TW200427165A - Laser diode element - Google Patents

Laser diode element Download PDF

Info

Publication number
TW200427165A
TW200427165A TW093112514A TW93112514A TW200427165A TW 200427165 A TW200427165 A TW 200427165A TW 093112514 A TW093112514 A TW 093112514A TW 93112514 A TW93112514 A TW 93112514A TW 200427165 A TW200427165 A TW 200427165A
Authority
TW
Taiwan
Prior art keywords
region
laser diode
layer
type
scope
Prior art date
Application number
TW093112514A
Other languages
Chinese (zh)
Other versions
TWI237431B (en
Inventor
Hiroshi Watanabe
Original Assignee
Toyoda Gosei Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Kk filed Critical Toyoda Gosei Kk
Publication of TW200427165A publication Critical patent/TW200427165A/en
Application granted granted Critical
Publication of TWI237431B publication Critical patent/TWI237431B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The invention provides a ridge waveguide type III nitride based compound semiconductor laser diode element formed with a ridge structure that comprises a first domain, including a central portion and continuing in the longitudinal direction, and a second domain, clipping to the first domain from both sides thereof and having average layer thickness smaller than that of the first domain.

Description

200427165 五、發明說明(l) 一、 【發明所屬之技術領域】 此日= =利申請案第2003 一145137號’ L=: 部内容導入本申請案供作參考。 體元件關於ΙΠ族氮化合物系化合物半導體雷射二極 化合:半;=言係關於脊形波導通路型111族氮化合物系 化。物半導體雷射二極體元件之改良。 二、 【先前技術】 元件(GaN^i 半導體為材料之雷射二極體 雷射光,已朝杏、用务、隹_被視為有希望能振盪短波長 體元件之美太i、生〃仃精凍的研究開發。GaN系雷射二極 半導@ = 仏係在藍寶石基板上做成夾住活動層後η型 及Ρ型半導體層疊層,有各式各樣構成之光波導通 向之ΐϊί!?光波導通路構造有可具備用以封閉水平方 「脊形=4卡t光之脊形的脊形波導通路構造(以下亦稱 究,例如化二i。對於此脊形構造已進行相當多的改良研 層來人^丄脊形之橫向兩側形成吸收振盪光之GaN系埋置 Μ;:見不致太窄迴避高次模示的發生,且已有以獲得 :上:ΐίΪί的構造(特開2°〇 0 - 3 1 599號公報)或以條 射率型之波i、s t ί ΐ ϊ完全折射型之波導通路及實效折 (^ f12〇n? i路來提咼70件可靠性及射束特性的構造 C特開2002 : 374035號公報)等建議。 脊形波導通路構造係在構造上比較單純容易製造,可 第6頁 200427165200427165 V. Description of the invention (l) I. [Technical field to which the invention belongs] Today = = Profit Application No. 2003-1145137 'L =: The contents of this section are incorporated into this application for reference. The body element is about a group II nitrogen compound-based compound semiconductor laser diode combination: half; the word system is about a ridge waveguide type 111 group nitrogen compound. Improvement of semiconductor laser diode element. 2. [Prior technology] The laser diode light of the device (GaN ^ i semiconductor as the material) has been turned into apricots, wafers, and semiconductors. It is regarded as a promising candidate for oscillating short-wavelength body elements. Refined research and development. GaN-based laser diode semiconducting @ = 仏 is made of η-type and P-type semiconductor laminated layers sandwiching active layers on a sapphire substrate. There are various types of optical waveguides leading to it. The optical waveguide structure is provided with a ridge waveguide structure (hereinafter also referred to as “research”, for example, chemical structure i) that can be provided to close the horizontal “ridge shape = 4 ridges of light.” This ridge structure has been equivalent. Many improved research layers have come to form a GaN-based buried M that absorbs oscillating light on both sides of the ridge shape .: It is not too narrow to avoid the occurrence of higher-order modes, and it has been obtained to: (Japanese Patent Laid-Open No. 2 ° 〇0-3 1 599) Or use the wave path i, st ΐ ϊ of the emissivity type to complete the refraction type waveguide path and the actual effect (^ f12〇n? I way to raise 70 pieces) Structure of reliability and beam characteristics (Japanese Patent Laid-Open No. 2002: 374035), etc. The ridge waveguide structure is under construction. The relatively simple easy to manufacture, can Page 6 200 427 165

是由於在水平橫向模式中基本模式(〇次 _ A次移模韓式):光封f㈣接近(亦即模式間:曾益差:;人ί ί 杈式移轉,易於產生糾結。雖然由縮短脊寬)4易 向模式之穩定性,但如此構造隨著在二、7平杈 引起操作電壓之上升。又水平丄電極之局電阻化’會 故會引起臨界電流方向之光封閉係數會減少, 三、【發明内容】 本發明係以提供不隨臨界電流密度及操作電壓之上升 :可謀求水平橫向模式穩定性之脊形波導通路π丨族氮化合 物糸化合物半導體雷射二極體元件為目的。 本發明係脊形波導通路型之11 I族氮化合物系化合物半 =體雷射二極體元件,提供具備:第丨區域,含有中央部且 二縱向為連績,以及第2區域,由該第丨區域兩侧夾住且其 平均層厚比該第1區域之平均層厚小之脊形構造的雷射二極 體元件。 ^ u在此構成中,具有相對的大平均層厚之第1區域具備被 第2 JI域失住之脊形構造。由此,在脊形構造中直接參與基 本板式振盛之中央部的實效折射率會變得比周邊部之實效 折射率焉,而進行對該中央部之有效地光封閉。亦即,基 本板式之光封閉增大,且高次模式之光封閉率減少。因 此’水平橫向模式之穩定性增加,可抑制產生糾結。 ^ 另一方面,由於可充分確保總脊寬,無伴隨臨界電流 植、度及操作電壓之上升的情形。又,由基本模式之光封閉It is due to the basic mode in the horizontal and horizontal mode (0 times _ A times shift mode Korean style): the light seal f㈣ is close (that is, the mode: Zeng Yi difference :; person ί 杈 branch type transfer, easy to produce tangles. Although shortened by Ridge width) 4 The stability of the easy-going mode, but this structure causes the operating voltage to rise with the two or seven flat branches. The local resistance of the horizontal 丄 electrode will cause the light confinement coefficient in the direction of the critical current to decrease. III. [Abstract] The present invention is to provide a horizontal and horizontal mode that does not follow the increase of the critical current density and operating voltage. The purpose of the stable ridge waveguide is a π group nitrogen compound 糸 compound semiconductor laser diode element. The ridge waveguide type 11 group I nitrogen compound compound half-body laser diode element of the present invention is provided with: a first region, including a central portion and two longitudinal directions, and a second region. A ridge-shaped laser diode element sandwiched on both sides of the first region and having an average layer thickness smaller than the average layer thickness of the first region. ^ u In this configuration, the first region having a relatively large average layer thickness has a ridge structure lost by the second JI domain. Therefore, in the ridge structure, the effective refractive index of the central portion directly participating in the basic plate-type vibration becomes smaller than the effective refractive index 周边 of the peripheral portion, and effective light sealing of the central portion is performed. That is, the light confinement of the basic plate type is increased, and the light confinement ratio of the high-order mode is decreased. Therefore, the stability of the 'horizontal horizontal mode' is increased, and entanglement can be suppressed. ^ On the other hand, because the total ridge width can be fully ensured, there is no increase in critical current implantation, degree, and operating voltage. Also, closed by the light of the basic mode

200427165 五、發明說明(3) 率增大可令臨界電流密度及操作電麗降低。 而’第1區域及第2區域之平均層-厚咅 域及第2區域之D^j接觸届聂&+ 子’《未者在構成第1區 第2⑼祯:ΪΙ 層方向中各區域的平均膜厚。 ί由有比構成第1區域之Ρ型接觸層小平均膜 居(由ρ型接觸層構成)的區域。 四、【實施方式】 〔用以實施發明之最佳形態〕 以下說明關於本發明之各要素。200427165 V. Description of the invention (3) Increasing the rate can reduce the critical current density and operating power. And the 'average layer of the first and second regions-the thick region and the D ^ j contact session of the second region "&" children "in the region constituting the second region of the first region: the region of the first layer Average film thickness. The region is composed of a smaller average film population (consisting of a p-type contact layer) than the P-type contact layer constituting the first region. 4. [Embodiment] [Best Mode for Carrying Out the Invention] The following describes each element of the present invention.

人本1明之雷射二極體元件係在基板上具有由I I I族氮化 口、土糸化合物半導體所構成複數之半導體層所疊層之基本 構造’ ^具備脊形構造。具備如此脊形構造之雷射二極體 =件(脊形波導通路型雷射二極體元件),由脊形構造可 貫現水平方向之電流狹窄與光封閉。疊層於基板上之各半 導f層包含n型接觸層、η型披覆層、η型導向層、活動層 (單量子井結構、多量子井結構等)、ρ型導向層、ρ型彼 覆層、及ρ型接觸層。The human diode 1 laser diode has a basic structure in which a plurality of semiconductor layers composed of an I I I nitride and a compound semiconductor are laminated on a substrate. The substrate has a ridge structure. A laser diode with such a ridge structure (a ridge waveguide type laser diode element) can realize a narrow current flow and light confinement in the horizontal direction by the ridge structure. Each of the semiconducting f layers laminated on the substrate includes an n-type contact layer, an η-type coating layer, an η-type guide layer, an active layer (single quantum well structure, multiple quantum well structure, etc.), a p-type guide layer, and a p-type Other cladding layers and p-type contact layers.

^ 基板若係可在其上令其生長I I I族氮化合物系化合物半 ^體的話並無特別限定,可使用由GaN、藍寶石、尖晶石、 厌化石夕、氧化鋅、磷化鎵、神化鎵、氧化鎭、氧化I孟、YSZ (用氧化釔穩定的氧化锆)、ZrB2 (二硼化锆)等構成之 基板。若不使用半導體基板時藍寶石基板較佳,特別是使 用於其c面較佳。此為用以令其生長結晶質優良之111族氮 化合物系化合物半導體層。^ The substrate is not particularly limited as long as it can grow a Group III nitrogen compound-based compound on it, and GaN, sapphire, spinel, anoxite, zinc oxide, gallium phosphide, and aluminized gallium can be used. , Ytterbium oxide, Ion oxide, YSZ (zirconia stabilized with yttrium oxide), ZrB2 (zirconium diboride) and other substrates. A sapphire substrate is preferred when a semiconductor substrate is not used, and particularly it is preferably used for its c-plane. This is a group 111 nitrogen compound-based compound semiconductor layer for making the growth crystal excellent.

第8頁 200427165 五、發明說明(4) 基板與由11 I族氮化合物系化合物半導體所構成之結晶 層間可設置緩衝層。緩衝層係以提高在其上所生長丨丨I族氮 化合物系化合物半導體之結晶性為目的設置的。緩衝層可 由AIN、InN、GaN、AlGaN、InGaN、AlInGaN 等之III 族氮化 合物系化合物半導體來形成。 在此,111族氮化合物系化合物半導體係以一般式Α 1χ GaYIni—x—YN (OSX^I、〇$γ$ι 'o^x+y^j)來表示, 包含 AIN、GaN 及 InN 之所謂2 元系、AlxGai_xN、AlxIrvxN、Ga x I rVx N (在以上〇 < x < 1 )之所謂3元系。i j丨族元素之至少 一部份亦可以硼(B )、鉈(T1 )等來替換,又,氮(N ) 之至少一部份可以磷(p)、砷(As)、銻(Sb)、鉍 )等來替換。 II I族氮化合物系化合物半導體亦可包含任意之摻雜 劑。可使用矽(Si )、鍺(Ge)、硒(Se)、碲(丁eY碳 (C )等作為n型不純物。可使用鎂(Mg )、鋅 上Be)、_ (Ca)、錄(Sr )、顧(Ba)等作為p型不純 :二型不純物後可用電子束照射ΠΙ族氮化合 物糸化合物半導體、電漿照射或利用爐等加埶, 須條件。 但不疋必 ^入^ ί半導體層可用眾所周知之成膜方法來形成。例如 除i屬有機化學蒸氣沈積法(M0CVD法)以外,σ 八 束栗晶法(ΜΒΕ法)、鹵化物汽相育成法(Η :,用刀: 法、離子電鑛法。 法)、滅射 脊形構造係條紋狀凸部 典型的由p型接觸 層及p型坡Page 8 200427165 V. Description of the invention (4) A buffer layer may be provided between the substrate and the crystalline layer composed of the 11 I nitrogen compound-based compound semiconductor. The buffer layer is provided for the purpose of improving the crystallinity of the group I nitrogen compound-based compound semiconductor grown thereon. The buffer layer can be formed of a group III nitride compound semiconductor such as AIN, InN, GaN, AlGaN, InGaN, AlInGaN, and the like. Here, the group 111 nitrogen compound-based compound semiconductor is represented by the general formula A 1χ GaYIni-x-YN (OSX ^ I, 〇 $ γ $ ι'o ^ x + y ^ j), and includes AIN, GaN, and InN. The so-called two-element system, the so-called three-element system of AlxGai_xN, AlxIrvxN, Ga x I rVx N (above 0 < x < 1). At least part of the ij 丨 group element can also be replaced by boron (B), thorium (T1), etc., and at least part of the nitrogen (N) can be phosphorus (p), arsenic (As), antimony (Sb) , Bismuth) and so on. The II group I nitrogen compound-based compound semiconductor may include any dopant. Silicon (Si), germanium (Ge), selenium (Se), tellurium (butyl eY carbon (C), etc.) can be used as n-type impurities. Magnesium (Mg), zinc on Be), (Ca), ( Sr), Gu (Ba), etc. are p-type impurities: after the second-type impurities can be irradiated with a group III nitrogen compound 糸 compound semiconductor, plasma irradiation, or using a furnace, etc., subject to conditions. However, it is not necessary that the semiconductor layer be formed by a well-known film-forming method. For example, in addition to the i-type organic chemical vapor deposition method (MOCVD method), the σ eight-bundle chestnut method (MBE method), the halide vapor-phase incubation method (用:, knife: method, iontoelectric method. Method), quenching The ridge structure of the stripe-shaped convex part is typically composed of a p-type contact layer and a p-type slope.

200427165 五、發明說明(5) 覆層之一部所構成。如此 半導體層後將p型半導 /構化可在基板上令其生長各 成。脊形構造總體的寬度w部用π等除去來形 本發明之雷射二極:了:為"m〜10 _。 且沿縱向為連續第70具備:第1區域,含有中央部 平均層厚比今第’第2區域,位於夾住此第1區域且其 点合i 第區域平均層厚小之脊形構造。以如此構 區:7第2 A部(第2區域)之實效折射率比位於其兩側之 率會提言,?J要之射率大’由此基本模式之光封閉 曰…果水平彳買向模式之穩定性增高。 ^圖1係顯示在本發明之雷射二極體元件中所採用脊形構 k之二例。圖1係脊形構造40之縱向垂直剖面圖。滿足該條 件=實施例如圖1所示,其兩側(第2區域)42比中央部” (第1區域)41可能在基板側降低一層之脊形構造4 〇。在此 脊形構造40中,第1區域41之寬41a :第2區域(單側)42之 寬42a之比率可設定為丨:10〜1〇 :ι。另一方面,第i區域 41之高41b :第2區域4 2之高42b之比率可設定為2 :ι〜η :200427165 V. Description of the invention (5) Part of the coating. In this way, the p-type semiconductor / structure can be grown on the substrate after the semiconductor layer is formed. The width w of the overall ridge structure is formed by removing π or the like. The laser diode of the present invention is: quot: m ~ 10 _. In the longitudinal direction, there is a continuous 70th region. The first region includes a ridge structure having a central portion with an average layer thickness greater than the current second region, and is located between the first region and the point i. Structured as follows: 7 The ratio of the effective refractive index ratio of Part 2A (Part 2) on both sides will be mentioned,? J wants a high emissivity ’, so the light of the basic mode is closed. ^ FIG. 1 shows two examples of the ridge structure k used in the laser diode element of the present invention. FIG. 1 is a longitudinal vertical sectional view of a ridge structure 40. Satisfying this condition = In the example shown in FIG. 1, both sides (the second region) 42 may be lower than the central portion (the first region) 41 by a ridge structure 4 on the substrate side. 〇 In this ridge structure 40 The width 41a of the first area 41: The ratio of the width 42a of the second area (one side) 42 can be set to 丨: 10 ~ 10: ι. On the other hand, the height 41b of the i-th area 41: the second area 4 The ratio of 2 to 42b can be set to 2: ι ~ η:

在圖1之例中,令第2區域42形成在第1區域41之兩侧左 右對稱。如此之對稱性可增進提高水平橫向模式特性。在 圖1之例中第1區域41及第2區域4 2各在整體有均一之層厚 (高度),但在各區域中之層厚(高度)可連續地或成階 段式地變化。 圖2 ( a )係顯示在第1區域中層厚(高度)連續地變化 之例。在此例中,第1區域41以其中心為界限在兩側成推拔In the example of FIG. 1, the second region 42 is formed symmetrically on both sides of the first region 41. Such symmetry can enhance the characteristics of horizontal and horizontal modes. In the example of Fig. 1, each of the first region 41 and the second region 42 has a uniform layer thickness (height) as a whole, but the layer thickness (height) in each region can be continuously or stepwise changed. Fig. 2 (a) shows an example in which the layer thickness (height) continuously changes in the first region. In this example, the first area 41 is pushed on both sides with its center as the boundary.

第10頁 200427165 五、發明説明(6) 狀。亦即j自中心向周邊以一定之變化率連續地第工區域4 i 之層厚會變小。層厚之變化率非一定亦可。 圖2 ( b )係顯不在第1區域中層厚(高度)成階段式地 變化之例。在此例中,第丨區域41之層厚會成階段式地變 化。如,所示由於將頂面做成階梯狀,可構成階段地層厚 變化之第1區域41 (亦即,包含二層以上層厚互異區域之第 1區域41 )。 又,第1區域41之層厚亦可形成並用連續地及成階段式 地變化。 4圖3 ( α )係顯示在第2區域中層厚(高度)成階段式地 •文化之例。在此例中,第2區域4 2隨著自第i區域41逐漸遠 離,^層厚會連續地變小而成推拔狀。亦即,朝向由第工區 域41 =方向依一定之變化率第2區域42之層厚會連續地變 小。層厚之變化率非一定亦可。 圖3 U )係'顯示在第2區域中層厚(高度)成階段式地 :化,:卜在此例,’第2區域42之層厚會成階段式地變 ^^ ^所不由於將頂面做成階梯狀,可構成層厚成階段 第)2區域42(亦即 地變S。第2區域42之層厚亦可形成並用連續地及成階段式 ,,構造一般係由P型披覆層之一部及p型接觸層所構 J二在f發明’構成脊形構造之第】區域及第2區域任一區 域S以包含p型接觸層較佳。如此構造可在第丨區域上及第2Page 10 200427165 V. Description of Invention (6). That is, the layer thickness of j in the first work area 4 i continuously decreases from the center to the periphery with a certain rate of change. The variation rate of the layer thickness is not necessarily required. Fig. 2 (b) shows an example in which the layer thickness (height) does not change stepwise in the first region. In this example, the layer thickness of the first region 41 changes stepwise. For example, since the top surface is formed in a stepped shape, the first region 41 (i.e., the first region 41 including two or more layers having mutually different thicknesses) can be formed in the step thickness. Further, the layer thickness of the first region 41 may be formed and used continuously and in a stepwise manner. 4 Figure 3 (α) shows the layer thickness (height) in a stepwise manner in the second area. In this example, as the second region 42 is gradually separated from the i-th region 41, the thickness of the second layer is continuously reduced to a push shape. That is, the thickness of the second region 42 decreases continuously in the direction from the first working area 41 = direction with a constant rate of change. The variation rate of the layer thickness is not necessarily required. Figure 3 U) shows 'layer thickness (height) in the second region in a stepwise manner :: In this example,' the layer thickness of the second region 42 will change stepwise ^^ ^ The top surface is made into a stepped shape, which can form the layer thickness into stages. The second region 42 (that is, the ground changes S. The layer thickness of the second region 42 can also be formed and used continuously and in stages. The structure is generally made of P type. One part of the coating layer and the p-type contact layer are structured in the second aspect of the invention to form the ridge structure and any of the second area S to include the p-type contact layer. Regionally and 2nd

第11頁 200427165 五、發明說明(7) 區域上形成p電極。亦即,可確保充分廣闊面積之電極面。 由此可構成低臨界電流密度及低操作電壓之雷射二極體元 件。 包含該第1區域41及第2區域42之脊形構造的製造方法 係例如下述之方法。 首先,令各半導體層(η型接觸層〜p型接觸層)在基 板上生長後,如被覆形成Ρ型接觸層表面之脊形構造的區 將條紋狀之保護膜以微影術形成。保護膜係如由^% 等石夕氧化合物構成。其次,將無法形成保護膜之區域在ρ型 披覆層之中途韻刻。蝕刻方法可較佳地利用反應性離子蝕 刻法(RIE ) °接著,只在形成第1區域4丨部分(中央部) 保留保護膜,除去被覆其他部分(第2區域)之保護膜。然 後以上述相同方法錄刻處理,蝕刻無以保護膜被覆ρ型接 ,層=一部。由以上製程,形成周邊部(第2區域)比中央 部(第1區域)向基板侧降低一層之脊形構造。 〔實施例〕 二極體元件 以 圖4係顯示本發明實施例之一 下亦稱「LD元件」Η。〇)元件丨各層之\細如下 組成 G a N · M g AlGaN : Mg G a N · M g 層 第3之ρ型層1 9 第2之P型層18 第1之ρ型層17Page 11 200427165 V. Description of the invention (7) A p-electrode is formed on the region. That is, an electrode surface with a sufficiently wide area can be secured. This can constitute a laser diode element with a low critical current density and a low operating voltage. The manufacturing method of the ridge structure including the first region 41 and the second region 42 is, for example, the following method. First, after each semiconductor layer (n-type contact layer to p-type contact layer) is grown on a substrate, if a region having a ridge structure on the surface of the p-type contact layer is covered, a striped protective film is formed by lithography. The protective film is composed of, for example, ^% oxalate compounds. Second, the area where the protective film cannot be formed is carved in the middle of the p-type coating layer. As the etching method, a reactive ion etching method (RIE) can be preferably used. Then, a protective film is retained only in the first region 4 丨 (central portion), and the protective film covering the other portion (second region) is removed. Then, the recording process was performed in the same manner as described above, and the etching did not cover the p-type junction with the protective film, and the layer = a portion. With the above process, a ridge structure in which the peripheral portion (the second area) is lowered to the substrate side by one layer than the central portion (the first area) is formed. [Embodiment] A diode element is also shown in Fig. 4 as one of the embodiments of the present invention, which is hereinafter also referred to as "LD element". 〇) The components of each layer are as follows: Composition G a N · M g AlGaN: Mg G a N · M g layer 3 p-type layer 1 9 2 p-type layer 18 1 p-type layer 17

第12頁 200427165Page 12 200427165

MQW 層16 : InGaN/GaNMQW layer 16: InGaN / GaN

第3之n型層1 5 : GaN : Si 第 2 之n 型層 14 : AIGaN : Si 第1之n型層1 3 : GaN : Si 緩衝層1 2 : AIN 基板11 ••藍寶石 第1之η型層13作為1!型接觸層、第2 型層14作為n型 披覆層、第3之η型層15作為η型導向層、^!^^層16作為發光 層、第1之Ρ型層17作為ρ型導向層、第2ip型層18作為^型 披覆層、第3之ρ型層1 9作為ρ型接觸層各發揮其機能。 緩衝層12 係由 GaN、InN、AlGaN、InGaN 及 AlInGaN 等構 成。 在此η 型層 13、14、15 係由GaN、AIGaN、InGaN 或 AlInGaN等構成。 又’ η型層1 3、1 4、1 5係掺雜S i作為η型不純物,其 貫’此外亦可以G e、S e、丁 e、C等當作η型不純物摻雜。 MQW層16除InGaN/GaN之多量子井結構之外,亦可有 AlGaN/AlGalnN等之多量子井結構。量子井層之層數以設定 為1〜3 0較佳。 P 型層 17、18、19 可由GaN、AIGaN、InGaN 或 InAlGaN 構 成。又’ρ型不純物的Mg可由Zn、Be、Ca、Sr、Ba取代。ρ 型層在導入p型不純物後,可用電子束照射、電漿照射或利 用爐等加熱等眾所周知之方法來低電阻化。3rd n-type layer 15: GaN: Si 2nd n-type layer 14: AIGaN: Si 1st n-type layer 1 3: GaN: Si buffer layer 1 2: AIN substrate 11 • Sapphire 1st η The type layer 13 serves as a 1! -Type contact layer, the second type layer 14 serves as an n-type cladding layer, the third n-type layer 15 serves as an n-type guide layer, the ^! ^^ layer 16 serves as a light-emitting layer, and the first p-type The layer 17 functions as a p-type guide layer, the second ip-type layer 18 functions as a ^ -type coating layer, and the third p-type layer 19 functions as a p-type contact layer. The buffer layer 12 is made of GaN, InN, AlGaN, InGaN, AlInGaN, or the like. Here, the n-type layers 13, 14, and 15 are made of GaN, AIGaN, InGaN, AlInGaN, or the like. Also, the η-type layer 1 3, 1, 4, and 15 are doped with Si as η-type impurities, and Ge, Se, D e, and C may also be doped as η-type impurities. In addition to the multiple quantum well structure of InGaN / GaN, the MQW layer 16 may also have a multiple quantum well structure such as AlGaN / AlGalnN. The number of quantum well layers is preferably set to 1 to 30. The P-type layers 17, 18, 19 may be composed of GaN, AIGaN, InGaN, or InAlGaN. Also, Mg of the 'ρ-type impurity may be substituted by Zn, Be, Ca, Sr, and Ba. After the p-type impurity is introduced into the p-type layer, the resistance can be reduced by a well-known method such as electron beam irradiation, plasma irradiation, or heating using a furnace or the like.

第13頁 200427165 五、發明說明(9) 在上述構成之LD元件1中,比第1之η型層13頂面之III 族氮化合物系化合物半導體層除用M0CVD法以外,可使用分 子束泵晶法(ΜΒΕ法)、鹵化物汽相育成法(HVPE法)、濺 射法、離子電鑛法等方法來形成。 疊層各半導體層後,形成脊形構造20。脊形構造20係 利用微影術及餘刻來形成。首先,在第3之p型層1 9全面形 成保護膜(S i 02 )。其次利用微影術除去一部之保護膜,Page 13 200427165 V. Description of the invention (9) In the LD element 1 having the above structure, a group III nitrogen compound-based compound semiconductor layer on the top surface of the first n-type layer 13 may use a molecular beam pump in addition to the MOCVD method It is formed by crystallization method (MBE method), halide vapor phase incubation method (HVPE method), sputtering method, iontoelectric ore method and the like. After the semiconductor layers are stacked, a ridge structure 20 is formed. The ridge structure 20 is formed by lithography and the rest. First, a protective film (S i 02) is formed on the third p-type layer 19 in its entirety. Next, use lithography to remove a protective film.

做成有希望寬度(脊形構造2 0之寬)之條紋狀保護膜。接 著’將保留之保護膜當作掩膜,將未被覆保護膜而露出部 分由第3之p型層1 9依序以反應性離子蝕刻除去。此蝕刻處 理持續到第2之p型層1 8之一部除去為止。 其次,由在該製程所形成之凸狀部(脊形構造2 〇 )施 以加工形成第1區域2〇a及第2區域2〇b。首先利用微影術, 只形成保留第1區域2 〇 a部分(亦即脊形構造2 〇之中央部)A stripe-shaped protective film with a desired width (the width of the ridge structure 20) is made. Next, the remaining protective film is used as a mask, and the exposed portion without the protective film is sequentially removed by the third p-type layer 19 by reactive ion etching. This etching process is continued until a part of the second p-type layer 18 is removed. Next, the first region 20a and the second region 20b are formed by processing the convex portion (ridge structure 20) formed in this process. First, lithography is used to form only a portion 20a of the first area (that is, the central portion of the ridge structure 20).

之保護膜,而除去被覆其他部分之保護膜。由此可形成被 覆脊形構造2 0中央部之條紋狀保護膜。接著再度實施性離 子蝕刻。蝕刻未被覆保護膜的第3之p型層丨9 一部。最後除 去保濩膜。由以上之製程,如圖丨所示,形成周邊部(第2 ,域2 0 b )比中央部(第1區域2 〇 a )向基板1 1侧降低一層之 脊形構造20。而,在本實施例中第i區域2〇a及第2區域2〇b 之任一區域皆包含第3之p型層1 9。 用以上之順序形成脊形構造2〇後,形成n電極a及口電 極23。1^電極22係由包含^或了丨等材料構成,形成脊形構造 2〇後,藉由蝕刻除去第3之p型層〜第2 in型層、及第工之^Protective film, and remove the protective film covering other parts. Thus, a stripe-shaped protective film covering the central portion of the ridge structure 20 can be formed. Then, the ion etching is performed again. The third p-type layer 9 which is not covered with a protective film is etched. Finally, the protective film was removed. According to the above process, as shown in FIG. 丨, a ridge structure 20 is formed in the peripheral portion (second, domain 20b) that is one layer lower than the central portion (first area 20a) to the substrate 11 side. However, in this embodiment, any one of the i-th region 20a and the second region 20b includes the third p-type layer 19. After forming the ridge structure 20 in the above order, the n-electrode a and the mouth electrode 23 are formed. The 1 ^ electrode 22 is made of a material including ^ or 丨. After forming the ridge structure 20, the third electrode is removed by etching. P-type layer ~ 2 in type layer, and the first ^

第14頁 200427165 五、發明說明(ίο) 里層13之邛表不出在第型層上以沈 23係由包州奶、Au等材料構成,..制沈積電極 ,者,利用餞刻等習用方法晶片化後, 體成光反射侧端面(後端面)減射光反射膜(無圖示Γ; 形成。 圖5係顯示使用經上述各製程所製造之LD元件】的半 體雷射裝置之例。為方得今日g ^ θ 極等一部份要素。,更说月起見’在圖5省略。電極或η電 LD元件1係在垂直設於支持體7〇之支座71上通過散埶 件(導電基板)72設置。LD元件“系將電極側置於下方承载 散熱構件72。在散熱構件72表面之—部形成絕緣性材料戰 層,利用此絕緣性材料層來防電極與ρ電極間之短路。 罩蓋75具備聚光透鏡77,LD元件i所產生之通 過該聚光透鏡77放射至外部。 m 一圖6A及圖6B係顯示模擬藉由上述方法製造雷射二極體 兀件之$輸出特性的條件。圖6A係顯示使用於模擬脊形構 造之不意圖。在先前之脊形構造中,脊形寬度係圖6人) 所示在①部為1 · 8 // m。在本實施例之脊形構造中,設定脊 形寬度係圖6A (b )所示之在①部(第}區域)為〇. 6 , 部(第2區域)為〇 · 6 # m (單側),總計為〇 · β χ 3 =工· 8 “ m。圖6Β係顯示在脊形構造之各部①〜③中所算出之等價 射率nef f。等價折射率nef f係由計算式三 …『…··…算出。但,ηι、係各 率’ Γ係存在於各層之光的比例可由模擬方式求出。Page 14 200427165 V. Description of the invention (ίο) The inner layer 13 does not show that the Shen layer 23 is made of Baozhou milk, Au and other materials on the first layer. It is used to make deposition electrodes. After the conventional method is formed into a wafer, the light reflection side end surface (rear end surface) is formed into an absorptive light reflection film (not shown; Γ; FIG. 5 shows a half-body laser device using an LD element manufactured through each of the above processes). For example, in order to find some elements such as today ’s g ^ θ pole, let alone the month 'is omitted in Fig. 5. The electrode or η electric LD element 1 is passed on a support 71 vertically arranged on the support 70. A discrete piece (conductive substrate) 72 is provided. The LD element "places the electrode side underneath to carry the heat dissipation member 72. A layer of insulating material is formed on the surface of the heat dissipation member 72, and this layer of insulating material is used to prevent the electrode and the Short circuit between the ρ electrodes. The cover 75 is provided with a condenser lens 77, and the LD element i is radiated to the outside through the condenser lens 77. Fig. 6A and Fig. 6B show a simulation of manufacturing a laser diode by the above method. The conditions of the $ output characteristics of the physical components. Figure 6A shows the simulation of the ridge shape. The structure is not intended. In the previous ridge structure, the width of the ridge is shown in Figure 6). The ① part is 1 · 8 // m. In the ridge structure of this embodiment, the ridge width is set. As shown in 6A (b), the part ① (the} region) is 0.6, and the part (the second region) is 0.6 # m (one side), and the total is 〇 β χ 3 = work · 8 “m . Fig. 6B shows the equivalent emissivity nef f calculated in each part ① to ③ of the ridge structure. The equivalent refractive index nef f is calculated by the following formula 3 ... "...". However, the ratio of η and the ratio ′ Γ is the ratio of light existing in each layer, which can be obtained by simulation.

第15頁 200427165Page 15 200427165

五、發明說明(π) 圖7 A及圖7 B係顯示模擬結 光輸出特性曲線圖,圖7B係顯 線圖。如此等曲線圖所闡明, 施例之構造中在基本模式之峰 式之峰值低。亦即,本實施例 光封閉率南’且在局次模式之 實施例之構造的水平橫向模式 (kink level )。又,本實施 閉率增大,且臨界電流密度減 本發明雖為完全且明確揭 以記載,但後附之申.請專利範 解釋為包含了涵蓋於本說明書 悉本技術之士所能想到之所有 果。圖7A係顯示基本模式之 示高次模式之光輸出特性曲 與先前之構造比較下,本實 值高,與此相反地在高次模 之構造部分在基本模式中之 光封閉率低。因此,可謂本 更穩定,提高糾結位準 例之構造在基本模式中光封 小0 示之目的而就特定實施例加 圍不應限定於該記載,而應 所記載之基本教義中並為熟 變更形態及代替構成。 〔產業上之利用性〕 依照本發明,可提供不需隨臨界電流密度及操作電壓 之上升即可令水平橫向模式穩定化之脊形波導通路111族氮 化合物系化合物半導體雷射二極體元件。V. Description of the invention (π) Fig. 7A and Fig. 7B show the characteristic curves of the simulated junction light output, and Fig. 7B is a line graph. As illustrated by such graphs, the peaks of the peak mode of the basic mode in the structure of the embodiment are low. That is, the horizontal horizontal mode (kink level) of the embodiment of the embodiment in which the light confinement rate is south and is in the sub-mode. In addition, the closing rate of this implementation is increased, and the critical current density is reduced. Although the present invention is completely and clearly disclosed, it is attached to the application. Please explain the patent scope as including those that can be thought of by those skilled in the art and covered in this specification. All fruit. Fig. 7A shows the light output characteristic curve of the high-order mode showing the basic mode. Compared with the previous structure, the real value is high, while the light-blocking rate of the high-order mode in the basic mode is low. Therefore, it can be said that this book is more stable, and the structure of improving the level of entanglement is in the basic mode. The purpose of light sealing is not limited to specific records. It should not be limited to this record, but should be familiar with the basic teachings recorded. Change the form and replace the composition. [Industrial Applicability] According to the present invention, it is possible to provide a 111-group nitrogen compound-based compound semiconductor laser diode device of a ridge waveguide path capable of stabilizing the horizontal and lateral modes without increasing the critical current density and the operating voltage. .

第16頁 200427165 圖式簡單說明 五、【圖式簡單說明】 圖1係顯示在本發明之雷射二極體元件中所採用脊形構 造一例之剖面圖。 圖2係顯示在本發明之雷射二極體元件中所採用脊形構 造另一例之剖面圖。 圖3係顯示在本發明之雷射二極體元件中所採用脊形構 造另一例之剖面圖。 圖4係顯示本發明實施例的雷射二桎體元件構成之剖面 圖。 圖5係顯示使用實施例之雷射二極體元件1之半導體雷 射裝置圖。 圖6A係顯示使用於模擬元件之脊形構造示意圖。 圖6B係顯示在使用於模擬元件中各層之膜厚、折射率 的表。 圖7A係顯示在基本模式中光輸出特性的曲線圖。 圖7B係顯示在高次模式中光輸出特性的曲線圖。 元件符號說明: 1〜 〃LD元件 11 〜基板 12 〜緩衝層 13 〜第1之η 型 層 14 〜第2之η 型 層 15 〜第3之η 型 層Page 16 200427165 Brief description of the drawings 5. [Simplified description of the drawings] FIG. 1 is a cross-sectional view showing an example of a ridge structure used in the laser diode element of the present invention. Fig. 2 is a sectional view showing another example of the ridge structure used in the laser diode element of the present invention. Fig. 3 is a sectional view showing another example of the ridge structure used in the laser diode element of the present invention. Fig. 4 is a cross-sectional view showing the structure of a laser diode body according to an embodiment of the present invention. Fig. 5 is a diagram showing a semiconductor laser device using the laser diode element 1 of the embodiment. FIG. 6A is a schematic diagram showing a ridge structure used in an analog device. Fig. 6B is a table showing film thickness and refractive index of each layer used in the analog device. FIG. 7A is a graph showing light output characteristics in the basic mode. FIG. 7B is a graph showing light output characteristics in a high-order mode. Description of device symbols: 1 to 〃LD device 11 to substrate 12 to buffer layer 13 to first n-type layer 14 to second n-type layer 15 to third n-type layer

第17頁 200427165 圖式簡單說明 16、 4QW層 17、 〃第1之P 型 層 18〜第2之P 型 層 19〜 〃第3之P 型 層 2 0〜脊形構 造 20a 〜第1區 域 20b 〜第2區 域 22〜 電極 23、 / ρ電極 40〜脊形構 造 41〜 〃第1區域 41a 〜第1區 域 之 寬 41b 〜第1區 域 之 高 42〜 /第2區域 42a 〜第2區 域 之 寬 42b 〜第2區 域 之 高 5 0〜P型層 70〜 /支持體 71〜 /支座 72〜 /散熱構件 75〜 ,罩蓋 7 7〜聚光透 鏡Page 17 200427165 Schematic illustration of 16, 4QW layer 17, 〃P-type layer 18 ~ 2 P-type layer 19 ~ 〃P-type 3 layer 2 0 ~ ridge structure 20a ~ 1 area 20b ~ 2nd area 22 ~ electrode 23, / ρ electrode 40 ~ ridge structure 41 ~ 〃 1st area 41a ~ 1st area width 41b ~ 1st area height 42 ~ / 2nd area 42a ~ 2nd area width 42b ~ 2nd area height 5 0 ~ P-type layer 70 ~ / support 71 ~ / support 72 ~ / heat dissipation member 75 ~, cover 7 7 ~ condenser lens

第18頁Page 18

Claims (1)

200427165 六、申請專利範圍 1. 一種雷射二極體元件,係脊形波導通路型I 11族氮化合 物系化合物半導體雷射二極體元件,一具備有脊形構造,該 脊形構造包含: a) 第1區域,包含中央部,且沿縱向為連續;以及 b) 第2區域,由兩側夾住該第1區域,且其平均層厚比 該第1區域之平均層厚小。 2. 如申請專利範圍第1項之雷射二極體元件,其中該第2區 域在垂直於該縱向之剖面具有左右對稱之形狀。 3. 如申請專利範圍第1項或第2項之雷射二極體元件,其中 該第1區域之層厚在整體皆均一。 4. 如申請專利範圍第1項或第2項之雷射二極體元件,其中 該第1區域之頂面形成為階梯狀或推拔狀,由中心向周邊連 續地或階段地減小其層厚。 5. 如申請專利範圍第1項或第2項之雷射二極體元件,其中 該第2區域之層厚在整體皆均一。 6. 如申請專利範圍第1項或第2項之雷射二極體元件,其中 該第2區域包含平均層厚互異之二層以上之區域。 7.如申請專利範圍第1項或第2項之雷射二極體元件,其中200427165 VI. Application Patent Scope 1. A laser diode element, which is a ridge waveguide type I group 11 nitrogen compound compound semiconductor laser diode element, having a ridge structure, the ridge structure includes: a) the first region including the central portion and continuous in the longitudinal direction; and b) the second region sandwiching the first region from both sides and having an average layer thickness smaller than the average layer thickness of the first region. 2. For the laser diode device according to item 1 of the patent application scope, wherein the second region has a bilaterally symmetrical shape in a cross section perpendicular to the longitudinal direction. 3. For the laser diode device in the first or second scope of the patent application, the layer thickness of the first area is uniform throughout. 4. If the laser diode element in the first or second scope of the patent application, wherein the top surface of the first area is formed in a stepped or push-out shape, it is continuously or stepwise reduced from the center to the periphery. Layer thickness. 5. For the laser diode device in the first or second scope of the patent application, the layer thickness of the second area is uniform throughout. 6. For the laser diode device of the first or second scope of the patent application, wherein the second region includes two or more regions with different average layer thicknesses. 7. If the laser diode element of item 1 or item 2 of the scope of patent application, 第19頁 200427165 六、申請專利範圍 該第2區域之頂面形成為階梯狀或推拔狀,隨著由第1區域 遠離連續地或階段式地減小其層厚。 8.如申請專利範圍第1項或第2項之雷射二極體元件,其中 該第1區域及該第2區域各包含p型接觸層,在兩區域上形成 p電極。Page 19 200427165 6. Scope of patent application The top surface of the second area is formed in a stepped or pushed shape, and its layer thickness is continuously or stepwise reduced as it moves away from the first area. 8. The laser diode device according to item 1 or item 2 of the patent application scope, wherein the first region and the second region each include a p-type contact layer, and a p-electrode is formed on the two regions. 第20頁Page 20
TW093112514A 2003-05-22 2004-05-04 Laser diode element TWI237431B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145137A JP2004349485A (en) 2003-05-22 2003-05-22 Laser diode element

Publications (2)

Publication Number Publication Date
TW200427165A true TW200427165A (en) 2004-12-01
TWI237431B TWI237431B (en) 2005-08-01

Family

ID=33475227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093112514A TWI237431B (en) 2003-05-22 2004-05-04 Laser diode element

Country Status (3)

Country Link
JP (1) JP2004349485A (en)
TW (1) TWI237431B (en)
WO (1) WO2004105202A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11967802B2 (en) * 2017-09-14 2024-04-23 Mitsubishi Electric Corporation Semiconductor laser device
CN111418120B (en) * 2017-12-04 2022-10-21 三菱电机株式会社 Electric field absorption modulator, optical semiconductor device, and optical module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233556A (en) * 1997-02-20 1998-09-02 Mitsubishi Electric Corp Ridge-type semiconductor laser diode and its manufacturing method
JP2000286504A (en) * 1999-01-26 2000-10-13 Sanyo Electric Co Ltd Nitride semiconductor laser element
JP4543488B2 (en) * 2000-03-24 2010-09-15 ソニー株式会社 Semiconductor laser light emitting device
JP4045792B2 (en) * 2000-12-07 2008-02-13 日亜化学工業株式会社 Nitride semiconductor laser device
JP2002246692A (en) * 2001-02-20 2002-08-30 Toshiba Corp Semiconductor laser and method of manufacturing the same
JP2002299763A (en) * 2001-04-03 2002-10-11 Sony Corp Semiconductor laser element and method of manufacturing the same

Also Published As

Publication number Publication date
TWI237431B (en) 2005-08-01
WO2004105202A1 (en) 2004-12-02
JP2004349485A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP5028640B2 (en) Nitride semiconductor laser device
TWI258906B (en) Semiconductor laser device
TW490898B (en) Semiconductor laser device
TWI323948B (en) Opto-electronic semiconductor chip
JP3468082B2 (en) Nitride semiconductor device
JP5963004B2 (en) Nitride semiconductor light emitting device
JP5244980B2 (en) Semiconductor light emitting device
US8409893B2 (en) Semiconductor light-emitting element, fabrication method thereof, convex part formed on backing, and convex part formation method for backing
JP2006173621A (en) Semiconductor laser
JP2005217415A (en) Group-iii nitride light emitting device with reduced polarized field
JP2008034851A (en) Semiconductor layer structure having superlattice
KR100705886B1 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP2019071457A (en) Semiconductor chip and method for manufacturing semiconductor chip
KR101221067B1 (en) Laser diode having ridge portion
US20110298006A1 (en) Semiconductor light emitting device and method for fabricating the same
US10224443B2 (en) Semiconductor device and a method of making a semiconductor device
JP3496712B2 (en) Nitride compound semiconductor laser device and method of manufacturing the same
JP2003524901A (en) Semiconductor structural element for emitting electromagnetic radiation and method of manufacturing the same
TW413972B (en) Semiconductor laser device
TW200427165A (en) Laser diode element
CN107645121B (en) Ridge array semiconductor laser and its making method
CN101902016A (en) Semiconductor laser
JP2001148532A (en) Nitride semiconductor laser and manufacturing method therefor
JP2008047850A (en) Nitride semiconductor light emitting diode
JP2021190687A (en) Nitride semiconductor element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees