TW200522578A - Outer coding methods for broadcast/multicast content and related apparatus - Google Patents

Outer coding methods for broadcast/multicast content and related apparatus Download PDF

Info

Publication number
TW200522578A
TW200522578A TW93125250A TW93125250A TW200522578A TW 200522578 A TW200522578 A TW 200522578A TW 93125250 A TW93125250 A TW 93125250A TW 93125250 A TW93125250 A TW 93125250A TW 200522578 A TW200522578 A TW 200522578A
Authority
TW
Taiwan
Prior art keywords
information
block
external
blocks
code block
Prior art date
Application number
TW93125250A
Other languages
Chinese (zh)
Other versions
TWI407793B (en
Inventor
Francesco Grilli
Alkinoos Hector Vayanos
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200522578A publication Critical patent/TW200522578A/en
Application granted granted Critical
Publication of TWI407793B publication Critical patent/TWI407793B/en

Links

Abstract

Transmission techniques are provided that improve service continuity and reduce interruptions in delivery of content that can be caused by transitions that occur when the User Equipment (UE) moves from one cell to the other, or when the delivery of content changes from a Point-to-Point (PTP) connection to a Point-to-Multipoint (PTM) connection in the same serving cell, and vice-versa. Such transmission techniques enable seamless delivery of content across cell borders and/or between different transmission schemes such as Point-to-Multipoint (PTM) and Point-to-Point (PTP). Mechanisms for adjusting different streams and for recovering content from each data block during such transitions are also provided so that data is not lost during a transition. In addition, mechanisms for realigning data during decoding at a receiving terminal are also provided.

Description

200522578 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於通信系統,更明確地說,係關於廣播 與多播内容的傳送。 【先前技術】 無線通信系統傳統上已用於載送語音流量及低資料速率 之非語音流量。今日的無線通信系統係朝可載送高速資料 率(HDR)多媒體流量(例如視訊、資料、以及其它類型的流 里)的方式來设計。多媒體廣播及多播服務(Mbms)頻道可 用來傳輸以語音、聲音以及視訊資料源為主的串流應用, 例如無線電廣播、電視廣播、以及其它類型的聲音或視訊 内容。串流資料源能忍受延遲以及特定的遺失量或位元錯 誤數,因為該些資料源有時候係間歇性且通常會被壓縮。 就此而言,抵達無線電存取網路(RAN)之傳輸資料率可能會 有很大的變化。因為應用缓衝器通常係有限的,所以,需 要MBMS傳輸機制以支援可變的資料源資料率。 【發明内容】 基地台通常會藉由傳輸一時常被組織成複數個封包的資 讯k號以提供此等多媒體流量服務給用戶台。一個封包可 能係一群可被配置成特定格式的位元組,其包含資料(酬載) 以及控制TL素。舉例來說,該等控制元素可能包含一前文 及"口貝度置值,該品質度量值可能包含一循環冗餘檢查 碼(CRC)、(一或多個)同位位元及其它類型的度量值。該等 封包通常會依據一通信頻道結構被格式化成一信息。該 95692.doc 200522578 息會在起源終端機及目的終端機之間傳送,並且可能會受 到該通信頻道特徵的影響,例如信號雜訊比、信號二二 %間交異、及其它類似的特徵。此等特徵可能會對不同頻 道内之已調變信號產生不同的影響。在其它的考量卜於 一無線通信頻道上傳輪一經調變之資訊信號必須選擇正確 的方法來保護該經調變信號中的資訊。舉例來說,此等方 法包括’編碼法、符號重複法、交錯法、及熟習本技藝的 人士所熟知的其它方法。不過,該些方法都會增加附加資 料°所以’設計工程必須在信息輸送可靠度與附加資料量 之間作折衷。 操作者通常會視有興趣接收該MBMS内容的用戶台或使 用者^又備(UE)的數里,以細胞為基礎來選擇點對點(ρτρ)連 接或點對多點(PTM)連接。 點對點(PTP)傳輸會使用專屬頻道來發送該服務給涵蓋 區域中被遥疋的使用者。「專屬」頻道會載送送至/來自單 一用戶台的資訊。點對點(PTP)傳輸中,可使用一分離的頻 道來傳輸給每個行動台。舉例來說,可經由被稱為專屬流 量頻道(DTCH)的邏輯頻道於前向連結或下行連結方向中 來發送其中一項使用者服務的專屬使用者流量。舉例來 說,若該涵蓋區域中沒有足夠多的使用者需要特定的多媒 體廣播及多播服務(MBMS)的話,點對點(PTP)通信服務通 常係最有效的。於此等情況中可使用點對點(PTP)傳輸,其 中基地台僅會將該服務傳輸給要求該項服務的特定使用 者。舉例來說,於WCDMA系統中,於超過預設數量行動台 95692.doc 200522578 以前,使用專屬頻道或點對點(ρτρ)傳輸會比較有效。 「廣播通信」或「點對多點(ΡΤΜ)通信」係於一共同通作 頻道上和複數部行動台進行通信。_「共同」頻道會載^ 达在/源自多部用戶台的資訊,並且可被數部終端機同時使 用。於點對多點(ΡΤΜ)通信服務中,若該基地台之涵蓋區域 内需要該項服務的使㈣數量超過預設臨界數量的話,— 細胞式基地台便可於_共同頻道上廣播多媒體流量服務。 於CDMA 2000系、统中,通常會利用廣播或點對多點(ρ頂) 傳輸來取代PtP傳輸,因為PtM無線電承載幾乎與⑽無線電 承載同樣有$。源自-特殊基地台的共同頻道傳輸未必要 與源自其它基地台的共同頻道傳輸產生同步。於一典型的 廣播系、、先中,會有一部以上的中央台來服務一使用者廣播 網。該(等)中央台可傳輸資訊給所有的用戶台,或是給一群 特定的用戶台。參與廣播服務的每部用戶台間會監視一共 同如向連結佗號。點對多點(ptm)傳輸可能係位於下行連結 或前向共同頻道上。通常會於一單向頻道(例如存在於前向 連結或「下行連結」方向中的共同流量頻道(CTCH))上來廣 播此共同廣播前向連結信號。由於此頻道係單向的關係, 所以该用戶台通常不會與基地台進行通信,因為允許所有 用戶單元反向與該基地台進行通信可能會讓該通信系統超 載。因此,於點對多點(PTM)通信服務的背景中,當被該等 用戶台接收的資訊中有錯誤時,該等用戶台可能無法反向 與該基地台進行通信。因此,吾人可能需要其它的資訊保 護方法。 95692.doc 200522578 於CDMA 2000系統中, 輸中進行軟結合。即使+採取;°可於點對多點(PTM)傳 信頻道的狀況還是可保護該資訊信號'通 犯曰衣減,致使目的台無法對於 頻道上被傳輪的部份封包進行解碼。於此等情況中,、 -種解決方式係由目的(用戶)台利用自 綱 將該等未被解碼的封包曹心•认 ^(AKQ) ί I重新傳輸給起源(基地)台。重新傳 有助於確保該資料封包的傳 — 右…、法正確傳輸該資料的 話,便可告知傳輸端的RLC使用者。 用戶台通常會於數種情境中進行傳輸。可以不同的方式 來歸類該些傳輸。舉例來說,可將傳輸歸類為「交又傳輸」 以及直接傳輸」。亦可將傳輸歸類為「細胞間」傳輸以及 「細胞内」傳輸。 細胞間或傳輸架構間的移轉可能會導致使用者不樂見的 服務中斷。當用戶台或使用者設備(UEm其中―個細胞移 至另-個細胞或是當該服務細胞中的多媒體廣播與多播服 務(MBMS)内容的傳送從其中—種模式變成另—種模式時 便可能會發生問題。相鄰細胞的傳輸可能會彼此產生 的時間偏移。再者,於移轉期間可能會引起額外的延遲, 因為該行動台必須決定該目標細胞中的系統資訊,此決定 作業需要△ t2的特定時間處理量。由不同細胞(或是不同傳 輸頻道類型點對點(PTP)/點對多點(PTM))所傳輸的資料串 可成會彼此互相抵銷。所以,於不同細胞的點對多點(PTM) 傳輸期間’行動台可能或會接收到兩次的相同的内容區 塊’或疋部伤的内谷區塊可能會遺失,這些都是服務品質 95692.doc 200522578 所不樂見的情形。視移轉的持續時間以及傳輸間的延遲或 對齊偏差而定,細胞間及/或點對點(PTP)傳輸與點對多點 (PTM)傳輸間的移轉可能會造成服務中斷。 所以’本技術所需要的傳輸技術將可提供服務連續性以 及減少因使用者設備(UE)從一細胞移至另一細胞時發生移 轉或是當相同服務細胞中的内容傳送從點對點(ρτρ)連接 改變成點對多點(PTM)連接(反之亦然)時發生移轉所造成 的内容傳送中斷情形。此等傳輸技術較佳的係可於複數個 細胞邊界上及/或不同傳輸架構(例如點對多點(pTM)以及 點對點(PTP))間提供無縫式傳送。同時還希望有可於此等 移轉期間調整不同資料串以及從每個f料區塊中來還原内 容的機制,致使不會於移轉期間遺失資料。此外還希望在 接收終端機處提供可於解碼期間重新排列資料的機制。 【實施方式】 」一詞係指「當作一實例、範例200522578 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates generally to communication systems, and more specifically, to the transmission of broadcast and multicast content. [Prior art] Wireless communication systems have traditionally been used to carry voice traffic and non-voice traffic with low data rates. Today's wireless communication systems are designed to carry high-speed data rate (HDR) multimedia traffic, such as video, data, and other types of streams. Multimedia broadcast and multicast service (Mbms) channels can be used to stream audio, audio, and video sources, such as radio, television, and other types of audio or video content. Streaming data sources can tolerate delays and specific loss or bit error numbers because these data sources are sometimes intermittent and are often compressed. In this regard, the transmission data rate to the radio access network (RAN) may vary significantly. Because application buffers are usually limited, MBMS transmission mechanisms are required to support variable data source data rates. [Summary of the Invention] The base station usually provides such multimedia traffic services to user stations by transmitting a signal k number which is often organized into a plurality of packets. A packet may be a group of bytes that can be configured into a specific format, which contains data (payload) and controls TL elements. For example, the control elements may include a preamble and a “buzz degree” setting, and the quality metric may include a cyclic redundancy check code (CRC), (one or more) parity bits, and other types of metric. The packets are usually formatted into a message according to a communication channel structure. The 95692.doc 200522578 information will be transmitted between the originating terminal and the destination terminal, and may be affected by the characteristics of the communication channel, such as signal-to-noise ratio, signal-to-signal crossover, and other similar characteristics. These characteristics may have different effects on modulated signals in different channels. In other considerations, a modulated information signal on a wireless communication channel upload wheel must choose the correct method to protect the information in the modulated signal. These methods include, for example, the 'encoding method, the symbol repetition method, the interleaving method, and other methods well known to those skilled in the art. However, these methods will increase the additional data. Therefore, the design project must make a compromise between the reliability of information transmission and the amount of additional data. The operator usually selects a point-to-point (ρτρ) connection or a point-to-multipoint (PTM) connection on a cell basis depending on the number of user stations or users interested in receiving the MBMS content. Point-to-point (PTP) transmissions use dedicated channels to send the service to remote users in the coverage area. "Exclusive" channels carry information to / from a single user station. In point-to-point (PTP) transmission, a separate channel can be used to transmit to each mobile station. For example, dedicated user traffic for one of the user services may be sent in a forward link or a downlink direction through a logical channel called a dedicated traffic channel (DTCH). For example, point-to-point (PTP) communication services are usually the most effective if there are not enough users in the coverage area to require a specific multimedia broadcast and multicast service (MBMS). In these cases, point-to-point (PTP) transmission can be used, where the base station transmits the service only to the specific user who requested the service. For example, in a WCDMA system, it is more effective to use a dedicated channel or point-to-point (ρτρ) transmission before exceeding a preset number of mobile stations 95692.doc 200522578. "Broadcast communication" or "point-to-multipoint (PTM) communication" is to communicate with a plurality of mobile stations on a common communication channel. _ "Common" channel will contain information from / from multiple subscriber stations and can be used by several terminals simultaneously. In point-to-multipoint (PTM) communication services, if the number of users requiring the service in the coverage area of the base station exceeds a preset critical number, the cellular base station can broadcast multimedia traffic on the common channel service. In the CDMA 2000 system, the PtP transmission is usually replaced by broadcast or point-to-multipoint (ρ top) transmission, because the PtM radio bearer is almost the same as the ⑽ radio bearer. A common channel transmission from a particular base station need not be synchronized with a common channel transmission from another base station. In a typical broadcast system, first and middle school, there will be more than one central station to serve a user broadcast network. The (etc.) central station can transmit information to all subscriber stations or to a specific group of subscriber stations. Each user station participating in the broadcast service will monitor the same number as the link. Point-to-multipoint (ptm) transmissions may be on downlink or forward common channels. This co-broadcast forward link signal is usually broadcast on a unidirectional channel (such as a common traffic channel (CTCH) in the forward link or "downlink" direction). Because this channel is unidirectional, the subscriber station usually does not communicate with the base station, because allowing all subscriber units to communicate with the base station in the reverse direction may overload the communication system. Therefore, in the context of point-to-multipoint (PTM) communication services, when there is an error in the information received by such subscriber stations, the subscriber stations may not be able to communicate with the base station in the reverse direction. Therefore, we may need other methods of information protection. 95692.doc 200522578 In the CDMA 2000 system, soft combining is performed during the transmission. Even if + is taken; ° the status of the PTM channel can still protect the information signal, which means that the destination station cannot decode part of the packets on the channel that are being transferred. In these cases, the first solution is to retransmit these undecoded packets to the origin (base) station by the destination (user) station. Retransmission helps to ensure the transmission of the data packet-right ..., if the data is transmitted correctly, the transmitting RLC user can be informed. The subscriber station usually transmits in several scenarios. These transmissions can be categorized in different ways. For example, transmissions can be classified as "cross-over transmission" and direct transmission. Transmissions can also be classified as "intercellular" transmissions and "intracellular" transmissions. Migration between cells or transport architectures can lead to undesired service interruptions. When the user station or user equipment (UEm where one cell moves to another cell) or when the multimedia broadcast and multicast service (MBMS) content transmission in the serving cell changes from one mode to another Problems may occur. The transmission of adjacent cells may be time-shifted from each other. Moreover, additional delay may be caused during the transfer because the mobile station must determine the system information in the target cell. This decision The operation requires a certain amount of processing time at t2. The data strings transmitted by different cells (or point-to-point (PTP) / point-to-multipoint (PTM) of different transmission channel types) can offset each other. Therefore, different 'Point of mobile's point-to-multipoint (PTM) transmission' The mobile station may or may receive the same block of content twice 'or the inner valley block of the crotch may be lost, these are the quality of service 95692.doc 200522578 Undesirable conditions. Depending on the duration of the transfer and the delay or misalignment between transmissions, the transfer between cells and / or point-to-point (PTP) transmissions and point-to-multipoint (PTM) transmissions Can cause service interruption. So 'The transmission technology required by this technology will provide service continuity and reduce migration when user equipment (UE) moves from one cell to another or when the same service cell Disruption of content delivery caused by migration when content delivery changes from a point-to-point (ρτρ) connection to a point-to-multipoint (PTM) connection (and vice versa). These transmission technologies are better at multiple cell boundaries And / or different transmission architectures (such as point-to-multipoint (pTM) and point-to-point (PTP)) to provide seamless transmission. At the same time, it is hoped that different data strings can be adjusted during these migrations and from each data area The mechanism of restoring the content in the block, so that no data is lost during the transfer. In addition, it is desirable to provide a mechanism at the receiving terminal that can rearrange the data during decoding. [Embodiment] The term "refers to as a Examples, examples

本文所使用的「示範性」 或說明」。本文中當作「示範As used herein, "exemplary" or description. This article is used as a "model

用戶單兀」、「終端機」、以及「使用者設備(UE 換而且本文中係代表可和一存取網路(例如仍 線電存取網路(UTRAN))m耔沾於认# _… UMTS系統中,使用者 UMTS網路服務的元件, 用者之訂購資訊的USIM。一User Unit "," Terminal ", and" User Equipment (UE is changed and this article represents a network that can be connected to an access network (such as UTRAN)) … In the UMTS system, the components of the user's UMTS network services, the USIM of the user's subscription information.

可能係會移動的或是靜 95692.doc 200522578 止的,並且通常包含任何 力 其可透過無線頻道或有線:貝:7"件、或終端機, 進行通訊。行動台可在包括但;使用光纖或同軸鐵線) 體、外部或内部數據機、或二咐、小型快閃記憶 中予以具體^ …線或有線電話之類的元件 「連接設定狀態」一詞代矣 乂表的係一行動台正在與一基地 cr建立主動流量頻道連接的狀態。 「流量狀態」一夠代表的係-行動台已經與-基地台建 立主動流量頻道連接後的狀態。 本文所使|的「通信頻道」―詞所指的係依照本文的實 體頻道或邏輯頻道。 ' 本文所使用的「實體頻道」—詞代表的係載有可於空中 介面中通信之使用者資料或控制資訊的頻道。實體頻道為 提供無線電平台的「傳輸媒體」,資訊實際上係透過該平台 來進行傳輸’而且實體頻道可用來攜載於空中介面中通信 之信令與使用者資料。-實體頻道_般係包含頻率擾料 頻道化碼之組合。於上行連結方向中可能還包含相對相 位。依照该行動台試圖進行的動作而定,上行連結方向中 可能會使用數個不同的實體頻道。於UMTS系統中,實體頻 道一詞可能還代表針對Uu介面上不同用途所指派的不同頻 寬種類。該等實體頻道會構成該使用者設備(UE)域以及網 路存取域間之Uu介面的實體存在。可利用用於空中介面中 傳輸資料的實體映對及屬性來定義實體頻道。 本文所使用的「傳輸頻道」一詞代表的係用以於同傳實 95692.doc -11 - 200522578 體層實體間進行資料傳輸的通信路徑。傳輸頻道會與資訊 傳輸方式有關。-般來說有兩種傳輸頻道類型,共同傳輸 頻道及專屬傳輸頻道。可利用如何於該實體層之空中介面 上進仃貝料傳輸以及利用何種特徵來進行傳輸(舉例來 說’是否使用專屬或共同實體頻道、或是是否多工處理邏 輯頻道)以疋義傳輸頻道。傳輸頻道可作為該實體層的服務 存取點(APS)。抑㈣系、統t,傳輸頻道會描述如何傳輸 "亥等邏輯頻道,並且將該些資訊流映對至實體頻道。傳輸 頻道可用於在该媒體存取控制(MAC)層與該實體層⑽之 間載送L 7與使用者貧料。無線電網路控制(rnc)會參見傳 輸頻道。資訊會於能夠被映對至實體頻道之數個傳輸頻道 中任何者上從該MAC層傳送至該實體層。 ,本文所使料「邏輯頻道」—詞代表的係傳輸特定資訊 類型或該無線電介面專屬的資訊串。邏輯頻道會與被傳輸 的資訊有關。可藉由傳輸何等類型之資訊(例如,信令或使 用者資料)來定義一邏輯頻道’並可將其理解為該網路及玖 端機應於不同時間點實施的不同任務。邏輯頻道可能會被 映對至於該行動台域及該存取域时施實際資訊傳輸的傳 輸頻道。資訊會透過可經由傳輸頻道(其會被映對至實體頻 道)被映對的邏輯頻道來傳送。 本文所使用的「專屬頻道」—詞代表的係通常專屬於一 特定使用者或為-特定使用者保留的頻道,而且會載送資 Λ至—特疋的仃動台、用戶單元、或使用者設備,或是從 特疋的仃動台、用戶單元、或使用者設備來載送資訊。 95692.doc -12- 200522578 一專屬頻道通常會攜載以既定使用者為目標的資訊,其勺 含該實際服務的資料以及更高層的控制資訊。可藉由在2 特定頻率上之一特定碼來識別一專屬頻道。—專屬頻道可 能係雙向的,以便允許回授。 本文所使用的「共同頻道」一詞代表的係會攜载資訊給 多部行動台/從多部行動台攜載資訊的傳輸頻道。於共同= 道中,資訊會被所有的行動台共享。一共用頻道可在—細 胞内的所有使用者或一群使用者之間進行分割。 本文所使用的「點對點(PTP)通信」一詞所指的係會可於 一專屬、實韙通信頻道上被傳輸給單一行動台的通信。、 本文所使用的「廣播通信」或「點對多點(ΡΤΜ)通信」等 詞所指的係可於一共同通信頻道上和複數部行動台心 信。 本文所使料「反向連結或上行連結」—詞代表的係行 動台可於無線電存取網路中透過該連結發送信號給一基地 台的通信頻道/連結。此頻道亦可用於從—行動台向—行動 基地台或從一行動基地台向一基地台來傳輸信號。 本文所使用的「前向連結或下行連結」一詞所指的係一 無線電存取網路巾透㈣連結發送信號給—行動台的通信 頻道/連結。 本文所使用的「傳輸時間間距㈢)」-詞代表的係資料 從更高層抵達實體層的時間間隔。傳輸時間間距⑽可能 代表的係-傳輸區塊集(TBS)的抵達之間時間,並且約等^ 該實體層於該無線電介面上傳輪TBS的週期。TTI期間於二 95692.doc 200522578 傳輸頻道上被發送的資料可能會被編碼且交錯在一起。一 TT!可延展多個無線電訊框,並且可能係最小交錯週期的倍 數。針對單-連接被多工在-起的不同傳輪頻道的τΉ的起 始位置必須進行時間排列。複數個TTI會具有一共同起始 點。媒體存取控制會於每個TTI中傳送—傳輸區塊集給該^ 體層。被映對i同-實體層的不同傳輪頻道可能會且有不 同的傳輸時間距(TTI)持續時間,而且可於—ττι中發送 多個PDU。 本文中所使用的「封包」-詞代表的係_群位元,其包 含被配置成特定格式的資料或酬载及控制元素。舉例來 說,該等控制元素可能包括前文、品f度量值、及熟習本 技術的人士所熟知的其它元素。舉例來說,品質度量值包 括循環冗餘檢查(CRC),同位位元,及熟習本技術的人士所 熟知的其它類型度量值。 本文所使用的「存取網路」一詞所指的係存取該網路所 需要的設備》存取網路可能包括由複數部基地台(BS)以及 一個以上基地台控制器(BSC)所組成的集合或網路。該存取 網路可在多個用戶台之間傳輸資料封包。該存取網路可能 會進一步被連接到該存取網路以外的額外網路,如公司内 部網路或網際網路之類,並且可在複數個存取終端及此等 外部網路之間傳輸資料封包。於UMTS系統中,該存取網路 可能會被稱為UMTS陸地無線電存取網路(UTRAN)。 本文中所使用的「核心網路」一詞代表的係用以連接至 公眾切換電話網路(PSTN)(針對電路切換(CS)域中的電路 95692.doc -14- 200522578 切換呼叫)或是封包資料網路(PSDN)(針對封包切換(ps)域 中的封包切換呼叫)中任一者的切換或路由功能。「核心網 路」一詞還代表行動能力與用戶位置管理的路由功能以及 認證服務的路由功能。該核心網路包含用於切換與用戶控 制所必須的網路元素。 本文中所使用的「基地台」一詞代表的係一「起源台」, 其包含可和行動台進行通信的硬體。於UMTS系統中,可利 用「節點B」一詞來替代「基地台」一詞。一基地台可能係 固定的或是會移動的。 本文中所像用的「細胞」一詞代表硬體或地理涵蓋區域, 視使用該術語的内文而定。 本文中所使用的「服務資料單元(SDU)」一詞代表可利用 位於感興趣之協定上方的協定來交換的資料單元。 本文中所使用的「酬載資料單元(PDU)」一詞代表可利用 位於感興趣之協定下方的協定來交換的資料單元。若無法 清楚確認感興趣之協定的話,那麼將會以名稱來作特定提 示。舉例來說,FEC-PDU為FEC層的PDU。 本文所使用的「軟交遞」一詞表示的係介於一用戶台與 兩個以上區段之間的通其中母個區段皆屬於不同的、細 胞。反向連結通信可被兩個區段接收,而前向連結通作貝] 可同時於兩個以上區段的前向連結上被攜載。 本文中所使用的「更軟交遞」一詞表示的係介於一用戶 台與兩個以上區段之間的通信,其中每個區段皆屬於同— 個細胞。反向連結通信可被兩個區段接收,而前向連結通 95692.doc -15- 200522578 信則可同時於兩個以上區段的前向連結中其中一者上被攜 載。 本文中所使用㈤「冊J除」-詞表示的係無法確認某項信 息,並且還可用以代表可能於解碼時間中遺失的一組位元。 「交又移轉」一詞可定義成從點對點(PTP)傳輸移轉至點 對多點(PTM)傳輸,或是反向移轉。共有四種可能的交又移 轉:從細胞A中的點對點(PTP)傳輸移轉至細胞B中的點對多 點(ΡΤΜ)傳輸、從細胞Α中的點對多點(ΡΤΜ)傳輸移轉至細 月已B中的點對點(ρτρ)傳輸、從細胞A中的點對點(ρτρ)傳輸 移轉至細胞4中的點對多點(PTM)傳輸、以及從細胞A中的 點對夕點(PTM)傳輸移轉至細胞a中的點對點(ρΤρ)傳輸。 「直接移轉」一詞可定義成從點對點傳輸移轉至另一點 對點傳輸以及從點對多點傳輸移轉至另一點對多點傳輸。 共有兩種可能的直接移轉:從細胞A中的點對點(ρτρ)傳輸 移轉至細胞Β中的點對點(ΡΤΡ)傳輸、以及從細胞八中的點對 多點(ΡΤΜ)傳輸移轉至細胞Β中的點對多點(ρτΜ)傳輸。 「細胞間移轉」一詞係代表跨越細胞邊界的移轉。共有 四種可旎的細胞間移轉··從細胞Α中的點對點(ρΤρ)傳輸移 轉至細胞B中的點對點(PTP)傳輸、從細胞A中的點對多點 (PTM)傳輸移轉至細胞B中的點對多點(pTM)傳輸、從細胞a 中的點對點(PTP)傳輸移轉至細胞a中的點對多點(pTM)傳 輸、以及從細胞Α中的點對多點(ΡΤΜ)傳輸移轉至細胞Α中 的點對點(PTP)傳輸。一般來說,最常發生的移轉係跨越細 胞邊界從點對多點(PTM)傳輸移轉至點對多點(PTM)傳輸。 95692.doc -16- 200522578 「細胞内移轉」一詞係代表於一細胞内從其中一種模式 移轉至另一種模式。共有兩種可能的細胞内移轉:從細胞A 中的點對點(PTP)傳輸移轉至細胞A中的點對多點(PTM)傳 輸、以及從細胞A中的點對多點(PTM)傳輸移轉至細胞A中 的點對點(PTP)傳輸。 「無線電承載」一詞係代表層2所提供的服務,用以於使 用者設備(UE)及UMTS陸地無線電存取網路(UTRAN)間傳 輸使用者資料。 現在將討論本發明的具體實施例,其中會將上面討論的 觀點實現於WCDMA或UMTS通信系統中。圖1-5C解釋的係 慣用UMTS或WCDMA系統的部份觀點,其中本文所述中可 套用於本說明中的本發明觀點僅供作解釋與限制用途。應 該瞭解的係,本發明的觀點亦可套用於同時攜載語音與資 料的其它系統中,例如符合下面標準的GSM系統與CDMA 2000系統:「第三代夥伴合作計晝」(3GPP),其係具現於包 含下面文件編號之文件組中:30丁325.21卜30丁325.212、 3G TS 25.213 以及 3G TS 25.214 (W-CDMA 標準);或是 「TR-45_5 cdma 2000展頻系統之實體層標準」中的標準 (IS-2000標準);以及GSM規格,例如TS 04.08(行動無線電 介面層3規格)、TS 05.08(無線電子系統連結控制)、以及TS 05.01(無線電路徑上之實體層(通用說明))。It may be mobile or static 95692.doc 200522578, and usually contains any force. It can communicate through wireless channels or wired: Shell: 7 ", or terminal. Mobile stations can be specified in devices including, but not limited to, using optical fiber or coaxial iron wire, external or internal modems, or two or a small flash memory ^… wire or wire telephone such as "connection setting state" Acting on behalf of the state of a mobile station is establishing an active traffic channel connection with a base cr. The “traffic state” is a state where the mobile station has established an active traffic channel with the base station. The "communication channel" used in this article refers to the physical channel or logical channel according to this article. 'The term' physical channel 'as used herein refers to a channel containing user data or control information that can be communicated over the air interface. The physical channel is a "transmission medium" that provides the radio platform. Information is actually transmitted through the platform 'and the physical channel can be used to carry signaling and user data for communication in the air interface. -The physical channel is generally a combination of frequency scrambling channelization codes. Relative phase may also be included in the upward link direction. Depending on what the mobile station is trying to do, several different physical channels may be used in the uplink direction. In the UMTS system, the term physical channel may also mean different types of bandwidth assigned for different uses on the Uu interface. These physical channels will constitute the physical existence of the Uu interface between the user equipment (UE) domain and the network access domain. Physical channels can be defined using physical mappings and attributes used to transmit data in the air interface. The term "transmission channel" used in this article refers to the communication path used for data transmission between simultaneous entities 95692.doc -11-200522578. The transmission channel is related to the information transmission method. -In general, there are two types of transmission channels, a common transmission channel and a dedicated transmission channel. It can be used to transmit materials on the air interface of the physical layer and what characteristics are used for transmission (for example, 'whether to use a dedicated or common physical channel or whether to multiplex logical channels). Channel. The transport channel serves as a service access point (APS) for this physical layer. In addition, the transmission channel will describe how to transmit logical channels such as " Hai, etc., and map this information stream to the physical channel. The transport channel can be used to carry L7 and user data between the media access control (MAC) layer and the physical layer. Radio network control (rnc) will refer to the transmission channel. Information is transmitted from the MAC layer to the physical layer on any of several transmission channels that can be mapped to the physical channel. The word "logical channel" used in this article represents the transmission of a specific type of information or an information string specific to the radio interface. Logical channels are related to the information being transmitted. A logical channel can be defined by what type of information (e.g., signaling or user data) is transmitted and can be understood as different tasks that the network and the terminal should perform at different points in time. Logical channels may be mapped to transmission channels that perform actual information transmission for the mobile station domain and the access domain. Information is transmitted through logical channels that can be mapped via a transmission channel (which is mapped to a physical channel). The term "exclusive channel" as used in this article refers to a channel that is usually dedicated to or reserved for a specific user, and will carry funds to a special mobile station, user unit, or use Other devices, or from a special automation station, user unit, or user equipment to carry information. 95692.doc -12- 200522578 An exclusive channel usually carries information targeted at a given user, which contains data about the actual service and higher-level control information. A specific channel can be identified by a specific code on a specific frequency of 2. — Exclusive channels may be bi-directional to allow feedback. The term "common channel" as used herein refers to a transmission channel that carries information to / from multiple mobile stations. In Common = Road, information will be shared by all mobile stations. A shared channel can be split between all users within a cell or a group of users. As used herein, the term "point-to-point (PTP) communications" refers to communications that can be transmitted to a single mobile station on a dedicated, actual communication channel. The terms "broadcast communication" or "point-to-multipoint (PTM) communication" as used herein refer to a common communication channel and multiple mobile stations. The "reverse link or uplink link" used in this article is the term used by the mobile station to send a signal to a communication channel / link of a base station through the link in a radio access network. This channel can also be used to transmit signals from a mobile station to a mobile base station or from a mobile base station to a base station. As used herein, the term "forward link or downlink" refers to a radio access network transmitting a signal to a communication channel / link of a mobile station. As used in this paper, the "transmission time interval ㈢"-the term represents the time interval from the higher layer to the physical layer. The transmission time interval ⑽ may represent the time between the arrival of the system-transport block set (TBS), and is equivalent to the period of the TBS upload round of the physical layer on the radio interface. The materials transmitted on the second 95692.doc 200522578 transmission channel during TTI may be encoded and interlaced. A TT! Can extend multiple radio frames and may be a multiple of the minimum interleaving period. The start position of τΉ for different pass channels with single-connection multiplexed in-must be time-aligned. Multiple TTIs will have a common starting point. The media access control is transmitted in each TTI-the block set is transmitted to the body layer. Different transmission channels of the same-to-physical layer may have different transmission time interval (TTI) durations, and multiple PDUs can be sent in ττι. As used herein, the "packet" -word represents the group_group bit, which contains data or payload and control elements configured in a specific format. These control elements may include, for example, the foregoing, the product f metric, and other elements well known to those skilled in the art. For example, quality metrics include cyclic redundancy check (CRC), parity, and other types of metrics known to those skilled in the art. As used herein, the term "access network" refers to the equipment required to access the network. The access network may include multiple base stations (BS) and more than one base station controller (BSC). A collection or network. The access network can transmit data packets between multiple subscriber stations. The access network may be further connected to additional networks other than the access network, such as a company intranet or the Internet, and may be between a plurality of access terminals and these external networks Transmission of data packets. In UMTS systems, this access network may be referred to as the UMTS Terrestrial Radio Access Network (UTRAN). The term "core network" as used herein refers to a connection to the public switched telephone network (PSTN) (for circuits in the Circuit Switched (CS) domain 95692.doc -14- 200522578 switched calls) or Switching or routing functions for any of the Packet Data Network (PSDN) (for packet switching calls in the packet switching (ps) domain). The term “core network” also refers to the routing function for mobile capabilities and user location management, and the routing function for authentication services. The core network contains the network elements necessary for switching and user control. The term "base station" as used in this article refers to a "origin station" that contains hardware that can communicate with a mobile station. In the UMTS system, the term "node B" can be used instead of the term "base station". A base station may be fixed or mobile. The term "cell" as used in this article means either hardware or geographical coverage, depending on the context in which the term is used. The term "service data unit (SDU)" as used herein refers to a unit of data that can be exchanged using a protocol that is above the protocol of interest. As used herein, the term "payload data unit (PDU)" refers to a unit of data that can be exchanged using a protocol located below the protocol of interest. If the agreement of interest cannot be clearly identified, then specific mentions will be made by name. For example, the FEC-PDU is a PDU at the FEC layer. The term "soft handover" as used in this paper refers to a cell between a subscriber station and two or more segments, in which the parent and child segments belong to different cells. Reverse link communication can be received by two sectors, and forward link communication can be carried on the forward links of more than two sectors at the same time. The term "softer delivery" as used herein refers to communication between a user station and more than two segments, where each segment belongs to the same cell. The reverse link communication can be received by two sectors, and the forward link 95692.doc -15- 200522578 message can be carried on one of the forward links of two or more sectors simultaneously. The word "Division J" used in this paper indicates that it is impossible to confirm a certain information and can also be used to represent a group of bits that may be lost in decoding time. The term "transfer and transfer" can be defined as a transfer from point-to-point (PTP) transmission to point-to-multipoint (PTM) transmission, or vice versa. There are four possible transfers: transfer from point-to-point (PTP) transmission in cell A to point-to-multipoint (PTM) transmission in cell B, and transfer from point-to-multipoint (PTM) transmission in cell A Go to point-to-point (ρτρ) transmission in Asuka, transfer from point-to-point (ρτρ) transmission in cell A to point-to-multipoint (PTM) transmission in cell 4, and point-to-night point in cell A (PTM) transmission is transferred to point-to-point (ρΤρ) transmission in cell a. The term "direct transfer" can be defined as a transfer from point-to-point transmission to another point-to-point transmission and a point-to-multipoint transmission to another point-to-multipoint transmission. There are two possible direct transfers: transfer from point-to-point (ρτρ) transmission in cell A to point-to-point (PTP) transmission in cell B, and transfer from point-to-multipoint (PTM) transmission to cell 8 Point-to-multipoint (ρτM) transmission in B. The term "intercellular migration" stands for migration across cell boundaries. There are four types of cell-to-cell transfers: · Transfer from point-to-point (ρΤρ) transfer in cell A to point-to-point (PTP) transfer in cell B, transfer from point-to-multipoint (PTM) transfer in cell A To point-to-multipoint (pTM) transmission in cell B, transfer from point-to-point (PTP) transmission in cell a to point-to-multipoint (pTM) transmission in cell a, and point-to-multipoint transmission in cell A (PTM) transmission migrates to point-to-point (PTP) transmission in cell A. In general, the most common migrations are cell-to-multipoint (PTM) transmissions that move across cell boundaries to point-to-multipoint (PTM) transmissions. 95692.doc -16- 200522578 The term "intracellular migration" refers to the migration from one mode to another in a cell. There are two possible intracellular migrations: migration from point-to-point (PTP) transmission in cell A to point-to-multipoint (PTM) transmission in cell A, and point-to-multipoint (PTM) transmission in cell A Transfer to point-to-point (PTP) transmission in cell A. The term "radio bearer" refers to the services provided by layer 2 to transfer user data between user equipment (UE) and UMTS terrestrial radio access network (UTRAN). Specific embodiments of the invention will now be discussed in which the ideas discussed above can be implemented in a WCDMA or UMTS communication system. Figures 1-5C explain some of the views of a conventional UMTS or WCDMA system, in which the views of the present invention described in this specification that can be applied to this description are for illustrative and limiting purposes only. It should be understood that the idea of the present invention can also be applied to other systems that carry both voice and data, such as the GSM system and CDMA 2000 system that meet the following standards: "3rd Generation Partnership Project" (3GPP), which The kit is now in the file group containing the following document numbers: 30 D 325.21 B 30 D 325.212, 3G TS 25.213 and 3G TS 25.214 (W-CDMA standard); or "TR-45_5 cdma 2000 spread spectrum system physical layer standard" Standard (IS-2000 standard); and GSM specifications, such as TS 04.08 (Mobile Radio Interface Layer 3 Specification), TS 05.08 (Radio Subsystem Link Control), and TS 05.01 (Physical Layer on the Radio Path (General Description) ).

舉例來說,雖然說明中規定可利用通用陸地無線電存取 網路(UTRAN)空中介面來實現無線電存取網路20,但是於 GSM/GPRS系統中,無線電存取網路20可能係一 GSM/EDGE 95692.doc 17 200522578 無線電存取網路(GERAN),甚至於系統間的情況中,其可 能會包括UTRAN空中介面的細胞以及GSM/EDGE空中介面 的細胞。 UMTS網路拓樸 圖1為根據UMTS網路拓樸之通信系統的方塊圖。一 UMTS系統包含使用者設備(UE)10、一存取網路20、以及一 核心網路30。UE 10會被耦合至該存取網路,而該存取網路 會被耦合核心網路30,核心網路30則可被耦合至一外部網 路。 UE 10包含行動設備12及一通用用戶識別模組 (USIM) 14,該模組含有使用者的訂購資訊。Cu介面(未顯示) 係介於USIM 14與該行動設備12間的電氣介面。UE 10通常 係一允許使用者存取UMTS網路服務的元件。UE 10可能係 一行動元件(例如細胞式電話)、一固定台、或是其它資料終 端機。舉例來說,該行動設備可能係一於空中介面(Uu)上 進行無線電通信所使用的無線電終端機。UE可經由Uu介面 來存取該系統的固定部份。USIM通常係一駐存在含有一微 處理器的「智慧卡」或其它邏輯卡之上的應用程式。該智 慧卡會保有用戶身份、可實施認證演算法、並且以加密密 鑰來儲存認證信號以及儲存終端機處所需要的訂購資訊。 存取網路20包含用於存取該網路的無線電設備。WCDMA 系統中,該存取網路20係通用陸地無線電存取網路(UTRAN) 空中介面。UTRAN包含至少一無線電網路子系統(RNS), 該子系統包含至少一基地台或「節點B」22,該基地台係被 95692.doc -18- 200522578 耦合至至少一無線電網路控制器(RNC)24。 該RNC會控制該UTRAN的無線電資源。存取網路20的該 等RNC 24會透過Iu介面與核心網路30進行通信。Uu介面、 Iu介面25、Iub介面以及Iur介面可讓不同廢商的設備進行連 網,並且皆規定於3GPP標準中。無線電網路控制器(rnC) 的設計方式各家薇商皆不相同,所以,下文將作一般性說 明。 無線電網路控制器(RNC)24係作為UMTS陸地無線電存 取網路(UTRAN)的切換與控制元素,並且係位於iub介面與 Iu介面25之間。該RNC可作為UTRAN提供給該核心網路30 之全部服務的服務存取點,舉例來說,和該使用者設備進 行連接的管理。Iub介面23會連接節點B 22及無線電網路控 制器(RNC)24。Iu介面會將UTRAN連接至該核心網路。無 線電網路控制器(RNC)會於該Ιιι承載器與該等基地台間提 供一切換點。使用者設備(UE) 10於本身和無線電網路控制 器(RNC)24之間可能會具有數個無線電承載。該無線電承載 和使用者設備(UE)内容有關,該内容為Iub所需要的一組定 義值,用以安排該使用者設備(UE)和無線電網路控制器 (RNC)之間的共同連接及專屬連接。該等個別的RNC 24可 於一選配的Iur介面上彼此進行通信,該介面允許被連接至 不同節點22的細胞之間進行軟交遞。因此,Iur介面允許進 行RNC間連接。於此等情況中,一服務MC會維持和核心網 路30相連的Iu 25連接,並且實施選擇器及外部迴路功率控 制功能,同時一漂移RNC會透過一部以上的基地台22將可 95692.doc -19- 200522578 於该Iur介面上進行交換的訊框傳輸給行動台丨〇。 控制一節點Β22的RNC可稱為節點Β的控制RNc,並且控 制自己的細胞的負載和壅塞情形,同時還會針對欲於該些 細胞中被建立的新無線電連結執行許可控制和編碼指派。 RNC與基地台(節點B)可透過Iub介面23來相連並且於該 "面上進行通#。該等RNC會控制被耦合至一特殊% 之每部基地台22對該等無、線電資源的使用,障形。每部基地 台22則會控制-個以上的細胞,並且提供和行動台相連 的無線電連結。該基地台可實施介面處理,例如頻道編碼 及交錯處理'速率調適及展開處理。該基地台還會實施基 本的無線電資源管理作業,例如迴路間功率控制。基地台 22會轉換⑽與仙介面23、26間的資料流。基地台22還會參 與無線電資源管理。空中介面Uu 26會將每部基地台22耦合 至該行動台10。1¾等基地台可負責一個以上細胞至該行動 台10的無線電傳輸作業,並且負責從該行動台1〇至一個以 上細胞的無線電接收作業。 核心網路30包含所有的切換及路由功能,用以進行下面 工作:(1)若電路切換呼叫存在的話,用以連接至PSTN42, 或是若封包切換呼叫存在的話,用以連接至封包資料網路 (PDN) ; (2)實施行動能力與用戶位置管理;以及(3)實施認 證服務。核心網路30可能包含一家用位置登錄器(HlR)32、 行動切換服務中心/訪客位置登錄器(MSC/VLR)34、一閘 道订動切換中心(GMSC)36、一服務通用封包無線電服務支 援節點(SGSN)38、以及一閘道GpRS支援節點(GGSN)4〇。 95692.doc •20- 200522578 若電路切換呼叫存在的話,核心網路30可被耦合至一外 部電路切換(CS)網路42(例如公眾切換電話網路(PSTN)或 (ISDN)),用以提供電路切換連接;若封包切換呼叫存在的 話,則可被耦合至一 PS網路44(例如網際網路),用以提供 封包資料服務連接。 UMTS信令協定堆疊 圖2為UMTS信令協定堆疊110的方塊圖。UMTS信令協定 堆疊110包含一存取階層及一非存取階層(NAS)。 存取階層通常包含一實體層120 ;層2 130,其包含一媒 體存取控制(MAC)層140及一無線電連結控制(RLC)層 150;以及一無線電資源控制(RRC)層160。下文將更詳細地 說明存取階層的各層。 UMTS非存取階層層基本上和GSM上層相同,並且可分割 為一電路切換部份170及一封包切換部份180。電路切換部 份170包含一連接管理(CM)層172及一行動能力管理(MM) 層178。CM層172會處理電路切換呼叫並且包含各子層。呼 叫控制(CC)子層174會執行建立與釋放之類的功能。增補服 務(SS)子層176會執行呼叫前傳及三向呼叫之類的功能。短 訊服務(SMS)子層177會執行短訊服務。MM層178會處理電 路切換呼叫的位置更新與認證作業。封包切換部份1 80包含 一交談管理(SM)子層182及一 GPRS行動能力管理(GMM)子 層184。交談管理(SM)子層182會藉由執行建立與釋放之類 的功能來處理封包切換呼叫,並且還包含一短訊服務(SMS) 區段183。GMM子層184會處理封包切換呼叫的位置更新與 95692.doc -21 - 200522578 認證作業。 圖3為UMTS協定堆疊之封包切換使用者平面的方塊圖。 該堆疊包含一存取階層(AS)層及一非存取階層(NAS)層。 NAS層包含應用層80及封包資料協定(PDP)層90。應用層80 係位於使用者設備(UE) 10與遠端使用者42之間。PDP層 90(例如IP或PPP)係位於GGSN 40與使用者設備(UE)10之 間。下層封包協定(LLPP)39係位於遠端使用者42與SGSN 38 之間。Iu介面協定25係位於無線電網路控制器(RNC)24與 SGSN 38之間,Iub介面協定係位於無線電網路控制器 (RNC)24與節」點B 22之間。下文將說明AS層的其它部份。 存取階層(AS)層 圖4為UMTS信令協定堆疊的存取階層部份的方塊圖。慣 用的存取階層包含實體層(L1) 120 ;資料連結層(L2) 130,其 包含下面的子層:媒體存取控制(MAC)層140、無線電連結 控制(RLC)層150、封包資料收斂協定(PDCP)層156、廣播/ 多播控制(BMC)層158 ;以及一無線電資源控制(RRC)層 160。下文將更詳細地說明該些層。 無線電承載會攜載應用層與層2(L2) 130間的使用者資料 163。控制平面信令161可作為所有的UMTS特定控制信令, 並且於信令承載中包含應用協定,用以傳輸該等應用協定 信息。該應用協定可用來建立送至UE 10的承載。該使用者 平面會傳輸被該使用者發送及接收的所有使用者平面資訊 1 63,例如語音呼叫中經過編碼的語音或是網際網路連接中 的封包。使用者平面資訊163會攜載資料串及該些資料串的 95692.doc -22- 200522578 資料承載。每個資料串的特徵為該介面所規定的一個以上 · 訊框協定。 無線電資源控制(RRC)層160可當作該存取階層的總控制 : 器,並且組織該存取階層中的所有其它層。RPC層160會產 生控制平面信令161,其可控制無線電連結控制單元152、 實體層(L 1)120、媒體存取控制(MAC)層140、無線電連結控 制(RLC)層150、封包資料收斂協定(PDCP)層156、以及廣播 /多播控制(BMC)層158。無線電資源控制(RRC)層160會決 φ 定測量的類型,並且回報該些測量結果。RPC層160還可作 為非存取階滑的控制與信令介面。 更明確地說,RRC層160會廣播系統資訊信息,該等信息 同時包含所有使用者設備(UE)10的存取階層及非存取階層 資訊元素。RRC層160會建立、維持、以及釋放UTRAN 20 及UE 10之間的無線電資源控制(RRC)連接。UE RRC會要求 該連接,而UTRAN RRC則會建立與釋放該連接。RRC層160 還會建立、重組、以及釋放UTRAN 20及UE 10之間的無線 電承載,其中係由UTRAN 20來啟動該些作業。 RRC層160還會處理使用者設備(UE)10行動能力的各項 特點。該些程序和UE狀態(不論該呼叫是否為電路切換呼叫 或封包切換呼叫)以及新細胞的無線電存取技術(RAT)相 依。RRC層160還會傳呼UE 10。不論UE是否在傾聽該傳呼 一 頻道或該傳出指示頻道,UTRAN RRC都會傳呼該UE。該 UE的RRC會通知核心網路(CN)30的上層。 資料連結層(L2) 130包含一媒體存取控制(MAC)子層 95692.doc -23- 200522578 40、一無線電連結控制(rlc)子層150、一封包資料收斂協 定(PDCP)子層156、以及一廣播/多播控制(BMC)子層158。 廣播與多播控制協定(BMC) 158會藉由調適來自該無線 電介面上之廣播域的廣播/多播服務以於該無線電介面上 傳達來自該細胞廣播中心的信息。BMC協定158會提供被稱 為「無線電承載」的服務,並且存在於該使用者平面中。 BMC協定158與RNC會儲存於經排定傳輸之CBC-RNC介面 上被接收到的細胞廣播信息。於UTRAN端,BMC協定158 會以能夠在該CBC-RNC介面(未顯示)上被接收到的信息為 基礎來計算蹿細胞廣播服務的必要傳輸速率,並且從該 RRC中要求適當的CTCH/FACH資源。BMC協定158還會於 該CBC-RNC介面上接收排程資訊以及每個細胞廣播信息。 該BMC會於UTRAN端以此排程資訊為基礎來產生經排定 的信息並且據此產生經排定的BMC信息序列。於使用者設 備端,該BMC會評估該等排程信息,並且向該RRC表示該 等排程參數,接著,該RRC便可使用該等參數來組織供不 連續接收使用的下層。該BMC還會根據某一排程來傳輸 BMC信息,例如排程信息以及細胞廣播信息。未損毁的細 胞廣播信息可被傳送至上層。UE 10與UTRAN 20間的部份 控制信令可能係無線電資源控制(RRC)160信息’其會攜載 建立、修正、以及釋放層2協定130實體及層1協定I20實體 的全部必要參數。RRC信息會於其酬載中攜載全部的更高 層信令。無線電資源控制(RRC)會藉由發出測量結果、交遞 信號、以及細胞更新信號,用以於連接模式中控制使用者 95692.doc -24- 200522578 設備的行動能力。 封包資料收斂協定(PDCP)156存在於源自ps域之服務的 使用者平面中。PDCP所供應的服務可稱為無線電承載。封 包資料收斂協定(PDCP)會提供標頭壓縮服務。封包資料收 斂協定(PDCP) 156含有可提供較佳頻譜服務效率的壓縮方 法用以於無線電上傳輸IP封包。可以運用任何的標頭壓縮 演算法。該PDCP會於傳輸實體處壓縮冗餘協定資訊,並且 於接收實體處進行解壓縮。該標頭壓縮法可能係特殊網路 層、傳輸層、或上層協定組合(舉例來說,TCP/IP與 RTP/UDP/IP)特有的方法。PDCP還會傳輸其從非存取階層 中以PDCP服務資料單元(SDU)形式所接收到的使用者資 料,並且會將其前傳給RLC實體;亦可反向進行。PDCP還 會支援無遺失的SRNS重新定位。當PDCP於循序傳送中使 用已確認模式(AM)RLC時,可被配置成支援無遺失RSRNS 重新定位的PDCP實體便會具有協定資料單元(PDU)序號, 該序號可連同未證實的PDCP封包一起於重新定位期間前 傳給新的SRNC。 RLC層150會透過UE端中的更高層協定以及UTRAN端中 的IURNAP協定能夠使用的服務存取點(SAPS)來提供服務 給更高層(舉例來說,非存取階層)。服務存取點(SAPS)會 描述該RLC層如何處理該等資料封包。所有更高層的信令 (例如行動能力管理、呼叫控制、交談管理等)皆可囊封於該 無線電介面傳輸的RLC信息中。RLC層150包含各種無線電 連結控制實體152,該等無線電連結控制實體會透過攜載信 95692.doc -25- 200522578 令資訊與使用者資料的邏輯頻道被耦合至MAC層140。 於控制平面161上,RLC層可利用該等RLC服務來進行信 令傳輸。於使用者平面163上,該等RLC服務可被服務特定 協定層PDCP或BMC使用,或是被其它更高層的使用者平面 功能使用。對未使用PDCP 156或使用者平面協定的服務來 說,該等RLC服務可稱為控制平面161中的信令無線電承載 以及使用者平面163中的無線電承載。換言之,若該服務不 能使用PDCP與BMC協定,RLC層150便可於控制平面161中 提供被稱為信令無線電承載(SRB)的服務以及於使用者平 面163中提供赘稱為無線電承載(rb)的服務。否則,便可由 PDCP層156或BMC層158來提供該RB服務。 無線電連結控制(RLC)層150會對使用者與控制資料實施 分框功能,其包含分割/串接以及填補功能。RLC層150通常 會針對控制平面161中之控制資料的無線電資源控制 (RRC) 160層以及使用者平面163之使用者資料的應用層提 供分割及再傳輸服務。該RLC層通常會將可變長度更高層 協定資料單元(PDU)分割成複數個較小的RLC協定資料單 元(PDU)或是將複數個較小的RLC協定資料單元(PDU)重組 成可變長度更高層協定資料單元(PDU)。一無線電連結控制 (RLC)協定資料單元(PDU)通常會攜載一個PDU。舉例來 說,可以利用該無線電連結控制(RLC)根據該服務的最小可 能位元率來設定該無線電連結控制(RLC)PDU大小。如下文 將討論般,對可變速率的服務來說,只要位元率高於其所 使用的最低者,便可於一個傳輸時間區間(TTI)期間傳輸數 95692.doc -26- 200522578 個無線電連結控制(RLC)PDU。該RLC傳輸實體也會實施串 接作業。若一無線電連結控制(RLC)服務資料單元(SDU)的 内容無法填滿整數個無線電連結控制(RLC)PDU的話,那麼 便可將下個無線電連結控制(RLC)SDU的第一分段内容放 進該無線電連結控制(RLC)PDU之中,用以串接前面RLC SDU的最後一個分段内容。該RLC傳輸實體通常還會實施 填補功能。當欲傳輸的剩餘資料不能填滿特定大小的整個 無線電連結控制(RLC)PDU的話,那麼便可利用填補位元來 填充其餘的資料欄位。舉例來說,根據下文參考圖11 -13所 討論的本發吸的觀點,本文會提供縮減或省略所運用之填 補數量的技術。 該RLC接收實體會偵測被接收到的無線電連結控制 (RLC)PDU的副本資料,並且確保更高層PDU中的結果僅會 被傳送至上層一次。該RLC層還會控制該PRLC傳輸實體可 發送資訊給一 RLC接收實體的速率。 圖5A為UMTS信令協定堆疊之無線電連結控制(RLC)層 中所使用的資料傳輸模式方塊圖,並且還顯示與存取階層 有關的邏輯頻道、傳輸頻道、以及實體UMTS頻道的可能映 對關係。熟習本技術的人士將會發現,未必要針對特定的 使用者設備(UE)來同時定義全部的映對,而且町能會同時 出現部份映對的多重例證。舉例來說,語音呼叫可能會使 用被映對至三個專屬頻道(DCH)傳輸頻道的三個專屬流量 頻道(DTCH)邏輯頻道。再者,圖5所示的部份頻道(例如 CPICH、SCH、DPCCH、AICH以及PICH)係存在於實體層 95692.doc •27- 200522578 为景中’而且並不會攜載上層信令或使用者資料。該些頻 道的内容可能會被定義於實體層120(L1)中。 無線電連結控制(RLC)層中的每個rlc例證皆可利用無 線電資源控制(RRC)層160來配置以便運作於下面三種模式 之其中一者中:透通模式(TM)、未確認模式(UM)、或已確 i模式(AM),下文將參考圖5B來詳細說明。該等三種資料 傳輸杈式會指出該無線電連結控制(RLC)針對某一邏輯頻 道被配置成的模式。透通與未確認模式的RLC實體會被定 義成單向,而已確認模式的實體則會被定義成雙向。通常, 對所有的RLQ模式而言,都會於實體層上實施CRC錯誤檢 查,並且將CRC檢查結果連同真實資料一起傳送給該 Rlc。視每種模式的特殊規定而定,該些模式會實施rlc 層150的部份或全部功能,該等功能包含分割、重組、串接、 填補、再傳輸控制、資料流控制、副本偵測、循序傳送、 錯决修正以及加密。下文將參考圖5B與5C來更詳細說明該 些功能。根據本文所討論之本發明的觀點,本發明可提供 一種新的無線電連結控制(RLC)資料傳輸模式。 、AC層140會利用以被傳輸之資料類型為特徵的邏輯頻 道來提供服務給RLC層150。媒體存取控制(MAC)層14〇會將 込輯頻道映對且多工至傳輸頻道。MAC層14〇會辨識出共同 頻道上的使用者設備(UE)。MAC層140還會將更高層PDU多 工成複數個傳輸區塊以便傳送至共同傳輸頻道上的實體層 或是從共同傳輸頻道上的實體層傳送過來的複數個傳輸區 鬼中來解夕工更同層pDU。該MAC會處理共同傳輸頻道的 95692.doc -28- 200522578 服務多工作業,因為該項作業無法在實體層中完成。當一 共同傳輸頻道攜載源自專屬型邏輯頻道的資料時,媒體存 取控制(MAC)標頭便會含有該ue的識別符號。該MAC層還 會將更问層PDU多工成複數個傳輸區塊集以便傳送至專屬 傳輸頻道上的實體層或是從專屬傳輸頻道上的實體層傳送 過來的複數個傳輸區塊集中來解多工更高層PDU。 MAC層140會接收複數個RLC PDU以及狀態資訊,數量等 同於RLC傳輸緩衝器中的資料量。MAC層14〇會將對應該傳 輸頻道的資料量與RRC層16〇所設定的臨界值作比較。若資 料量太高或太r低的話,那麼該MAC便會發送一和流量狀態 有關的測量報告給該rRC。RRC層16〇可能還會要求MAC層 160週期性地發送該些測量值。RRC層會使用該些報告 值來觸發該等無線電承載及/或傳輸頻道的再配置作業。 該MAC層還會相依於該等邏輯頻道的瞬間源速率來為每 個傳輸頻道選擇一適當的傳輸格式(TF)。MAC層14〇會針對 不同的 > 料流,藉由選擇「高位元速率」與「低位元速率」 傳輸格式(TF)來提供資料流的處理優先序。封包切換(ps) 資料的本貝為叢發式資料,因此可發送的資料量會隨著訊 杧而改變。當有較多資料可用時,MAC層140便可選擇其中 個較向的資料速率;不過,當信令與使用者資料皆可用 時,MAC層140則會於其間作選擇,用以最大化由優先序較 回的頻道所發送的資料量。可從每個連接的許可控制所定 義的傳輸格式組合(TFC)中來選擇傳輸袼式(TF)。 某體存取控制(mac)層還會貫施加密。每個無線電承載 95692.doc 200522578 ^ ,力在。於3GPP TS 33.102中有說明該加密細節。 一 / MA之類的系統中,可利用三種傳輸頻來傳輪封包 :料。β些頻道為共同傳輸頻道、專屬傳輸頻道、以及妓 旱傳輸頻道。於下;;查4士士 、 、下订連尨中,封包排程演算法會選擇 頻道封包資料。於卜并、查々士+ ^ ^ 、上仃連、、Ό中,行動台10會以封包排程演 算法所設的參數為基礎來選擇傳輸頻道。 /、 舉例來說,共_道可能係上行連結巾的隨機存取頻道 RACH以及下行連結中的前向存取頻道fach。兩者皆攜栽 仏令貝料與使用者資料。共同頻道具有很低的建立時間。 因為可於建冬連接之前使用共同頻道來發信,所以,可使 用共同頻道來立即發送封包,而不需要很長的建立時間。 每個區段通常會有少數的RACI^FACH。共同頻道並不具 有回授頻道,所以,通常會使用開迴路功率控制或是使用 固疋功率。再者,共同頻道無法使用軟交遞。因此,共同 頻道的連結位準效能可能會比專屬頻道的連結位準效能還 差,而且所產生的干擾也會比專屬頻道還多。因此,共同 頻道比較適合用來傳輸小型的個別封包。運用於共同頻道 中的應用可能係短訊服務及短文郵件之類的應用。發送單 一要求給一網頁亦非常適合共同頻道的概念,不過,於較 大資料量的情況中,共同頻道則會因不良的無線電效能而 變差。 專屬頻道可以使用快速功率控制及軟交遞特點以改良無 線電效能,而且所產生的干擾通常會比共同頻道還少。不 過,建立一專屬頻道所花費的時間則比存取共同頻道還 95692.doc -30- 200522578 範圍從每秒數千個 速率會於傳輸期間 速率來指派下行連 道會耗去可觀的下 長。專屬頻道具有可變的位元速率,其 位元組至每秒2百萬個位元組。因為位元 發生麦化’所以’必須根據最南的位元 結正交碼。因此,可變位元速率專屬頻 行連結正交碼空間。 實體層(Ll)12〇會透過攜載信令資訊與使用者資料的複 數個傳輸頻道耦合至頁八〇層14〇。實體層12〇會透過盆特徵 為如何傳輸資料及利用何種特徵來傳輪資料的複數個傳# 頻道來提供服務給該MAC層。 w 實體層αυΐ2〇會透過複數個實體頻道於該無線電連社 上接收信令與使用者資料。實體層(L1)通常會實施多工及 頻道編碼,其包含⑽計#、前向式錯誤修正(fec)、速率 匹配、交錯傳輸頻道資料、多工傳輸頻道資料、以及並它 實體層程序(例如獲取、存取、傳呼、以及無線電連結建立 /胃失效)。實體層(u)可能還會負責展開與擾瑪處理、調變測 量、傳輪多集、功率加權、交遞、壓縮模式、以及功率栌 制。 工 圖5B為該無線電連結控制(RLC)層的架構方塊圖。如上 所述’無線電連結控制(RLC)層15〇中的每個rlc實體或例 迅152皆可利用#、線電資源控制(狀。)層_來配置以便運 作於下面二種貧料傳輸模式之其中—者中:透通模式 (TM)、未確認模式(腹)、或已確認模式(AM)。可以利用服 務品質^>S)設定值來控制使用者資料的資料傳輸模式。 係單向且包含一傳輸TM實體丨52八與一接收實體 95692.doc 200522578 1 52B。於透通模式中,沒有任何協定命令會被加入更高層 資料中。有誤的協定資料單元(PDU)可予以丟棄或是標記有 誤。可以使用串流型傳輸,其中通常不會對更高層資料進 行分割處理,不過,於特殊情況中則可完成有限分割/重組 功能的傳輸。當使用分割/重組時,便可於無線電承載建立 程序中進行協商。 UM也是單向且包含一傳輸UM實體152C與一接收UM實 體152D。一 UM RLC實體被定義為單向的原因係因為於上 行連結與下行連結間並不需要有任何關聯。於UM中並不保 證資料傳送i常。舉例來說,UM可使用於確認與再傳輸並 非其一部份的特定RRC信令程序中。使用未確認模式RLC 的使用者服務範例有細胞廣播服務及IP上語音。視組態而 定,可將收到的有誤資料作標記或是予以丟棄。可以套用 無明確信令的計時器型丟棄功能,因此,無法於規定時間 内被傳輸的RLC PDU可逕從傳輸緩衝器中予以移除。於未 確認資料傳輸模式中,該PDU結構包含複數個序號,並且 可實施序號檢查。序號檢查有助於保證經重組PDU的完整 性,並且可提供偵查構件,用以於無線電連結控制(RLC) PDU被重組成無線電連結控制(RLC) SDU時,藉由檢查無線 電連結控制(RLC) PDU中的序號來偵測已損毀的無線電連 結控制(RLC) SDU。任何已損毁的無線電連結控制(RLC) SDU皆可予以丟棄。於未確認模式(UM)中也可提供分割與 串接功能。 於已確認模式中,RLC AM實體係雙向並且能夠運送相反 95692.doc -32- 200522578 於使用者資料之方向中的連結狀態指示信號。圖5C為用於 貝現無線電連結控制(RLC)已確認模式(AM)實體之實體的 方塊圖,並且顯示如何建構一 AMPDU。透過AM-SAP接收 自更高層的資料封包(RLC SDU)可被分割及/或串接514成 複數個固定長度的協定資料單元(pDU)。協定資料單元的長 度係一於無線電承載建立中所決定的半靜態值,並且可經 由RRC無線電承載再組態程序來進行變更。為達串接或填 補目的,可於最後一個協定資料單元的開頭中插入載有和 該長度及延伸部份有關之資訊的複數位位元,或是可納入 源自一SDU的資料。若有數個SDU置入一 pDUi中的話,便 可將其串接在-起,並且於該PDU的開頭中插入複數個正 確的長度指示符號(LI)。接著,便可將該等pDU置放於傳輸 緩衝器520之中,該緩衝器同時也會負責再傳輸管理。月 PDU的建構方式如下:從傳輸緩衝器52〇之中取出一個 PDU;為其加入標頭;若該pmj中的資料無法填滿整個咖 PDU的話,可以附加_填補攔或是搰負式狀態信息。該楷 負式狀態信息可能係源自該接收端或是源自該傳輸端,用 以表不一RLC SDU丢棄情形。該標頭含有RLC pDu序號 (SN);-輪詢位_),其可用來向同儕實體要求狀態;: 及選配的長度指示符號⑽,若於RLC PDU中發生SDU串 接、填補、或推負式PDU時便可使用該指示符號。 已確認模式(AM)通常係供封包型服務使用,例如網際網 路劉覽及電子郵件下載。於已確認模式中,可使用自動重 複要求(ARQ)機制進行錯誤修正。任何有錯誤的已接收封包 95692.doc 200522578 皆可再傳輸。可經由RLC所提供之再發設數量的組態,利 用RRC來控制該RLC的品質對延遲效能。舉例來說,若該 RLC未正確傳送資料的話,若已經達到再傳輸的最大數量 或是已經超過傳輸時間的話,那麼便會通知上層並且丟棄 該無線電連結控制(RLC) SDU。亦可藉由於狀態信息中發 送一移動接收視窗命令來告知同儕實體該項SDU丟棄作 業,致使用者該接收器也會移除隸屬於該已丟棄之無線電 連結控制(RLC) SDU的所有PDU。 可針對循序及無序傳送來組織該RLC。利用循序傳送, 則可維持PDy更高層的順序;反之,無序傳送則會於完全 接收到更高層PDU時便立即前傳。該RLC層可循序傳送更 高層PDU。此功能可保留該等RLC傳輸更高層PDU的順序。 若未使用此項功能的話,則可提供無序傳送。除了資料PDU 傳送以外,亦可於同儕RLC實體間發送狀態與重置控制程 序等的信號。該等控制程序甚至可能使用一分離的邏輯頻 道,因此,一 AM RLC實體便可能會使用一個或兩個邏輯頻 道。 可針對已確認及未確認RLC模式於RLC層中實施加密。 圖5C中,AMRLCPDU會被加密540,其會排除含有PDU序 號及輪詢位元的前兩位位元。PDU序號係該加密演算法的 其中一項輸入參數,而且必須可被同儕實體讀取以便實施 該項加密作業。3GPP規格TS33.102便有說明加密處理。 接著可透過複數個邏輯頻道將該PDU前傳至MAC層 140。圖5C中利用虛線來表示額外的邏輯頻道 95692.doc -34- 200522578 (DCCH/DTCH),該等虛線圖解出一 RLC實體可被配置成利 用不同的邏輯頻道來發送該等控制PDU與資料PDU。AM實 體的接收端530會經由該等邏輯頻道中其中一者從該MAC 層中接收複數個RLC AM PDU。可以利用實體層中針對整 個RLC PDU所算出的CRC來檢查錯誤。實際的CRC檢查可 能係在實體層實施,而且該RLC實體會接收該CRC檢查的 結果以及加密整個標頭後所產生的資料,並且可從該RLC PDU中擷取出可能的揹負式狀態資訊。若被接收的PDU係 一強烈的信息或是若該狀態資訊被揹負至一 AM PDU之上 的話,便可將_該控制資訊(狀態信息)傳送至傳輸端,傳輸端 會對照該被接收的狀態資訊來檢查其再傳輸緩衝器。進行 解密550以及將已加密PDU儲存於接收緩衝器中時都會使 用到源自RLC標頭的PDU數。一旦隸屬於某個完整SDU的全 部PDU皆位於該接收緩衝器中時,便可重組該SDU。雖然 圖中未顯示,不過,接著可於RLC SDU被傳送至更高層之 前實施循序傳送檢查以及副本偵測。 當該使用者設備(UE)或行動台於PTM傳輸及點對點(PTP) 傳輸間移動或是改變細胞時,便會重新初始化該RLC實體 152。如此可能會不幸造成無線電連結控制(RLC)緩衝器中 的資料遺失。如上述,當該行動台從一細胞移至另一細胞 或是當該服務細胞中的多媒體廣播與多播服務(MBMS)内 容的傳送從點對點(PTP)傳輸模式改變成點對多點(PTM)傳 輸模式時便可能會發生問題。 吾人希望於點對點(PTP)傳輸及點對多點(PTM)傳輸兩者 95692.doc -35- 200522578 間進行移轉期間或是於不同細胞間進行移轉期間(例如交 遞)保留多媒體廣播與多播服務(MBMS)的連續性,並且避 免遞出副本資訊。為保留MBMS服務的連續性並且避免遞 出副本資訊,層2 150應該能夠重新排列來自該等兩個串流 的資料。實體層無法提供此同步作業,因為每種模式中的 網路終止點可能並不相同。若如同3GPP2中的情況般於RLC 層150的下方實施前向式錯誤修正(FEC)的話,那麼從點對 多點(PTM)傳輸移轉至點對點(PTP)傳輸期間便可能會遺失 資料,反向移轉亦然。此外,舉例來說,於具有共同排程 的多個細胞間可能需要進行實體層同步作業並且分享相同 的媒體存取控制(MAC)。就此而言,此等假設並不適用於 3GPP2中,所此可能會造成問題。 點對點(PTP)傳輸 假設該項應用具有重要的延遲耐受性,那麼點對點(PTP) 傳輸最有效的資料傳輸模式便是無線電連結控制(RLC)已 確認模式(AM)。舉例來說,RLC已確認模式(AM)通常係用 於專屬邏輯頻道(PTP)上的封包切換資料傳輸。該RLC會運 作於專屬邏輯頻道上的已確認模式(AM)中。如圖5 A所示, 下行連結方向中其中一項使用者服務的專屬使用者流量可 經由被稱為專屬流量頻道(DTCH)的邏輯頻道來進行發送。 於已確認模式(AM)中,若該資料有誤的話,便可利用反 向連結來進行再傳輸。該RLC會傳輸複數個服務資料單元 (SDU)並且利用再傳輸來保證可正確地傳送至其同儕實 體。若RLC無法正確傳送該資料的話,那麼,便會通知傳 95692.doc -36- 200522578 輸端處RLC的使用者。運作於RLC AM中通常必須引入額外 的延遲以換取更大的功率效率。 點對多點(PTM)傳輸 共同流量頻道(CTCH)係存在於下行連結方向中的單向 頻道,而且當傳輸資訊給全部終端機或是特定的終端機群 時便可使用該頻道。此兩種資料傳輸模式皆使用單向的共 同頻道,其並不具有反向連結頻道建立作業。 吾人希望提供一種架構讓MBMS服務可於點對點(PTP) 傳輸模式與點對多點(PTM)傳輸模式間透通地切換。為可於 點對點(PTP)傳輸模式與點對多點(PTM)傳輸模式間移轉時 獲得良好效能,吾人還希望提供一種架構允許於不同的無 線電連結控制(RLC)模式間進行切換。舉例來說,此作法可 幫助降低功率需求。 現在將參考圖6至19所示與說明的具體實施例來說明本 發明的各項觀點。除了其它特點之外,該些特點可利用一 新的前向式錯誤修正(FEC)層於此等移轉期間幫助保留服 務連續性。 圖6為具有前向式錯誤修正(FEC)層之經修正的UMTS協 定堆疊的示意圖,其可運作於前向式錯誤修正(FECd)模式 中以及前向式錯誤修正(FECc)模式中。該前向式錯誤修正 (FEC)層允許下方的無線電連結控制(RLC)實體152於該使 用者設備(UE)從點對點(PTP)傳輸改變成與點對多點(PTM) 傳輸時從其中一種無線電連結控制(RLC)資料傳輸模式改 變成另一種無線電連結控制(RLC)資料傳輸模式,同時可維 95692.doc -37- 200522578 持服務連續性。根據本具體實施例,該FEC層可能係運作 於第一模式(FECc)或第二模式(FECd)中。於其中一種實現 方式中,第一模式(FECc)可運用同位區塊,而第二模式 (FECd)運作時則不需要任何同位區塊。於FECd模式與FECc 模式間改變所造成的影響可能遠低於於RLC模式間改變, 並且可能係無縫式作業,致使於該移轉期間不會遺失任何 資料。 前向式錯誤修正(FECc)模式可運用外部編碼技術來保護 使用者資料。此作法在共同頻道上特別有效。前向式錯誤 修正(FECc)模式通常會允許於無線電連結控制(RLC)層上 方進行在未確認模式(UM)中發現到的功能,例如分框(分割 及串接)以及序號加入功能。因此,該無線電連結控制(RLC) 層可針對點對多點(PTM)傳輸來使用透通模式(TM),因為 傳統的未確認模式(UM)功能可能係在該前向式錯誤修正 (FEC)層處被實施。雖然此項功能可能會於無線電連結控制 (RLC)已確認模式(AM)中重複出現,不過ARQ所造成的增 益卻可彌補此副本效應。 將該前向式錯誤修正(FEC)層或外部編碼層置於該無線 電連結控制(RLC)層之上,便可於和無線電連結控制(RLC) 無關的層中加入該序號。使用額外的附加資料(例如序號), 那麼便可於MBMS資料的非同步傳輸期間利用未經確認的 傳輸來讓該等協定資料單元(PDU)重新對齊一編碼器封包 (EP) 〇因為該等序號係被力口入於無線電連結控制(RLC)上方 的層之中,所以,該等序號為點對點(PTP)傳輸以及點對多 95692.doc -38- 200522578 點(PTM)傳輸兩者所共有,所以,當從點對多點(PTM)傳輸 移轉至點對點(ΡΤΡ)傳輸時,便可維持序號的連續性。如此 便可重新排列資料,因而可避免出現副本資料及/或遺失資 料。 外部編碼亦可用於點對點(ΡΤΡ)傳輸中,其可提高該系統 的部份功率增益及/或縮短再傳輸延遲。多媒體廣播及多播 服務(MBMS)資料可忍受某種程度的延遲。於點對點(ΡΤΡ) 傳輸中會提供一條回授路徑。此作法會因為使用ARQ再傳 輸的關係而使得無線電連結控制(RLC)已確認模式(AM)的 使用更為有敢,一般來說,當需要ARQ再傳輸時,其無線 電效率會比FEC架構還要有效,因為於FEC技術中必定會發 送額外的複數個同位區塊。就此而言,並不必於專屬邏輯 頻道(舉例來說,點對點(PTP))上在MBMS酬載資料中加入 複數個同位區塊。 圖7A與7B為於無線電連結控制(RLC)層150上置放一前 向式錯誤修正(FEC)層157之存取階層的協定結構的具體實 施例。現在將參考圖11來說明該前向式錯誤修正(FEC)層的 具體實施例。 該前向式錯誤修正(FEC)層157會於該等使用者平面無線 電承載上直接接收使用者平面資訊163。因為該前向式錯誤 修正(FEC)層係位於無線電連結控制(RLC)層的頂端,所以 FEC協定資料單元(PDU)會對應RLC服務資料單元(SDU)。 該FEC層較佳的係支援任意的SDU大小(其限制為8位元的 倍數)、可變速率資料源、從下層中無序接收封包、以及從 95692.doc -39- 200522578 下層中接收副本封包。FEC ?1)11大+的限制可能係8位元的 倍數。 如下文將參考圖9八的更詳細說明般,該FEC層157會將更 高層的使用者資料區塊(例如SDU)分割且串接成相同大小 的歹i每列亦可稱為内部區塊。每個協定資料單元(PDU) 白可旎包含附加資料。該附加資料可能包含長度指示符號 (I)用以表不源自某個特殊使用者資料區塊(例如服務資 料單元(SDU))的貧料可放在最後_個協定資料單元 中的開頭位置。收集複數個PDU便會構成-編碼器封包(Ep) 或「編碼器響」。除了其它因素之外,内含於—編碼器封 包(EP)中的PDU數量還會和所使用的外部碼相依。將每個 、扁碼裔矩陣」列包裝成一獨立或分離的傳輸時間區間(TTI) 便可增強實體層效能。為減輕緩衝負#,可以使用較短的 傳輸時間區間(TTI)持續時間。 妾著可、、、二由外部碼編碼器來傳送該編碼器封包(Ep) 用以產生該等同位列。如下文將參考圖9A的更詳細說明 般,該FEC^ 157可藉由於UMTS陸地無、線電存取網路 (UTRAN)2G中提供—里德·所羅門_編碼H功能來實施 外W編碼,並且可藉由於使用者設備(ue) i 〇中提供一里德 所羅門解碼器功能來實施外部解碼。 , 該外部編碼器所產生的該等同位列可被加人該編碼器封 包(EP)之中’亚且可置放於一傳輸緩衝器中當作一群内邛 區塊。每個内部區塊皆具有外加的資訊,用以產生_協1 資料單元(PDU)。接著便可傳輸該等pmj群。 、 95692.doc -40- 200522578 該FEC層157還言午還原#屬&單一個£P的資料,即 不同的細胞中接收不同的内部區塊亦然。經由傳輸每個協 定資料單元(PDU)之標頭中的序號(SN)便可達成此目的。於 其中一具體實施例中,系統訊框編號(SFN)有助於按照編碼 器封包(EP)來維持資料對齊。本文中將參考圖10A與10B來 更詳細地討論序號。 該FEC層157還可實施填補與重組、使用者資料傳輸、以 及實施上層PDU的循序傳送、副本偵測、以及序號檢查。 於圖6至7A的具體實施例中,該前向式錯誤修正(FEC)層 157係位於封包資料收斂協定(PDCP)層156與無線電連結控 制(RLC)層150之間(例如位於和BMC層相同層級處以及位 於封包資料收斂協定(PDCP)層的下方)。藉由將前向式錯誤 修正(FEC)層157置放於無線電連結控制(RLC)層150的上 方,便可最佳化該外部碼的效能,因為内部區塊大小可匹 配該等欲於空中被發送的封包的「黃金」封包大小。不過, 吾人應該發現,此圖中的前向式錯誤修正(FEC)層僅供作圖 解用途而不具限制性。針對其標頭壓縮功能可於前向式錯 誤修正(FEC)層157的頂端使用封包資料收斂協定(PDCP)層 156。應該注意的係,目前該封包資料收斂協定(PDCP)層156 係針對使用專屬邏輯頻道的點對點(PTP)傳輸來定義。如圖 7B所示,可於該無線電連結控制(RLC)層上的存取階層内或 該應用層中的任何位置提供該前向式錯誤修正(FEC)層。該 前向式錯誤修正(FEC)層可能係位於該封包資料收斂協定 (PDCP)層的下方或上方。若於應用層80中實施FEC的話, 95692.doc -41 - 200522578 即使GSM與WCDMA具有不同的「黃金」封包大小,亦可等 同套用至GSM與WCDMA。For example, although the description specifies that the radio access network 20 may be implemented using the Universal Terrestrial Radio Access Network (UTRAN) air interface, in a GSM / GPRS system, the radio access network 20 may be a GSM / EDGE 95692. doc 17 200522578 Radio Access Network (GERAN), even in the case of systems, may include cells of the UTRAN air interface and cells of the GSM / EDGE air interface. UMTS network topology Figure 1 is a block diagram of a communication system based on a UMTS network topology. A UMTS system includes a user equipment (UE) 10, an access network 20, and a core network 30. The UE 10 is coupled to the access network, and the access network is coupled to the core network 30. The core network 30 may be coupled to an external network. The UE 10 includes a mobile device 12 and a Universal Subscriber Identity Module (USIM) 14, which contains user subscription information. Cu interface (not shown) is an electrical interface between USIM 14 and the mobile device 12. UE 10 is usually a component that allows users to access UMTS network services. The UE 10 may be a mobile component (such as a cell phone), a fixed station, or other data terminal. For example, the mobile device may be a radio terminal used for radio communications over an air interface (Uu). The UE can access the fixed part of the system via the Uu interface. The USIM is typically an application program that resides on a "smart card" or other logic card containing a microprocessor. The smart card retains the identity of the user, can implement an authentication algorithm, and uses an encryption key to store the authentication signal and the ordering information required at the terminal. The access network 20 contains radio equipment for accessing the network. In a WCDMA system, the access network 20 is a Universal Terrestrial Radio Access Network (UTRAN) air interface. UTRAN includes at least one Radio Network Subsystem (RNS), which includes at least one base station or "Node B" 22, which is 95692. doc -18- 200522578 is coupled to at least one radio network controller (RNC) 24. The RNC will control the radio resources of the UTRAN. The RNCs 24 accessing the network 20 communicate with the core network 30 through the Iu interface. The Uu interface, Iu interface 25, Iub interface, and Iur interface allow devices from different vendors to be networked, and they are all specified in the 3GPP standard. The design method of the radio network controller (rnC) is different for each Weishang company, so it will be described below in general. The Radio Network Controller (RNC) 24 is used as the switching and control element of the UMTS Terrestrial Radio Access Network (UTRAN), and is located between the iub interface and the Iu interface 25. The RNC can serve as a service access point for all services provided by the UTRAN to the core network 30, for example, to manage connection with the user equipment. Iub interface 23 connects Node B 22 and Radio Network Controller (RNC) 24. The Iu interface will connect UTRAN to the core network. The radio network controller (RNC) will provide a switching point between the I1 carrier and the base stations. The user equipment (UE) 10 may have several radio bearers between itself and the radio network controller (RNC) 24. The radio bearer is related to the user equipment (UE) content, which is a set of defined values required by the Iub to arrange the common connection between the user equipment (UE) and the radio network controller (RNC) and Dedicated connection. The individual RNCs 24 can communicate with each other on an optional Iur interface, which allows soft handover between cells connected to different nodes 22. Therefore, the Iur interface allows inter-RNC connections. In these cases, a serving MC will maintain the Iu 25 connection to the core network 30 and implement selector and external loop power control functions. At the same time, a drift RNC will be available through more than one base station 22 95692. doc -19- 200522578 The frame exchanged on the Iur interface is transmitted to the mobile station. The RNC that controls a node B22 can be called the control RNc of node B, and controls the load and congestion of its own cells. At the same time, it also performs admission control and code assignment for new radio links to be established in those cells. The RNC and the base station (node B) can be connected through the Iub interface 23 and communicate with each other on the " surface. These RNCs will control the use of these non-radio and power resources by each base station 22 that is coupled to a special%, which is obstructive. Each base station 22 controls more than one cell and provides a radio link to the mobile station. The base station can implement interface processing, such as channel coding and interleaving processing, rate adaptation and expansion processing. The base station will also perform basic radio resource management operations, such as inter-loop power control. The base station 22 will convert the data streams between ⑽ and Xian interface 23 and 26. The base station 22 will also participate in radio resource management. The air interface Uu 26 will couple each base station 22 to the mobile station 10. Base stations such as 1¾ may be responsible for the radio transmission operation of more than one cell to the mobile station 10, and responsible for the transmission from the mobile station 10 to more than one cell. Radio reception operation. The core network 30 includes all switching and routing functions to perform the following tasks: (1) if a circuit switching call exists, to connect to the PSTN42, or if a packet switching call exists, to connect to the packet data network (PDN); (2) implementation of mobile capability and user location management; and (3) implementation of authentication services. The core network 30 may include a location registrar (HlR) 32, a mobile switching service center / visitor location registrar (MSC / VLR) 34, a gateway subscription switching center (GMSC) 36, and a service general packet radio service A support node (SGSN) 38 and a gateway GpRS support node (GGSN) 40. 95692. doc • 20- 200522578 If a circuit-switched call exists, the core network 30 may be coupled to an external circuit-switched (CS) network 42 (such as a public switched telephone network (PSTN) or (ISDN)) to provide the circuit Switch connection; if a packet switch call exists, it can be coupled to a PS network 44 (such as the Internet) to provide a packet data service connection. UMTS signaling protocol stack FIG. 2 is a block diagram of the UMTS signaling protocol stack 110. The UMTS signaling protocol stack 110 includes an access hierarchy and a non-access hierarchy (NAS). The access hierarchy typically includes a physical layer 120; a layer 2 130, which includes a media access control (MAC) layer 140 and a radio link control (RLC) layer 150; and a radio resource control (RRC) layer 160. The layers of the access hierarchy are explained in more detail below. The UMTS non-access hierarchy is basically the same as the upper GSM layer and can be divided into a circuit switching section 170 and a packet switching section 180. The circuit switching section 170 includes a connection management (CM) layer 172 and a mobile capability management (MM) layer 178. The CM layer 172 handles circuit switching calls and contains sublayers. The call control (CC) sublayer 174 performs functions such as setup and release. The supplementary services (SS) sublayer 176 performs functions such as call forwarding and three-way calling. The short message service (SMS) sublayer 177 performs short message services. The MM layer 178 handles the location update and authentication operations of the circuit switching call. The packet switching section 1 80 includes a conversation management (SM) sublayer 182 and a GPRS mobility management (GMM) sublayer 184. The conversation management (SM) sublayer 182 handles packet switching calls by performing functions such as setup and release, and also includes a short message service (SMS) section 183. The GMM sublayer 184 handles location updates and 95692 for packet switching calls. doc -21-200522578 Certification. FIG. 3 is a block diagram of a user plane for packet switching in a UMTS protocol stack. The stack includes an access hierarchy (AS) layer and a non-access hierarchy (NAS) layer. The NAS layer includes an application layer 80 and a packet data protocol (PDP) layer 90. The application layer 80 is located between the user equipment (UE) 10 and the remote user 42. The PDP layer 90 (e.g. IP or PPP) is located between the GGSN 40 and the user equipment (UE) 10. The lower layer packet protocol (LLPP) 39 is located between the remote user 42 and the SGSN 38. The Iu interface protocol 25 is located between the radio network controller (RNC) 24 and the SGSN 38, and the Iub interface protocol is located between the radio network controller (RNC) 24 and the node B 22. The rest of the AS layer is explained below. Access Hierarchy (AS) Layer Figure 4 is a block diagram of the access hierarchy part of the UMTS signaling protocol stack. The conventional access layer includes a physical layer (L1) 120; a data link layer (L2) 130, which includes the following sublayers: a media access control (MAC) layer 140, a radio link control (RLC) layer 150, and packet data convergence A protocol (PDCP) layer 156, a broadcast / multicast control (BMC) layer 158; and a radio resource control (RRC) layer 160. These layers are explained in more detail below. The radio bearer carries user data 163 between the application layer and layer 2 (L2) 130. The control plane signaling 161 can be used as all UMTS-specific control signaling, and includes application protocols in the signaling bearer to transmit such application protocol information. This application protocol can be used to establish a bearer to the UE 10. The user plane transmits all user plane information 1 63 sent and received by the user, such as encoded voice in a voice call or a packet in an Internet connection. User plane information 163 will carry data strings and 95692 of those data strings. doc -22- 200522578 data bearing. Each data string is characterized by more than one frame protocol specified by the interface. The radio resource control (RRC) layer 160 can be used as the overall control of the access hierarchy and organizes all other layers in the access hierarchy. The RPC layer 160 generates control plane signaling 161, which can control the radio link control unit 152, the physical layer (L 1) 120, the media access control (MAC) layer 140, the radio link control (RLC) layer 150, and packet data convergence Protocol (PDCP) layer 156, and broadcast / multicast control (BMC) layer 158. The radio resource control (RRC) layer 160 determines the type of measurement and reports these measurement results. The RPC layer 160 can also be used as a non-access level control and signaling interface. More specifically, the RRC layer 160 broadcasts system information information, which includes both the access hierarchy and non-access hierarchy information elements of all user equipment (UE) 10. The RRC layer 160 establishes, maintains, and releases a radio resource control (RRC) connection between the UTRAN 20 and the UE 10. The UE RRC will request the connection, and the UTRAN RRC will establish and release the connection. The RRC layer 160 also establishes, reassembles, and releases radio bearers between UTRAN 20 and UE 10. The UTRAN 20 initiates these operations. The RRC layer 160 also handles the various characteristics of the mobile device's (UE) 10 mobile capabilities. These procedures depend on the UE status (whether the call is a circuit-switched call or a packet-switched call) and the radio access technology (RAT) of the new cell. The RRC layer 160 will also page UE 10. Regardless of whether the UE is listening to the paging channel or the outgoing indication channel, the UTRAN RRC will paging the UE. The RRC of the UE notifies the upper layer of the core network (CN) 30. The data link layer (L2) 130 includes a media access control (MAC) sublayer 95692. doc -23- 200522578 40, a radio link control (rlc) sublayer 150, a packet data convergence protocol (PDCP) sublayer 156, and a broadcast / multicast control (BMC) sublayer 158. The Broadcast and Multicast Control Protocol (BMC) 158 communicates information from the cell broadcast center on the radio interface by adapting broadcast / multicast services from the broadcast domain on the radio interface. The BMC Agreement 158 provides services called "radio bearers" and exists in the user plane. The BMC protocol 158 and RNC will store the cell broadcast information received on the scheduled CBC-RNC interface for transmission. On the UTRAN side, the BMC protocol 158 will calculate the necessary transmission rate of the cell broadcast service based on the information that can be received on the CBC-RNC interface (not shown), and request the appropriate CTCH / FACH from the RRC Resources. The BMC protocol 158 will also receive schedule information and broadcast information for each cell on the CBC-RNC interface. The BMC will generate scheduled information based on the scheduling information on the UTRAN side and generate a scheduled BMC information sequence accordingly. On the user device side, the BMC evaluates the scheduling information and indicates the scheduling parameters to the RRC. The RRC can then use the parameters to organize the lower layers for discontinuous reception. The BMC also transmits BMC information according to a certain schedule, such as schedule information and cell broadcast information. The undamaged cell broadcast information can be transmitted to the upper layer. Part of the control signaling between UE 10 and UTRAN 20 may be radio resource control (RRC) 160 information, which will carry all necessary parameters for establishing, modifying, and releasing layer 2 protocol 130 entities and layer 1 protocol I20 entities. RRC information carries all higher-level signaling in its payload. Radio Resource Control (RRC) controls the user in connected mode by sending measurement results, handover signals, and cell update signals. 95692. doc -24- 200522578 The mobility of the device. The Packet Data Convergence Protocol (PDCP) 156 exists in the user plane of services originating from the ps domain. The services provided by PDCP can be called radio bearers. The Packet Data Convergence Protocol (PDCP) provides header compression services. The Packet Data Convergence Protocol (PDCP) 156 contains a compression method that provides better spectrum service efficiency for transmitting IP packets over the air. Any header compression algorithm can be used. The PDCP compresses redundant protocol information at the transmitting entity and decompresses it at the receiving entity. The header compression method may be specific to a special network layer, transport layer, or a combination of upper layer protocols (for example, TCP / IP and RTP / UDP / IP). PDCP also transmits the user data it receives in the form of PDCP Service Data Units (SDUs) from the non-access hierarchy, and forwards it to the RLC entity; it can also do the reverse. PDCP will also support lossless SRNS relocation. When PDCP uses acknowledged mode (AM) RLC in sequential transmission, a PDCP entity that can be configured to support lossless RSRNS relocation will have a protocol data unit (PDU) sequence number, which can be used along with an unconfirmed PDCP packet Passed to new SRNC before relocation. The RLC layer 150 provides services to the higher layers (for example, the non-access layer) through higher-layer protocols in the UE side and service access points (SAPS) that can be used by the IUNAP protocol in the UTRAN side. The service access point (SAPS) will describe how the RLC layer processes the data packets. All higher-level signaling (such as mobility management, call control, conversation management, etc.) can be encapsulated in the RLC information transmitted by the radio interface. The RLC layer 150 contains various radio link control entities 152, and these radio link control entities will carry a letter 95692. doc -25- 200522578 enables the logical channel of information and user data to be coupled to the MAC layer 140. On the control plane 161, the RLC layer can use these RLC services for signal transmission. On the user plane 163, these RLC services can be used by the service specific protocol layer PDCP or BMC, or by other higher-level user plane functions. For services that do not use PDCP 156 or user plane agreements, such RLC services may be referred to as the signaling radio bearer in the control plane 161 and the radio bearer in the user plane 163. In other words, if the service cannot use the PDCP and BMC protocols, the RLC layer 150 can provide a service called signaling radio bearer (SRB) in the control plane 161 and a redundant bearer (rb) in the user plane 163 ) Services. Otherwise, the PDCP layer 156 or the BMC layer 158 can provide the RB service. The radio link control (RLC) layer 150 implements a framing function on the user and control data, which includes split / concatenation and padding functions. The RLC layer 150 typically provides segmentation and retransmission services for the radio resource control (RRC) 160 layer of control data in the control plane 161 and the application layer of user data in the user plane 163. The RLC layer usually divides a variable-length higher-layer protocol data unit (PDU) into a plurality of smaller RLC protocol data units (PDUs) or recombines a plurality of smaller RLC protocol data units (PDUs) into a variable Length higher layer protocol data unit (PDU). A radio link control (RLC) protocol data unit (PDU) typically carries a PDU. For example, the radio link control (RLC) can be used to set the radio link control (RLC) PDU size based on the minimum possible bit rate of the service. As will be discussed below, for variable-rate services, as long as the bit rate is higher than the lowest one used, the number of transmissions during a transmission time interval (TTI) is 95692. doc -26- 200522578 Radio Link Control (RLC) PDUs. The RLC transmission entity also performs the concatenation operation. If the contents of a Radio Link Control (RLC) Service Data Unit (SDU) cannot fill an integer number of Radio Link Control (RLC) PDUs, the first segment of the next Radio Link Control (RLC) SDU can be placed Into the Radio Link Control (RLC) PDU, it is used to concatenate the last segment content of the previous RLC SDU. The RLC transport entity usually also implements padding functions. When the remaining data to be transmitted cannot fill the entire Radio Link Control (RLC) PDU of a certain size, then the remaining data fields can be filled with padding bits. For example, from the perspective of this issue discussed below with reference to Figures 11-13, this article will provide techniques for reducing or omitting the amount of padding used. The RLC receiving entity will detect the copy of the received Radio Link Control (RLC) PDU and ensure that the results in the higher layer PDU will be transmitted to the upper layer only once. The RLC layer also controls the rate at which the PRLC transmitting entity can send information to an RLC receiving entity. FIG. 5A is a block diagram of a data transmission mode used in the Radio Link Control (RLC) layer of the UMTS signaling protocol stack, and also shows possible mappings of logical channels, transmission channels, and physical UMTS channels related to the access layer . Those skilled in the art will find that it is not necessary to define all mappings for a specific user equipment (UE) at the same time, and there will be multiple instances of some mappings at the same time. For example, a voice call might use three dedicated traffic channel (DTCH) logical channels mapped to three dedicated channel (DCH) transmission channels. Furthermore, some channels (such as CPICH, SCH, DPCCH, AICH, and PICH) shown in Figure 5 exist at the physical layer 95692. doc • 27- 200522578 is in the scene ’and does not carry higher-level signaling or user data. The content of these channels may be defined in the physical layer 120 (L1). Each RLC instance in the Radio Link Control (RLC) layer can be configured using the Radio Resource Control (RRC) layer 160 to operate in one of three modes: transparent mode (TM), unacknowledged mode (UM) Or i mode (AM), which will be described in detail below with reference to FIG. 5B. The three types of data transmission instructions indicate the mode in which the radio link control (RLC) is configured for a certain logical channel. RLC entities in transparent and unconfirmed mode will be defined as one-way, while entities in confirmed mode will be defined as two-way. Generally, for all RLQ modes, a CRC error check is performed on the physical layer, and the CRC check result is transmitted to the Rlc together with the real data. Depending on the special requirements of each mode, these modes will implement some or all of the functions of the rlc layer 150. These functions include segmentation, reassembly, concatenation, padding, retransmission control, data flow control, copy detection, Sequential delivery, bugfixes, and encryption. These functions will be described in more detail below with reference to Figs. 5B and 5C. According to the viewpoint of the present invention discussed herein, the present invention can provide a new radio link control (RLC) data transmission mode. The AC layer 140 will provide services to the RLC layer 150 using logical channels characterized by the type of data being transmitted. The media access control (MAC) layer 14 maps the edit channels to the transmission channels. The MAC layer 14 will identify the user equipment (UE) on the common channel. The MAC layer 140 also multiplexes higher-layer PDUs into multiple transmission blocks for transmission to the physical layer on the common transmission channel or from multiple transmission area ghosts transmitted from the physical layer on the common transmission channel to solve the problem. More pDUs in the same layer. This MAC handles 95692 for common transmission channels. doc -28- 200522578 serves multiple jobs because the job cannot be done at the entity level. When a common transmission channel carries data from a dedicated logical channel, the Media Access Control (MAC) header will contain the ue identification symbol. The MAC layer will also multiplex the PDU into multiple transmission block sets for transmission to the physical layer on the dedicated transmission channel or a plurality of transmission block sets transmitted from the physical layer on the dedicated transmission channel. Multiplex higher layer PDU. The MAC layer 140 receives a plurality of RLC PDUs and status information. The number is equal to the amount of data in the RLC transmission buffer. The MAC layer 14 will compare the amount of data corresponding to the transmission channel with the threshold set by the RRC layer 160. If the data volume is too high or too low, the MAC will send a measurement report related to the traffic status to the rRC. The RRC layer 160 may also require the MAC layer 160 to send these measurements periodically. The RRC layer will use these reported values to trigger the reconfiguration of these radio bearers and / or transmission channels. The MAC layer also depends on the instantaneous source rate of the logical channels to select an appropriate transmission format (TF) for each transmission channel. The MAC layer 14 will provide different processing priorities for data streams by selecting the "high bit rate" and "low bit rate" transmission formats (TF). The packet of packet switching (ps) data is burst data, so the amount of data that can be sent will change with the message. When more data is available, the MAC layer 140 can choose one of the more direct data rates; however, when both signaling and user data are available, the MAC layer 140 will choose between them to maximize The amount of data sent by the prioritized channel. The transmission mode (TF) can be selected from the transmission format combination (TFC) defined by the admission control of each connection. Some body access control (mac) layer also applies encryption. 95692 per radio. doc 200522578 ^. On 3GPP TS 33. The encryption details are described in 102. In a system such as / MA, three transmission frequencies can be used to transfer round packets: material. These channels are common transmission channels, exclusive transmission channels, and prostitution transmission channels. In the next ;; check 4 taxis,, and order the order, the packet scheduling algorithm will select the channel packet data. In Bu Bing, Zha Shishi + ^ ^, Shanglian,, and Zhongzhong, the mobile station 10 will select the transmission channel based on the parameters set by the packet scheduling algorithm. /. For example, the common channel may be the random access channel RACH of the uplink link and the forward access channel fach in the downlink. Both carry plant materials and user data. The common channel has a very low settling time. Because the common channel can be used to send a message before the winter connection is established, the common channel can be used to send packets immediately without requiring a long settling time. Each sector will usually have a few RACI ^ FACH. The common channel does not have a feedback channel, so open loop power control or fixed power is usually used. Moreover, common channels cannot use soft delivery. Therefore, the link level performance of a common channel may be worse than the link level performance of a dedicated channel, and it may cause more interference than a dedicated channel. Therefore, the common channel is more suitable for transmitting small individual packets. Applications used in common channels may be applications such as short message services and short text messages. Sending a single request to a webpage is also very suitable for the concept of a common channel. However, in the case of a large amount of data, the common channel may be deteriorated due to poor radio performance. Dedicated channels can use fast power control and soft handoff features to improve radio performance, and often produce less interference than common channels. However, it takes 95692 more time to set up a dedicated channel than to access a common channel. doc -30- 200522578 ranges from thousands of speeds per second. The rate used to assign downlink channels during transmission can take a considerable amount of time. Dedicated channels have variable bit rates ranging from 2 bytes to 2 million bytes per second. Because the bits are malformed ', the orthogonal code must be set based on the southernmost bit. Therefore, the variable bit rate is exclusively used to concatenate the orthogonal code space. The physical layer (L1) 120 will be coupled to the page 80 layer 14 through a plurality of transmission channels carrying signaling information and user data. The physical layer 12 will provide services to the MAC layer through a plurality of transmission # channels through which the characteristics of the basin are used to transmit data and which characteristics are used to transmit data. w The physical layer αυΐ20 will receive signaling and user data on the radio company through multiple physical channels. The physical layer (L1) usually implements multiplexing and channel coding, which includes plan #, forward error correction (fec), rate matching, interleaved channel data, multiplexed channel data, and other physical layer procedures ( Such as access, access, paging, and radio link establishment / stomach failure). The physical layer (u) may also be responsible for unrolling and scrambling processing, modulation measurements, multi-passing sets, power weighting, handover, compression mode, and power throttling. FIG. 5B is a block diagram of the architecture of the radio link control (RLC) layer. As described above, each RLC entity or example 152 in the Radio Link Control (RLC) layer 15 can be configured using the #, wire power resource control (state.) Layer_ to operate in the following two lean transmission modes Among them: transparent mode (TM), unconfirmed mode (abdomen), or confirmed mode (AM). The service quality ^ > S) setting value can be used to control the data transmission mode of user data. It is unidirectional and contains a transmitting TM entity, 52 8 and a receiving entity 95692. doc 200522578 1 52B. In the transparent mode, no protocol commands are added to the higher-level data. Incorrect protocol data units (PDUs) can be discarded or mislabeled. Streaming transmission can be used, in which the higher-level data is usually not divided, but in special cases, the transmission of limited division / reassembly functions can be completed. When splitting / regrouping is used, negotiation can be done in the radio bearer establishment procedure. UM is also unidirectional and includes a transmitting UM entity 152C and a receiving UM entity 152D. The reason a UM RLC entity is defined as one-way is because there is no need for any association between the uplink and the downlink. Data transmission is not guaranteed in UM. For example, UM can be used in specific RRC signaling procedures that are not part of acknowledgement and retransmission. Examples of user services that use unconfirmed mode RLC are cell broadcast services and voice over IP. Depending on the configuration, erroneous data received can be marked or discarded. A timer-type drop function without explicit signaling can be applied. Therefore, RLC PDUs that cannot be transmitted within a specified time can be removed from the transmission buffer. In the unconfirmed data transmission mode, the PDU structure includes a plurality of serial numbers, and serial number checking can be implemented. The serial number check helps to ensure the integrity of the reorganized PDU, and can provide a detection component to check the radio link control (RLC) when the radio link control (RLC) PDU is reorganized into a radio link control (RLC) SDU Sequence number in the PDU to detect a broken Radio Link Control (RLC) SDU. Any damaged Radio Link Control (RLC) SDU can be discarded. Split and serial functions are also available in unconfirmed mode (UM). In the confirmed mode, the RLC AM real system is bi-directional and capable of shipping the opposite 95692. doc -32- 200522578 Link status indication signal in the direction of user data. FIG. 5C is a block diagram of an entity for a Radio Link Control (RLC) Confirmed Mode (AM) entity and shows how to construct an AMPDU. Data packets (RLC SDU) received from higher layers via AM-SAP can be split and / or concatenated 514 into a plurality of fixed-length protocol data units (pDUs). The length of the agreement data unit is a semi-static value determined in the establishment of the radio bearer and can be changed by the RRC radio bearer reconfiguration procedure. For concatenation or filling purposes, a multiple bit containing information related to the length and extension may be inserted into the beginning of the last agreed data unit, or data from an SDU may be included. If several SDUs are placed in a pDUi, they can be connected in series, and multiple correct length indicator symbols (LI) are inserted in the beginning of the PDU. These pDUs can then be placed in the transmission buffer 520, which is also responsible for retransmission management. The monthly PDU is constructed as follows: take a PDU from the transmission buffer 52 and add a header to it; if the data in the PMJ cannot fill the entire PDU, you can add _fill block or negative state information. The typed status information may originate from the receiving end or from the transmitting end to indicate an RLC SDU discard situation. This header contains the RLC pDu sequence number (SN);-polling bit _), which can be used to request status from peer entities: and optional length indicator ⑽, if SDU concatenation, padding, or push occurs in the RLC PDU This indicator can be used for negative PDUs. Acknowledged mode (AM) is usually used for packet-type services, such as Internet browsing and email download. In confirmed mode, an error can be corrected using the automatic repeat request (ARQ) mechanism. Any received packets with errors 95692. doc 200522578 can be retransmitted. The configuration of the number of retransmissions provided by the RLC can be used to control the quality and delay performance of the RLC by using RRC. For example, if the RLC does not transmit data correctly, if the maximum number of retransmissions has been reached or the transmission time has been exceeded, the upper layer will be notified and the radio link control (RLC) SDU will be discarded. It is also possible to notify the peer entity of the SDU discarding job by sending a mobile receive window command in the status information, so that the receiver will also remove all PDUs belonging to the discarded Radio Link Control (RLC) SDU. The RLC can be organized for sequential and out-of-order transmissions. With sequential transmission, the higher order of PDy can be maintained; conversely, out-of-order transmission will be immediately forwarded when the higher-level PDU is fully received. The RLC layer can sequentially transmit higher-level PDUs. This function preserves the order in which these RLCs transmit higher layer PDUs. If this function is not used, it can provide out-of-order transmission. In addition to data PDU transmission, status and reset control procedures can also be sent between peer RLC entities. These control procedures may even use a separate logical channel, so an AM RLC entity may use one or two logical channels. Encryption can be implemented in the RLC layer for both confirmed and unconfirmed RLC modes. In FIG. 5C, the AMRLCPDU is encrypted 540, which excludes the first two bits containing the PDU sequence number and polling bits. The PDU sequence number is one of the input parameters of the encryption algorithm and must be readable by a peer entity in order to perform the encryption operation. 3GPP specification TS33. 102 describes the encryption process. The PDU can then be forwarded to the MAC layer 140 through a plurality of logical channels. A dashed line is used in Figure 5C to represent the additional logical channel 95692. doc -34- 200522578 (DCCH / DTCH), the dashed lines illustrate that an RLC entity can be configured to send the control PDU and data PDU using different logical channels. The receiving end 530 of the AM entity receives a plurality of RLC AM PDUs from the MAC layer through one of the logical channels. The CRC calculated for the entire RLC PDU in the physical layer can be used to check for errors. The actual CRC check may be implemented at the entity layer, and the RLC entity will receive the result of the CRC check and the data generated after encrypting the entire header, and may extract possible piggyback status information from the RLC PDU. If the received PDU is a strong message or if the status information is carried on an AM PDU, the control information (status information) can be transmitted to the transmitting end, and the transmitting end will compare the received information with the received one. Status information to check its retransmission buffer. The number of PDUs originating from the RLC header is used for decryption 550 and for storing encrypted PDUs in the receive buffer. Once all PDUs belonging to a complete SDU are located in the receive buffer, the SDU can be reassembled. Although not shown in the figure, sequential transmission check and copy detection can then be performed before the RLC SDU is transmitted to a higher layer. When the user equipment (UE) or mobile station moves between PTM transmission and point-to-point (PTP) transmission or changes cells, the RLC entity 152 is re-initialized. This may unfortunately result in the loss of data in the Radio Link Control (RLC) buffer. As mentioned above, when the mobile station moves from one cell to another or when the delivery of multimedia broadcast and multicast service (MBMS) content in the serving cell changes from a point-to-point (PTP) transmission mode to a point-to-multipoint (PTM) ) Problems may occur during transmission mode. We want to do both point-to-point (PTP) transmission and point-to-multipoint (PTM) transmission 95692. doc -35- 200522578 during transfer or between different cells (such as handover) preserves the continuity of multimedia broadcast and multicast service (MBMS), and avoids submitting copies of information. To preserve the continuity of the MBMS service and avoid handing out duplicate information, layer 2 150 should be able to rearrange the data from these two streams. The physical layer cannot provide this synchronization because the network termination point may be different in each mode. If forward error correction (FEC) is implemented below the RLC layer 150 as in the case of 3GPP2, data may be lost during the migration from point-to-multipoint (PTM) transmission to point-to-point (PTP) transmission, instead The same goes for migration. In addition, for example, multiple cells with a common schedule may need to perform physical layer synchronization and share the same media access control (MAC). In this regard, these assumptions do not apply to 3GPP2, which may cause problems. Point-to-point (PTP) transmission Assuming the application has significant delay tolerance, the most effective data transmission mode for point-to-point (PTP) transmission is the radio link control (RLC) acknowledged mode (AM). For example, RLC acknowledged mode (AM) is usually used for packet switching data transmission on a dedicated logical channel (PTP). The RLC operates in an acknowledged mode (AM) on a dedicated logical channel. As shown in FIG. 5A, the dedicated user traffic of one of the user services in the downlink direction can be sent via a logical channel called a dedicated traffic channel (DTCH). In the confirmed mode (AM), if the data is wrong, the reverse link can be used for retransmission. The RLC transmits multiple service data units (SDUs) and uses retransmissions to ensure that it can be correctly transmitted to its peers. If the RLC cannot transmit the information correctly, it will notify 95692. doc -36- 200522578 The user of the RLC at the output. Operation in RLC AM usually must introduce additional delays in exchange for greater power efficiency. Point-to-multipoint (PTM) transmission The common traffic channel (CTCH) is a unidirectional channel that exists in the downlink direction, and it can be used when transmitting information to all terminals or a specific terminal group. Both of these data transmission modes use a one-way common channel, which does not have a backlink channel creation operation. We want to provide an architecture that allows MBMS services to transparently switch between a point-to-point (PTP) transmission mode and a point-to-multipoint (PTM) transmission mode. In order to obtain good performance when transferring between point-to-point (PTP) transmission mode and point-to-multipoint (PTM) transmission mode, we also hope to provide a framework that allows switching between different radio link control (RLC) modes. For example, this approach can help reduce power requirements. Various aspects of the present invention will now be explained with reference to the specific embodiments shown and described with reference to Figs. Among other features, these features can take advantage of a new forward error correction (FEC) layer to help preserve service continuity during these migrations. Figure 6 is a schematic diagram of a modified UMTS protocol stack with a forward error correction (FEC) layer, which can operate in the forward error correction (FECd) mode and in the forward error correction (FECc) mode. The Forward Error Correction (FEC) layer allows the underlying Radio Link Control (RLC) entity 152 to change from one of the types when the user equipment (UE) changes from point-to-point (PTP) transmission to point-to-multipoint (PTM) transmission. Radio Link Control (RLC) data transmission mode is changed to another Radio Link Control (RLC) data transmission mode, which can maintain 95692. doc -37- 200522578 supports service continuity. According to this embodiment, the FEC layer may operate in a first mode (FECc) or a second mode (FECd). In one implementation, the first mode (FECc) can use parity blocks, while the second mode (FECd) does not require any parity blocks. The impact of changes between the FECd mode and the FECc mode may be much lower than the changes between the RLC modes, and may be seamless, so that no data is lost during the migration. Forward Error Correction (FECc) mode uses external coding techniques to protect user data. This is particularly effective on common channels. The forward error correction (FECc) mode usually allows the functions found in the unconfirmed mode (UM) to be performed above the radio link control (RLC) layer, such as sub-frame (split and concatenation) and serial number addition functions. Therefore, the radio link control (RLC) layer can use transparent mode (TM) for point-to-multipoint (PTM) transmissions, as traditional unacknowledged mode (UM) functions may be in the forward error correction (FEC) Layers are implemented. Although this feature may be repeated in Radio Link Control (RLC) Confirmed Mode (AM), the gain caused by ARQ can compensate for this duplication effect. By placing the forward error correction (FEC) layer or external coding layer on top of the radio link control (RLC) layer, the sequence number can be added to a layer unrelated to the radio link control (RLC). Using additional additional data (such as serial numbers), then unacknowledged transmissions can be used to unalign the protocol data units (PDUs) to an encoder packet (EP) during the asynchronous transmission of MBMS data. The serial numbers are forced into the layer above the radio link control (RLC), so these serial numbers are point-to-point (PTP) transmission and point-to-multiple 95692. doc -38- 200522578 Both point-to-point (PTM) transmissions are common, so when moving from point-to-multipoint (PTM) transmissions to point-to-point (PTP) transmissions, serial number continuity can be maintained. This allows the data to be rearranged so that duplicate data and / or lost data can be avoided. External coding can also be used in point-to-point (PTP) transmission, which can increase part of the power gain of the system and / or reduce retransmission delay. Multimedia broadcast and multicast service (MBMS) data can tolerate some delay. A feedback path is provided in point-to-point (PTP) transmission. This method will make the use of Radio Link Control (RLC) Confirmed Mode (AM) more daunting due to the use of ARQ retransmission. Generally speaking, when ARQ retransmission is required, its radio efficiency will be better than FEC architecture To be effective, because FEC technology will definitely send an additional plurality of parity blocks. In this regard, it is not necessary to add multiple parity blocks to the MBMS payload data on a dedicated logical channel (for example, point-to-point (PTP)). 7A and 7B are specific embodiments of the protocol structure of the access layer in which a forward error correction (FEC) layer 157 is placed on the radio link control (RLC) layer 150. A specific embodiment of the forward error correction (FEC) layer will now be described with reference to FIG. The forward error correction (FEC) layer 157 directly receives user plane information 163 on the user plane radio bearers. Because the forward error correction (FEC) layer is at the top of the radio link control (RLC) layer, the FEC protocol data unit (PDU) corresponds to the RLC service data unit (SDU). The FEC layer preferably supports arbitrary SDU sizes (which are limited to multiples of 8 bits), variable rate data sources, out-of-order reception of packets from the lower layer, and from 95692. doc -39- 200522578 Replica packets are received in the lower layer. FEC? 1) The 11+ limit may be a multiple of 8 bits. As will be described in more detail below with reference to FIG. 9-8, the FEC layer 157 divides and concatenates higher-level user data blocks (such as SDU) into the same size. Each row can also be called an internal block. . Each protocol data unit (PDU) may contain additional data. The additional information may include a length indicator (I) to indicate that lean material that does not originate from a particular user data block (such as a service data unit (SDU)) can be placed at the beginning of the last _ agreement data unit . Collecting multiple PDUs will form an encoder packet (Ep) or "encoder ring". The number of PDUs contained in the Encoder Packet (EP) depends on, among other factors, the external code used. Encapsulating each of the "Flat Code Matrix" columns into a separate or separate transmission time interval (TTI) can enhance the performance of the physical layer. To mitigate buffering negative #, a shorter transmission time interval (TTI) duration can be used. In order to generate the equivalent bit sequence, the encoder packet (Ep) is transmitted by an external code encoder. As will be described in more detail below with reference to FIG. 9A, the FEC ^ 157 can be implemented by the Reed-Solomon_Code H function provided in the UMTS Terrestrial and Wireless Access Network (UTRAN) 2G to implement external W coding Moreover, external decoding can be implemented by providing a Reed Solomon decoder function in the user equipment (ue) i 〇. The equivalent bit sequence generated by the external encoder can be added to the encoder packet (EP), and can be placed in a transmission buffer as a group of internal blocks. Each internal block has additional information that is used to generate a _1 data unit (PDU). These pmj groups can then be transmitted. , 95692. doc -40- 200522578 The FEC layer 157 also said that the data of a single £ P was restored, that is, different cells received different internal blocks. This is accomplished by transmitting the sequence number (SN) in the header of each agreed data unit (PDU). In one embodiment, the system frame number (SFN) helps maintain data alignment according to the encoder packet (EP). The serial numbers will be discussed in more detail herein with reference to Figures 10A and 10B. The FEC layer 157 can also perform padding and reassembly, user data transmission, and sequential transmission of upper-layer PDUs, copy detection, and serial number checking. In the specific embodiments of FIGS. 6 to 7A, the forward error correction (FEC) layer 157 is located between the packet data convergence protocol (PDCP) layer 156 and the radio link control (RLC) layer 150 (for example, the BMC layer and the BMC layer). At the same level and below the Packet Data Convergence Protocol (PDCP) layer). By placing a forward error correction (FEC) layer 157 above the radio link control (RLC) layer 150, the performance of the external code can be optimized, as the internal block size can match those intended to be in the air. The "golden" packet size of the packet being sent. However, we should find that the forward error correction (FEC) layer in this figure is for illustration purposes only and is not restrictive. For its header compression, a packet data convergence protocol (PDCP) layer 156 can be used on top of the forward error correction (FEC) layer 157. It should be noted that the packet data convergence protocol (PDCP) layer 156 is currently defined for point-to-point (PTP) transmission using a dedicated logical channel. As shown in FIG. 7B, the forward error correction (FEC) layer may be provided within the access layer on the radio link control (RLC) layer or anywhere in the application layer. The forward error correction (FEC) layer may be located below or above the packet data convergence protocol (PDCP) layer. If FEC is implemented in the application layer 80, 95692. doc -41-200522578 Even if GSM and WCDMA have different "golden" packet sizes, they can be applied to GSM and WCDMA.

外部碼設計 該新的前向式錯誤修正(FEC)層可對使用者平面資訊實 施外部編碼。圖8為一資訊區塊91及一外部碼區塊95的示意 圖’該圖係為圖解外部區塊碼結構的概念。圖9A為如何將 外部碼區塊結構套用至多媒體廣播及多播服務(MBMS)資 料91的範例示意圖。當於整個細胞上廣播可耐受延遲的内External Code Design This new Forward Error Correction (FEC) layer enables external coding of user plane information. FIG. 8 is a schematic diagram of an information block 91 and an external code block 95. The diagram is a concept illustrating the structure of an external block code. FIG. 9A is a schematic diagram of an example of how to apply an external code block structure to multimedia broadcast and multicast service (MBMS) data 91. When broadcasting a tolerable delay within the entire cell

容時,外部編碼便可改良實體層效能。舉例來說,外部碼 有助於細胞間的移轉期間以及點對點(ρτρ)傳輸模式與點 對多點(PTM)傳輸模式間的移轉期間避免遺失資料。 外部碼區塊95可以一矩陣形式來表示,該矩陣包含k個協 定貝料單7G 91以及N-k個同位列93。於外部區塊編碼中,藉 由分割、串接、以及填補資料(包含於内部區塊中插入附加In addition, external coding can improve the performance of the physical layer. For example, the outer code helps to avoid losing data during the migration between cells and between the point-to-point (ρτρ) transmission mode and the point-to-multipoint (PTM) transmission mode. The outer code block 95 can be represented in the form of a matrix, which contains k agreement sheets 7G 91 and N-k parity columns 93. In the external block encoding, by dividing, concatenating, and filling the data (including inserting additional

資料)將使用者資料組織成k個酬載列便可將資料組成大 的編碼器封包或資訊區塊9卜而且接著可對所生成的資 品鬼1進行、扁碼,用以產生N_k個同位列Μ,可將該等同 列加入至資訊區塊91中以便製造出-外部碼區塊95。該 :位列93會將冗餘資訊加入至資訊區塊以中。接著便可 單=或多個傳輸時間區間(ΤΤΙ)中來傳輸該外部碼區塊 該等個別列。即使部份協定資料單元(PDU)於傳輸期間 失,該組協定資料單元(pDU)的冗餘資訊亦能 的資訊。 τ里漫原 圖9A為被稱為里德所羅門_區塊碼的示範外部碼區 95692.doc -42- 200522578 塊的示意圖。里德-所羅門(RS)碼可用來偵測且修正頻道錯 誤。圖9A所示之外部碼係一系統性(n,k)區塊碼,其中每個 里德-所羅門(RS)碼符號皆包括一由一列與一行所定義的 資訊位元組。每一行皆包括一里德-所羅門(RS)碼字組。若 欲還原η個遺失區塊,那麼便需要至少n個同位區塊。就此 而言,所需要的記憶體數量便會隨著同位區塊數量增加而 增加。於里德-所羅門(RS)編碼中,可於k個系統性符號中 加入N-k個同位符號,以便產生一碼字組。換言之,一里德 -所羅門(RS)[N,k]的碼字組具有]^固資訊或「系統性」符號 以及N-k個同你符號。N係該碼的長度,而&則係該碼的維 度。對每k個貧訊位元組來說,該碼會產生n個編碼符號, 其前面k個符號可能與該等資訊符號完全相同。每一列皆可 稱為一「内部區塊」,並且代表每個傳輸時間區間(ττι)的 酬載。舉例來說,於正常的WCDMA系統中,可於2〇抓訊 框(TTI)的基本WCDM A結構上進行傳輸。可以利用下面定 義的產生器矩陣GkxN由該等系統性符號中推導出該等同位 符號: 等式(1)Data) By organizing user data into k payload rows, the data can be composed into a large encoder packet or information block 9 and then the generated asset ghost 1 can be processed and flattened to generate N_k pieces. The parity column M can be added to the information block 91 in order to produce an external code block 95. The: rank 93 will add redundant information to the information block. Then, the individual columns of the external code block can be transmitted in a single or multiple transmission time intervals (TT1). Even if some of the protocol data units (PDUs) are lost during transmission, the redundant information of the group of protocol data units (pDUs) can still be used. τ 里 漫 原图 Figure 9A is a schematic diagram of an exemplary external code region called Reed Solomon_block code 95692.doc -42- 200522578 block. Reed-Solomon (RS) codes can be used to detect and correct channel errors. The external code shown in FIG. 9A is a systematic (n, k) block code, where each Reed-Solomon (RS) code symbol includes an information byte defined by a column and a row. Each line includes a Reed-Solomon (RS) code block. If n missing blocks are to be restored, then at least n parity blocks are needed. In this regard, the amount of memory required will increase as the number of co-located blocks increases. In Reed-Solomon (RS) coding, N-k parity symbols can be added to k systematic symbols to generate a codeword group. In other words, a Reed-Solomon (RS) [N, k] codeword group has solid information or "systematic" symbols and N-k identical symbols to you. N is the length of the code, and & is the dimension of the code. For every k poor-sense bytes, the code will generate n coding symbols, and the first k symbols may be exactly the same as the information symbols. Each column can be called an "internal block" and represents the payload of each transmission time interval (ττι). For example, in a normal WCDMA system, transmission can be performed on the basic WCDM A structure of a 20 frame (TTI). The equivalent bit symbol can be derived from these systematic symbols using the generator matrix GkxN defined below: Equation (1)

mlxk # GkxN =CixN 等式(2) 等式(3) mixk =資訊字組=[m〇 m! _.· mk l] ClXN =碼字組Cl ··· .Cn」] 其中Ci屬於一任意的伽羅華域。舉例來說,若一里德_ 所羅門(RS)碼字組的符號係一位元㈣,那麼便可利用維 度2的伽羅華域(GF(2))來描述解碼運算。於其中一具體實施 例中’若該符號係八位元的話,那麼便可利用維度W的伽 95692.doc -43- 200522578 羅華域GF(256)來描述解碼運算。於此情況中,每個資訊行 白係由每列1位元組所構成。每個資訊行皆可利用維度 的伽羅華域GF(256)上的[N,k]里德·所羅門㈣碼來進行編 碼。若每列有Μ個位元組的話,該外部區塊便要編碼财。 所以,每個外部區塊95會有Ν*Μ個位元組。 刪除解石馬 該外部碼結構允許進行畴修正。若該解碼胃已經知道 I5個符號有誤H那麼重建有誤的系統性符號便僅需要 極少量的計算。—編碼11封包㈣或矩陣代表的係該外部 編碼器輸出處的整個資料細。7从次> - 貝了叶、、且几餘貧訊以縱行形式取自每 一列,而且被傳輸的每一列皆mlxk # GkxN = CixN Equation (2) Equation (3) mixk = Information word group = [m〇m! _. · mk l] ClXN = Code word group Cl ··· .Cn 」] where Ci belongs to an arbitrary Galois Field. For example, if the symbol of a Reed_Solomon (RS) codeword is a one-bit unit, then the Galois Field (GF (2)) of dimension 2 can be used to describe the decoding operation. In one of the embodiments, if the symbol is an octet, then the gamma of the dimension W 95692.doc -43- 200522578 Luohua domain GF (256) can be used to describe the decoding operation. In this case, each white line is composed of 1 byte per column. Each information line can be encoded using the [N, k] Reed-Solomon code on the Galois Field GF (256) of the dimension. If there are M bytes in each column, the external block has to encode money. Therefore, each external block 95 will have N * M bytes. Delete calcite horse This external code structure allows domain correction. If the decoding stomach already knows that I5 symbols are wrong, then reconstructing the wrong systemic symbols requires only a very small amount of calculation. -Encoding 11 packets or matrix represents the entire data at the output of the external encoder. 7 times >-The leaves were taken, and more than one message was taken from each column in a vertical row, and each column transmitted was

白於後面附有一 CRC,該CRC 必須經過檢查以確認該資艇3A CRC is attached at the back, which must be checked to confirm the vessel3

貝料疋否被正確地發送。於MBMS 傳輸的情況中,可於每個傳輪 寻輸頻道區塊中使用一 CRC用以 t示一内部區塊91是否有誤 而 ^ > 而且若該CRC檢查失敗的 α 便可叙设該區塊中的所右您 ^ 丁刃所有付唬皆有誤。於一具體實施 列中’右假定一内部區塊9 7古组αα 有^的話,那麼便可刪除該區 塊的所有位元。「刪除一叫 ^所#的係隸屬於一其CRC檢查 夭敗之有誤區塊的每一個傳走 τ . 子唬非刪除的符號則可假設為 正確。忽略CRC未偵測到之錯誤 >比 、、钱率,那麼,每個Νχ 1 仃白含有正確與被刪除的符號。 經接收的向量r則可寫成: .· Cn-1 等式(4) ΓΐχΝ = [c〇 e e c3 c4 e c6 其中e代表刪除。 刪除解碼允許修正高達N_k $决捋娩。因為非刪除的符 95692.doc -44- 200522578 號可假σ又為正確’所以,化§碼的錯誤修正特性會遠優於標 準馬#錯#修正特性。每個内部區塊中所使用的大 小應该足以確保未偵測到之錯誤的機率不超過殘留外部區 塊的機率。舉例夾%,4 w ΑIs the material sent correctly? In the case of MBMS transmission, a CRC can be used in each round channel channel block to indicate whether an internal block 91 is incorrect and ^ > If the CRC check fails, α can be set All of you ^ Ding Ding in this block are wrong. In a specific implementation column, ‘right 'assumes that an internal block 97 7 group αα has ^, then all bits of the block can be deleted. "Deleting a call ^ 所 # belongs to a τ whose failed CRC check failed each pass τ. The non-deleted symbols can be assumed to be correct. Ignore errors not detected by the CRC > Ratio, and money rate, then, each Νχ 1 仃 white contains correct and deleted symbols. The received vector r can be written as:. · Cn-1 Equation (4) ΓΐχΝ = [c〇ee c3 c4 e c6 where e stands for deletion. Deletion decoding allows corrections up to N_k $ determined delivery. Because the non-deleted character 95692.doc -44- 200522578 can be false and correct again, so the error correction characteristics of the § code will be much better Standard horse ### Correction characteristics. The size used in each internal block should be sufficient to ensure that the probability of undetected errors does not exceed the probability of remaining external blocks. For example, %%, 4 w Α

木也右該寺内部區塊中使用16位元CRC 的,那麼殘留外部區塊錯誤率的下限便將是2_16=1.5 · 1〇右月1J面k個内部區塊中沒有任何錯誤的言舌,那麼便不 而’因為該等系統性符號等於該等資訊符號。 二庄心〇要接收到具有良好CRC的k個區塊後,便可例 可實施該外部區塊的解碼,而不必等待接收到全部的N個内 部區塊。為實施刪除解碼,可藉由移除對應複數個刪除符 唬或不必要區塊的所有行,以便從該產生器矩陣GkxN中推 ¥出’”工修正的產生器矩陣、,舉例來說,僅有前面让個良 好接收的符號可用來代表該經修正的產生器矩陣^。可 以利用下面等式來還原原來的資訊字組m : kxk]、k 等式⑺ f中^為利用前面_良好符號所獲得之經修正的接收向 量。所以,該刪除解碼複雜度便可減低為—矩陣的複雜 度。因此,使用RS刪除解碼可大幅地簡侧解碼的計算複 雜度。 資料封包對外部碼效能的影響 二=參考圖I13的討論,若特殊的外部編瑪架構限 發达的填補與附加資料量的話,便可配合可變速 率資料源來使用該外部編碼,而不會造成過大的附加資 料。於上面討論的外部碼架構中,可將資料包裝成特定大 95692.doc -45- 200522578 J的區塊,亚且可於該等區塊上執行縮短的里德-所羅門 馬至v可以兩種不同方式來將該經編碼的封包資料包穿 成複數個TTI,現在將參考圖9八與叩來作說明。、、 圖9B為圖9A之外部碼區塊結構的示意圖,其中會有多重 列於每個傳輸時間區間(TTI)中被發送。根據本發明另: 觀點’會於單—個ΤΤΙ中傳輸源自其中一列的資料。於另一、 具體實把例中,會將源自一編碼器封包㈣列的資料置入 個TTI中致使每個TTI皆含有源自該編碼器封包( 的資料。就此而言,可於-分離的WCDMA訊框或傳輪時間 區間(TTI)中來傳輸每_列。於其中—個ττι中來傳輪每一 列將會提供更佳的效能。圖9B中,…都要除以每個叩 的列數,而且某一列中的錯誤可以完全關聯。如此—來, 觀察EP錯誤率與TTI錯誤率的關係,便可產生顯著的差I 圖9C為圖9A之外部區塊結構的示意圖,其中每— 多個TTIt被發送。應該瞭解的係,雖然圖9c於四個^ (TTI0-TTI3)中發送每—列編碼器封包(Ερ),*過,實p上 每-列卻可於任意數量的ΤΤΙ中進行發送。因為每_^皆係 -外部碼碼字組,所以,每個該等四個㈣的傳輪: σ™-™)便合組成—獨立的外部碼。為還原整個封包'」 全部該些獨立❸卜部碼冑必須正確地解碼。 圖1〇Α與為該前向式錯誤修正層所產生 塊的示意圖。 V ^ /阶模式可使用於共同或點對多點(明邏輯頻道上, 藉由於MBMS酬載資料9ΐφ+ λ π 戟貝卄91中加入同位列或區塊%以建構外 95692.doc -46- 200522578 部碼區塊95。每個外部區塊95皆包含複數個内部區塊91、 93 °辨識内部區塊的順序及其相對於編碼器封包的位置便 可將每個可用的内部區塊置放於正確位置處,致使可正確 地70成外部解碼。於其中一具體實施例中,每個内部區塊 皆包含一標頭94,其可利用内部區塊數m及外部區塊n來辨 識"亥内σ卩區塊。舉例來說,外部區塊η包含一具有m個多媒 體廣播及多播服務(MBMS)酬載區塊的資料部份91,以及一 具有個内部同位區塊的冗餘部份93。根據本具體實 她例,可針對MBMS來最佳化序號空間,並且利用數個不 同的序號(舉例來說,〇至127)來定義該序號空間。該序號空 間的大小應该足以在任何移轉類型所導致的接收間隙後不 會出現相同的序號。即使有部份内部區塊遺失,該接收UE 應該還是能夠決定該等内部區塊的順序。若該UEm遺失的 内部區塊超過整個序號空間所能辨識的數量的話,該UE將 無法正確地再排序該等内部區塊。跨越該等FECd區塊與 FECC區塊的相同内部區塊的序號係完全相同的。該等 區塊並不包含該等FECc區塊中所採用之冗餘部份93。FECd 貝體與FECc實體可於空中使用相同的位元速率。 傅輸端 傳輸前向式錯誤修正(FEC)實體410包含一服務資料單元 (SDU)緩衝器412,用以接收SDU ; —分割與串接單元414 ; 一外部編碼器416,用以實施里德-所羅門(RS)編碼;一序 號產生器418,用以將一序號加入該等經編碼的Pdu中;一 傳輸緩衝器420,用以於該等邏輯頻道4〇6上傳輸該等 95692.doc -47- 200522578 PDU ;以及一排程單元422。 服務資料單元(SDU)缓衝器412會於無線電承載402上以 服務資料單元(SDU)的形式來接收使用者資料(FEC SDU) ’如箭頭所示,並且儲存源自更高層的FEC SDU。· 該接收緩衝器412會通知排程單元422將會傳輸多少資料。 如上面的討論,填補一編碼器封包(Ep)所花費的時間量 通常都會變動,因為資料源速率通常都係會變動的。如參 考圖13的解釋,藉由彈性地決定何時開始包裝該資料,便 可改良訊框填補效率。以該接收FEC實體430的抖動耐受性 為基礎儘可能地延遲該Ep的製造時間,便可減少所引入的 填補量。 該排程實體422可決定何時開始編碼。該排程器422較佳 的係會以該項特殊服務的q〇S曲線為基礎來決定必須送出 一封包鈿可以專待的時間長度。一旦該排程器422確定已經 累積足夠的資料時,或是已經耗盡最大可接受封包傳輸延 遲時’該排程器便會觸發產生一編碼器封包(Ep)9丨。分割 與串接單元414可將服務資料單元(SDU)分割成各列,並且 產生長度指示符號(LI)。 排程單元422較佳的係可決定該Ep或協定資料單元(pDU) 的最佳列大小,致使該等SDU可確實置入於列數(舉例來 說’ 12列)之中。或者,排程器422會從RRC所組織的fec pDu 大小中選擇一 FEC PDU大小,其將會導致最少可能的填補 作業’並且要求分割與串接功能414將該等Sdu格式化成垃 個大小為PDU一size-FEC一Header一size的區塊。此格式化作業 95692.doc •48- 200522578 可以改變。下文將參考圖12-13來討論不同格式化類型的範 例。所考量的總資料量應該包含將會被串接與分割功能414 併入的附加資料。為產生該編碼器封包⑺p),排程器422會 要求串接與分割功能414產生k個此大小的PDU。此大小包 含重組資訊。於其中一具體實施例中,該等PDU的大小為8 位元的倍數,而且連續!>〇11的資料會對應該等碼字組中不 同的符號。 接著,該等k個PDU區塊便可行經實施里德_所羅門(RS) 編碼的外部編碼器416。該外部編碼器416會產生冗餘或同 位資訊並且將其附加至該編碼器封包(Ep)矩陣中,產生一 外部碼區塊,以便編碼該編碼器封包(Ep)矩陣中的資料。 於具體實知例中,言亥外部石馬可假設為(n,k)刪除解碼區塊 碼’而且該外部編碼器會產^销同位區塊。該編碼器會 對k列相等長度的資訊實施編碼,並且傳送給相同大小之下 了子層η個協疋|料單元(pDU)。前齡個區塊會與其接收的 區塊相同,而後面的n_k個區塊則會對應到同位資訊。 排程器422還會監視PTM串的時間對齊或相對時序,並且 實施傳輸以調整不同邏輯串的對齊情形。舉例來說,於重 新組態期間,可以調整ρτρ與随邏輯串間的時間對齊姓 T以便有利於服務連續性。當該等資料串產生完全同步 日^ ’便可獲得最佳的效能。 不同的基地台(或是不同的傳輸模式ρτρ、點對 (ΡΤΜ))會傳輸相同的内容 對齋。π°亥寻内容串可能無法 ^右違等貝料串的編碼器封包⑽)格式相同的 95692.doc -49- 200522578 :,那麼每個資料串上的資訊便完全相同。將一序號加入 每個外π區塊可讓該使用者設備(岡組合該等兩個資料 串’因為該使用者設備(UE)將會知道該等兩個資料串 關係。 序號產生盗41 8會以和編碼器416中所使用的相同順序將 一序諕附加在每個區塊的前面用以產生pDu。舉例來說, ^一具體實施例中,該序號產生器會於每個外部碼區塊的 前面加進—八“的序號,用以產生醜。亦可於該外部 碼區塊中加入額外的附加資料資訊。序號空間應該足以容 納資料串間最糟的時間差。所以,於另一具體實施例中, 可以使用大小為20的序號空間,並且可於每個標頭中為該 序號保留至少5位位元。可於實施里德·所羅門(rs)編碼後 再將此標頭附加至該外部碼區塊,所以此「外部」標頭並 不X到該外部碼的保護。較佳的係亦可為同位區塊加入序 號,即使該等序號可能不會被傳輸亦無所謂。於其中一具 體實施例中,該序號相態可以對其編碼器封包邊界。序號 前進便代表接收到一新的編碼器封包。 前向式錯誤修正(FEC)標頭格式 如上述,引入含有和PDU排序相關之資訊的序號便可達 到資料串同步化的目的。除了重新排序以及副本偵測之 外,序號還可重新排列源自一編碼器封包中内含之個別資 料源的資料。此序號可明確地指出每個封包應該考慮的順 序。此序號可構成一「FEC標頭」,可於實施編碼之後將該 標頭同時附加至資訊酬載單元(pDU)以及同位區塊中。該序 95692.doc -50- 200522578 號不應該受到該外部碼保護,因為必須利用該序號來進行 解碼。 圖14為一前向式錯誤修正(FEC)標頭格式的具體實施例 示意圖。為幫助讓該資料對齊該編碼器封包(EP),可以分 割該序號使其包含一保留部份(R)402 ; —編碼器封包(EP) 部份404,用以找出該EP (EPSN);以及一内部編碼器封包, 用以於該編碼器封包(IEPSN) 406内找出一特殊内部區塊的 位置。 吾人希望FEC層400能夠與所有的無線電連結控制(RLC) 模式中交換運作。因為無線電連結控制(RLC)AM及無線電 連結控制(RLC)UM兩者皆要求服務資料單元(SDU)的大小 為8位元的倍數,那麼,吾人便希望FEC層400亦能支持此 項規定。因為FEC層400的外部碼係以貧料位7〇組大小遞增 的方式來運作,所以,該編碼器封包(EP)列大小也必須為 整數個位元組。所以,FEC標頭大小401應該也是8位元的 倍數,以便讓無線電連結控制(RLC)可接受該feC協定資料 單元(PDU)大小。於前向式錯誤修正(FEC)標頭4〇 1可為一個 位元組的具體實施例中,保留部份(R)4〇2包括單一個位 元,用以辨識該EP(EPSN) 404的部份包括3位位元,而用以 於該編碼器封包(IEPSN) 406内找出該PDU之位置的IEP部 份則包括4位位元。於此具體實施例中,會使用一 8位元的 序號,因為吾人預期每個TTI中將會發送一個pdu且因為吾 人不希望不同細胞的傳輸時序會漂移超過1〇〇 ms。 傳輸緩衝器420會儲存該等PDU,直到累積一資料訊框為 95692.doc -51 - 200522578 止。當該等PDU被要求的時候,傳輸緩衝器42〇便會透過一 邏輯頻道於無線電介面(Uu)上逐一地將該等訊框傳輸給 MAC層。接著,該MAC層便會透過複數個傳輸頻道將該等 PDU送至實體層,最後該實體層便會將該等pDU送至UE 10 ° 接收端 繼續筝考圖11,接收前向式錯誤修正(FEC)實體430包含 接收緩衝器/再排序/副本偵測單元43 8 ; —序號移除單元 436 ; —外部解碼器434,其可實施里德_所羅門(RS)解碼; 以及一重組單元/服務資料單元(SDU)傳輸緩衝器432。 該EP矩陣的資訊列會對應複數個Pdu。為支援外部編 碼,該接收前向式錯誤修正(FEC)實體43〇於觸發外部解碼 以前會累積數個FEC PDU。為達成連續接收的目的,任憑 需要解碼複數個編碼器封包,該使用者設備(UE)仍然會於 實施解碼時同時緩衝該等進來的協定資料單元(pDU)。 接收緩衝器438可以累積複數個PDU,直到接收到整個編 碼器封包(EP)為止或是直到該排程單元(未顯示)符合不會 再傳輸該編碼器封包(EP)的條件為止。一旦判斷出不會再 接收到一特定編碼器封包的任何資料後,便可將遺失的 PDU視為刪除資料。換言之,可於解碼過程中利用刪除符 號來取代未通過CRC測試的PDU。 因為部份區塊會於傳輸期間被丢掉,而且因為不同資料 串可能具有不同延遲的關係,所以該接收前向式錯誤修正 (FEC)實體430會對接收緩衝器/再排序/副本彳貞測單元438中 95692.doc -52- 200522578 的已接收的區塊實施副本偵測並且可對會實施再排序。可 於每個FEC協定資料單元(PDU)巾使用該序縣協助進行 再排序/副本偵測。可於接收緩衝器438中使用該序號來再 排序無序接收到的資料。一旦對pDU進行再排序後,該副 本偵測單元便會以其序號為基礎來偵測編碼器封包(E p)中 的副本PDU,並且消除任何的副本資料。 接著便可移除該等序號。序號移除單元436可從該編碼器 封包(EP)中移除序號,因為該序號並非係欲被發送至該里 德-所羅門(RS)解碼器之區塊的一部份。 接著可將謂資料送至外部解碼功能434,用以還原遺失的 資訊。該外部解碼器434會接收該編碼器封包(Ep),必要 時’還可利用同位資訊來再生任何有誤或遺失的列,以便 對該編碼器封包(EP)實施里德·所羅門(RS)解碼。舉例來 說,若含有資訊的全部k個協定資料單元(PDU)皆未被正確 收到的話,或是η個PDU中少於k個未被正確收到的話,那 麼便可對該等協定資料單元(PDU)實施外部解碼(其數量高 達該等同位PDU的大小),以便還原遺失的資訊pDU。當實 施外部解碼時’該接收器處將至少有一個同位PDu可用。 若含有資訊的全部k個協定資料單元(pdu)皆被正確收到的 話,或是η個PDU中少於k個被正確收到的話,那麼便不必 貫施解媽。接著便可將該等資訊協定資料單元(PDU)傳送至 該重組功能432。 不論該外部解碼成功與否,皆可將該等資訊列傳送至該 重組單元/功能432。該重組單元432會利用長度指示符號(u) 95692.doc -53- 200522578 來重組或重建源自該編碼器封包(EP)矩陣之資訊列的 SDU。一旦成功地將複數個SDU放在一起後,該服務資料 單元(SDU)傳輸缓衝器432便會於無線電承載440上傳輸等 服務資料單元(SDU),用以將該等SDU傳送給更高層。 於接收前向式錯誤修正(FEC)實體430處,讓UE可以不同 邏輯串間的時間補償來延遲解碼,便可因為邏輯串間不需 要同步的關係,而讓該系統完整地運用潛在無序接收資料 的好處。如此便可於交遞以及PTP與PTM的移轉期間來讓該 項服務更為流暢。下文將參考圖15來討論讓UE以不同邏輯 串間的時間碑償來延遲解碼的演算法。 編碼器封包(EP)選項:固定或可變列大小 該FEC或外部碼實體可彈性決定何時建構協定資料單元 (PDU),因為該等協定資料單元(PDU)並不必於每個傳輸時 間區間(TTI)中被連續發送。如此便可造成較佳的訊框填補 效率以及較少的填補附加資料。 必要時,該外部碼實體可於每個傳輸時間區間(TTI)處產 生一酬載。可於從更高層接收到服務資料單元(SDU)時便即 時地建構協定資料單元(PDU)。若沒有足夠資料來建立一協 定資料單元(PDU)時,那麼該RLC便可加入填補資訊。 固定列大小編碼器封包(EP) 當編碼SDU 201-204時,吾人會希望儘可能地減少將會被 傳輸的填補量。 於一具體實施例中,編碼器封包(EP)矩陣205的列大小可 能係固定大小。預先知道編碼器封包(EP)矩陣205的列大 95692.doc -54- 200522578 小:便可將該資料對齊原來的組態。因為事先知道將會被 發达的SDU 201-204的列大小,所以於接收到資料後便可立 即開始傳輸,而不必等待查看將會有多少資料被發送。 圖12A為用以從複數個資料單元2〇1_2〇4中產生一外部碼 區塊214的編碼過程範例,其中該外部碼區塊214的列大小 可能係固定的。於此範例中,使用者資料的形式為複數個 服務資料單元(SDU) 201-204,其包含一任意大小的位元區 塊’其大小和特殊的應用(視訊、語音等)有關。 為能傳輸任意大小的FECSDU,可於FEC階中實施分割、 串接、以及填補作業。雖然並非絕對需要串接作業,不過, 若無該項作業則會嚴重地損及更高層資料處理量。 可先將該等更高層SDU 201-204格式化成此固定的pDU 大小。於此具體實施例令,分割/串接功能可產生該用戶單 元專屬之固定大小的複數個内部區塊。步驟22〇處,可分割 且串接該群内部區塊,使其變成一編碼器封包矩陣2〇5的一 部份,該編碼器封包矩陣205含有複數個内部區塊;必要的 填補資訊208 ;以及長度指示符號(LI)206,其可藉由表示該 EP某一特定列中究竟有多少個SDU,以便指到該等服務資 料單元(SDU) 201-204的結束處。下面討論的外部編碼器會 使用該些内部區塊來產生複數個冗餘區塊。 於無線電連結控制(RLC)中,長度指示符號(LI)會表示按 照該協定資料單元(PDU)所找到之每個服務資料單元(SDU) 的結束處,而非按照該服務資料單元(SDU)。如此有助於減 少附加資料,因為PDU大小通常小於服務資料單元(sdu) 95692.doc -55- 200522578 的大小。舉例來說,可利用長度指示符號(LI)來表示結束於 該酬載資料單元(PDU)内之每個FEC服務資料單元(SDU)的 最後八個位元。「長度指示符號」可設為介於該FEC標頭之 結束處與一FEC SDU分段之最後一個八位元間的八位元數 量。長度指示符號(LI)較佳的係内含於該長度指示符號(LI) 所參照的該等PDU之中。換言之,該等長度指示符號(LI) 較佳的係參照相同的酬載資料單元(PDU),而且較佳的係和 該長度指示符號(LI)所參照的FEC SDU具有相同的順序。 當接收到該外部區塊時,便可利用資訊(例如長度指示符 號(LI))來讓碎接收器知道該服務資料單元(SDU)及/或填補 資訊的開始與結束位置。 因為無法於FEC標頭中使用一位元來表示有長度指示符 號(LI)存在,所以,該FEC層會於該酬載内加入一固定標頭 用以表示有複數個長度指示符號(LI)存在。内部標頭或LI 會提供用來重建該等SDU 201-204所需要的全部資訊。LI 可能係内含於其所參照的RLC-PDU之中。可以利用 RLC-PDU之序號標頭中内含的旗標來表示有第一 LI存在。 可以使用每個LI中的一位位元來表示其延伸部份。為允許 該等長度指示符號(LI)的長度隨著FEC PDU大小而改變,可 為該一位元組的長度指示符號(LI)引進一新的特殊值,用以 表示其中一位元組之結束處的先前SDU,除非填補最後一 個PDU。可以各種方式來實現該等長度指示符號(LI)存在位 元,下文將討論其中兩種方式。 於其中一具體實施例中,可於每個協定資料單元(PDU) 95692.doc -56- 200522578 中提供一長度指示符號(LI)存在位元。舉例來說,可於每個 編碼器封包(EP)列的開頭處加入一位元組,而且該位元組 中的某一位元可表示有該LI存在。每個協定資料單元(PDU) 的整個第一位元組可保留供此「存在位元」使用。為容納 此存在位元,可將該長度指示符號資料縮短一位位元。於 每個協定資料單元(PDU)中提供一存在位元便可於EP解碼 失敗時仍可解碼SDU,即使第一個PDU遺失亦無所謂。如 此便可促成較低的殘留錯誤率。於每個PDU中提供一存在 位元還可允許進行即時串接/分割作業。 於另一具皞實施例中,可於第一個PDU中提供一長度指 示符號(LI)存在位元。於該具體實施例中並不會於每個PDU 的開頭處加入該附加資料,取而代之的係,可於該EP之第 一個PDU的開頭處加入全部k個資訊PDU的存在位元。當具 有大型SDU及/或小型PDU時,於編碼器封包(EP)的開頭處 提供該存在位元便可促成較少的附加資料。 經過分割及串接之後,EP 205中便會有數列被該等複數 個服務資料單元(SDU)201-204中至少其中一者及填補區塊 佔據。一外部區塊的列大小可被設計成能夠於一傳輸時間 區間(TTI)期間以尖峰資料速率來傳輸。服務資料單元(SDU) 通常無法對齊於一傳輸時間區間(TTI)期間被發送的資料 量。因此,如圖11所示,第二與第四SDU 202、204並不能 置入該EP第一列與第二列的傳輸時間區間(TTI)之中。於此 範例中,該EP有12列可供資料來使用,並且可將該等四個 SDU 201-204包裝於該等12列的前面三列之中。該EP 205的 95692.doc -57- 200522578 其餘列則會被填補區塊208佔據。因此,可分割第二SDu 202,致使該第二服務資料單元(SDU)2〇2的第一部份起始於 「資訊區塊」第一列,而該第二SDU2〇2的第二部份結束於 第二列。同樣地,必須分割第三SDU,致使該第三服務資 料單元(SDU)203的第一部份起始於第二列,而該第三 203的第二部份結束於第三列。第四服務資料單元(sdu)2〇4 可置入第三列之中,並且可利用填補區塊2〇8來填充第三列 的其餘部份。於此範例中,編碼器封包(Ep)213大部份係由 填補資訊208所構成。 該編碼器會使用該EP來產生冗餘或同位資訊。步驟24〇 處,一編碼器會藉由加入複數個外部同位區塊214來對已經 編碼的中間封包矩陣205進行編碼,用以產生一長度為j 6 個區塊的外部碼區塊213。該編碼器會從每個區塊的每行中 取出8位元資料,用以產生最後資料21〇。里德_所羅門(rs) 編碼器可對該最後資料210進行編碼,用以取得四列的冗餘 或同位資訊212。同位資訊212可用來產生複數個外部同位 區塊214,該等區塊可附加至該ep矩陣205,用以產生16區 塊的外部碼區塊2 1 3。 圖12B為上面所討論之範例中於空中被傳輸的資訊範 例。步驟260中,於EP 205的每列中加入含有序號的額外附 加資料之後,便可以複數個協定資料單元(PDu)2 14的方式 於空中來傳輸該16區塊的外部碼區塊2丨3。並不會在該下行 連結中被發送的該等協定資料單元(PDu)2 14中來傳輸全部 或整個編碼器封包(EP)213。更確切地說,該等協定資料單 95692.doc -58- 200522578 元(PDU)包含該編碼器封包(EP)213的資訊位元201 -204以 及長度指示符號(LI)206。因為編碼器封包(^!>)213列大小固 疋’而且接收器處知道該大小值,所以,並不需要於空中 實際傳輸填補資訊208。因為該等填補值為已知,所以並不 需要傳輸該填補資訊208,因此填補資訊208並未於下行連 結上被傳輸。舉例來說,若可利用一已知位元序列(例如全 部為0、全部為1、或是由0與丨組成的交錯圖案)來組成該填 補貧訊的話,該接收器便可將該等協定資料單s(pDu)2i4 填補至標稱的編碼器封包(ep)213列長度。所以,於傳輸期 間,並非選^PDU大小等於EP列大小,取而代之的係,運 用攜載全部資訊位元20丨_204及重組附加資料(u)2〇6的最 小可用EP大小。 雖然該編碼器矩陣列大小為固定,不過,卻可於每次傳 輸中從一既定集中選出該FEC pDU大小,致使每一者皆可 包含=一編碼器矩陣列的全部資訊部份(填補資訊可排 除)。當接收一小於該編碼器矩陣列大小的pDu時,ue便可 利用已知的位疋序列來填補至該編碼器矩陣列的大小為 止。如此便可維持固定的内部區塊大小,而不必增加空中 介面的負載。因此’利用固定列大小編碼器封包(ΕΡ)213, 於開始傳輸協定資料單元(PDU)以前便不需要等待接收到 全::用的資料,而且也不需要發送填補資訊。 若設計上面的演算法來處理可變速率傳輸的話,那麼便 =使用2率同等化架構,其中全部的編碼器封包矩陣列皆 /、 疋的大〗。§填補資訊構成部份PDU時便可使用較 95692.doc 200522578 小型的PDU。該填補資訊可能係由—特定位元序列所構_ 成,並且可能係位於資料的每個結束位置處。於接收器處, 可藉由於結束位置處附加填補資訊,用以將接收自下方層 ,· 的區塊的大小同等化成基線大小。 ; 若可利用預設的位元序列作為填補資訊的話,便不會於 空中傳輸此填補資訊。除非接收器需要執行外部解碼,否 則該接收器便不必知道實際的編碼器封包列大小。基本 SDy重組並不需要知道一刚之結束位置處之填補資訊的 數1 °若已經接收到含有源自前面k列編碼器封包(Ep)列之 _ 資訊的全部PDU的話’那麼便不必實施外部解碼。相反地, 若含有源自前面k列編碼器封包(EP)列之資訊的至少一個 PD^遺失的話,那麼便會需要含有源自一同位列之資料的 名等PDU中至少其中一個。因為同位列通常不會進行填 補’所以’可利用其大小作為實際編碼器封包大小的假設 參考值。 可變列大小編碼器封包(Ep) 圖13為用以產生一具有可變列大小的外部碼區塊3i3的· 編碼過程。 本孓月的此項觀點係關於在空中介面上被傳輸之資料的 彈性外部區塊編碼。此編碼過程僅會傳輸少量的填補資 訊,所以訊框填補效率會提高。該等編碼器封包(EP)305列 可此係可.交的大小,而且可針對每個傳輸時間區間(TTI)來 發送不同大小的外部區塊。較佳的係,編碼器封包(EP) 305 . 的列大小可改變,致使該等SDU可確實地置入編碼器封包 95692.doc -60- 200522578 (EP)矩陣305的列數(例如12列)之中。於此具體實施例中, 該FEC層於建構該EP之前必須等待所有的資料皆已經可用 為止,因此,該FEC層可決定最佳的列大小。可以可用資 料的數量為基礎,從數個不同大小中選出該列大小,以便 限制填補資訊。該編碼器封包(Ep)的列大小可能會連結到 為S-CCPCH所配置的PDU大小集。視需要產生該編碼器封 包305時可用資料的數量而定,可以選出會造成最少填補資 訊的列大小。縮小外部區塊313的大小以使得每個訊框中的 區塊大小變小,那麼便可於較低的傳輸速率處來發送資 料’因為於相同TTI持續時間中被發送的資料已經變少。利 用編碼器封包(EP)305的可變列大小有助於穩定編碼器封 包(EP)的全部傳輸中的功率需求,並且還可運用較少的同 位附加資料314。此具體實施例適用於WcDma系統中進行 點對多點(PTM)傳輸,該系統中的基本無線協定允許於每個 傳輸時間區間(TTI)中被發送的傳輸區塊的大小有所不同。 步驟320中,可以分割且串接複數個服務資料單元 (SDU)201-204,用以產生一編碼器封包(Ep)矩陣3〇5,其中 可利用長度指示符號(U)206指到該等服務資料單元 (SDU)201-204的結束位置。長度指示符號(LI)可内含於終止 每個服務資料單元(SDU)的最後一列中。 步驟330,可從每個資料區塊中取出8位元資料,以行作 為基礎來產生冗餘或同位資訊,並且可將最後資料31〇送至 一里德_所羅門(RS)編碼器,用以取得同位資訊312。因為 編碼器封包(EP)矩陣305的列數比較少,所以,可以產生比 95692.doc -61 - 200522578 較少的冗餘資訊。 步驟340中會繼續進行編碼,因為該同位資訊312會被用 來產生複數個外部同位區塊3 14,該等外部同位區塊3 14可 被附加至十二區塊的編碼器封包(Ep)矩陣3〇5之中,從而於 本範例中產生一長度為16個區塊的外部碼區塊。此具體實 施例可避免進行填補資訊傳輸,進而改良傳輸效率,因為 整個外部碼區塊313都係被8〇11、長度指示符號(1^1)206、及 /或冗餘資訊3 14佔據。於此特定範例中,並不需要任何的 填補資訊。不過,應該瞭解的係,於部份情況中,因為將 會限制該PDU之組態大小的數量,所以可能會需要部份的 填補資訊,不過填補資訊的數量相當小。如此便可促成更 大的訊框填補效率,並且還可於整個編碼器封包(Ep)中維 持更恆定的功率。此為運用功率控制架構的CDMA系統所 樂見的。 雖然圖中未顯示,不過,於空中傳輸PDU的方式和上面 參考圖12之步驟260所討論者相同。 圖11為於該無線電連結控制(RLC)層上方之外部編碼或 前向式錯誤修正(FEC)層400的具體實施例,其具有_RLC 未確認模式(UM)+實體(RLCUM+)。一般來說,無線電連結 控制(RLC)會為更高層提供分框處理。此處,係由位於無線 電連結控制(RLC)上方的FEC層來實施分框處理。 該外部編碼層400包含一傳輸前向式錯誤修正(FEC)實體 410,其可透過複數個邏輯頻道406於無線電介面(Uu)4〇4上 和一接收前向式錯誤修正(FEC)實體430進行通信。 95692.doc -62- 200522578 再排序/副本偵測 圖15為讓行動台10利用不同邏輯串間的時間補償來延遲 解碼的再排序協定或演算法示意圖。 接收前向式錯誤修正(FEC)實體430會使用序號來決定一 特定PDU於該EP矩陣内的位置。舉例來說,一部份的序號 (PSN)可辨識該PDU於該編碼器封包(EP)中的位置。 此演算法假設,至多源自兩個編碼器封包(EP)的資料會 於開始進行解碼以前被接收到。於下文的說明中,編碼器 封包(EPd)係欲依序進行解碼的下一個編碼器封包(EP),而 編碼器封包(EPb)則係正在進行緩衝的編碼器封包(EP)。編 碼器封包(EPb)係跟隨在編碼器封包(EPd)後面。需要全部編 碼器封包傳輸時間來實施RS解碼的UE設計方式將會需要 實施雙重緩衝,以便能夠解碼複數個連續封包。所以,該 UE會儲存該編碼器矩陣最大列中至少n+k列,k與η分別為 資訊列的數量以及含有同位資訊在内的總列數。具有較快 速解碼引擎的UE便可降低此規定,不過,不能低於η+1。 舉例來說,若該UE的特定緩衝器空間數量(XtraBffr)超出依 據其解碼能力來接收連續封包所需要的數量,而且若假設 有一 64k bps的資料串,那麼若要將解碼延遲100 ms而不增 加計算需求的話,便需要增加800個位元組的緩衝器大小。 步驟1410處會判斷是否收到一新的前向式錯誤修正(FEC) 協定資料單元(PDU)。若未收到一新的前向式錯誤修正 (FEC)協定資料單元(PDU)的話,該程序便會於步驟1410處 重新開始。若有收到一新的前向式錯誤修正(FEC)協定資料 95692.doc -63- 200522578 單元(PDU)的話,那麼便會於步驟142〇處判斷該新的前向式 錯誤修正(FEC)協定資料單元(pDU)是否屬於欲依序進行解 碼的下一個編碼器封包(EPd)。 若該前向式錯誤修正(FEC)協定資料單元(PDU)不屬於欲 依序進行解碼的下一個編碼器封包(EP)的話,那麼便會於 步驟1421處判斷該前向式錯誤修正(FEC)協定資料單元 (PDU)是否屬於欲被緩衝的編碼器封包(Epb)。若該前向式 錯誤修正(FEC)協定資料單元(pdu)不屬於欲被緩衝的編碼 器封包(EPb)的話,那麼便會於步驟144〇處丟棄該協定資料 單元(PDU)。荄該前向式錯誤修正(FEC)協定資料單元(PDU) 屬於欲被緩衝的編碼器封包(EPb)的話,那麼於步驟1423 處,便會於相關位置中將該協定資料單元(PDU)加入至EPb 的緩衝器之中。步驟1425處會判斷EPb的資料量是否超過 XtraBffr。若於步驟1426處判斷出EPb的資料量未超過 XtraBffr的話,該程序便會於步驟1410處重新開始。若EPb 的資料量超過XtraBffr的話,那麼於步驟1428處,該傳輸實 體便會試圖從EPd傳送完整的SDU。接著於步驟1430處,便 可從該緩衝器中強行逐出其餘的EPd,並且於步驟1434處將 EPb設為 EPd。 若於步驟1420處判斷出該前向式錯誤修正(FEC)協定資 料單元(PDU)屬於EPd的話,那麼於步驟丨422處,便可於相 關位置中將該協定資料單元(PDU)加入至EPd的緩衝器之 中。方塊1424處可以判斷該緩衝器是否具有EPd的k個個別 PDU。若該緩衝器未具有EPd的k個個別PDU的話,那麼於 95692.doc -64· 200522578 步驟1426處,該程序便會於步驟1410處重新開始。若該緩 衝器具有EPd的k個個別PDU的話,那麼於步驟1427處,該 解碼器便會為EPd實施外部解碼,然後於步驟1428處,該傳 輸實體便會試圖從EPd傳送完整的SDU。接著於步驟1430 處,便可從該緩衝器中強行逐出其餘的EPd,並且於步驟 1434處將EPb設為EPd。 圖16為當某一行動台於從細胞A 99接收一點對多點(PTM) 傳輸及從細胞B 99接收一點對多點(PTM)傳輸間移轉時被 該行動台接收到之外部碼區塊間的時間關係圖。Griin等人 於2002年8月21曰提出的美國專利申請案第 US-2004-0037245-A號及第 US-2004-0037246-A1 號,以及 Willeneggei:等人於2002年5月6日提出的美國專利申請案第 US-2003-0207696-A1號中便有進一步討論圖16的部份觀 點,本文以引用的方式將其全部併入。 圖中的情況假設特定的UMTS陸地無線電存取網路 (UTRAN)20以及使用者設備(UE)10規定。舉例來說,若 UTRAN 20於複數個細胞中利用相同的外部區塊編碼來發 送内容的話,那麼相鄰細胞中攜載相同資料或酬載的區塊 便應該使用相同的編號。傳輸相同編號的外部區塊時必須 進行非常精確的時間校準。跨越該等細胞進行PTM傳輸的 最大對齊偏差係受控於該無線電網路控制器(RNC)24。 UTRAN 20會控制跨越細胞所進行之點對多點(PTM)上的延 遲抖動。該UE 10應該能夠於接收下個外部區塊時,同時解 碼一外部區塊。所以,該UE中的緩衝器空間較佳的係應該 95692.doc -65- 200522578 可容納至少兩個外部區塊95 A-95C,因為需要一外部區塊的 記憶體來累積目前的外部區塊。若於里德-所羅門解碼 期間有該等外部區塊的話,那麼記憶體還應該能夠累積「複 數列」的内部區塊,並且補償跨越複數部基地台22的時間 對齊中的不精確度。 細胞A 98中,於傳輸外部區塊η 95A期間,於傳輸該第二 内部多媒體廣播及多播服務(MBMS)酬載區塊期間會發生 移轉。箭頭96的斜率(其圖解的係使用者設備(UE)〖〇從細胞 A 98移轉至細胞b 99)係非水平,因為於移轉期間會流逝部 份時間。於讀使用者設備(UE)1〇抵達細胞3 99的前一刻正 在傳輸多媒體廣播及多播服務(MBMS)酬載資料的第五區 塊。就此而言,該使用者設備(UE)1〇會因為該等個別傳輸 之時間對齊偏差以及該移轉期間時間流逝的關係而遺失第 二至第四區塊。若於細胞B 99中接收到足夠區塊的話,那 麼該外部區塊η 95A便不必進行解碼,因為可以利用該等同 位區塊來重建該等已遺失的區塊。 稱後’於傳輸外部區塊n+2 95C期間,該使用者設備 (UE) 10會經歷從細胞Β 99至細胞A 98的另一次移轉,該次 移轉係發生在外部區塊n+2 95C之第五個内部多媒體廣播 及多播服務(MBMS)酬載區塊處。於此情形中,會於移轉期 間遺失較少的内部區塊,而且仍然可以還原該等外部區塊。 使用外部碼區塊可幫助降低發生任何服務中斷的可能 性。為確保可進行錯誤還原,應該於相同的傳輸路徑上發 送該等相同的區塊,其意謂著每條傳輸路徑中應該以相同 95692.doc -66- 200522578 的方式來建構該等同位區塊。(因為其為廣播傳輸,所以每 條路徑中的多媒體廣播及多播服務⑽Ms)酬载區塊必須 相同。)於上方應用層80處實施前向式錯誤修正(fec)有助 於確料條傳輸路徑中的同位區境都會相同,因為該編碼 係在前向式錯誤修正(FEC)層157中來進行,所以,每個外 部區塊的編碼方式皆相同。相反地,若於下方層(舉例來 說,個別的無線電連結控制(RLC)實體152)中進行編碼的 話,那麼便必須進行特定的協調作業,因為,每條傳輸路 徑申的該等同位區塊並不相同。 點對多點(PTM)移轉至點對點(ρτρ) 圖17為當某一行動台1〇於點對多點(ρτΜ)傳輸及點對點 (PTP)傳輸間移轉時所接收到之外部碼區塊間的時間關係 圖。舉例來說,圖17中所示的架構可套用於使用點對點(ρτρ) 傳輸的系統(例如WCDMA與GSM系統)中。 本發明的其中一項觀點係關於前向式錯誤修正,其方式 係於PTM傳輸期間將同位資訊或區塊加入至内部 「酬載」或資料區塊中。於一 PTM傳輸中被傳輸的每個外 部碼區塊皆包括至少一内部酬載區塊及至少一内部同位區 塊。外部碼區塊的錯誤修正能力可於移轉(例如當該ue從一 細胞移至另一細胞;或是於相同的服務細胞中,内 容的傳送從PTM連接改變成PTP連接,或是反向改變)期間 大幅地減低且趨向於沒有任何MBMS内容或「酬載」遺失。 如上述,一特定細胞可利用PTP或PTM傳輸架構傳輸至一 用戶台10。舉例來說,於一ΡΤΜ傳輸模式中正常傳輸一廣 95692.doc -67- 200522578 播服務的細胞可於該項服務對該細胞的需求低於特定臨界 值以下時選擇建立一專屬頻道,並且於PTP模式中進行傳輸 (僅傳輸給一特定的用戶台10)。同樣地,於一專屬頻道(PTP) 上傳輸内容給個別用戶台的細胞亦可決定於一共同頻道上 將該内谷廣播給多位使用者。此外,一特定細胞可於ΡΤΡ 傳輸模式中來傳輸内容,而另一細胞則可於ΡΤΜ傳輸模式 中來傳輸相同的内容。當該行動台1 〇從一細胞移至另一細 胞或疋^某一細胞内之用戶數改變而促使傳輸架構從FT? 改變成ΡΤΜ或反向改變時,便會發生移轉。 於外部區埤η 95Α的點對多點(ΡΤΜ)傳輸期間,於傳輸該 第四個内部多媒體廣播及多播服務(MBMS)酬載區塊期間 會發生移轉。箭頭101的斜率(其圖解的係使用者設備(ue) 從點對多點(ΡΤΜ)傳輸移轉至點對點(ρτρ)傳輸)係非水 平,因為於移轉期間會流逝部份時間。當從PTM 101移轉 至ptp日^,會約略保持相同的空中位元速率。點對點(ρτρ) 傳輪的位元錯誤率通常少於百分之一(舉例來說,傳輸期 間,每100個酬載區塊中僅會有一個以下的錯誤)。相反地, 點對多點(PTM)傳輸的位元錯誤率則可能比較高。舉例來 °先於其中一具體實施例中,基地台會每16個傳輸時間區 / (ττι)便產生一外部區塊,而且其中十二個m會被酬載 區塊佔據且四個TTI會被同位區塊佔據。可容忍、的最大區塊 錯誤數量應該為16(12個基本區塊+4個同位區塊)分之4的 内部區塊。就此而言,最大可耐受區塊錯誤率便係"4。 當該行動台從點對多點(PTM)傳輸移轉ι〇ι至點對點 95692.doc -68- 200522578 (PTP)傳輸時,便可能會遺失部份的内部區塊。假設點對多 點(ΡΤΜ)傳輸與點對點(ρτρ)傳輸於實體層㈣具有約略相 同的位7L速率’那麼’ ρτρ傳輸將會允許該等廳⑽酬载區 塊被發送的速度㈣ΡΤΜ傳輸,因為平均來說,被再傳輸 之區塊的百分率通常會低於同位區塊的百分率。換言之, 點對點(ΡΤΡ)傳輸通常會遠快過點對多點(ΡΤΜ)傳輸,因為 統計而言,同位區塊的數量會遠大於無線電連結控制(RLC) 傳輸(Re-Tx)的數量。因為從點對多點(PTM)傳輸移轉1〇1至 點對點(ptp)傳輸通常係非常快,所以當使用者設備(ue)】〇 移轉101至點對點(PTP)傳輸時,會正在傳輸多媒體廣播及 多播服務(MBMS)酬載資料的第一區塊。就此而言,個別傳 輸的時間對齊偏差以及該移轉101期間的時間流逝皆不會 造成任何區塊遺失◎所以,當從點對多點(PTM)傳輸移至點 對點(PTP)傳輸時,一旦於該目標細胞上建立該pTp連結之 後,只要從目前的外部區塊起始處重新開始便可建構出已 遺失的酬載區塊。藉由從同一外部區塊之起始處(也就是, 利用第一個内部區塊)開始進行ΡΤΡ傳輸便可補償該網路。 接著該網路便可還原該移轉因完整外部區塊之較快速傳送 而造成的延遲。減低移轉期間的資料遺失情形便可減低因 此等移轉而造成MBMS内容傳送中斷的情形。 稍後,於進行外部區塊η+2的ΡΤΡ傳輸期間,使用者設備 (UE)10係正在進行移轉至點對多點(ΡΤΜ)傳輸模式的另一 次移轉103。圖12中,從點對點(PTP)傳輸移轉103至點對多 點(PTM)傳輸係發生在外部區塊η+2的最後一個内部多媒體 -69- 95692.doc 200522578 廣播及多播服務(MBMS)酬載區塊處。於此情形中,外部區 塊n+2中,除了最後一個内部區塊之外,大部份的内部多媒 體廣播及多播服務(MBMS)酬載區塊都已經被傳輸。於無法 使用回授的情形中通常都會使用FEC。因為ρτρ傳輸會使用 專屬頻道’反向連結上具有回授功能,因此使用FEC並無 好處。為最小化或消除交錯移轉時的資料遺失情形,UMTS 陸地無線電存取網路(UTRAN)2〇較佳的係依賴ρτρ傳輸中 之RLC已確認模式(AM)的低殘留區塊錯誤率,用以還原於 移轉至PTM傳輸期間可能會遺失的所有内部區塊。換言 之,可利用正常的層2再傳輸來再傳輸於原來傳輸中有偵測 到錯誤的任何封包。因此,如圖17所示,ρτρ傳輸中並不需 要同位區塊。不過,若點對點(ΡΤΡ)傳輸期間於該等酬載區 塊中出現錯誤的話,則仍然會解碼該外部區塊,因為該無 線電連結控制(RLC)層將會要求再傳輸任何有誤的區塊= 就是,當於ρτρ傳輸期間出現錯誤時,該行動台1〇可能會要 求再傳輸(re-Tx);或是當所有區塊皆正確時,則不會進行 任何再傳輸,並且可運用傳輸格式零(TF〇)。外部編:較佳 ㈣於該Μ堆疊的層2中完成’致使每個内部區塊97的大 小皆可確實地置人叫專輸時間區間(ΤΤΙ)之中,因為如此便 月色提向編碼效率。 若前向式錯誤修正(FEC)外部編碼係於該協定堆疊的較 面層(例如應用層)中完成的話’那麼不論係何種傳 (點對點(PTP)或點對多點(PTM)),皆會發送同位區塊1 此,同位區塊也會被附加至點對點(ρτρ)傳輪中。 95692.doc -70- 200522578 如上述,於PTP傳輸中’未必要使用同位區塊,因為可以 利用更有效的再傳輸架構來取代前向式錯誤修正。因為於 ΡΤΡ傳輸中以不傳輸同位區塊為宜,所以若假設空中的位元 速率相同的話,那麼傳送一個完整的外部區塊平均上便會 快過ΡΤΜ。如此便可讓該UE補償因點對多點(ΡΤΜ)移轉至 點對點(ΡΤΡ)所造成的中斷情形,因為ρΤρ傳輸可能會領先 ΡΤΜ傳輸。該使用者設備(UE)可藉由下面的資料來正確地 還原該外部區塊:(1)於點對點(ΡΤΡ)傳輸中所收到的内部區 塊,於新細胞中或經過轉移之後所收到的内部區塊,(2)於 點對多點(ΡΤΜ)傳輸中所收到的内部區塊,於舊細胞中或經 過轉移之前所收到的内部區塊。該使用者設備(UE)可結合 隸屬於同一外部區塊之轉移前所收到之内部區塊以及轉移 後所收到之内部區塊。舉例來說,使用者設備(UE) 10可結 合透過點對點(ΡΤΡ)傳輸所收到之外部區塊η+2中的内部多 媒體廣播及多播服務(MBMS)酬載區塊以及透過點對多點 (ΡΤΜ)傳輸所收到之外部區塊η+2中的内部多媒體廣播及多 播服務(MBMS)酬載區塊以及同位區塊。UMTS陸地無線電 存取網路(UTRAN)20可利用欲被送給從PTP連結中來接收 MBMS内容之所有使用者的外部區塊傳輸稍微「領先」ptm 連結上的傳輸來幫助此方法的進行。 因為該UTRAN可領先PTM傳輸來進行外部區塊的傳輸, 所以便可達到PTP至PTM的「無縫式」移轉結果。因此,跨 越細胞邊界及/或於不同傳輸架構(例如PTM與PTP)間來傳 送MBMS内容以可為「無縫」。此「時間領先量」可表示為 95692.doc -71 - 200522578 内部區塊數量。當該使用者設備(UE)l〇移轉至PTM傳輸 時’即使於移轉期間並無通信連結存在,該使用者設備 (UE)10仍可能會遺失高達「時間領先量」數量的内部區塊, 但是其並不損及MBMS接收的QoS。若該UE直接於PTP中開 始進行MBMS接收的話,該UTRAN便可於開始進行PTP傳 輸時立刻套用該「時間領先量」,因為UTRAN 20可藉由避 開空的内部區塊(TF 0)慢慢地領先外部區塊的傳輸作業,直 到抵達必要的「時間領先量」數量的内部區塊為止。自此Mu Yeyou uses a 16-bit CRC in the internal block of the temple, so the lower limit of the residual external block error rate will be 2_16 = 1. There are no wrong words in the k internal blocks on 1J on the right of 5 · 10. Then, it is not because 'the systematic symbols are equal to the information symbols. After receiving the k blocks with good CRC, Erzhuangxin can implement the decoding of the external block without waiting for receiving all the N internal blocks. In order to implement deletion decoding, all rows corresponding to a plurality of deletion characters or unnecessary blocks can be removed, so as to derive a generator matrix modified from the generator matrix GkxN, for example, Only the first well-received symbol can be used to represent the modified generator matrix ^. The following information can be used to restore the original information block m: kxk], k in equation ⑺ f is to use the previous _good The modified receive vector obtained by the symbol. Therefore, the deletion decoding complexity can be reduced to the complexity of the matrix. Therefore, using RS deletion decoding can greatly simplify the computational complexity of side decoding. Data packet performance for external codes Impact 2 = With reference to the discussion in Figure I13, if the special external encoding structure limits the amount of padding and additional data, the external encoding can be used in conjunction with a variable rate data source without causing excessive additional data In the external code architecture discussed above, the data can be packaged to a specific size 95692. doc -45- 200522578 J, and you can perform shortened Reed-Solomon horses to v on these blocks. There are two different ways to pass the encoded packet data into multiple TTIs. Now Description will be made with reference to FIGS. Fig. 9B is a schematic diagram of the outer code block structure of Fig. 9A, in which multiple columns are transmitted in each transmission time interval (TTI). According to another aspect of the present invention, the point of view 'will transmit data from one of the columns in a single TTI. In another specific example, the data from an encoder packet queue is placed in a TTI so that each TTI contains the data from the encoder packet (. In this regard, it can be used in- Each W column is transmitted in a separate WCDMA frame or round time interval (TTI). Each column in one of the ττι will provide better performance. In Figure 9B, ... must be divided by each The number of columns is ,, and the errors in a certain column can be completely correlated. In this way—observing the relationship between the EP error rate and the TTI error rate, a significant difference can be produced. Where each—multiple TTIts are sent. It should be understood that although FIG. 9c sends per-column encoder packets (Eρ) in four ^ (TTI0-TTI3), * yes, each-column on p Send in any number of TTIs. Since each _ ^ is an external code codeword group, each of these four ㈣ transmission wheels: σ ™-™) is combined to form an independent external code. In order to restore the entire packet, all of these independent codes must be decoded correctly. Fig. 10A is a schematic diagram of blocks generated for the forward error correction layer. The V ^ / order mode can be used for common or point-to-multipoint (on the logical logic channel, by adding the parity column or block% in MBMS payload data 9ΐφ + λ 戟 卄 91) to construct outside 95692. doc -46- 200522578 code block 95. Each external block 95 contains a plurality of internal blocks 91, 93 ° The order of identifying internal blocks and their position relative to the encoder packet can place each available internal block in the correct position, so that Can be correctly 70% external decoding. In one embodiment, each internal block includes a header 94, which can use the number of internal blocks m and the number of external blocks n to identify the " Heinet σ 卩 block. For example, the external block n includes a data portion 91 having m multimedia broadcast and multicast service (MBMS) payload blocks, and a redundant portion 93 having an internal parity block. According to this specific example, the serial number space can be optimized for MBMS, and several different serial numbers (for example, 0 to 127) are used to define the serial number space. This sequence number space should be large enough that the same sequence number does not appear after the reception gap caused by any transfer type. Even if some internal blocks are missing, the receiving UE should still be able to determine the order of these internal blocks. If the UEm loses more internal blocks than the entire sequence space can recognize, the UE will not be able to reorder the internal blocks correctly. The sequence numbers of the same internal blocks spanning these FECd blocks and FECC blocks are exactly the same. These blocks do not include the redundant part 93 used in these FECc blocks. FECd shells and FECc entities can use the same bit rate in the air. The transmission end forward error correction (FEC) entity 410 includes a service data unit (SDU) buffer 412 to receive the SDU; a segmentation and concatenation unit 414; an external encoder 416 to implement Reed -Solomon (RS) encoding; a serial number generator 418 to add a serial number to the encoded Pdus; a transmission buffer 420 to transmit the 95692 on the logical channels 406. doc-47-200522578 PDU; and a scheduling unit 422. The service data unit (SDU) buffer 412 receives the user data (FEC SDU) in the form of a service data unit (SDU) on the radio bearer 402 as shown by the arrow, and stores the FEC SDU from a higher layer. The receiving buffer 412 notifies the scheduling unit 422 how much data will be transmitted. As discussed above, the amount of time it takes to fill an encoder packet (Ep) usually varies, because the data source rate usually varies. As explained with reference to Fig. 13, by flexibly deciding when to start packing the data, the frame filling efficiency can be improved. Based on the jitter tolerance of the receiving FEC entity 430, delaying the manufacturing time of the Ep as much as possible can reduce the amount of padding introduced. The scheduling entity 422 may decide when to start coding. The scheduler 422 preferably determines the length of time that a packet must be dedicated based on the qOS curve of the special service. Once the scheduler 422 determines that sufficient data has been accumulated, or the maximum acceptable packet transmission delay has been exhausted ', the scheduler will trigger the generation of an encoder packet (Ep) 9 丨. The dividing and concatenating unit 414 may divide the service data unit (SDU) into columns and generate a length indicator (LI). The scheduling unit 422 preferably determines the optimal column size of the Ep or Protocol Data Unit (pDU), so that the SDUs can be placed in the number of columns (for example, '12 columns). Alternatively, the scheduler 422 will select a FEC PDU size from the fec pDu size organized by the RRC, which will result in the least possible padding operation 'and requires the segmentation and concatenation function 414 to format the Sdus into a size of PDU-size-FEC-Header-size block. This format job 95692. doc • 48- 200522578 can be changed. Examples of different formatting types are discussed below with reference to Figures 12-13. The total amount of data considered should include additional data that will be incorporated by the concatenation and split function 414. To generate the encoder packet (p), the scheduler 422 will request the concatenation and segmentation function 414 to generate k PDUs of this size. This size contains reorganization information. In one specific embodiment, the sizes of the PDUs are multiples of 8 bits and are continuous! > 〇11's data should match different symbols in the codeword group. These k PDU blocks can then pass through an external encoder 416 that implements Reed-Solomon (RS) encoding. The external encoder 416 generates redundant or parity information and appends it to the encoder packet (Ep) matrix to generate an external code block to encode the data in the encoder packet (Ep) matrix. In a specific practical example, Yanhai's external stone horse can assume that (n, k) deletes the decoded block code 'and that the external encoder will produce parity blocks. The encoder encodes information of equal length in k columns and sends it to n co-data units (pDU) of the sub-layer under the same size. The old blocks will be the same as the blocks they receive, while the next n_k blocks will correspond to the parity information. The scheduler 422 also monitors the time alignment or relative timing of the PTM strings and implements transmissions to adjust the alignment of different logical strings. For example, during reconfiguration, you can adjust ρτρ to align the surname T with the time between logical strings to facilitate service continuity. The best performance is obtained when these data strings are fully synchronized. Different base stations (or different transmission modes ρτρ, point pair (PTM)) will transmit the same content. π ° hai search content string may not be able to ^ encoder packets of the right and other shell material string ⑽) the same format 95692. doc -49- 200522578:, then the information on each data string is exactly the same. Adding a serial number to each outer π block allows the user equipment (gang to combine the two data strings' because the user equipment (UE) will know the relationship between the two data strings. The serial number generates theft 41 8 An order 諕 is added in front of each block to generate pDu in the same order as used in the encoder 416. For example, ^ in a specific embodiment, the sequence number generator Add an eight-digit serial number in front of the block to generate ugliness. You can also add additional additional information to the external code block. The serial number space should be enough to accommodate the worst time difference between the data strings. So, in another In a specific embodiment, a serial number space with a size of 20 can be used, and at least 5 bits can be reserved for the serial number in each header. The header can be appended after Reed Solomon (rs) encoding is implemented To the external code block, so this "external" header does not protect the external code. It is better to add serial numbers to the parity blocks, even if the serial numbers may not be transmitted. One specific embodiment In this case, the serial phase of the serial number can be used to define the encoder packet boundary. A serial number advance indicates that a new encoder packet has been received. The forward error correction (FEC) header format is as described above. The serial number can achieve the purpose of data string synchronization. In addition to reordering and copy detection, the serial number can also rearrange data from individual data sources contained in an encoder packet. This serial number can clearly indicate each The order in which packets should be considered. This sequence number can constitute a "FEC header", which can be added to the information payload unit (pDU) and the parity block at the same time after the encoding is performed. The order is 95692. doc -50- 200522578 should not be protected by this external code, because the serial number must be used for decoding. FIG. 14 is a schematic diagram of a specific example of a forward error correction (FEC) header format. To help align the data with the encoder packet (EP), the serial number can be divided to include a reserved portion (R) 402;-the encoder packet (EP) portion 404 to find the EP (EPSN) And an internal encoder packet for finding the location of a special internal block in the encoder packet (IEPSN) 406. We hope that the FEC layer 400 can operate in exchange with all radio link control (RLC) modes. Because both Radio Link Control (RLC) AM and Radio Link Control (RLC) UM require the size of the service data unit (SDU) to be a multiple of 8 bits, we hope that the FEC layer 400 can also support this requirement. Because the outer code of the FEC layer 400 operates in a way of increasing the size of the lean bit group by 70, the encoder packet (EP) column size must also be an integer number of bytes. Therefore, the FEC header size 401 should also be a multiple of 8 bits in order to allow the radio link control (RLC) to accept the feC protocol data unit (PDU) size. In the specific embodiment in which the forward error correction (FEC) header 401 can be a byte, the reserved portion (R) 402 includes a single bit to identify the EP (EPSN) 404. The IEP part includes 3 bits, and the IEP part used to find the position of the PDU in the encoder packet (IEPSN) 406 includes 4 bits. In this specific embodiment, an 8-bit serial number is used because we expect that a pdu will be sent in each TTI and because we do not want the transmission timing of different cells to drift more than 100 ms. The transmission buffer 420 stores these PDUs until a data frame of 95692 is accumulated. doc -51-200522578. When these PDUs are requested, the transmission buffer 42 will transmit the frames to the MAC layer one by one on the radio interface (Uu) through a logical channel. Then, the MAC layer sends the PDUs to the physical layer through a plurality of transmission channels. Finally, the physical layer sends the pDUs to the UE. 10 The receiver continues to examine Figure 11 to receive forward error correction. (FEC) entity 430 includes a receiving buffer / reordering / copy detection unit 438;-a serial number removal unit 436;-an external decoder 434, which can implement Reed-Solomon (RS) decoding; and a reassembly unit / Service Data Unit (SDU) transmission buffer 432. The information column of the EP matrix corresponds to a plurality of Pdu. To support external encoding, the receiving forward error correction (FEC) entity 43 will accumulate several FEC PDUs before triggering external decoding. In order to achieve the purpose of continuous reception, even if multiple encoder packets need to be decoded, the user equipment (UE) will still buffer the incoming protocol data units (pDU) at the same time when decoding is performed. The receive buffer 438 can accumulate a plurality of PDUs until the entire encoder packet (EP) is received or until the scheduling unit (not shown) meets the condition that the encoder packet (EP) will not be transmitted again. Once it is determined that no more data is received from a particular encoder packet, the missing PDU can be considered as deleted data. In other words, a delete symbol can be used in the decoding process to replace a PDU that fails the CRC test. Because some blocks will be lost during transmission, and because different data strings may have different delay relationships, the receive forward error correction (FEC) entity 430 will test the receive buffer / reorder / copy 95692 in Unit 438. The received block of doc -52- 200522578 implements copy detection and reordering can be performed. This sequence can be used in each FEC protocol data unit (PDU) to assist in reordering / copy detection. This serial number can be used in the receive buffer 438 to reorder out-of-order received data. Once the pDUs are reordered, the duplicate detection unit will detect the duplicate PDUs in the encoder packet (E p) based on its serial number and eliminate any duplicate data. These numbers can then be removed. The sequence number removing unit 436 can remove the sequence number from the encoder packet (EP) because the sequence number is not part of a block to be sent to the Reed-Solomon (RS) decoder. The predicate data can then be sent to the external decoding function 434 to restore the missing information. The external decoder 434 receives the encoder packet (Ep) and, if necessary, can also use parity information to regenerate any error or missing columns in order to implement Reed Solomon (RS) on the encoder packet (EP) decoding. For example, if all the k protocol data units (PDUs) containing information are not received correctly, or if less than k of the n PDUs are not received correctly, then the protocol data can be Units (PDUs) implement external decoding (the number of which is up to the size of the equivalent bit PDU) in order to restore the lost information pDU. When external decoding is implemented, 'at least one co-located PDu will be available at the receiver. If all the k protocol data units (pdu) containing information are received correctly, or if less than k of the n PDUs are received correctly, then it is not necessary to implement the solution. These information protocol data units (PDUs) can then be transmitted to the reorganization function 432. Regardless of whether the external decoding is successful or not, the information columns can be transmitted to the reorganization unit / function 432. The recombination unit 432 uses the length indicator (u) 95692. doc -53- 200522578 to reorganize or reconstruct the SDU from the information row of the encoder packet (EP) matrix. Once the SDUs are successfully put together, the service data unit (SDU) transmission buffer 432 will transmit the service data unit (SDU) on the radio bearer 440 to transmit the SDUs to higher layers. . At the receiving forward error correction (FEC) entity 430, allowing the UE to delay decoding with time compensation between different logical strings, the system can fully utilize potentially out-of-order received data because the logical strings do not need to be synchronized. the benefits of. This will make the service smoother during delivery and during the transfer of PTP and PTM. In the following, an algorithm for delaying decoding by the UE with time-stamp compensation between different logical strings will be discussed with reference to FIG. 15. Encoder packet (EP) options: fixed or variable row size. This FEC or external code entity has the flexibility to decide when to construct protocol data units (PDUs), because these protocol data units (PDUs) do not have to be in each transmission time interval ( TTI). This results in better frame filling efficiency and less additional data. When necessary, the external code entity may generate a payload at each transmission time interval (TTI). A protocol data unit (PDU) can be constructed immediately when a service data unit (SDU) is received from a higher layer. If there is not enough data to establish a protocol data unit (PDU), the RLC can add padding information. Fixed Column Size Encoder Packet (EP) When encoding SDU 201-204, we would like to minimize the amount of padding that will be transmitted. In a specific embodiment, the column size of the encoder packet (EP) matrix 205 may be a fixed size. It is known in advance that the columns of the encoder packet (EP) matrix 205 are large 95692. doc -54- 200522578 Small: This information can be aligned with the original configuration. Because the column size of the developed SDU 201-204 is known in advance, the data can be transmitted immediately after receiving the data, without waiting to see how much data will be sent. FIG. 12A is an example of an encoding process used to generate an outer code block 214 from a plurality of data units 201-200. The outer size of the outer code block 214 may be fixed. In this example, the user data is in the form of a plurality of service data units (SDU) 201-204, which contains a bit block of any size. Its size is related to special applications (video, voice, etc.). In order to be able to transmit FECSDUs of any size, segmentation, concatenation, and padding operations can be implemented in the FEC stage. Although the serial connection operation is not absolutely necessary, if it is not performed, the higher-level data processing capacity will be seriously damaged. These higher layer SDUs 201-204 can be formatted to this fixed pDU size first. In this specific embodiment, the split / concatenation function can generate a plurality of internal blocks of a fixed size exclusive to the user unit. At step 22, the group of internal blocks can be divided and connected in series to make it part of an encoder packet matrix 205. The encoder packet matrix 205 contains a plurality of internal blocks; necessary padding information 208 ; And a length indicator (LI) 206, which can indicate the end of these service data units (SDUs) 201-204 by indicating how many SDUs are in a particular column of the EP. The external encoder discussed below will use these internal blocks to generate multiple redundant blocks. In radio link control (RLC), the length indicator (LI) indicates the end of each service data unit (SDU) found in accordance with the protocol data unit (PDU), rather than in accordance with the service data unit (SDU) . This helps reduce additional data because the PDU size is usually smaller than the service data unit (sdu) 95692. doc -55- 200522578. For example, the length indicator (LI) may be used to indicate the last eight bits of each FEC service data unit (SDU) ending in the payload data unit (PDU). The "length indicator" may be set to the number of octets between the end of the FEC header and the last octet of a FEC SDU segment. The length indicator (LI) is preferably included in the PDUs to which the length indicator (LI) refers. In other words, the better length indicator (LI) refers to the same payload data unit (PDU), and the better system has the same order as the FEC SDU to which the length indicator (LI) refers. When the external block is received, information (such as the length indicator (LI)) can be used to let the broken receiver know the start and end positions of the service data unit (SDU) and / or padding information. Because it is not possible to use a bit in the FEC header to indicate the presence of a length indicator (LI), the FEC layer will add a fixed header to the payload to indicate that there are multiple length indicators (LI) presence. The internal header or LI will provide all the information needed to rebuild these SDUs 201-204. LI may be included in the RLC-PDU to which it refers. The flag included in the serial number header of the RLC-PDU can be used to indicate the existence of the first LI. One bit in each LI can be used to indicate its extension. In order to allow the length of the length indicator (LI) to change with the size of the FEC PDU, a new special value can be introduced for the length indicator (LI) of the one-tuple, which represents the length of one of the The previous SDU at the end, unless the last PDU is filled. Such length indicator (LI) presence bits can be implemented in various ways, two of which are discussed below. In one specific embodiment, it can be in each protocol data unit (PDU) 95692. A length indicator (LI) presence bit is provided in doc -56- 200522578. For example, a byte can be added at the beginning of each encoder packet (EP) column, and a bit in the byte can indicate that the LI exists. The entire first byte of each protocol data unit (PDU) is reserved for this "presence bit". To accommodate this presence bit, the length indicator data can be shortened by one bit. By providing a presence bit in each protocol data unit (PDU), the SDU can still be decoded when the EP decoding fails, even if the first PDU is missing. This can lead to lower residual error rates. Providing a presence bit in each PDU also allows for instant concatenation / splitting operations. In another embodiment, a length indicator (LI) presence bit may be provided in the first PDU. In the specific embodiment, the additional data is not added at the beginning of each PDU. Instead, the existence bits of all k information PDUs can be added at the beginning of the first PDU of the EP. When there are large SDUs and / or small PDUs, providing this presence bit at the beginning of the encoder packet (EP) can result in less additional data. After segmentation and concatenation, a number of rows in EP 205 will be occupied by at least one of the plurality of service data units (SDUs) 201-204 and padding blocks. The column size of an external block can be designed to be transmitted at a peak data rate during a transmission time interval (TTI). The service data unit (SDU) is usually not aligned with the amount of data sent during a transmission time interval (TTI). Therefore, as shown in FIG. 11, the second and fourth SDUs 202 and 204 cannot be placed in the transmission time interval (TTI) of the first and second columns of the EP. In this example, the EP has 12 rows for data use, and the four SDUs 201-204 can be packed in the first three rows of the 12 rows. The EP 205 of 95692. The remaining columns of doc -57- 200522578 will be occupied by padding block 208. Therefore, the second SDu 202 can be divided, so that the first part of the second service data unit (SDU) 202 starts in the first column of the "information block", and the second part of the second SDU2002 The serving ends in the second column. Likewise, the third SDU must be split such that the first part of the third service data unit (SDU) 203 starts in the second column and the second part of the third 203 ends in the third column. The fourth service data unit (sdu) 204 can be placed in the third column, and the padding block 208 can be used to fill the rest of the third column. In this example, most of the encoder packet (Ep) 213 is composed of padding information 208. The encoder uses the EP to generate redundant or parity information. At step 24o, an encoder encodes the encoded intermediate packet matrix 205 by adding a plurality of outer parity blocks 214 to generate an outer code block 213 with a length of j 6 blocks. The encoder takes 8 bits of data from each row of each block to generate the final data 21o. A Reed-Solomon (rs) encoder can encode this last data 210 to obtain four rows of redundant or parity information 212. The parity information 212 can be used to generate a plurality of external parity blocks 214, and these blocks can be appended to the ep matrix 205 to generate 16-block external code blocks 2 1 3. Figure 12B is an example of information transmitted over the air in the example discussed above. In step 260, after adding additional additional data with a serial number to each column of EP 205, a plurality of protocol data units (PDu) 2 and 14 can be used to transmit the 16-block external code block 2 丨 3 in the air. . All or the entire Encoder Packet (EP) 213 will not be transmitted in the Protocol Data Units (PDu) 2 14 sent in the downlink. Rather, the agreement information sheet 95692. The doc -58- 200522578 element (PDU) contains the information bits 201 -204 of the encoder packet (EP) 213 and the length indicator (LI) 206. Because the encoder packet (^! ≫) 213 column size is fixed and the receiver knows the size value, it is not necessary to actually transmit the padding information 208 over the air. Because the padding values are known, the padding information 208 is not required to be transmitted, so the padding information 208 is not transmitted on the downlink connection. For example, if a known bit sequence (such as all 0s, all 1s, or an interlaced pattern of 0s and 丨 s) can be used to form the fill-in poor signal, the receiver can then The agreement data sheet s (pDu) 2i4 is padded to the length of the nominal encoder packet (ep) 213 rows. Therefore, during transmission, the ^ PDU size is not selected to be equal to the EP column size. Instead, the smallest available EP size that carries all the information bits 20 丨 _204 and the restructured additional data (u) 206 is used. Although the size of the encoder matrix row is fixed, the size of the FEC pDU can be selected from a given set in each transmission, so that each can include all the information part of an encoder matrix row (filling information Excluded). When receiving a pDu that is smaller than the size of the encoder matrix column, ue can fill the size of the encoder matrix column with a known bit sequence. This maintains a fixed internal block size without increasing the load on the air interface. Therefore, using a fixed column size encoder packet (EP) 213, there is no need to wait to receive all the data before starting to transmit the protocol data unit (PDU), and it is not necessary to send padding information. If the above algorithm is designed to handle variable rate transmission, then = 2 rate equalization architecture is used, in which all the encoder packet matrix columns are /, 疋 is large. § 95692 can be used when filling the information component PDU. doc 200522578 Small PDU. The padding information may be composed of a specific bit sequence, and may be located at each end position of the data. At the receiver, the size of the blocks received from the lower layer can be equalized to the baseline size by adding padding information at the end position. ; If the preset bit sequence can be used as the padding information, this padding information will not be transmitted over the air. Unless the receiver needs to perform external decoding, the receiver does not need to know the actual encoder packet column size. Basic SDy reorganization does not need to know the number of padding information at the end of the first position. 1 ° If all PDUs with _ information from the previous k column encoder packet (Ep) column have been received, then no external implementation is necessary. decoding. Conversely, if at least one PD ^ containing information from the previous k-th column of Encoder Packet (EP) columns is missing, then at least one of the PDUs including the name derived from the co-located data will be required. Since the parity column is usually not padded ', its size can be used as a hypothetical reference value for the actual encoder packet size. Variable column size encoder packet (Ep) FIG. 13 is an encoding process for generating an outer code block 3i3 with a variable column size. This point of view this month is about flexible external block coding of data transmitted over the air interface. This encoding process only transmits a small amount of padding information, so the frame filling efficiency will be improved. These encoder packet (EP) 305 columns are OK. The size of the interleaving is different, and external blocks of different sizes can be sent for each transmission time interval (TTI). A better system, encoder packet (EP) 305.  The column size can be changed so that these SDUs can be reliably placed in the encoder packet 95692. doc -60- 200522578 (EP) Among the number of columns (for example, 12 columns) of matrix 305. In this specific embodiment, the FEC layer must wait until all data is available before constructing the EP. Therefore, the FEC layer can determine the optimal column size. The row size can be selected from several different sizes based on the amount of available data in order to limit padding information. The column size of this encoder packet (Ep) may be linked to the PDU size set configured for S-CCPCH. Depending on the amount of data available when the encoder packet 305 is generated, a row size can be selected that will result in least padding. Reduce the size of the external block 313 so that the block size in each frame becomes smaller, then data can be sent at a lower transmission rate 'because less data has been sent in the same TTI duration. Utilizing the variable column size of the encoder packet (EP) 305 helps to stabilize the power requirements in the overall transmission of the encoder packet (EP) and also allows for less parity additional information 314. This specific embodiment is applicable to point-to-multipoint (PTM) transmission in a WcDma system, and the basic wireless protocol in the system allows different sizes of transmission blocks to be transmitted in each transmission time interval (TTI). In step 320, a plurality of service data units (SDUs) 201-204 may be divided and connected to generate an encoder packet (Ep) matrix 305, where the length indicator (U) 206 may be used to refer to these End position of Service Information Unit (SDU) 201-204. The length indicator (LI) may be included in the last column of each service unit (SDU) terminated. In step 330, 8-bit data can be taken from each data block, and redundant or parity information can be generated on the basis of the row, and the final data 31 can be sent to a Reed_Solomon (RS) encoder. To get parity information 312. Because the encoder packet (EP) matrix 305 has fewer columns, it can produce more than 95692. doc -61-200522578 less redundant information. The encoding will continue in step 340, because the parity information 312 will be used to generate a plurality of external parity blocks 3 14. These external parity blocks 3 14 can be appended to the encoder packet (Ep) of the twelve blocks. In matrix 305, an external code block with a length of 16 blocks is generated in this example. This specific embodiment can avoid the transmission of padding information, thereby improving the transmission efficiency, because the entire outer code block 313 is occupied by 8011, the length indicator (1 ^ 1) 206, and / or the redundant information 314. In this particular example, no padding information is needed. However, it should be understood that in some cases, because the number of configuration sizes of the PDU will be limited, some padding information may be required, but the amount of padding information is quite small. This results in greater frame filling efficiency and maintains a more constant power throughout the encoder packet (Ep). This is a welcome feature of CDMA systems using power control architectures. Although not shown in the figure, the manner of transmitting PDUs over the air is the same as that discussed above with reference to step 260 of FIG. FIG. 11 is a specific embodiment of an external coding or forward error correction (FEC) layer 400 above the radio link control (RLC) layer, which has a _RLC unacknowledged mode (UM) + entity (RLCUM +). Generally, Radio Link Control (RLC) provides framed processing for higher layers. Here, the frame processing is performed by the FEC layer located above the radio link control (RLC). The external coding layer 400 includes a transmission forward error correction (FEC) entity 410, which can transmit through a plurality of logical channels 406 on a radio interface (Uu) 404 and a reception forward error correction (FEC) entity 430. For communication. 95692. doc -62- 200522578 Reordering / Copy Detection Figure 15 is a schematic diagram of a reordering protocol or algorithm that allows the mobile station 10 to use time compensation between different logical strings to delay decoding. The receiving forward error correction (FEC) entity 430 uses the sequence number to determine the position of a particular PDU within the EP matrix. For example, a partial sequence number (PSN) can identify the position of the PDU in the encoder packet (EP). This algorithm assumes that data from at most two encoder packets (EP) will be received before decoding can begin. In the following description, the encoder packet (EPd) is the next encoder packet (EP) to be decoded in sequence, and the encoder packet (EPb) is the encoder packet (EP) being buffered. The encoder packet (EPb) follows the encoder packet (EPd). A UE design that requires full encoder packet transmission time to implement RS decoding will need to implement double buffering in order to be able to decode multiple consecutive packets. Therefore, the UE stores at least n + k columns in the largest column of the encoder matrix, where k and η are the number of information columns and the total number of columns including parity information, respectively. UEs with faster decoding engines can reduce this requirement, however, it cannot be lower than n + 1. For example, if the specific buffer space (XtraBffr) of the UE exceeds the number required to receive consecutive packets based on its decoding capability, and if a 64k bps data string is assumed, then the decoding is delayed by 100 ms without If you increase the computational requirements, you need to increase the buffer size of 800 bytes. At step 1410, it is determined whether a new forward error correction (FEC) protocol data unit (PDU) is received. If a new forward error correction (FEC) protocol data unit (PDU) is not received, the process will restart at step 1410. If a new forward error correction (FEC) agreement is received 95692. doc -63- 200522578 unit (PDU), then it will be judged at step 1420 whether the new forward error correction (FEC) protocol data unit (pDU) belongs to the next encoder packet to be decoded in order. (EPd). If the forward error correction (FEC) protocol data unit (PDU) does not belong to the next encoder packet (EP) to be decoded in sequence, then the forward error correction (FEC) is determined at step 1421. ) Whether the protocol data unit (PDU) belongs to the encoder packet (Epb) to be buffered. If the forward error correction (FEC) protocol data unit (pdu) does not belong to the encoder packet (EPb) to be buffered, the protocol data unit (PDU) is discarded at step 1440.荄 If the forward error correction (FEC) protocol data unit (PDU) belongs to an encoder packet (EPb) to be buffered, then at step 1423, the protocol data unit (PDU) will be added in the relevant position. Into EPb's buffer. At step 1425, it is judged whether the data amount of EPb exceeds XtraBffr. If it is determined at step 1426 that the data amount of EPb does not exceed XtraBffr, the program will restart at step 1410. If the amount of EPb data exceeds XtraBffr, then at step 1428, the transmitting entity will attempt to transmit the complete SDU from the EPd. Then at step 1430, the remaining EPd can be forcibly evicted from the buffer, and EPb is set to EPd at step 1434. If it is determined at step 1420 that the forward error correction (FEC) protocol data unit (PDU) belongs to EPd, then at step 422, the protocol data unit (PDU) can be added to the EPd in the relevant position. In the buffer. At block 1424, it can be determined whether the buffer has k individual PDUs of EPd. If the buffer does not have k individual PDUs for EPd, then 95692. doc -64 · 200522578 At step 1426, the program will restart at step 1410. If the buffer has k individual PDUs of EPd, then at step 1427, the decoder will perform external decoding for EPd, and then at step 1428, the transmitting entity will attempt to transmit a complete SDU from the EPd. Then at step 1430, the remaining EPd can be forcibly evicted from the buffer, and EPb is set to EPd at step 1434. Figure 16 shows the external code area received by a mobile station when it moves between receiving a point-to-multipoint (PTM) transmission from cell A 99 and receiving a point-to-multipoint (PTM) transmission from cell B 99. Diagram of time between blocks. Griin et al., US Patent Applications Nos. US-2004-0037245-A and US-2004-0037246-A1, filed on August 21, 2002, and Willeneggei: et al. A partial discussion of FIG. 16 is further discussed in US Patent Application No. US-2003-0207696-A1, which is incorporated herein by reference in its entirety. The situation in the figure assumes specific UMTS Terrestrial Radio Access Network (UTRAN) 20 and User Equipment (UE) 10 regulations. For example, if UTRAN 20 uses the same external block code to send content in multiple cells, the blocks carrying the same data or payload in adjacent cells should use the same number. Very accurate time calibration must be performed when transmitting external blocks of the same number. The maximum alignment deviation for PTM transmissions across these cells is controlled by the Radio Network Controller (RNC) 24. UTRAN 20 controls the delay jitter at point-to-multipoint (PTM) across cells. The UE 10 should be able to decode an external block at the same time when receiving the next external block. Therefore, the better buffer space in the UE should be 95692. doc -65- 200522578 can hold at least two external blocks 95 A-95C, because one external block of memory is needed to accumulate the current external block. If there are such external blocks during the Reed-Solomon decoding, the memory should also be able to accumulate internal blocks of the "plural sequence" and compensate for inaccuracies in the time alignment across the multiple base stations 22. In cell A 98, during the transmission of the external block η 95A, the transfer occurs during the transmission of the second internal multimedia broadcast and multicast service (MBMS) payload block. The slope of arrow 96 (which is illustrated by the user equipment (UE) transition from cell A 98 to cell b 99) is non-horizontal because some time will elapse during the migration. The fifth block of multimedia broadcast and multicast service (MBMS) payload data was being transmitted just before the read user equipment (UE) 10 arrived at cell 3 99. In this regard, the user equipment (UE) 10 will lose the second to fourth blocks due to the time alignment deviation of the individual transmissions and the relationship of time lapse during the transfer. If enough blocks are received in cell B 99, then the external block η 95A does not need to be decoded, because the parity blocks can be used to reconstruct the lost blocks. After the term 'During the transmission of external block n + 2 95C, the user equipment (UE) 10 will undergo another transfer from cell B 99 to cell A 98. This transfer occurred in external block n + 2 95C's fifth internal multimedia broadcast and multicast service (MBMS) payload block. In this case, fewer internal blocks will be lost during the transfer, and these external blocks can still be restored. Using external code blocks can help reduce the possibility of any service interruption. To ensure error recovery, the same blocks should be sent on the same transmission path, which means that the same 95692 should be used in each transmission path. doc -66- 200522578 to construct this parity block. (Because it is a broadcast transmission, the multimedia broadcast and multicast service (Ms) in each path) The payload block must be the same. ) The implementation of forward error correction (fec) at the upper application layer 80 helps to ensure that the parity zone in the material transmission path is the same, because the encoding is performed in the forward error correction (FEC) layer 157 Therefore, the encoding method of each external block is the same. Conversely, if encoding is performed in a lower layer (for example, an individual Radio Link Control (RLC) entity 152), then a specific coordination operation must be performed, because each transmission path claims the equivalent bit block Not the same. Point-to-multipoint (PTM) transfer to point-to-point (ρτρ) Figure 17 shows the external code area received when a mobile station 10 moves between point-to-multipoint (ρτΜ) transmission and point-to-point (PTP) transmission. Diagram of time between blocks. For example, the architecture shown in FIG. 17 can be applied to systems using point-to-point (ρτρ) transmissions, such as WCDMA and GSM systems. One aspect of the present invention relates to forward error correction by adding parity information or blocks to internal "payload" or data blocks during PTM transmission. Each external code block transmitted in a PTM transmission includes at least one internal payload block and at least one internal parity block. The error correction capability of the external code block can be transferred (for example, when the UE is moved from one cell to another; or in the same service cell, the content transmission is changed from PTM connection to PTP connection, or vice versa (Change) period is greatly reduced and tends to be free of any MBMS content or "payload". As mentioned above, a specific cell can be transmitted to a subscriber station 10 using a PTP or PTM transmission architecture. For example, a normal transmission in a PTM transmission mode 95692. doc -67- 200522578 The cell broadcasting service can choose to establish a dedicated channel when the demand for the cell is below a certain threshold and transmit it in PTP mode (only transmitted to a specific user station 10) . Similarly, cells transmitting content to individual subscriber stations on a dedicated channel (PTP) can also decide to broadcast the inner valley to multiple users on a common channel. In addition, a specific cell can transmit content in a PTP transmission mode, while another cell can transmit the same content in a PTM transmission mode. Migration occurs when the mobile station 10 moves from one cell to another or the number of users in a cell changes to cause the transmission architecture to change from FT? To PTM or vice versa. During the point-to-multipoint (PTM) transmission in the external area 埤 95A, the transfer occurs during the transmission of the fourth internal multimedia broadcast and multicast service (MBMS) payload block. The slope of arrow 101 (which is illustrated by the user equipment (ue) transitioning from point-to-multipoint (PTM) transmission to point-to-point (ρτρ) transmission) is non-horizontal because some time will elapse during the migration. When migrating from PTM 101 to ptp, it will maintain approximately the same bit rate in the air. The bit error rate for point-to-point (ρτρ) transfers is usually less than one percent (for example, during transmission, there will be only one or less errors per 100 payload blocks). Conversely, bit-to-multipoint (PTM) transmissions may have higher bit error rates. For example, prior to one of the specific embodiments, the base station generates an external block every 16 transmission time zones / (ττι), and twelve m of it will be occupied by the payload block and four TTI will be Occupied by co-located blocks. The maximum tolerable and block error number should be 4/16 internal blocks of 12 (12 basic blocks + 4 parity blocks). In this regard, the maximum tolerable block error rate is " 4. When the mobile station transitioned from point-to-multipoint (PTM) transmission to point-to-point 95692. doc -68- 200522578 (PTP) transmission, some internal blocks may be lost. Assuming point-to-multipoint (PTM) transmission and point-to-point (ρτρ) transmission at the physical layer, have approximately the same bit rate of 7L, then 'ρτρ transmission will allow the rate at which these payload blocks are sent. On average, the percentage of retransmitted blocks is usually lower than the percentage of co-located blocks. In other words, point-to-point (PTP) transmission is usually much faster than point-to-multipoint (PTM) transmission, because statistically, the number of co-located blocks is much larger than the number of radio link control (RLC) transmissions (Re-Tx). Because moving from point-to-multipoint (PTM) transmission to 101 to point-to-point (ptp) transmission is usually very fast, when the user equipment (ue)] 0 to 101-to-point (PTP) transmission, it will be transmitting The first block of multimedia broadcast and multicast service (MBMS) payload information. In this regard, the time alignment deviation of individual transmissions and the time lapse during the transfer 101 will not cause any block loss. Therefore, when moving from a point-to-multipoint (PTM) transmission to a point-to-point (PTP) transmission, once After the pTp link is established on the target cell, the lost payload block can be constructed by simply restarting from the beginning of the current external block. The network can be compensated by starting a PTP transmission from the beginning of the same external block (that is, using the first internal block). The network can then restore the delay caused by the transfer due to the faster transfer of complete external blocks. Reducing the loss of data during the migration can reduce the interruption of MBMS content transmission due to these migrations. Later, during the PTP transmission of the external block η + 2, the user equipment (UE) 10 is in the process of transferring to another point-to-multipoint (PTM) transmission mode 103. In Figure 12, the transfer from point-to-point (PTP) transmission 103 to point-to-multipoint (PTM) transmission takes place in the last internal multimedia of external block η + 2 -69- 95692. doc 200522578 Broadcast and Multicast Service (MBMS) Payload Division. In this case, in the external block n + 2, except for the last internal block, most of the internal multimedia broadcast and multicast service (MBMS) payload blocks have been transmitted. FEC is often used in situations where feedback cannot be used. Because ρτρ transmission will use a dedicated channel with a feedback function on the reverse link, there is no benefit in using FEC. In order to minimize or eliminate data loss during interleaved transfers, the UMTS Terrestrial Radio Access Network (UTRAN) 20 better depends on the low residual block error rate of the RLC acknowledged mode (AM) in ρτρ transmission, Used to restore all internal blocks that may be lost during migration to PTM transmission. In other words, normal Layer 2 retransmissions can be used to retransmit any packets that had detected errors in the original transmission. Therefore, as shown in Fig. 17, no co-located block is required in ρτρ transmission. However, if an error occurs in these payload blocks during a point-to-point (PTP) transmission, the external block will still be decoded because the radio link control (RLC) layer will require any error blocks to be transmitted again = That is, when an error occurs during ρτρ transmission, the mobile station 10 may request re-transmission (re-Tx); or when all blocks are correct, no re-transmission will be performed and transmission can be used Format zero (TF0). External coding: It is better to complete in layer 2 of the M stack, so that the size of each internal block 97 can be reliably placed in the special input time interval (ΤΤΙ), because this makes the moonlight upward coding effectiveness. If forward error correction (FEC) external coding is done in the upper layer (such as application layer) of the protocol stack, then no matter what kind of transmission (point-to-point (PTP) or point-to-multipoint (PTM)), The parity block 1 will be sent. Therefore, the parity block will also be attached to the point-to-point (ρτρ) pass. 95692. doc -70- 200522578 As mentioned above, it is not necessary to use parity blocks in PTP transmission because a more efficient retransmission architecture can be used instead of forward error correction. Because it is advisable not to transmit co-located blocks during PTP transmission, if it is assumed that the bit rate in the air is the same, then transmitting a complete external block will on average be faster than PTM. In this way, the UE can compensate for the interruption caused by the point-to-multipoint (PTM) migration to the point-to-point (PTP), because the ρΤρ transmission may lead the PTM transmission. The user equipment (UE) can correctly restore the external block by the following data: (1) the internal block received in the point-to-point (PTP) transmission, received in a new cell or after the transfer The internal blocks received are (2) the internal blocks received in the point-to-multipoint (PTM) transmission, and the internal blocks received in the old cell or before the transfer. The user equipment (UE) can combine the internal blocks received before the transfer and the internal blocks received after the transfer, which belong to the same external block. For example, the user equipment (UE) 10 may combine the internal multimedia broadcast and multicast service (MBMS) payload block in the external block η + 2 received through point-to-point (PTP) transmission and through point-to-multiple The internal multimedia broadcast and multicast service (MBMS) payload block and co-located block in the external block η + 2 received by the point (PTM) transmission. The UMTS Terrestrial Radio Access Network (UTRAN) 20 can assist this method with external block transfers that are intended to be sent to all users who receive MBMS content from the PTP link to "lead" over the ptm link. Because this UTRAN can lead PTM transmission for external block transmission, it can achieve the "seamless" transfer result from PTP to PTM. Therefore, transmitting MBMS content across cell boundaries and / or between different transport architectures (such as PTM and PTP) can be "seamless." This `` time lead '' can be expressed as 95692. doc -71-200522578 The number of internal blocks. When the user equipment (UE) 10 is transferred to PTM transmission, 'even if no communication link exists during the transfer, the user equipment (UE) 10 may still lose up to the "time lead" number of internal areas Block, but it does not impair the QoS of MBMS reception. If the UE starts MBMS reception directly in PTP, the UTRAN can immediately apply the "time lead" when PTP transmission is started, because UTRAN 20 can slow down by avoiding empty internal blocks (TF 0). Slowly lead the transfer of external blocks until you reach the necessary number of internal blocks of "time lead". Since

點開始,UTRAN便可維持悝定的「時間領先量 於點對多啤(PTM)中,並無法依賴無線電連結控制(RLC) 中可用的UE特有回授資訊。點對點(ρτρ)傳輸中,該ue ι〇From the beginning, UTRAN can maintain a fixed "time lead in point-to-many beer (PTM) and cannot rely on UE-specific feedback information available in radio link control (RLC). In point-to-point (ρτρ) transmission, this ue ι〇

可通知该RNC,使其知道移轉前被正確接收之最後外部區 塊的編號。此作法應該套用至變成ρτρ的任何移轉中(從 ΡΤΜ或疋從ΡΤΡ移轉至Ρτρ)。若此回授被視為無法接受的 話,那麼UTRAN 20便可預測狀態移#前最可能被該使用者 設備(UE)l〇接收的最後外部區塊。此項預測作業可依據不 同㈣傳輸間可預測之最大時間不精確性以及該目標細胞 中目前正被傳輸或即將被傳輸的外部區塊來實施。 /以實施前向式錯誤修正(FEC),以便還原該移轉期間戶] m失的任何區塊。減低移轉期間會遺失内容的可能性便〒 促成無縫式移轉」。此項架構假設從點對點(㈣)移轉至 點對户點(PTM)傳輸時正從每個資料源傳輸同—個外部昆 鬼其通书係發生在外部區塊持續時間相對於移轉持續時 間為已知的條件下。 秒锝符,日1 95692.doc -72- 200522578 UE 10中的記憶體數量會涉及跨越相鄰細胞的PTM傳輸 的時間對齊精確度。放寬使用者設備(UE) 10中的記憶體需 求,便可提高PTM UTRAN 20傳輸的時間精確度。 圖18為當某一行動台於源自無線電網路控制器(RNC)A 之點對點(PTP)傳輸及源自無線電網路控制器(RNC)B之點 對點(PTP)傳輸間移轉或重新定位時所接收到之外部碼區 塊間的時間關係圖。RNC—詞可與「基地台控制器(BSC)」 互換。於「重新定位」期間,使用者設備(UE) 10會從受控 於第一 RNC A 124之區域中某一内容串的點對點(PTP)傳輸 移轉至受控吟第二RNC B 224之區域中同一内容串的點對 點(PTP)傳輸。可利用再傳輸(re-Tx)來補償任何已遺失之 MBMS酬載區塊。細胞間從點對點(PTP)傳輸直接移轉為點 對多點(PTM)傳輸可利用和Release ’99軟交遞或硬交遞雷 同的方式來實施。即使該等兩個RNC A、B之間沒有任何協 調,目標RNC A 124還是應該能夠計算出被UE 10收到的最 後一個完整的外部區塊。此項預測可依據於Iu介面25上被 RNC 124收到之MBMS内容的時序來實施。當利用PTP傳輸 時,該RNC 124便可組成初始延遲,而且即使不需要無遺 失的SRNS重新定位亦不會遺失任何部份的MBMS内容。 熟習本技術的人士將會發現到,雖然為方便理解,圖中 所示的流程圖都係依序繪製,不過,在真實的實現方式中, 卻可同時執行特定的步驟。再者,除非特別表示,否則在 不脫離本發明範疇的前提下,亦可將方法步驟互相交換。 熟悉本技術人士應瞭解,可使用任何不同技術及技藝來 95692.doc -73- 200522578 代表貝汛及#唬。例如,以上說明中可能提及的資料、指 令、命令、貝訊、信號、位元、符號及碼片皆可利用電壓、 包流、電磁波、磁場或磁粒子、光場或磁粒子或任何其組 合表示。 熟習本技術的人士應該該更可瞭解本文所揭露之具體實 施例中所說明的各種解釋性邏輯方塊、模組、電路及演算 法步驟皆可以電子硬體、電腦軟體或兩者組合的方式來實 現。為清楚說明硬體及軟體之此種互通性,上面一般都係 就其功能性來說明各種說明性組件、區塊、模組、電路及 步驟。此類功旎究竟該實現為硬體或軟體係取決於施加於 整體系統上的特殊應用及設計限制。熟練的技術人士可針 對每種特殊應用,採用各種方法來實現已述的功能,但此 類只現方式的決定結果不應解釋為會導致背離本發明之範 疇。 結合在此揭示的具體實施例所說明的各種說明性邏輯區 塊、模組及電路,可採用通用處理器、一數位信號處理器 (DSP)、一特殊應用積體電路(ASIC)、一現場可程式化閘 極陣列(FPGA)或其他可程式化邏輯裝置、離散閘極或電 曰曰體邏輯、離散硬體組件或設計用以執行在此說明的功能 之任何組合來實施或執行。一通用處理器可能為一微處理 器,但在替代例中,該處理器可能為任何慣用的處理器、 控制器、微控制器或狀態機。一處理器亦可實現為複數部 私月自裝置之组合,例如,一 DSP及一微處理器之組合、複 數個微處理器、搭配一 DSP核心之一個以上微處理器、或 95692.doc 200522578 任何其它此類配置。 本文所揭露之具體實旆你丨%、+、μ _ 灵施例所述的方法或演算法的步驟可 以下面方式來實現:直接佶用 接使用硬體、由處理器來執行的軟 體模組、或兩者組合的方式。數 ^軟體板組可駐存於RAM記憶 體、快閃記憶體、ROM却愔舻 ϋΐ>τ^The RNC may be notified so that it knows the number of the last external block that was correctly received before the transfer. This should be applied to any transfer that becomes ρτρ (from PTM or 疋 from PTP to Pτρ). If this feedback is considered unacceptable, UTRAN 20 can predict the last external block most likely to be received by the user equipment (UE) 10 before the state shift #. This prediction operation can be implemented based on the maximum time inaccuracies that can be predicted between different transmissions and the external block in the target cell that is currently being transmitted or will be transmitted. / To implement forward error correction (FEC) in order to restore any blocks lost during the transfer. Reducing the likelihood that content will be lost during the transition and enabling seamless migration. " This architecture assumes that when transferring from point-to-point (㈣) to point-to-point (PTM) transmission, the same external source is transmitted from each data source to an external Kun Ghost whose book system takes place in an external block with respect to the duration of the transfer. Time is known. Second Note, Day 1 95692.doc -72- 200522578 The amount of memory in UE 10 will involve the time alignment accuracy of PTM transmissions across neighboring cells. Relaxing the memory requirements in the user equipment (UE) 10 can improve the time accuracy of PTM UTRAN 20 transmissions. Figure 18 shows a mobile station moving or relocating between point-to-point (PTP) transmissions originating from Radio Network Controller (RNC) A and point-to-point (PTP) transmissions originating from Radio Network Controller (RNC) B The time relationship diagram between the received external code blocks. RNC—The word is interchangeable with "base station controller (BSC)". During the "relocation", the user equipment (UE) 10 will transfer from a point-to-point (PTP) transmission of a content string in the area controlled by the first RNC A 124 to the area controlled by the second RNC B 224 Point-to-point (PTP) transmission of the same content string in. Re-transmission (re-Tx) can be used to compensate for any lost MBMS payload blocks. The direct transfer from point-to-point (PTP) transmission to point-to-multipoint (PTM) transmission between cells can be implemented in the same way as Release '99 soft or hard delivery. Even if there is no coordination between the two RNCs A and B, the target RNC A 124 should still be able to calculate the last complete external block received by the UE 10. This prediction can be implemented based on the timing of MBMS content received by the RNC 124 on the Iu interface 25. When using PTP transmission, the RNC 124 can constitute the initial delay, and no part of the MBMS content will be lost even if no missing SRNS relocation is needed. Those skilled in the art will find that although the flowcharts shown in the figure are drawn in order for easy understanding, in a real implementation, specific steps can be performed at the same time. Moreover, unless specifically stated otherwise, method steps may be interchanged with one another without departing from the scope of the invention. Those skilled in the art should understand that any of the different technologies and techniques can be used to represent 95692.doc -73- 200522578 to represent Bei Xun and #bluff. For example, the information, instructions, commands, Besson, signals, bits, symbols, and chips that may be mentioned in the above description can use voltage, packet current, electromagnetic waves, magnetic fields or magnetic particles, light fields or magnetic particles, or any other Combined representation. Those skilled in the art should better understand the various explanatory logic blocks, modules, circuits, and algorithm steps described in the specific embodiments disclosed herein can be implemented in electronic hardware, computer software, or a combination of the two. achieve. To clearly illustrate this interoperability of hardware and software, the above generally describes various illustrative components, blocks, modules, circuits, and steps in terms of their functionality. Whether such functions are implemented as hardware or software depends on the particular application and design constraints imposed on the overall system. Those skilled in the art can use various methods to implement the functions described for each particular application, but the decision of such a current-only method should not be interpreted as causing a departure from the scope of the present invention. In combination with the various illustrative logical blocks, modules, and circuits described in the specific embodiments disclosed herein, a general-purpose processor, a digital signal processor (DSP), a special application integrated circuit (ASIC), a field A programmable gate array (FPGA) or other programmable logic device, discrete gate or electrical logic, discrete hardware components, or any combination of functions designed to perform the functions described herein are implemented or performed. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor can also be implemented as a combination of multiple private devices, such as a combination of a DSP and a microprocessor, multiple microprocessors, more than one microprocessor with a DSP core, or 95692.doc 200522578 Any other such configuration. The specific practices disclosed in this article are described in the following examples, steps, methods, or algorithms, which can be implemented in the following ways: directly using software modules that use hardware and are executed by processors. , Or a combination of both. The number ^ software board can reside in RAM memory, flash memory, ROM but 愔 舻 gt > τ ^

°己隱體、EPR〇M記憶體、EEPR0M 記憶體、暫存器、硬碟、抽敢★ 抽取式磁碟、CD-R〇M、或本技 術所熟知的任何其讀存㈣之巾。μ料㈣可被麵 合至该處理&,以便讓該處判可㈣儲存媒體讀取資訊 或是將資訊寫入該儲存媒體之中。在替代例中,該儲存媒 體可與該處考器整合。該處理器及該儲存媒體可駐存於一 ASIC中。該ASIC可駐存於__用戶終端機之内。在替代例 中,該處理器及該儲存媒體可以分離組件的形式置於一使 用者終端機内。 該等已揭示之具體實施例之先前說明係為讓任何熟悉本 技術之人士製造或使用本發明。熟悉本技術的人士將明白 該些具體實施例的各種修改,而且此處所定義的通用原理 亦可應用於其它具體實施例而不背離本發明之精神或範 嘴。舉例來說,雖㈣明中規定可利用通用陸地無線電存 取網路(UTRAN)空中介面來實現無線電存取網路2〇,但是 於GSM/GPRS系統中,無線電存取網路2〇可能係一 GSM/EDGE無線電存取網路(GERAN),甚至於系統間的情 況中’其可能會包括UTRAN空中介面的細胞以及 GSM/EDGE空中介面的細胞。因此,本發明並不希望受限 於本文所示的具體實施例,更確切地說,其希望符合與本 95692.doc -75- 200522578 文所揭示之原理及新穎特徵一致的最廣範疇。 本專利文件的其中-部份揭示含有受著作權保護的内 容。本著作權擁有人並不反對任何人以傳真再製專利暨商 ㈣專利檔案或記錄中的本專利文件或本專利揭示内容, 但是其保留所有的著作權權利。 【圖式簡單說明】 圖1為一通信系統的示意圖。 圖2為UMTS信令協定堆疊的方塊圖。 圖3為UMTS協定堆疊之封包切換使用者平面的方塊圖。 圖4為UMIS信令協定堆疊的存取階層部份的方塊圖。 圖5A為UMTS信令協定堆叠之無線電連結控制叫⑽ 中所使用的資料傳輸模式方塊圖以及每層中所使用的各種 頻道。 圖5B為含有各種RLC資料傳輸模式的無線電連結控制 (RLC)層的架構方塊圖。 圖5C為用於實現無線電連結控制(rlc)已確認模式(A%) 之實體的方塊圖。 圖6為具有刖向式錯誤修正層之簡化協定堆疊的示 意圖。 圖7A為含有一前向式錯誤修正(fec)層之存取階層的協 定結構的具體實施例。 圖7B為含有一前向式錯誤修正(fec)層之存取階層的協 定結構的另一具體實施例。 圖8為資成區塊及對應該資訊區塊之外部碼區塊的示 95692.doc -76- 200522578 意圖。 圖9A為可套用至多媒體廣播及多播服務(mbms)資料的 外部碼區塊結構的示意圖。 圖9B為圖9A之外部碼區塊結構的示意圖,其中會有多重 列於每個傳輸時間區間(TTI)中被發送。 圖9C為圖9A之外部區塊結構的示意圖,其中每一列會於 多個TTI中被發送。 圖10A與10B為該前向式錯誤修正層所產生之外部碼區 塊的示意圖。 圖11為RLC— UM+實體中所使用之前向式錯誤修正(FEC) 層的具體實施例。 圖12A為用以從複數個資料單元中產生一外部碼區塊的 編碼過程,其中該外部碼區塊的列大小為較的。 圖12B為圖12A中於空中被傳輸的資訊範例。 圖13為用以產生一具有可變列大小的外部碼區塊的編碼 過程。 圖14為-前向式錯·誤修正(fec)標頭格式的具體實施例 示意圖。 圖15為讓行動台利用不同邏輯_間的時間補償來延遲解 碼的示意圖。 圖16為當某一行動, σ k、、、田胞Α接收一點對多點(ρτΜ) 傳輸及從細胞B接收_科# 一 *收點對多點(ΡΤΜ)傳輸間移轉時被該 行動台接收到之外部碼區塊間的時間關係圖。 圖17為當某一行動台於點對多點(ΡΤΜ)傳輪及點對點 95692.doc -77- 200522578 (PTP)傳輸間移轉時所接收到之外部碼區塊間的時間關係 圖。 圖1 8為當某一行動台於源自無線電網路控制器(RNC)A 之點對點(PTP)傳輸及源自無線電網路控制器(RNC)B之點 對點(PTP)傳輸間移轉或重新定位時所接收到之外部碼區 塊間的時間關係圖。 【主要元件符號說明】° Hidden body, EPROM memory, EEPR0M memory, scratchpad, hard disk, extractable disk ★ Removable disk, CD-ROM, or any of its reading and storage towels known in the art. The μ material can be integrated into the processing & so that the judgment can read the information from the storage medium or write the information to the storage medium. In the alternative, the storage medium may be integrated with the test device. The processor and the storage medium may reside in an ASIC. The ASIC can reside in a __ user terminal. In the alternative, the processor and the storage medium may be stored in a user terminal in the form of separate components. The previous description of these disclosed specific embodiments is for anyone skilled in the art to make or use the invention. Those skilled in the art will appreciate various modifications to these specific embodiments, and the general principles defined herein may also be applied to other specific embodiments without departing from the spirit or scope of the invention. For example, although it is stipulated in the Ming Dynasty that the universal terrestrial radio access network (UTRAN) air interface can be used to implement the radio access network 20, the radio access network 20 may be a A GSM / EDGE radio access network (GERAN), even in the case of inter-systems, 'may include cells of the UTRAN air interface and cells of the GSM / EDGE air interface. Therefore, the present invention is not intended to be limited to the specific embodiments shown herein, but rather, it is intended to conform to the widest category consistent with the principles and novel features disclosed in this 95692.doc -75- 200522578 article. Part of this patent document discloses that it contains copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent file or the disclosure of this patent in a patent file or record, but reserves all copyright rights. [Schematic description] Figure 1 is a schematic diagram of a communication system. Figure 2 is a block diagram of a UMTS signaling protocol stack. FIG. 3 is a block diagram of a user plane for packet switching in a UMTS protocol stack. FIG. 4 is a block diagram of an access hierarchy portion of a UMIS signaling protocol stack. Figure 5A is a block diagram of the data transmission mode used in the radio link control call stack of the UMTS signaling protocol stack and the various channels used in each layer. FIG. 5B is a block diagram of an architecture of a radio link control (RLC) layer including various RLC data transmission modes. FIG. 5C is a block diagram of an entity for implementing a radio link control (rlc) confirmed mode (A%). Figure 6 is a schematic diagram of a simplified protocol stack with a directional error correction layer. Fig. 7A is a specific embodiment of a structure of an access hierarchy including a forward error correction (fec) layer. Fig. 7B is another specific embodiment of the structure of the access hierarchy including a forward error correction (fec) layer. Figure 8 shows the intent of the capital block and the external code block corresponding to the information block. 95692.doc -76- 200522578 FIG. 9A is a schematic diagram of an external code block structure applicable to multimedia broadcast and multicast service (mbms) data. Fig. 9B is a schematic diagram of the outer code block structure of Fig. 9A, in which multiple columns are transmitted in each transmission time interval (TTI). Figure 9C is a schematic diagram of the external block structure of Figure 9A, where each column is sent in multiple TTIs. 10A and 10B are schematic diagrams of external code blocks generated by the forward error correction layer. FIG. 11 is a specific embodiment of a forward error correction (FEC) layer used in the RLC-UM + entity. Fig. 12A is an encoding process for generating an external code block from a plurality of data units, wherein the column size of the external code block is relatively large. FIG. 12B is an example of the information transmitted over the air in FIG. 12A. Fig. 13 is an encoding process for generating an outer code block having a variable column size. 14 is a schematic diagram of a specific example of a forward-error-error correction (fec) header format. FIG. 15 is a schematic diagram for a mobile station to delay decoding by using time compensation between different logics. Figure 16 shows when a certain action, σk ,,, and T cell A receive a point-to-multipoint (ρτM) transmission and receive from cell B_ 科 # 一 * Receiving point-to-multipoint (PTM) transmission Time relationship diagram between external code blocks received by the mobile station. FIG. 17 is a time relationship diagram between external code blocks received when a mobile station moves between point-to-multipoint (PTM) rounds and point-to-point 95692.doc -77- 200522578 (PTP) transmissions. Figure 18 shows when a mobile station transfers or re-routes between point-to-point (PTP) transmissions originating from Radio Network Controller (RNC) A and point-to-point (PTP) transmissions originating from Radio Network Controller (RNC) B. Time relationship diagram between external code blocks received during positioning. [Description of main component symbols]

10 使用者設備 12 行動設備 14 . 通用用戶識別模組 20 存取網路 22 基地台 23 Iub介面 24 無線電網路控制器 25 Iu介面 26 Uu介面 30 核心網路 32 家用位置登錄器 34 行動切換服務中心/訪客位置登錄器 36 閘道行動切換中心 38 服務通用封包無線電服務支援節點 39 下層封包協定 40 閘道GPRS支援節點 42(圖 1) PSTN/ISDN 95692.doc -78- 200522578 42(圖 3) 遠端使用者 44 網際網路 80 應用層 90 封包資料協定層 91 資訊區塊 93 同位區塊 94 標頭 95 外部碼區塊 96 移轉 97 一移轉 98 細胞A 99 細胞B 110 UMTS信令協定堆疊 120 實體層 124 無線電網路控制器A 130 層2 140 媒體存取控制層 150 無線電連結控制層 152 無線電連結控制單元 152A 傳輸TM實體 152B 接收TM實體 152C 傳輸UM實體 152D 接收UM實體 152E AM實體 95692.doc -79- 200522578 156 封包資料收斂協定層 157 前向式錯誤修正(FEC)層 158 廣播/多播控制層 160 無線電資源控制層 161 控制平面信令 163 使用者平面資訊 170 電路切換部份 172 連接管理層 174 呼叫控制子層 176 __增補服務子層 177 短訊服務子層 178 行動能力管理層 180 封包切換部份 182 交談管理子層 183 短訊服務區段 184 GPRS行動能力管理子層 201 資料單元 202 資料單元 203 資料單元 204 資料單元 205 編碼器封包矩陣 206 長度指示符號 208 填補資料 210 袁後資料 95692.doc -80- 200522578 212 同位資訊 213 外部碼區塊 214 外部同位區塊 224 無線電網路控制器B 305 編碼器封包矩陣 310 最後資料 311 (未定義) 312 同位資訊 313 外部碼區塊 314 _ 同位附加資料 400 前向式錯誤修正層 401 前向式錯誤修正標頭大小 402 無線電承載 404 編碼器封包部份 406 編碼器封包 408 (未定義) 410 傳輸前向式錯誤修正實體 412 服務資料單元緩衝器 414 分割與串接單元 416 外部編碼器 418 序號產生器 420 傳輸緩衝器 422 排程單元 430 接收前向式錯誤修正實體 95692.doc -81 - 200522578 432 434 436 438 440 510 520 530 538 重組單元/服務資料單元傳輸緩衝器 外部解碼器 序號移除單元 接收緩衝器/再排序/副本偵測單元 無線電承載 傳輸端 傳輸緩衝器 接收端 接收緩衝器 95692.doc -82-10 User equipment 12 Mobile equipment 14. Universal subscriber identity module 20 Access network 22 Base station 23 Iub interface 24 Radio network controller 25 Iu interface 26 Uu interface 30 Core network 32 Home location register 34 Mobile switching service Center / Visitor Location Register 36 Gateway Action Switching Center 38 Service General Packet Radio Service Support Node 39 Lower Packet Agreement 40 Gateway GPRS Support Node 42 (Figure 1) PSTN / ISDN 95692.doc -78- 200522578 42 (Figure 3) Remote user 44 Internet 80 Application layer 90 Packet data protocol layer 91 Information block 93 Parity block 94 Header 95 External code block 96 Transfer 97 One transfer 98 Cell A 99 Cell B 110 UMTS signaling protocol Stack 120 physical layer 124 radio network controller A 130 layer 2 140 media access control layer 150 radio link control layer 152 radio link control unit 152A transmitting TM entity 152B receiving TM entity 152C transmitting UM entity 152D receiving UM entity 152E AM entity 95692 .doc -79- 200522578 156 Packet data convergence protocol layer 157 Forward error correction (FEC) layer 158 broadcast / multicast control layer 160 radio resource control layer 161 control plane signaling 163 user plane information 170 circuit switching part 172 connection management layer 174 call control sublayer 176 __ supplementary service sublayer 177 SMS service sublayer 178 Mobility management layer 180 Packet switching part 182 Conversation management sublayer 183 SMS service sublayer 184 GPRS mobility management sublayer 201 data unit 202 data unit 203 data unit 204 data unit 205 encoder packet matrix 206 length indicator 208 padding Data 210 Yuan data 95692.doc -80- 200522578 212 Parity information 213 External code block 214 External parity block 224 Radio network controller B 305 Encoder packet matrix 310 Last data 311 (undefined) 312 Parity information 313 External Code block 314 _ Parity additional information 400 Forward error correction layer 401 Forward error correction header size 402 Radio bearer 404 Encoder packet part 406 Encoder packet 408 (undefined) 410 Transmission forward error correction entity 412 Service Information Unit Buffer 41 4 Division and concatenation unit 416 External encoder 418 Serial number generator 420 Transmission buffer 422 Scheduling unit 430 Receive forward error correction entity 95692.doc -81-200522578 432 434 436 438 440 510 520 530 538 Reorganization unit / service Data unit transmission buffer external decoder serial number removal unit receiving buffer / reordering / copy detection unit radio bearer transmitting end transmitting buffer receiving end receiving buffer 95692.doc -82-

Claims (1)

200522578 十、申請專利範圍: 上方的外部編碼實 1 · 種位於無線電連結控制(RLC)層 體’其包括: 一含有一接收器的目的台;以及 -含有-傳輸器的起源台,其可透過一共同邏 於該無線電介面上和該接收器進行通信。 、 2·如請求項1之外部、編碼實體,其中該傳輸器包括: 第一緩衝器,用以儲存複數列使用者資訊; 一排程單元,其可完成下面工作: 於需要雙輸一外部碼區塊前決定一最大持續時間, 依據被儲存於該第一緩衝器中的使用者資訊量來決定 允許該等使用者資訊列佔據該等資訊區塊的最佳資訊區 塊大小’以便減少未被填補的資訊區塊部份,以及 產生一要求以開始對該等使用者資訊列進行編碼; 一分割與串接單元,其可響應來自該排程單元的要求 以分割該等使用者資訊列,用以將其置入具有最佳大小 的資訊區塊中,並且於每個資訊區塊内產生複數個長度 指不符號,用以表示某一使用者資訊列相對於該資訊區 塊的結束位置;以及 一外部編碼器,其可使用該等資訊區塊來產生複數個 冗餘區塊,該等冗餘區塊會被加入該等資訊區塊中以產 生一外部碼區塊。 3 _如請求項2之外部編碼實體,其中當累積某一使用者平面 資訊數量時,該排程單元便會開始編碼。 95692.doc 200522578 4. 5. 6· 7. 8. 9. 10 如請求項2之外部編碼層’其中當超過封包傳輸延遲時間 時,該排程單元便會開始編碼。 如請求項2之外部編碼實體,其中該傳輸器進—步包括: 序唬產生益,其會於每個資訊區塊外面加入一標頭 ,其中該標頭包含一序號’用以辨識每個資訊區塊被設 定的順序。 如明求項5之外部編碼實體,其中該序號包括—辨識該外 4馬區塊的部份以及一辨識每個資訊區塊於該外部碼區 塊内之位置的部份。 如明求項外部編碼實體,其中該傳輸器進—步包括: 一傳輸緩衝H,其會儲存料f訊區塊,並且透過一 /、同沾輯頻道於該無線電介面上將該等資訊區塊傳輸給 一MAC層。 如請求項5之外部編碼實體,其中載有來自第一資訊源之 第k輯串中之使用者資訊的資訊區塊以及載有來自第 一貝汛源之第二邏輯串中之相同使用者資訊的資訊區塊 具有相同的序號,以及 /、中4排权單元會監視該第一邏輯串資訊區塊的序號 =及"亥第一邏輯串資訊區塊的序號,並且調整該第一邏 輯串資訊區塊相對於該第二邏輯串資訊區塊的時間對齊 、、’。果,以便讓该等第一與第二邏輯串可產生時間對齊。 如明求項2之外部編碼實體,其中該等使用者資訊列的列 大小可依照應用來改變。 如請求項2之外部編碼實體,其中該排程單元會決 定外部 95692.doc 200522578 碼區塊的列大小,該列大小係固定的,致使可於一傳輸 時間區間(TTI)期間以尖峰資料速率來傳輸每一列,並且 於接收到全部的使用者資訊以前便可開始傳輸該等資訊 區塊及長度指示符號。 11. 如請求項10之外部編碼實體,其中該分割與串接會分割 該寻使用者資訊列’將其置入固定大小的外部碼區塊列 之中’將該等使用者資訊列置入該等外部碼區塊列之中 用以產生複數個資訊區塊,利用填補資訊來填補任何未 被佔據的外部碼區塊列,並且於每個外部碼區塊列中加 入至少一長度指示符號,用以表示某一使用者資訊列或 填補資訊在被該資訊區塊佔據之外部碼區塊列内的結束 位置。 12. 如請求項11之外部編碼實體,其中一編碼器封包包括該 等資訊區塊、填補資訊區塊訊、以及複數個長度指示符 號’而且其中該外部編碼器會取出每個編碼器封包的一 部份以獲得擷取資訊,對該擷取資訊進行編碼用以產生 複數列冗餘資訊’並且將該等冗餘資訊列加入該編碼器 封包中用以產生一具有固定列大小的外部碼區塊。 13·如請求項2之外部編碼實體,其中該外部碼區塊的列大小 係可變的,而且其中一旦接收到全部的使用者資訊列之 後’該排程單元便會依據所收到之使用者資訊量來決定 該等外部碼區塊列的可變列大小,而且其中於傳輸時間 區間期間被傳輸的外部碼區塊的大小可依照該外部碼區 塊列大小來改變。 95692.doc 200522578 14·如請求項13之外部編碼實體,其中該分割與串接單元會 分割複數列使用者資訊,將其置入可變大小的外部碼區 塊列之中,致使該等使用者資訊列可完全佔據該等複數 列外部碼區塊列,將該等使用者資訊列置入複數列外部 碼區塊列之中用以產生複數個資訊區塊,利用填補資訊 來填補任何未被佔據的外部碼區塊列,並且於每個外部 碼區塊列中加入至少一長度指示符號,用以表示某一使 用者資訊列在被該資訊區塊佔據之外部碼區塊列内的結 束位置。 15·如請求項^之外部編碼實體,其中一編碼器封包包括該 等貢訊區塊以及複數個長度指示符號,而且其中該外部 編碼器會取出每個編碼器封包的一部份以獲得擷取資 訊,對該擷I資訊進行編碼用以產生複數列冗餘資訊, 並且將該等冗餘資訊列加入該編碼器封包中用以產生一 具有可變列大小的外部碼區塊。 16. 如請求項2之外部、編碼實體,其中一旦接收到全部的使用 者資訊列或是決定即將產生該外部碼區塊之後,該排程 單元便έ依據所收到之使用者資訊量從數個預設的外部 碼:塊列大小中決定—可變的外部碼區塊列大小,其允 許最小化被非使用者資訊佔據的外部碼區塊部份,從而 允許降低使用者資訊率。 17. 如請求項2之外部編碼實體,其中一旦接收到全部的使用 者資訊列之彳 1’該排程單元便會依據所收到之使用者資 訊量來決定一可變的外立β• & 卜冲碼區塊列大小,其允許該等使 95692.doc 200522578 用者資訊列完全佔據該編碼器封包,其中於傳輸時間區 間期間被傳輸的外部碼區塊的大小可依照該外部碼區塊 列大小來改變。 18.如請求項丨之外部編碼實體,其中該接收器包括: 一接收緩衝器,其會累積資訊區塊,直到滿足某種條 件為止, 其中該序號會辨識每個資訊區塊所屬的外部碼區塊, 以及該資訊區塊於該外部碼區塊内的位置; 一再排序單元,其會運用每個資訊區塊中的序號來再 排序被無序:接收的任何資訊區塊;以及 一副本偵測單元,一旦該等資訊區塊被再排序之後, 其便會運用每個資訊區塊中的序號來偵測副本資訊且刪 除任何副本資訊區塊,以及 當特定的外部碼區塊滿;^該項條件後,該副本该測 元便會以刪除符號來取代未通過循環冗餘測試的任何 訊區塊,並且產生一要求以開始外部解碼。 其中該項條件為接收到完 19·如請求項18之外部編碼實體,其中 整的外部碼區塊。200522578 10. Scope of patent application: External code above 1 · A radio link control (RLC) layer 'which includes: a destination station containing a receiver; and-a source station containing-a transmitter, which can be transmitted through A common logic communicates with the receiver on the radio interface. 2. The external encoding entity as claimed in claim 1, wherein the transmitter includes: a first buffer for storing a plurality of user information; a scheduling unit, which can complete the following tasks: double input one external if needed A maximum duration is determined before the code block, and the optimal information block size that allows the user information rows to occupy the information blocks is determined according to the amount of user information stored in the first buffer, so as to reduce The unfilled information block portion, and a request is generated to start encoding the user information rows; a segmentation and concatenation unit that can respond to the request from the scheduling unit to segment the user information Row, used to place it into an information block with the best size, and a plurality of length fingers are used in each information block to indicate the user information row relative to the information block. End position; and an external encoder, which can use the information blocks to generate a plurality of redundant blocks, the redundant blocks will be added to the information blocks to generate an external block Ministry block. 3 _If the external encoding entity of item 2, in which when the amount of user plane information is accumulated, the scheduling unit will start encoding. 95692.doc 200522578 4. 5. 6 · 7. 8. 9. 10 If the external encoding layer of claim 2 ′ is used, when the packet transmission delay time is exceeded, the scheduling unit will start encoding. For example, the external encoding entity of claim 2, wherein the transmitter further includes: a sequence of benefits, which will add a header outside each information block, where the header contains a serial number 'used to identify each The order in which the information blocks are set. If the external encoding entity of item 5 is specified, the serial number includes a part identifying the outer 4 horse block and a part identifying the position of each information block in the external code block. If an external encoding entity is required, the transmitter further includes: a transmission buffer H, which stores data blocks, and transmits the information areas on the radio interface through a channel. The block is transmitted to a MAC layer. For example, the external encoding entity of claim 5, which contains the information block of the user information from the k-th string of the first information source and the same user of the second logical string from the first source The information block of the information has the same serial number, and /, the middle 4th row unit will monitor the serial number of the first logical string information block = and " The logical string information block is time-aligned with the second logical string information block. Results so that the first and second logic strings can be time aligned. For example, if the external encoding entity of item 2 is required, the column size of these user information columns can be changed according to the application. If the external encoding entity of claim 2, the scheduling unit will determine the column size of the external 95692.doc 200522578 code block. The column size is fixed, so that the peak data rate can be used during a transmission time interval (TTI). To transmit each row, and before transmitting all the user information, the information block and length indicator can be transmitted. 11. If the external encoding entity of claim 10, wherein the segmentation and concatenation will divide the user information row 'place it into a fixed size external code block row' place the user information row These external code block rows are used to generate a plurality of information blocks, and padding information is used to fill any unoccupied external code block rows, and at least one length indicator is added to each external code block row. , Used to indicate the end position of a certain user information row or padding information in the external code block row occupied by the information block. 12. If the external encoding entity of claim 11, one of the encoder packets includes such information blocks, padding information blocks, and a plurality of length indicators', and wherein the external encoder will take out each of the encoder packets. A part of the acquisition information is obtained, the acquired information is encoded to generate a complex sequence of redundant information, and the redundant information sequences are added to the encoder packet to generate an external code with a fixed row size. Block. 13. If the external encoding entity of claim 2, wherein the column size of the external code block is variable, and once all the user information columns are received, the scheduling unit will use the received The size of the external code blocks is determined by the amount of information, and the size of the external code blocks transmitted during the transmission time interval can be changed according to the size of the external code blocks. 95692.doc 200522578 14 · If the external encoding entity of claim 13, wherein the segmentation and concatenation unit will divide a plurality of columns of user information and place them into a variable size external code block sequence, causing such use The user information column can completely occupy the plural external code block columns, and the user information columns are placed in the plural external code block columns to generate a plurality of information blocks. Occupied external code block rows, and at least one length indicator is added to each external code block row to indicate that a certain user information is listed in the external code block row occupied by the information block. End position. 15. If the external encoding entity of the item ^, an encoder packet includes the tribute block and a plurality of length indicators, and wherein the external encoder will take a part of each encoder packet to obtain a capture Take the information, encode the extracted I information to generate a redundant sequence of redundant information, and add the redundant information rows to the encoder packet to generate an outer code block with a variable row size. 16. If the external and coding entity of claim 2 is used, once the entire user information row is received or the external code block is determined to be generated, the scheduling unit will start from the amount of user information received. Several preset external codes: determined in block row size-a variable external code block row size, which allows minimizing the portion of the external code block occupied by non-user information, thereby allowing the user information rate to be reduced. 17. If the external encoding entity of claim 2, in which once the entire user information is received at 彳 1 ', the scheduling unit will determine a variable external β according to the amount of user information received. & The size of the block sequence of the Bunch code, which allows the 95692.doc 200522578 user information column to completely occupy the encoder packet, wherein the size of the external code block transmitted during the transmission time interval can be according to the external code The block column size changes. 18. The external encoding entity as claimed in claim 1, wherein the receiver includes: a receiving buffer that accumulates information blocks until a certain condition is satisfied, wherein the serial number identifies the external code to which each information block belongs Block, and the position of the information block within the external code block; a reordering unit that uses the sequence number in each information block to reorder any information blocks that are out of order: any information block received; and a copy The detection unit, once the information blocks are reordered, it will use the serial number in each information block to detect duplicate information and delete any duplicate information blocks, and when a specific external code block is full; ^ After this condition, the test unit of the copy will replace any message blocks that fail the cyclic redundancy test with a delete symbol, and generate a request to start external decoding. The condition is that after receiving the external encoding entity as in item 18, the entire external code block is included. 外部碼區塊進行任何再傳輸。 其中該項條件為不再對該 2 1 ·如請求項1 8之外部總石篆眘艘,社、The outer code block performs any retransmission. Among them, the condition is no longer for the 2 1 塊中移除序號;以及 其會接收該外部碼區塊 一外部解碼器, 95692.doc 200522578 22. 23. 24. 25. 26. 27. 時利用該等冗餘區塊來解碼該外部碼區塊中的任何刪除 付號’用以再生遺失的資訊區塊。 > 如請求項21之外部編碼實體,其進一步包括· 一重組單元,其會使用該等資訊區塊及該等長度指示 符號來重建複數列使用者資訊;以及 一傳輸缓衝器,用以於該無線電承載上來傳輸該等使 用者資訊列,並且將該等使用者資訊列傳送給更高層。 如請求項21之外部編碼實體,其中該接收緩衝器會^於先 前收到之資訊區塊正在進行解碼時來儲存其它正在接收 的進入資訊一區塊,以允許於解碼期間連續接收資訊區塊。 如請求項18之外部編碼實體,其中該再排序單元會將解 碼延遲第一與第二邏輯串間的時間補償值,並且於啟動 解碼前先等待接收兩個外部碼區塊。 如請求項18之外部編碼實體,其中該接收緩衝器會接收 一含有複數列資訊區塊的外部碼區塊,其中該等資訊區 塊列每一列皆包含至少一部份的使用者資訊列,其中每 列資訊區塊的大小係固定且會佔據一傳輸時間區間 (TTI) 〇 如睛求項21之外部編碼實體,其中該外部解碼器會利用 複數列冗餘資訊來解碼該外部碼區塊,用以產生一含有 複數個資訊區塊及複數個長度指示符號在内的完整編碼 器封包’其中該等資訊區塊沒有任何錯誤。 如請求項22之外部編碼實體,其中該重組單元會使用每 個資訊區塊中至少一長度指示符號來決定某一列使用者 95692.doc 200522578 資訊於被該資訊區塊佔據之外部碼區塊列内的結束位 置,並且將該等資訊區塊分為複數列使用者資訊。 28·如請求項18之外部編碼實體,其中該接收緩衝器會接收 一含有複數列資訊區塊的外部碼區塊,其中該等資訊區 塊列每一列皆包含至少一部份的使用者資訊列,其中每 列資訊區塊的大小係可變而且該等使用者資訊列會完全 佔據該等複數列資訊區塊。 29· —起源台,其包括: 一第一緩衝器,用以儲存複數列使用者資訊; 一排程單…元,其可完成下面工作: 於需要傳輸一外部碼區塊前決定一最大持續時間, 依據被儲存於該第一緩衝器中的使用者資訊量,來決 疋允許該等使用者資訊列佔據該等資訊區塊的最佳資訊 區塊大小’以便減少未被填補的資訊區塊部份, 產生一要求以開始對該等使用者資訊列進行編碼; 分割與串接單元,其可響應來自該排程單元的要求 以分吾’]該等使用者資訊列,用以將其置入具有最佳大小 的貝矾區塊中,並且於每個資訊區塊内產生複數個長度 才曰不符唬,用以表示某一使用者資訊列相對於該資訊區 塊的結束位置;以及 外邛編碼器,其會於該無線電連結控制(RLC)層之前 接收複數個資訊區塊,並且利用該等資訊區塊來產生複 數個冗餘區塊,該等冗餘區塊會被加入該等資訊區塊中 用以產生一外部碼區塊。 95692.doc 200522578 30. 如清求項29之起源台,Jt中告g接甘 i 了口 ”甲田累積某一使用者平面資訊 數量時,該排程單元便會開始編碼。 31. 如請求項29之起源台,其中當超過封包傳輸延遲時間 時’該排程單元便會開始編碼。 32. 如請求項29之起源台,其♦該傳輸器進一步包括: 一序號產生器,其會於每個資訊區塊外面加入一標頭 ,其中該標頭包含-序號,用以辨識每個資訊區塊被設 定的順序。 33. 如請求項32之起源台’其中該序號包括一辨識該外部碼 區塊的部份_以及一辨識每個資訊區塊於該外部碼區塊内 之位置的部份。 34·如請求項32之起源台,其中該傳輸器進一步包括: 一傳輸緩衝器,其會儲存該等資訊區塊,並且透過一 共同邏輯頻道於該無線電介面上來傳輸該等資訊區塊。 35·如请求項32之起源台,其中載有來自第一資訊源之第一 邏輯串中之使用者資訊的資訊區塊以及載有來自第二資 訊源之第二邏輯串中之相同使用者資訊的資訊區塊具有 相同的序號,以及 其中遠排私單元會監視該第一邏輯串資訊區塊的序號 以及該第二邏輯串資訊區塊的序號,並且調整該第一邏 輯串資訊區塊相對於該第二邏輯串資訊區塊的時間對齊 結果,以便讓该等第一與第二邏輯串可產生時間對齊。 36·如請求項29之起源台’其中該等使用者資訊列的列大小 可依照應用來改變。 95692.doc 200522578 37·如請求項29之起源台,其中該排程單元會決定外部碼區 塊的列大小,該列大小係固定的,致使可於一傳輸時間 區間(丁丁1)期Μ以失峰資料速率來傳輸每一列,並且於接 收到全部的使用者資訊以前便可開始傳輸該等資訊區塊 及長度指示符號。 38·如巧求項37之起源台,其中該分割與串接會分割該等使 用者資汛列,將其置入固定大小的外部碼區塊列之中, 將忒等使用者資訊列置入該等外部碼區塊列之中用以產 生複數個資訊區塊,利用填補資訊來填補任何未被佔據 的外部碼區—塊列,並且於每個外部碼區塊列中加入至少 一長度指不符號,用以表示某一使用者資訊列或填補資 訊在被該資訊區塊佔據之外部碼區塊列内的結束位置。 39·如請求項38之起源台,其中一編碼器封包包括該等資訊 區塊、填補貧訊區塊訊、以及複數個長度指示符號,而 且其中該外部編碼器會取出每個編碼器封包的一部份以 獲得擷取資訊,對該擷取資訊進行編碼用以產生複數列 几餘資Λ,並且將该等冗餘資訊列加入該編碼器封包中 用以產生一具有固定列大小的外部碼區塊。 4〇·如請求項29之起源台,其中該外部碼區塊的列大小係可 變的,而且其中一旦接收到全部的使用者資訊列之後, 該排程單元便會依據所收到之使用者資訊量來決定該等 外部碼區塊列的可變列大小,而且其中於傳輸時間區間 期間被傳輸的外部碼區塊的大小可依照該外部碼區塊列 大小來改變。 95692.doc 200522578 4i•如請求項40之起源台,其中該分割與串接單元會分割複 數列使用者資訊’將其置人可變大小的外部碼區塊列之 中,致使該等使用者資訊列可%全佔據該等複數列外部 碼區塊列’將該等使用者資訊列置入複數列外部碼區塊 列之中用以產生複數個資訊區塊,利用填補資訊來填補 任何未被佔據的外部碼區塊列,並且於每個外部碼區塊 列中加入至少一長度指示符號,用以表示某一使用者資 讯列在被该資訊區塊佔據之外部碼區塊列内的結束位 置。 42·如請求項4Q之起源台,其中一編碼器封包包括該等資訊 區塊以及複數個長度指示符號,而且其中該外部編碼器 會取出每個編碼器封包的一部份以獲得擷取資訊,對該 擷取資訊進行編碼用以產生複數列冗餘資訊,並且將該 等冗餘資訊列加入該編碼器封包中用以產生一具有可變 列大小的外部碼區塊。 43·如請求項29之起源台,其中一旦接收到全部的使用者資 訊列或是決定即將產生該外部碼區塊之後,該排程單元 便會依據所收到之使用者資訊量從數個預設的外部碼區 塊列大小中決定一可變的外部碼區塊列大小,其允許最 小化被非使用者資訊佔據的外部碼區塊部份,從而允許 降低使用者資訊率。 44·如請求項29之起源台,其中一旦接收到全部的使用者資 訊列之後,該排程單元便會依據所收到之使用者資訊量 來決定一可變的外部碼區塊列大小,其允許該等使用者 95692.doc -10- 200522578 資訊列完全佔據該編碼器封包,其中於傳輪時間區間期 間被傳輸的外部碼區塊的大小可依照該外部竭區塊列大 小來改變。 45. —目的台,其包括·· 一接收緩衝器,其會累積資訊區塊,直到滿足某種條 件為止, 其中一序號會辨識每個資訊區塊所屬的外部碼區塊, 以及每個資訊區塊於該外部碼區塊内的位置; 一再排序單元,其會運用每個資訊區塊中的序號來再 排序被無序接收的任何資訊區塊;以及 一副本偵測單元,一旦該等資訊區塊被再排序之後, 其便會運用每個資訊區塊中的序號來偵測副本資訊且刪 除任何副本資訊區塊,以及 虽特疋的外部碼區塊滿足該項條件後,該副本偵測單 元便會以刪除符號來取代未通過循環冗餘測試的任何資 訊區塊,並且產生一要求以開始外部解碼。 46. 如請求項45之目的台,其中該項條件為接收到完整的外 部碼區塊。 47. 如請求項45之目的台,其中該項條件為不再對該外部碼 區塊進行任何再傳輸。 48. 如請求項45之目的台,其進一步包括: 一序號移除單元,用以從該外部碼區塊的每個資訊區 塊中移除序號;以及 一外部解碼H,其會於外部碼區塊抵達該無線電連結 95692.doc -11 - 200522578 控制層以前接收該外部碼區塊,並且於必要時利用該等 几餘q塊來解碼该外部碼區塊中的任何刪除符穿,用以 再生遺失的資訊區塊。 49.如請求項48之目的台,其進一步包括: 一重組單元,其會使用該等資訊區塊及該等長度指示 符號來重建複數列使用者資訊;以及 一傳輸緩衝器,用以於該無線電承载上來傳輸該等使 用者資訊列,並且將該等使用者資訊列傳送給更高層。 5〇·如請求項48之目的台,其中該接收緩衝器會於先前收到 之資訊區魂正在進行解碼時來儲存其它正在接收的進入 資訊區塊,以允許於解碼期間連續接收資訊區塊。 5 1 ·如明求項45之目的台,其中該再排序單元會將解碼延遲 第一與第二邏輯串間的時間補償值,並且於啟動解碼前 先等待接收兩個外部碼區塊。 52·如請求項45之外部編碼實體,其中該接收緩衝器會接收 一含有複數列資訊區塊的外部碼區塊,其中該等資訊區 塊列每一列皆包含至少一部份的使用者資訊列,其中每 列 > 訊區塊的大小係固定且會佔據一傳輸時間區間 (TTI) 〇 53.如請求項48之外部編碼實體,其中該外部解碼器會利用 複數列冗餘資訊來解碼該外部碼區塊,用以產生一含有 複數個貧訊區塊及複數個長度指示符號在内的完整編碼 器封包’其中該等資訊區塊沒有任何錯誤。 54·如請求項49之外部編碼實體,其中該重組單元會使用每 95692.doc 200522578 個資訊區塊中至少一長度指示符號來決定某一列使用者 >訊於被該資訊區塊佔據之外部碼區塊列内的結束位 置,並且將該等資訊區塊分為複數列使用者資訊。 55. 56. 如請求項45之外部編碼實體,其中該接收緩衝器會接收 一含有複數列資訊區塊的外部碼區塊,其中該等資訊區 塊列每一列皆包含至少一部份的使用者資訊列,其中每 列資訊區塊的大小係可變而且該等使用者資訊列會完全 佔據該等複數列資訊區塊。 種製造一具有複數列之固定列大小外部碼區塊的方 法,其包括: 於一無線電承載上接收使用者資訊,其中該等使用者 資訊列的大小可依照應用來改變; 依照頻道條件來決定一固定外部碼區塊列大小,其允 許於一傳輸時間區間(TTI)期間以尖峰資料速率來傳輪每 一列; 分割且串接複數列使用者資訊,使其置入固定大小的 外部碼區塊列内; 、 將該等使用者資訊列置入複數列外部碼區塊列之中, 用以產生複數個資訊區塊,其中任何未被佔據的外部 區塊列皆會填入填補資訊; 、 、於母個外部碼區塊列中加入至少一長度指示符號,用 以表示某一使用者資訊列或填補資訊在被該資訊區塊佔 外部碼區塊列内的結束位置,而且其中_編碼器封 匕0括邊等貧訊區塊、填補資訊、以及長度指示符號; 95692.doc -13- 200522578 於接收到全部使用者資訊前開始傳輸該等資訊區塊及 長度指示符號; 取出每個編碼器封包的一部份以獲得擷取資訊; 對3擷取資訊進行編碼用以產生複數列冗餘資訊;以及 將該等冗餘資訊列加入該編碼器封包中用以產生一具 有固定列大小的外部碼區塊。 57·種製造一具有複數列之可變列大小外部碼區塊的方 法,其包括: 於一無線電承載上接收複數列使用者資訊,其中該等 使用者資訊列的大小可依照應用來改變; 一旦接收到全部的使用者資訊列之後,便依據所收到 之使用者資訊量來決定一可變的外部碼區塊列大小,而 且其中於傳輸時間區間期間被傳輸的外部碼區塊的大小 可依照該外部碼區塊列大小來改變; 分割且串接複數列使用者資訊,使其置入可變大小的 外部碼區塊列内; 將該等使用者資訊列置入複數餮外部碼區塊列之中, 用以產生複數個資訊區塊; 於每個外部碼區塊列中加入至少一長度指示符號, 〜’用 以表示某一使用者資訊列在被該資訊區塊佔據之外部石馬 區塊列内的結束位置,其中該等使用者資訊列會完八 ^ ιτ5 據該等複數列外部碼區塊列,而且其中一編碼器封包勺 括該等資訊區塊以及長度指示符號; 取出每個編碼器封包的一部份以獲得擷取資訊; 95692.doc -14- 200522578 對該擷取資訊進行編碼用以產生複數列冗餘資訊; 將該等冗餘資訊列加入該編碼器封包中用以產生一具 有可變列大小的外部碼區塊;以及 傳輸該編碼器封包。 5 8.如明求項57之方法,其中依據所收到之使用者資訊量來 決定一可變的外部碼區塊列大小包括: 一旦接收到全部的使用者資訊列或是決定即將產生該 外部碼區塊之後,便依據所收到之使用者資訊量從數個 預設的外部碼區塊列大小中決定一可變的外部碼區塊列 大小’其允;許最小化被非使用者資訊佔據的外部碼區塊 部份,從而允許降低使用者資訊率。 59·如請求項57之方法,其中依據所收到之使用者資訊量來 決定一可變的外部碼區塊列大小包括: 一旦接收到全部的使用者資訊列之後,便依據所收到 之使用者資訊量來決定一可變的外部碼區塊列大小,其 允命該等使用者資訊列完全佔據該編碼器封包,其中於 傳輸時間區間期間被傳輸的外部碼區塊的大小可依照該 外部碼區塊列大小來改變。 60_ —種接收使用者資訊的方法,其包括: 接收一含有複數列資訊區塊的外部碼區塊,其中該等 貧訊區塊列每一列皆包含至少一部份的使用者資訊列, 其中每列資訊區塊的大小係固定且會佔據一傳輸時間區 間(TTI); 利用複數列冗餘資訊來解碼該外部碼區塊,用以產生 95692.doc -15- 200522578 61. 62. 一含有複數個資訊區塊及複數個長度指示符號在内的完 整編碼器封包,其中該等資訊區塊沒有任何錯誤;以及 使用每個資訊區塊中至少一長度指示符號來決定某一 列使用者資訊於被該資訊區塊佔據之外部碼區塊列内的 結束位置,並且將該等資訊區塊分為複數列使用者資訊。 一種接收使用者資訊的方法,其包括: 接收一含有複數列資訊區塊的外部碼區塊,其中該等 資訊區塊列每一列皆包含至少一部份的使用者資訊列, 其中母列資訊區塊的大小係可變而且該等使用者資訊列 會完全佔據_該等複數列資訊區塊; 利用複數列冗餘資訊來解碼該外部碼區塊,用以產生 一含有複數個資訊區塊及複數個長度指示符號在内的完 整編碼器封包,其中該等資訊區塊沒有任何錯誤;以及 使用每個資訊區塊中至少一長度指示符號來決定某一 列使用者資汛於被该資訊區塊佔據之外部碼區塊列内的 結束位置;以及 將該等資訊區塊分為複數列使用者資訊。 一種點對多點(ptm)傳輸_,其可進行可變速率傳輸、 無序接收、以及分割與串接一可變速率資訊源的點對多 點(PTM)傳輸,其包括: 網路,其包括 一接收緩衝器,用以儲存複數個前向式錯誤修正(F 服務資料單元(SDU); 一分割與串接實體’用以將複數個FEC SDU分割且串 95692.doc -16- 200522578 接成一編碼器矩陣中的 資訊列,其中該編碼器 的傳輸時間區間; 複數列,該矩陣包括第一數量、 矩陣中的每一列皆會佔據—獨2 一排程只體,盆备於 一印於接收到預設資料量後產生〜 命令以開始編碼,從 開女 攸而減少於編碼期間被加 器封包中的填補資訊; 母歹1i編石I 5 乂 Μ編碼态’其會響應該開始命令以^ 數個編碼器封向,i ώ / 座生潜 曰 -母個編碼器封包皆包括該第—袁 弟-數里的同位列、以及為於該編碼, 封包末端的:填補資訊; — 序器肖Μ於貝施外部編碼後在該編碼器封包¥ 每一列中加人-含有—序號的外部標頭;以及 、 σ傳輸緩衝$,其會接收該等編碼ϋ封包,將該等雜 碼裔封包格式化成複數個合成碼區塊,以及於— 介面上傳輸該等合成碼區塊。 …、線f 63. 如請求項62之系統,其進一步包括:Remove the serial number from the block; and it will receive the external code block an external decoder, 95692.doc 200522578 22. 23. 24. 25. 26. 27. when using the redundant blocks to decode the external code area Any deletion number in the block is used to regenerate the missing information block. > If the external encoding entity of claim 21, further comprising: a reorganization unit, which uses the information blocks and the length indicators to reconstruct a plurality of rows of user information; and a transmission buffer for The user information columns are transmitted on the radio bearer, and the user information columns are transmitted to a higher layer. For example, if the external encoding entity of item 21 is used, the receiving buffer will store a block of other incoming information being received while the previously received information block is being decoded to allow continuous reception of the information block during decoding. . For example, if the external encoding entity of item 18 is requested, the reordering unit delays the decoding time compensation value between the first and second logical strings, and waits to receive two external code blocks before starting decoding. For example, if the external encoding entity of claim 18 is used, the receiving buffer will receive an external code block containing a plurality of columns of information blocks, each of which includes at least a part of the user information column. The size of each column of information blocks is fixed and will occupy a transmission time interval (TTI). As the external encoding entity of item 21, the external decoder will use the redundant information of the complex sequence to decode the external code block. , Used to generate a complete encoder packet containing a plurality of information blocks and a plurality of length indicator symbols, wherein the information blocks have no errors. For example, if the external encoding entity of item 22 is used, the reorganization unit will use at least one length indicator in each information block to determine a certain row of user 95692.doc 200522578 information in the external code block row occupied by the information block. Within the end position, and divide the information blocks into a plurality of rows of user information. 28. The external encoding entity of claim 18, wherein the receiving buffer will receive an external code block containing a plurality of columns of information blocks, where each column of the information block columns contains at least part of the user information Rows, where the size of each row of information blocks is variable and the user information rows will completely occupy the plurality of rows of information blocks. 29 · —The origin station, which includes: a first buffer for storing a plurality of rows of user information; a schedule ... element, which can complete the following tasks: determine a maximum duration before an external code block needs to be transmitted Time, according to the amount of user information stored in the first buffer, the optimal information block size that allows the user information columns to occupy the information blocks is determined to reduce unfilled information areas Block, generates a request to start encoding the user information columns; the segmentation and concatenation unit, which can respond to the request from the scheduling unit to divide the user information columns]] These user information columns are used to It is placed in the alum block with the best size, and a plurality of lengths are generated in each information block, which is used to indicate the end position of a user information row relative to the information block; And an external encoder, which receives a plurality of information blocks before the radio link control (RLC) layer, and uses the information blocks to generate a plurality of redundant blocks, the redundant blocks will Such information is added to generate a block outer code block. 95692.doc 200522578 30. For example, if the origin station of item 29 is cleared, Jt will tell you to answer the question. "When Jiatian accumulates the amount of user plane information, the scheduling unit will start coding. 31. If requested The origin station of 29, where the scheduling unit will start encoding when the packet transmission delay time is exceeded. 32. If the origin station of item 29 is requested, the transmitter further includes: a serial number generator, which A header is added outside each information block, and the header contains a serial number, which is used to identify the order in which each information block is set. 33. If the origin station of claim 32 ', the serial number includes an identification of the external code Part of the block_ and a part identifying the location of each information block within the external code block. 34. The origin station of claim 32, wherein the transmitter further includes: a transmission buffer, The information blocks are stored and transmitted on the radio interface through a common logical channel. 35. The origin station of claim 32, which contains the first logical string from the first information source The information block of the user information and the information block containing the same user information in the second logical string from the second information source have the same sequence number, and the remote private unit will monitor the first logical string information area The serial number of the block and the serial number of the second logical string information block, and adjust the time alignment result of the first logical string information block relative to the second logical string information block, so that the first and second logical blocks Strings can be time aligned. 36. If the origin station of item 29 is requested, the column size of the user information columns may be changed according to the application. 95692.doc 200522578 37. If the origin station of item 29 is requested, where the schedule The unit determines the column size of the external code block. The size of the column is fixed, so that each column can be transmitted at a peak time data rate during a transmission time interval (Ding Ding 1), and all user information is received. These information blocks and length indicators can be transmitted before. 38. Ruoqiu seeks the origin station of item 37, where the segmentation and concatenation will split the user information queue, It is placed in a fixed-size external code block row, and user information rows such as 忒 are placed in these external code block rows to generate a plurality of information blocks, using padding information to fill any unoccupied External code area-block row, and at least one length finger is added to each external code block row to indicate a certain user information row or padding information in the external code block occupied by the information block The end position in the column. 39. If the origin station of claim 38, one of the encoder packets includes such information blocks, fills the poor block information, and a plurality of length indicator symbols, and wherein the external encoder will take out A part of each encoder packet is used to obtain the captured information, the captured information is encoded to generate a plurality of columns of multiple resources Λ, and the redundant information rows are added to the encoder packet to generate a External code block with fixed column size. 40. If the origin station of claim 29, wherein the column size of the external code block is variable, and once all the user information columns are received, the scheduling unit will use the received The size of the external code blocks is determined by the amount of information, and the size of the external code blocks transmitted during the transmission time interval can be changed according to the size of the external code blocks. 95692.doc 200522578 4i • If the origin station of item 40 is requested, the segmentation and concatenation unit will divide a plurality of rows of user information 'and place them in a variable size external code block row, causing these users The information columns may occupy all of the plural external code block columns. The user information columns are placed in the plural external code block columns to generate a plurality of information blocks. Occupied external code block row, and at least one length indicator is added to each external code block row to indicate that a certain user information is listed in the external code block row occupied by the information block End position. 42. If the origin station of claim 4Q, one of the encoder packets includes these information blocks and a plurality of length indicators, and the external encoder will take a part of each encoder packet to obtain the captured information. , Encode the fetched information to generate a complex number of redundant information, and add the redundant information columns to the encoder packet to generate an outer code block with a variable column size. 43. If the origin station of claim 29, in which once all the user information rows are received or the external code block is determined to be generated, the scheduling unit will change the number of users based on the amount of user information received. The preset external code block row size determines a variable external code block row size, which allows minimizing the external code block portion occupied by non-user information, thereby allowing the user information rate to be reduced. 44. If the origin station of claim 29, wherein once all the user information rows are received, the scheduling unit will determine a variable external code block row size based on the amount of user information received, It allows the users 95692.doc -10- 200522578 information column to completely occupy the encoder packet, wherein the size of the external code block transmitted during the round time interval can be changed according to the external exhaustion block column size. 45. —Destination station, which includes a receiving buffer that accumulates information blocks until a certain condition is met, a serial number identifying the external code block to which each information block belongs, and each information The position of the block within the external code block; a reordering unit that uses the sequence number in each information block to reorder any information blocks that were received out of order; and a copy detection unit, After the information blocks are reordered, they will use the serial number in each information block to detect duplicate information and delete any duplicate information blocks, and after the special external code block meets this condition, the duplicate The detection unit replaces any information block that fails the cyclic redundancy test with a delete symbol, and generates a request to start external decoding. 46. If the target station of item 45 is requested, the condition is that a complete external code block is received. 47. If the destination station of item 45 is requested, the condition is that no retransmission of the external code block is required. 48. The station of claim 45, further comprising: a sequence number removing unit for removing a sequence number from each information block of the external code block; and an external decoding H, which The block arrives at the radio link 95692.doc -11-200522578 The control layer previously received the external code block, and used these more than q blocks to decode any erasure punctuation in the external code block if necessary to Regenerate lost information blocks. 49. The station of claim 48, further comprising: a reorganization unit that uses the information blocks and the length indicators to reconstruct a plurality of rows of user information; and a transmission buffer for use in the The radio bearer comes up to transmit these user information columns, and transmits these user information columns to higher layers. 50. If the destination station of item 48 is requested, the receiving buffer will store other incoming information blocks while the previously received information area is being decoded to allow continuous reception of information blocks during decoding. . 5 1 · If the target station of item 45 is explicitly requested, the reordering unit will delay the decoding time compensation value between the first and second logical strings, and wait to receive two external code blocks before starting decoding. 52. The external encoding entity of claim 45, wherein the receiving buffer will receive an external code block containing a plurality of columns of information blocks, where each column of the information block columns contains at least part of the user information Columns, where the size of each block is fixed and occupies a transmission time interval (TTI). 53. If the external encoding entity of claim 48, the external decoder will use the redundant information of the complex sequence to decode The external code block is used to generate a complete encoder packet including a plurality of lean blocks and a plurality of length indicator symbols, wherein the information blocks are free of any errors. 54. If the external encoding entity of claim 49, wherein the reorganization unit will use at least one length indicator in each 95692.doc 200522578 information block to determine a certain row of users > information outside the occupied by the information block The end position in the code block row, and divides these information blocks into a plurality of rows of user information. 55. 56. If the external encoding entity of claim 45, the receiving buffer will receive an external code block containing a plurality of columns of information blocks, where each column of the information block columns contains at least a part of the use Information columns, where the size of each column of information blocks is variable and the user information columns will completely occupy the plurality of information blocks. A method for manufacturing a fixed column size external code block with a plurality of columns, comprising: receiving user information on a radio bearer, wherein the size of the user information columns can be changed according to applications; and determined according to channel conditions A fixed external code block row size, which allows each row to be transmitted at a peak data rate during a transmission time interval (TTI); segment and concatenate multiple series of user information to place it into a fixed size external code block In the block row; 1. Putting these user information rows into a plurality of external code block rows to generate a plurality of information blocks, and any unoccupied external block rows will be filled with padding information; ,, Add at least one length indicator to the parent external code block row to indicate the end position of a user information row or padding information occupied by the information block in the external code block row, and _ The encoder seals 0, including poor blocks such as edges, padding information, and length indicators; 95692.doc -13- 200522578 begins to transmit before receiving all user information The information blocks and length indicators; take a part of each encoder packet to obtain the captured information; encode the 3 captured information to generate a complex number of redundant information; and the redundant information columns The encoder packet is added to generate an outer code block with a fixed column size. 57. A method of manufacturing a variable row size external code block having a plurality of rows, comprising: receiving a plurality of rows of user information on a radio bearer, wherein the size of the user information rows can be changed according to the application; Once all the user information rows are received, a variable external code block row size is determined based on the amount of user information received, and the size of the external code blocks transmitted during the transmission time interval It can be changed according to the size of the external code block sequence; Divide and concatenate the user information of a plurality of columns into a variable size external code block column; Place these user information columns into a complex 餮 external code In the block column, it is used to generate a plurality of information blocks. At least one length indicator is added to each external code block column. ~ 'Is used to indicate that a certain user information column is occupied by the information block. The end position in the external Shima block row, where the user information row will be completed ^ ττ5 According to the plural external code block rows, and one of the encoder packets includes And other information blocks and length indicators; take a part of each encoder packet to obtain the retrieved information; 95692.doc -14- 200522578 encode the retrieved information to generate a complex sequence of redundant information; The redundant information columns are added to the encoder packet to generate an outer code block with a variable column size; and the encoder packet is transmitted. 5 8. The method of expressing item 57, wherein determining a variable external code block row size based on the amount of user information received includes: Once all user information rows are received or it is determined that the After the external code block, a variable external code block row size is determined from a number of preset external code block row sizes according to the amount of user information received, which allows; minimizing the non-use The external code block portion occupied by the user information allows the user information rate to be reduced. 59. The method of claim 57, wherein determining a variable external code block row size based on the amount of user information received includes: Once all user information rows have been received, The amount of user information determines a variable external code block row size, which allows these user information rows to completely occupy the encoder packet. The size of the external code block transmitted during the transmission time interval can be determined according to The outer code block column size changes. 60_ —A method for receiving user information, including: receiving an external code block containing a plurality of columns of information blocks, wherein each of the poor-sense block columns includes at least a part of the user information columns, wherein The size of each column of information blocks is fixed and occupies a transmission time interval (TTI); the redundant code block is used to decode the external code block to generate 95692.doc -15- 200522578 61. 62. A complete encoder packet including a plurality of information blocks and a plurality of length indicators, wherein the information blocks are free of any errors; and at least one length indicator in each information block is used to determine a certain row of user information in The end position in the external code block row occupied by the information block, and the information blocks are divided into a plurality of rows of user information. A method for receiving user information, comprising: receiving an external code block containing a plurality of rows of information blocks, wherein each row of the information block rows contains at least a part of the user information row, wherein the parent row information The size of the block is variable and the user information columns will completely occupy the information blocks of the plural series. The redundant code information is used to decode the external code block to generate a block containing multiple information. And a complete encoder packet including a plurality of length indicators, wherein the information blocks are free of any errors; and at least one length indicator in each information block is used to determine a certain row of user information in the information area. The end position in the external code block row occupied by the block; and dividing the information blocks into a plurality of rows of user information. A point-to-multipoint (ptm) transmission, which can perform variable-rate transmission, out-of-order reception, and point-to-multipoint (PTM) transmission that divides and concatenates a variable-rate information source, including: a network, It includes a receiving buffer for storing a plurality of forward error correction (F Service Data Unit (SDU); a split and concatenation entity 'for splitting a plurality of FEC SDUs and concatenating 95692.doc -16- 200522578 Connected to an information column in an encoder matrix, in which the transmission time interval of the encoder; a complex number column, the matrix includes a first number, each column in the matrix will be occupied-unique 2 only schedule body, prepared in one Printed after receiving the preset amount of data to generate a ~ command to start encoding, which reduces the padding information in the adder packet during encoding from the opening of the girl; the mother 歹 1i 编 石 I 5 乂 Μ coded state 'It will respond to this The start command uses ^ several encoders to seal the direction, i / / 生生 潜-the parent encoder packet includes the first-Yuandi-number of parity columns, and for the encoding, the end of the packet: padding Information; — Sequencer Xiao M Yubei After external encoding, add an external header containing-serial number in each column of the encoder packet; and, σ transmission buffer $, which will receive such encoded packets and format the miscellaneous packets into multiple Synthetic code blocks, and transmitting the synthetic code blocks on the interface.…, Line f 63. The system of claim 62, further comprising: 一終端機,其會接收該等合成碼區塊,其包括: 一接收單元,其會累積該等編碼器封包列並且將解碼 延遲不同邏輯串間的_補償值;其中該接收單元會響 應該序諕以決定每個前向式錯誤修正(FEC)pDU所屬的編 碼器封包以及該編碼器封包中每個前向式錯誤修正 (ec)pdu的位置,致使該接收單元可使用該序號來實施 副本偵測且再排序該等已接收的區塊; 一移除單元,其會移除該等序號; 95692.doc •17- 200522578 外崢解碼器,其會解碼該等資訊列;以及 傳輪緩衝器,其會重組該等資訊列。 64. 士明求項63之系統,其中該定序器會加入一内部標頭, °亥払碩會提供資訊以重建該等SDU,其中該標頭會被編碼 成其所參照的RLC-PDU中内含的複數個長度指示符號 ()其中该RLC-PDU之序號標頭中有一旗標會表示該第 一 LI的存在。 65·如請求項64之系統,其中該内部標頭係被加在該EP的每 個開頭處。 时月求項65—之系統,其中該内部標頭係被加在每列編碼 器封包列的開頭處。 67·如明求項62之系統,其中每列編碼器封包列皆包括一前 向式錯誤修正(FEC)協定資料單元(PDU)、—同位區塊及/ 或填補資訊。 68·如μ求項62之系、统,其中該等編碼器封包的%大小係可 變的。 口月求項62之系統,其中該等編碼器封包的列大小具有 不變的大小。 70·如睛求項62之系統,其中該序號可辨識該特殊的編碼器 封包(ΕΡ)以及該ΕΡ内的該PDU。 95692.doc -18-A terminal, which will receive the synthesized code blocks, includes: a receiving unit that accumulates the encoder packet sequence and delays the decoding by a _compensation value between different logical strings; wherein the receiving unit will respond to the sequence To determine the encoder packet to which each forward error correction (FEC) pDU belongs and the position of each forward error correction (ec) pdu in the encoder packet, so that the receiving unit can use the serial number to implement the copy Detect and reorder the received blocks; a removal unit will remove the serial numbers; 95692.doc • 17- 200522578 external decoder, which will decode these information columns; and pass buffer Device, which reorganizes these columns of information. 64. The system of Shiming seeking item 63, in which the sequencer will add an internal header, and Hai Jishuo will provide information to reconstruct the SDUs, where the header will be encoded into the RLC-PDU to which it refers The plurality of length indicator symbols () included in the sequence number header of the RLC-PDU has a flag indicating the existence of the first LI. 65. The system of claim 64, wherein the internal header is added at the beginning of each of the EPs. The system of term 65-month and month, wherein the internal header is added at the beginning of each column of encoder packets. 67. The system of Ruming Item 62, wherein each column of the encoder packet includes a forward error correction (FEC) protocol data unit (PDU), a parity block, and / or padding information. 68. If μ is the system or system of term 62, the% size of these encoder packets is variable. The system of the term 62, wherein the column size of the encoder packets has a constant size. 70. The system according to item 62, wherein the serial number can identify the special encoder packet (EP) and the PDU in the EP. 95692.doc -18-
TW93125250A 2003-08-21 2004-08-20 Outer coding methods ,outercoding entity,and origination station for broadcast/multicast content TWI407793B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49745603P 2003-08-21 2003-08-21
US49745703P 2003-08-21 2003-08-21

Publications (2)

Publication Number Publication Date
TW200522578A true TW200522578A (en) 2005-07-01
TWI407793B TWI407793B (en) 2013-09-01

Family

ID=46728199

Family Applications (3)

Application Number Title Priority Date Filing Date
TW93125263A TWI358921B (en) 2003-08-21 2004-08-20 Methods for forward error correction coding above
TW93125250A TWI407793B (en) 2003-08-21 2004-08-20 Outer coding methods ,outercoding entity,and origination station for broadcast/multicast content
TW93125259A TWI392266B (en) 2003-08-21 2004-08-20 Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW93125263A TWI358921B (en) 2003-08-21 2004-08-20 Methods for forward error correction coding above

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW93125259A TWI392266B (en) 2003-08-21 2004-08-20 Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus

Country Status (1)

Country Link
TW (3) TWI358921B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501569B (en) * 2007-12-21 2015-09-21 Ericsson Telefon Ab L M Mbsfn dob cell search and generation of synchronization codes
US9386557B2 (en) 2007-08-13 2016-07-05 Qualcomm Incorporated Method and apparatus for supporting broadcast and multicast services in a wireless communication system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912784B1 (en) 2006-01-05 2009-08-18 엘지전자 주식회사 Data transmission method and data retransmission method
JP4806030B2 (en) 2006-01-05 2011-11-02 エルジー エレクトロニクス インコーポレイティド Method for transferring signals in a mobile communication system
US9456455B2 (en) 2006-01-05 2016-09-27 Lg Electronics Inc. Method of transmitting feedback information in a wireless communication system
KR101268200B1 (en) 2006-01-05 2013-05-27 엘지전자 주식회사 Radio resource allocating method in mobile communication system
AU2007203852B2 (en) 2006-01-05 2010-08-26 Lg Electronics Inc. Transmitting data in a mobile communication system
KR101203841B1 (en) 2006-01-05 2012-11-21 엘지전자 주식회사 Method of transmitting and receiving paging message in wireless communication system
US7881724B2 (en) 2006-01-05 2011-02-01 Lg Electronics Inc. Allocating radio resources in mobile communications system
KR101187076B1 (en) 2006-01-05 2012-09-27 엘지전자 주식회사 Method for transmitting signals in the moblie communication system
KR101265628B1 (en) 2006-01-05 2013-05-22 엘지전자 주식회사 method for scheduling radio resourse in the mobile communication system
KR101211807B1 (en) 2006-01-05 2012-12-12 엘지전자 주식회사 Method for managing synchronization state for mobile terminal in mobile communication system
KR101319870B1 (en) 2006-01-05 2013-10-18 엘지전자 주식회사 Method for handover in mobile communication system
KR101333918B1 (en) 2006-01-05 2013-11-27 엘지전자 주식회사 Point-to-multipoint service communication of mobile communication system
KR101216751B1 (en) 2006-02-07 2012-12-28 엘지전자 주식회사 Method for avoiding collision using identifier in mobile network
KR101358469B1 (en) 2006-02-07 2014-02-06 엘지전자 주식회사 Method for selection and signaling of downlink and uplink bandwidth in wireless networks
KR101387475B1 (en) 2006-03-22 2014-04-22 엘지전자 주식회사 method of processing data in mobile communication system having a plurality of network entities
US7840214B2 (en) * 2006-04-21 2010-11-23 Alcatel-Lucent Usa Inc. Method of providing access information to an access terminal
KR20070121505A (en) 2006-06-21 2007-12-27 엘지전자 주식회사 Method for reconfiguring radio link
EP2618517B1 (en) 2006-06-21 2023-08-02 LG Electronics Inc. Method of supporting data retransmission in a mobile communication system
CN101473565B (en) 2006-06-21 2012-11-07 Lg电子株式会社 Method of transmitting and receiving radio access information using a message separation in a wireless mobile communications system
KR101369135B1 (en) 2006-06-21 2014-03-05 엘지전자 주식회사 Mehtod for supproting quality of multimeida broadcast multicast service(mbms) in mobile communications system and terminal thereof
KR20070121513A (en) 2006-06-21 2007-12-27 엘지전자 주식회사 Uplink access method of mobile communication system
WO2012037637A1 (en) 2010-09-23 2012-03-29 Research In Motion Limited System and method for dynamic coordination of radio resources usage in a wireless network environment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883888A (en) * 1996-12-03 1999-03-16 Telefonaktiebolaget Lm Ericsson Seamless soft handoff in a CDMA cellular communications system
US6778558B2 (en) * 1998-02-23 2004-08-17 Lucent Technologies Inc. System and method for incremental redundancy transmission in a communication system
US6484283B2 (en) * 1998-12-30 2002-11-19 International Business Machines Corporation Method and apparatus for encoding and decoding a turbo code in an integrated modem system
FI107000B (en) * 1999-02-17 2001-05-15 Nokia Mobile Phones Ltd Title compression in real-time services
BR0016008A (en) * 1999-11-29 2002-07-30 Samsung Electronics Co Ltd Common channel communication method for a cdma communication system
ATE414349T1 (en) * 1999-12-20 2008-11-15 Research In Motion Ltd HYBRID REPOST PROMPT SYSTEM AND METHOD
AU773636B2 (en) * 2000-02-22 2004-05-27 Blackberry Limited System and method for controlling a wireless packet switched voice call
ES2289205T3 (en) * 2000-05-17 2008-02-01 Matsushita Electric Industrial Co., Ltd HYBRID ARQ METHOD FOR DATA TRANSMISSION IN PACKAGES WITH A CONTROL CHANNEL AND A DATA CHANNEL.
US6606037B2 (en) * 2000-11-13 2003-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Qualitative modeling and compression of request sequences in ARQ protocols
US7787389B2 (en) * 2001-08-20 2010-08-31 Qualcomm Incorporated Method and system for utilization of an outer decoder in a broadcast services communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9386557B2 (en) 2007-08-13 2016-07-05 Qualcomm Incorporated Method and apparatus for supporting broadcast and multicast services in a wireless communication system
TWI501569B (en) * 2007-12-21 2015-09-21 Ericsson Telefon Ab L M Mbsfn dob cell search and generation of synchronization codes

Also Published As

Publication number Publication date
TWI358921B (en) 2012-02-21
TWI407793B (en) 2013-09-01
TW200520440A (en) 2005-06-16
TW200522579A (en) 2005-07-01
TWI392266B (en) 2013-04-01

Similar Documents

Publication Publication Date Title
KR101102794B1 (en) Methods for forward error correction coding above a radio link control layer and related apparatus
KR101112433B1 (en) Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus
US8171381B2 (en) Outer coding methods for broadcast/multicast content and related apparatus
TW200522578A (en) Outer coding methods for broadcast/multicast content and related apparatus