TW200428388A - MRAM and methods for reading the MRAM cross-references to related applications - Google Patents

MRAM and methods for reading the MRAM cross-references to related applications Download PDF

Info

Publication number
TW200428388A
TW200428388A TW92137153A TW92137153A TW200428388A TW 200428388 A TW200428388 A TW 200428388A TW 92137153 A TW92137153 A TW 92137153A TW 92137153 A TW92137153 A TW 92137153A TW 200428388 A TW200428388 A TW 200428388A
Authority
TW
Taiwan
Prior art keywords
memory
hive
honeycomb
mtj
mram
Prior art date
Application number
TW92137153A
Other languages
Chinese (zh)
Inventor
Mark A Durlam
Thomas W Andre
Mark F Deherrera
Bradley N Engel
Bradley J Garni
Joseph J Nahas
Nicholas D Rizzo
Saied Tehrani
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/331,058 external-priority patent/US6888743B2/en
Priority claimed from US10/679,134 external-priority patent/US6909631B2/en
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of TW200428388A publication Critical patent/TW200428388A/en

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

An MRAM is provided that minimizes the limits in MRAM density imposed by utilization of an isolation or select device in each memory cell. In addition, methods are provided for reading an MTJ in a ganged memory cell of the MRAM. The method includes determining an electrical value that is at least partially associated with a resistance of a ganged memory cell of the MRAM. The MTJ in the ganged memory cell is toggled and a second electrical value, which is at least partially associated with the resistance of the ganged memory cell, is determined after toggling the MTJ. Once the electrical value prior to the toggling and after the toggling is determined, the difference between the two electrical values is analyzed to determine the value of the MTJ.

Description

200428388 玫、發明說明: 這是屬於美國專利申請案編號10/33 L058之部分接續申 請案,其提出於2002年12月27日。 【發明所屬之技術領域】 本發明大致上相關於一種磁阻隨機存取記憶體(MrAM) ’更特別地是相關於一種具有磁性穿隧接面(MTJs)之 MRAM,及用以項取該MRAM之M1TJ的方法。 【先前技術】 關於使用絕大部分由於電子自旋所造成之效應,磁電 (magnetoelectronics)、自旋電子(spin electr〇nics)及自旋電 子學(spintromcs)係屬於同義術語。磁電係用於數種資訊裝 置,並且提供非揮發性、可靠、抗韓射及高密度資料儲存 及擷取。3亥等數種磁電資訊裝置包含(但不限於)mram。 MRAM大致上係由磁阻記憶體蜂巢、字元線及相交於該 等字元線之位元線所組成。料記憶料巢典型地係由— 磁性穿隨接面(㈣)所組成。此外,該等記憶體蜂巢之每一 個典型地❹-絕緣或選擇裝置所組成,該裝置係配置用 以當讀取該記憶體蜂巢之磁化妝 砸化狀恶或數值時,將該記憶體 蜂巢與其他記憶體蜂巢雷翁绍络 y , — %孔、、、巴緣。例如,該等記憶體蜂巢 之每一個典型地係由一絕绫 曰 巴緣私日日體所組成,像是金屬氧化 場效電晶體(MOSFET),且可以脱里m ),、了以配置用以將在該記憶體中之 記憶體蜂巢與其它記憶體蜂巢 果电乳、、、巴緣。在母個記憶體蜂 巢中使用諸如絕緣電晶體之絕緣200428388 Description of the invention: This is a part of the continuation application under US Patent Application No. 10/33 L058, which was filed on December 27, 2002. [Technical field to which the invention belongs] The present invention relates generally to a magnetoresistive random access memory (MrAM) 'more particularly to a MRAM with magnetic tunneling junctions (MTJs), and to take the item MRAM's M1TJ method. [Prior art] Regarding the use of most of the effects caused by electronic spin, magnetoelectronics, spin electrons, and spintromcs are synonymous terms. The magnetoelectric system is used for several information devices and provides non-volatile, reliable, anti-Kan and high-density data storage and retrieval. Several types of magnetic and electrical information devices, such as 3H, include (but are not limited to) mram. MRAM is roughly composed of a magnetoresistive memory honeycomb, word lines, and bit lines intersecting the word lines. The material memory material nest is typically composed of a magnetically penetrating interface (㈣). In addition, each of the memory honeycombs is typically composed of a 绝缘 -insulation or selection device, which is configured to read the memory honeycomb's magnetic makeup when it is turned into an evil or numerical value. With other memory hive Leong Shao Luo y, —% Kong, ,, Ba margin. For example, each of these memory honeycombs is typically made up of a singularly-bounded solar cell, such as a metal oxide field-effect transistor (MOSFET), and can be removed from the battery. The memory honeycomb in the memory and other memory honeycomb fruits are electro-emulsified. Use insulation such as insulating transistors in female memory cells

6緣衷置會限制該蜂巢密度, 而具有增大蜂巢密度iMRAM 你再地找哥。因此,有需6 fate will limit the honeycomb density, and with the increased honeycomb density iMRAM you look for the brother again. Therefore, there is a need

O:\90\90423.DOC •6- 2004283 88 要減少由於在每個記憶體蜂巢中之絕緣或選擇裝置所施加 於MRAM蜂巢密度之限制,像是在每個記憶體蜂巢中的絕 緣電晶體。 【發明内容】 考慮到該前文,有需要提供一種具有一個或更多個記憶 體蜂巢之MRAM,而該等記憶體蜂巢係、沒有由諸如絕緣電 晶體之絕緣裝置所組成。此外,有需要提供_種呈有只包 含一 MTJ之記憶體蜂巢之歡剔。再者,有需要提供用以讀 取在-MRAM中之-MTJ之方法。也有需要改良該記憶體陣 列效率,-種量測專用於該記憶體之區域大小的距離度量 (曰me㈣,其係比作為包含用以執行定址、讀取、作為與在 晶片上或不在晶片上之其他邏輯電路界面之周圍電路之整 體晶粒或電路尺寸。例如,由於供應電I缩放而電荷泵激 電路要求係與供應電壓成反向縮放的結果,快閃(FLASH) 記憶體之陣列效率已經降低。再者,本發明之其他所要求 特性及特徵可以從其後詳述及該等伴隨申請專利範圍而變 得清楚,其係與該等伴隨圖示及該背景相關連。 【實施方式】 本發明之下列詳述本f上只供作示範,並非意圖要限制 本發明或本發明之應用及使用。再者,並無意圖受到在該 前述技術範圍中所表現之任何表示或意味理論'背景或該 下列詳述及伴隨圖示的限制。 參考圖1,-MRAM20係根據本發明之一第一示範實施例 來說名。該MRAM 2G包含有至少_第_寫人字元線O: \ 90 \ 90423.DOC • 6- 2004283 88 To reduce restrictions on the density of MRAM cells due to insulation in each memory cell or selection device, such as insulating transistors in each memory cell . SUMMARY OF THE INVENTION In view of the foregoing, there is a need to provide an MRAM having one or more memory honeycombs, and the memory honeycombs are not composed of an insulating device such as an insulating transistor. In addition, there is a need to provide _ a kind of fancy presenting a memory hive containing only one MTJ. Furthermore, there is a need to provide a method for reading -MTJ in -MRAM. There is also a need to improve the efficiency of the memory array, a distance measure (me㈣, which measures the size of the area dedicated to the memory), which is used as an analogy to include addressing, reading, being on or off the chip. The overall die or circuit size of the surrounding circuits of other logic circuit interfaces. For example, the charge pump circuit is required to be inversely scaled with the supply voltage due to the scaling of the supply I, and the array efficiency of FLASH memory It has been reduced. Furthermore, other required characteristics and features of the present invention can be made clear from the detailed description and the scope of the accompanying patent applications, which are related to the accompanying drawings and the background. The following detailed description of the present invention is provided for illustration only and is not intended to limit the present invention or the application and use of the present invention. Furthermore, it is not intended to be subject to any representation or meaning theory expressed in the aforementioned technical scope. 'Background or the following detailed description and accompanying accompanying limitations. Referring to FIG. 1, -MRAM 20 is named according to a first exemplary embodiment of the present invention. The MRAM 2G includes At least _ 第 _ 写 人 字 线

O:\90\90423.DOC 200428388 (WWL) 22,及除了該第,寫入字元線22之外,較佳地包含 有寫入字元線(24、26、28)。該MRAM 20也包含至少一第 一記憶體蜂巢30,其鄰近於該第一寫入字元線22,及一第 二記憶體蜂巢32,其耦合於該第一記憶體蜂巢30。當再此 使用時,鄰近應該是指靠近、接近或實際上接觸以促進磁 性耦合。 該第一記憶體蜂巢30之一第一端88係耦合於一電晶體 184。該第一記憶體蜂巢30之一第二端ι7〇係耦合於該第二 記憶體蜂巢32之一第二端172,該第二記憶體蜂巢32之一龛 一端174係搞合於第三記憶體蜂巢之一第一端丨76,該第三 記憶體蜂巢34之一第二端1 78係耦合於一第四記憶體蜂巢 3 6之一第二端180,及該第四記憶體蜂巢36之一第一端194 係耦合於一接地197。因此,該等記憶體蜂巢(3〇、32、34 、3 6)係被麵合(例如點對點電氣耦合)以形成一第一聚集 (ganged) §己憶體蜂巢38,及較佳地連續輕合以形成該第一聚 集圮憶體蜂巢38。當在此使用時,一聚集記憶體蜂巢應該 疋指多數記憶體蜂巢,該等記憶體蜂巢實質上整體來看係 與其該記憶體之其他記憶體蜂巢電氣絕緣。除了該一或更 多寫入字兀線(22、24、26、28)及耦合用以形成該第一聚集 記憶體蜂巢38之一或更多記憶體蜂巢(3〇、32、%、%),該 MRAM 20包含至少_第—位元寫入線4(),其鄰近於該第一 σ己隱體蜂巢30及更佳地鄰近於該第—聚集記憶體蜂巢%之 記憶體蜂巢(30、32、34、36)的每一個。再者,額外寫入位 元線(42、44、46)係較佳地包含在該MRAM 20,其係鄰近O: \ 90 \ 90423.DOC 200428388 (WWL) 22, and in addition to the first, written character line 22, it is preferable to include a written character line (24, 26, 28). The MRAM 20 also includes at least a first memory cell 30, which is adjacent to the first write word line 22, and a second memory cell 32, which is coupled to the first memory cell 30. When used again, proximity should mean close, close, or physical contact to promote magnetic coupling. A first end 88 of the first memory honeycomb 30 is coupled to a transistor 184. One of the first ends of the first memory hive 30 is coupled to a second end 172 of the second memory hive 32, and one of the second ends 174 of the second memory hive 32 is engaged with the third memory. One of the first end of the body honeycomb 76, the second end 1 78 of the third memory honeycomb 34 is coupled to a second end 180 of a fourth memory honeycomb 36, and the fourth memory hive 36 A first end 194 is coupled to a ground 197. Therefore, the memory honeycombs (30, 32, 34, 36) are face-bonded (for example, point-to-point electrical coupling) to form a first ganged § self-memory honeycomb 38, and preferably continuously light. Combined to form the first aggregated meristem honeycomb 38. When used herein, an aggregated memory honeycomb should refer to most memory honeycombs, which are essentially electrically insulated from other memory honeycombs of that memory. In addition to the one or more write word lines (22, 24, 26, 28) and coupling to form one or more memory hives (30, 32,%,%) of the first aggregate memory hive 38 ), The MRAM 20 includes at least a first bit write line 4 (), which is adjacent to the first σ-hidden hidden honeycomb 30 and more preferably to a memory hive of the first aggregated honeycomb hive ( 30, 32, 34, 36). Furthermore, the additional write bit lines (42, 44, 46) are preferably included in the MRAM 20, which are adjacent

O:\90\90423.DOC 200428388 於其他聚集記憶體蜂巢(48、50、52)之至少某一記憶體蜂巢 。再者,一電晶體184係耦合於一讀取位元線192,及群組 讀取字元線(GRWL) 186係耦合於一群組讀取絕緣電晶體 184之一控制電極。相似地,群組讀取絕緣電晶體(173、ι75 、Π7)係由該群組讀取字元線186所控制,其耦合於該等聚 集記憶體蜂巢(38、48、50、52)之一第一端以讀取位元線(192 、189、179、181)。當四(4)記憶體蜂巢(30、32、34、36) 、四聚集記憶體蜂巢(38、48、50、52)、四寫入位元線(4〇 、42、44、46)及四寫入字元線(22、24、26、28)、四讀取 位元線(192、188、178、180)及一單一群組讀取字元線186 係說明於該第一示範實施例及其後描述的示範實施例中, 該MRAM 20會具有多於四(4)及少於四(4)記憶體蜂巢、聚集 記憶體蜂巢、位元線及/或字元線及超過一(1)群組讀取字元 線。 該第一聚集記憶體蜂巢38之至少一記憶體蜂巢,像是該 第二記憶體蜂巢32,係由一MTJ 54所組成,其係描述作為 一電阻,及至少一記憶體蜂巢係沒有以一絕緣裝置來組成 ’其至少實質上係將該記憶體蜂巢與該第一聚集記憶體蜂 巢3 8之其他記憶體蜂巢(30、34、36)電氣絕緣(例如一絕緣 裝置,像是一絕緣電晶體)。較佳地,該等記憶體蜂巢(3〇 、32、34、36)之超過一個以上係由一 MTJ 54所組成且沒有 一裝置將該記憶體蜂巢與該聚集記憶體蜂巢3 8之其他記憶 體蜂巢電氣絕緣,及更佳地,該等記憶體蜂巢之每一個係 由一 MTJ 54所組成且沒有一裝置將該記憶體蜂巢與該第一 O:\90\90423 D〇C -9- 200428388 聚集冗憶體蜂巢38之其他記憶體蜂巢電氣絕緣。甚至更佳 地,該等記憶體蜂巢(30、32、34、36)之至少一記憶體蜂巢 係由- Μ T J所組成(即該記憶體蜂巢只具有一 μ τ),不多不 少),而更佳地,該第一聚集記憶體蜂巢38之記憶體蜂巢的 每一個係由一 MTJ 54所組成。再者,在該等圖示中所顯示 之其他聚集記憶體蜂巢(48、5〇、52)及沒有在該等圖示中所 顯示之MRAM之其他記憶體蜂巢較佳地係參考該第一聚集 圮憶體蜂巢38配置成先前所描述。因此,至少N記憶體蜂巢 可以被耦合(例如點對點電氣耦合)而與其它具有M絕緣裝_ 置之記憶體蜂巢(例如已選擇)電氣絕緣,在該處n&m係為 整數,而N大於M(即N>M),及多數記憶體蜂巢較佳地係被 耦合而與其它具有一絕緣裝置之聚集記憶體蜂巢電氣絕 緣。 參考圖2,一簡化侧視圖係提供給一第一示範MTJ卩,其 係放置在一寫入字元線57與一寫入位元線59之間。該mtj 55具有兩磁區(56、58),其係鐵磁性耦和而以一穿隧障礙區修 域60所分隔。該等磁區(56、58)可以是單層或多層鐵磁材料 ’像是鎳(Νι)、鐵(Fe)、鈷(Co),或上述材料之合金或組合 (例如鐵化鎳(NiFe)、鐵化鈷(CoFe)及鈷鐵化鎳(NiFeC〇)), 包含具有錳(Μη)、銥(Ir)、鈀(Pd)或鉑(Pt)在其中。該穿隧 · 障礙區域60較佳地係由一或更多非傳導材料所組成,像是 , 氧化鋁(AhO3)、氧化铪(Hf〇2)、氧化硼(b2〇3)、氧化纽 (Ta2〇5)、氧化鋅(Zn〇2)及其他氧化物、氮化物或其他適當 的介電質。 0 \90\90423.DOC -10- 200428388 雖然該MTJ 55之範例传 礼1’Η糸以兩磁區(56、58)來表示,但是 該MTJ 55係可以呈右客%工1广 ”有夕於兩磁區。該等兩或更多磁區(56、 58)可以係為矩形,且係由 田/口者長度66而非一寬度68的磁 化之谷易轴所組成。铁而 兮楚 …、而忒專磁區可以具有其他形狀及 沿著該ΜΤΙ 55之其他尺寸上所形成之容易轴。例如,該贿 55可以具有—圓形、橢圓形(elHpteiai)或㈣形(㈣的形 狀0 該MTJ 55可以在許多模式下操作。例如,該隐55可以 在-反鐵磁模式及一自旋閥模式下操作。在該反鐵磁模式 中’在該等兩磁區(56、58)之磁矩間的靜止磁化狀態或靜止 方位至少實質上係為反平行或至少實質上係為平行。在該 自旋閥模式中,該等磁區(56、58)之一係為一釘紮磁區,而 另-磁區係為一自由磁區,其可以被切換,以在該自由磁 區與該釘紮磁區(即兩磁化狀態之一)之磁矩間提供平行或 反平仃方位。當在此使用時,一自由磁區應該是指一磁區 具有在施加磁場之存在下自由地旋轉的合成磁矩,而一 釘紮或固定磁區應該是指一磁區具有一合成磁矩,該磁矩 典型地無法在該等可以旋轉該自由磁區之合成磁矩之施加 磁場的存在下旋轉。 苓考圖2及圖3,該等磁區(56、5 8)以該穿隧障礙區域6〇 所造成之分隔產生一穿隧接面,其中在該等磁矩(7()、72) 之相對方位(即該磁化狀態)會影響該MTJ 55之可量測電阻 因此’當該等磁區(56、58)之磁矩(7〇、72)之間的方位改 變時,該MTJ55之電阻會改變,而與該等不同方位(即不同 O:\90\90423.DOC -11 - 2004283 88 磁化狀態)有關之不同電阻可以分配許多數值。例如,根據 本發明之一示範實施例,該MTJ 55之數值係為二進位值 (即〇或1)。該等二進位值之一相當於在該等磁矩(7〇、72) 之間實質上為平行的方位(即一第一磁化狀態),而另一個二 進位值係相當於在該等磁矩(70、72)之間實質上為反平行的 方位(即一第二磁化狀態)。具有在該等磁矩(7〇、72)之間實 質上為反平行的方位的MTJ 55之電阻提供一第一電阻值, 而具有在該等磁矩(70、72)之間實質上為平行的方位的mtj 55之電阻提供一第二電阻值。因此,該二進位值可以利用 置測該電阻或與該MTJ 5 5之電阻有關之電氣性質來確定 (即讀取該MTJ),其可能有數千歐姆(Ω)。然而,該mtj55 可以被配置以提供少於數千歐姆之電阻,或提供大於數千 歐姆之電阻。 在一特定範例中,該穿隧障礙區域60係由氧化鋁(Α12〇〇 所組成,其具有厚度74為小於大約40埃(40 Α)。此外,一磁 區56係由鈷(Co)所組成,其具有厚度62大約為一千埃(1〇⑻ 人)’而該其他磁區58係由鐵化鎳(NiFe)所組成,其具有厚 度大約為一千埃(1000 A)。該以耵55之配置係提供電阻變 化對該電阻(AR/R),其大約為百分之十五(15%)。然而,也 可以使用根據本發明之其他材料、材料之組合及厚度。再 者,也可以使用根據本發明之其他MTJs。 例如’ 一第二示範實施例之MTJ 76係說明於圖4中,其係 插入在一寫入位元線78與一寫入字元線8〇之間。該MTJ % 係描述於美國專利編號6,545,906,標題為"A Method ofO: \ 90 \ 90423.DOC 200428388 At least one of the other memory honeycombs (48, 50, 52). Furthermore, a transistor 184 is coupled to a read bit line 192, and a group read word line (GRWL) 186 is coupled to a control electrode of a group of read insulated transistors 184. Similarly, the group read insulating transistor (173, ι75, Π7) is controlled by the group read word line 186, which is coupled to the clustered memory hive (38, 48, 50, 52). A first end is for reading bit lines (192, 189, 179, 181). When four (4) memory hive (30, 32, 34, 36), four aggregate memory hive (38, 48, 50, 52), four write bit lines (40, 42, 44, 46) and Four write word lines (22, 24, 26, 28), four read bit lines (192, 188, 178, 180) and a single group read word line 186 are described in the first exemplary implementation In the exemplary embodiments and the exemplary embodiments described later, the MRAM 20 will have more than four (4) and less than four (4) memory cells, aggregate memory cells, bit lines and / or word lines, and more than one (1) Group read character lines. At least one memory hive of the first aggregate memory hive 38, such as the second memory hive 32, is composed of an MTJ 54, which is described as a resistor, and at least one memory hive is not It is composed of an insulation device, which at least substantially electrically insulates the memory honeycomb from other memory honeycombs (30, 34, 36) of the first aggregated memory honeycomb 38 (for example, an insulation device such as an insulation Crystal). Preferably, more than one of the memory honeycombs (30, 32, 34, 36) is composed of an MTJ 54 and there is no device for storing the memory honeycomb and other memories of the aggregate memory honeycomb 38. The body honeycomb is electrically insulated, and more preferably, each of the memory honeycombs is composed of an MTJ 54 and there is no device to connect the memory honeycomb to the first O: \ 90 \ 90423 D〇C -9- 200428388 The other memory honeycombs of the memory honeycomb 38 are electrically insulated. Even better, at least one memory honeycomb of the memory honeycombs (30, 32, 34, 36) is composed of -MTJ (that is, the memory honeycomb has only one μτ), no more, no less) And more preferably, each of the memory honeycombs of the first aggregate memory honeycomb 38 is composed of an MTJ 54. Furthermore, the other aggregated memory hives (48, 50, 52) shown in the diagrams and other memory hives of MRAM not shown in the diagrams preferably refer to the first The aggregated amphibian honeycomb 38 is configured as previously described. Therefore, at least N memory honeycombs can be coupled (eg, point-to-point electrical coupling) and electrically insulated from other memory honeycombs (eg, selected) with M insulation, where n & m is an integer and N is greater than M (i.e., N > M), and most memory honeycombs are preferably coupled to be electrically insulated from other aggregate memory honeycombs having an insulating device. Referring to FIG. 2, a simplified side view is provided to a first exemplary MTJ (R), which is placed between a write word line 57 and a write bit line 59. The mtj 55 has two magnetic regions (56, 58), which are ferromagnetically coupled and separated by a tunnel barrier area repair area 60. The magnetic regions (56, 58) may be single or multiple layers of ferromagnetic materials such as nickel (Ni), iron (Fe), cobalt (Co), or alloys or combinations of the above materials (such as nickel iron (NiFe ), Cobalt iron (CoFe), and cobalt nickel iron (NiFeC0)), including manganese (Mn), iridium (Ir), palladium (Pd), or platinum (Pt) among them. The tunneling / barrier region 60 is preferably composed of one or more non-conductive materials, such as, for example, aluminum oxide (AhO3), hafnium oxide (HfO2), boron oxide (b2O3), and oxide ( Ta205), zinc oxide (ZnO2), and other oxides, nitrides, or other appropriate dielectrics. 0 \ 90 \ 90423.DOC -10- 200428388 Although the MTJ 55's example pass 1'Η 糸 is represented by two magnetic zones (56, 58), the MTJ 55 can be a right-hander. Evening in two magnetic regions. The two or more magnetic regions (56, 58) can be rectangular and consist of a magnetized valley easy axis with a length of 66 instead of a width of 68. Iron and Chu ..., and the magnetic field may have other shapes and easy axes formed along other dimensions of the MIT 55. For example, the bribe 55 may have a shape of a circle, an ellipse (elHpteiai), or a shape of a ㈣ (㈣ 0 The MTJ 55 can operate in many modes. For example, the Cain 55 can operate in-antiferromagnetic mode and a spin valve mode. In the antiferromagnetic mode 'in the two magnetic zones (56, 58 The static magnetization state or static orientation between the magnetic moments of) is at least substantially antiparallel or at least substantially parallel. In this spin valve mode, one of the magnetic regions (56, 58) is a nail. Magnetic field, and the other magnetic field is a free magnetic field, which can be switched to connect the free magnetic field with the pinned magnetic field (that is, two The magnetic moment provides a parallel or anti-horizontal orientation. When used herein, a free magnetic zone should refer to a magnetic zone with a composite magnetic moment that rotates freely in the presence of an applied magnetic field, and a Pinned or fixed magnetic domains should mean that a magnetic domain has a composite magnetic moment that typically cannot be rotated in the presence of an applied magnetic field that can rotate the free magnetic domain. Figure 2 and Figure 3. The magnetic zones (56, 58) are separated by the tunnel barrier area 60 to create a tunnel junction, where the relative orientations of the magnetic moments (7 (), 72) (ie The magnetization state) will affect the measurable resistance of the MTJ 55. Therefore, when the orientation between the magnetic moments (70, 72) of the magnetic regions (56, 58) changes, the resistance of the MTJ55 will change, and Different values related to these different orientations (ie different O: \ 90 \ 90423.DOC -11-2004283 88 magnetization state) can be assigned many values. For example, according to an exemplary embodiment of the present invention, the value of the MTJ 55 is Is a binary value (that is, 0 or 1.) One of these binary values is equivalent to the magnetic moment 70, 72) are essentially parallel orientations (ie, a first magnetization state), and the other binary value is equivalent to a substantially anti-parallel orientation between the magnetic moments (70, 72). (Ie, a second state of magnetization). The resistance of the MTJ 55 with a substantially anti-parallel orientation between the magnetic moments (70, 72) provides a first resistance value, and 70, 72) The resistance of mtj 55 in a substantially parallel orientation provides a second resistance value. Therefore, the binary value can be determined by measuring the resistance or electrical properties related to the resistance of MTJ 5 5 (Ie, read the MTJ), it may have thousands of ohms (Ω). However, the mtj55 can be configured to provide a resistance of less than several thousand ohms, or to provide a resistance of more than several thousand ohms. In a specific example, the tunneling barrier region 60 is composed of alumina (Al2O00) and has a thickness 74 of less than about 40 angstroms (40 A). In addition, a magnetic region 56 is composed of cobalt (Co) Composition, which has a thickness 62 of about one thousand angstroms (10 ⑻), and the other magnetic region 58 is composed of nickel iron (NiFe) and has a thickness of about one thousand angstroms (1000 A). The configuration of 耵 55 provides resistance change to resistance (AR / R), which is approximately fifteen percent (15%). However, other materials, combinations of materials, and thicknesses according to the present invention can also be used. Other MTJs according to the present invention can also be used. For example, 'MTJ 76 of a second exemplary embodiment is illustrated in FIG. 4, which is inserted between a write bit line 78 and a write word line 80. The MTJ% is described in U.S. Patent No. 6,545,906, entitled " A Method of

O:\90\90423.DOC -12- 200428388O: \ 90 \ 90423.DOC -12- 200428388

Writing to a Scalabe Magnetoresistance Random Access Memory Element”,發表於2003年 4月 8 日,Le〇md Savtchenk〇 為發明人而在此之後係指作為該Savtchenk〇參考。該 Savtchenko參考以其全體藉此以參考方式併入本文。 一般地,該MTJ 76具有兩磁區(82、84)及一穿隧障礙區 域86 ’該穿隧障礙區域係插入於該等兩磁區(82、84)之間。 在该範例中’該等兩磁區(82、84)係為多層結構,而該穿隧 障礙區域86係為一單層結構。一磁區82之多層結構係為一 二層結構,該結構具有一非磁性層8 8,其插入於兩鐵磁膚 (90、92)之間,而該該其他磁區84係為一雙層,其具有一反 鐵磁層94及一鐵磁層96。然而,該等磁區(82、84)及該穿隧 障礙區域86可以具有額外層,以形成其他多層結構,而非 该二層結構、雙層結構,及單層結構。例如,該等磁區(82 、84)及/或该穿隧障礙區域%可以具有一或更多額外反鐵磁 層、鐵磁層、基板層、種子層,及/或樣板層。 該非磁性層88可以係由許多適當非磁性材料或反鐵磁材 料所組成,像是釕(ru)、鐵(〇s)、銖(Re)、鉻(Cr)、铑(Rh) 或銅(Cu),或它們之組合,而該反鐵磁層94可以係由許多 適當反鐵磁材料所組成,像是錳合金(例如錳化銥(IrMn)、 錳化鐵(FeMn)、錳化铑(RhMn)、錳化鉑(PtMn),及錳鈀化 翻(PtPdMn))。該等鐵磁層(90、92、94)可以係由許多適當 鐵磁材料所組成,像是鎳(Ni)、鐵(Fe),或鈷(c〇),或它們 之組合(例如鐵化鎳(NiFe)、鐵化鈷(FeCo),或鎳鐵化鈷 (NiFeCo)) ’而該穿隧障礙區域86可以係由一或更多非傳導"Writing to a Scalabe Magnetoresistance Random Access Memory Element", published on April 8, 2003, Leomd Savtchenk〇 is the inventor and hereinafter refers to the Savtchenk reference. The Savtchenko reference is hereby incorporated by reference in its entirety The method is incorporated herein. Generally, the MTJ 76 has two magnetic regions (82, 84) and a tunneling barrier region 86 'The tunneling barrier region is inserted between the two magnetic regions (82, 84). In this example, the two magnetic regions (82, 84) are multilayer structures, and the tunneling barrier region 86 is a single-layer structure. The multilayer structure of one magnetic region 82 is a two-layer structure, and the structure has A non-magnetic layer 88 is inserted between two ferromagnetic skins (90, 92), and the other magnetic region 84 is a double layer, which has an anti-ferromagnetic layer 94 and a ferromagnetic layer 96. However, the magnetic regions (82, 84) and the tunneling barrier region 86 may have additional layers to form other multilayer structures instead of the two-layer structure, double-layer structure, and single-layer structure. For example, the magnetic fields Area (82, 84) and / or the tunneling obstacle area% may have one or more credits An antiferromagnetic layer, a ferromagnetic layer, a substrate layer, a seed layer, and / or a template layer. The nonmagnetic layer 88 may be composed of many suitable nonmagnetic materials or antiferromagnetic materials, such as ruthenium (ru), iron ( 〇s), baht (Re), chromium (Cr), rhodium (Rh) or copper (Cu), or a combination thereof, and the antiferromagnetic layer 94 may be composed of many suitable antiferromagnetic materials, such as Manganese alloys (such as iridium manganese (IrMn), iron manganese (FeMn), rhodium manganese (RhMn), platinum manganese (PtMn), and manganese palladium (PtPdMn)). These ferromagnetic layers (90, 92, 94) may be composed of many suitable ferromagnetic materials, such as nickel (Ni), iron (Fe), or cobalt (c0), or a combination thereof (e.g., nickel iron (NiFe), cobalt iron) (FeCo), or cobalt nickel iron (NiFeCo)), and the tunnel barrier region 86 may be made of one or more non-conductive

〇:\%\9〇423 D0C -13 - 200428388 性材料所組成。例如,該穿隧障礙區域86可以係由氧化鋁 (Al2〇3)、氧化姶(Hf〇2)、氧化·(Β2〇3)、氧化鈕(丁“〇5)、 氧化鋅(Zn〇2)及其他氧化物、氮化物或其他適當的介電質 。然而,其他材料或材料之組合可以根據本發明使用於這 些層中。 該非磁性層88插入於該等兩鐵磁層(9〇、92)之間的形成係 讓该自由磁區82具有一合成磁矩98能夠在施加磁場之存在 下自由旋轉。此外,該反鐵磁層94及該鐵磁層96之形成係 讓该釘紮磁區84具有一合成磁矩1〇〇,而該磁矩典型地係無籲 法在能夠旋轉該自由磁區之合成磁矩98之施加磁場的存在 下旋轉。該釘紮磁區84之合成磁矩1〇〇實質上係釘紮在一預 先定義的方向上,其可以是根據本發明之許多方向,而該 自由磁區82之合成磁矩%係為該等鐵磁層(9〇、92)之磁矩 (102、104)的結果,其兩者較佳地都是可以自由旋轉。 該自由磁區82之磁矩(1〇2、1〇4)相對彼此之間較佳地係為 非平行’而更佳地係至少實質上係為反平行。此外,該等籲 磁矩(102、104)較佳地係被平衡,其當在此使用時係指如同 在方程式(1)中所提出的分數平衡比(Mbr)係處於大約零(〇) 到大約十分之一(1/10)之範圍(即0SMbrS0.1)。〇: \% \ 9〇423 D0C -13-200428388. For example, the tunneling obstacle region 86 may be made of aluminum oxide (Al2O3), hafnium oxide (Hf2), oxide (B2O3), oxide button (D04), zinc oxide (ZnO2). ) And other oxides, nitrides or other suitable dielectrics. However, other materials or combinations of materials may be used in these layers in accordance with the present invention. The non-magnetic layer 88 is interposed between the two ferromagnetic layers (90, The formation system between 92) allows the free magnetic region 82 to have a combined magnetic moment 98 that can rotate freely in the presence of an applied magnetic field. In addition, the formation system of the antiferromagnetic layer 94 and the ferromagnetic layer 96 allows the pinning The magnetic region 84 has a composite magnetic moment 100, and the magnetic moment is typically rotated in the presence of an applied magnetic field capable of rotating the free magnetic region of the composite magnetic moment 98. The composition of the pinned magnetic region 84 The magnetic moment 100 is essentially pinned in a predefined direction, which can be many directions according to the present invention, and the combined magnetic moment% of the free magnetic region 82 is the ferromagnetic layer (90, As a result of the magnetic moment (102, 104) of 92), both of them are preferably free to rotate. The free magnetic region 82 The magnetic moments (102, 104) are preferably non-parallel relative to each other, and more preferably at least substantially anti-parallel. In addition, the magnetic moments (102, 104) are preferably The earth system is balanced, which when used herein means that the fractional balance ratio (Mbr) as proposed in equation (1) is in the range of approximately zero (0) to approximately one tenth (1/10) ( (0SMbrS0.1).

Mbr = AM/Mlotal = (I Μ2 Μ Μ! I)/(I Μ! I + I M21) ⑴ 在該處,IMJ係為一磁矩102之大小,而|m2|係為另一磁矩 104之大小。然而,該MTJ 76之其他配置利用未平衡磁矩也 是可用。該自由磁區82之磁矩(1〇2、1〇4)之大小可以使用許 多在该技藝中為人所熟知之技術來加以選擇。例如,該等Mbr = AM / Mlotal = (I Μ2 Μ Μ! I) / (I Μ! I + I M21) ⑴ At this point, IMJ is the size of a magnetic moment 102, and | m2 | is another magnetic moment 104 Its size. However, other configurations of the MTJ 76 are available using unbalanced magnetic moments. The magnitude of the magnetic moment (102, 104) of the free magnetic region 82 can be selected using a number of techniques well known in the art. For example, these

O:\90\90423.DOC -14- 200428388 鐵磁層(90、92)之厚度(ι〇6、1〇8)可以被調整以讓磁矩具有 的大小可以提供該平衡或一不平衡。 該等磁矩(102、1〇4)較佳地係與該非磁性層88相耦合。雖 然该非磁性層88係反鐵磁地耦合該等磁矩(1〇2、1〇4),應了 解該反鐵磁耦合可以配置其他機制。例如,反鐵磁偶合之 機制可以是一磁靜場。 该釘紮磁區84之合成磁矩100與該自由磁區82之合成磁 矩98(其貝際上係為鄰近該穿隧障礙區域86之鐵磁層(92、 96)的磁矩)之相對方位會影響該乂刃%之穿隧電阻。因此 ^ 4自由磁區82之合成磁矩%旋轉而該釘紮磁區84之合 成磁矩98只貝上係保持不變時,該mTj %之電阻會改變而 該等變化電阻值可以被指派許多數值。 根據本發明之一示範實施例,該MTJ 76之數值係為二進 位值(例如0或1)。该等二進位值之一係相當於在該自由磁區 82之3成磁矩98與該釘紮磁區84之合成磁矩1〇〇之間實質 上為平仃的方位(即一第一磁化狀態)。而另一個二進位值係 相當於在該自由磁區82之合成磁矩98與該釘紮磁區料之合 成磁矩1 00之間貫質上為反平行方位(即一第二磁化狀態)。 具有貝貝上為反平行方位之MTJ 76之電阻提供一第一電阻 值’而具有實質上為平行方位之MTJ 76之電阻提供一第二 私阻值。因此,該二進位值可以利用在一第一時間量測 忒MTJ 76之電阻(即讀取該MTJ)、在一第二時間〇2)改變該 自由磁區82之合成磁矩98的位置以改變由該MTJ 76所儲存 的一進位值(即寫入該MTJ)、在一第二時間(h)糧測該mtjO: \ 90 \ 90423.DOC -14- 200428388 The thickness (ι06, 108) of the ferromagnetic layer (90, 92) can be adjusted so that the magnitude of the magnetic moment can provide this balance or an imbalance. The magnetic moments (102, 104) are preferably coupled to the non-magnetic layer 88. Although the non-magnetic layer 88 is antiferromagnetically coupled to these magnetic moments (102, 104), it should be understood that other mechanisms can be configured for the antiferromagnetic coupling. For example, the mechanism of antiferromagnetic coupling can be a magnetic static field. The combined magnetic moment 100 of the pinned magnetic region 84 and the combined magnetic moment 98 of the free magnetic region 82 (which is the magnetic moment of the ferromagnetic layer (92, 96) adjacent to the tunneling obstacle region 86) The relative orientation will affect the tunneling resistance of this blade. Therefore, when the combined magnetic moment% of the 4 free magnetic region 82 rotates and the combined magnetic moment 98 of the pinned magnetic region 84 remains unchanged, the mTj% resistance will change and the change resistance values can be assigned Many values. According to an exemplary embodiment of the present invention, the value of the MTJ 76 is a binary value (for example, 0 or 1). One of the binary values corresponds to a substantially flat orientation between the 30% magnetic moment 98 of the free magnetic region 82 and the composite magnetic moment 100 of the pinned magnetic region 84 (that is, a first Magnetization). The other binary value is equivalent to an anti-parallel orientation between the combined magnetic moment 98 of the free magnetic region 82 and the combined magnetic moment 100 of the pinned magnetic region material (ie, a second magnetization state). . The resistance of MTJ 76 with anti-parallel orientation on Bebe provides a first resistance value and the resistance of MTJ 76 with substantially parallel orientation provides a second private resistance value. Therefore, the binary value can be measured by measuring the resistance of the MTJ 76 at a first time (that is, reading the MTJ), and changing the position of the composite magnetic moment 98 of the free magnetic field 82 at a second time 02. Change a carry value stored in the MTJ 76 (ie write to the MTJ), measure the mtj at a second time (h)

O:\90\90423.DOC -15 - 2004283 88 76之電阻(即讀取該MTJ),及在一第三時間⑹將在—第一 時間(t|)所量測之MTJ 76的電阻與在—第二時間⑴)所量測 之MTJ 76的電阻相比較。 “ 簽考圖5,該自由磁區82之合成磁矩%較佳地係沿著一異 向容易軸110定位於一方向上,該方向係相對於該寫入位: 線78或寫入字元線80之至少一條夹一角度(φ^φΒ) "a 。更佳地,該合成磁矩98係沿著一異向容易軸u〇定位於一 方向上,該方向係相對於該寫入字元線8〇(即或寫 入位元線78(即〇345。)夾大約45度(45。),及較佳地係皆輿 該寫入位兀線78及寫入字元線80夾該角度(即〇 wi:45。及① b = 45 )。然而,該合成磁矩98相對於該寫入位元線π及/ 或寫入字元線80之其他方位可以根據本發明來加以使用。 除了該合成磁矩98相對於該寫入位元線78及/或寫入字 兀線80之較佳方位之外,該寫入位元線78較佳地係定位在 相對於該寫入字元線80夾一角度(□) 1} 4。較佳地,該角度 (□) II4大於約60度(60。)而小於約no度〇2〇。)。更佳地,該 角度(□) 114係約為90度(90。)。 該寫入位元線78及該寫入字元線80之方位,及這些線條 (78、80)罪近该]MTJ 76之地方提供一配置,其中該等兩線 條(78、80)所發射之兩磁場(116、118)會改變該等鐵磁層(9〇 、92)之磁矩(102、1〇4),而因此改變該合成磁矩98之方位 ,進而改變該MTJ 76所儲存之二進位值(即寫入該MTJ)。一 磁場11 6較佳地係利用將一電流丨2〇導入在該寫入位元線78 中來產生’而另一磁場11 8較佳地係利用將一電流1 22導入 O:\90\90423.DOC -16- 200428388 在該寫入字元線80中來產生。因此,為了方便起見,在該 寫入位元線78中之電流(Ib) 120所產生之磁場i丨6應稱作為 。亥位元磁場(HB) 1,而在該寫入字元線go中之電流122所 產生之磁場11 8應稱作為該字元磁場(Hw) 11 8。 二考圖6’ ^出一圖表用以說明在圖4及圖5中所示之mtj 76之與如同在圖5中所示之位元磁場ιΐ6及字元磁場 (Hw) 118之應用有關的寫入區域(124、126)及無切換區域 128。該等兩類型的寫入區域係為該等直接寫入區域124及 觸發寫入區域126。與該等無切換區域128有關之磁場(ιΐ6 、118)之組合並不會影響一寫入,因為與該等無切換區域 有關之磁場之組合沒有改變該自由磁區之合成磁矩的各自 方位,XI陸續地會在該詳述中加以描述及說明。然而,該 等直接寫入區域124與觸發寫入區域126中磁場(116、118) 之組合具有藉由改變該自由磁區之合成磁矩的位置來改變 该等合成磁矩之各自方位的可能。 不官該MTJ之合成磁矩的現存方位,與該觸發寫入區域 126有關之磁場(116、118)之組合(其在此是稱作為一 之觸發寫入或觸發)會導致該等合成磁矩之重新定位。例如 ,假如該自由磁區及該釘紮磁區的合成磁場至少實質上係 為平行而一觸發寫入係被處理的話,該等合成磁矩會在該 觸發寫入之後被改變成該至少實質上為反平行的方位。相 反地,假如該等合成磁矩至少實質上係為反平行而一觸發 寫入係被處理的話,該等合成磁矩係在該觸發寫入之後被 改變成該至少實質上為平行的方位。因此,不管當該觸發O: \ 90 \ 90423.DOC -15-2004283 88 76 (that is, read the MTJ), and at a third time, the resistance of the MTJ 76 measured at the first time (t |) and the Compare the measured resistance of MTJ 76 at the second time i). “As shown in FIG. 5, the combined magnetic moment% of the free magnetic region 82 is preferably positioned in one direction along an anisotropic easy axis 110, which direction is relative to the write bit: line 78 or write character At least one angle (φ ^ φΒ) of line 80 " a. More preferably, the composite magnetic moment 98 is positioned in one direction along an anisotropic easy axis u, which direction is relative to the written word Element line 80 (ie, writing bit line 78 (ie, 0345.) is clamped at about 45 degrees (45 °), and preferably the writing bit line 78 and writing word line 80 are clamped This angle (that is, ω: 45. and ① b = 45). However, other orientations of the composite magnetic moment 98 with respect to the writing bit line π and / or writing word line 80 can be added according to the present invention. Except for the preferred orientation of the synthetic magnetic moment 98 relative to the write bit line 78 and / or the write word line 80, the write bit line 78 is preferably positioned relative to the write Enter the character line 80 with an angle (□) 1} 4. Preferably, the angle (□) II4 is greater than about 60 degrees (60.) and less than about no degrees 0 2 0.). More preferably, the angle (□) 114 is about 90 (90.). The orientation of the writing bit line 78 and the writing word line 80, and where these lines (78, 80) are close to the] MTJ 76 provides a configuration where the two lines (78 , 80) The two magnetic fields (116, 118) emitted will change the magnetic moments (102, 104) of the ferromagnetic layers (90, 92), and thus change the orientation of the composite magnetic moment 98, and then change The binary value stored in the MTJ 76 (that is, written into the MTJ). A magnetic field 11 6 is preferably generated by introducing a current 丨 20 into the write bit line 78 to generate 'and another magnetic field 11 8 is preferably generated by introducing a current 1 22 into O: \ 90 \ 90423.DOC -16- 200428388 in the write word line 80. Therefore, for convenience, the write bit line The magnetic field i 丨 6 generated by the current (Ib) 120 in 78 should be referred to as the magnetic field (HB) 1 and the magnetic field 11 8 generated by the current 122 written in the word line go should be referred to as The character magnetic field (Hw) 11 8. The second study of Figure 6 '^ shows a chart to illustrate the mtj 76 shown in Figures 4 and 5 and the bit magnetic field ιΐ6 and characters shown in Figure 5 Element magnetic field (Hw) 118 Application related write areas (124, 126) and non-switching area 128. These two types of write areas are the direct write area 124 and the trigger write area 126. Related to these non-switch areas 128 The combination of magnetic fields (ιΐ6, 118) will not affect a write, because the combination of magnetic fields related to these non-switching regions does not change the respective positions of the synthetic magnetic moments of the free magnetic zone, XI will be detailed in this one after another Described and explained. However, the combination of the magnetic fields (116, 118) in the direct write region 124 and the trigger write region 126 has the possibility of changing the respective positions of the composite magnetic moments by changing the position of the composite magnetic moments of the free magnetic region. . Without the existing position of the synthetic magnetic moment of the MTJ, the combination of the magnetic field (116, 118) related to the trigger write area 126 (which is referred to as a trigger write or trigger here) will cause these synthetic magnets Moment repositioning. For example, if the combined magnetic fields of the free magnetic zone and the pinned magnetic zone are at least substantially parallel and a triggered write is processed, the combined magnetic moments will be changed to the at least substantial after the triggered write. Up is anti-parallel orientation. Conversely, if the synthetic magnetic moments are at least substantially anti-parallel and a trigger writing system is processed, the synthetic magnetic moments are changed to the at least substantially parallel orientation after the triggered writing. So no matter when the trigger

O:\90\90423.DOC -17- 200428388 寫入開始時所儲存的二進位值,該觸發寫入會將該二進位 值改變成該其他二進位值。 相對於該觸發寫入,只有該直接寫入所尋獲之合成磁矩 所要求方位係不同於在該直接寫入之前合成磁矩之現存方 位,與該直接寫入區域1 24有關之磁場(丨丨6、1丨8)的組合 (其在此係稱作為一直接寫入)才會導致該等合成磁矩之重 新定位。例如,假設該等合成磁矩至少實質上係為平行, 而直接寫入係被處理以請求在該等合成磁矩之間具有一 至夕貝貝上係為平行的方位,則該等合成磁矩保持在該皇 夕只貝上為平行方位。然而,假如該等合成磁矩係至少實 質上為平行,而一直接寫入係被處理以請求在該等合成磁 矩之間具有一至少實質上為反平行方位,該等合成磁矩係 疋位成β亥至^'貫貝上為反平行方位。相反地,假如該等合 成磁矩係處於至少實質上為反平行,而一直接寫入係被處 理以請求在該等合成磁矩之間具有一至少實質上為反平行 方位,則該等合成磁矩會保持在該至少實質上為反平行方 位,而假如該等合成磁矩係處於至少實質上為反平行,而 直接寫入係被處理以請求在該等合成磁矩之間具有一至 少實質上違平行方向,則該等合成磁矩係被定位成該至少 貫質上為平行方位。 在一直接寫入中所要求方位大致上係由該等磁場(116、 11 8)之極性所決定。例如,假設在該等合成磁矩之間尋獲 平订方位,則該等兩磁場⑴6、118)係為正,而假設在該 等a成磁矩之間*獲—反平行方位,則該等兩磁場(11 $、O: \ 90 \ 90423.DOC -17- 200428388 The binary value stored at the beginning of writing. The trigger write will change the binary value to the other binary value. With respect to the triggered writing, only the required orientation of the synthesized magnetic moment found by the direct writing is different from the existing orientation of the synthesized magnetic moment before the direct writing, and the magnetic field related to the direct writing region 1 24 ( The combination of 丨 丨 6, 1 丨 8) (herein referred to as a direct write) will cause the relocation of these synthetic magnetic moments. For example, assuming that the synthetic magnetic moments are at least substantially parallel, and the direct write system is processed to request a parallel orientation between the synthetic magnetic moments on the Babe, then the synthetic magnetic moments Keep a parallel orientation on the emperor eve. However, provided that the synthetic magnetic moment systems are at least substantially parallel and a direct write system is processed to request an at least substantially anti-parallel orientation between the synthetic magnetic moments, the synthetic magnetic moment systems 疋The position is β-parallel to ^ 'on the shell as an anti-parallel orientation. Conversely, if the synthetic magnetic moment systems are at least substantially antiparallel, and a direct write system is processed to request an at least substantially antiparallel orientation between the synthetic magnetic moments, then The magnetic moments will remain at least substantially anti-parallel, and if the synthetic magnetic moments are at least substantially anti-parallel, the direct write system is processed to request that there be at least one between the synthetic magnetic moments. Substantially parallel to the direction, the synthetic magnetic moments are positioned such that they are at least substantially parallel in orientation. The required orientation in a direct write is roughly determined by the polarity of these magnetic fields (116, 118). For example, assuming a flattened orientation is found between the synthetic magnetic moments, then the two magnetic fields (6, 118) are positive, and assuming that the a-magnet moments are obtained * anti-parallel orientations, then Wait for two magnetic fields (11 $,

O:\90\90423.DOC -18- 200428388 11 8)係為負。然而,如在圖4及圖5中所示iMTJ %可以被 配置用於具有其他極性之直接寫入配置。 參考圖5,在該示範實施例中,該直接寫入及觸發寫入之 磁場(116、118)之極性及該等磁場(116、118)之大小係利用 導入及調整在該位元線78及該字元線8〇中具有相對應極性 及大小之電流(120、122)來產生。這係為熟悉該項技藝者所 了解,將電流導入在一線路中會對該線路產生一對應磁場 。因此,將電流120導入在該位元線78之中及將電流122導 入在該字元線80之中將會分別產生該位元磁場i 16及該字 元磁場11 8。再者,在該位元線104中之一正電流13 0及一負 電流132(這些是為了說明起見所隨意定義)會分別產生一正 位元磁場134及一負位元磁場136。此外,在該字元線8〇中 之正電流138及在該字元線80中之負電流140(這些是為了 說明起見所隨意定義)會分別產生一正字元磁場142及一負 字元磁場144。再者,在該字元線8〇中之電流122之大小的 增加及在该位元線7 8中之電流12 0之大小的增加會分別導 致該字元磁場11 8之大小的增加及該位元磁場11 6之大小的 增加。再者,在該字元線80中之電流122之大小的減少及在 δ玄子元線7 8中之電流12 0之大小的減少會分別導致該字元 磁場11 8之大小的減少及該位元磁場u 6之大小的減少。 參考圖7,一順序係說明利用在該字元線及該位元線中施 加電流來產生磁場,以在圖4及圖5中所說明之MTJ 76中執 行一直接寫入或一觸發寫入。一具有一第一字元大小 (|HW1|) 146之字元磁場係利用在該字元線中導入一電流而 O:\90\90423.DOC -19- 200428388 產生在一第一時間點(t|) 148,及一具有一第一位元大小 1 50之位元磁場係利用在該位元線中導入一電流而 產生在一第二時間點⑴)152。在具有該第一字元Z小 (丨HB1|) 150之位元磁場係產生在該第二時間點⑴)丨52後’在 該字元線中之電流會被調整以降低該字元磁場到一第二位 元大小(|Η^|) 154,其較佳地約為零(〇),發生在一第三時 間點⑹156。-旦該字元磁場係降低到該第二位元大小 (|HW2|) 1 54時’在該位元線中之電流會被調整以再一第四時 間點(U) 160,將該位元磁場降低到_第二位元大小(丨 ⑸。該字元磁場降低到該第二字元A/j、(|Hw2|) i54完成該 示範順序。在該順序或許多其他順序完成時,取決於該等 磁場之大小,該自由磁性層之兩鐵磁層的磁矩及因而該自 由磁性層之合成磁矩會被旋轉到除了先於該順序之前的現 存位置之外的位置,或保持在先於該順序之前所現存的相 對方位’因為該等磁場之A小會選擇該直接寫人或觸發寫 入,如同圖6中所示。 圖8-12說明從該第一二進位值到該第二二進位值之觸發 寫入之範例。圖13-17說明從該第二二進位值到該第—二進 位值之觸發寫入之範例。圖18_22說明從該第一二進位值到 該第二二進位值之直接寫入之範例,而圖23_27說明一直接 寫入之|巳{列,其當3亥第一二進位值係被寫入而圖4之係 已、’工處於可提供該第—二進位值之方位上。這些寫入方法 係可供選擇’當來自該位元線及該電流線之兩磁場係需要 用以寫入圖4之MTJ 76(參見在圖28_32中所說明之該等磁O: \ 90 \ 90423.DOC -18- 200428388 11 8) is negative. However, iMTJ% as shown in Figure 4 and Figure 5 can be configured for direct write configurations with other polarities. Referring to FIG. 5, in the exemplary embodiment, the polarities of the magnetic fields (116, 118) that are directly written and triggered to write and the magnitudes of the magnetic fields (116, 118) are introduced and adjusted at the bit line 78 And the word line 80 has a current (120, 122) with a corresponding polarity and magnitude. This is known to those skilled in the art, the introduction of a current into a line will generate a corresponding magnetic field for the line. Therefore, introducing the current 120 into the bit line 78 and the current 122 into the word line 80 will generate the bit magnetic field i 16 and the character magnetic field 118 respectively. Furthermore, a positive current 130 and a negative current 132 (these are arbitrarily defined for the sake of explanation) in the bit line 104 will generate a positive bit magnetic field 134 and a negative bit magnetic field 136, respectively. In addition, a positive current 138 in the word line 80 and a negative current 140 in the word line 80 (these are arbitrarily defined for the sake of illustration) will generate a positive character magnetic field 142 and a negative character magnetic field, respectively. 144. Furthermore, an increase in the magnitude of the current 122 in the word line 80 and an increase in the magnitude of the current 120 in the bit line 78 will result in an increase in the magnitude of the character magnetic field 11 8 and the The magnitude of the bit magnetic field 116 increases. Furthermore, a reduction in the magnitude of the current 122 in the character line 80 and a reduction in the magnitude of the current 12 0 in the δ xuanziyuan line 7 8 will lead to a reduction in the magnitude of the character magnetic field 11 8 and the bit, respectively. The magnitude of the elementary magnetic field u 6 decreases. Referring to FIG. 7, a sequence illustrates that a magnetic field is generated by applying a current to the word line and the bit line to perform a direct write or a trigger write in the MTJ 76 illustrated in FIGS. 4 and 5. . A character magnetic field of 146 having a first character size (| HW1 |) 146 uses a current to be introduced into the character line and O: \ 90 \ 90423.DOC -19- 200428388 is generated at a first time point ( t |) 148, and a bit magnetic field having a first bit size of 150 is generated at a second point in time by introducing a current into the bit line i) 152. After the bit magnetic field with the first character Z small (丨 HB1 |) 150 is generated at the second time point ⑴) 丨 52, the current in the character line will be adjusted to reduce the character magnetic field To a second bit size (| Η ^ |) 154, which is preferably about zero (0), occurs at a third time point ⑹156. -Once the magnetic field of the character is reduced to the size of the second bit (| HW2 |) 1 54 ', the current in the bit line will be adjusted to a fourth time point (U) 160, and the bit The element magnetic field is reduced to the second bit size (丨 ⑸. The character magnetic field is reduced to the second character A / j, (| Hw2 |) i54 to complete the demonstration sequence. When this sequence or many other sequences are completed, Depending on the magnitude of these magnetic fields, the magnetic moments of the two ferromagnetic layers of the free magnetic layer and thus the combined magnetic moments of the free magnetic layer will be rotated to a position other than the existing position prior to the sequence, or maintained Existing relative positions prior to the sequence 'because the small A of these magnetic fields will choose the direct writer or trigger the write, as shown in Figure 6. Figure 8-12 illustrates from the first binary value to An example of trigger writing of the second binary value. Figure 13-17 illustrates an example of trigger writing from the second binary value to the first-binary value. Figure 18_22 illustrates from the first binary value to An example of the direct writing of the second binary value, and FIG. 23_27 illustrates a direct writing of | 巳 {Column, which When the first binary value of 3H is written and the system of Figure 4 has been written, 'the worker is in the position where the first-binary value can be provided. These writing methods are optional' when from the bit line and The two magnetic fields of the current line are required to write MTJ 76 in Figure 4 (see the magnetic fields illustrated in Figure 28_32).

O:\90\90423.DOC •20- 2004283 88 矩(102、104)及合成磁矩98之旋轉,用於在圖33中所示之單 位磁場順序,用以說明圖4之可選擇特性)。 圖4及圖5之MTJ 76、圖2及圖3之MTJ,及/或任何其他贿 可以如所說明被耦合或連接,及針對本發明之mraMs來描 述。例如,參考圖1,該等聚集記憶體蜂巢(38、Μ、5〇、 52)之記憶體蜂巢係、以串聯方式_合,而更佳地係根據本發 明之MRAM 20之一第一示範實施例以串聯方式連接。例如 ,根據在該詳述中先前的描述,該第—記憶體蜂巢3〇之一 第二MTJ終端170係連接到第二記憶體蜂巢32之該第二mtj 終端172,該第二記憶體蜂巢32之該第一MTJ終端i74係連 接到第二§己憶體蜂巢34之該第一 MTJ終端1 76,及該第二記 憶體蜂巢340之該第二MTJ終端178係連接到第四記憶體蜂 巢之該第二MTJ終端180。 XI係為熟悉該項技藝者所了解,該第一聚集記憶體蜂巢 38及其他具有以串聯方式耦合的MTJs的聚集記憶體蜂巢 (3 8、40、50、52)之MTJs 54之電阻(R)係如下所示: R = Rmtji + Rmtj2 + …+ Rmtjk (2) 在該處RMT;K係為與在該聚集記憶體蜂巢中之第Kth MTJ有 關之電阻,而K係為在該聚集記憶體蜂巢中以串聯的方式連 接之MTJs的數目。這將會連續地以更為詳細的方式描述, 一聚集記憶體蜂巢之電阻可以被決定於改變該聚集記憶體 蜂巢中之一 MTJ的磁性狀態(即改變該自由磁區之合成磁矩 與该釘紮磁區之合成磁矩之間的方位,這一般會影響該電 阻)之前’而該電阻可以被決定於改變在該聚集記憶體蜂巢 O:\90\90423.DOC -21 > 2004283 88 中之MTJ蜂巢之磁化狀態之後。該電阻之變化(其實質上係 起因於具有該磁化狀態之改變的Μ 丁 J的電阻的改變)可以根 據本發明來決定’這在其後將會更為詳細地描述。 參考圖34,一橫斷面圖係用以說明圖iiMRAM 20。該橫 斷面圖說明該等通道及相交線路,這些係被說明作為T形結 構,該等結構係將該第一聚集記憶體蜂巢3 8之記憶體蜂巢 (3 0、32、34 ' 36)耦合在一基板1 82上,其較佳地係為一半 導體基板。一群組絕緣電晶體184係使用標準半導體技術被 开> 成作為金屬氧化物半導體場效電晶體(MqsfeTS)在基才反 1 82中。然而,其他電晶體也可以根據本發明來使用。一讀 取字元線186係被形成且配置以操作作為該群組讀取絕緣 電晶體1 84之閘極終端。該群組讀取絕緣電晶體i料之源極 198係連接到該第一記憶體蜂巢3〇之第一MTJ終端188,而 該該群組讀取絕緣電晶體丨84之汲極丨9〇較佳地係連接到該 讀取位元線192。此外,該寫入位元線4〇即寫入字元線(22 24 26 28)係使用標準半導體技術以金屬化步驟來形成 ,以便定位鄰近於該寫入位元線4〇之寫入位元線(22、24、 26 28)之違專記憶體蜂巢的MTJs 54,如同在本發明之詳 述中先前所描述。該等寫入字元線(22、24、26、28)及該寫 入位兀線40較佳地係定位在靠近於該MTJs 54的地方,以降 低與鄰近列或行之間的寫入字元電流及磁場相互作用。 多考图35及圖36,該MR AM 2 0之一第二示範實施例係以 忒等以並聯方式耦合(更佳地係以並聯方式連接)的聚集記 隐肢蜂巢(38、48、50、52)之記憶體蜂巢來說明。例如,該O: \ 90 \ 90423.DOC • 20- 2004283 88 rotations of moments (102, 104) and combined magnetic moments 98 are used for the unit magnetic field sequence shown in Fig. 33 to illustrate the optional characteristics of Fig. 4) . The MTJ 76 of Figures 4 and 5, the MTJ of Figures 2 and 3, and / or any other bribes may be coupled or connected as illustrated and described for the mraMs of the present invention. For example, referring to FIG. 1, the memory honeycombs of the aggregated memory honeycombs (38, M, 50, 52) are connected in series, and more preferably one of the first demonstrations of the MRAM 20 according to the present invention. The examples are connected in series. For example, according to the previous description in the detailed description, the first MTJ terminal 170 of the first-memory hive 30 is connected to the second mtj terminal 172 of the second memory hive 32, the second memory hive The first MTJ terminal i74 of 32 is connected to the first MTJ terminal 1 76 of the second §memory honeycomb 34, and the second MTJ terminal 178 of the second memory hive 340 is connected to the fourth memory The second MTJ terminal 180 of the hive. XI is known to those skilled in the art, the resistance (R of the first aggregate memory honeycomb 38 and other aggregate memory honeycombs (38, 40, 50, 52) with MTJs coupled in series) (R ) Is as follows: R = Rmtji + Rmtj2 +… + Rmtjk (2) where RMT; K is the resistance related to the Kth MTJ in the aggregate memory hive, and K is the aggregate memory The number of MTJs connected in tandem in the body honeycomb. This will be continuously described in more detail. The resistance of an aggregate memory honeycomb can be determined by changing the magnetic state of one of the MTJs in the aggregate memory honeycomb (that is, changing the combined magnetic moment of the free magnetic zone with the The orientation between the combined magnetic moments of the pinned magnetic zone, which generally affects the resistance), and the resistance can be determined by changing the honeycomb in the aggregate memory O: \ 90 \ 90423.DOC -21 > 2004283 88 After the magnetized state of MTJ Beehive. The change in resistance (which is essentially a change in resistance due to the change in the resistance of M D J with the change in the magnetization state) can be determined according to the present invention ', which will be described in more detail later. Referring to FIG. 34, a cross-sectional view is used to illustrate FIG. The cross-section view illustrates the channels and intersecting lines, which are illustrated as T-shaped structures, which are the memory honeycombs (30, 32, 34 '36) of the first aggregate memory honeycomb 38. Coupled to a substrate 182, which is preferably a semiconductor substrate. A group of insulated transistors 184 were developed using standard semiconductor technology as metal oxide semiconductor field-effect transistors (MqsfeTS). However, other transistors can also be used according to the invention. A read word line 186 is formed and configured to operate as a gate terminal of the group read insulated transistor 184. The source 198 of the group read insulating transistor i is connected to the first MTJ terminal 188 of the first memory honeycomb 30, and the group reads the drain 84 of the transistor 910. It is preferably connected to the read bit line 192. In addition, the write bit line 40, that is, the write word line (22 24 26 28) is formed using metallization steps using standard semiconductor technology to locate the write bit adjacent to the write bit line 40. The MTJs 54 of the non-exclusive memory honeycomb of the element line (22, 24, 26, 28) are as previously described in the detailed description of the present invention. The writing word lines (22, 24, 26, 28) and the writing bit line 40 are preferably positioned close to the MTJs 54 to reduce writing to adjacent columns or rows. Character current and magnetic field interact. Consider FIG. 35 and FIG. 36. One of the second exemplary embodiments of the MR AM 2 0 is an aggregated hidden limb honeycomb (38, 48, 50) which is coupled in parallel (preferably connected in parallel) by a maggot or the like. , 52). For example, this

O:\90\90423.DOC -22- 2004283 88 第一記憶體蜂巢30之第二MTJ終端170係連接到該第二記 憶體蜂巢32之第二MTJ 172終端,該第二記憶體蜂巢32之第 二MTJ終端172係連接到該第三記憶體蜂巢34之第二MTJ 178終端,及該第三記憶體蜂巢34之第二MTJ終端178係連 接到該第四記憶體蜂巢36之第二MTJ 180終端。此外,該第 一記憶體30之一第一 MTJ終端188係連接到該第二記體蜂 巢32之第一 MTJ終端174,該第二記憶體32之一第一 MTJ終 端174係連接到該第三記體蜂巢34之第一 MTJ終端176,及 該第三記憶體34之一第一 MTJ終端176係連接到該第四記 體蜂巢36之第一MTJ終端194。這係為熟悉該項技藝者所了 解,該第一聚集記憶體蜂巢38及其他具有以並聯方式耦合 的MTJs的聚集記憶體蜂巢(38、4〇、5〇、52)之MTJs 54之電 阻(R)係如下所示: 1/R = l/RMTjl + i/Rmto + …+ 1/Rmtjk (3) 在4處RMTjK係為與在該聚集記憶體蜂巢中之第K〖h mtj有 關之電阻,而K係為在該聚集記憶體蜂巢中以並聯的方式連 接之MTJs的數目。該聚集記憶體蜂巢之電阻可以用以讀取 在忒水市5己憶體蜂巢中之MTJ的狀態,而其他MTJs耦合可 以根據本發明來使用,包含MTJs之並連及串聯組合。 芩考圖37及圖38,本發明之一第三示範實施例係以該等 以^聯及串聯方式耦合(更佳地係以並聯及串聯方式連接) 的聚集記憶體蜂巢(38、48、50、52)之記憶體蜂巢來說明。 Ϊ列士口 ,亡女^ A 3己憶體蜂巢3 0係與該第二記憶體蜂巢3 2並聯 地連接以形成―第―記憶體蜂巢群組,該第三記憶體蜂巢O: \ 90 \ 90423.DOC -22- 2004283 88 The second MTJ terminal 170 of the first memory hive 30 is connected to the second MTJ 172 terminal of the second memory hive 32 and the second memory hive 32 The second MTJ terminal 172 is connected to the second MTJ 178 terminal of the third memory hive 34, and the second MTJ terminal 178 of the third memory hive 34 is connected to the second MTJ of the fourth memory hive 36 180 terminals. In addition, a first MTJ terminal 188 of one of the first memories 30 is connected to a first MTJ terminal 174 of the second memory cell 32, and a first MTJ terminal 174 of one of the second memories 32 is connected to the first MTJ terminal 174. The first MTJ terminal 176 of the three-memory honeycomb 34 and the first MTJ terminal 176 of one of the third memory 34 are connected to the first MTJ terminal 194 of the fourth-memory honeycomb 36. This is understood by those skilled in the art, the resistance of the first aggregate memory honeycomb 38 and other aggregate memory honeycombs (38, 40, 50, 52) with MTJs coupled in parallel ( R) is as follows: 1 / R = l / RMTjl + i / Rmto +… + 1 / Rmtjk (3) RMTjK at 4 places is the resistance related to the Kth 〖h mtj in the aggregate memory hive K is the number of MTJs connected in parallel in the aggregate memory hive. The resistance of the aggregate memory honeycomb can be used to read the state of the MTJ in the 5th memory honeycomb of Lishui City, and other MTJs couplings can be used according to the present invention, including parallel and series combination of MTJs. Considering FIG. 37 and FIG. 38, a third exemplary embodiment of the present invention is an aggregate memory honeycomb (38, 48, 48, 48, 48, 48, 48, 48) 50, 52). Ϊ 列 士 口, dead girl ^ A 3 The memory hive 30 is connected in parallel with the second memory hive 32 to form a first memory hive group, and the third memory hive

O:\90\90423.DOC -23- 200428388 34係與該第四記憶體蜂巢36並聯地連接以形成一第二記憶 體蜂巢群組’及該第一記憶體蜂巢群組係與該第二記憶體 蜂巢群組串聯地連接。更特別地,及只是藉由範例,該第 一記憶體蜂巢30之第二MTJ終端170係連接到該第二記憶 體蜂巢32之第二MTJ終端172,該第一記憶體蜂巢30之第一 MTJ終端188係連接到該第二記憶體蜂巢32之第一 MTJ終端 174 ’该第二記憶體蜂巢34之第二MTJ終端ι78係連接到該 第四記憶體蜂巢36之第二MTJ終端180,該第三記憶體蜂巢 34之第一 MTJ終端176係連接到該第四記憶體蜂巢36之索 一 MTJ終端194,及該第二記憶體蜂巢32之第二MTJ終端172 之一係連接到該第三記憶體蜂巢34之第二乂丁了終端178。這 係為熟悉該項技藝者所了解,該第一聚集記憶體蜂巢38及 其他具有兩MTJs以並聯方式耦合而該等平行的MTJs之串 聯組合的聚集記憶體蜂巢(38、4〇、5〇、52)之MTjs 54之電 阻(R)係如下所示: R = (RmTJ1*RMTJ2/ RmTJ1+RMTJ2) + (RMTJ3*RMTJ4/ RmTJ3+RMTJ4) + ⑷ ...+ (Rmtj(k-i) Rmtjk’ Rmtj(k-i)+Rmtjk) 在。玄處Rmt】k係為與在該聚集記憶體蜂巢中之第MTJ有 關之電阻,及RMT;(K])係為與在該聚集記憶體蜂巢中之第 MTJ有關之電阻’ ^料在該聚集記憶體蜂巢中所 連接之MTJs的數目,較佳地是為偶數。如同以該等其他示 範實施例,該聚集記憶體蜂巢之電阻可以用以讀取在該聚 集記憶體蜂巢中之記憶體蜂巢的狀態。其他MTjs與在一聚 集記憶體蜂巢中之許多Μ T J s的耗合可以根據本發明來使用O: \ 90 \ 90423.DOC -23- 200428388 34 is connected in parallel with the fourth memory hive 36 to form a second memory hive group 'and the first memory hive group and the second Memory honeycomb groups are connected in series. More specifically, and by way of example only, the second MTJ terminal 170 of the first memory hive 30 is connected to the second MTJ terminal 172 of the second memory hive 32, the first MTJ terminal of the first memory hive 30 The MTJ terminal 188 is connected to the first MTJ terminal 174 of the second memory hive 32, and the second MTJ terminal 78 of the second memory hive 34 is connected to the second MTJ terminal 180 of the fourth memory hive 36. The first MTJ terminal 176 of the third memory hive 34 is connected to a cable MTJ terminal 194 of the fourth memory hive 36, and one of the second MTJ terminals 172 of the second memory hive 32 is connected to the The second memory of the third memory hive 34 has the terminal 178. This is known to those skilled in the art, the first aggregate memory honeycomb 38 and other aggregate memory honeycombs (38, 40, 50) having a series combination of two parallel MTJs coupled in parallel. The resistance (R) of MTjs 54 of 52) is as follows: R = (RmTJ1 * RMTJ2 / RmTJ1 + RMTJ2) + (RMTJ3 * RMTJ4 / RmTJ3 + RMTJ4) + ⑷ ... + (Rmtj (ki) Rmtjk ' Rmtj (ki) + Rmtjk) in. Rmt] k is the resistance related to the MTJ in the aggregate memory honeycomb, and RMT; (K)) is the resistance related to the MTJ in the aggregate memory honeycomb ' The number of MTJs connected in the aggregate memory honeycomb is preferably an even number. As in these other exemplary embodiments, the resistance of the aggregate memory honeycomb can be used to read the state of the memory honeycomb in the aggregate memory honeycomb. Consumption of other MTjs with many MTJs in a clustered memory hive can be used according to the invention

〇 \90\90423 DOC -24- 2004283 88 包含MTJs之組合式並聯及串聯組合。 如同在本發明之詳述中所描述,當該等合成磁矩係定位 在-第-方位上或處於第一磁化狀態時(例如實質上為反 平行),一MTJ表現出一第一電阻,而當該等合成磁矩係使 用井多技術(其包含先前在該詳述中所描述之觸發寫入或 該直接寫入)來定位在一第二方位上或處於第二磁化狀態 例如實質上為平行)’該簡表現出小於該第一電阻之一 第二電阻。因此,當該聚集記憶體蜂巢之mtjs之一的合成 :係定位在-第—方位上或處於第_磁化狀態時(例如 貫質上為反平行),該等聚集記憶體蜂巢表現出一第一電阻 ’二當該聚集記憶體蜂巢之肪8之一的合成磁矩係被改變 成一第二方位或第二磁化狀態時(例如實質上為平行),該等 聚集記憶體蜂巢表現出一第二電阻。因此,在一聚集記憶 體蜂巢中之MTJ可以在改變該MTJ之合成磁矩之方位之前 後利用里測該聚集記憶體蜂巢與該電阻有關之電氣值來讀 取’因為如果該MTJ之電阻增加,則該聚集記憶體蜂巢之 電阻會增加,而如果該MTJ之電阻減少,則該聚集記憶體 蜂巢之電阻會減少。 芩考圖3 9,說明用以根據本發明之一示範實施例的一種 用以讀取在一 MRMA中之一 MTJ的方法200。初始地,一第 一电氣值係被決定,而該電氣值係相關於該聚集記憶體蜂 巢202之等效電阻。例如,施加一電壓橫跨該聚集記憶體蜂 巢’而與所施加之電壓相關之電流可以被量測。然而,該 聚集記憶體蜂巢之其他與該聚集記憶體蜂巢之電阻相關之〇 \ 90 \ 90423 DOC -24- 2004283 88 Combined parallel and series combination including MTJs. As described in the detailed description of the present invention, an MTJ exhibits a first resistance when the synthetic magnetic moments are positioned in the -th-azimuth or in a first magnetized state (for example, substantially antiparallel), And when the synthetic magnetic moments use the well technology (which includes the trigger write or the direct write previously described in the detailed description) to locate in a second orientation or in a second magnetized state, such as substantially (Parallel) 'The Jane exhibits a second resistance that is less than one of the first resistances. Therefore, when the synthesis of one of the mtjs of the aggregate memory honeycomb: is positioned in the -th position or is in the _magnetization state (for example, antiparallel in qualitatively), the aggregate memory honeycombs exhibit a first A resistance 'two. When the synthetic magnetic moment of one of the fat 8 of the aggregate memory honeycomb is changed to a second orientation or a second magnetization state (for example, substantially parallel), the aggregate memory honeycombs exhibit a first Two resistors. Therefore, the MTJ in an aggregate memory honeycomb can read the electrical value related to the resistance of the aggregate memory honeycomb before and after changing the orientation of the synthetic magnetic moment of the MTJ, because if the resistance of the MTJ increases , The resistance of the aggregate memory hive will increase, and if the resistance of the MTJ decreases, the resistance of the aggregate memory hive will decrease. Consider FIG. 39, which illustrates a method 200 for reading an MTJ in an MRMA according to an exemplary embodiment of the present invention. Initially, a first electrical value is determined, and the electrical value is related to the equivalent resistance of the aggregated memory cell 202. For example, a voltage is applied across the aggregated memory cell ' and the current associated with the applied voltage can be measured. However, other aspects of the aggregate memory hive are related to the resistance of the aggregate memory hive.

O:\90\90423.DOC -25- 200428388 電氣特性可以被決定,像是電荷(即電流(Ieq))通過該聚集記 憶體蜂巢之傳輸的淨時間率及/或該聚集記憶體蜂巢所表 現處的實際等效電阻(即Req = Veq/Ieq)。 在決定該聚集記憶體蜂巢202之第一電氣值之後,該方法 200會以該MTJ 204之觸發寫入或觸發來繼續。如同在該詳 述中先兩所描述’該觸發會導致該等合成磁矩之重新定位 ’而不官该MTJ之合成磁矩的現存方位(例如,假設該自由 磁性區域及該釘紮磁性區域之合成磁矩至少實質上係為平 行,而該MTJ之觸發係被處理,在該觸發之後,該等合歲 磁矩會被改變成該至少實質上為反平行方位,而相反地, 假設該等合成磁矩至少實質上係為反平行,而一觸發寫入 係被處理’在δ亥觸發之後,該等合成磁矩會被改變成該至 少貫質上為平行方位)。因此,該觸發會將該二進位值改變 成该其他二進位值,而不管當該觸發開始時所儲存的二進 位值。 在觸發該ΜΊ7之後,決定該聚集記憶體蜂巢之一第二電 氣值,其係與該聚集記憶體蜂巢206之電阻有關。該聚集記 體蜂巢之第二電氣值可以以用以決定該第一電氣值的方 式來決定,或是其他技術可用以決定該第二電氣值。在該 第%氣值與5玄第二電氣值的差異係被確認2〇8且被分析 21〇,以使用許多技術來完成該ΜΊ7之讀取,像是在該詳述 中先前描述及其後描述之技術。 第 例如,及參考圖1, 二記憶體蜂巢32係可 讀取在該第一聚集記憶體蜂巢38中之 以It由施加一 已知電流於該第一聚O: \ 90 \ 90423.DOC -25- 200428388 The electrical characteristics can be determined, such as the net time rate of charge (ie, current (Ieq)) transmission through the aggregate memory honeycomb and / or the performance of the aggregate memory honeycomb The actual equivalent resistance at (ie Req = Veq / Ieq). After determining the first electrical value of the aggregate memory honeycomb 202, the method 200 continues with the trigger write or trigger of the MTJ 204. As described in the first two of the detailed description, 'the trigger will cause the relocation of the synthetic magnetic moments', regardless of the existing orientation of the MTJ's synthetic magnetic moments (eg, assuming the free magnetic region and the pinned magnetic region) The composite magnetic moment is at least substantially parallel, and the trigger of the MTJ is processed. After the trigger, the combined magnetic moments will be changed to the at least substantially anti-parallel orientation. Conversely, assuming that Iso synthetic magnetic moments are at least substantially antiparallel, and a trigger write system is processed 'after the delta trigger, the synthetic magnetic moments will be changed to at least qualitatively parallel orientation). Therefore, the trigger changes the binary value to the other binary value, regardless of the binary value stored when the trigger started. After the MΊ7 is triggered, a second electrical value of one of the aggregate memory cells is determined, which is related to the resistance of the aggregate memory cells 206. The second electrical value of the aggregate honeycomb can be determined in a manner to determine the first electrical value, or other techniques can be used to determine the second electrical value. The difference between the 1st% gas value and the 5th second electrical value was confirmed 208 and analyzed 211 to use a number of techniques to complete the reading of the MΊ7, as previously described in the detailed description and its Techniques described later. For example, and referring to FIG. 1, the two-memory honeycomb 32 can be read in the first aggregate memory honeycomb 38 by applying a known current to the first aggregate.

O:\90\90423.DOC •26- 2004283 88 5憶體蜂巢m測橫跨該第—聚集記憶體蜂巢38之 -第-電^、改變該第二記憶體蜂巢32之電阻、將該已知 電流施加於該第一聚集記憶體蜂巢38及在?文電該第二記憶 料巢32之電阻後,量測橫跨該第—聚集記憶體蜂巢如 第一包壓,然後比較且分析在該第一電壓與該第二電壓 之間的差異,以完成該第二記憶體蜂巢32之讀取。例如, 假如該第二電壓小於該第一電壓,該第一聚集記憶體蜂巢 38之弘阻係隨著該第二記憶體蜂巢32之電阻的變化而減少 。因此,該第二記憶體蜂巢之電阻係隨著該第二記憶體蜂 巢32之電阻的變化而減少,而該第二記憶體蜂巢32之原始 值係為與该聚集記憶體蜂巢3 8之原始較大電阻值有關之數 值(即該第二記憶體蜂巢原始地表現出該較大電阻值)。假如 该第二電壓大於該第一電壓,則該第一聚集記憶體蜂巢% 之等效電阻係隨著該第二記憶體蜂巢之電阻的變化而增加 ’而5亥第一記憶體蜂巢3 8之原始值係為與該聚集記憶體蜂 巢38之較低電阻值有關的數值。然而,以該等效電阻之變 化為基礎,其他架構也可用以確認該數值,而數種裝置及 方法可用以完成這些不同架構及作為一範例之該前面所提 之架構。 參考圖40,一用以讀取在一 MRAM中之MTJ的裝置3〇〇的 概略圖示係根據本發明之一示範實施例來說明。一般地, 該裝置300係為一感測放大器300,其包含一預先放大器 、增益階段303,及交叉耦合鎖定器305。該預先放大器3〇 i (其係為一電流電壓轉換器)包含一 P通道電晶體302、N通道 O:\90\90423.DOC -27- 2004283 88 電晶體304、傳送間極332,及電容336。該增益階段如包 含P通道電晶體(306、312、314)、N通道電晶體(3〇8、31〇 、316)及傳送閘極337。該交叉耦合鎖定器3〇5包含p通道電 晶體(318、320、322:^N通道電晶體(324、326、328)。該 裝置300也包含一 SCB輸人,其酉己置用以接收一咖信號了 該信號係為一交給一SC輸入之叱信號的邏輯互補。此外, 一 EQB輸入係被配置以接收一 _信號,該信號係為一交 給一 EQ輸入之Eq信號的邏輯互補,及一 leb輸入係被配置 以接收一LEB信號,該信號係為一交給— L]g輸入之信嬈 的L輯互#再者’—第—電壓輸出及—第二電壓輸出係 被配置以送出一第-輸出信號(VI)及-第二輸出信號(V2) ’运些都是邏輯互補。 參考圖1、圖40及圖41,一使用該裝置3〇〇之讀取操作及 一觸發寫入係根據本發明之一示範實施例來說明。代表該 承木σ己隐體蜂巢之等效電阻的等效電阻係經由電晶體 (未顯不)被耦合到該1^通道控制電晶體3〇4之源極,該等電 曰體係利用已解碼彳§號被閘極化以讀取該聚集記憶體蜂巢 之數值。例如,該第—聚集記憶體蜂㈣係藉由啟動如, 中所不之絕緣電晶體18〇及控制電晶體3〇4來耦合到該裝置 一 θ 1中所示之續取位元線i 92係輕合到如圖40中所示 之2同閘極電晶體304。該共同閘極電晶體3〇4接收一閘極 :壓(Vcg),其導致一汲極/源極電流(Icg)通過該共同閘極電 曰曰體304。该p通道電晶體3〇2源極化該預先放大電流(I。, 而σ亥P通道電晶體3 0 2係經由傳輸閘極3 3 2被二極體連O: \ 90 \ 90423.DOC • 26- 2004283 88 5 The memory honeycomb m is measured across the first-memory honeycomb 38-th-electricity ^, changes the resistance of the second memory hive 32, Know the current applied to the first aggregate memory hive 38 and where? After measuring the resistance of the second memory material nest 32, measure the pressure across the first-memory honeycomb as the first pack, and then compare and analyze the difference between the first voltage and the second voltage to The reading of the second memory hive 32 is completed. For example, if the second voltage is less than the first voltage, the impedance of the first aggregated memory honeycomb 38 decreases as the resistance of the second memory honeycomb 32 changes. Therefore, the resistance of the second memory honeycomb decreases with the change of the resistance of the second memory honeycomb 32, and the original value of the second memory honeycomb 32 is the same as the original value of the aggregated memory honeycomb 38. A value related to the larger resistance value (that is, the second memory honeycomb originally exhibits the larger resistance value). If the second voltage is greater than the first voltage, the equivalent resistance of the first aggregated memory honeycomb% increases with the change in the resistance of the second memory honeycomb 'and the first memory honeycomb 3 8 The original value is a value related to the lower resistance value of the aggregate memory honeycomb 38. However, based on the change in the equivalent resistance, other architectures can be used to confirm the value, and several devices and methods can be used to complete these different architectures and the aforementioned architecture as an example. Referring to FIG. 40, a schematic diagram of a device 300 for reading MTJ in an MRAM is illustrated according to an exemplary embodiment of the present invention. Generally, the device 300 is a sense amplifier 300 including a pre-amplifier, a gain stage 303, and a cross-coupling locker 305. The pre-amplifier 30i (which is a current-voltage converter) includes a P-channel transistor 302, N-channel O: \ 90 \ 90423.DOC -27- 2004283 88 transistor 304, transmission pole 332, and capacitor 336. This gain phase includes, for example, a P-channel transistor (306, 312, 314), an N-channel transistor (308, 31, 316), and a transfer gate 337. The cross-coupling locker 305 includes a p-channel transistor (318, 320, 322: ^ N-channel transistor (324, 326, 328). The device 300 also includes a SCB input, which is set for receiving A signal is a logical complement of a signal sent to an SC input. In addition, an EQB input is configured to receive a signal, which is the logic of an Eq signal delivered to an EQ input. Complementary, and a leb input is configured to receive a LEB signal, which is a L-series mutual signal that is delivered to the L input of the L] g input # Further '-the first voltage output and the second voltage output system It is configured to send out a first output signal (VI) and a second output signal (V2). These are logically complementary. Referring to FIG. 1, FIG. 40 and FIG. 41, a read operation using the device 300 And a trigger write is explained according to an exemplary embodiment of the present invention. The equivalent resistance representing the equivalent resistance of the bearing body σ and the hidden honeycomb is coupled to the 1 ^ channel via a transistor (not shown). Controls the source of transistor 304, which uses the decoded 彳 § number to be gated for reading The value of the aggregate memory honeycomb. For example, the first aggregate memory honeycomb is coupled to the device as shown in θ 1 by activating the insulating transistor 18o and controlling the transistor 304. Continued bit line i 92 is closed to the same gate transistor 304 as shown in Figure 40. The common gate transistor 304 receives a gate: voltage (Vcg), which results in a drain The source / source current (Icg) passes through the common gate electrode body 304. The p-channel transistor 302 source polarizes the pre-amplified current (I.), while the σ-H P-channel transistor 3 0 2 passes through Transmission gate 3 3 2 is connected by a diode

O:\90\90423.DOC -28- 200428388 接,、係在该初始讀取循環期間被實現,該循環係表現於 圖41中所不之一高sc信號。當通過該控制電晶體川4之汲極 源極私飢(Icg)等於該預先放大器電流(Ip)時,該預先放大器 301係在一第一預先放大器節點334處發展一穩定狀態偏壓 。在該傳送閘極332啟動的情形下,在一第二預先放大器節 ”’、占333上之電壓係等於在第一預先放大器節點^“上的電壓 ,因此將該”先前,,磁化狀態儲存在該電容336上。 在儲存该”先前”磁化狀態之後,藉由該%信號低搖擺使 。亥傳迗閘極332失效。該記憶體蜂巢之數值或磁化狀態則是 利用旦% (assert)信號在該寫入字元線(wwl)以及寫入位 元線(WBL) 40上來觸發,如同在圖41中說明及參考圖}先前 所掐述。這會造成該記憶體蜂巢之已儲存值係被觸發從某 一狀態到該其他狀態。當該記憶體蜂巢係被觸發時,等效 屯阻330之電阻值係基於在初始化該記憶體蜂巢之觸發之 前的狀態增加或減少。該預先放大器係藉由在該第一預先 放大器節點334上發展一不同電壓來反應該電阻之變化(即 4 #效電阻之增加/減少係對應地增加/減少該電壓)。 在該第一預先放大器節點334上之電壓及在該第二預先 放大器卽點3 3 3上之已儲存電壓係被施加於該增益階段3 〇 3 之輸入,其分別地對應於P通道電晶體3 14之閘極及其他兩 個電晶體(306、312)之閘極。在觸發該記憶體蜂巢之後,該 等等化信號(即EQ信號及EQB信號)係被去宣稱化 (de-asserted),造成該傳送閘極337變成非傳導性及啟動該 增盈階段303。該增益階段303比較在該第二預先放大器節O: \ 90 \ 90423.DOC -28- 200428388, is realized during the initial read cycle, which is shown in the high sc signal in Figure 41. When the drain source (Icg) of the control transistor 4 is equal to the preamplifier current (Ip), the preamplifier 301 develops a steady state bias at a first preamplifier node 334. In the case where the transfer gate 332 is activated, the voltage on a second preamplifier section "', 333 is equal to the voltage on the first preamplifier node ^", so the "previous", magnetized state is stored On the capacitor 336. After storing the "previous" magnetization state, it is caused by the low swing of the% signal. The HT gate 332 is invalid. The value or magnetization state of the memory hive is used as a percentage (assert) The signal is triggered on the write word line (wwl) and the write bit line (WBL) 40, as described in Figure 41 and with reference to the figure}. This will cause the stored value of the memory hive to be Triggered from a certain state to the other state. When the memory honeycomb system is triggered, the resistance of the equivalent resistor 330 is increased or decreased based on the state before the memory hive was initialized. The preamplifier system The development of a different voltage on the first pre-amplifier node 334 reflects the change in the resistance (ie, the increase / decrease of the 4 # effective resistance is a corresponding increase / decrease in the voltage). In the first pre-amplifier, The voltage at point 334 and the stored voltage at the second preamplifier point 3 3 3 are applied to the input of the gain stage 3 03, which respectively correspond to the gates of the P-channel transistor 3 14 and The gates of the other two transistors (306, 312). After the memory hive is triggered, the equalization signals (ie, EQ signals and EQB signals) are de-asserted, causing the transmission gate. The pole 337 becomes non-conductive and starts the gain phase 303. The gain phase 303 is compared in the second preamp section

O:\90\90423 DOC -29- 200428388 點333上之”先前”狀態偏壓與在第一預先放大器節點Μ*上 之’’之後”狀態偏壓,然後放大這些提供給該第一輸出信號 (V1)及该第二輸出信號(V2)之偏壓,如同在圖41中所說明 。在這兩個輸出信號(V1/V2)被發展後,該等輸出信號表示 該等差動(时細加⑻電壓信號,該⑽言號及㈣信號係被 宣稱以啟動交又輕合鎖定器305,以放大且儲存該第一輸出 L號(V1)及忒第二輸出信號(V2)。該增益階段3反轉 (invert)來自該預先放大器狀態之信號,使得在該預先放大 為即點334上之電壓的增加會導致該第二輸出信號的 減少。該增益階段303允許該裝置(即感測放大器)3〇〇能夠感 測相當微小的電壓變化。在該記憶體蜂巢之狀態或數值之 間的電壓變化係相當大的情形下,該增益階段303之使用係 比較沒有關聯(relevance)。 ί考圖40及圖42,根據本發明之一示範實施例來說明使 用。亥政置300之頃取操作及一扭動觸發寫 入。該次序(在該次序中該等感測信號係被宣稱在圖42中) 係類似於參考圖41所描述之次序,除了在該寫入字元線及 該寫入位元線上之信號係被不同地去宣稱化以,,扭動,,該被 選擇的記憶體蜂巢,而沒有完成一觸發寫入。首先,在改 變該狀態或數值之前,有關的記憶體蜂巢之狀態或數值係 被讀取或量測。該,,先前”數值係被儲存在該電容336上。然 後該記憶體蜂巢會被移向該相反狀態,這係稱作為一扭動 如同圖42中所說明,該寫入字元線及之後該等寫入位元 線k唬係被宣稱以旋轉該磁場極化約9〇度(9〇。)或更少,以O: \ 90 \ 90423 DOC -29- 200428388 point 333 of the "previous" state bias and the "after" state bias on the first preamp node M *, and then amplify these to provide the first output signal The bias voltages of (V1) and the second output signal (V2) are as illustrated in Figure 41. After these two output signals (V1 / V2) are developed, the output signals represent the differential (time Fine voltage signals are added. The signal and signal are declared to activate the cross-closing lock 305 to amplify and store the first output L number (V1) and the second output signal (V2). The Gain stage 3 inverts the signal from the pre-amplifier state, so that an increase in voltage at the pre-amplification to point 334 results in a decrease in the second output signal. The gain stage 303 allows the device (ie, the sense The sense amplifier) 300 can sense a relatively small voltage change. In the case where the state of the memory honeycomb or the voltage change between the values is quite large, the use of the gain stage 303 is relatively unrelated. Figure 40 and Figure 42, according to the present invention An exemplary embodiment is used to illustrate the use. The 300 fetch operation and a twist trigger write. The sequence (in which the sensing signals are declared in FIG. 42) is similar to the reference FIG. 41 The described sequence, except that the signals on the write word line and the write bit line are differently declaratively, twisted, the selected memory hive without completing a trigger write First, before changing the state or value, the state or value of the relevant memory hive is read or measured. The "previous" value is stored on the capacitor 336. Then the memory hive will Is moved to the opposite state, which is referred to as a twist as illustrated in FIG. 42. The writing word line and the writing bit lines thereafter are declared to rotate the magnetic field polarization by about 9 °. Degrees (90 °) or less to

O:\90\90423.DOC -30- 2004283 88 改變有關的記憶體蜂巢之電阻。然後該寫入字元線及寫入 位疋線仏號係被保持著一段預先決定的時間,以確保咳第 一輸出信號⑺)與該第二輸出信號(V2)能夠充分地分隔要 被又又耦合鎖定器305所鎖住的扭動數值。在經過該段預先 決定的時間之後,在該寫入字元線信號被去宣稱化之前’ 该寫入位7G線係先被去宣稱化,以允許該磁場極化能夠返 回到該原始方位。 攻扭動操作允許該記憶體蜂巢之電阻值的確定,其係藉 由當改變而實際上沒有改變該蜂巢之狀態時,決定該記^ 體蜂巢之電阻是增加還是減少。該裝置綱有效地執行一比 較,以提供在該第-輸出信號(V1)與該第二輸出信號⑽ 之間的差動而沒有改變該記憶體蜂巢之狀態。例如,假如 該記憶體蜂巢之電阻在該扭動期間係A於在該扭動"之前" 的電阻,則該蜂巢之電流狀態係為一低電阻。假如該記憶 體蜂巢之電阻在該扭動期間係小於在該扭動”之前,,的電^ ’則該蜂巢之電流狀態係為一高電阻。 一般上,該裝置300使用一電流電壓轉換器、一取樣及保 持電路,及-鎖定器。該電路也可以包含—增益/比較器階 段:如同圖40中所示。然而’如同在此所討論之用以執行 該感測放大器功能之該類型電路並沒有受限於先前在圖糾 中所彳田述之電路。例如,該增益階段3〇3可以被實行以作為 一差動放大器或適合用以提供所需增益之其他類型放大器。 參考圖43,根據本發明之其他示範實施例說明一用以讀 取在一 MRAM中之MTJ之裝置5〇〇的概略圖示。—般地,該 O:\90\90423.DOC -31 - 2004283 88 裝置500(其係為一感測放大器)係包含預先放大器50卜交叉 耦合鎖定器503、電容(508、524)及傳送閘極(506、510、522 、5 26)。該裝置也包含一 SCB輸入,其配置用以接收一 SCB 信號,該S C B信號係為在一 S C輸入處所接收之一 S C信號之 邏輯互補。此外,一 SC2B輸入係被配置以接收一 SC2B信號 ,該SC2B信號係為在一 SC2輸入處所接收之一 SC2信號之邏 輯互補,及一 SCMPB輸入係被配置以接收一 SCMPB信號, 該SCMPB信號係為在一 SCMP輸入處所接收之一 SCMP信號 之邏輯互補。再者,一 EQB輸入係被配置以接收一 EQB信 號,該EQB信號係為在一 EQ輸入處所接收之一 EQ信號之邏 輯互補,一 LEB輸入係被配置以接收一LEB信號,該LEB信 號係為在一LE輸入處所接收之一LE信號之邏輯互補,而一 第一輸出信號(VI)及一第二輸出信號(V2)係為邏輯互補。 該裝置500係類似於該裝置300,其係如同參考圖40所描 述,及意圖要使用於當讀取在一 MRAM中之MTJ時,如同先 前在該詳述中所描述。然而,該裝置500係不同於圖40之裝 置300,其中獨立電容係用以儲存該先前及之後狀態或數值 。該”先前ff磁化狀態或數值可以利用觸發該記憶體蜂巢或 扭動該記憶體蜂巢來決定,如同先前參考圖40之裝置300所 描述。 一般地,具有如同所描述之裝置500之一 MRAM之記憶體 蜂巢之讀取包含產生該聚集記憶體蜂巢之一第一電壓,該 聚集記憶體蜂巢具有有關的記憶體蜂巢,及儲存該電壓在 一第一電容508内。有關之記憶體蜂巢接著係被觸發到該其 O:\90\90423.DOC -32- 200428388 他數值或狀態。具有相關之記憶體蜂巢之聚集記憶體蜂巢 之一第二電壓係被產生而儲存在一第二電容524。然後,該 έ己憶體蜂巢在該觸發操作之前所產生之電壓係被比較於該 記憶體蜂巢在該觸發操作之後所產生之電壓,其係藉由觀 察该父叉輕合鎖定器503如何穩定下來。假如該”之前”電壓 大於該”之後”電壓,則該記憶體蜂巢之原始狀態或電阻是 為一咼狀恝或南電阻值。相反地,假如該記憶體蜂巢所產 生的’’之W ’’電壓小於該”之後”電壓,則該記憶體蜂巢之原始 狀態或電阻是為一低狀態或低電阻值。 — 參考圖1、圖43及圖44,根據本發明之一示範實施例說明 具有該裝置500之觸發讀取操作。在MRAM之,,觸發,,讀取期 門 水木。己丨思體蜂巢電阻(其係以該等效電阻(Req)53〇來 表示,如同在圖43中所示)係經由電晶體(未顯示)被耦合到 N通道控制電晶體5G4之源極,該等未顯示的電晶體係由已 解碼化號所間極化以讀取該聚集記憶體蜂巢之數值。例如 ,如同在圖1所示之第一聚集記憶體蜂巢38係耦合到該裝置 ,其係藉由啟動如同在圖43中所示之該絕緣電晶體 及共同閘極電晶體504來達成。該N通道共同間極電晶體$⑽ 接收-W極偏魔(veg),導致—沒極/源極電流(u通過該共 7閘極電晶體504。該P通道電晶體5〇2係被二極體連接,以 提供-預先放大器電流(Ip)。例如傳送閑極寫傳導,通過 該傳送閘極506之讀取電㈣儲存在該第_電容⑽上。在 經過一段預先決定的時間以讓在該第一電容別處的之電 屋穩定之後,SC信號及SCB信號係被去宣稱化,讓該傳送O: \ 90 \ 90423.DOC -30- 2004283 88 Change the resistance of the related memory hive. Then, the writing word line and the writing bit line 仏 are kept for a predetermined time to ensure that the first output signal ⑺) and the second output signal (V2) can be sufficiently separated from each other. The torque value locked by the lock 305 is coupled. After the predetermined period of time has elapsed, before the write word line signal is de-declared ', the write bit 7G line is first de-declared to allow the magnetic field polarization to return to the original orientation. Tapping operation allows the resistance value of the memory honeycomb to be determined by determining whether the resistance of the memory honeycomb is increased or decreased by changing the state of the honeycomb without actually changing the state of the honeycomb. The device effectively performs a comparison to provide a differential between the first output signal (V1) and the second output signal ⑽ without changing the state of the memory honeycomb. For example, if the resistance of the memory honeycomb during the twist is A before the twist ", the current state of the honeycomb is a low resistance. If the resistance of the memory honeycomb during the twisting period is lower than that before the twisting, the current state of the honeycomb is a high resistance. Generally, the device 300 uses a current-voltage converter , A sample and hold circuit, and a latch. The circuit may also include a gain / comparator stage: as shown in Figure 40. However, 'as discussed here to perform the type of sense amplifier function The circuit is not limited to the circuit previously described in the figure. For example, the gain stage 303 can be implemented as a differential amplifier or other type of amplifier suitable for providing the required gain. Refer to the figure 43, according to other exemplary embodiments of the present invention, a schematic diagram of a device 500 for reading MTJ in an MRAM is explained. Generally, the O: \ 90 \ 90423.DOC -31-2004283 88 The device 500 (which is a sense amplifier) includes a pre-amplifier 50, a cross-coupling lock 503, a capacitor (508, 524), and a transmission gate (506, 510, 522, 526). The device also includes a SCB Input configured to receive a SCB signal, which is a logical complement of one SC signal received at an SC input. In addition, an SC2B input is configured to receive an SC2B signal, which is an SC2 received at an SC2 input. The signals are logically complementary, and an SCMPB input is configured to receive an SCMPB signal, the SCMPB signal is logically complementary to an SCMP signal received at an SCMP input. Furthermore, an EQB input is configured to receive an EQB Signal, the EQB signal is a logical complement of an EQ signal received at an EQ input, a LEB input is configured to receive a LEB signal, the LEB signal is the logic of an LE signal received at an LE input Complementary, and a first output signal (VI) and a second output signal (V2) are logically complementary. The device 500 is similar to the device 300, as described with reference to FIG. 40, and intended to be used in When reading the MTJ in an MRAM, it is as previously described in the detailed description. However, the device 500 is different from the device 300 of FIG. 40 in which a separate capacitor is used to store the previous After the state or value of the "previous ff magnetization states or can be used to trigger the memory of the honeycomb body or the honeycomb twisting the memory is determined, as previously with reference to FIG 40. The apparatus 300 is described. Generally, reading a memory hive with one of the MRAMs of the device 500 as described includes generating a first voltage of the aggregate memory hive, the aggregate memory hive having an associated memory hive, and storing the voltage at Within a first capacitor 508. The relevant memory hive is then triggered to the other value or state of O: \ 90 \ 90423.DOC -32- 200428388. A second voltage of an aggregated memory honeycomb having an associated memory honeycomb is generated and stored in a second capacitor 524. Then, the voltage generated by the memory cell hive before the trigger operation is compared to the voltage generated by the memory hive after the trigger operation, which is observed by observing how the parent fork light closing latch 503 is stable. Come down. If the "before" voltage is greater than the "after" voltage, the original state or resistance of the memory hive is a zigzag or south resistance value. Conversely, if the voltage 'W' generated by the memory honeycomb is lower than the "after" voltage, the original state or resistance of the memory honeycomb is a low state or a low resistance value. — Referring to FIG. 1, FIG. 43 and FIG. 44, a triggered read operation with the device 500 will be described according to an exemplary embodiment of the present invention. In MRAM ,, trigger, and read period gate Mizuki. The body honeycomb resistance (represented by the equivalent resistance (Req) 53), as shown in Figure 43) is coupled to the source of the N-channel control transistor 5G4 via a transistor (not shown) These unshown transistor systems are polarized between decoded numbers to read the value of the aggregated memory honeycomb. For example, the first aggregate memory honeycomb 38 as shown in FIG. 1 is coupled to the device, which is achieved by activating the insulating transistor and the common gate transistor 504 as shown in FIG. 43. The N-channel common-mode transistor $ ⑽ receives -W-pole bias (veg), resulting in-non-polar / source current (u passes through a total of 7 gate transistors 504. The P-channel transistor 502 is Diodes are connected to provide-preamplifier current (Ip). For example, transfer idler write conduction, the read voltage through the transfer gate 506 is stored on the _ capacitor. After a predetermined period of time to After stabilizing the electric house elsewhere in the first capacitor, the SC signal and SCB signal are de-declarated, allowing the transmission

O:\90\90423.DOC -33 - 2004283 88 閘,50^b多句變成非傳導。有關之記憶體蜂巢之數值或狀態 接者係错由旦稱信號在該寫入字元線24及寫入位元線仙上 來觸發,如同在圖i及圖40中所說明。這造成有關之記憶體 蜂巢^儲存數值會從某個未知狀態或數值觸發到另一個未 之狀態或數值。當該記憶體蜂巢係被觸發時,該單記憶體 蜂^之電阻值將會增加或減少,而結果該聚集記憶體蜂巢 包I1值之加或減少係取決於在觸發該個別記憶體蜂巢 之前的狀態。該預先放大器5〇1藉由發展一不同電壓在該第 笮〃、’ 534上來反應電阻的變化(即增加/減少該電阻會對應 地牦加/減> δ亥電壓)。在該第一節點534上之新電壓接著係 經由傳送閘極526被儲存在該第二電容524,在其之後,該 SC2信號及SC2B係被去宣稱化。在該,,先前"及"之後,,電壓都 被儲存在該等電容(508、524)後,等化信號(即該EQ信號及 該EQB信號)係被去宣稱化,因此造成該傳送閘極527變成 非傳導。該SCMP信號及該SCMPB信號係被宣稱以使得該等 傳送閘極(51〇、522)具傳導性,而將在該等電容(5〇8、534) 所儲存的電壓提供給交叉耦合鎖定器5〇3。該乙£信號及leb 信號係被宣稱以使得交叉耦合鎖定器5〇3能夠儲存對應於 有關之記憶體蜂巢之原始狀態或數值的狀態或數值。例如 ,假如在該第一電容508所儲存之”先前’,電壓係大於在該第 一龟谷524所儲存之之後’’電壓,則該交叉搞合鎖定器別^ 之第一輸出#唬(VI)及第二輸出信號(V2)將會指示有關之 5己隐體蜂巢之原始狀態或數值係大於該觸發狀態或數值。 如同先前在該詳述中所描述,該原始狀態或數值可以使 O:\90\90423.DOC -34- 200428388O: \ 90 \ 90423.DOC -33-2004283 88 gate, 50 ^ b sentences become non-conductive. The value or status of the related memory honeycomb is wrongly triggered by the signal on the write word line 24 and the write bit line cent, as illustrated in Fig. I and Fig. 40. This causes the relevant memory Hive ^ stored value to be triggered from an unknown state or value to another pending state or value. When the memory hive is triggered, the resistance value of the single memory hive ^ will increase or decrease, and as a result, the addition or decrease of the value of the aggregate memory hive pack I1 depends on before triggering the individual memory hive. status. The pre-amplifier 501 responds to the change in resistance by developing a different voltage across the 笮 〃, 534 (that is, increasing / decreasing the resistance will correspondingly increase / decrease > δHai voltage). The new voltage at the first node 534 is then stored in the second capacitor 524 via the transfer gate 526, after which the SC2 signal and SC2B are de-declared. After that, before " and ", the voltages were stored in the capacitors (508, 524), and the equalized signals (that is, the EQ signal and the EQB signal) were de-declarated, thus causing the The transmission gate 527 becomes non-conductive. The SCMP signal and the SCMPB signal are claimed to make the transmission gates (51, 522) conductive, and the voltage stored in the capacitors (508, 534) is provided to the cross-coupling latch. 503. The B signal and the Leb signal are declared so that the cross-coupling locker 503 can store the state or value corresponding to the original state or value of the relevant memory hive. For example, if the "previous" voltage stored in the first capacitor 508 is greater than the "after" voltage stored in the first turtle valley 524, the first output of the cross-fit latch ^ VI) and the second output signal (V2) will indicate that the original state or value of the 5 hidden body honeycomb is greater than the trigger state or value. As previously described in the detailed description, the original state or value can make O: \ 90 \ 90423.DOC -34- 200428388

用一”扭動”操作來決定,而該裝置5〇〇也可以利用該一"扭 動”操作來決定該原始狀態或數值。參考圖45,一說明用實 施例係提供用以藉由扭動該記憶體蜂巢之磁性極化(即改 變該磁化狀態)及使用裝置500來感測該結果來讀取在一 MRAM中之肋。在圖45中所說明之次序仙似於先前在圖 :4中所說明之次序,除了該寫入字元線及該寫入位元線信 號係以父替方式被施加以扭動有關之記憶體蜂巢,而不是 觸發該記憶體蜂巢狀態。初始地,在該聚集記憶體蜂巢中 之記憶體蜂巢的磁化狀態改變之前,集記憶體蜂巢之 電氣數值係被讀取或量測。該”之前”數值係被儲存在該第 包谷508。該記憶體蜂巢隨後係被旋轉朝向該其他磁化狀 態,而該聚集記憶體蜂巢之”扭動,,等效數值係被儲存在該 第一電容524。該寫入字元線信號係被宣稱,其係緊接著該 寫入位元線之宣稱,以部份地改變該記憶體蜂巢之磁化狀A "twist" operation is used to determine, and the device 500 can also use the "twist" operation to determine the original state or value. Referring to FIG. 45, an illustrative embodiment is provided for Twist the magnetic polarization of the memory honeycomb (ie, change the magnetization state) and use the device 500 to sense the result to read the ribs in an MRAM. The sequence illustrated in FIG. 45 is similar to that previously described in FIG. : 4 except that the write word line and the write bit line signal are applied in a parental manner to twist the relevant memory hive, instead of triggering the state of the memory hive. Initially Before the magnetization state of the memory hive in the aggregate memory hive is changed, the electrical value of the memory hive is read or measured. The "previous" value is stored in the Dibaogu 508. The memory The honeycomb is then rotated toward the other magnetized state, and the "hive of the aggregated memory hive" is twisted, and the equivalent value is stored in the first capacitor 524. The write word line signal is claimed, which follows the claim of the write bit line to partially change the magnetization state of the memory honeycomb.

態(例如讓該磁性極化從該原始方位旋轉到大約9〇度(9〇。)) 。該部份改變會改變該聚集記憶體蜂巢之電阻,而有關之 記憶體蜂巢係為該聚集記憶體蜂巢之一部份,而電阻差可 用以決定該原始狀態,如同先前在該詳述中所描述。該寫 入字元線及寫入位元線信號接著係保持不變一段預先決定 的時間,以確保該第一輸出信號(V1)與該第二輸出信號 (V2)能夠充分地分隔要被該交叉耦合鎖定器5〇3所鎖定之 扭動數值。經過該段預先決定時間之後,該寫入位元線侍 號係在a玄寫入子元線彳自號被去宣稱化之前被去宣稱化, 讓該磁場極化能夠回到該原始方位。該裝置5〇〇有效地執行 O:\90\90423 DOC -35- 2004283 88 一比較以提供一結果’該結果係以在該第-輸出信號(VI) 與该弟一輸出信號(V2)之間的差動的形式來表示。假如該 扭動匕電阻值係大於該”之前"電阻值,則該記憶體蜂巢之磁 化^或數值係為—低值。假如該,,扭動”電阻值係小於該 "之前”電阻值’則該記憶體蜂巢之目前磁化狀態或數值係 為一高值, 存在其他寫入字元線信號及位元字元線信號組合可能可 以二ft發明來扭動該記憶體蜂巢。例如,該記憶體蜂巢 之口 Η刀疑轉,因此該聚集記憶體蜂巢之電阻一部份的改 變,可以藉由只宣稱該等寫入線之一來獲得。該寫入位元 線W可=宣稱而該寫入字元線信號係保持低下。同樣地 斤兄月“也例假設該等觸發及扭動電流係為單向。在其 他實施例中’該等觸發及扭動電流可以是雙向。 '、 —雖然至少有—示範實施例已經表現在本發明之前面詳細 :述中二但是應了解的是仍存在著大量變化。也應了解的 是該示範實施例或嗜笪 — /、祀貫施例都只是範例,而並不是 要以任何方式來限制本發明之範圍 '應用性,或配置。更 確切地,該前面詳細描述係提供熟悉該項技藝者用以實行 本發明之—示範實施例之便利指示。應了解各種變化都可 以被實行在一示笳眚#加山 犯實轭例中所描述之元件的功能及安排中 ’而在不丨孛離本於明尤 範圍。 纟月在該相屬申請專利範圍内所提出之 【圖式簡單說明】 本^月在此之後將連結該等下列圖示加以描述,其中相State (such as rotating the magnetic polarization from the original orientation to about 90 degrees (90 °)). This partial change will change the resistance of the aggregate memory honeycomb, and the related memory honeycomb is part of the aggregate memory honeycomb, and the resistance difference can be used to determine the original state, as previously described in the detailed description description. The write word line and write bit line signals then remain unchanged for a predetermined period of time to ensure that the first output signal (V1) and the second output signal (V2) can be sufficiently separated to be separated by the The twist value locked by the cross coupling locker 503. After the predetermined period of time has elapsed, the writing bit line number is de-declared before the a-line writing sub-line number is de-declared, so that the magnetic polarization can return to the original orientation. The device 500 effectively performs O: \ 90 \ 90423 DOC -35- 2004283 88 A comparison to provide a result 'The result is obtained between the-output signal (VI) and the output signal (V2) Between the differential form. If the resistance value of the twisting blade is greater than the "before" resistance value, the magnetization of the memory honeycomb ^ or the value is-a low value. If so, the twisting resistance value is less than the "before" resistance Value ', the current magnetization state or value of the memory hive is a high value, and there are other combinations of written word line signals and bit word line signals that may be invented to twist the memory hive. For example, The mouth of the memory honeycomb is turned suspiciously, so a change in the resistance of the aggregate memory honeycomb can be obtained by declaring only one of the write lines. The write bit line W may = claim And the writing word line signal is kept low. Similarly, it is assumed that the triggering and twisting currents are unidirectional. In other embodiments, the triggering and twisting currents may be bidirectional. ', Although at least-the exemplary embodiment has been shown in detail in the foregoing description of the present invention: in the second, but it should be understood that there are still a lot of changes. It should also be understood that this exemplary embodiment or entrapment-/, sacrifice embodiment is only an example, and is not intended to limit the scope of the present invention 'applicability, or configuration in any way. Rather, the foregoing detailed description provides convenient instructions for those skilled in the art to practice the present invention-an exemplary embodiment. It should be understood that various changes can be implemented in the functions and arrangements of the elements described in the example shown in # 加 山 frustration yoke, without departing from the scope of the present invention. Lei Yue put forward within the scope of the patent application for this phase. [Schematic description] This month will be described after linking the following diagrams, where the phase

O:\90\90423.DOC -36- 2004283 88 同數字表示相同元件,及 圖1係為根據本發明之一繁一示益鲁 x ^ ^ 弟不乾貫靶例之MRAM的概 略圖示; 圖2係為根據本發明之一繁一示絡 ^ ^ ^ 乐不乾實施例之MRAM的簡 化側視圖; 圖3係為圖2中所示之MTJ的分解圖; 圖4係為根據本發明之一第二示範實施例之mtj的簡化 側視圖; 圖5係為圖4之MRJ的簡化平面圖; 圖ό係為g兄明磁場$且^^阁本 穷、、且。之圖表,该等組合係在圖4之mtj 中產生直接寫入、觸發寫入及沒有切換; 圖7係為用於在圖4之_中之直接寫入或觸發寫入之磁 場的時序圖; 圖8-12說明在觸發寫入期間該等磁矩之移動,其導致從 一第一二進位值變成—第二二進位值; 圖1 3-17 3兄明在觸發寫入期間該等磁矩之移動,其導致從 該第二二進位值變成該第一二進位值; 圖1 8-22 s兄明在直接寫入期間該等磁矩之移動,其導致從 一第—二進位值變成一第二二進位值; 圖23-27說明在具有圖4之贿之第一二進位值之直接寫 入期間該等磁矩之移動’其已經處於當該直接寫入開始時 提供該第一二進位值之方位; 圖28-32說明在圖33中 磁矩之移動; 所示之一單磁場之應用期間該O: \ 90 \ 90423.DOC -36- 2004283 88 The same numerals indicate the same elements, and FIG. 1 is a schematic diagram of a MRAM according to one of the present inventions. FIG. 2 is a simplified side view of the MRAM according to one embodiment of the present invention; FIG. 3 is an exploded view of the MTJ shown in FIG. 2; and FIG. 4 is a view according to the present invention. A simplified side view of the mtj of a second exemplary embodiment; FIG. 5 is a simplified plan view of the MRJ of FIG. 4; and FIG. In the graph, these combinations generate direct write, trigger write, and no switching in mtj in FIG. 4; FIG. 7 is a timing diagram of the magnetic field used for direct write or trigger write in __ in FIG. 4 Figure 8-12 illustrates the movement of these magnetic moments during a triggered write, which results in a change from a first binary value to a second binary value; Figure 1 3-17 The movement of the magnetic moment causes it to change from the second binary value to the first binary value; Figure 1-8-22 The movement of these magnetic moments during direct writing, which results in a first-binary The value becomes a second binary value; Figures 23-27 illustrate the movement of these magnetic moments during the direct write with the first binary value of the bribe of Figure 4 'which is already in place when the direct write begins The orientation of the first binary value; Figure 28-32 illustrates the movement of the magnetic moment in Figure 33;

O:\90\90423.DOC -37- 2004283 88 圖33係為將一單磁場應用於圖4之MTJ的時序圖· 圖34係為圖iiMRAM的剖面圖,其係根據本發明之一示 範實施例形成在一基板上; 圖35係為根據本發明之一第二示範實施例之mrma的概 略圖示; 圖36係為圖35iMRAM的剖面圖,其係根據本發明之一 示範實施例形成在一基板上; 圖37係為根據本發明之一第三示範實施例之mrma的概 略圖示; _ 圖38係為圖37iMRAM的剖面圖,其係根據本發明之一 示範實施例形成在一基板上; 圖39係為用以讀取在根據本發明之一示範實施例之 MRAM中之MTJ之方法的流程圖; 圖40係為根據本發明之―第—示範實施w,_用以讀取 一記憶體蜂巢(例如—感測放大器)之裝置之概略圖示; 圖41係為使用圖40之裝置以用於觸發讀取之時序圖; 圖42係為使用圖4G之裝置以用於擺動讀取之時序圖; 圖43係為根據本發明之一另一示範實施例,一用以讀取 。己f思體蜂巢(例如一感測放大器)之裝置之概略圖示; 圖44係為使用圖43之裝置以用於觸發讀取之時序圖;及 圖45係為使用圖43之裝置以用於擺動讀取之時序圖。 【圖式代表符號說明】 20 磁阻隨機存取記憶體 22 寫入字元線O: \ 90 \ 90423.DOC -37- 2004283 88 Figure 33 is a timing diagram of applying a single magnetic field to the MTJ of Figure 4. Figure 34 is a cross-sectional view of Figure iiMRAM, which is an exemplary implementation according to the present invention Examples are formed on a substrate; FIG. 35 is a schematic diagram of a mrma according to a second exemplary embodiment of the present invention; FIG. 36 is a cross-sectional view of FIG. 35iMRAM, which is formed according to an exemplary embodiment of the present invention. On a substrate; FIG. 37 is a schematic diagram of a mrma according to a third exemplary embodiment of the present invention; FIG. 38 is a cross-sectional view of FIG. 37 iMRAM, which is formed on a substrate according to an exemplary embodiment of the present invention Fig. 39 is a flowchart of a method for reading MTJ in MRAM according to an exemplary embodiment of the present invention; Fig. 40 is a ―first embodiment of the present invention w, _ for reading A schematic diagram of a memory honeycomb (eg, a sense amplifier) device; Figure 41 is a timing diagram using the device of Figure 40 for triggering reading; Figure 42 is a device using Figure 4G for swinging Read timing diagram; Figure 43 is another exemplary implementation according to the present invention , One for reading. Fig. 44 is a schematic diagram of a device that uses a honeycomb (such as a sense amplifier); Fig. 44 is a timing diagram using the device of Fig. 43 for triggering reading; and Fig. 45 is a diagram using the device of Fig. 43 for Timing chart for wobble read. [Illustration of Symbols in the Drawings] 20 Magnetoresistive Random Access Memory 22 Writing Character Lines

O\90\90423.DOC -38- 200428388 24 寫入字元線 26 寫入字元線 28 寫入字元線 30 記憶體蜂巢 32 記憶體蜂巢 34 記憶體蜂巢 36 記憶體蜂巢 38 聚集記憶體蜂巢 40 寫入線 42 寫入線 44 寫入線 46 寫線 48 聚集記憶體蜂巢 50 聚集記憶體蜂巢 52 聚集記憶體蜂巢 54 磁性穿隧接面 55 磁性穿隧接面 56 磁性區域 57 寫入字元線 58 磁性區域 59 線 60 穿隧障礙區域 62 厚度 64 厚度 O:\90\90423.DOC -39 200428388 66 長度 68 寬度 74 厚度 76 磁性穿隧接面 78 線 80 寫入字元線 82 自由磁性區域 84 磁性區域 86 穿隧障礙區域 88 非磁性層 94 反鐵磁層 96 鐵磁層 98 合成磁矩 100 合成磁矩 10 2 磁矩 104 磁矩 110 異向性容易轴 116 磁場 118 磁場 120 電場 122 電場 124 直接寫入區域 126 觸發寫入區域 128 無切換區域 O:\90\90423.DOC -40- 200428388 130 正 電流 132 負 電流 134 磁 場 136 磁 場 138 正 電流 140 負 電流 142 正 字元磁場 144 負 字元磁場 170 磁 性穿 隧 接 面 終端 172 磁 性穿 隧 接 面 終端 173 群組絕緣 電 晶 體 174 磁 性穿 隧 接 面 終端 175 群 組絕 緣 電 晶 體 176 磁 性穿 隧 接 面 終端 177 群組絕 緣 電 晶 體 178 磁 性穿 隧 接 面 終端 179 讀 取位 元 線 180 磁 性穿 隧 接 面 終端 181 讀 取位 元 線 184 群組絕 緣 電 晶 體 186 字 元線 188 磁 性穿 隧 接 面 終端 189 5貝 取位 元 線 192 石貝 取位 元 線 O:\90\90423 DOC -41 - 200428388 194 磁性穿隧接面終端 198 源極 200 方法 202 記憶體蜂巢 204 磁性穿隧接面 206 記憶體蜂巢 300 感測放大器 301 預先放大器 302 P通道電晶體 303 增益階段 304 N通道控制電晶體 305 鎖定器 330 等效電阻 332 傳送閘極 333 預先放大器節點 334 預先放大器節點 336 電容 337 傳送閘極 500 裝置 501 預先放大器 502 P通道電晶體 503 鎖定器 504 N通道共同閘極電晶體 506 電晶體閘極 O:\90\90423.DOC -42 200428388 508 電容 524 電容 526 傳送閘極 527 傳送閘極 534 節點O \ 90 \ 90423.DOC -38- 200428388 24 Write character line 26 Write character line 28 Write character line 30 Memory Hive 32 Memory Hive 34 Memory Hive 36 Memory Hive 38 Gather Memory Hive 40 write line 42 write line 44 write line 46 write line 48 aggregate memory hive 50 aggregate memory hive 52 aggregate memory hive 54 magnetic tunnel junction 55 magnetic tunnel junction 56 magnetic area 57 write character Line 58 Magnetic area 59 Line 60 Tunnel barrier area 62 Thickness 64 Thickness O: \ 90 \ 90423.DOC -39 200428388 66 Length 68 Width 74 Thickness 76 Magnetic tunneling interface 78 Line 80 Write word line 82 Free magnetic area 84 magnetic region 86 tunneling obstacle region 88 non-magnetic layer 94 anti-ferromagnetic layer 96 ferromagnetic layer 98 composite magnetic moment 100 composite magnetic moment 10 2 magnetic moment 104 magnetic moment 110 anisotropic axis 116 magnetic field 118 magnetic field 120 electric field 122 electric field 124 Direct write area 126 Trigger write area 128 No switching area O: \ 90 \ 90423.DOC -40- 200428388 130 Positive current 132 Negative current 134 Magnetic field 136 Magnetic field 138 Positive current 140 Negative current 142 Positive character magnetic field 144 Negative character magnetic field 170 Magnetic tunneling junction terminal 172 Magnetic tunneling junction terminal 173 Group insulated transistor 174 Magnetic tunneling junction terminal 175 Group insulated transistor 176 Magnetic tunneling junction Surface termination 177 Group insulated transistor 178 Magnetic tunneling junction terminal 179 Read bit line 180 Magnetic tunneling junction terminal 181 Read bit line 184 Group insulated transistor 186 Word line 188 Magnetic tunnel junction Terminal 189 5 Beam bit line 192 Shibei Bit line O: \ 90 \ 90423 DOC -41-200428388 194 Magnetic tunneling junction terminal 198 Source 200 Method 202 Memory honeycomb 204 Magnetic tunneling junction 206 Memory honeycomb 300 Sense amplifier 301 Pre-amplifier 302 P-channel transistor 303 Gain stage 304 N-channel control transistor 305 Locker 330 Equivalent resistance 332 Transmission gate 333 Pre-amplifier node 334 Pre-amplifier node 336 Capacitance 337 Transmission gate 500 Device 501 Pre- Amplifier 502 P-channel transistor 5 03 Locker 504 N-channel common gate transistor 506 Transistor gate O: \ 90 \ 90423.DOC -42 200428388 508 Capacitance 524 Capacitance 526 Transmission gate 527 Transmission gate 534 Node

O:\90\90423 DOCO: \ 90 \ 90423 DOC

Claims (1)

200428388 拾、申請專利範圍: L 一種用以讀取在一 MRAM之聚集記憶體蜂巢内之MTJ的 方法,包含以下步驟: 決定一第一電氣值,該電氣值至少部分係與該聚集記 憶體蜂巢之電阻有關; 觸發在該MRAM之聚集記憶體蜂巢内的MTJ ; 決定一第二電氣值,該電氣值至少部分係與該聚集記 憶體蜂巢在該MTJ之觸發後的電阻有關; 分析該第一電氣值與該第二電氣值之間的差異。 — 2·如申請專利範圍第1項之用以讀取在該MRAM之聚集記 憶體蜂巢内的MTJ的方法;其中該決定至少部分係與該聚 集記憶體蜂巢之電阻有關的第二電氣值係包含在該觸發 在該MRAM之聚集記憶體蜂巢内2MTJ之後,量測橫跨該 聚集記憶體蜂巢之一第二電壓。 3. 一種MRAM,其包含·· 一第一記憶體蜂巢,其具有一第一磁性穿隧接面(MTJ) ,·及 一第二記憶體蜂巢,其具有—第二MTJ及至少部分形成 一具有該第-記憶體蜂巢之聚集記憶體蜂巢,其中該第 -記憶體蜂巢及該第二記憶體蜂巢係如此配置,使 第一 MTJ之讀取係包含·· 亍邊 :第-電氣值之決定,該電氣值至少部份係與該产 集記憶體蜂巢之電阻有關; κ 觸發該第一記憶體蜂巢之第一 MTJ ,· O:\90\90423.DOC 4. 一第二電氣值之決定,該電氣值至少部份係與該聚 集記憶體蜂巢在觸發該第一 MTJ之後的電阻有關; 5. 一在該第一電氣值與該第二電氣值之間差異的分析。 如申請專利範圍第3項之MRAM,該第一MTJ之該讀取尚 包含一已知電流對該MRAM之聚集記憶體蜂巢之應用。 一種磁阻隨機存取記憶體(MRAM),其包含: 一第一位元線; 弟σ己隐體蜂巢,其鄰近於該第一位元線及係由— 第一磁性穿隧接面(MTJ)所組成; · 一第二記憶體蜂巢至少部份形成一具有該第一記憶體 蜂巢之第一聚集記憶體蜂巢,及係由串接該第一記 蜂巢之一第二MTJ所組成;及 第一字7L線,其鄰近於該第一記憶體蜂巢及該第二 記憶體蜂巢。 種磁阻隨機存取記憶體(MRAM),其包含: 一第一位元線; —第—聚集記憶體蜂巢,其鄰近於一第一字元線,該 弟一聚集記憶體蜂巢具有一第一複數個記憶體蜂巢,其 包令^ 石兹柯空_LA· » 隱接面(MTJ) ’排除一絕緣裝置,及串接該 一 a本5己憶體蜂巢之其他記憶體蜂巢;及 —第— 一 立70線’其鄰近於第一聚集記憶體蜂巢之該等 複數個記悴髀鉻 U篮蜂巢之至少一個。 如申清專利範園 视固弟6項之MRAM,其中該等第一複數個記 憶體蜂巢之备— 個係以串聯的方式與該第一聚集記憶體 O:\90\90423.DOC -2- 200428388 蜂巢之/、他5己憶體蜂巢相連接,而排除與該第一聚集記 憶體蜂巢之其他記憶體蜂巢平行式連接。 8· 一種磁阻隨機存取記憶體(MRAM),其包含: 一第一字元線; 一第—記憶體群組,其鄰近於該第一字元線,該第一 記憶體群組包含_第—記憶體蜂巢,《以平行的方式與 一第- C憶體蜂巢相搞合’而該第—記憶體蜂巢及該第 二記憶體蜂巢係由一磁性穿隧接面(MTJ)所組成;200428388 Scope of patent application: L A method for reading MTJ in an aggregate memory cell hive of MRAM, including the following steps: determining a first electrical value, the electrical value being at least partially related to the aggregate memory cell hive The resistance is related to the triggering of the MTJ in the aggregate memory cell of the MRAM; determining a second electrical value, which is at least partly related to the resistance of the aggregate memory cell after the MTJ is triggered; analyzing the first The difference between the electrical value and the second electrical value. — 2 · The method for reading the MTJ in the aggregate memory honeycomb of the MRAM according to item 1 of the patent application scope; wherein the decision is at least partly related to the second electrical value system related to the resistance of the aggregate memory honeycomb A second voltage across one of the aggregated memory honeycombs is measured after the triggering in the aggregated memory honeycomb of the MRAM. 3. A MRAM comprising: a first memory honeycomb having a first magnetic tunneling junction (MTJ) and a second memory honeycomb having-a second MTJ and at least partially forming a An aggregated memory hive with the first-memory hive, where the first-memory hive and the second memory hive are configured so that the reading system of the first MTJ contains ... It was determined that the electrical value was at least partly related to the resistance of the production memory honeycomb; κ triggered the first MTJ of the first memory honeycomb, · O: \ 90 \ 90423.DOC 4. A second electrical value Decided that the electrical value is at least partly related to the resistance of the aggregated memory honeycomb after triggering the first MTJ; 5. An analysis of the difference between the first electrical value and the second electrical value. For example, if the MRAM of the third patent area is applied for, the reading of the first MTJ still includes a known current application to the aggregate memory hive of the MRAM. A magnetoresistive random access memory (MRAM) includes: a first bit line; a sigma cryptic honeycomb, which is adjacent to the first bit line and is formed by a first magnetic tunneling interface ( MTJ); a second memory honeycomb at least partially forms a first aggregated memory honeycomb with the first memory honeycomb, and is composed of a second MTJ connected in series with the first honeycomb; And the first word 7L line, which is adjacent to the first memory hive and the second memory hive. A type of magnetoresistive random access memory (MRAM), comprising: a first bit line;-a first-memory honeycomb, which is adjacent to a first word line, the younger-memory honeycomb has a first A plurality of memory honeycombs, including the order ^ Shizkokong_LA · »Hidden Interface (MTJ) 'Excludes an insulation device, and other memory honeycombs connected in series to this a 5th memory hive; and —Number—Ili 70 Line 'At least one of the plurality of chrome U basket honeycombs adjacent to the first aggregate memory honeycomb. For example, the 6-item MRAM of Shenyang Patent Fanyuan Shigudi, in which the first plurality of memory honeycombs are prepared-each is connected in series with the first aggregate memory O: \ 90 \ 90423.DOC -2 -200428388 of the hive /, his 5th memory hive is connected, and parallel connection with other memory hive of the first aggregate memory hive is excluded. 8. A magnetoresistive random access memory (MRAM), comprising: a first word line; a first-memory group, which is adjacent to the first word line, the first memory group contains _ Section-Memory Hive, "Matching with a Section-C Memory Hive in Parallel" and the Section-Memory Hive and the Second Memory Hive are connected by a magnetic tunnel junction (MTJ) composition; 一第二記憶體群組係以串聯方式與該第—記憶體群翻 相耦合以形成一第一聚集記憶體蜂巢,該第二記_ 組包含-第三記憶體蜂巢,其係以平行的方式與一第匹 記憶體蜂巢㈣合,而該第三記憶體蜂巢與該第四記销 體蜂巢以由該MTJ所組成·,及 一第一位元線,其鄰近於該第一記憶體蜂巢、該第一 記憶體蜂巢、該第三記憶體蜂巢及該第四記憶體蜂; 之一 〇A second memory group is coupled in series with the first memory group to form a first aggregated memory hive. The second group includes a third memory hive, which is in parallel. And a first memory hive, and the third memory hive and the fourth write-off hive are composed of the MTJ, and a first bit line is adjacent to the first memory A hive, the first memory hive, the third memory hive, and the fourth memory hive; one. y·如曱請專利範 含: -第五記憶體蜂巢,其係以串聯的方式與該第— =蜂:相耦合而以平行的方式與該第二記憶體蜂巢 一第六記憶體蜂巢係以串聯的方式與該第二 巢相輕合而以平行的方式與該第1憶體蜂巢二 ι〇· —種磁阻隨機存取記憶體(MRAM),其包含· 、 O:\90\90423.DOC 200428388 一第一字元線; 一第一記憶體群組,其鄰近於該第一字元線,該第一 記憶體群組包含一第一記憶體蜂巢,其以串聯的方式與 一第二記憶體蜂巢相耦合,而該第一記憶體蜂巢及該第 二記憶體蜂巢係由一磁性穿隧接面(MTJ)所組成; 一第二記憶體群組係以平行的方式與該第一記憶體群 組相耦合以形成一第一聚集記憶體蜂巢,該第二記憶體 群組包含一第三記憶體蜂巢,其係以串聯的方式與一第 四記憶體蜂巢相耦合,而該第三記憶體蜂巢與該第四記 憶體蜂巢係由該MTJ所組成;及 一第一位元線,其鄰近於該第一記憶體蜂巢、該第二 記憶體蜂巢、談第三記憶體蜂巢及該第四記憶體蜂巢 之一 ° O:\90\90423.DOC -4-y · If the patent includes:-the fifth memory hive, which is connected in series with the first-= bee: coupled in parallel with the second memory hive-a sixth memory hive A series connection with the second nest and a parallel connection with the first memory honeycomb, a magnetic resistance random access memory (MRAM), which contains ·, O: \ 90 \ 90423.DOC 200428388 a first word line; a first memory group, which is adjacent to the first word line, the first memory group includes a first memory hive, which is connected in series with A second memory honeycomb is coupled, and the first memory honeycomb and the second memory honeycomb are composed of a magnetic tunnel junction (MTJ); a second memory group is parallel to The first memory group is coupled to form a first aggregated memory hive, and the second memory group includes a third memory hive which is coupled in series with a fourth memory hive. The third memory hive and the fourth memory hive are composed of the MTJ. And a first bit line which is adjacent to one of the first memory hive, the second memory hive, the third memory hive and the fourth memory hive ° O: \ 90 \ 90423.DOC- 4-
TW92137153A 2002-12-27 2003-12-26 MRAM and methods for reading the MRAM cross-references to related applications TW200428388A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/331,058 US6888743B2 (en) 2002-12-27 2002-12-27 MRAM architecture
US10/679,134 US6909631B2 (en) 2003-10-02 2003-10-02 MRAM and methods for reading the MRAM

Publications (1)

Publication Number Publication Date
TW200428388A true TW200428388A (en) 2004-12-16

Family

ID=52341466

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92137153A TW200428388A (en) 2002-12-27 2003-12-26 MRAM and methods for reading the MRAM cross-references to related applications

Country Status (1)

Country Link
TW (1) TW200428388A (en)

Similar Documents

Publication Publication Date Title
Engel et al. A 4-Mb toggle MRAM based on a novel bit and switching method
US6909631B2 (en) MRAM and methods for reading the MRAM
US10127962B2 (en) Unidirectional spin torque transfer magnetic memory cell structure
Tehrani Status and outlook of MRAM memory technology
US7539047B2 (en) MRAM cell with multiple storage elements
US8514615B2 (en) Structures and methods for a field-reset spin-torque MRAM
US8374025B1 (en) Spin-transfer torque magnetic random access memory (STTMRAM) with laminated free layer
US8823120B2 (en) Magnetic element with storage layer materials
CN102403027B (en) Memory element and storage device
US8310866B2 (en) MRAM device structure employing thermally-assisted write operations and thermally-unassisted self-referencing operations
US8213220B2 (en) Device and method of programming a magnetic memory element
US20100148167A1 (en) Magnetic tunnel junction stack
US20110292714A1 (en) Structures and methods for a field-reset spin-torque mram
US7903452B2 (en) Magnetoresistive memory cell
US7116575B1 (en) Architectures for CPP ring shaped (RS) devices
US8674466B2 (en) Magnetic random access memory with selective toggle memory cells
WO2004064073A2 (en) Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US7800941B2 (en) Magnetic memory with magnetic tunnel junction cell sets
US20120257446A1 (en) Unipolar spin-transfer switching memory unit
Jaiswal et al. Energy-efficient memory using magneto-electric switching of ferromagnets
US20040264238A1 (en) MRAM element and methods for writing the MRAM element
JP2003188359A (en) Magneto-resistive device including magnetically soft synthetic ferrimagnet reference layer
TWI334602B (en) Data write in control circuit for toggle magnetic random access memory and method thereof
CN100437817C (en) Magnetic random access storage based on circular magnetic multilayer film and its control method
TW200428388A (en) MRAM and methods for reading the MRAM cross-references to related applications