且係讓渡給本專利申請案之受 讓者並於此明示以引用的方式併入本文中。 【發明所屬之技術領域】 本發明一般係關於無線通信系統,更明確地說,係關於 無線通信系統中的接取終端機之媒體接取控制(MAC)層的 操作之改良。 【先前技術】 已開發通信系統來允許將資訊信號從起源台發射至實體 上不同的目的地台。在透過通信通道從起源台發射資訊信 諕中’首先將資訊信號轉換成適合於透過通信通道進行有 效率的發射之形式。資訊信號之轉換或調變涉及到依據資 t號而改麦載波參數,以便所獲得的調變載波之頻譜係 限制在通诣通道頻寬内。在目的地台,自透過通信通道接 收之调纟交載波複製原始資訊信號。達到此類複製通常係藉 由採用由起源台使用的調變程序之相反程序。 。周k亦方便多向近接,即透過共用通信通道同時發射及/ 95096.doc 200522613 或接收數個信號。多向近接通信系統通常包括複數個遠端 訂戶端單元,其需要相對較短持續時間的間歇性服務而非 連續接取共用通#通道。在此項技術中已知數個多向近接 技術,例如分碼多向近接(CDMA)、分時多向近接(Tdma)、 分頻多向近接(FDMA)及振幅調變多向近接(AM)。 多向近接通信系統可以為無線型或有線型,並且可以傳 送語音及/或資料。在多向近接通信系統中,透過一或多個 基地台進行使用者之間的通信。一個訂戶端台中的第一使 用者藉由在反向鏈路上發送資料給基地台,而與第二訂戶 立而台中的第一使用者通信。基地台接收資料並可將資料選 路至另一基地台。資料係在相同基地台或其他基地台之正 向通道上發送給第二訂戶端台。正向通道指從基地台至訂 戶端台的發射,而反向通道指從訂戶端台至基地台的發射。 同樣,可以在一個行動訂戶端台中的第一使用者與内陸台 中的第二使用者之間進行通信。基地台在反向通道上從使 用者接收資料,並透過公共交換電話網路(psTN)將資料選 路至第二使用者。在許多通信系統(例如is_95、、 IS-2000)中,正向通道及反向通道係配置以獨立的頻率。200522613 IX. Description of the invention: 35U.SC · §119 priority claim This patent application also claims the priority of provisional patent application No. 60 / 493,782, whose name is "Cooperative Self-discipline and Exclusion of Decentralized Communication Systems" The allocation of resources for the process "'application date is August 6, 2003, and is assigned to the assignee of this patent application and expressly incorporated herein by reference. This patent application also requires a provisional patent The priority of the application No. 60/527, 〇81, whose name is "multi-process reverse link MAc of the communication system", the application date is December 3, 2003, and is assigned to this patent application The assignee of the case is hereby expressly incorporated herein by reference. [Technical field to which the invention belongs] The present invention relates generally to wireless communication systems, and more specifically, to improvements in the operation of the media access control (MAC) layer of access terminals in wireless communication systems. [Prior art] Communication systems have been developed to allow information signals to be transmitted from originating stations to physically different destination stations. In transmitting an information signal from a source station through a communication channel, first, the information signal is converted into a form suitable for efficient transmission through the communication channel. The conversion or modulation of the information signal involves changing the carrier parameters according to the data number so that the spectrum of the obtained modulated carrier is limited to the bandwidth of the general channel. At the destination station, the original information signal is copied from the modulated crossover carrier received through the communication channel. This type of reproduction is usually achieved by the reverse of the modulation procedure used by the origin station. . Zhou k is also convenient for multi-directional proximity, that is, transmitting / 95096.doc 200522613 or receiving several signals simultaneously through a common communication channel. A multi-directional proximity communication system typically includes a plurality of remote subscriber end units that require intermittent services of relatively short duration rather than continuous access to a common communication channel. Several multidirectional proximity technologies are known in this technology, such as code division multidirectional proximity (CDMA), time division multidirectional proximity (Tdma), frequency division multidirectional proximity (FDMA), and amplitude modulated multidirectional proximity (AM ). The multi-directional proximity communication system can be wireless or wired and can transmit voice and / or data. In a multi-directional proximity communication system, communication between users is performed through one or more base stations. The first user in a subscriber terminal station communicates with the first user in the second subscriber station by sending data to the base station on the reverse link. The base station receives the data and can route the data to another base station. The data is sent to the second subscriber end station on the forward channel of the same base station or other base stations. The forward channel refers to the transmission from the base station to the subscriber end station, and the reverse channel refers to the transmission from the subscriber end station to the base station. Similarly, communication can be performed between a first user in a mobile subscriber end station and a second user in an inland station. The base station receives data from the user on the reverse channel and routes the data to the second user via the public switched telephone network (psTN). In many communication systems (such as is_95, IS-2000), the forward and reverse channels are configured with independent frequencies.

貝料最佳化通#系統之範例為高資料速率(hdr)通信系 統。在HDR通信系統中,基地台有時稱為接取網路,而遠 端台有時稱為接取終端機(AT)。可將由A 丁執行的功能組織 為各層之堆疊,該等層包括媒體接取控制(MAC)層。MAC 層提供某些服務給較高層,該等服務包括與反向通道之操 作有關的服務。可以藉由改良無線通信系統中的AT之MAC 95096.doc 200522613 層的操作而獲益。 【發明内容】 本發明揭示一種配置用於與扇區内的接取網路進行無線 通信的接取終端機。該接取終端機包括一發射器,其用以 發射反向流量通道給接取網路;一天線,其用以從接取網 路接收信號;一處理器;以及記憶體,其與該處理器進行 電子通信。指令係儲存在記憶體中。可以執行指令以實施 種’步及到決疋疋否已從接取網路接收到用於接取終端機 中的流程之目前功率配置授予的方法。若目前功率配置授 予仍為活動的,則没定用於該流程之目前功率配置等於目 前功率配置授予。若尚未接收到目前功率配置授予,則決 定用於該流程之目前功率配置。該方法亦涉及到決定用於 該流程之累積功率配置。使用用於該流程之目前功率配置 及用於該流程之累積功率配置來決定用於該流程之總可用An example of the Betty Optimized Communication System is a high data rate (hdr) communication system. In the HDR communication system, the base station is sometimes called an access network, and the remote station is sometimes called an access terminal (AT). The functions performed by A can be organized as a stack of layers, including the media access control (MAC) layer. The MAC layer provides certain services to the higher layers. These services include services related to the operation of the reverse channel. It can benefit by improving the operation of AT's MAC 95096.doc 200522613 layer in wireless communication systems. SUMMARY OF THE INVENTION The present invention discloses an access terminal configured for wireless communication with an access network in a sector. The access terminal includes a transmitter for transmitting a reverse flow channel to the access network; an antenna for receiving signals from the access network; a processor; and a memory for processing For electronic communication. Commands are stored in memory. Instructions can be executed to implement this method and to determine whether the current power allocation grant has been received from the access network for the process in the access terminal. If the current power allocation grant is still active, the current power allocation determined for this process is equal to the current power allocation grant. If no current power allocation grant has been received, the current power allocation used for this process is determined. This method also involves deciding the cumulative power allocation to use for this process. Use the current power configuration for the process and the cumulative power configuration for the process to determine the total available power for the process

功率。使用用於該流程之總可用功率來決定發送 路的封包之功率位準。 J 在某些具體實施财,祕㈣程之總可用功率 流程之目前功率配置及流程之累積功率配 配置可之總和二者中的較小者。流程之峰值功率 配置可為流程之目前功盎 刀千 力革配置乘以限制时。限制因數可 取決於流程之目前功率配罟。、』口数可 隹 置4程之累積功率配置可由釣 和位準限制。 且>1由飽 若從接取網路接收到目 涉及到接收曰二“ J力羊配置授予,則該方法亦 "及關收目别功率配置 <保持週期。保持週期指 95096.doc 200522613 接取終端機保持流矛 ^ 予達多…置等於目前功率配置授 予違夕長%間。在保持週 採用目前功率配置授予 卜『接取終端機自律地 具體實施例中,対功率配置。在某些 積功率配置。 设叹机%之累 =:可涉及到決定是否已滿足傳送目前功率配置授 予之印求給接取網路的條件。若已滿 求給接取網路。在某歧 料傳达Μ “旦3 ―體Α例中’該條件可以為在反 向/瓜里通道上傳送的請求與在反 之屮產P站丨 瓜里通道上傳廷的資料 可以為自义值至""界值以下。或者,或除此之外,該條件 為自從傳送先前請求至接取網路以來,請求間隔已消 本舍明亦揭示一種配置用於盘垃而Μ Mb 接取終端機進行無線通信 的接取網路。該接取終端機包括—發“,其心 一信號給接取終端機;一天線,1 第 /、用以攸接取終端機接收 處理器;以及記憶體’其與該處理器進 指令係儲存在記憶體中。可執行指令以實施一種 "及到估計-或多個接取終端機中的複數個流程之自律功 率配置的穩態數值之方法。設定該等複數個流程之 率配置授予等於估計的穩態數值。傳送授予訊息給—或多 ㈣取終端機之各接取終端機。傳送給特定接取終端機的 叉予讯息包括用於該接取終端機中的_或多個流程二 功率配置授予。 則 本發明亦揭示—種配置用於與屬區内的接取終端機進行 95096.doc 200522613 無線通信的接取網路之另一具體實施例。該接取網路包括 一發射器、,其用以發射第一信號給複數個接取終端機;一 . 天線,其用以從複數個接取終端機接收第二信號;一處理 ‘ 胃;以及記憶體,其與該處理器進行電子通信。指令:儲 存在記憶體中。可執行指令以實施一種涉及到決定用於複 數個流程之一子集的目前功率配置授予之方法。傳送授予 訊息給對應於複數個流程之該子集的接取終端機。授^訊 息包括目前功率配置授予。允許接取終端機自律地決定用 於並非在该子集中的其餘流程之目前功率配置。 本發明亦揭種配置用於與接取終㈣進行無線通信 的接取網路之另一具體實施例。該接取終端機包括一發射 益’其用以發射第—信號給接取終端機;一天線,其用以 從接取、s 枝接收第二信號;一處理器;以及記憶體,其 與該處理器進行電子通信。指令係健存在記憶體中。可執 订扣7以Λ ^ 一種涉及到決定流程是否符合至少一個服務 。口貝要求之方法。若流程不符合至少一個服務品質要求, 則將技予nfl息傳送給接取終端機。授予訊息包括用於流程 . <目前功率配置料或?、積功率配置授予。若隸符合至 ^個服泰°σ貝要求,則允許流程自律地設定其自己的功 率配置。 本毛月亦揭示一種配置用於與扇區内的接取網路進行無 線通U接取終端機之另一具體實施例。該接取終端機包 括用以决疋疋否已從接取網路接收到用於該接取終端機中 的流程之目前功率配置授予的構件。若目前功率配置授予 95096.doc -10- 200522613 功率配置等於機亦包括用以設定流程之目前 别功率配置授予,則該接取終端機亦包 ^目 目前功率配署从姐μ 用以決疋流程之 之f積功率配Γ 接取終端機亦包括心決定流程 程:!= 件。該接取終端機亦包括用以採用流 可用功^的槿1 己置及流程之累積功率配置來決定流程之總 可用功率ΓΓ。該接取終端機亦包括用以採用流程之總 件。 定發送給接取網路的封包之功率位準的構 =明亦揭示-種配置詩與接取終端機進行無線通信 的=、.周路之另一具體實施例。該接取網路包括用以估計 ==終端機中的複數個流程之自律功率配置的穩 心#值之構件。該接取網路亦包括用以設定複數個流程之 二=配置授予等於估計的穩態數值之構件。該接取網 路亦包括用以傳送授予訊息給一或多個接取終端機之各接 取終端機的構件。傳送給特定接取終端機的授予訊息包括 用於該接料端機巾的—❹㈣程之目前功率配置授 〇 本發明亦揭示-種配置用於與扇區内的接取終端機進行 無線通信的接取網路之另一具體實施例。該接取網路包括 用以決定複數個流程之-子集的目前功率配置授予之構 件。該接取網路亦包括用以傳送授予訊息給對應於複數個 流程之該子集的接取終端機之構件。授予訊息包括目前功 率配置授予。該接取網路亦包括用以允許接取終端機自律 95096.doc 200522613power. The total available power used in this process is used to determine the power level of the packets of the transmission path. J In some specific implementations, the total available power of the process is the smaller of the current power allocation of the process and the cumulative power allocation of the process. The peak power configuration of the process can be the current power of the process multiplied by the limit. The limiting factor may depend on the current power allocation of the process. The number of ports can be set. The cumulative power allocation of 4 passes can be limited by fishing and level. And > 1 by the receiving network from the access network involves receiving the "J force sheep configuration grant, then the method is also" and the power distribution of the target category "holding period. The holding period refers to 95096. doc 200522613 Receiving terminal keeps flowing spear ^ Yu Daduo ... set equal to the current power allocation granted in the longest period of time. In the maintenance week, the current power allocation is granted. "In the specific embodiment of access terminal self-discipline, the power allocation .In some product power configurations. Let the machine be %% tired =: It may involve determining whether the conditions for transmitting the current request to the access network granted by the power configuration have been met. If the access network is full. A certain material conveys M "Dan 3-in the case A" This condition can be a request transmitted on the reverse / Guali channel and vice versa. The data uploaded to the P station in the Guali channel can be self-defined values To " " below the threshold. Alternatively, or in addition, the condition is that the request interval has been eliminated since the previous request was transmitted to the access network. It also reveals an access configured for disk access and the M Mb access terminal for wireless communication. network. The access terminal includes-sends "a signal to the access terminal; an antenna, a first and a reception processor for receiving the terminal; and a memory, which is connected with the processor to the instruction system. Stored in memory. Executable instructions to implement a " and method of estimating steady-state values of self-disciplined power configuration of multiple processes in multiple access terminals or multiple access terminals. Set rate configuration of these multiple processes The grant is equal to the estimated steady state value. The grant message is transmitted to—or each of the access terminals of the multi-capture terminal. The cross-messages sent to the particular access terminal include _ or more used in the access terminal. Power configuration is granted in two processes. Then, the present invention also discloses another specific embodiment of an access network configured to perform 95096.doc 200522613 wireless communication with an access terminal in the area. The access network Including a transmitter for transmitting a first signal to a plurality of access terminals; an antenna for receiving a second signal from the plurality of access terminals; a processing 'stomach; and a memory, which With that processing Conduct electronic communications. Instructions: stored in memory. Executable instructions to implement a method that involves determining a current power allocation grant for a subset of a plurality of processes. A grant message is sent to the child corresponding to the plurality of processes. The set of access terminals. The grant message includes the current power configuration grant. The access terminal is allowed to autonomously determine the current power configuration for the remaining processes that are not in the subset. The present invention also discloses a configuration for use with the access Finally, another specific embodiment of the access network for wireless communication. The access terminal includes a transmitting terminal, which is used to transmit the first signal to the access terminal; an antenna, which is used to The s branch receives the second signal; a processor; and a memory, which communicates electronically with the processor. The instructions are stored in the memory. The order can be deducted from 7 to Λ ^ a type that involves determining whether the process meets at least one service The method required by the scallop. If the process does not meet at least one of the service quality requirements, the technical information is transmitted to the access terminal. The grant message includes the process. ≪ The current power allocation is expected to be granted, and the product power allocation is granted. If the slave meets the requirements of ^ 泰 °°, the process is allowed to set its own power allocation autonomously. This hair month also reveals a configuration for use in the sector. Another specific embodiment of the wireless access network of the access network of the access terminal. The access terminal includes a process for deciding whether or not it has been received from the access network for the access terminal. The components of the current power allocation grant. If the current power allocation grant is 95096.doc -10- 200522613, the power allocation equal to the machine also includes the current power allocation grant for setting the process, then the access terminal also includes the current power allocation The f product power distribution used by the sister μ to determine the process is also included in the access terminal:! = Pieces. The access terminal also includes the hibiscus 1 which is used to use the available power. And the cumulative power configuration of the process to determine the total available power ΓΓ of the process. The access terminal also includes the components used to implement the process. The structure of the power level of the packet sent to the access network is also disclosed. Another specific embodiment of the configuration of poems and wireless communication with the access terminal is disclosed. The access network includes components for estimating the stable # value of the self-disciplined power configuration of a plurality of processes in the == terminal. The access network also includes a component for setting two of the plurality of processes = configuration grant equal to the estimated steady state value. The access network also includes means for transmitting grant messages to each access terminal of one or more access terminals. The grant message transmitted to a particular access terminal includes the current power configuration of the process used for the access terminal. The present invention also discloses a configuration for wireless communication with the access terminal in the sector. Another specific embodiment of the access network. The access network includes components to determine the current power allocation grant for a subset of the plurality of processes. The access network also includes components for transmitting grant messages to access terminals corresponding to the subset of the plurality of processes. The grant message includes the current power allocation grant. The access network also includes self-regulation to allow access to terminals. 95096.doc 200522613

程付令、主少一個服務品質要求, 允許流程自律地決定其自己的功率配置之構件。 【實施方式】 終^機的構件。授予訊幸 累積功率配置授予。若流 則該接取網路亦包括用以 表示1用作範例、實例 的任一具體實施例不必 ^示範性」係在本文中用以表示 或解說」。本文中說明為「示範性 視為超過其他具體實施例的較佳或有利具體實施例。 應注意示範性具體實施例係在此整個論述中提供為範 例,然而替代具體實施例可併入各方面,而不脫離本發明 之範疇。明確地說,本發明可應用於資料處理系統、無線 通#系統、行動IP網路及任一其他需要接收並處理無線信 號的系統。 示範性具體實施例使用展頻無線通信系統。無線通信系 統係廣泛地部署成提供各種類型的通信,例如語音、資料 等。該等系統可基於分碼多向近接(CDMA)、分時多向近接 (TDMA)或某些其他調變技術。CDMA系統提供其他類型的 系統所沒有的某些優點,包括增加的系統容量。 95096.doc -12- 200522613 無線通信系統可設計成支援一或多個標準,例如「雙模 式寬頻展頻單元系統之TIA/EIA/IS-95-B行動台-基地台相 容性標準」,其在本文中稱為IS-95標準;由名為「第三代 夥伴計劃」、在本文中稱為3GPP之論壇提供的標準,其具 w 體化在一組文件中,該等文件包括文件號3GPP ts 25.211、 3GPP TS 25.212、3GPP TS 25.213及 3GPP TS 25.214、3GPP TS 25.3 02,其在本文中稱為w_Cdma標準;由名為「第三 代夥伴計劃2」、的在本文中稱為3(31^2之論壇提供的標 準;以及TR-45.5,其在本文中稱為cdma2〇〇〇標準,而以前 稱為IS-2000 MC。以上所引用的標準係於此明示以引用的 方式併入本文中。 本文說明的系統及方法可用於高資料速率(HDR)通信系 統。HDR通信系統可以設計成符合一或多個標準,例如由 名為「第二代夥伴計劃2」的論壇於2〇〇4年3月發佈的 「cdma2000高速率封包資料空中介面說明書」、3Gpp2 C.S0024-A版本1。上述標準之内容係以引用的方式併入本 • 文中。 - 本文中稱為接取終端機(AT)的HDR訂戶端台可以為行動 式或固定式,並可與本文中稱為數據機集區收發器(Μρτ) 的一或多個HDR基地台通信。接取終端機透過一或多個數 據機集區收發器接收資料封包並將其發送給HDR基地台控 制益,其在本文中可稱為數據機集區控制器(Mpc)。數據機 集區收發器與數據機集區控制器係稱為接取網路的網路之 部分。接取網路傳輸多個接取終端機之間的資料封包。接 95096.doc 200522613 取網路可進—步與接取網路外部的額外網路(例如公司内 部網路或網際網路)連接’並可傳輸每個接取終端機鱼此類 外部網路之間的資料封包。已建立與一或多個數據機集區 收發益的活動流量通道連接之接取終端機係稱為活動接取 終端機並視為處於流量狀態。在建立與—或多個數據機集 區收發器的活動流量通道連接之程序中的接取終端機,係 視為處於連接設定狀態。接取終端機可以為任一資料裝 置’其(例如)採用光纖電纜或同軸電纜透過無線通道或透過 有線通道進行通信。接取終端機可進一步為若干類型裝置 之任一種’包括但不限於PC卡、小型快閃記憶體、外部或 内部數據機或無線或㈣電話。接取終端機傳送信號給數 據集區收發器所憑藉的通信通道係稱為反向通道。數據機 集區收發器傳送信號給接取終端機所憑藉的通信通道係稱 為正向通道。 圖1解說通信系統100之範例,該系統支援許多使用者並 能實施本文論述的具體實施例之至少某些方面。各種演算 法及方法之任一種可用以排程系統1〇〇中的發射。系統1〇〇 提供用於許多單元102八至102(}之通信,各單元係分別由對 應的基地台1〇4八至104(}提供服務。在示範性具體實施例 中,某些基地台104具有多根接收天線,而其它基地台則僅 具有一根接收天線。同樣地,某些基地台1〇4具有多根發射 天線,而其匕基地台則具有單一發射天線。不存在對發射 天線與接收天線之組合的限制。因此基地台1〇4可以具有多 根發射天線及單一接收天線,或具有多根接收天線以及單 95096.doc -14- 200522613 —發射天線,或是具有單—或多根發射天線及接收天線。 涵蓋區域t的遠端台106可以為固定(即固定式)台或行 動:。如® 1所示,各種遠端台1〇6係分散在整個系統中。 各您端台106隨時在正向通道及反向通道上與至少一個及 可旎多個基地台104通信,取決於(例如)是否使用軟交遞, 或是否設計終端機並操作終端機以從多個基地台(同時或 按順序)接收多個發射。CDMA通信系統中的軟交遞在此項 技術中為人所熟知,並且係詳細地說明在美國專利第 5,m,5〇1號中,其名稱為「提供CDMA單元電話系統中的 +人父遞用之方法及系統」,其係讓渡給本發明之受讓者。 正向通道指從基地台104至遠端台1〇6的發射,而反向通 道指從遠端台106至基地台1〇4的發射。在示範性具體實施 例中’某些遠端台1〇6具有多根接收天線,而其它遠端台則 僅具有一根接收天線。在圖,基地台l〇4A在正向通道上 發送資料給遠端台1〇6A&106J,基地台1〇4B發送資料給遠 古而口 106B及106J,基地台i〇4C發送資料給遠端台1〇6c並以 此類推。 在而資料速率(HDR)通信系統中,基地台有時稱為接取 網路(AN),而遠端台有時稱為接取終端機(Ατ)。圖2解說 HDR通信系統中的an 204及AT 206。 AT 206與AN 204進行無線通信。如先前所指示,反向通 道指從AT 206至AN 204的發射。表2顯示反向流量通道 208。反向流量通道2〇8為將資訊從特定AT 2〇6傳送至AN 204的反向通道之一部分。當然,反向通道可包括除反向流 95096.doc -15- 200522613 量通道208以外的其他通信。而且正向通道可包括複數個通 道,包括先導通道。 可將由AT 2 0 6執行的功能組織為各層之堆疊。圖3解說AT 306中的各層之堆疊。在各層中有媒體接取控制(MAC)層 3 08。較高層310係定位在MAC層308上面。MAC層308提供 某些服務給較高層3 10,該等服務包括與反向流量通道208 之操作有關的服務。MAC層308包括反向流量通道(RTC) MAC協定314之實施方案。RTC MAC協定3 14提供由AT 306 遵循的程序來發送反向流量通道208,並提供由AN 204遵循 的程序來接收反向流量通道208。 實體層312係定位在MAC層308下面。MAC層308從實體 層312請求某些服務。該等服務係與至AN 204的封包之實體 發射有關。 圖4解說AT 406中的較高層410、MAC層408與實體層412 之間的示範性互動。如圖所示,MAC層408從較高層410接 收一或多個流程416。流程416為資料串流。通常而言,流 程416對應於特定應用,例如IP語音(VoIP)、視訊電話、檔 案傳輸協定(FTP)、遊戲等。 自AT 406中的流程416之資料係以封包的形式發送給AN 204。依據RTC MAC協定414,MAC層決定各封包的流程集 418。有時AT 406中的多個流程416有資料同時發送。封包 可包括來自一個以上的流程416之資料。然而有時AT 406中 可能存在一或多個流程416,其具有資料需發送,但是其並 未包括在封包中。封包之流程集41 8指示AT 406中將包括在 95096.doc -16- 200522613 該封包中的流程4 1 6。以下將說明用以決定封包之流程集 4 1 8的示範性方法。 MAC層408亦決定各封包之酬載大小420。封包之酬載大 小420指示封包中包括多少來自流程集41 8的資料。 MAC層408亦決定封包之功率位準422。在某些具體實施 例中,相對於反向先導通道之功率位準而決定封包之功率 位準422。 對於發送給AN 204的每個封包,MAC層408將包括在封 包中的流程集418、封包之酬載大小420及封包之功率位準 422傳達給實體層412。實體層412接著依據由MAC層3 08提 供的資訊將封包發送給AN 204。 圖5A及5B解說從AT 506發送給AN 504的封包524。可以 採用數個可能的發送模式之一來發送封包524。例如在某些 具體實施例中存在二種可能的發送模式,即高容量發送模 式及低潛時發送模式。圖5A解說發送給AN 504的高容量封 包524a(即採用高容量模式發送的封包524a)。圖5B解說發 送給AN 504的低潛時封包524b(即採用低潛時模式發送的 封包524b)。 低潛時封包524b係以高於相同大小的高容量封包524a之 功率位準422發送。因此低潛時封包524b將很可能比高容量 封包524a更快速地到達AN 504。然而低潛時封包524b比高 容量封包524a引起系統100中更大的負載。 圖6解說可能存在於AT 606中的不同類型之流程61 6。在 某些具體實施例中,AT 606中的每個流程61 6係與特定發送 95096.doc -17- 200522613 模式相關。在可能的發送模戎Λ古 發送模式及低潛時 發运杈式之情況下,AT 606可包括_七夕, 已括—或多個高容量流程 ㈣及/或-或多個低潛時流程⑽。較佳採用高容量封包 ⑽發送高容量流程616a。較佳採用低潛時封包遍 低潛時流程616b。 圖7解說高容量封包72乜之示範性流程集718。在某此且 體實施例中,僅在具有資料發送的所有流程716皆為高容量 流程716a時,才採用高容量模式發送封包724&。因此在此 類具體實施例中’高容量封包724a中的流程集718僅包料# 容量流程:6a。或者根⑽6〇6之判斷,低潛時流程嶋 可包括在向容量封包724a中。這樣做的一個示範性原因係 當低潛時流程616b未獲得足夠的輸出時。例如可則貞測到 低潛時流程嶋之仔列在增加。流程可藉由採用高容量模 式而非以增加的時間延遲為代價來改善其輸出。 、 圖8解說低潛時封包8鳥之示範性流程集818。在某些呈 體實施例中,若存在至少一個具有資料發送的低潛時;程 難,則採用低潛時模式發送封包咖。低潛時封包咖· 中的流程集818包括有資料發送的各低潛時流程8说。有資 料毛达的一或多個高容量流程816a亦可包括在流程集818 中°然而有資料發送的一或多個高容量流程8心可以不勺 括在流程集81 8中。 。圖轉說資訊,其可維持在心9〇6中,以便決定高容量流 私916a是否包括在低潛時封包以仆之流程集818中。at 中的每個高容量流程916a具有某數量的可用於發送的資料 95096.doc -18- 200522613 926而且可定義合併臨界值928用於AT 906中的每個高容 量流程91仏。此外可定義合併臨界值930以總體用於AT 906。最後,當扇區之負載位準的估計小於臨界數值時,可 能會出現高容量流程的合併。(以下將論述如何決定扇區之 負載位準的估計。)即當扇區之負載足夠輕時,合併的效率 損失並不重要,而且允許主動使用。 在某些具體實施例中,若滿足二個條件之…則將高容 量流程916a包括在低延遲封包52仆中。第一條件為Ατ 9〇6 中的所有尚容量流程91 6a之可發送資料926的總和超過定 義用於AT 906的合併臨界值930。第二條件為高容量流程 916a之可發送資料926超過定義用於高容量流程91以的合 併臨界值928。 第一條件係關於從低潛時封包82仆至高容量封包72乜的 功率轉換。若高容量流程916a並未包括在低潛時封包”朴 中,則只要存在來自至少一個低潛時流程816b之資料可用 於發送,自高容量流程916a的資料便會增加。若允許累積 自高容量流程916a的太多資料,則下一次發送高容量封包 724a時,可能存在從最後低潛時封包82朴至高容量封包 724a之不可接受的急劇功率轉換。因此依據第一條件,一 旦來自AT 906中的高容量流程916a之可發送資料926的數 量超過某數值(由合併臨界值930定義),則允許將來自高容 i流程916a的資料「合併」至低潛時封包824b中。 第二條件係關於AT 906中的高容量流程9i6a之服務品質 (Q〇s)要求。若設定高容量流程916a之合併臨界值928為很 95096.doc •19- 200522613 大的數值,則此意味著高容量流程916a很少曾包括在低潛 a才封包824b中。因此此類高容量流程9丨6a可能會經歷發送 延遲,因為只要存在至少一個有資料發送的低潛時流程 816b,便不會發送該流程。相反,若設定高容量流程91以 之合併臨界值928為很小的數值,則此意味著高容量流程 916a幾乎始終會包括在低潛時封包82仆中。因此此類高容 量流程916a可能會經歷很少的發送延遲。然而此類高容量 流程91 6a耗盡更多的扇區資源來發送其資料。 有利的係在某些具體實施例中,可設定At 960中的某些 咼容量流程916a之合併臨界值928為很大的數值,而可設定 AT 906中的其他高容量流程916a之合併臨界值928為很小 的合併臨界值928。此類設計有利,因為某些類型的高容量 流篁916a可能具有嚴格的q〇s要求,而其他流程可能沒 有。具有嚴袼的QOS要求並可採用高容量模式加以發送的 流程916之範例為實時視訊。實時視訊具有高頻寬要求,其 可此會使採用低潛時模式的發送無效率。然而,隨意發送 延遲並非實時視訊所需。沒有嚴格的(^〇8延遲要求並可採 用鬲容量模式加以發送的流程916之範例為最佳努力流程 916 ° 圖10解說扇區1032内的AN 1004及複數個AT 1006。扇區 1032為地理區域,其中可由AT 1〇〇6接收來自ΑΝ 1〇〇4的信 號,反之亦然。 某些無線通信系統(例如CDM系統)之一特性在於發送相 互干擾。因此為了確保相同扇區1032内的Ατ 1〇〇6之間不存 95096.doc -20- 200522613 在太多的干擾,AT 1006可共同使用的於AN 1004接收之功 率數量係有限的。為了確保AT 1006保持在此限制内,某數 量的功率1034可用於扇區1032内的每個AT 1006,以便在反 向流量通道2 0 8上進行發送。每個AT 10 0 6設定其在反向流 量通道208上發送的封包524之功率位準422,以便不超過其 總可用功率1034。 配置給AT 1006的功率位準1034可能不會準確地等於AT 1006在反向流量通道208上發送封包524所用的功率位準 422。例如在某些具體實施例中,存在一組離散功率位準, AT 1006從中選擇以決定封包524之功率位準422中。AT 1006之總可用功率1034可能不會準確地等於離散功率位準 之任一功率位準。 允許累積在任何給定時間均未得到使用的總可用功率 1034,以便後來可使用該功率。因此在此類具體實施例中, AT 1006之總可用功率1034(粗略地)等於目前功率配置 1034a加上累積功率配置1034b之至少某部分。AT 1006決定 封包524之功率位準422,以便該位準不超過AT 1006之總可 用功率1034。 AT 1006之總可用功率1034可能不會始終等於AT 1006之 目前功率配置1034a加上AT 1006之累積功率配置1034b。在 某些具體實施例中,AT 1006之總可用功率1034可由峰值配 置1034c加以限制。AT 1006之峰值配置1034c可以等於AT 1006之目前功率配置1034a乘以某限制因數。例如若限制因 數為2,則AT 1006之峰值配置1034c等於其目前功率配置 95096.doc -21 - 200522613 1034a的兩倍。在某些具體實施例中,限制因數為AT 1〇〇6 之目前功率配置1034a的函數。 提供AT之峰值配置1〇34c可限制允許AT 1〇〇6發送「叢發」 的程度。例如可能會出現Ατ 1〇〇6在某時間週期期間沒有資Cheng Fuling and Master have one less service quality requirement, allowing the process to autonomously determine its own power allocation components. [Embodiment] The components of the final machine. Awarded the Honor Accumulated Power Configuration Award. If it is streamed, then the access network also includes any specific embodiment used to represent 1 as an example, an example does not have to be "exemplary" is used to represent or explain in this article. " It is described herein as "an exemplary embodiment that is considered to be a preferred or advantageous embodiment over other specific embodiments. It should be noted that exemplary embodiments are provided as examples throughout this discussion, however, alternative specific embodiments may be incorporated in all aspects Without departing from the scope of the present invention. Specifically, the present invention can be applied to data processing systems, wireless communication systems, mobile IP networks, and any other system that needs to receive and process wireless signals. Exemplary embodiments use Spread spectrum wireless communication systems. Wireless communication systems are widely deployed to provide various types of communication, such as voice, data, etc. These systems can be based on code division multiple direction proximity (CDMA), time division multiple direction proximity (TDMA), or some Some other modulation techniques. CDMA systems provide certain advantages not found in other types of systems, including increased system capacity. 95096.doc -12- 200522613 Wireless communication systems can be designed to support one or more standards, such as "dual mode TIA / EIA / IS-95-B Mobile Station-Base Station Compatibility Standard for Broadband Spread Spectrum Unit System ", which is referred to herein as the IS-95 standard; The "Three Generation Partnership Project", a standard provided by the forum referred to as 3GPP in this article, is embodied in a set of files, which include file numbers 3GPP ts 25.211, 3GPP TS 25.212, 3GPP TS 25.213, and 3GPP TS 25.214, 3GPP TS 25.3 02, which is referred to herein as the w_Cdma standard; a standard provided by a forum named "3rd Generation Partnership Project 2" and referred to herein as 3 (31 ^ 2); and TR-45.5, which is available in It is referred to herein as the cdma2000 standard, and was previously known as IS-2000 MC. The standards cited above are hereby expressly incorporated herein by reference. The systems and methods described herein can be used for high data rate (HDR) ) Communication system. HDR communication system can be designed to meet one or more standards, such as the "cdma2000 high-speed packet data air interface specification" released in March 2004 by a forum named "Second Generation Partnership Project 2" ", 3Gpp2 C.S0024-A version 1. The contents of the above standards are incorporated into this article by reference.-HDR subscriber end stations referred to as access terminals (AT) in this article can be mobile or fixed And is compatible with this article Communicate with one or more HDR base stations of the modem cluster transceiver (Μρτ). The access terminal receives the data packets through the one or more modem cluster transceivers and sends them to the HDR base station control station. In this paper, it can be called modem controller (Mpc). The modem transceiver and modem controller are part of the network called the access network. The access network transmits multiple connections. Take data packets between terminals. Access 95096.doc 200522613 The access network can be further connected to additional networks (such as the company's intranet or the Internet) outside the access network, and each connection can be transmitted. Take data packets between external networks such as terminals and fish. An access terminal that has established an active traffic channel connection with one or more modem pools to send and receive benefits is called an active access terminal and is considered to be in a traffic state. The access terminal in the procedure of establishing an active traffic channel connection with one or more modem cluster transceivers is considered to be in the connection setting state. The access terminal can be any data device 'which, for example, uses a fiber optic cable or a coaxial cable to communicate through a wireless channel or through a wired channel. The access terminal may further be any of several types of devices' including but not limited to a PC card, a small flash memory, an external or internal modem, or a wireless or telephone. The communication channel through which the receiving terminal sends signals to the data pool transceiver is called the reverse channel. The communication channel through which the modem transceiver sends signals to the access terminal is called the forward channel. FIG. 1 illustrates an example of a communication system 100 that supports many users and can implement at least some aspects of the specific embodiments discussed herein. Any of a variety of algorithms and methods can be used to schedule launches in the system 100. The system 100 provides communication for a number of units 102 to 102 (), and each unit is served by a corresponding base station 108 to 104 (). In the exemplary embodiment, some base stations 104 has multiple receiving antennas, while other base stations have only one receiving antenna. Similarly, some base stations 104 have multiple transmitting antennas, while their base stations have a single transmitting antenna. There is no pair transmitting The combination of the antenna and the receiving antenna is limited. Therefore, the base station 104 may have multiple transmitting antennas and a single receiving antenna, or may have multiple receiving antennas and a single 95096.doc -14- 200522613 —transmitting antenna, or a single — Or multiple transmitting antennas and receiving antennas. The remote station 106 covering the area t can be a fixed (ie, fixed) station or mobile: As shown in ® 1, various remote stations 106 are scattered throughout the system. Each of your end stations 106 communicates with at least one and multiple base stations 104 on the forward and reverse channels at any time, depending on, for example, whether to use soft handover or whether to design a terminal and operate the terminal to operate from Multiple The base station receives multiple transmissions (simultaneously or sequentially). Soft handoff in CDMA communication systems is well known in the art and is described in detail in US Patent No. 5, m, 501. Its name is "Method and System for Providing + Parental Delivery in CDMA Cell Phone System", which is assigned to the assignee of the present invention. Forward channel refers to the transmission from base station 104 to remote station 106. And the reverse channel refers to the transmission from remote station 106 to base station 104. In the exemplary embodiment, 'some remote stations 106 have multiple receive antennas, while other remote stations only It has a receiving antenna. In the figure, base station 104A sends data to the remote station 106A & 106J on the forward channel, and base station 104B sends the data to ancient mouths 106B and 106J, base station i〇 4C sends data to the remote station 106c and so on. In a data rate (HDR) communication system, the base station is sometimes called an access network (AN), and the remote station is sometimes called an access network. Terminal (Ατ). Fig. 2 illustrates an an 204 and an AT 206 in the HDR communication system. The AT 206 performs wireless communication with the AN 204. As previously indicated, the reverse channel refers to the transmission from AT 206 to AN 204. Table 2 shows the reverse flow channel 208. The reverse flow channel 208 is the reverse direction that transmits information from a specific AT 206 to the AN 204 Part of the channel. Of course, the reverse channel can include other communications than the reverse flow 95096.doc -15- 200522613 volume channel 208. And the forward channel can include multiple channels, including the pilot channel. It can be changed by AT 2 0 6 The functions performed are organized as a stack of layers. Figure 3 illustrates the stacking of layers in AT 306. Within each layer is a Media Access Control (MAC) layer 308. The higher layer 310 is positioned above the MAC layer 308. The MAC layer 308 provides certain services to the higher layers 3 10, which include services related to the operation of the reverse traffic channel 208. The MAC layer 308 includes an implementation of a reverse traffic channel (RTC) MAC protocol 314. The RTC MAC protocol 314 provides a procedure followed by the AT 306 to send the reverse traffic channel 208, and provides a procedure followed by the AN 204 to receive the reverse traffic channel 208. The physical layer 312 is positioned below the MAC layer 308. The MAC layer 308 requests certain services from the physical layer 312. These services are related to the physical launch of a packet to AN 204. FIG. 4 illustrates exemplary interactions between the higher layer 410, the MAC layer 408, and the physical layer 412 in the AT 406. As shown, the MAC layer 408 receives one or more processes 416 from a higher layer 410. The process 416 is a data stream. Generally speaking, the process 416 corresponds to a specific application, such as Voice over IP (VoIP), video telephony, file transfer protocol (FTP), gaming, and the like. The data from flow 416 in AT 406 is sent to AN 204 in the form of a packet. According to the RTC MAC protocol 414, the MAC layer determines the flow set 418 for each packet. Sometimes multiple processes 416 in AT 406 have data sent simultaneously. The packet may include information from more than one process 416. However, sometimes there may be one or more processes 416 in AT 406 that have data to send, but they are not included in the packet. The packet flow set 41 8 instructs AT 406 to include 95096.doc -16- 200522613 the flow 4 1 6 in the packet. Exemplary methods for determining the flow set 4 1 8 of the packet will be described below. The MAC layer 408 also determines the payload size 420 of each packet. The payload size of the packet 420 indicates how much data from the process set 418 is included in the packet. The MAC layer 408 also determines the power level 422 of the packet. In some embodiments, the power level 422 of the packet is determined relative to the power level of the reverse pilot channel. For each packet sent to the AN 204, the MAC layer 408 communicates to the physical layer 412 the process set 418 included in the packet, the payload size 420 of the packet, and the power level 422 of the packet. The physical layer 412 then sends the packet to the AN 204 based on the information provided by the MAC layer 308. 5A and 5B illustrate a packet 524 sent from AT 506 to AN 504. The packet 524 may be transmitted in one of several possible transmission modes. For example, in some specific embodiments, there are two possible transmission modes, namely, a high-capacity transmission mode and a low-latency transmission mode. Figure 5A illustrates a high-capacity packet 524a (i.e., a packet 524a sent in a high-capacity mode) sent to AN 504. Figure 5B illustrates the low-latency packet 524b (i.e., the packet 524b sent in the low-latency mode) sent to AN 504. The low latency packet 524b is transmitted at a power level 422 higher than the high capacity packet 524a of the same size. Therefore, the low-latency packet 524b will likely reach AN 504 more quickly than the high-capacity packet 524a. However, the low latency packet 524b causes a greater load in the system 100 than the high capacity packet 524a. FIG. 6 illustrates different types of processes 61 6 that may exist in AT 606. In some specific embodiments, each of the processes 616 in AT 606 is associated with a specific sending 95096.doc -17- 200522613 mode. In the case of a possible sending mode and a low-latency shipping mode, the AT 606 may include _ Qixi, already included-or multiple high-capacity processes and / or-or multiple low-latency processes Alas. The high-capacity packet ⑽ is preferably used to send the high-capacity flow 616a. The low-latency packet is preferably used to traverse the low-latency flow 616b. FIG. 7 illustrates an exemplary flow set 718 of a high-capacity packet 72 乜. In some specific embodiments, the high-capacity mode is used to send the packet 724 & only when all the processes 716 with data transmission are high-capacity processes 716a. Therefore, in this specific embodiment, the process set 718 in the 'high-capacity packet 724a only includes the material # capacity process: 6a. Or, based on the judgment of 606, the low-latency flow may be included in the capacity packet 724a. An exemplary reason for this is when the low-latency process 616b does not obtain sufficient output. For example, it can be seen that the number of low-latency processes is increasing. The process can improve its output by using high-capacity mode rather than at the cost of increased time delay. Fig. 8 illustrates an exemplary flow set 818 of a low-latency packet of 8 birds. In some presenting embodiments, if there is at least one low-latency time with data transmission; the process is difficult, and the low-latency time mode is used to send the packet coffee. The low-latency packet caching process set 818 includes various low-latency processes 8 with data to send. One or more high-capacity processes 816a with information of Maoda may also be included in the process set 818. However, one or more high-capacity processes 8 with information sent may not be included in the process set 818. . The graph transfers information, which can be maintained in the heart 906, in order to determine whether the high-volume private 916a is included in the low-latency packet set 818. Each high-capacity process 916a in at has a certain amount of data that can be sent 95096.doc -18- 200522613 926 and a merge threshold 928 can be defined for each high-capacity process 91 in AT 906. In addition, a merge threshold 930 may be defined for use with the AT 906 as a whole. Finally, when the estimated load level of a sector is less than a critical value, a merger of high-capacity processes may occur. (The following will discuss how to estimate the load level of the sector.) That is, when the load of the sector is light enough, the efficiency loss of the merger is not important, and active use is allowed. In some embodiments, if two conditions are met, the high-capacity process 916a is included in the low-latency packet 52. The first condition is that the sum of the transmittable data 926 of all capacity processes 91 6a in Aτ 906 exceeds the consolidation threshold 930 defined for AT 906. The second condition is that the sendable data 926 of the high-capacity process 916a exceeds the merge threshold 928 defined for the high-capacity process 91. The first condition relates to the power conversion from the low latency packet 82 to the high capacity packet 72 乜. If the high-capacity process 916a is not included in the low-latency packet, then as long as there is data from at least one low-latency process 816b available for transmission, the data from the high-capacity process 916a will increase. Too much data in the capacity flow 916a, the next time a high-capacity packet 724a is sent, there may be an unacceptably sharp power conversion from the last low-latency packet 82 to the high-capacity packet 724a. Therefore, according to the first condition, once from AT 906 If the number of transmittable data 926 in the high-capacity process 916a exceeds a certain value (defined by the merge threshold 930), the data from the high-capacity process 916a is allowed to "merge" into the low-latency packet 824b. The second condition is the quality of service (Q0s) requirements for the high-capacity process 9i6a in AT 906. If the merge threshold 928 of the high-capacity process 916a is set to a large value of 95096.doc • 19-200522613, this means that the high-capacity process 916a is rarely included in the low-potential a packet 824b. Therefore, such a high-capacity process 9 丨 6a may experience a transmission delay, because as long as there is at least one low-latency process 816b with data transmission, the process will not be transmitted. On the contrary, if the high-capacity process 91 is set with the merge threshold 928 being a small value, this means that the high-capacity process 916a is almost always included in the low-latency packet 82. Therefore, such a high-capacity process 916a may experience little transmission delay. However, such high-capacity processes 91 6a exhaust more sector resources to send their data. Advantageously, in some specific embodiments, the merge threshold 928 of some 咼 capacity processes 916a in At 960 can be set to a large value, while the merge threshold of other high-capacity processes 916a in AT 906 can be set. 928 is a small merge threshold 928. This type of design is advantageous because some types of high-capacity flow 916a may have strict qos requirements, while other processes may not. An example of a process 916 that has strict QOS requirements and can be sent in a high-capacity mode is real-time video. Real-time video has high bandwidth requirements, which can make sending in low-latency mode inefficient. However, random transmission delays are not required for real-time video. An example of a process 916 that does not have strict (^ 〇8 delay requirements and can be sent in the capacity mode) is the best effort process 916 ° Figure 10 illustrates AN 1004 and multiple AT 1006 in sector 1032. Sector 1032 is geographical Area, where the signal from AN 1004 can be received by AT 1006, and vice versa. One of the characteristics of some wireless communication systems (such as CDM systems) is the mutual interference of transmission. Therefore, in order to ensure that the same sector 1032 95096.doc -20- 200522613 does not exist between Ατ 1〇06. There is too much interference, the amount of power that AT 1006 can commonly use in AN 1004 is limited. In order to ensure that AT 1006 stays within this limit, some A quantity of power 1034 can be used for each AT 1006 in sector 1032 to send on the reverse traffic channel 2 0 8. Each AT 10 0 6 sets the power of the packet 524 it sends on the reverse traffic channel 208 Level 422 so as not to exceed its total available power 1034. The power level 1034 allocated to the AT 1006 may not be exactly equal to the power level 422 used by the AT 1006 to send a packet 524 on the reverse traffic channel 208. some In the embodiment, there is a set of discrete power levels from which AT 1006 selects to determine the power level 422 of packet 524. The total available power 1034 of AT 1006 may not be exactly equal to any power level of the discrete power level The total available power 1034 that is not used at any given time is allowed to accumulate so that it can be used later. Therefore, in this specific embodiment, the total available power 1034 (roughly) of the AT 1006 is equal to the current power configuration 1034a plus at least some portion of the accumulated power configuration 1034b. AT 1006 determines the power level 422 of packet 524 so that this level does not exceed the total available power 1034 of AT 1006. The total available power 1034 of AT 1006 may not always be equal to AT The current power configuration 1034a of 1006 plus the cumulative power configuration 1034b of AT 1006. In some specific embodiments, the total available power 1034 of AT 1006 can be limited by the peak configuration 1034c. The peak configuration 1034c of AT 1006 can be equal to the current configuration of AT 1006 Power configuration 1034a multiplied by a limiting factor. For example, if the limiting factor is 2, the peak configuration 1034c of AT 1006 is equal to its current power configuration 950 96.doc -21-200522613 doubled to 1034a. In some specific embodiments, the limiting factor is a function of the current power configuration 1034a of AT 1006. Providing the peak configuration of AT 1034c limits the allowed AT 10 〇6 The degree of "bunch". For example, it may happen that Ατ 1006 is not available during a certain period of time.

料發送。在此時間週期期間,可能繼續配置功率給AT 1006。因為沒有資料發送,所以配置的功率會累積。有時 AT 1006可能會突然有相對大量的資料發送。此時累積的功 率配置1034b可能相對較大。若允許AT 1〇〇6使用全部累積 的功率配置1034b,則AT 1006之發送功率422可能會經歷突 然、快速增加。然而,若Ατ 1〇〇6之發送的功率422增加得 太快,則此可能會影響系統1〇〇的穩定性。因此可為Ατ 1〇〇6 k供峰值配置1 〇34c以限制出現此類情況時的at 1 〇〇6之總 可用功率1034。應注意累積功率配置1〇341}仍然可用,但是 其使用係在峰值配置1 〇34c受到限制時於更多的封包中展 開。 圖11解說可用以決定AT 206之總可用功率1034的示範性 機制。該機制涉及到使用虛擬「桶」u 3 6。在週期性間隔 中’將新的目前功率配置1034a添加至桶1136中。而且在週 期性間隔中,由AT 2〇6發送的封包524之功率位準422退出 桶1136。目前功率配置1034a超過封包之功率位準的數 量為累積功率配置1034b。累積功率配置1〇3413保持在桶 113 6中直至該配置得到使用。 總可用功率1034減去目前功率配置1〇3物即為從桶1136 撤回的總電位^ AT 1006確保其發送的封包524之功率位準 95096.doc -22- 200522613 422不超過AT 1006之總可用功率1〇34。如先前所指示,在 某些情況下總可用功率1 03 4小於目前功率配置1们與累 積功率配置1034b的總和。例如總可用功率1〇34可由峰值配 置l〇34c限制。 累積功率配置1034b可由飽和位準1135限制。在某些具體 實施例中,飽和位準1135為允許AT 1006利用其自己的峰值 功率配置1034c之時間量的函數。 圖12解說其中扇區1232内的至少某些Ατ 12〇6包括多個 流程1216之具體實施例。在此類具體實施例中,可以決定 獨立數量的可用功率1238用於AT 12〇6中的每個流程 1216。可依據先前結合圖⑺至^說明的方法決定at 12〇6中 的流程1216之可用功率1238。硬明確地說,流程1216之總 可用功率1238可包括流程1216之目前功率配置1238&,加上 流程1216之累積功率配置12381)的至少某部分。此外,流程 12 1 6之總可用功率123 8可由流程121 6之峰值配置丨23 8c限 制可以維持獨立的桶機制(例如圖1丨所示的機制)用於每個 流程1216,以便決定每個流程1216之總可用功率丨。藉 由取AT 1206中的不同流程1216之總可用功率1238的總 和’可決定AT 1206之總可用功率1234。 以下提供可用以決定AT 12〇6中的流程1216之總可用功 率1238的各種公式及演算法之數學說明。在以下說明的等 式中,於每個子訊框決定AT 12〇6中的每個流程丨之總可用 功率1238—次。(在某些具體實施例中,子訊框等於四時 槽,而打槽等於5/3 ms。)一流程的總可用功率1238在等 95096.doc -23- 200522613 式中稱為 PotentialT2POutflow。 在高容量封包524a中發送的流程i之總可用功率123 8可 表達為:Expected. During this time period, power may continue to be allocated to the AT 1006. Because no data is sent, the configured power will accumulate. Sometimes the AT 1006 may suddenly send a relatively large amount of data. The accumulated power configuration 1034b at this time may be relatively large. If AT 1006 is allowed to use the total accumulated power configuration 1034b, the transmit power 422 of the AT 1006 may experience a sudden and rapid increase. However, if the transmitted power 422 of Aτ 1006 increases too quickly, this may affect the stability of the system 100. Therefore, it is possible to provide a peak configuration of 1060 k for 1034c to limit the total available power of 1034 at 1600 in such cases. It should be noted that the cumulative power configuration 1034} is still available, but its use is spread out in more packets when the peak configuration 1034c is limited. Figure 11 illustrates an exemplary mechanism that can be used to determine the total available power 1034 of the AT 206. This mechanism involves the use of virtual "buckets" u 3 6. In a periodic interval 'a new current power configuration 1034a is added to the bucket 1136. And in the periodic interval, the power level 422 of the packet 524 sent by the AT 206 exits the bucket 1136. The amount by which the current power allocation 1034a exceeds the power level of the packet is the cumulative power allocation 1034b. The cumulative power configuration 103413 remains in bucket 113 6 until this configuration is used. The total available power 1034 minus the current power configuration 103 is the total potential withdrawn from the barrel 1136 ^ AT 1006 ensures that the power level of the packet 524 it sends is 95096.doc -22- 200522613 422 does not exceed the total available power of AT 1006 Power 1034. As previously indicated, in some cases the total available power 1 03 4 is less than the sum of the current power configuration 1 and the cumulative power configuration 1034b. For example, the total available power 1034 can be limited by the peak configuration 1034c. The cumulative power configuration 1034b may be limited by the saturation level 1135. In certain embodiments, the saturation level 1135 is a function of the amount of time allowed the AT 1006 to configure 1034c with its own peak power. FIG. 12 illustrates a specific embodiment in which at least some of the AT 1260 in the sector 1232 include multiple processes 1216. In such a specific embodiment, an independent amount of available power 1238 may be determined for each process 1216 in the AT 1206. The available power 1238 of the process 1216 in at 1206 can be determined according to the method described previously in connection with FIGS. To be clear, the total available power 1238 of the flow 1216 may include at least a portion of the current power allocation 1238 & of the flow 1216, plus the accumulated power allocation 12381 of the flow 1216). In addition, the total available power 123 8 of process 12 1 6 can be configured by the peak value of process 121 6 丨 23 8c limit can maintain independent bucket mechanism (such as the mechanism shown in Figure 1 丨) for each process 1216 in order to determine each The total available power of process 1216. The total available power 1234 of the AT 1206 can be determined by taking the sum of the total available power 1238 of the different processes 1216 in the AT 1206. The following provides mathematical descriptions of various formulas and algorithms that can be used to determine the total available power 1238 of the process 1216 in AT 1206. In the equations described below, the total available power of each process in AT 1206 is determined 1238-times in each sub-frame. (In some specific embodiments, the sub-frame is equal to four time slots, and slotting is equal to 5/3 ms.) The total available power of a process 1238 is called PotentialT2POutflow in the equation of 95096.doc -23- 200522613. The total available power 123 8 of the process i sent in the high-capacity packet 524a can be expressed as:

PotentialT2POutfloWi,Hc= / ((BucketLeveh n λ 0,min (1 + AllocationStagger x r;7) x 4 + T2PInflowin V 、 BucketFactor(^2PInflowjn ? FRABin )x T2PInflowjn )) ⑴ 在低潛時封包524b中發送的流程i之總可用功率1238可 表達為:PotentialT2POutfloWi, Hc = / ((BucketLeveh n λ 0, min (1 + AllocationStagger xr; 7) x 4 + T2PInflowin V, BucketFactor (^ 2PInflowjn? FRABin) x T2PInflowjn))) The total available power 1238 can be expressed as:

PotentialT2POutflowijHc =PotentialT2POutflowijHc =

/ / ((BucketLeveh n ^ Ί 0,min (1 + AllocationStagger xrn)x ——4~~^UT2PInflow,n > V 、 BucketFactor^T 2 PInflowt n ? FRABin )x T2PInflowin JJ// ((BucketLeveh n ^ Ί 0, min (1 + AllocationStagger xrn) x ——4 ~~ ^ UT2PInflow, n > V, BucketFactor ^ T 2 PInflowt n? FRABin) x T2PInflowin JJ

BucketLeveli,n為子訊框η時的流程i之累積功率配置 1238b。丁2卩111£1〇^¥丨,11為子訊框η時的流程i之目前功率配置 1238a。表達式 BucketFactor(T2PlnfloWi,n,FRABi,n)xT2PlnfloWi,n 為子訊框η時的流程i之峰值功率配置1238c。BuckerFactor (丁2?11^1〇〜丨,11,?11八8丨,11)為用以決定總可用功率1238之限制 因數的函數,即允許子訊框η時的流程i之總可用功率 1238,超過子訊框η時的流程i之目前功率配置123 8 a所用的 因數。FRABi,n為扇區1232之負載位準的估計,並將在以下 更詳細地加以論述。AllocationStagger為亂數項之幅度,該 亂數項顫動配置位準以避免同步問題,而rn為範圍[-1,1]内 的實際數值均勻分散式亂數。 子訊框n+1時的流程i之累積功率配置1238b可表達為: 95096.doc -24- 200522613BucketLeveli, n is the cumulative power allocation 1238b for process i when subframe η is used. D2 卩 111 £ 1〇 ^ ¥ 丨, 11 is the current power allocation 1238a of the process i when the sub-frame η is used. The expression BucketFactor (T2PlnfloWi, n, FRABi, n) xT2PlnfloWi, n is the peak power allocation 1238c of the process i when the sub-frame η is used. BuckerFactor (2? 11 ^ 1〇 ~ 丨, 11, 11? 8 8 丨, 11) is a function of the limiting factor used to determine the total available power 1238, that is, the total available power of process i when the sub-frame η is allowed 1238, the factor used for the current power allocation of 123 8 a of process i when the sub-frame n is exceeded. FRABi, n is an estimate of the load level of sector 1232 and will be discussed in more detail below. AllocationStagger is the magnitude of the random number item, and the random number item is configured to tremble to avoid synchronization problems, and rn is an evenly dispersed random number of the actual value in the range [-1, 1]. The cumulative power allocation 1238b of process i when the sub-frame is n + 1 can be expressed as: 95096.doc -24- 200522613

BucketLeveli,n+1 = min((BucketLeveli,n + T2PInfloWi,n - T2POutfloWi,n),BucketLevelSati,n+1) (3) T2POutflowisI1為發送功率422之一部分,其係分配給子訊 框η時的流程i。以下提供T2POutfloWi,n之示範性等式。 BucketLevelSati,n+1為子訊框n+1時的流程i之累積功率配置 1238b的飽和位準1135。以下提供BucketLevelSati,n+1之示範 性等式。 T2POutn〇Wi,n可表達為: \ / T2POutfloWi,n KSumPayloadn y xTxT2Pn (4) 在等式4中,di,n為自流程i的資料之數量,該流程係包括 在於子訊框η期間發送的子封包中。(子封包為在子訊框期 間發送的封包之一部分。)SumPayloadn為山^的總和。ΤχΤ2Ρη 為在子訊框η期間發送的子封包之功率位準422。 BucketLevelSati,n+i可表達為:BucketLeveli, n + 1 = min ((BucketLeveli, n + T2PInfloWi, n-T2POutfloWi, n), BucketLevelSati, n + 1) (3) T2POutflowisI1 is a part of the transmission power 422, which is the flow when it is allocated to the sub-frame η i. An exemplary equation for T2POutfloWi, n is provided below. BucketLevelSati, n + 1 is the saturation level 1135 of the cumulative power allocation 1238b of process i when the sub-frame n + 1. An exemplary equation for BucketLevelSati, n + 1 is provided below. T2POutn〇Wi, n can be expressed as: / / T2POutfloWi, n KSumPayloadn y xTxT2Pn (4) In Equation 4, di, n is the amount of data from process i, which includes the data sent during sub-frame n Sub-packet. (The sub-packet is part of the packet sent during the sub-frame.) SumPayloadn is the sum of the mountains. ΤχΤ2Ρη is the power level 422 of the sub-packet transmitted during the sub-frame n. BucketLevelSati, n + i can be expressed as:

BucketLevelSati,n+i =BucketLevelSati, n + i =

BurstDurationFactoriX BucketFactor(T2PInflowijn?FRABijn) x T2PInflowi>n (5) BurstDurationFactori為允許採用峰值功率配置1238c發送 流程i的時間之長度方面的限制。 圖13解說一種方法,其中AT 1306或獲得AT 1306中的流 程13 16之目前功率配置1338a。如圖所示,AT 1306可從在 AN 1304中運行的排程器1340接收授予訊息1342。授予訊息 1342可包括AT 1306中的流程13 16之某些或所有流程的目 前功率配置授予13 7 4。對於接收的每個目前功率配置授予 13 74,AT 1306設定對應的流程13 16之目前功率配置1338a 95096.doc -25- 200522613 等於目前功率配置授予13 74。 在某些具體實施例中,獲得目前功率配置1338&為二步驟 程序。第一步驟涉及到決定是否已從AN 13〇4接收到流程 1316之目础功率配置授予1374。若尚未接收到,則八丁13〇6 自律地決定流程1216之目前功率配置1338&。換言之,八丁 1306決定流程1216之目前功率配置1338&,而不會干涉排程 器1340。以下論述係關於示範性方法,ATl3〇6使用該方法 自律地決定AT 1306中的一或多個流程1316之目前功率配 置 1338a。 圖14解說從扇區1432内的an 1404發送給AT 14〇6之反向 活動性位元(RAB)1444。RAB 1444為過載指示。raB 1444 可以為二個數值之一,即第一數值(例如+1 ),其指示扇區 1432目前為遇忙;或第二數值(例如_丨),其指示扇區1432 目則為閒置。如以下所解釋,RAB 1444可用以決定AT 12 0 6 中的流程1216之目前功率配置1238a。BurstDurationFactoriX BucketFactor (T2PInflowijn? FRABijn) x T2PInflowi > n (5) BurstDurationFactori is a limitation on the length of time allowed to send process i with peak power configuration 1238c. Figure 13 illustrates a method in which the current power configuration 1338a of the AT 1306 or the process 13 16 in the AT 1306 is obtained. As shown, the AT 1306 may receive the grant message 1342 from the scheduler 1340 running in AN 1304. The grant message 1342 may include the current power configuration grant 13 7 4 for some or all of the processes 13 16 in the AT 1306. For each current power configuration grant 13 74 received, AT 1306 sets the current power configuration 1338a 95096.doc -25- 200522613 corresponding to process 13 16 equal to the current power configuration grant 13 74. In some embodiments, obtaining the current power configuration 1338 & is a two-step procedure. The first step involves deciding whether the basic power allocation grant 1374 of process 1316 has been received from AN 1304. If it has not been received yet, Bading 1306 decides autonomously the current power allocation 1338 & of flow 1216. In other words, Bading 1306 determines the current power allocation 1338 & of flow 1216 without interfering with the scheduler 1340. The following discussion is about an exemplary method by which the AT 1306 autonomously determines the current power configuration 1338a of one or more of the processes 1316 in the AT 1306. Figure 14 illustrates the reverse active bit (RAB) 1444 sent from an 1404 in sector 1432 to AT 1406. RAB 1444 is an overload indication. raB 1444 can be one of two values, namely the first value (for example, +1), which indicates that sector 1432 is currently busy; or the second value (for example, _ 丨), which indicates that sector 1432 is idle. As explained below, the RAB 1444 can be used to determine the current power configuration 1238a of the process 1216 in AT 1206.

圖15解說> ’其可維持在AT 1 5 0 6中以,以便決定AT 1506中的一或多個流程15 16之目前功率配置1238&。在所解 說的具體實施例中,每個流程15 16係與RAB 1444之「快速」 估計相關。此快速估計將在本文中稱為qrAB 1 546。以下 將說明用以決定QRAB 1546的示範性方法。 每個流程15 16係亦與扇區1232之較長期限負載位準的估 計相關,該估計在本文中指FRAB 1548(其代表「濾波」rab 1444)FRAB 1548為處在RAB 1444之二個可能的數值之間 的實際數字。FRAB IMS離指示扇區M32為遇忙的rab 95096.doc -26- 200522613 1444之數值越近,則扇區1432受到的負載越重。相反,frab 1548離指示扇區1432為閒置的RAB 1444之數值越近,則扇 區1432文到的負載越輕。以下將說明用以決定FRAB 1548 的示範性方法。 每個流程15 16係亦與向上斜坡函數155〇及向下斜坡函數 15 52相關。與特定流程1516相關的向上斜坡函數155〇及向 下斜坡函數1552,為流程15 16之目前功率配置1238a的函 數。與流程15 16相關的向上斜坡函數155〇係用以決定流程 1516之目前功率配置1238&的增加。相反,與流程1516相關 的向下斜坡函數1552係用以決定流程1516之目前功率配置 1238a的減少。在某些具體實施例中,向上斜坡函數155〇及 向下斜坡函數1552皆取決於FRAB 1548之數值及流程1516 之目前功率配置1238a。 向上斜坡函數1550及向下斜坡函數丨552係定義用於網路 中的每個流程1516,並可從控制流程之Ατ 15〇6的AN 14〇4 下載。向上斜坡函數及向下斜坡函數將流程之目前功率配 置123 8a作為其自變數。向上斜坡函數155〇有時在本文中稱 為糾,而向下斜坡函數1552有時在本文中稱為gd。將胖/以 之比率(亦即目前功率配置1238a之函數)稱為需求函數。可 以證實,受資料及接取終端機功率之可用性的影響,RLMac 演算法會聚成每個流程1516之目前功率配置1238&,以便所 有流程需求函數值在取其流程之配置時均相等。利用此事 貫,藉由仔細設計流程,需求函數可達到與可由集中排程 為達到的任何相同流程配置之一般映射及資源配置之要 95096.doc -27· 200522613 求。但疋需求函數接y t心 要文ί木用取小控制發信並採用純分散方式達 到此一般排程能力。 圖16為解说可用以決定qrab工祕及工州之a丁 1606中的不乾性功能組件之方塊圖。如圖所示,μ⑽河 ㈣AB解調變組件1654、映射器1656、第一單極m滤波 口口 165 8及第一單極11幻慮波器166〇限制裝置1662。 ^ 1644係橫跨通信通道1664從AN 16〇4發送給AT 祕。RAB解調變組件1654採用熟習此項技術者所熟知的 &準技#解调_接收到的信號。RAB解調變組件MM輸出 對數相似值比(LLR)1666。映射器⑹崎⑽1666作為輸 入’亚將LLR 1666映射為RAB 1644之可能的數值之間的一 數值(例如+1及-i),其為該時槽之發送rab的估計。 ⑽提供映射器1656之輸出給第一單極IIR濾波器1658。第一 早極IIR濾波器1658具有時間常數'。提供第一iir濾波器 1658之輸出給限制裝置1662。限制褒置1662將第一 nR濾波 器1658之輸出轉換為對應於RAB 1644之二可能的數值之二 可能的數值之一。例如,若RAB 1644為^1或&+1,則限制 裝置1662將第一 IIR濾波器1658之輸出轉換為&」或& +ι。 限制裝置1662之輸出為qRAB 1646。選擇時間常數s,以便 QRAB 1646表示從AN 1604發送的RAB 1644之目前數值的 估計。時間常數r,之示範性數值為四時槽。 亦提供映射器1656之輸出給具有時間常數&的第二單極 IIR濾波器1660。第二IIR濾波器166〇之輸出為frab Μ"。 時間常數4時間常數[長甚多。時間常數^之示範性數值 95096.doc -28- 200522613 為384時槽。 不提供第二IIR濾波器166〇之輸出給限制裝置。因此如以 上所說明,FRAB 1648為處在指示扇區1432為遇忙的RAB 1644之第一數值,與指示扇區1432為閒置的之第 二數值之間的實際數字。 圖17解說用以決定AT 1206中的流程1216之目前功率配 置1238&的示範性方法17〇〇。方法17〇〇之步驟17〇2涉及到決 定與流程1216相關的QRAB 1546之數值。在步驟17〇4中, 决疋QRAB 1546是否等於遇忙數值(即指示扇區1432目前遇 匕的數值)。若(51^3 1546等於遇忙數值,則在步驟17〇6中 減小目前功率配置1238a,亦即在時間n時的流程1216之目 刖功率配置1238a小於時間心丨時的流程1216之目前功率配 置123 8a。可採用定義用於流程1216之向下斜坡函數丨552計 算減小的幅度。 若QRAB 1546等於閒置數值,則在步驟17〇8中增加目前 功率配置1238a ’亦即在目前時間間隔期間的流程1216之目 前功率配置1238a ’大於在最近時間間隔期間的流程1216之 目前功率配置1238a。可採用定義用於流程1216之向上斜坡 函數15 5 0計算增加的幅度。 向上斜坡函數1550及向下斜坡函數1552為目前功率配置 1238a之函數,並且對於每個流程1516而言可能均不同(可 由AN 1404下載)。此係如何根據流程採用自律配置達到Q〇s 分化。而且斜坡函數之數值可1548而變化,意味 著斜坡函數之動力可隨負載而變化,此允許在次重負載狀 95096.doc -29- 200522613 況下更快速地會聚成固定點。 在增加目前功率配置1238a的情況下,增加的幅度可以表 不為· AT2PInflowi;n = -\-lxT2PUpi (l0 x log10 (j,2PIn:flowUn+1)-l· PilotStrength^ {PilotStrength^ s)? FRA£n) (6) 在減小目前功率配置1238a的情況下,減小的幅度可以表 不為 · KTlPInfloy^ 二 -lxTlD^ (lO X log10 (T2PInflowinA)-l· PilotStrength^ {PilotStrengt^), FRABn) (7) T2PUpi為流程i之向上斜坡函數1550。T2PDni為流程i之 向下斜坡函數1552。PilotStrengthn,s為服務扇區先導功率對 其他扇區之先導功率的量測。在某些具體實施例中,其為 服務扇區FL先導功率與其他扇區之先導功率的比率。 PilotStrengthi為將先導強度映射斜坡函數之T2P自變數中 的偏移之函數,且可自AN下載。採用此方法,At中的流程 之優先權可根據網路中的AT位置加以調整,如由 PilotStrengthn,s變數所量測。 目前功率配置1238a可表示為:FIG. 15 illustrates > ' which may be maintained in AT 1506 to determine the current power configuration 1238 & of one or more processes 15 16 in AT 1506. In the illustrated embodiment, each process 15 16 is related to the "fast" estimation of RAB 1444. This quick estimate will be referred to herein as qrAB 1 546. An exemplary method for determining QRAB 1546 is described below. Each process 15 16 is also related to the estimation of the longer-term load level of sector 1232, which in this article refers to FRAB 1548 (which stands for "filter" rab 1444). FRAB 1548 is two of the RAB 1444 possible. The actual number between the values. The closer the FRAB IMS is to the value of rab 95096.doc -26- 200522613 1444 indicating that the sector M32 is busy, the heavier the load on sector 1432. In contrast, the closer the frab 1548 is to the value of the RAB 1444 indicating that the sector 1432 is idle, the lighter the load on the sector 1432. An exemplary method for determining FRAB 1548 is described below. Each process 15 16 series is also associated with an upward ramp function 1550 and a downward ramp function 15 52. The up-ramp function 1550 and down-ramp function 1552 related to the specific flow 1516 are functions of the current power allocation 1238a of the flow 15-16. The up-slope function 1550 associated with process 15 16 is used to determine the current power allocation 1238 & increase of process 1516. In contrast, the down-slope function 1552 associated with flow 1516 is used to determine the reduction in current power allocation 1238a of flow 1516. In some embodiments, the up-ramp function 1550 and the down-ramp function 1552 are both dependent on the value of FRAB 1548 and the current power allocation 1238a of process 1516. The up-slope function 1550 and down-slope function 丨 552 are defined for each process 1516 in the network and can be downloaded from AN 1404 of the control process Δτ 1506. The up-ramp function and down-ramp function take the current power configuration of the process as 123 8a as its independent variable. The up-slope function 1550 is sometimes referred to herein as correction, and the down-slope function 1552 is sometimes referred to herein as gd. The fat / to ratio (that is, the function of the current power allocation 1238a) is called the demand function. It can be confirmed that, affected by the availability of data and access terminal power, the RLMac algorithm will converge into the current power configuration 1238 & of each process 1516, so that all process demand function values are equal when taking their process configuration. Taking advantage of this, by carefully designing the process, the demand function can meet the general mapping and resource allocation requirements of any of the same process configurations that can be achieved by centralized scheduling. 95096.doc -27 · 200522613 requirements. However, the demand function is connected to the system. It is necessary to use small control to send a letter and adopt a purely distributed method to achieve this general scheduling capability. FIG. 16 is a block diagram illustrating the functional components that can be used to determine the qrab secrets and Gongzhou a 1606. As shown in the figure, the μ⑽ 河 ㈣AB demodulation component 1654, the mapper 1656, the first unipolar m-filtering port 1658, and the first unipolar 11 phantom wave filter 1660 limiter 1662. ^ 1644 was sent from AN 1604 to the AT Secretary across the communication channel 1664. The RAB demodulation module 1654 uses the & quasi technology # demodulation_received signal which is well known to those skilled in the art. The MM output of the RAB demodulation module is the logarithmic similarity ratio (LLR) of 1666. The mapper Sakizaki 1666, as input, maps LLR 1666 to the possible values of RAB 1644 (e.g., +1 and -i), which is an estimate of the sending rab for the time slot. ⑽ Provide the output of the mapper 1656 to the first single-pole IIR filter 1658. The first early-pole IIR filter 1658 has a time constant '. The output of the first iir filter 1658 is provided to a limiting device 1662. The limit setting 1662 converts the output of the first nR filter 1658 into one of two possible values corresponding to RAB 1644. For example, if the RAB 1644 is ^ 1 or & +1, the limiting device 1662 converts the output of the first IIR filter 1658 to & " or & + ι. The output of the limiting device 1662 is qRAB 1646. The time constant s is selected so that QRAB 1646 represents an estimate of the current value of RAB 1644 transmitted from AN 1604. An exemplary value of the time constant r is a four-hour slot. The output of the mapper 1656 is also provided to a second single-pole IIR filter 1660 with a time constant & The output of the second IIR filter 1660 is frab M ". Time constant 4 time constant [very long. An exemplary value of the time constant ^ 95096.doc -28- 200522613 is 384 hour slots. The output of the second IIR filter 1660 is not provided to the limiting device. Therefore, as explained above, FRAB 1648 is the actual number between RAB 1644 indicating that sector 1432 is busy and the second value indicating that sector 1432 is idle. Figure 17 illustrates an exemplary method 1700 for determining the current power configuration 1238 & of flow 1216 in AT 1206. Step 1702 of method 1700 involves determining the value of QRAB 1546 associated with flow 1216. In step 1704, it is determined whether QRAB 1546 is equal to the busy value (that is, the value indicating that sector 1432 is currently encountered). If (51 ^ 3 1546 is equal to the busy value, the current power configuration 1238a is reduced in step 1706, that is, the power configuration 1238a of the process 1216 at time n is smaller than the current process of the time 1216 Power configuration 123 8a. The reduced magnitude can be calculated using the down-slope function defined in process 1216. 552. If QRAB 1546 is equal to the idle value, the current power configuration 1238a is added in step 1708, that is, at the current time. The current power allocation 1238a of the flow 1216 during the interval is greater than the current power allocation 1238a of the flow 1216 during the most recent time interval. The upward ramp function 15 50 defined for the flow 1216 can be used to calculate the increase. The up ramp function 1550 and The down-ramp function 1552 is a function of the current power configuration 1238a, and may be different for each process 1516 (downloadable from AN 1404). This is how to use the self-discipline configuration to achieve Q0s differentiation according to the process. And the value of the ramp function It can be changed by 1548, which means that the power of the ramp function can be changed with the load. This allows for the second heavy load. 95096.doc -29- 20052261 3 cases converge more quickly to a fixed point. In the case of increasing the current power configuration 1238a, the increase can be expressed as AT2PInflowi; n =-\-lxT2PUpi (l0 x log10 (j, 2PIn: flowUn + 1) -l · PilotStrength ^ {PilotStrength ^ s)? FRA £ n) (6) In the case of reducing the current power configuration 1238a, the reduction can be expressed as KTlPInfloy ^ II -lxTlD ^ (lO X log10 (T2PInflowinA )-PilotStrength ^ {PilotStrengt ^), FRABn) (7) T2PUpi is the upward slope function 1550 of process i. T2PDni is the down-ramp function 1552 of process i. PilotStrengthn, s is the measurement of the pilot power of the serving sector versus the pilot power of other sectors. In some embodiments, it is the ratio of the pilot power of the serving sector FL to the pilot power of other sectors. PilotStrengthi is a function of the offset in the T2P independent variable that maps the pilot intensity ramp function and can be downloaded from AN. With this method, the priority of the process in At can be adjusted according to the AT position in the network, as measured by the PilotStrengthn, s variable. The current power configuration 1238a can be expressed as:

T2PInflowin = 1 、T2PFilterTC / 1 _ r 1 丄一 V \J2PFilterTC )) :T2PInflowf χΤ 2P Outflowίη_λ + AT2PInflowi, ,/卜1 (8) 從上述等式可看出,當達到飽和位準1135並將斜坡設定 為零時,目前功率配置1238a會指數式衰退。此允許叢發流 量資源的目前功率配置1238a之數值的持續,為此持續時間 95096.doc -30- 200522613 應長於典型封包内部到達時間。 在某些具體實施例中,QRAB數值1546係 讓之現用❹的每個輕。若⑽崎⑽之現用集中 的扇區之任一個而言為遇忙,則減小目前功 :Q—AT之現用集中的扇區之全部而言為❹^ 曰力目月』功率配置1238a。在替代具體實施例中,可定義另 ,數QRABps。對於QRABps而言,考量所量測的先導強 度曰先導強度為服務扇區先導功率對其他扇區之先導功率 的里測。在某些具體實施例中,其為服務扇區肛先導功率 與其他扇區之先導功率的比率。若QRAB對於滿足以下條件 之一或多個條件的扇區而言為遇忙,則將QRABps設定為 零··(1)扇區S為接取終端機之正向鏈路服務扇區;⑺自扇 區S的DRCLock位元係在時脈外,並且扇區s之 PilotStrengthn,s大於臨界值;(3)自扇區_DRCL〇ck位元係 在時脈内,並且扇區s之s大於臨界值。否則, 將QRABps設定為閒置數值。在決定QRABps的具體實施例 中,目剞功率配置1238a可在QRABps為閒置時得到增加, 並可在QRABps為遇忙時昨到減小。 圖18解說傳送請求訊息1866給AN 1804中的排程器1840 之AT 1806。圖18亦解說傳送授予訊息1842給八丁 18〇6的排 私态1840。在某些具體實施例中,排程器184〇可以自己主 動地傳送授予訊息1 842給AT 1 806。或者排程器1 840可傳送 授予訊息1842給AT 1806,以回應由at 1806傳送的請求訊 息1 866。请求訊息1 866包含AT功率淨空資訊以及每流程仵 95096.doc -31- 200522613 列長度資訊。 圖19解說資訊,其可維持在AT 1906中以,以便AT 1906 決定何時傳送請求訊息1866給AN 1804。如圖所示,AT 1906 可與請求比率1968相關。請求比率1968指示在反向流量通 道208上傳送的請求訊息大小1866,與在反向流量通道208 上傳送的資料之比率。在某些具體實施例中,當請求比率 1968減小至某臨界值以下時,則AT 1906傳送請求訊息1866 給排程器1840。 AT 1906亦可與請求間隔1970相關。請求間隔1970指示自 從最後傳送請求訊息1866給排程器1840的時間週期。在某 些具體實施例中,當請求間隔1970增加至某臨界值以上 時,則AT 1906傳送請求訊息1866給排程器1840。亦可一起 使用兩種方法來觸發請求訊息1 866(即可在任一方法引起 請求訊息1866時傳送該訊息)。 圖20解說扇區2032内在AN 2004中運行的排程器2040與 AT 2006之間的示範性互動。如圖20所示,排程器2040可決 定扇區2032内的AT 2006之子集2072的目前功率配置授予 13 74。獨立目前功率配置授予1374可決定用於每個AT 2006。在子集2072中的AT 2006包括一個以上的流程1216之 情況下,排程器2040可決定每個AT 2006中的流程12 16之某 些或全部的獨立目前功率配置授予1374。排程器2040週期 性地傳送授予訊息2042給子集2072中的AT 2006。排程器 2040不決定並非子集2072之一部分的扇區2032内的AT 2006之目前功率配置授予1374。相反,扇區2032中的其餘 95096.doc -32- 200522613 AT 2 0 0 6自律地決定其自己的目前 ㈢則功率配置1038a。授予訊 息2042可包括目前功率配置授予 杈予1374之某些或全部的保持 週期。目前功率配置授予1374之保姓> 之保持週期指示:AT 2006將 對應的流程1216之目前功率配 刀午配置1238a保持在由目前功率 配置授予1374所規定的位準達多長時間。T2PInflowin = 1, T2PFilterTC / 1 _ r 1 VV \ J2PFilterTC)): T2PInflowf χΤ 2P Outflowί_λ + AT2PInflowi,, / 1 (8) As can be seen from the above equation, when the saturation level 1135 is reached and the slope is set When it is zero, the current power configuration 1238a will decline exponentially. This allows the current value of the current power allocation of the burst resource to be 1238a. The duration of this should be 95096.doc -30- 200522613, which should be longer than the typical internal arrival time of the packet. In some embodiments, the QRAB value of 1546 is used to make each of the active puppets lighter. If any of the sectors in the current rugged active set is busy, reduce the current power: All the sectors in the current active set of Q-AT are ❹ ^ Power Force Month ”power allocation 1238a. In alternative embodiments, another QRABps may be defined. For QRABps, considering the measured pilot intensity, the pilot intensity is the inward measurement of the pilot power of the serving sector to the pilot power of other sectors. In some embodiments, it is the ratio of the pilot power of the serving sector to the pilot power of other sectors. If QRAB is busy for a sector that meets one or more of the following conditions, then set QRABps to zero ... (1) Sector S is the forward link service sector that accesses the terminal; ⑺ The DRCLock bit of the sector S is outside the clock, and the PilotStrengthn, s of the sector s is greater than the critical value; (3) The bit of the sector_DRCLoc bit is within the clock, and the s of the sector s Greater than the critical value. Otherwise, set QRABps to the idle value. In a specific embodiment for deciding QRABps, the target power configuration 1238a can be increased when QRABps is idle, and can be reduced to yesterday when QRABps is busy. FIG. 18 illustrates the transmission of the request message 1866 to the AT 1806 of the scheduler 1840 in the AN 1804. FIG. 18 also illustrates the exclusive status 1840 of transmitting the grant message 1842 to Bading 1806. In some embodiments, the scheduler 1840 may actively send the grant message 1 842 to the AT 1 806 on its own initiative. Alternatively, scheduler 1 840 may send grant message 1842 to AT 1806 in response to the request message 1 866 sent by at 1806. Request message 1 866 contains AT power headroom information and 95096.doc -31- 200522613 row length information per process. FIG. 19 illustrates information that can be maintained in AT 1906 so that AT 1906 decides when to send request message 1866 to AN 1804. As shown, AT 1906 may be related to the request ratio 1968. The request ratio 1968 indicates the ratio of the request message size 1866 transmitted on the reverse traffic channel 208 to the data transmitted on the reverse traffic channel 208. In some embodiments, when the request ratio 1968 decreases below a certain threshold, the AT 1906 sends a request message 1866 to the scheduler 1840. AT 1906 may also be related to the request interval 1970. The request interval 1970 indicates a time period since the request message 1866 was last transmitted to the scheduler 1840. In some embodiments, when the request interval 1970 increases above a certain threshold, the AT 1906 sends a request message 1866 to the scheduler 1840. Two methods can also be used together to trigger the request message 1 866 (that is, the message is sent when the request message 1866 is caused by either method). FIG. 20 illustrates an exemplary interaction between scheduler 2040 running in AN 2004 and AT 2006 within sector 2032. As shown in FIG. 20, the scheduler 2040 may determine the current power allocation of a subset 2072 of the AT 2006 in the sector 2032 to be granted 13 74. Independent current power configuration grant 1374 may be decided for each AT 2006. In the case where the AT 2006 in the subset 2072 includes more than one process 1216, the scheduler 2040 may determine that some or all of the independent current power configuration grants 1374 of the process 12 16 in each AT 2006. Scheduler 2040 periodically sends grant messages 2042 to AT 2006 in subset 2072. The scheduler 2040 does not determine the current power allocation granted to the AT 2006 in the sector 2032 which is not part of the subset 2072 to 1374. In contrast, the remaining 95096.doc -32- 200522613 AT 2 0 0 6 in sector 2032 autonomously decides its own current rule power configuration 1038a. The grant message 2042 may include some or all of the hold cycles of the current power allocation grant to 1374. The current power allocation granted to the 1374 surname > hold cycle indication: AT 2006 will keep the current power allocation of the corresponding process 1216 at 1238a at the level specified by the current power allocation granted 1374.

依據圖20解說的方法’排程器2_並非歧成填充扇區 2032中的所有容量。相反,排程器2〇4〇決定子集⑽内的 AT 2006之目前功率配置1G38a,並接著由其餘at鳩有效 率地使用其餘扇區2032容量,而不干涉排程㈣4q。子集 2072可隨時間改變,並可甚至隨每個授予訊息2〇42改變。 而且可由任一數量的外部事件觸發傳送授予訊息MU給AT 2006之某子集2072的決策,該等事件包括偵測不符合某些 Q〇S要求的某些流程。The method 'Scheduler 2_' illustrated in accordance with Fig. 20 does not diverge into all the capacity in the sector 2032. In contrast, the scheduler 2040 determines the current power configuration of the AT 2006 in the subset 1G38a, and then uses the remaining sectors 2032 capacity efficiently without interference with the schedule ㈣4q. The subset 2072 may change over time and may even change with each grant message 2022. Moreover, the decision to transmit the grant message MU to a subset 2072 of AT 2006 can be triggered by any number of external events, including certain processes that detect non-compliance with certain QOS requirements.

圖21解說在AN 2104中行動的排程器214〇與八丁 21〇6之間 的另一示範性互動。在某些具體實施例中,若允許at2i〇6 決定AT 2 106中的流程2116之目前功率配置2138&,則目前 功率配置2138a之各配置將隨時間會聚成穩態數值。例如若 一個AT 2 106進入具有帶有資料發送的流程2116之未負載 扇區1232,則該流程2116之目前功率配置2138&將向上傾斜 直至流程2116佔據整個扇區2132之輸出。然而出現此情況 要花一定時間。 排程器2140採用替代方法決定每個Ατ 21〇6中的流程將 最終達到的穩態數值之估計。排程器2〗4〇接著可傳送授予 訊息2142給所有的八了21〇6。在授予訊息2142中,設定流程 95096.doc -33- 200522613 2116之目前功率配置授予2174等於由排程器214〇決定的該 流私2116之穩態數值的估計。在接收到授予訊息2142之 後,AT 2106設定AT 2106中的流程2116之目前功率配置 213 8a專於授予訊息2142中的穩態估計21 74。一旦完成此設 定,則後來可允許AT 2106追蹤系統狀況之任何變化,並自 律地決定流程2116之目前功率配置2138a,而不會進一步干 涉排程器2140。 圖22解5兒從AN 2204中的排程器2240發送給AT 2206的授 予成息2242之另一具體實施例。如上所述,授予訊息2242 包括AT 2206中的流程2216之一或多個流程的目前功率配 置投予2274。此外,授予訊息包括目前功率配置授予2274 之某些或全部的保持週期2276。 授予訊息2242亦包括AT 2206中的流程2216之某些或所 有々η»程的累積功率配置授予2278。在接收到授予訊息2242 之後,AT 2206設定AT 2206中的流程2216之累積功率配置 2238b等於授予訊息2242中的對應流程2216之累積功率配 置授予2278。 圖23解說在某些具體實施例中可儲存在Ατ 23 〇6中的功 率輪廓2380。功率輪廓2332可用以決定由AT 2306發送給 AN 204的封包之酬載大小420及功率位準422。 功率輪廊2380包括複數個酬載大小2320。功率輪庵2380 中包括的酬載大小2320為由AT 2306發送的封包524之可能 的酬載大小2320。 功率輪廓23 80中的每個酬載大小232〇係與每個可能的發 95096.doc -34- 200522613 送模式之功率位準2322相關。在所解說的具體實施例中, 每個酬載大小2320係與高容量功率位準2322a及低潛時功 率位準2322b相關。高容量功率位準2322a為具有對應的酬 載大小2320之高容量封包524a的功率位準。低潛時功率位 準2322b為具有對應的酬載大小2320之低潛時封包524b的 功率位準。 圖24解說可儲存在AT 2406中的複數個發送條件2482。在 某些具體實施例中,發送條件2482會影響封包524之酬載大 小420及功率位準422的選擇。 發送條件2482包括配置功率條件2484。配置功率條件 2484 —般係關於確保AT 2406並未使用多於所配置的功 率。更明確地說,配置功率條件2484為封包524之功率位準 422不超過AT 2406之總可用功率1034。以上已論述用以決 定AT 2406之總可用功率1034的各種示範性方法。 發送條件2482亦包括最大功率條件2486。最大功率條件 2486為封包524之功率位準422不超過已規定用於AT 2406 的最大功率位準。 發送條件2482亦包括資料條件2488。資料條件2488—般 係關於確保封包524之酬載大小420並未因以下原因而太 大:AT 2406之總可用功率1034及AT 2406目前所具有可用 發送的資料之數量。更明確地說,資料條件2488為在功率 輪廓23 80中不存在酬載大小2320,該輪廓對應於封包524 之發送模式的較低功率位準2322,並能承載以下二項之差 值:(1)目前可用於發送的資料之數量,及(2)AT 2406之總 95096.doc -35- 200522613 可用功率1034所對應的資料之數量。 以下提供發送條件2482之數學說明。配置功率條件2484 可表示為:FIG. 21 illustrates another exemplary interaction between scheduler 2140 and Hachicho 2106 in action in AN 2104. In some specific embodiments, if at2i06 is allowed to determine the current power configuration 2138 & of process 2116 in AT 2 106, the current power configurations 2138a will converge to a steady state value over time. For example, if an AT 2 106 enters the unloaded sector 1232 with the process 2116 with data transmission, the current power configuration 2138 & of the process 2116 will tilt upwards until the process 2116 occupies the output of the entire sector 2132. However, this will take some time. The scheduler 2140 uses an alternative method to determine an estimate of the steady-state value that the process in each Aτ 2106 will eventually reach. Scheduler 2 can then send grant message 2142 to all 8201. In the grant message 2142, the current power allocation grant 2174 of the setting flow 95096.doc -33- 200522613 2116 is equal to an estimate of the steady state value of the stream 2116 determined by the scheduler 2140. After receiving the grant message 2142, the AT 2106 sets the current power allocation of the flow 2116 in the AT 2106 213 8a to the steady state estimate 21 74 in the grant message 2142. Once this setting is completed, the AT 2106 can subsequently be allowed to track any changes in system conditions and autonomously determine the current power configuration 2138a of the process 2116 without further involvement of the scheduler 2140. Figure 22 illustrates another specific embodiment of the grant of interest 2242 sent from the scheduler 2240 in the AN 2204 to the AT 2206. As described above, the grant message 2242 includes the current power configuration vote 2274 of one or more of the processes 2216 in the AT 2206. In addition, the grant message includes a hold period 2276 of some or all of the current power allocation grant 2274. The grant message 2242 also includes a cumulative power allocation grant 2278 for some or all of the processes 2216 in the AT 2206. After receiving the grant message 2242, the AT 2206 sets the cumulative power configuration 2238b of the process 2216 in the AT 2206 equal to the cumulative power configuration grant 2278 of the corresponding process 2216 in the grant message 2242. FIG. 23 illustrates a power profile 2380 that may be stored in Aτ 23 〇 6 in some embodiments. The power profile 2332 can be used to determine the payload size 420 and power level 422 of the packets sent by the AT 2306 to the AN 204. The power gangway 2380 includes a plurality of payload sizes 2320. The payload size 2320 included in the power wheel 2380 is the possible payload size 2320 of the packet 524 sent by the AT 2306. Each payload size 2320 in the power profile 23 80 is related to the power level 2322 of each possible transmission mode 95096.doc -34- 200522613. In the illustrated specific embodiment, each payload size 2320 is related to the high capacity power level 2322a and the low latency power level 2322b. The high-capacity power level 2322a is the power level of the high-capacity packet 524a with a corresponding payload size of 2320. The low-latency power level 2322b is the power level of the low-latency packet 524b with a corresponding payload size of 2320. FIG. 24 illustrates a plurality of transmission conditions 2482 that can be stored in the AT 2406. In some embodiments, the transmission condition 2482 affects the payload size 420 and the power level 422 of the packet 524. Transmission condition 2482 includes a configured power condition 2484. Configure Power Conditions 2484—Generally about ensuring that the AT 2406 is not using more power than configured. More specifically, the configured power condition 2484 is such that the power level 422 of the packet 524 does not exceed the total available power 1034 of the AT 2406. Various exemplary methods for determining the total available power 1034 of the AT 2406 have been discussed above. Transmission conditions 2482 also include a maximum power condition 2486. The maximum power condition 2486 is that the power level 422 of the packet 524 does not exceed the maximum power level already specified for the AT 2406. Sending condition 2482 also includes data condition 2488. Data condition 2488—Generally, it is about ensuring that the payload size 420 of the packet 524 is not too large for the following reasons: the total available power of the AT 2406 1034 and the amount of data currently available to the AT 2406. More specifically, the data condition 2488 is that there is no payload size 2320 in the power profile 23 80, which corresponds to the lower power level 2322 of the transmission mode of the packet 524, and can carry the difference between the following two terms: ( 1) the amount of data currently available for sending, and (2) the total number of data corresponding to AT 2406's 95096.doc -35- 200522613 available power 1034. The following provides a mathematical description of the transmission conditions 2482. The configured power condition 2484 can be expressed as:

TxT2PNominalps m < ^.^F{p〇tentialT2POutflowiTM ) (9)TxT2PNominalps m < ^. ^ F {p〇tentialT2POutflowiTM) (9)

TxT2PNominalps,TM為酬載大小PS之功率位準2322,而發 送模式TM。F為流程集418。 最大功率條件2486可表示為: mdyi{rxT2PPreTransitionpsm,TxT2PPostTransitionpsm)<TxT2Pmax (1〇) 在某些具體實施例中,允許封包524之功率位準422在封 包524之發送期間的某點從第一數值轉換為第二數值。在此 類具體實施例中,功率輪廓2380中所規定的功率位準2322 包括預轉換數值及後轉換數值。丁乂丁2??^1^118出0111^,7^為 酬載大小PS及發送模式TM之預轉換數值。 丁父丁2?卩代1^113丨1:丨〇111>8,頂為酬載大小?8及發送模式丁^^之後 轉換數值。TxT2Pmax為定義用於AT 206的最大功率位準, 並可以為由AT 206所量測的PilotStrength之函數。 PilotStrength為服務扇區先導功率對其他扇區之先導功率 的量測。在某些具體實施例中,其為服務扇區FL先導功率 與其他扇區之先導功率的比率。其亦可用以控制AT 206所 自律地執行的上向傾斜及向下斜坡。其亦可用以控制 TxT2Pmax,以便較差幾何結構(例如扇區之邊緣)中的AT 206可限制其最大發送功率,以避免建立其他扇區中不想要 的干擾。 95096.doc -36- 200522613 在某些具體實施例中,資料條件2488為在功率輪廓2380 中不存在酬載大小2320,該輪廓對應於封包524之發送模式 的較低功率位準2322並能載承由以下等式提供的酬載大 小: n,T2PConversionFactorm x P ot entialT IP Outflowim ) (11) 在等式11中,山/為自流程i的資料之數量,該流程係包括在 於子訊框η期間發送的子封包中。表達式T2PConversionFactorTM X PotentialT2PoutfloWi,TM為流程i之可發送資料,即AT 2 4 0 6之總可 用功率103 4所對應的資料之數量。丁2?0:〇11¥6^丨〇1^&(:1:〇1·!^ 為轉換因數,其用以將流程i之總可用功率1238轉換為資料 位準。 圖25解說示範性方法2500,AT 206可執行該方法以便決 定封包524之酬載大小420及功率位準422。步驟2502涉及到 從功率輪廓2380選擇酬載大小2320。步驟2504涉及到識別 與封包524之發送模式的選擇酬載大小2320相關之功率位 準2322。例如,若將採用高容量模式發送封包524,則步驟 2504涉及到識別與選擇酬載大小2320相關的高容量功率位 準2322a。相反,若將採用低潛時模式發送封包,則步驟2504 涉及到識別與選擇酬載大小2320相關的低潛時功率位準 2322b ° 步驟2506涉及到若採用選擇酬載大小2320及對應的功率 位準23 22發送封包524,則決定是否已滿足發送條件2482 ° 若在步驟2506中決定已滿足發送條件2482,則在步驟2508 中將選擇酬載大小2320及對應的功率位準2322與實體層 95096.doc •37· 200522613 3 12通信。 若在步驟2506中決定未滿足發送條件2482,則在步驟 25 10中從功率輪廓2380選擇不同的酬載大小2320。方法 25 00接著返回至步驟25 04並如以上說明而繼續。 多個流程配置之設計原理為:總可用功率等於接取終端 機中的每個流程之可用功率的總和。此方法的優點在於, 接取終端機自身因硬體限制或因TxT2Pmax限制而耗盡發 送功率。當發送功率受到限制時,必須進一步判定接取終 端機中的流程功率配置。如以上所論述,在無功率限制的 條件下,gu/gd需求函數透過RAB及流程斜坡的正態函數來 决疋每個流程之目前功率配置。現在當Ατ功率受到限制 時,設定流程配置的一個方法係將Ατ功率限制視為與扇區 功率限制嚴格類似。-般而言,扇區具有用以設定論的 最大接收功率準則,其接著導致每個流程之功率配置。觀 點在於,當AT的功率受到限制時,若Ατ的功率限制實際上 為扇區之接收功率的對應限制,則將該ATf的每個流程集 為其應接收的功率配置。此流程之功率配置可直接採用 gu/gd需求函數加以決定’該決定係藉由運行則的虛擬 ⑽,或藉由其他等效演算法。採用此方法,AT内的流程 優先權得到維持,並與AT間的流程優先權-致。此外,不 而要超出現有叫及gd函數以外的資訊。 現在提供本文說明的具體實施例之某些或全部的各特徵 之概述H允許解耦合平均f源配置(Τ2ρ㈣。W)以及如 。:貝源用於封包置(包括封包速率及峰值叢發持續 95096.doc -38- 200522613 時間的控制)。 :包配置可在所有情況下保持自律。對於平均資源配置 °可進行排程或自律配置。此允許排程及自律配置之 無縫整合,因為封包配置程序在兩種情況下均表現相同, 並可根據需要經常更新或不更新平均資源。 最小發信開銷精 授予訊息中的保持時間之控制允許採用 確地控制資源配置。TxT2PNominalps, TM is the power level 2322 of the payload size PS, and the transmission mode TM. F is the process set 418. The maximum power condition 2486 can be expressed as: mdyi {rxT2PPreTransitionpsm, TxT2PPostTransitionpsm) < TxT2Pmax (1〇) In some embodiments, the power level 422 of the packet 524 is allowed to change from the first value at a certain point during the transmission of the packet 524 Converted to a second value. In such a specific embodiment, the power level 2322 specified in the power profile 2380 includes a pre-conversion value and a post-conversion value. Ding Yiding 2 ?? ^ 1 ^ 118 out of 0111 ^, 7 ^ is the pre-conversion value of the payload size PS and the transmission mode TM.丁 父 丁 2? 卩 代 1 ^ 113 丨 1: 丨 〇111 > 8, the top is the size of the payload? After 8 and sending mode D ^^, the value is converted. TxT2Pmax is the maximum power level defined for the AT 206 and may be a function of the PilotStrength measured by the AT 206. PilotStrength is a measurement of the pilot power of the serving sector versus the pilot power of other sectors. In some embodiments, it is the ratio of the pilot power of the serving sector FL to the pilot power of other sectors. It can also be used to control the upward and downward slopes that AT 206 performs autonomously. It can also be used to control TxT2Pmax so that the AT 206 in poor geometries (such as the edge of a sector) can limit its maximum transmit power to avoid creating unwanted interference in other sectors. 95096.doc -36- 200522613 In some specific embodiments, the data condition 2488 is that there is no payload size 2320 in the power profile 2380, which corresponds to the lower power level 2322 of the transmission mode of the packet 524 and can carry The size of the payload provided by the following equation: n, T2PConversionFactorm x PotentialT IP Outflowim) (11) In Equation 11, shan / is the amount of data from process i, which includes the sub-frame η In sub-packets sent during the period. The expression T2PConversionFactorTM X PotentialT2PoutfloWi, TM is the data that can be sent in process i, that is, the amount of data corresponding to the total available power 103 2 of AT 2 4 0 6. Ding 2: 0: 〇11 ¥ 6 ^ 丨 〇1 ^ & (: 1: 〇1 ·! ^ Is a conversion factor, which is used to convert the total available power 1238 of process i to the data level. Figure 25 illustrates the demonstration Method 2500, AT 206 can execute this method to determine the payload size 420 and power level 422 of packet 524. Step 2502 involves selecting a payload size of 2320 from the power profile 2380. Step 2504 involves identifying and sending mode of packet 524 The power level 2322 related to the selected payload size 2320. For example, if the packet 524 is to be sent in high capacity mode, step 2504 involves identifying the high capacity power level 2322a related to the selected payload size 2320. Conversely, if the To send packets using the low-latency mode, step 2504 involves identifying the low-latency power level related to the selected payload size of 2320 2322b. Step 2506 involves sending the packet using the selected payload size of 2320 and the corresponding power level of 23 22 The packet 524 determines whether the transmission condition 2482 has been satisfied. If it is determined in step 2506 that the transmission condition 2482 has been satisfied, then in step 2508 the payload size 2320 and the corresponding power level 2322 and the physical layer 95096.d are selected. oc • 37 · 200522613 3 12 communication. If it is determined in step 2506 that the transmission condition 2482 is not met, then in step 25 10 a different payload size 2320 is selected from the power profile 2380. Method 25 00 then returns to step 25 04 and as The above description continues. The design principle of multiple process configurations is: the total available power is equal to the sum of the available power of each process in the access terminal. The advantage of this method is that the access terminal itself is due to hardware limitations or due to TxT2Pmax limits and exhausts the transmission power. When the transmission power is limited, the process power configuration in the access terminal must be further determined. As discussed above, under the condition of no power limitation, the gu / gd demand function passes the RAB and the process The normal function of the slope determines the current power configuration of each process. Now when Ατ power is limited, one way to set the process configuration is to treat Ατ power limitation as strictly similar to sector power limitation.- In general, The sector has a set maximum receive power criterion, which in turn leads to a power allocation for each process. The idea is that when the power of the AT is affected by When the limit is reached, if the power limit of Ατ is actually the corresponding limit of the received power of the sector, then each process set of this ATf is set to the power configuration it should receive. The power configuration of this process can directly adopt the gu / gd demand The function determines the decision. The decision is made by the virtual rule of the operation rule, or by other equivalent algorithms. Using this method, the priority of the process within the AT is maintained, and it is consistent with the priority of the process between the ATs. In addition, Instead of going beyond what is called and the gd function. An overview of some or all of the features of the specific embodiments described herein is now provided H to allow decoupling of the average f-source configuration (T2ρ㈣.W) and such as. : Beiyuan is used for packet placement (including control of packet rate and peak burst duration 95096.doc -38- 200522613 time). : Package configuration keeps discipline in all cases. For average resource allocation ° can be scheduled or self-disciplined. This allows seamless integration of scheduling and self-discipline configuration, because the packet configuration program behaves the same in both cases, and can update or not update the average resource as often as needed. The minimum transmission overhead is fine. The control of the hold time in the grant message allows the exact allocation of resources to be controlled.

古授予訊息中的BueketLevel控制允許將資源快速地注射至 流程中’ @不會影響其隨時間的平均配置。此係一種「一 次性使用」資源注射。 ,排:器可進行「固定點」之估計,或進行每個流程之適 當的貧源配置,並接著將該等數值下載給每個流程。此減 少網路接近其適當配置(「粗略」配置)所需的時間,並接著 採用自律模式快速地達到最終配置(「精細」配置)。The BueketLevel control in the ancient grant message allows resources to be quickly injected into the process' @ will not affect its average configuration over time. This is a "single use" resource injection. Arrangement: The device can perform "fixed point" estimation, or make proper allocation of lean sources for each process, and then download these values to each process. This reduces the time it takes for the network to approach its proper configuration ("coarse" configuration) and then uses the self-discipline mode to quickly reach the final configuration ("fine" configuration).

排程器可傳送授予給流程之子集,並允許其他子集運行 自律配置。採用此方法,可以對某些關鍵流程進行資源保 證,並且其餘流程接著適#自律地「填充」其餘容量。 排程器可實施「看管」功能,其中當流程不符合Q〇S要 求時,才會出現授^訊息之發送。㈣,允許流程自律地 設定其自己的功率配置。採用此方法,可採用最小發信及 開銷進行QoS保證。應注意為了達到流程之⑽目標,看管 排粒器可U不同於自律配置之固定點辦法的功率配置。 AN可規疋向上斜坡函數及向下斜坡函數之預流程設 計。藉*適當地選擇該等斜坡函數,可以僅採料自律操 95096.doc -39- 200522613 作而精確地規定任一每流程平均資源配置,每個扇區中僅 使用控制資訊之一位元。 QRAB設計中暗示的很快時序(每個時槽均得到更新並在 每個AT中採用短時間常數加以濾波)允許嚴格控制每個流 程之功率配置,並最小化總體扇區容量,同時維持穩定性 及涵蓋區域。 允許峰值功率之每流程控制為平均功率配置及扇區負載 之函數(FRAB)。此允許抵消叢發流量之合時,而對總體扇 區負載及穩定性造成影響。 透過使用BurstDurationFactor,允許採用峰值功率速率發 送最大持續時間之每流程控制。結合峰值速率控制,此允 許控制扇區穩定性及峰值負載而無需自律流程配置之集中 協調,並允許調整對特定來源類型的要求。 叢發資源的配置係由桶機制及T2pinfl〇w之持續加以妥 善處理’其允許將平均功率配置映射為叢發來源到達,同 時維持平均功率之控制。T2pinfl〇w濾波器時間常數控制持 續時間,在該時間内允許偶發封包到達,而超過該時間 T2PInflow則衰退為最小配置。 T2PInf1〇W斜坡對FRAB的相依性允許次重負載之扇區中 的較高斜坡動力,而不會影響最終平均功率配置。採用此 方法,當扇區係次重負載時,可實施侵進斜坡,而藉由減 小斜坡侵進程度將良好的穩定性維持在高負载位準。 T2PInfl〇W為根據流程優先權、資料要求及可用功率,經 由自律操作自調給定流程之適當配置。#過度配置流: 95096.doc -40- 200522613 時,BucketLevel達到BucketLevelSat數值,上向斜坡停止, 而 T2PInflow數值將衰退至 BucketLevel小於 BucketLevelSat 的位準。此對於丁2PInflow而言則為適當配置。 除根據上向/向下斜坡函數設計控制自律配置中可用的 每流程QoS分化以外,亦可根據通道狀況經由qRab或 QRABps及PilotStrength之斜坡的相依性而控制流程功率配 置。採用此方法,較差通道狀況中的流程可獲得較低配置, 從而減小干擾並改善系統的總體容量,或可獲得與通道狀 況無關的完全配置,其以系統容量為代價而維持均勻特 徵。此允許控制公平/一般福利權衡。 只要可能,則每個流程之AT間功率配置及Ατ内功率配置 係盡可能與位置無關。此意味著在相同或其他Ατ中何為其 他流程並不重要,流程之配置僅取決於總扇區負載。某些 貫體事實限制可如 >[可適當地獲得此目#,尤其係最大八了發 送功率,及關於合併的HiCap及LoLat流程之問題。 採用此方法,AT封包配置之總可用功率為可用於Ατ中每 個流程的功率之總和,其受八丁發送功率限制的影響。 :論採用何規則來決定自封包配置中所包括的每個流程 之資料配置,均根據桶撤回來保持流程的資源使用之精確 計數。採用此方法’可保證任一資料配置規則之流程間的 公平。 當AT的功率受到限制並無法適應可用於其所有流程的合 计功率時,從每個適當流程將功率用於虹㈣可用較小功 率。亦即AT内的流程相對於彼此而維持適當的優先權,雖 95096.doc •41 - 200522613 然該等流程共享僅具有該等ΑτThe scheduler can transfer a subset of the grants to the process and allow other subsets to run self-regulating. With this method, resources can be guaranteed for some key processes, and the remaining processes can then “fill in” the remaining capacity in a self-regulating manner. The scheduler can implement the “caretaker” function. When the process does not meet QOS requirements, the sending of the grant message will occur. Alas, allows the process to set its own power configuration autonomously. With this method, QoS can be guaranteed with minimal signaling and overhead. It should be noted that in order to achieve the goal of the process, the care of the particle sizer can be different from the power configuration of the fixed point method of self-discipline configuration. AN can pre-design the up-ramp function and down-ramp function. By appropriately selecting such ramp functions, you can precisely specify the average resource allocation per process by using only the self-discipline operation 95096.doc -39- 200522613, and only use one bit of control information in each sector. The fast timing implied in the QRAB design (each time slot is updated and filtered with a short time constant in each AT) allows for tight control of the power configuration of each process and minimizes overall sector capacity while maintaining stability Sex and coverage area. Per-process control of peak power is a function of average power allocation and sector load (FRAB). This allows the timing of the burst traffic to be offset, which affects the overall sector load and stability. By using BurstDurationFactor, per-process control that allows the maximum duration to be sent at the peak power rate. Combined with peak rate control, this allows control of sector stability and peak load without the need for centralized coordination of self-regulatory process configurations, and allows adjustment of requirements for specific source types. The allocation of burst resources is properly handled by the bucket mechanism and T2pinflow's continuation ’, which allows the average power allocation to be mapped to the arrival of burst sources, while maintaining control of the average power. The T2pinfl0w filter time constant controls the duration, during which sporadic packets are allowed to arrive, and beyond this time T2PInflow decays to the minimum configuration. The dependence of the T2PInf10W ramp on FRAB allows higher ramp power in sectors with a secondary load without affecting the final average power configuration. With this method, when the sector is under a heavy load, the invasion slope can be implemented, and the good stability can be maintained at a high load level by reducing the slope invasion degree. T2PInfl0W is an appropriate configuration for a given process by self-regulating operation according to process priority, data requirements and available power. # Over-configuration flow: 95096.doc -40- 200522613, BucketLevel reaches the BucketLevelSat value, the upward slope stops, and the T2PInflow value will decay to a level where the BucketLevel is less than the BucketLevelSat. This is an appropriate configuration for Ding 2PInflow. In addition to controlling the per-process QoS differentiation available in the self-regulatory configuration based on the up / down ramp function design, the power configuration of the process can also be controlled via the dependency of the ramps of qRab or QRABps and PilotStrength based on the channel conditions. With this method, processes in poor channel conditions can obtain lower configurations, thereby reducing interference and improving the overall capacity of the system, or can obtain full configurations independent of channel conditions, which maintain uniform characteristics at the cost of system capacity. This allows controlling fair / general welfare trade-offs. Wherever possible, the power allocation between ATs and the power allocation within Aτ in each process is as independent of location as possible. This means that it is not important what other processes are in the same or other Aτ, and the configuration of the process depends only on the total sector load. Some pertinent factual restrictions can be as follows: [This item can be obtained as appropriate, especially with regard to the maximum transmission power, and issues regarding the combined HiCap and LoLat processes. With this method, the total available power in the AT packet configuration is the sum of the power available for each process in Δτ, which is affected by the eight-bit transmit power limit. : On what rules are used to determine the data configuration of each process included in the self-packet configuration, the accurate use of the resource usage of the process is maintained according to the withdrawal of the bucket. Using this method ’can guarantee fairness between the processes of any data allocation rule. When the power of the AT is limited and cannot accommodate the total power available to all of its processes, using less power from Rainbow for each appropriate process. That is, the processes in the AT maintain proper priority relative to each other, although 95096.doc • 41-200522613, but these process sharing only has the Ατ

功率卩Ρ #丨尊舻卜相/ 大功率位準的扇區(AT 功革限制整體上類似於扇區之功率 被功率限制AT用完的功率 ^ = ^中未 程。 ^ J…吊用於扇區中的其他流 ;將=:二::量電㈣料使用之總和足夠高,以致 口併將不h致㈣封包的較大功率差異時,可將 奴程合併至低潛時發送尹。 送功率之平滑度。當特適合於自干擾系統的發 其無法等待相_+的:::里流程具有延遲要求,因此 — J t的所有低潛時流程均發送時,可將古 谷ΐ流程合併至低潛時發、 、网 的臣Κ香砵、^ ^甲接者在達到電位資料使用 二 t!:持:其資料合併至低潛時發送中。因此 潛時流程的_,可符合高容量流程之 高度負載時,可將高容量流程合併 主低,日時舍运中,在隨低潛一 效率損失不重要,因此可始終允許合併。门谷里抓程中的 即使不存在活動低潛砗泣 -以容旦^ 時^仍可採用低潛時模式發送 p/二,此時高容量模式之封包大小應為至少 足Γ:丰:esh大小。此允許高容量模式流程在其功率配置 := 達到最高輸出,因為取最高輸出出現在最大封 時發送模式的情況下。換言之,高容量發送 低潛時發送之峰值速率低甚多,因此在其適 田輸出時,允許高容量流程模式使用低潛時發送。 母㈣具有T2pmax參數,該參數限制其最大功率配 了希望限制AT的合計發送功率,此可能取決於其在 95096.doc -42- 200522613 網路中的位置(例如當在二扇區之邊緣時,AT建立添加的干 擾並影響穩定性)。參數TxT2Pmax可設計為PilotStrength之 函數,並限制AT的最大發送功率。 圖26為解說AT 2606之具體實施例的功能方塊圖。AT 2606包括處理器2602,其控制AT 2606之操作。處理器2602 亦可稱為CPU。可包括唯讀記憶體(ROM)及隨機存取記憶體 (RAM)的記憶體2004提供指令及資料給處理器2002 〇記憶 體2604之一部分亦可包括非揮發性隨機存取記憶體 (NVRAM)。 可採用無線通信裝置(例如單元電話)加以具體化的AT 2606亦可包括外殼2607,其包含發射器2608及接收器2610 以允許發送並接收資料,例如AT 2606與遠端位置(例如AN 204)之間的聲音通信。發射器2608及接收器2610可組合為 收發器2612。天線2614係附於外殼2607並與收發器2612電 耦合。亦可使用額外天線(圖中未顯示)。發射器2608、接收 器2610及天線2612之操作在此項技術中已為人所熟知,並 且無需在本文中加以說明。 AT 2606亦包括信號偵測器2616,其係用以偵測並量化由 收發器2612接收到的信號之位準。信號偵測器2616將此類 信號彳貞測為總能量、每偽雜訊(PN)晶片之先導能量、功率 頻譜密度及其他信號,其在此項技術已為人所熟知。 AT 2606之狀態改變器2626控制無線通信裝置的狀態,該 控制係根據目前狀態及由收發器2612接收並由信號偵測器 26 16偵測的額外信號。無線通信裝置能在許多狀態之任一 95096.doc -43- 200522613 狀態中操作。 AT雇亦包括系統決定器2628’其係用以控制無線通信 裝置,亚且當其決定目前服務提供器系統不夠時,決定無 線通信裝置應轉移至哪個服務提供器系統。 … AT 2606之各組件係藉由匯流排系統%鳩合在—起該 系統除^匯流排以外可包括功率匯流排、控制信號匯流 排及狀悲信號匯流排。然而基於清 β是之目的,各種匯流排 第在圖26中解說為匯流排系統263〇。Ατ鳩亦可包括用以 處理信號的數位信號處理器(DSp⑽9。熟習此項技術者庫 瞭解圖6所解說的AT編為功能方塊圖,而非 清單。 、、丁心 熟習此項技術者應瞭解,可制任何㈣科技及技術表 不資訊及信號。例如’以上整個說明中可能參考的資料、 指令、命令、資訊、信號、位元、符號及晶片可由電麼、 電流、電磁波、磁場或磁粒子、光場或光粒子或其任一组 合表示。 、” 熟習此項技術者應進一步瞭解結合本文揭示的具體實施 例所,明的各種解說性邏輯區塊、模組、電路及演算法步 驟可貫施為電子硬體、電腦軟體或兩者的組合。為了清楚 解说硬體及軟體之此互通性,以上已根據其功能總體說明 ^種解說性組件、區塊、模組、電路及步驟。此類功能係 只知為硬體或軟體取決於整體系統所用的特定應用及設計 限制1習此項技術者可採用各種方法實施每個特定應用 兒月的功此,但此類實施方案決策不應解釋為會引起 95096.doc -44- 200522613 脫離本發明之範^壽。 結合本文揭示的具體實施例所說明 塊、模組及電路,可採料用處㈣ ^邏輯區 (剛、特殊應用積體電路(概)、場=號處理器 (FPGA)或其他可程式化邏 王式化閘極陣列 J杠式化邏輯裝置、離散閉 輯、離散硬體組件或設計成執行本文說明的功能之^⑭ 合來實施或執行。通用處理器可以為微處理器,二 代具體貫施例中,處理器可以為任一傳統處理器,制琴 :處理器或狀態機。處理器亦可實施為電腦裝置之組‘, DSPW處理器之組合、複數個微處理器、與⑽ 核心連接的一個或多個微處理器或任一其他此類組離。 結合本文揭示的具體實施例所說明的方法或演算法之牛 驟可以直接採用硬體、由_ 抑 ^ 更體Φ處理益執行的軟體模組或採用二 者之組合加以具體化。軟體模組可駐存在MM記憶體、快 閃記憶體、ROM記憶體、咖⑽記憶體、卿刪記憶體、、 暫存器、硬碟、可移除磁碟、⑽〇M或此項技術中熟知 _何八他$式之餘存媒體中。示範性儲存媒體係與處理 Γ麵σ X便處理器可從儲存媒體讀取資訊並將資訊寫入 儲存媒體中。在替代具體實施例中,儲存媒體可與處理器 t 口。處理裔及儲存媒體可駐存在ASIC中。八狀可駐存在 使用者、、端械中。在替代具體實施例中,處理器及儲存媒 體γ以離散組件的形式駐存在使用者終端機中。 提供揭不的具體實施例之先前說明,以使熟習此項技術 者能實施或使用本發明。熟習此項技術者應輕易地明白該 95096.doc -45- 200522613 等具體實施例之各種修改,而且本文定義的一般原理可應 用於其他具體實施例而不脫離本發明之精神或範疇。因 此,不希望本發明限於本文所示的具體實施例,而係符合 與本文揭示的原理及新穎特徵相一致的最大範疇。 【圖式簡單說明】 圖1解說通信系統之範例,該系統支援許多使用者並能實 施本文論述的具體實施例之至少某些方面; 圖2為解說高資料速率通信系統中的接取網路及接取終 端機之方塊圖; 圖3為解說接取終端機中的各層之堆疊的方塊圖; 圖4為解說接取終端機中的較高層、媒體接取控制層與實 體層之間的示範性互動之方塊圖; 圖5A為解說發送給接取網路的高容量封包之方塊圖; 圖5B為解說發送給接取網路的低潛時封包之方塊圖; 圖6為解說可存在於接取網路中的不同類型的流程之 塊圖; 圖7為解說高容量封包之示範性流程集的方境圖; 圖8為解說⑽時封包之示範性難㈣方塊圖; 圖9為解說資訊的方塊® ’該資料維持在接取終端機 $ ·’以便決定高容量流程是否包括在低潛時封包之流程集 圖10為解說扇區内的接取網路及複數個接取終端機 塊圖; 乃 圖11解mx決定接取終端機之總可用功率的示範性 95096.doc -46- 200522613 機制; 圖12為解說具體實施例之 M T屬内的接取終 端機之至少某些接取終端機包括多個流程,· 、、 圖13為解說一種方法的方塊 从 兄口八甲接取終端機可獲得 接取終端機中的流程之目前功率配置; 圖μ為解說㈣區㈣接取網路發送至接取終端機的反 向活動性位元之方塊圖; 圖15為解說資訊之方塊圖,該f訊可轉持在接取終端 機中,以便決定接取終端機巾的__或多個流程之目前 配置; 圖16為功能方塊圖,其解說接取終端機巾的示範性功能 、’且件’其可用以決定扇區之反向活動性位元的估計及目前 負載位準的估計; 圖17為解說用以決^接取終端機中的流程之目前功率配 置的示範性方法之流程圖; 圖18為解說傳送請求訊息給接取網路中的排程器之接取 終端機的方塊圖; 圖19為解說資訊的方塊圖,該資訊可維持在接取終端機 中,以便接取終端機可決定何時傳送請求訊息給接取網路; 圖20為解說扇區内在接取網路中運行的排程器與接取終 端機之間的一示範性互動之方塊圖; 圖2 1為解$兒在接取網路中運行的排程器與接取終端機之 間的另一示範性互動之方塊圖; 圖22為解#從接取網路中的排程器發送給接取終端機的 95096.doc -47- 200522613 授予訊息之另—具體實施例的方塊圖; 圖23為解說可儲存在接取終端機中的功率輪廊之方塊 之 圖24為解說可儲存在接取終端機中的複數個發送條件 方塊圖; 圖25為解說示範性方法的流程圖,接取終端機可執行該 方法以便決定封包之酬載大小及功率位準;以及 μ 圖26為解說接取終端機之具體實施例的功能方塊圖。 【主要元件符號說明】 100 102A-102G 104A-104G 106 通信系統 口口 一 早兀 基地台 遠端台 204 接取網路 206 接取終端機 208 反向流量通道 306 接取終端機 308 媒體接取控制層 310 較高層 312 實體層 314 反向流量通道媒體接取控制協定 406 接取終端機 408 媒體接取控制層 410 較高層 95096.doc 48· 200522613 412 實體層 416 流程 418 流程集 420 酬載大小 422 功率位準 504 接取網路 506 接取終端機 524 封包 524a 高容量封包 524b 低潛時封包 606 接取終端機 616 流程 616a 高容量流程 616b 低潛時流程 716 流程 718 流程集 724a 高容量封包 816a 高容量流程 816b 低潛時流程 818 流程集 824b 低潛時封包 906 接取終端機 916a 高容量流程 926 資料 95096.doc -49- 200522613 928 併合臨界值 930 併合臨界值 1004 接取網路 1006 接取終端機 1032 扇區 1034 總可用功率 1034a 目前功率配置 1034b 累積功率配置 1034c 峰值配置 1038a 目前功率配置 1135 飽和位準 1136 桶 1206 接取終端機 1216 流程 1232 扇區 1234 總可用功率 1238 總可用功率 1238a 目前功率配置 1238b 累積功率配置 1238c 峰值配置 1304 接取網路 1306 接取終端機 1316 流程 1338a 目前功率配置Power 卩 Ρ # 丨 舻 相 / High-power sector (AT power limit is similar to the power of the sector as a whole power consumed by the power limit AT ^ = ^ missed. ^ J ... hanging use For other streams in the sector; when the sum of =: 二 :: 量 电 ㈣ 料 use is high enough so that it will not cause a large power difference in the packet, the slave process can be combined to send in low latency Yin. The smoothness of transmission power. When specially suitable for self-interference system, it cannot wait for phase _ + ::: li process has delay requirements, so — when all low latency processes of J t are sent, Gu Gu can be sent ΐThe process is merged into the low-latency time, the network of the minister K XiangΚ, ^ ^ A receiver to reach the potential data use two t :: hold: its data is merged into the low-latency time sending. Therefore, the latency process _, When it can meet the high load of the high-capacity process, the high-capacity process can be merged to the main low. In the day-to-day transportation, the loss of efficiency with the low potential is not important, so the merge can always be allowed. Even if it does not exist in the process of Mengu Active Low-latent Weeping-Take Rongdan ^ Hour ^ can still use low-latency mode to send p / two, at this time high The packet size of the volume mode should be at least enough Γ: 丰: esh size. This allows the high-capacity mode process to reach its maximum output at the power allocation: = because taking the highest output occurs in the case of the maximum packet transmission mode. In other words, high Bulk transmission has a much lower peak rate during low-latency transmission, so it allows high-capacity process mode to use low-latency transmission when it is suitable for field output. The mother has a T2pmax parameter, which limits its maximum power. Total transmit power, which may depend on its location in the 95096.doc -42- 200522613 network (for example, when it is at the edge of the second sector, the AT establishes added interference and affects stability). The parameter TxT2Pmax can be designed as PilotStrength Function and limit the maximum transmission power of the AT. Figure 26 is a functional block diagram illustrating a specific embodiment of the AT 2606. The AT 2606 includes a processor 2602 that controls the operation of the AT 2606. The processor 2602 can also be called a CPU. Memory 2004, including read-only memory (ROM) and random access memory (RAM), provides instructions and data to the processor 2002. Part of memory 2604 may also Includes non-volatile random access memory (NVRAM). The AT 2606, which can be embodied with a wireless communication device, such as a cell phone, can also include a housing 2607, which includes a transmitter 2608 and a receiver 2610 to allow sending and receiving data. For example, audio communication between AT 2606 and a remote location (such as AN 204). The transmitter 2608 and the receiver 2610 can be combined into a transceiver 2612. The antenna 2614 is attached to the housing 2607 and is electrically coupled with the transceiver 2612. It can also be Use an additional antenna (not shown). The operation of the transmitter 2608, the receiver 2610, and the antenna 2612 are well known in the art and need not be described herein. AT 2606 also includes a signal detector 2616, which is used to detect and quantify the level of the signal received by the transceiver 2612. The signal detector 2616 measures such signals as total energy, pilot energy per pseudo-noise (PN) chip, power spectral density, and other signals, which are well known in the art. The status changer 2626 of the AT 2606 controls the status of the wireless communication device. The control is based on the current status and additional signals received by the transceiver 2612 and detected by the signal detector 26 16. The wireless communication device can operate in any one of a number of states, 95096.doc -43- 200522613. The AT also includes a system determiner 2628 'which is used to control the wireless communication device, and when it decides that the current service provider system is insufficient, it decides which service provider system the wireless communication device should be transferred to. … The components of AT 2606 are coupled together by the bus system—the system can include power buses, control signal buses, and status signal buses in addition to buses. However, for the purpose of clearing β, various busbars are illustrated in FIG. 26 as the busbar system 2630. Ατ 鸠 can also include a digital signal processor (DSp⑽9 to process the signal. Those familiar with this technology know that the AT illustrated in Figure 6 is compiled as a functional block diagram, not a list.), And those who are familiar with this technology should Understand that any information and signals can be produced by any technology and technology. For example, 'the information, instructions, commands, information, signals, bits, symbols, and chips that may be referenced in the above description can be used by electricity, current, electromagnetic waves, magnetic fields or Magnetic particles, light fields, or light particles, or any combination thereof. "" Those skilled in the art should further understand the various illustrative logical blocks, modules, circuits, and algorithms explained in conjunction with the specific embodiments disclosed herein. The steps can be implemented as electronic hardware, computer software, or a combination of the two. In order to clearly explain this interoperability of hardware and software, the above has been described based on its overall function. ^ Illustrative components, blocks, modules, circuits, and This type of function is only known as hardware or software depending on the specific application and design constraints used by the overall system. Those skilled in the art can implement each method in various ways. The achievements of specific applications, but such implementation decisions should not be interpreted as causing 95096.doc -44- 200522613 to depart from the scope of the present invention. The blocks, modules and circuits described in conjunction with the specific embodiments disclosed herein , Can be used for materials ㈣ Logic area (rigid, special application integrated circuit (summary), field = processor (FPGA) or other programmable logic king gate gate array J bar-type logic device, discrete closed series, Discrete hardware components may be designed to perform or perform a combination of the functions described herein. A general-purpose processor may be a microprocessor. In the second specific embodiment, the processor may be any traditional processor. : Processor or state machine. A processor may also be implemented as a group of computer devices', a combination of DSPW processors, a plurality of microprocessors, one or more microprocessors connected to a ⑽ core, or any other such group The method or algorithm described in combination with the specific embodiments disclosed herein can be directly implemented by hardware, a software module implemented by _ ^ ^ ^ more Φ processing benefits, or a combination of the two. Software Modules can reside in MM memory, flash memory, ROM memory, coffee memory, flash memory, scratchpad, hard disk, removable disk, ⑽〇M or this technology Familiar with He Ba Ta's remaining storage media. An exemplary storage medium is used to process Γ surface σ X so that the processor can read information from the storage medium and write the information into the storage medium. In an alternative embodiment, The storage medium may be connected to the processor. The processing source and the storage medium may reside in an ASIC. The octagonal form may reside in a user, a terminal device. In an alternative embodiment, the processor and the storage medium γ are discrete components. The form resides in a user terminal. The previous description of specific embodiments is provided to enable those skilled in the art to implement or use the invention. Those skilled in the art should easily understand the 95096.doc -45- Various modifications of specific embodiments such as 200522613, and the general principles defined herein can be applied to other specific embodiments without departing from the spirit or scope of the invention. Therefore, the invention is not intended to be limited to the specific embodiments shown herein, but to conform to the greatest scope consistent with the principles and novel features disclosed herein. [Schematic description] Figure 1 illustrates an example of a communication system that supports many users and can implement at least some aspects of the specific embodiments discussed herein; Figure 2 illustrates an access network in a high data rate communication system And the access terminal block diagram; Figure 3 is a block diagram illustrating the stacking of the layers in the access terminal; Figure 4 illustrates the higher layers in the access terminal, the media access control layer and the physical layer Block diagram of an exemplary interaction; Figure 5A is a block diagram illustrating a high-capacity packet sent to the access network; Figure 5B is a block diagram illustrating a low-latency packet sent to the access network; Block diagrams of different types of processes in the access network; Figure 7 is a context diagram illustrating an exemplary process set of high-capacity packets; Figure 8 is an exemplary difficult block diagram illustrating time packets; Figure 9 is explanatory information Block ® 'This data is maintained at the access terminal $' in order to determine whether the high-capacity flow includes the flow set of low-latency packets. Figure 10 illustrates the access network in the sector and multiple access terminal blocks. Figure 11 Explain the exemplary 95096.doc -46- 200522613 mechanism for determining the total available power of the access terminal; Figure 12 illustrates at least some access terminals including the access terminals within the MT of a specific embodiment. Fig. 13 is a block diagram illustrating a method. The current power configuration of the process in the access terminal can be obtained from the mate mouth Bajia access terminal; Figure μ is an illustration of the area ㈣ access network sent to A block diagram of the reverse activity bits of the access terminal; Figure 15 is a block diagram of the explanatory information. The f message can be transferred to the access terminal to determine the __ or multiple of the access terminal towel. The current configuration of the process; Figure 16 is a functional block diagram illustrating the exemplary functions of accessing the terminal towels, and the 'parts' which can be used to determine the estimation of the reverse activity bit of the sector and the estimation of the current load level Figure 17 is a flowchart illustrating an exemplary method for determining a current power configuration of a process in an access terminal; Figure 18 is an illustration of an access terminal that transmits a request message to a scheduler in an access network Block diagram; Figure 19 is a way to explain the information Block diagram, the information can be maintained in the access terminal, so that the access terminal can decide when to send a request message to the access network; Figure 20 illustrates the scheduler and access in the sector in the access network Take a block diagram of an exemplary interaction between terminals; Figure 21 is a block diagram of another exemplary interaction between a scheduler running in an access network and an access terminal; 22 为 解 # The 95096.doc -47- 200522613 grant message sent from the scheduler in the access network to the access terminal—a block diagram of a specific embodiment; FIG. 23 is an illustration that can be stored in the access terminal Fig. 24 is a block diagram illustrating a plurality of transmission conditions that can be stored in the access terminal; Fig. 25 is a flowchart illustrating an exemplary method. The access terminal can execute the method to determine The payload size and power level of the packet; and FIG. 26 is a functional block diagram illustrating a specific embodiment of the access terminal. [Description of main component symbols] 100 102A-102G 104A-104G 106 Communication system port-early base station remote station 204 access network 206 access terminal 208 reverse flow channel 306 access terminal 308 media access control Layer 310 Higher layer 312 Physical layer 314 Reverse traffic channel Media access control protocol 406 Access terminal 408 Media access control layer 410 Higher layer 95096.doc 48 · 200522613 412 Physical layer 416 Process set 418 Process set 420 Payload size 422 Power level 504 access network 506 access terminal 524 packet 524a high capacity packet 524b low latency packet 606 access terminal 616 process 616a high capacity process 616b low latency process 716 process 718 process set 724a high capacity packet 816a High-capacity process 816b Low-latency process 818 Process set 824b Low-latency packet 906 Access terminal 916a High-capacity process 926 Data 95096.doc -49- 200522613 928 Merging threshold 930 Merging threshold 1004 Access network 1006 Access Terminal 1032 Sector 1034 Total available power 1034a Current power configuration 1034b Cumulative power distribution Set 1034c peak configuration 1038a current power configuration 1135 saturation level 1136 bucket 1206 access terminal 1216 process 1232 sector 1234 total available power 1238 total available power 1238a current power configuration 1238b peak power configuration 1304 access network 1306 access Take terminal 1316 flow 1338a current power configuration

95096.doc -50- 200522613 1340 排程器 1342 授予訊息 1374 目前功率配置授予 1404 接取網路 1406 接取終端機 1432 扇區 1444 反向活動性位元 1506 接取終端機 1516 流程 1546 快速反向活動性位元 1548 濾波反向活動性位元 1550 向上斜坡函數 1552 向下斜坡函數 1604 接取網路 1606 接取終端機 1644 反向活動性位元 1646 快速反向活動性位元 1648 濾波反向活動性位元 1654 解調變組件 1656 映射器 1658 第一單極IIR濾波器 1660 第二單極IIR濾波器 1662 限制裝置 1664 通信通道95096.doc -50- 200522613 1340 scheduler 1342 grant message 1374 current power allocation grant 1404 access network 1406 access terminal 1432 sector 1444 reverse activity bit 1506 access terminal 1516 process 1546 fast reverse Active bit 1548 Filter reverse active bit 1550 Up slope function 1552 Down slope function 1604 Access network 1606 Access terminal 1644 Reverse activity bit 1646 Fast reverse activity bit 1648 Filter reverse Active bit 1654 Demodulation component 1656 Mapper 1658 First unipolar IIR filter 1660 Second unipolar IIR filter 1662 Restriction device 1664 Communication channel

95096.doc -51 - 200522613 1666 對數相似值比 1700 方法 1804 接取網路 1806 接取終端機 1840 排程器 1842 授予訊息 1866 請求訊息 1906 接取終端機 1968 請求比率 1970 請求間隔 2004 接取網路 2006 接取終端機 2032 扇區 2040 排程器 2042 授予訊息 2072 子集 2104 接取網路 2106 接取終端機 2116 流程 2132 扇區 2138a 目前功率配置 2140 排程器 2142 授予訊息 2174 目前功率配置授予95096.doc -51-200522613 1666 logarithmic similarity ratio 1700 method 1804 access network 1806 access terminal 1840 scheduler 1842 grant message 1866 request message 1906 access terminal 1968 request ratio 1970 request interval 2004 access network 2006 access terminal 2032 sector 2040 scheduler 2042 grant message 2072 subset 2104 access network 2106 access terminal 2116 process 2132 sector 2138a current power configuration 2140 scheduler 2142 grant message 2174 current power configuration grant

95096.doc -52- 200522613 2204 接取網路 2206 接取終端機 2216 流程 2238b 累積功率配置 2240 排程器 2242 授予訊息 2274 目前功率配置授予 2276 保持週期 2278 累積功率配置授予 2306 接取終端機 2320 酬載大小 2322 功率位準 2322a 高容量功率位準 2322b 低潛時功率位準 2332 功率輪廓 2380 功率輪扉 2406 接取終端機 2482 發送條件 2484 配置功率條件 2486 最大功率條件 2488 資料條件 2500 方法 2602 處理器 2604 記憶體95096.doc -52- 200522613 2204 access network 2206 access terminal 2216 process 2238b cumulative power configuration 2240 scheduler 2242 grant message 2274 current power configuration grant 2276 holding period 2278 cumulative power configuration grant 2306 access terminal 2320 Load size 2322 Power level 2322a High-capacity power level 2322b Low-latency power level 2332 Power profile 2380 Power wheel 2406 Access terminal 2482 Send condition 2484 Configure power condition 2486 Maximum power condition 2488 Data condition 2500 Method 2602 Processor 2604 memory

95096.doc -53 - 200522613 2606 接取終端機 2607 外殼 2608 發射器 2609 數位信號處理器 2610 接收器 2612 收發器 2614 天線 2616 偵測器 2626 狀態改變器 2628 糸統決定 2630 匯流排系統 95096.doc 54-95096.doc -53-200522613 2606 Access terminal 2607 Shell 2608 Transmitter 2609 Digital signal processor 2610 Receiver 2612 Transceiver 2614 Antenna 2616 Detector 2626 State changer 2628 System decision 2630 Bus system 95096.doc 54 -

Claims (1)

200522613 十、申請專利範圍: 1· 一種接取終端機,其係配置成用於與一扇區内的一接取 網路進行無線通信,其包括: 夯射裔,其係用以發送一反向流量通道給該接取網路; 一天線,其係用以從該接取網路接收信號; 一處理器; 記憶體,其與該處理器進行電子通信;以及 指令,其係儲存在該記憶體中,可執行該等指令以實施 一方法,該方法包括·· 决疋疋否已從该接取網路接收到用於該接取終端機 中的一流程之一目前功率配置授予; 右该目前功率配置授予仍為活動的,則設定該流程 之目剷功率配置等於該目前功率配置授予; 若尚未接收到該目前功率配置授予,則決定該流程 之該目前功率配置; 決定該流程之一累積功率配置; 採用該流程之該目前功率配置及該流程之該累積功 率配置來決定該流程之一總可用功率;以及 採用該流程之該總可用功率來決定用於發送給該接 取網路的一封包之一功率位準。 士月长員1之接取終端機,其中該流程之該總可用功率等 於一夸值功率配置與該流程之該目前功率配置及該流程 之該累積功率配置的至少一部分之一總和二者中的較小 者0 95096.doc 200522613 3.如請求項2之接取終端機,其中該流程之料值功率配置 為該流程之該目前功率配置乘以一限制因數。 月长項3之接取終端機,其中該限制因數取決於該流程 4. 5. 6. 之該目前功率配置。 如請求項1之接取終端機 係由一飽和位準限制。 如請求項1之接取終端機 其中該流程之該累積功率配置 ^ 其中若從該接取網路接收到該 力率配置授予’則該方法進一步包括接收該目前功 率配置授予之一保持週期,該保持週期指示該接取終端 機保持該流程之該目前功率配置等於該目前功率配置授 、長時間ϋ且其中在該保持週期到期之後,該接 料=機自律地採用該目前功率配置授^之-起點決定 δ亥目4功率配置。 =求項1之接取終端機,其中該方法進一步包括從該接 取料接收該流程之該累積功率配置。 如請求項1之接取終端機,其中該方法進-步包括· =定是否已滿足傳送該目前功率配置授予之—請求給 Μ接取網路的一條件;以及 若已滿足該條件,則傳送該請求給該接取網路。 項8之接取終端機,其中該條件為在該反向流量通 ::送的請求與在該反向流量通道上傳送的資料之比 率已減少至一臨界值以下。 „接取終端機,其中該條件為自從傳送一先前 5月求至该接取網路以來,一請求間隔已消逝。 8 9. 95096.doc 200522613 11 · 一種接取網路,其伤 予、配置成用於與一接取網路進行血線 通信,其包括: .、 么射w其係用以發射第一信號給該接取終端機; 一天線’其係用以從該接取終端機接收第二信號; 一處理器; 記憶體’其與該處理器進行電子通信;以及 指令,其絲存在該記憶财,可執行料指令以實施 一方法,該方法包括·· 十用於或夕個接取終端機中的複數個流程之自 律功率配置的穩態數值; /又疋違等複數個流程之目前功率配置授予等於該等 估計的穩態數值;以及 傳送一㈣訊息給料—或多個接取終端機之各接 ^终端機’傳送給-料接取終端機的該授予訊息包括 用於該接取終㈣巾的料-❹㈣程之 配置授予。 午 12 2接取網路,其魏置成用於與—扇㈣的_接取終 該接取網路包括:接取、·、一包括複數個流程, 2射器,其仙以發射第—信號給該等複數個接取終 一天線,其係用以從該 號; 等複數個接取終端機接收第二信 一處理器; 95096.doc 200522613 記憶體,其與該處理器進行電子通信;以及 指令,其係儲存在該記憶體中,可執行該等指令以實施 一方法,該方法包括: 決定用於該等複數個流程之一子集的目前功率配置 ^ 授予; 傳送授予訊息給對應於該等複數個流程之該子集的 该等接取終端機,該等授予訊息包括該等目前功率配置 授予;以及 允許該等接取終端機自律地決定用於並非在該子集 中的其餘流程之目前功率配置。 13 · 一種接取網路,其係配置成用於與一接取終端機進行無 線通彳5,该接取終端機包括一流程,該接取網路包括: 一發射器,其係用以發射第一信號給該接取終端機; 一天線,其係用以從該接取終端機接收第二信號; 一處理器; 記憶體,其與該處理器進行電子通信;以及 私々’其係儲存在該記憶體中,可執行該等指令以實施 一方法,該方法包括: 決定該流程是否符合至少一個服務品質要求; 若該流程不符合該至少一個服務品質要求,則傳送 一授予訊息給該接取終端機,該授予訊息包括該流程之 目如功率配置授予或一累積功率配置授予;以及 若該流程符合該至少一個服務品質要求,則允許該 流程自律地設定其自己的功率配置。 95096.doc 200522613 14· 一種接取終端機,其係配置成用於與一扇區内的一接取 網路進行無線通信,其包括: 決定構件,其係用以決定是否已從該接取網路接收到 用於該接取終端機中的一流程之一目前功率配置授予; 設定構件,若該目前功率配置授予仍為活動的,則該 構件用以設定該流程之一目前功率配置等於該目前功率 配置授予; 決定構件,若尚未接收到該目前功率配置授予,則該 構件用以決定該流程之該目前功率配置; 決定構件,其係用以決定該流程之一累積功率配置; 使用構件’其係用以使用該流程之該目前功率配置及 5亥流程之該累積功率配置來決定該流程之一總可用功率 ;以及 使用構件,其係用以使用該流程之該總可用功率來決 疋用於發送給該接取網路的一封包之一功率位準。 15·種接取網路,其係配置成用於與一接取終端機進行無 • 線通信,其包括: … • 估。十構件,其係用以估計用於一或多個接取終端機中 的複數個流程之自律功率配置的穩態數值; 。又心構件,其係用以設定該等複數個流程之目前功率 配置授予荨於該等估計的穩態數值;以及 、 傳送構件,其係用以傳送一授予訊息給該等一或多個 接取終端機之各接取終端機,傳H特定接取終端機 的該授予訊息包括用於該接取終端機中的㈣—或多個 95096.doc 200522613 流程之一目前功率配置授予。 種接取網路,其係配置成用於與一扇區内的一接取終 . 端機進行無線通信,該等接取終端機包括複數個流程, 該接取網路包括: « 决定構件,其係用以決定該等複數個流程之一子集的 目前功率配置授予; 傳送構件,其係用以傳送授予訊息給對應於該等複數 個机私之該子集的該等接取終端機,該等授予訊息包括 該等目前功率配置授予;以及 允斗構件’其係用以允許該等接取終端機自律地決定 用於並非在该子集中的其餘流程之目前功率配置。 17·種接取網路,其係配置成用於與一接取終端機進行無 線通k ’该接取終端機包括一流程,該接取網路包括: 決定構件,其係用以決定該流程是否符合至少一個服 務品質要求; 傳送構件,若該流程不符合該至少一個服務品質要求 , ’則讀構件用以傳送一授予訊息給該接取終端機,該授 • 予訊息包括該流程之一目前功率配置授予或一累積功率 配置授予;以及 允許構件,若該流程符合該至少一個服務品質要求, 則5亥構件用以允許該流程自律地決定其自己的功率配置。 18. —種用於一配置用於與一扇區内的一接取網路進行無線 通信的接取終端機之方法,其包括: 決定是否已從該接取網路接收到用於該接取終端機中 95096.doc 200522613 的一流程之一目前功率配置授予; 右該目前功率配置授予仍為活動的,則設定該流程之 一目前功率配置等於該目前功率配置授予; 若尚未接收到該目前功率配置授予,則決定該流程之 該目前功率配置; 決定該流程之一累積功率配置; 使用该流程之該目前功率配置及該流程之該累積功率 配置來決定該流程之一總可用功率;以及 使用該流程之該總可用功率來決定用於發送給該接取 網路的一封包一之功率位準。 19. 20. 一種用於一配置用於與一接取終端機進行無線通信的接 取網路之方法,其包括: 估计用於或多個接取終端機中的複數個流程之自律 功率配置的穩態數值; 設定該等複數個流程之目前功率配置授予等於該等估 計的穩態數值;以及 傳迗一授予訊息給該等一或多個接取終端機之各接取 終端機,傳送給一特定接取終端機的該授予訊息包括用 於該接取終端機中的該等一或多個流程之一目前功率配 置授予。 一種用於一配置用於與一扇區内的接取終端機進行無線 通信的接取網路之方法,該等接取終端機包括複數個流 程,該方法包括·· 決定該等複數個流程之一子集的目前功率配置授予; 95096.doc 200522613 箄予訊息給對應於該等複數個流程之該子隼㈣ 寻接取終端機,該笤於工> ή t 丁果的。亥 予;以及 ,又δί1心已括该等目前功率配置授 允許該等接取終端機自律地決定用於並非在該子集中 的其餘流程之目前功率配置。 2L -種用於_配置用於與一接取終端機進行無線通信的接 取網路之方法,該接取終端機包括一流程,該方法包括: 決定該流程是否符合至少一個服務品質要求; 若該流程不符合該至少一個服務品質要求,則傳送一 授予訊息給該接取終端機,該授予訊息包括該流程之一 目前功率配置授予或一累積功率配置授予;以及 若該流程符合該至少一個服務品質要求,則允許該流 程自律地設定其自己的功率配置。 95096.doc200522613 10. Scope of patent application: 1. An access terminal, which is configured for wireless communication with an access network in a sector, and includes: To the access network to the access network; an antenna for receiving signals from the access network; a processor; a memory for electronic communication with the processor; and instructions for storing in the In memory, the instructions can be executed to implement a method, which includes: · never receiving from the access network a current power allocation grant for one of the processes in the access terminal; Right if the current power allocation grant is still active, then set the power profile of the process to equal the current power allocation grant; if the current power allocation grant has not been received, determine the current power allocation of the process; determine the process One of the cumulative power configurations; the current power configuration of the process and the cumulative power configuration of the process to determine a total available power of the process; and the use of the process The total available power is determined for one of a packet sent to the network acess power level. The access terminal of Shiyue Senior Officer 1, wherein the total available power of the process is equal to a sum of at least one of the exaggerated power configuration and the current power configuration of the process and at least a portion of the cumulative power configuration of the process. The smaller of 0 95096.doc 200522613 3. If the access terminal of claim 2, wherein the material value power configuration of the process is the current power configuration of the process multiplied by a limiting factor. The access terminal of the monthly item 3, where the limiting factor depends on the current power configuration of the process 4. 5. 6. For example, the access terminal of claim 1 is restricted by a saturation level. If the access terminal of claim 1 has the accumulated power configuration of the process ^ Wherein if the power rate configuration grant is received from the access network, the method further includes receiving a hold period of the current power configuration grant, The hold period instructs the access terminal to keep the current power configuration of the process equal to the current power configuration grant for a long time, and after the hold period expires, the receiving device automatically adopts the current power configuration grant. ^ -The starting point determines the δHeye 4 power configuration. = The access terminal of claim 1, wherein the method further includes receiving the accumulated power configuration of the process from the access material. For example, if the access terminal of item 1, the method further includes: = determining whether a condition for transmitting the current power configuration grant-request to the M access network has been met; and if the condition is met, then Send the request to the access network. The access terminal of item 8, wherein the condition is that the ratio of the request sent on the reverse traffic pass :: and the data transmitted on the reverse traffic channel has been reduced below a critical value. „The access terminal, where the condition is that a request interval has elapsed since a previous May request was made to the access network. 8 9. 95096.doc 200522613 11 · An access network, which hurts, It is configured to perform bloodline communication with an access network, and includes:., Which is used to transmit a first signal to the access terminal; an antenna, which is used to receive from the access terminal A processor receives a second signal; a processor; a memory, which is in electronic communication with the processor; and instructions, which are stored in the memory, and can execute instructions to implement a method, the method includes ... The steady state value of the self-disciplined power configuration of the plurality of processes in the access terminal; / and the current power configuration of the plurality of processes is awarded to equal the estimated steady state value; and a message is sent to the material—or Each of the plurality of access terminals, each of the access terminals, transmits the grant message to the material access terminal, including the configuration grant of the material-process for the access terminal. Noon 12 2 Access Network , Which Wei Zhicheng uses for And —fan㈣ ’s access to the access network includes: access, ..., including a plurality of processes, 2 transmitters, which send the first signal to the plurality of access antennas, It is used to receive the second letter-processor from the number; such as a plurality of access terminals; 95096.doc 200522613 memory, which is in electronic communication with the processor; and instructions, which are stored in the memory, The instructions may be executed to implement a method that includes: determining a current power allocation for a subset of the plurality of processes ^ grants; transmitting a grant message to the corresponding to the subset of the plurality of processes Waiting for access terminals, the grant messages include the current power allocation grants; and allowing the access terminals to autonomously determine the current power allocation for the rest of the processes that are not in the subset. 13 · An access network It is configured for wireless communication with an access terminal 5. The access terminal includes a process. The access network includes: a transmitter for transmitting a first signal to the access terminal. An access terminal; an antenna for receiving a second signal from the access terminal; a processor; a memory for electronic communication with the processor; and a private memory which is stored in the memory , The instructions can be executed to implement a method, the method comprising: determining whether the process meets at least one quality of service requirement; if the process does not meet the at least one quality of service requirement, sending an grant message to the access terminal, The grant message includes the purpose of the process such as a power allocation grant or a cumulative power allocation grant; and if the flow meets the at least one quality of service requirement, allowing the flow to set its own power allocation autonomously. 95096.doc 200522613 14 · An access terminal is configured to perform wireless communication with an access network in a sector, and includes: a determining component for determining whether an access network for the access network has been received from the access network. One of the processes in the access terminal is the current power allocation grant; setting means, if the current power allocation grant is still active, The component is used to set one of the current power configurations of the process to be equal to the current power configuration grant; a decision component, if the current power configuration grant has not been received, the component is used to determine the current power configuration of the process; the decision component, which Is used to determine a cumulative power configuration for one of the processes; using a component 'which is used to determine the total available power of one of the processes using the current power configuration of the process and the cumulative power configuration of the process; and using a component, It is used to determine the power level of a packet sent to the access network using the total available power of the process. 15. An access network configured for wireless communication with an access terminal, which includes:… • estimates. Ten components, which are used to estimate the steady-state value of the self-disciplined power configuration for a plurality of processes in one or more access terminals; And the core component, which is used to set the current power allocation of the plurality of processes to grant the estimated steady-state values; and, the transmission component, which is used to send an award message to the one or more receivers Each of the access terminals of the access terminal, and the grant message for transmitting the specific access terminal of the H includes the current power allocation grant for one of the processes in the access terminal or one of a plurality of 95096.doc 200522613 processes. An access network configured for wireless communication with an access terminal in a sector. The access terminals include a plurality of processes. The access network includes: «decision component , Which is used to determine the current power allocation grant for a subset of the plurality of processes; a transmission component, which is used to transmit the grant message to the access terminals corresponding to the subset of the plurality of private machines The grant messages include the current power allocation grants; and the allowance component 'which is used to allow the access terminals to autonomously determine the current power allocation for the remaining processes that are not in the subset. 17. An access network configured to communicate wirelessly with an access terminal. The access terminal includes a process, and the access network includes: a determining component for determining the Whether the process meets at least one quality of service requirement; a transmission component, if the process does not meet the at least one quality of service requirement, then the reading component is used to send an grant message to the access terminal, and the grant message includes the process A current power allocation grant or a cumulative power allocation grant; and an allowable component, if the process meets the at least one quality of service requirement, the 5H component is used to allow the process to autonomously determine its own power configuration. 18. —A method for an access terminal configured for wireless communication with an access network in a sector, comprising: determining whether or not an access terminal has been received from the access network for the access Take the current power allocation grant of one of the processes of 95096.doc 200522613 in the terminal; right if the current power allocation grant is still active, set one of the current power allocation of the process equal to the current power allocation grant; if the current power allocation grant has not been received The current power configuration grant determines the current power configuration of the process; determines a cumulative power configuration of the process; uses the current power configuration of the process and the cumulative power configuration of the process to determine a total available power of the process; And the total available power of the process is used to determine the power level of a packet sent to the access network. 19. 20. A method for an access network configured for wireless communication with an access terminal, comprising: estimating an autonomous power configuration for a plurality of processes in one or more access terminals Set the current power allocation grants for the multiple processes equal to the estimated steady-state values; and send an award message to each access terminal of the one or more access terminals, transmitting The grant message to a particular access terminal includes a current power allocation grant for one of the one or more processes in the access terminal. A method for an access network configured for wireless communication with access terminals in a sector, the access terminals including a plurality of processes, the method including ... determining the plurality of processes A subset of the current power allocation grants; 95096.doc 200522613 grants a message to the child terminal corresponding to the plurality of processes to access the terminal, which is based on the price. Hai Yu; and δί1 have already included these current power configuration grants to allow the access terminals to autonomously determine the current power configuration for the remaining processes that are not in the subset. 2L-A method for configuring an access network for wireless communication with an access terminal. The access terminal includes a process that includes: determining whether the process meets at least one service quality requirement; If the process does not meet the at least one quality of service requirement, sending an grant message to the access terminal, the grant message including one of the current power allocation grant or a cumulative power allocation grant of the process; and if the flow meets the at least one A quality of service requirement allows the process to set its own power configuration autonomously. 95096.doc
TW93123528A 2003-08-06 2004-08-05 Cooperative autonomous and scheduled resource allo TWI358218B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49378203P 2003-08-06 2003-08-06
US52708103P 2003-12-03 2003-12-03

Publications (2)

Publication Number Publication Date
TW200522613A true TW200522613A (en) 2005-07-01
TWI358218B TWI358218B (en) 2012-02-11

Family

ID=37059487

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93123528A TWI358218B (en) 2003-08-06 2004-08-05 Cooperative autonomous and scheduled resource allo

Country Status (2)

Country Link
RU (1) RU2364043C2 (en)
TW (1) TWI358218B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2425669T (en) * 2009-04-29 2018-12-18 Koninklijke Philips Nv A method for communicating in a mobile network
JP2011142437A (en) * 2010-01-06 2011-07-21 Ntt Docomo Inc Radio base station device, mobile terminal device, and radio communication method
CN102148659B (en) * 2010-02-10 2018-01-30 中兴通讯股份有限公司 The transmit power collocation method and device of demodulated reference signal
EP2489165A2 (en) * 2010-02-17 2012-08-22 ZTE Corporation Methods and systems for csi-rs transmission in lte-advance systems
US9407409B2 (en) * 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
JP4812884B2 (en) * 2010-04-13 2011-11-09 三菱電機株式会社 COMMUNICATION SYSTEM, STATION-SIDE OPTICAL LINE TERMINATION DEVICE, USER-SIDE OPTICAL LINE TERMINATION DEVICE, CONTROL DEVICE, AND COMMUNICATION METHOD
DE102010025884B3 (en) * 2010-07-02 2011-07-07 Siemens Aktiengesellschaft, 80333 Method for operating processor used for robot in real time environment, involves generating auxiliary signal by timer corresponding to the expiration of difference interval by switching the operation mode
JP4987113B2 (en) * 2010-10-04 2012-07-25 株式会社エヌ・ティ・ティ・ドコモ Base station apparatus, mobile terminal apparatus and communication control method

Also Published As

Publication number Publication date
TWI358218B (en) 2012-02-11
RU2364043C2 (en) 2009-08-10
RU2006106715A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP5329573B2 (en) Method for transmit power control based on reverse activity bit evaluation and data flow specific upper / lower ramping function and corresponding radio access terminal
JP5575845B2 (en) Cooperative autonomous scheduled resource allocation for distributed communication systems
RU2388163C2 (en) Device and method of allocating carriers and controlling said carriers in multiple carrier communication systems
KR100944131B1 (en) Multi-carrier, multi-flow, reverse link medium access control for a communication system
WO2012116604A1 (en) Method, device, and system for uplink pre-schedule processing
TW200522613A (en) Cooperative autonomous and scheduled resource allocation for a distributed communication system
ZA200601023B (en) Cooperative autonomous and scheduled resource allocation for a distributed communication system
TWI336195B (en) Method and apparatus for carrier allocation and management in multi-carrier communication systems
RU2372738C2 (en) Method of control of transmission power on basis of evaluation of bit of reverse activity and prescribed linear-increasing/decreasing functions of data flows and corresponding terminal of wireless access
NZ545067A (en) Cooperative autonomous and scheduled resource allocation for a distributed communication system
NZ552300A (en) Cooperative autonomous and scheduled resource allocation for a distributed communication system
AU2008201260A1 (en) Method for transmission power control based on evaluation of a reverse activity bit and data flow specific upward/downward ramping functions, and corressponding wireless access terminal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees