TW200426783A - System and method for digital storage media copy protection - Google Patents

System and method for digital storage media copy protection Download PDF

Info

Publication number
TW200426783A
TW200426783A TW092128126A TW92128126A TW200426783A TW 200426783 A TW200426783 A TW 200426783A TW 092128126 A TW092128126 A TW 092128126A TW 92128126 A TW92128126 A TW 92128126A TW 200426783 A TW200426783 A TW 200426783A
Authority
TW
Taiwan
Prior art keywords
storage medium
bits
predetermined position
reading
read
Prior art date
Application number
TW092128126A
Other languages
Chinese (zh)
Inventor
Ping-Fan Wu
Radislav Alexandrovich Potyrailo
James Edward Pickett
Peter William Lorraine
Marc Brian Wisnudel
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of TW200426783A publication Critical patent/TW200426783A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00659Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a control step which is implemented as an executable file stored on the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/12Control of operating function, e.g. switching from recording to reproducing by sensing distinguishing features of or on records, e.g. diameter end mark
    • G11B19/122Control of operating function, e.g. switching from recording to reproducing by sensing distinguishing features of or on records, e.g. diameter end mark involving the detection of an identification or authentication mark
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00094Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised record carriers
    • G11B20/00123Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised record carriers the record carrier being identified by recognising some of its unique characteristics, e.g. a unique defect pattern serving as a physical signature of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00572Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium
    • G11B20/00586Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium said format change concerning the physical format of the recording medium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

A storage medium (800) capable of being read by player (900), the storage medium comprising: digital content disposed along one or more tracks (104) of the storage medium; and an authentication program (808) disposed along the one or more tracks of the storage medium for authenticating (1000, 1100) the storage medium by determining whether the one or more vague bits (330, 332, 424, 426, 428, 524, 526, 528, 624, 626, 628, 724, 726, 728) exist at the one or more predetermined locations (810). There are also provided a method for authenticating (1000, 1100) a storage medium and a method for creating (1200, 1300, 1400) a storage medium having the one or more vague bits.

Description

200426783 玖、發明說明: 【發明所屬之技術領域】 本發明通常係有關於光學儲存媒體複製保護。更明確而 言’本發明係針對利用有關光學、磁光學與混合儲存媒體 複製保護的模糊位元之系統及方法。 【先前技術】 例如雷射唱片(CDs)與數位影像磁碟(Dvds)的光學、磁光 學與混合儲存媒體現階段需要可保存供消費大眾大量數位 内容的不昂貴可靠媒體。如在此的使用,光學、磁光學與 混合儲存媒體、以及其他想要格式全是數位儲存媒體的範 例。前述數位儲存媒體可用來儲存各種數位内容,包括數 位音樂、視訊、電腦軟體與其他資料。有用以從前述數位 儲存媒體讀取數位内容的無數媒體播放器,其包括CD播放 器、DVD播放器、CD-ROM播放器、與遊戲控制台,例如 微軟公司的Sony的Playstation 2TM。如在此的使 用,前述皆是考慮的媒體播放器。注意,此並非是媒體播 放器的詳細列出,而且其他媒體播放器可使用。 特別是,例如CDs與DVDs的光學儲存媒體是透過一熱後 可朔性處理而產生。注射成形是用於產生光學儲存媒體的 一熱後可朔性處理範例。在光學儲存媒體上的數位内容是 以凹槽與陸地表示的一連串資料位元,而且該等凹槽與陸 地是被一光學媒體播放器轉換成以〇與1表示的二進位資料 流。在產生光學儲存媒體的方法中,預先支配的數位内容 是光學式記錄到以玻璃或光阻塗層基材製成的一母體表 87819 200426783 面。一記錄器係透過使用一電鑄處理而藉著將一金屬(例 如,鎳)層沉積到母體而從母體產生。記錄器然後在複製處 理中用來將透明的光碟熱鑄(將變成光學儲存媒體卜只要熱 鑄,透明光碟便可透過使用已知為金屬化處理的—反射: 屬(例如鋁、金等)塗層。例如CDs的光碟然後使用一保護漆 塗以保護反射的金屬表面。此表示成品的光學儲存媒體。 例如DVDs的其他光學儲存媒體光碟可透過在dvd三層:層 中心的-黏性物而受保護。透過使用在技術中已知^屏^ 印刷處理與方法,光學儲存媒體的非記錄表面可依需要顯 示繪圖、美術或其他列印的資訊。 、 數十億元年收入會由於在前述數位儲存媒體上儲存數位 内容的盜用而損失。無數技術解決已提議,且許多實施保 護數位内容避免達法複製或未經認可的再±。例如,微軟 公司已在光學儲存媒體上使用昂貴的邊緣對邊緣(他魯200426783 (1) Description of the invention: [Technical field to which the invention belongs] The present invention generally relates to copy protection of optical storage media. More specifically, the present invention is directed to a system and method for using fuzzy bits for copy protection of optical, magneto-optical, and hybrid storage media. [Previous Technology] Optical, magneto-optical, and hybrid storage media such as compact discs (CDs) and digital video disks (Dvds) currently require inexpensive, reliable media that can store large amounts of digital content for the consumer. As used herein, optical, magneto-optical and hybrid storage media, and other examples of formats in which the desired format is all digital storage media. The aforementioned digital storage media can be used to store a variety of digital content, including digital music, video, computer software, and other data. There are numerous media players for reading digital content from the aforementioned digital storage media, including CD players, DVD players, CD-ROM players, and game consoles such as Sony's Playstation 2TM from Microsoft Corporation. As used herein, the foregoing are all considered media players. Note that this is not an exhaustive list of media players and that other media players can be used. In particular, optical storage media such as CDs and DVDs are produced through a thermal post-processability process. Injection molding is a thermal post processability paradigm for generating optical storage media. The digital content on the optical storage medium is a series of data bits represented by grooves and land, and the grooves and land are converted into a binary data stream represented by 0 and 1 by an optical media player. In the method of producing optical storage media, the pre-dominated digital content is optically recorded on a mother surface made of glass or a photoresist-coated substrate 87819 200426783. A recorder is produced from a mother body by depositing a metal (e.g., nickel) layer onto the mother body by using an electroforming process. The recorder is then used in the reproduction process to hot-mould a transparent disc (which will become an optical storage medium. As long as it is hot-moulded, the transparent disc can be made by using what is known as metallization-reflection: genus (such as aluminum, gold, etc.) Coatings. CDs such as CDs are then coated with a protective varnish to protect the reflective metal surface. This represents the finished optical storage media. Other optical storage media such as DVDs are optical discs that can pass through three layers of DVD: layer center-adhesive It is protected. By using the ^ screen ^ printing processes and methods known in the technology, the non-recorded surface of the optical storage medium can display drawing, fine art or other printed information as needed. The aforementioned digital storage media has been lost due to theft of stored digital content. Countless technical solutions have been proposed, and many implementations have protected digital content from duplication or unauthorized reproduction. For example, Microsoft Corporation has used expensive optical storage media Edge-to-edge

Edge)與内集線環(Inner-hub_dng)全息圖窝上儲存媒體的簽 字。此外,認證系統提議引用在儲存媒體上利用陸地與凹 槽而將儲存媒體編碼的錯誤、不明確符號與圖案,這些錯 疾、不明確符號與圖案可被確認而將該儲存媒體認證。然 而’到現在’沒有不能由昧著良心電腦程式設計者折衷處 理的可實施技術解決。 與因此,在一系統與方法的技術方面,需要能提供用於光 學、磁光學與混合數位儲存媒體複製保護之系統及方法。 【發明内容】 根據本發明的一具體實施例,提供的儲存媒體能由一播 87819 200426783 元0 仍然根據另一具體實益〜 貫他例,提供一程式儲存裝置,以實 質具體實施由一機器執彳 、 礼令的程式,以執行用以認證程 式儲存裝置的一万法,龙. ”、,、中诼儲存裝置可儲存經由機器讀 取的數位内谷,孩万法包本· 士 ^ •數/人躀取在程式儲存裝置上 的預定位置;將來自預定位 、疋仫置的複數個讀取結果相比較, 以判斷結果於每個讀取是不鲁断』门 疋否實質相同;且如果結果是實質 相同,使機器停止讀取在昶— 在孝王式儲存裝置上儲存的數位内 容。 根據-進-步具體實施例,提供一程式儲存裝置,以實 質具體實施由-機器執行指令的程式,以執行用以認證程 式儲存裝置的方法纟中該儲存裝置可儲存經由機器讀 取的數位㈣,該方法包含:數次讀取在程式儲存裝置的 預定位置上的-連串位元;將來自預定位置複數個讀取的 位元串相比較,以判斷在位元_中的位元於每個讀取是否 實質相同;且如果在位元串中的位元是實質相同,使機器 停止讀取在程式儲存裝置上儲存的數位内容。 【實施方式】 圖1係根據本發明而描述由一傳統媒體播放器(例如 CD/DVD媒體播放器)從一數位儲存媒體(例如,光學儲存媒 體)獲得的讀取範例100。參考數字1〇2係表示媒體播放器沿 著光學儲存媒體的一磁軌10 4取得的許多取樣。例如, η11Τπ係描述在交談103期間,多媒體播放器沿著光學儲存 媒體的磁軌104採用的11個取樣。如在範例1 〇〇的特別描 87819 -11- 200426783 述’例如取樣"3T"的其他取樣可使用,其表示媒體播放器 在磁軌104交談期間採用的三個取樣。雖然範例ι〇〇為了簡 化與清楚而只描述一個磁軌1〇4,但是儲存媒體可包含複數 個磁軌104。每個磁軌1〇4包含複數個凹槽ι〇6與陸地1〇8。 陸地108是平坦的’以反射由類似一鏡子的媒體播放器產生 的一雷射點110,所以當凹槽具有一深度以產生一最小強度 反射讀取值時,它可透過媒體播放器的一偵測器而產生一 最大強度反射讀取值。參考數字1〇5表示從凹槽ι〇6到陸地 10 8的轉變,反之亦然。 進一步參考圖1,媒體播放器可沿著磁軌1 〇4而移動由媒 骨豆播放器的一雷射(未在圖顯示)所產生的雷射點11 〇,以獲 得如強度反射讀取值波形112描述的強度反射。iref是一峰 值’其中該峰值係對應在高通濾波前的媒體播放器的一光 電二極體(未在圖顯示)輸出。係分別表示由一純陸 地108產生的最大強度反射讀取值(即是,沒有光破壞性取 消)與由一純凹槽106產生的一最小強度反射讀取值(即是, 有光破壞性取消)。In(亦稱為114)114表示在最大強度反射讀 取值(即是,It()p)與最小強度反射讀取值(即是,Ibc)t)之間的 差。I3 116係從數位儲存媒體而描述在最小強度反射高位準 132與最大強度反射低位準134之間的差。明確而言,ι3 π6 的一上限位準122係表示最小強度反射高位準132,而13 116 的低位準124疋取大強度反射低位準134。換句話說,13 116是在最小強度反射高位準13 2與最大強度反射低位準i 3 4 之間的差。傳統媒體播放器需要Ι3>〇· 15*^ 1。ASY 120描述 87819 -12- 200426783 一信號不均勻,其表示在Iu 114的中心與I3 116的中心之間 的差。在此注意,不同媒體播放器具有不同的雷射能量, 且實際的強度反射讀取值是與在每個媒體播放器的強度反 射讀取值波形112中描述的It()p與IbQt不相同。在不同媒體層 上有約雷射能量的1 0百分比變化。 仍然進一步參考圖1,媒體播放器能將強度反射讀取值波 形112轉換成二進位資料流118(即是,數位内容)。透過採用 沿著一凹槽106取樣,媒體播放器可於相關取樣區段1〇3產 生等於零的一連串二進位位元126。同樣地,透過採用沿著 一陸地108的取樣,媒體播放器可於相關取樣區段產生等於 零的一連串二進位位元128。注意,強度反射讀取值必須至 少是媒體播放器的最小強度反射讀取值高位準132,以在二 進位資料流11 8中產生表示一部份陸地1 〇8(即是,位元等於 零)的一位元。同樣地,強度反射讀取值必須充其量是媒體 播放器的最大強度反射讀取值低位準13 4,以在二進位資料 流118中產生表示一部份凹槽106(即是,等於零的位元)的一 位元。如在凹槽106與陸地ι〇8間的強度反射讀取值波形112 轉變105的描述,當在凹槽與陸地間的強度反射讀取值轉變 時,媒體播放器可在二進位資料流中將轉變1〇5轉換成等於 1的二進位位元13 0。 圖2係根據本發明而描述在陸地1〇8上面或下面的凹槽 之範例2〇0。凹槽106具有窄於上述圖i的雷射點11〇。凹槽 106的咼度(或深度)是大約在產生雷射點11〇的雷射數位儲存 媒體的四分之一波長,其可幫助有效率從光學儲存媒體取 87819 -13 - 200426783 回資料。注意,當雷射進入數位儲存媒體時,透過雷射產 生的波長便會改變成λ/η,其中λ表示在真空中的波長,且n 表示數位儲存媒體的折射率。例如,對於雷射的780 nm特 定波長與一聚合碳酸鹽數位儲存媒體的1.58折射率而言, 凹槽106的深度是大約120 nm(即是,780/1.58/4 = 120)。從凹 槽106反射的光2〇2會破壞性取消從陸地1〇8反射的光2〇4。 因此,在圖2顯示的位置,透過偵測器從在位置(即是,取 要)上放置的雷射點110獲得的強度反射讀取值係透過一最 小強度反射讀取值的媒體播放器決定。如前述,因為媒體 播放器的雷射能量變化,所以採用取樣的偵測器強度反射 讀取值便會從最大強度反射讀取值ItQp、或最小強度反射讀 取值Ibot變化。然而,如前述,讀取應該全然超過特殊媒體 播放器的最小反射強度高位準13 2、或全然低於特殊媒體播 放器的最大強度反射高位準,所以媒體播放器可決定一最 大或最小強度反射讀取值。然而,如果強度反射讀取值接 近高位準132或低位準134,它便會在二進位資料流中引起 一擺動(從時序誤差發生的失真),或強迫媒體播放器任意假 設一最大強度反射讀取值、或最小強度反射讀取值。 圖3係根據本發明而描述在一儲存媒體磁軌上的一或多個 模糊位元的範例3 0 0。根據此範例,在兩個相鄰凹槽間的距 離調變可用來產生一或多個模糊位元。如上面圖1的描述, 假設雷射點110是由一特殊媒體播放器的雷射(未在圖顯示) 產生。如前面圖1的描述,雷射點110係進一步描述沿著媒 體磁執的取樣採用的位置。可進一步假設一陸地是在圖3範 87819 -14- 200426783 例3 00中凹槽的上面或下面。圖3描述強度反射讀取波形 302’其包含分別對應在儲存媒體上位置(a)、(b)、與(c)的 波形302的三個強度反射讀取區段312、3 14與3 16。此外, 在圖3的波形302中有描述的一最小強度反射高位準3 22與一 最大強度反射低位準324。在圖3的範例300有進一步描述的 一資料流3 1 8,其表示從複數個採用取樣獲得的位元。注 意,只有在位置(a)、(b)與(c)上採用的相關取樣將詳細描 述。 如圖3的位置(a)所述,相鄰凹槽3 04與凹槽3 06是彼此相 鄰。凹槽304與凹槽306佔用對應低於或高於於凹槽的陸地 之表面區域是是大約百分之50。當一取樣是在位置(a)取得 時’從凹槽304與306反射的光會破壞性取消從陸地反射的 光。因此,透過特殊媒體播放器的偵測器獲得的強度反射 讀取值是一最小強度反射讀取值308。明確而言,隨著位置 (a),波形302的強度反射讀取值部份3 12係顯示獲得的強度 反射讀取值是全然低於最大強度反射低位準324,而且如此 能以二進位資料流3 1 8轉換成零326。 如圖3的位置(c)所述,相鄰凹槽3 04與凹槽306是不相鄰, 而且是在雷射點110的周圍(即是,在凹槽304與306之間的 距離是大約雷射點11 〇的直徑)。當取樣是在位置(c)取得 時,透過特殊媒體播放器的偵測器獲得的強度反射讀取值 是一最大強度反射讀取值310。明確而言,隨著位置(c),在 波形302區段3 16的強度反射讀取值顯示主要從陸地反射的 光反射是全然超過最小強度反射高位準322。因此,媒體播 87819 -15- 200426783 放詻是在位置(a)上以二進位流3 18將強度反射讀取值轉換成 零 328 〇 如在圖3的位置(b)所述,在相鄰凹槽3〇4與凹槽3〇6之間的 距離可被調變,所以當取樣是在位置(b)取得時,透過媒體 播放器的偵測器獲得的強度反射讀取值是一模糊強度反射 謂取值309,即是,大約在位置(a)的最小強度反射讀取值 3〇8與最大強度反射讀取值31〇與在位置(c)的最大強度反射 頊取值惑間的中間值。在位置(13)的模糊強度反射讀取值3〇9 是在波形302的最大強度反射324與一最小強度反射高位準 322之間。波形3〇2的強度反射讀取值部份314係顯示媒體播 放器是在轉換320上將模糊強度反射讀取值3〇9轉換成模糊 位元330與332(以問號表示)。 圖4是根據本發明而描述在儲存媒體磁軌上的一或多個模 糊位的位元另一範例描述4〇〇。根據此範例,單一凹槽4〇4 的寬度調變是用來產生一或多個模糊位元。凹槽4〇4的長度 與寬度的方向是以參考412表示。如在圖3的先前圖例所 示,在圖4中假設雷射點11〇描述取樣沿著儲存媒體的磁軌 取得的位置。進一步假設一陸地是在超過或低於在圖4的範 例400的凹槽404。圖4進一步描述一強度反射讀取值波形 402,其包含對應在儲存媒體上位置(心、(…與卜)的強度反 射讀取值部份414。此外,在圖4的波形4〇2中描述一最小強 度反射南位準41 6與一最大強度反射低位準418。在圖4中進 一步描述一資料流422,其表示從複數個採用的取樣獲得的 -或多個位元。注意,只有在位置⑷、⑻與⑷㈣的相關 87819 200426783 取樣將詳細描述。 如在圖4的位置(a)描述,凹槽404的寬度是大約雷射點110 直徑的一半。當一取樣是在位置(a)取得時,從凹槽404反射 的光便會破壞性取消從超過或低於凹槽404的陸地所反射的 光。因此,透過特殊媒體播放器的偵測器獲得的強度反射 讀取值是透過強度反射讀取值部份414表示的一最小強度反 射讀取值406、與在二進位資料流422的相關零位元。如在 圖4的位置(c)所述,凹槽404的寬度是大約零。當一取樣是 在位置(c)取得時,透過特殊媒體播放器的偵測器獲得的強 度反射讀取值是一最大強度反射讀取值4丨〇,而且是透過強 度反射讀取部份414與在二進位資料流422的相關零位元表 示。此是因為在位置(c)的反射光是主要從陸地反射。如在 圖4的位置⑻所述,凹槽404的寬度是在位置⑷的凹槽4〇4 寬度與在位置(c)的凹槽404寬度之間調變。因此,當取樣是 在位置(b)取得時,透過特殊媒體播放器的偵測器獲得的強 度反射讀取值是一模糊強度反射讀取值4〇8,即是,大約在 位置(a)的最小強度反射讀取值與在位置的最大強度反射 讀取值之間的中間。明確而言,在位置(13)有關波形3〇2的強 度反射渭取值邵份是在最大強度反射低位準41 §與最小強度 反射高位準416之間。從圖4的範例400可看出,凹槽4〇4的 寬度會從大約雷射點110的一半逐漸改變成大約零,而可有 效改變強度反射讀取值,以產生一或多個模糊位元424_ 428 ° 圖5疋根據本發明而仍然描述在一儲存媒體磁軌上的一或 87819 -17- 200426783 多個模糊位元的另一範例圖5〇〇。根據此範例,單一凹槽 504的深度调’又可用來產生一或多個模糊位元。如圖3與4的 先珂範例,在圖5,假設雷射點丨1〇描述取樣沿著一儲存媒 把磁軌取彳于的位置。進一步假設一陸地是超過或低於在圖5 的範例500中的凹槽5〇4。圖5進一步描述一強度反射讀取值 波形502,其包含對應在儲存媒體上位置(a)、(b)與(c)的強 度反射躓取值邵份514。此外,在圖5的波形5〇2描述一最小 強度反射鬲位準516與一最大強度反射低位準518。進一步 描述表示從複數個取得的取樣獲得的一或多個位元的資料 流522。如前述,只有在位置(a)、(1))與(〇)上取得的相關取 樣將詳細描述。圖5進一步描述在凹槽5〇4的中間線上的一 橫截面圖式512,其係描述凹槽504的深度調變。 明即重新參考圖5,如在位置(a)的特別描述,凹槽504的 深度在一特殊媒體播放器的數位儲存媒體是大約波長四分 之一。當一取樣是在位置(a)取得時,從凹槽5〇4反射的光便 會破壞性取消從超過或低於凹槽5 04的陸地所反射的光。因 此’透過特殊媒體播放器的偵測器獲得的強度反射讀取值 是一最小強度反射讀取值506,其是以強度反射讀取值部份 5 14與在二進位資料流522的相關零位元表示。目前,如在 位置(c)的描述,凹槽504的深度是大約零。當一取樣是在位 置(c)取得時,透過特殊媒體播放器的偵測器獲得的強度反 射頃取值是一最大強度反射讀取值5 1 〇,且以強度反射讀取 值部份5 14與在二進位資料流522的相關零位元表示。此是 因為從在位置(c)凹槽504反射的光不會破壞性取消來自陸地 87819 -18 - 200426783 的反射光’藉此產生一最大強度反射讀取值5 10。如在圖5 的位置(b)描述,凹槽504的深度是在位置(a)的凹槽504深度 與在位置(c)的凹槽5〇4深度之間調變。因此,當取樣是在位 i (b)取得時’透過特殊媒體播放器的偵測器獲得的強度反 射1買取值是一模糊強度反射讀取值5〇8,即是,大約在位置 (a)的最小強度反射讀取值與在位置(c)的最大強度反射讀取 值之間。更明確而言,在位置(1))有關波形5〇2的強度反射讀 取值部份5 14是在最大強度反射低位準5 1 8與最小強度反射 南位準516之間。從圖5的橫截面圖512的描述可看出,凹槽 504的深度是從儲存媒體的大約雷射波長四分之一逐漸改變 成大約零,而可有效改變強度反射讀取值,以產生一或多 個模糊位元524-528。 圖6是根據本發明而仍然描述在一儲存媒體磁軌上的一或 多個模糊位元的另一範例圖6〇〇。根據此範例,在陸地604 上的一金屬層611的反射率調變可用來產生一或多個模糊位 元。如圖3-5的先前範例,在圖6,假設雷射點π 0描述取樣 沿著一儲存媒體磁軌取得的位置。在此範例,進一步假設 取樣只在陸地604取得。圖6進一步描述強度反射讀取值波 元602,其包含對應在儲存媒體上位置(a)、(b)與(c)的強度 反射讀取值部份614。此外,在波形602中,其描述一最小 強度反射高位準616與一最大強度反射低位準618。進一步 描述表示從複數個取樣獲得的一或多個位元的資料流622。 如前述,只有在位置(a)、(b)與(c)取得的相關取樣將詳細描 述。圖6進一步描述一波形612,其係描述在一陸地6〇4上的 87819 -19- 200426783 金屬層反射率調變可用來產生一或多個模糊位元。 請即重新參考圖6,如在位置(a)的特別描述,金屬層611 的反射率是大約百分之80。典型上,來自金屬層611的反射 是一致性,即是,金屬層可反射大約百分之80的光。根據 圖6,如反射率波形612的描述,金屬層的反射率是在百分 之80與百分之1〇之間調變。此最好透過將能掃描一預定陸 地區域及燃燒或切除對應該陸地604的金屬層611的一高強 度雷射調變而達成。更明確而言,燃燒會造成金屬層611的 反射率減少。將來自在儲存媒體預定位置上金屬層的反射 611調變可用來獲得一或多個模糊位元。因此,在位置 (a),金屬層的反射率是在百分之10的低位準。結果,透過 特殊媒體播放器的偵測器獲得的強度反射讀取值是一最小 強度反射讀取值606,且以強度反射讀取值部份614與在二 進位、料流622的相關零位元表示。目前,如在位置(c)的描 述’金屬層的反射率611是在百分之80的高度。當一取樣是 在位置(c)取得時,透過特殊媒體播放器的偵測器獲得的強 度反射讀取值是一最大強度反射讀取值6丨〇,且以強度反射 讀取值部份614與在二進位資料流622的相關零位元表示。 然而,如在反射率波形612的位置(b)描述,金屬層611的反 射率是調變大約在位置(c)的反射率與在位置(a)的反射率之 間。因此,當取樣是在位置(b)取得時,透過特殊媒體播放 器的偵測器獲得的強度反射讀取值是一模糊強度反射讀取 值608,即是,大約在位置(…的最小強度反射讀取值與在位 置(c)的最大強度反射讀取值之間。明確而言,在位置沙)有 87819 -20- 200426783 關波形602的強度反射讀取值部份614是在最大強度反射低 位準6!8與最小強度反射高位準616之間。從圖6的範例6〇〇 可看出,金屬層的反射率是從大約百分之8〇改變到大約百 分比0,而可有效改變來自陸地6〇4的強度反射讀取值以 產生一或多個模糊位元624-628。 圖7是根據本發明而描述在一儲存媒體磁軌上的一或多個 模糊位元的進一步範例圖700。根據此範例,在凹槽7〇4的 一金屬層611的反射率調變可用來產生一或多個模糊位元。 如圖6的先前範例,在圖7,假設雷射點11〇是描述取樣沿著 一儲存媒體磁軌取得的位置。在此範例,進一步假設取樣 是在凹槽704取得。圖7進一步描述一強度反射讀取值波形 702,其包含對應在在儲存媒體位置(a)、(b)與(c)的強度反 射讀取值部份714。此外,在波形702,其描述一最小強度 反射高位準716與一最大強度反射低位準718。進一步描述 表示從複數個取得的取樣獲得的一或多個位元的資料流 722。如前述’只有在位置(a)、(b)與(c)上取得的相關取樣 將詳細描述。圖7進一步描述一波形712,其係描述在凹槽 704上可用來產生一或多個模糊位元的金屬層反射率調變。 進一步參考圖7,如在位置(a)的特別描述,金屬層的反射 率611是大約百分之8〇。來自一金屬層611的反射典型是一 致性’即是’金屬層可反射大約百分之8 0的光。根據圖7, 如反射率波形712的描述,金屬層的反射率是在百分之8〇與 百分之10之間調變。此最好透過調變用以射掃預定陸地區 域及然燒或切除對應凹槽704的金屬層611的高強度雷而達 87819 -21 - 200426783 成611。更明確而言,然燒可使金屬層611的反射率減少。 在儲存媒體預足位置上將來自金屬層611的反射調變可用來 獲知一或多個模糊位元。因此,在位置(a),金屬層的反射 率是在百分< 80的高度。結果,透過特殊媒體播放器的偵 測器獲得的強度反射讀取值是一最小強度反射讀取值7〇6, 且是以強度反射讀取值部份714與在二進位資料流722的相 關零位7G表7F。注意,在凹槽上的金屬層反射率是與透過 媒體播放器獲得的強度反射讀取值成比例。明確而言,當 來自凹槽的一強度反射表示一最小強度(即是,大約百分之 〇)時,來自陸地(超過或低於凹槽)的反射便沒有破壞性干 擾,所以來自凹槽位置的強度反射讀取值是大約在波形702 上的最大強度反射讀取值低位準7丨8與最小強度反射高位準 716之間的中間。然而,當來自凹槽的反射強度是一最大強 度(即是,大約百分之80)時,來自凹槽的反射光便會破壞性 取消來自陸地的反射光。此情況的結果是反射強度是一最 小強度反射。 仍然進一步參考圖7,在位置(b),在波形712的金屬層611 的反射率是逐漸調變到低於典型百分之8〇。結果,透過特 殊媒體播纟器的❹]f|獲得的強度反射讀㉟值便會成反比 上升,但是仍然保持在一最小強度反射讀取值7〇8,如強度 反射讀取值部份714與在二進位資料流722的相關零位元的 表示。然而,在位置(c),金屬層6丨丨的反射率是調變到百分 之十的低位準。當一取樣是在位置(c)取得時,透過特殊媒 體播放器的偵測器獲得的強度反射讀取值是一模糊強度反 87819 -22- 200426783 射讀取值710,而且是以強度反射讀取值部份714與在二進 位資料流7 2 2的相關模糊位元7 2 4 _ 7 2 8表示。模糊強度反射 讀取值71 0是大約在位置(a)的最小強度反射讀取值與在位置 (b)的最大強度反射讀取值之間的中間。更明確而言,在位 置(c)有關波形702的強度反射讀取值部份714是在最大強度 反射低位準71 8與最小強度反射高位準716之間(即是,在大 約中點717)。從圖7的範例700可看出,金屬層611的反射率 是從大約百分之80改變到大約百分之1〇,而可有效以反比 例改變來自凹槽704的強度反射讀取值,以產生一或多個模 糊位元724-728。 請即參考圖3-7,如前述,來自不同媒體播放器的雷射強 度會以大約百分之10不同。同樣地,每一播放器的最小強 度反射高位準與最大強度反射低位準可不同。若要說明雷 射強度差與媒體播放器㈣—或多個模糊位元,複數個模 糊位元可依下列提供。在圖3的凹槽綱與綱之間的距離調 又N況可铋供具每個連續凹槽對的複數個凹槽對,且每 個連續凹槽對具有較大凹槽距離調變。例如,凹槽30植 3:對具有在相關凹槽之間的距離從大約零改變成大約雷射 田點大小110的直徑。在圖4的凹槽4〇4寬度調變情況,凹槽 404的寬度是從大約雷斯亩 射直位的一半改變成大約零。在圖5 的凹槽5 04的深度調轡)主、、 3,兄’冰度是從大約在儲存媒體的雷 射波長四分之一改蠻忐+ 成大约零。在圖6與7的金屬層反射率 ’楚情況,金屬層61!的反舢"λ 反射率疋仗大約百分之10改變成大 、、勺百分之80(反之亦然)。社 1果不官取小強度反射高位準與 87819 -23- 200426783 最大強度反射低位準是用於一特殊媒體播放器,將始終是 強度反射讀取值是模糊(即是,模糊位元)位置。此外,沿著 冗餘的儲存媒體磁軌將相同字特性的額外模糊位元(即是, 相同的距離調變、寬度調變、深度調變或金屬層反射率調 變模糊位元)配置是較好的。此外,前面模糊位元的不同組 合可沿著冗餘的儲存媒體的一或多個磁軌而配置。 圖8是根據本發明的一儲存媒體800(例如,光學儲存媒 體)。儲存媒體800包含一導入區域802,其包括在主通道的 數位靜音(或零資料)加上在子碼Q通道的目錄。導入區域可 使媒體播放器的雷射可跟隨陸地與凹槽,並同步於在程式 區域806的數位内容。在程式區域806的數位内容包括資 料,其可以是通常交錯在複數個磁軌的聲頻、視訊、或電 腦資料。導出區域804包括數位靜音(或零資料),以定義程 式區域806的結束。根據圖8,儲存媒體800進一步包含在導 入區域802或程式區域806配置的一認證程式808,以認證儲 存媒體800,藉此如果儲存媒體不是確實為下面圖10與11的 描述,可提供複製保護。 隨著特別參考在圖8的認證程式808,當認證程式808儲存 在導入區域802時,媒體播放器便會自動讀取導入區域 802,如此可自動載入及執行認證程式808。如果認證程式 808是配置在程式區域806的一位置,當媒體播放器讀取此 位置時,認證程式便會由媒體播放器自動載入及執行。此 外,認證程式808能與一安裝程式結合,以將在數位儲存媒 體800上儲存的數位内容安裝在個人電腦(即是,”PC”),例 87819 -24- 200426783 如,WindowsTM環境的setup.exe檔案。因此,在安裝時,認 證程式808便可執行。 進一步描述圖8,根據本發明,儲存媒體8〇〇進一步包含 (如果確實)在儲存媒體800的一或多個預定磁軌的預定位置 8 10上配置的一或多個模糊位元。如在放大部份812的描 述,包含一或多個模糊位元的此預定位置810之一是1〇毫米 大小。在習慣上,放大部份812係根據本發明而描述透過各 種不同技術獲得的一或多個模糊位元(即是,距離調變、寬 度調變、深度調變、與金屬層反射率調變)。在儲存媒體 800上儲存的數位内容是以未執行認證程式8〇8而媒體播放 器不能讀取數位内容(或一部份)的此一方式而受到保護。如 果認證程式808不能在儲存媒體8〇〇的預定位置81〇上找到一 或多個模糊位το,媒體播放器便會停止播放數位儲存媒體 800 ,藉此否絕使用者存取在儲存媒體上儲存的數位内容 800,此外,如果認證程式8〇8是與一安裝程式結合,安裝 程式可決定認證程式808是否不能在儲存媒體8〇〇的預定位 置8H)上找到-或多個模糊位元,藉此否絕使用者存取在儲 存媒體上儲存的數位内容8〇〇。 圖9疋根據本發明(即是,判斷—或多個模糊位元是否肩 於儲存媒體綱的預定位置)而用來執行認證程式8〇8以索 一儲存媒體的一媒體播放器< 爾荻态900(例如,光學媒體掮 器)800。媒體播放器9〇〇最好是一檯妓 取对疋傳統光學媒體播放器, 不需要額外硬體。然而,本發明允本 +貧明並未局限於具類似元# 其他媒體播放器可根據本於明二a 诼不焱明而容易實施的媒體播系 87819 -25- 200426783 900。媒體播放器900包含一馬達9〇2,以使儲存媒體8〇〇旋 轉。電子控制與資料取得電路914可控制馬達9〇2的速度與 在儲存媒體800上的雷射91〇位置。透過雷射91〇產生的入射 光是經由一光束分離器9〇8而傳送給四分之一波板9〇7,以 使入射雷射光的極化旋轉45度。接物鏡9〇6是將入射雷射光 聚焦在儲存媒體800。儲存媒體8〇〇可反射入射雷射光,且 接物透鏡906可收集到四分之一波板9〇7的反射光,以進一 步使反射光的極化旋轉45度。因為反射光的極化已旋轉9〇 度,所以光束分離器可將反射光反射到偵測器912。偵測器 912可謂取從儲存媒體的反射的光強度,並將信號傳送給電 子電路914。電子控制與資料914取得電路可將信號解碼, 並將它傳送給記憶體91 8。微處理機916可控制電子控制與 資料取得電路914。 圖1 〇是根據本發明而描述用於認證一儲存媒體的範例流 程圖1000。假設儲存媒體已插入一媒體播放器,例如可讀 儲存媒體的一媒體播放器9〇〇。進一步假設使用者嘗試使用 媒體播放器來讀取儲存媒體。請即參考流程圖丨〇〇〇,在步 驟1002,媒體播放器是將認證程式8〇8載入記憶體918,且 微處理機916執行認證程式8〇8,其包含下述步驟1〇〇4_ 1022。在步驟1〇〇4,播放器是讀取在儲存媒體8〇〇上的一預 定位置810,以獲得在二進位資料流的位元。在步驟1〇〇6, 預定位置的讀取結果是儲存在記憶體918。在步驟1〇〇8,可 判斷預定位置是否讀次不同次數。如果預定位置要被讀取 許多次’預定位置便會重新在步騾1〇〇4讀取。否則,如果 87819 -26 - 200426783 預定位置不重新讀取,流程圖1000便會在步驟1010持續。 最好是預定位置是讀取至少兩次。在步騾1〇1〇,來自預定 位置8 1 0不同讀取的結果會彼此比較。 進一步參考圖10,在步驟1012,可判斷讀取不同次數的 結果是否隨著不同的讀取而變化。如果結果是實質於每個 1買取相同,或一錯誤訊息於每個讀取產生,在步驟1 〇 14, 認證程式808便不會認證儲存媒體800。因此,在步驟 1016,認證程式808可使電子控制與資料取得電路914停止 使儲存媒體800旋轉(即是,使儲存媒體停止媒體播放器的 讀取)。然而,在步驟10 12,如果判斷每個讀取結果是隨著 不同讀取而任意改變,那麼流程圖便會在步驟丨〇丨8持續。 在此假設不同讀取的結果變化係表示在預定位置的一可能 模糊位元’即是,表示可能的認證。在步驟丨〇丨8,進一步 判斷疋否需要確定儲存媒體8〇〇的可能認證。認證程式8〇8 可預先設定重複次數,以確定儲存媒體8〇0是否確實。在步 驟1〇18,如果判斷結果需要被確認,流程圖1〇〇〇便會反覆 到步驟1004,以讀取在儲存媒體8〇〇上的另一預定位置。然 而’如果判斷不需要進一步確認,在步驟丨〇2〇,儲存媒體 可被認證。在步驟1022,播放器會以傳統方式而將資料持 續載入資料媒體800的程式區域806。 圖11是根據本發明而描述用以認證儲存媒體的另一範例 的泥程圖1100。同樣假設儲存媒體已插入媒體播放器,例 如可躀取儲存媒體的媒體播放器9〇〇。進一步假設使用者嘗 4使用媒體播放器來讀取儲存媒體。請即參考流程圖 87819 -27- 200426783 1100,在步驟1102,媒體播放器是將認證程式808入記憶體 918,且微處理機916可執行認證程式808,其包含下述步驟 1104-1122。在步驟1104,媒體播放器可讀取在儲存媒體 800預定位置810上的資料串。注意,資料串包含一或多個 模糊位元、以及非模糊位元。在步驟1 1 〇 6,結果(即是, 一連串料)是儲存在記憶體918。在步騾1108,可判斷是否 將預定位置讀取許多次。如果位置要被讀取許多次,流程 圖1100便會在步驟1104持續。否則,如果判斷不將預定位 置頃取許多次,流程表1100便會在步驟1110持續。最好 是,預疋位置至少讀兩次。其後,在步驟丨丨1〇,判斷是否 屑取在儲存媒體8〇〇上的另一預定位置81〇。步驟no#與 1108可於要被讀取的所有隨後預定位置重複。然而,如果 沒有其他預定位置要被讀取,在步驟1112,可判斷每個預 定位置讀取的資料串是否具有模糊位元。即是,在每個預 疋位置的所有讀取資料串中的相同位元可比較,以判斷是 否有模糊位元呈現(即是,相同位元是否隨著預定位置的不 同資料串而任意變化)。如果在步騾Π12判斷沒有模糊位元 存在,在步驟1114,儲存媒體便不會被認證。然後在步驟 1U6,認證程式808指示電子控制與資料取得電路914停止 纺織儲存媒體_。然而,在步驟1112,如果在資料串有模 糊位元,在步驟1118,在資料串的模糊位元的位置便可使 :認證程式808予以確認。在步驟112〇,儲存媒體可被認 證。在步驟1122 ’媒體播放器能以傳統方式而持續將資料 載入儲存媒體8〇〇的程式區域806。 87819 -28- 200426783 圖12是根據本發明而用以建立包含一或多個模糊位元的 儲存媒體之第一範例流程圖1200。在步驟1202,在儲存媒 體上記錄的數位内容(包括認證程式)可轉換成用於儲存媒體 類型的格式,例如光學、磁光學或混合媒體。在步驟 1204 ’ 一或多個模糊位元是以格式加入預定可用的空間。 一或多個模糊位元可透過下列任一調變技術而増加:調變 在兩個凹槽之間的距離;調變凹槽的寬度;及調整一凹槽 的深度。單層石版印刷可容易實施達成距離與寬度調變, 而多層石版印刷可容易實施達成深度調變。在步驟12〇6, 在格式的冗餘位元可如下述而調整,以經由一播放器的錯 誤修正裝置而在格式中產生增加的模糊位元。格式是在步 驟1208用來建立一遮罩。在步騾121〇,一母體係使用遮罩 建立。最後,在步驟1212,複數個儲存媒體係使用該母體 來記錄。或者,複數個儲存媒體的每一者可包含數位内 谷、認證程式與模糊位元的組合。 圖13是根據本發明而用以建立包含一或多個模糊位元的 儲存媒體之第二範例流程圖13〇〇。在步驟13〇2,一或多個 模糊位元是以用於儲存媒體類型的一格式而加入可用的空 間,例如光學、磁光學或混合媒體。如上面圖12的描述, -或多個模糊位元同樣可經由下列任—調變技術而增加: 調變在兩個凹槽之間的距離; _變凹槽寬度;及調整凹槽Edge) and Inner-hub_dng hologram nest storage media signature. In addition, the certification system proposes to cite errors, ambiguous symbols, and patterns on storage media that use land and grooves to encode the storage media. These errors, ambiguous symbols, and patterns can be confirmed to authenticate the storage medium. However, 'to now' there are no implementable technologies that cannot be compromised by conscientious computer programmers. Therefore, in a technical aspect of the system and method, there is a need for a system and method capable of providing copy protection for optical, magneto-optical, and hybrid digital storage media. [Summary of the Invention] According to a specific embodiment of the present invention, the storage medium provided can be broadcasted by a broadcaster 87619 200426783 yuan 0 Still according to another specific benefit ~ Through other examples, a program storage device is provided to implement the implementation by a machine. left foot, so the ceremony program, to execute a certification methodology for program storage device, the dragon. ",,, digital storage device within the valley complain store via machine-readable, this child methodology package Norris ^ • The number / person captures a predetermined position on the program storage device; compares the plurality of reading results from the predetermined position and the setting to determine whether the results are not indeterminate in each reading; And if the result is substantially the same, stop the machine from reading the digital content stored in the filial piety-type storage device. According to the -step-by-step specific embodiment, a program storage device is provided to substantially implement the instructions executed by the -machine Program to execute a method for authenticating a program storage device, where the storage device can store a digital read by a machine, the method includes: reading the program storage several times A series of bits at a predetermined position of the storage device; comparing a plurality of read bit strings from the predetermined position to determine whether the bits in bit_ are substantially the same for each read; and if The bits in the bit string are substantially the same, so that the machine stops reading the digital content stored on the program storage device. [Embodiment] FIG. 1 illustrates a conventional media player (such as CD / DVD media) according to the present invention. Player) Read example 100 obtained from a digital storage medium (eg, optical storage medium). Reference numeral 102 indicates a number of samples taken by the media player along a magnetic track 104 of the optical storage medium. For example, η11Τπ describes the eleven samples taken by the multimedia player along the magnetic track 104 of the optical storage medium during the conversation 103. As described in the special description of the example 10087, 878-19-11-200426783, for example, the sample "3T" and others Sampling is available, which represents the three samples taken by the media player during the conversation of track 104. Although example ι〇〇 describes only one track 104 for simplicity and clarity, but storage The body may include a plurality of magnetic tracks 104. Each magnetic track 104 includes a plurality of grooves 106 and land 108. The land 108 is flat to reflect a thunder generated by a media player like a mirror The shooting point 110, so when the groove has a depth to generate a minimum intensity reflection reading, it can generate a maximum intensity reflection reading through a detector of the media player. The reference numeral 105 indicates that The transition of groove ι〇6 to land 10 8 and vice versa. Further referring to FIG. 1, the media player can move along the magnetic track 1 0 4 by a laser (not shown in the figure) by the media bone bean player. The laser point 11 is generated to obtain the intensity reflection as described by the intensity reflection read value waveform 112. iref is a peak value, where the peak value corresponds to the output of a photodiode (not shown) of the media player before high-pass filtering. Represents the maximum intensity reflection reading (ie, no photo-destructive cancellation) produced by a pure land 108 and the minimum intensity reflection reading (ie, photo-destructive) produced by a pure groove 106, respectively. cancel). In (also known as 114) 114 represents the difference between the maximum intensity reflection reading (i.e., It () p) and the minimum intensity reflection reading (i.e., Ibc) t). I3 116 describes the difference between the minimum intensity reflection high level 132 and the maximum intensity reflection low level 134 from a digital storage medium. Specifically, an upper limit level 122 of ι3 π6 indicates the minimum intensity reflection high level 132, while the low level 124 of 13 116 captures the high intensity reflection low level 134. In other words, 13 116 is the difference between the minimum intensity reflection high level 13 2 and the maximum intensity reflection low level i 3 4. The traditional media player requires 13 > 0.15 * ^ 1. ASY 120 describes 87819 -12- 200426783 A signal is not uniform, which indicates the difference between the center of Iu 114 and the center of I3 116. Note here that different media players have different laser energies, and the actual intensity reflection read value is different from It () p and IbQt described in the intensity reflection read value waveform 112 of each media player. . There are approximately 10 percent changes in laser energy at different media layers. Still referring further to FIG. 1, the media player can convert the intensity reflection read value waveform 112 into a binary data stream 118 (i.e., digital content). By using sampling along a groove 106, the media player can generate a series of binary bits 126 equal to zero in the relevant sampling section 103. Similarly, by using sampling along a land 108, the media player can generate a series of binary bits 128 equal to zero in the relevant sampling section. Note that the intensity reflection read value must be at least the high level 132 of the minimum intensity reflection read value of the media player in order to generate a representation of a portion of land 1 08 in the binary data stream 11 8 (ie, the bits are equal to zero) One bit. Similarly, the intensity reflection read value must be at least the lowest level of the media player's maximum reflection reflection value 13 4 to produce a bit in the binary data stream 118 representing a portion of the groove 106 (ie, equal to zero) ). As described in the intensity reflection read waveform 112 transition 105 between the groove 106 and the land ι08, when the intensity reflection read value transition between the groove and the land is changed, the media player can be in the binary data stream Convert the transition 105 into a binary bit 13 equal to 1. Figure 2 illustrates an example 2000 of a groove above or below the land 108 according to the present invention. The groove 106 has a laser point 110 which is narrower than the above-mentioned figure i. The degree (or depth) of the groove 106 is about a quarter of the wavelength of a laser digital storage medium that generates a laser point of 110, which can help to efficiently retrieve 87819-13-200426783 data from an optical storage medium. Note that when a laser enters a digital storage medium, the wavelength generated by the laser changes to λ / η, where λ is the wavelength in a vacuum and n is the refractive index of the digital storage medium. For example, for a specific wavelength of 780 nm for a laser and a refractive index of 1.58 for a polymer carbonate digital storage medium, the depth of the groove 106 is approximately 120 nm (ie, 780 / 1.58 / 4 = 120). The light 202 reflected from the recess 106 will destructively cancel the light 204 reflected from the land 108. Therefore, at the position shown in FIG. 2, the median player reads the intensity reflection reading obtained by the detector from the laser point 110 placed on the position (that is, to take). Decide. As mentioned above, because the laser energy of the media player changes, the sampled detector intensity reflection reading will change from the maximum intensity reflection reading ItQp, or the minimum intensity reflection reading Ibot. However, as mentioned above, the reading should completely exceed the minimum reflection intensity high level of the special media player 13 2, or completely lower than the maximum reflection intensity high level of the special media player, so the media player can determine a maximum or minimum intensity reflection Read the value. However, if the intensity reflection read is close to high level 132 or low level 134, it will cause a wobble (distortion from timing errors) in the binary data stream, or force the media player to arbitrarily assume a maximum intensity reflection read Value, or minimum intensity reflection read value. Figure 3 illustrates an example 300 of one or more fuzzy bits on a storage medium track in accordance with the present invention. According to this example, the distance modulation between two adjacent grooves can be used to generate one or more fuzzy bits. As described in FIG. 1 above, it is assumed that the laser point 110 is generated by a laser (not shown in the figure) of a special media player. As previously described in FIG. 1, the laser point 110 further describes the position used for sampling along the media magnet. It can be further assumed that a land is above or below the groove in Example 3 00 of the range 87819 -14- 200426783 in Figure 3. FIG. 3 depicts an intensity reflection read waveform 302 ′ which includes three intensity reflection read sections 312, 3 14 and 3 16 corresponding to the waveform 302 at positions (a), (b), and (c) respectively on a storage medium. . In addition, a minimum intensity reflection high level 322 and a maximum intensity reflection low level 324 are described in the waveform 302 of FIG. 3. A data stream 3 1 8 is further described in the example 300 of FIG. 3, which represents bits obtained from a plurality of samples. Note that only the relevant samples used at positions (a), (b) and (c) will be described in detail. As shown in position (a) of FIG. 3, the adjacent grooves 304 and the grooves 306 are adjacent to each other. The groove 304 and the groove 306 occupy about 50% of the surface area corresponding to the land lower or higher than the groove. When a sample is taken at position (a), the light reflected from the grooves 304 and 306 will destructively cancel the light reflected from the land. Therefore, the intensity reflection reading obtained through the detector of the special media player is a minimum intensity reflection reading 308. To be clear, with position (a), the intensity reflection read value of the waveform 302 part 3 and 12 shows that the intensity reflection read value obtained is completely lower than the maximum intensity reflection low level 324, and this can be used as binary data Stream 3 1 8 is converted to zero 326. As shown in position (c) of FIG. 3, adjacent grooves 304 and grooves 306 are not adjacent, and are around the laser point 110 (that is, the distance between the grooves 304 and 306 is (Approximately the diameter of the laser point). When the sample is taken at position (c), the intensity reflection reading obtained through the detector of the special media player is a maximum intensity reflection reading 310. Specifically, with position (c), the readings of the intensity reflections in the waveform 302 section 3 16 show that the light reflections that are mainly reflected from the land completely exceed the minimum intensity reflection high level 322. Therefore, the media broadcast 87619 -15- 200426783 zooming is to convert the intensity reflection reading to zero 328 in binary stream 3 18 at position (a). As described in position (b) of FIG. 3, adjacent The distance between the grooves 304 and 306 can be adjusted, so when the sampling is taken at position (b), the intensity reflection read value obtained through the detector of the media player is blurred The intensity reflection value is 309, that is, between the minimum intensity reflection reading value of 30.8 at the position (a) and the maximum intensity reflection reading value of 31 ° and the maximum intensity reflection reading value at the position (c). The median. The read value of the fuzzy intensity reflection 309 at the position (13) is between the maximum intensity reflection 324 of the waveform 302 and a minimum intensity reflection high level 322. The intensity reflection read portion 314 of the waveform 302 shows that the media player converts the blurred intensity reflection read value 309 to the fuzzy bits 330 and 332 (indicated by a question mark) on the conversion 320. Figure 4 illustrates another example bit of one or more fuzzy bits on a track of a storage medium according to the present invention. According to this example, the width modulation of a single groove 404 is used to generate one or more fuzzy bits. The direction of the length and width of the groove 400 is indicated by reference 412. As shown in the previous illustration of Fig. 3, it is assumed in Fig. 4 that the laser point 11 describes the position where the sample was taken along the magnetic track of the storage medium. It is further assumed that a land is above or below the groove 404 in the example 400 of FIG. FIG. 4 further describes an intensity reflection read value waveform 402, which includes an intensity reflection read value portion 414 corresponding to a position (heart, (... and Bu) on the storage medium. In addition, in the waveform 402 of FIG. 4 Describe a minimum intensity reflection south level 416 and a maximum intensity reflection low level 418. A data stream 422 is further described in FIG. 4 which represents-or more bits-obtained from a plurality of samples used. Note that only The correlation between the locations ⑷, ⑻, and 87887819 200426783 sampling will be described in detail. As described in position (a) of Fig. 4, the width of the groove 404 is about half the diameter of the laser point 110. When a sampling is at the location (a ) When acquired, the light reflected from the groove 404 destructively cancels the light reflected from the land above or below the groove 404. Therefore, the intensity reflection reading obtained through the detector of the special media player is A minimum intensity reflection read value 406 indicated by the intensity reflection read value portion 414 and the associated zero bit in the binary data stream 422. As described in position (c) of FIG. 4, the width of the groove 404 Is about zero. When a sample is When the position (c) is obtained, the intensity reflection read value obtained through the detector of the special media player is a maximum intensity reflection read value 4 丨 〇, and it is the intensity reflection read portion 414 and the binary data. The relevant zero bit representation of stream 422. This is because the reflected light at position (c) is mainly reflected from the land. As described at position ⑻ in FIG. 4, the width of the groove 404 is the groove 4 at position 〇. 4 The width is adjusted between the width of the groove 404 at position (c). Therefore, when the sample is taken at position (b), the intensity reflection reading obtained through the detector of the special media player is a blur The intensity reflection read value 408 is about the middle between the minimum intensity reflection read value at position (a) and the maximum intensity reflection read value at position. Specifically, it is related to position (13). The value of the intensity reflection of the waveform 302 is between the maximum intensity reflection low level 41 § and the minimum intensity reflection high level 416. As can be seen from the example 400 in Fig. 4, the width of the groove 40 is About half of the laser point 110 gradually changes to about zero, and there may be Change the intensity reflection read value to produce one or more fuzzy bits 424_ 428 ° Figure 5 疋 According to the present invention, one or more of the 89878 -17- 200426783 multiple fuzzy bits on a storage medium track is still described An example is shown in FIG. 500. According to this example, the depth adjustment of a single groove 504 can be used to generate one or more fuzzy bits. As shown in the first example of FIGS. 3 and 4, in FIG. 5, assuming a laser point 丨10. Describe the location where the sample took the magnetic track along a storage medium. Further assume that a land is above or below the groove 504 in the example 500 of FIG. 5. FIG. 5 further describes an intensity reflection read. The value waveform 502 includes intensity reflection values 514 corresponding to positions (a), (b), and (c) on the storage medium. In addition, a minimum intensity reflection chirp level 516 and a maximum intensity reflection low level 518 are described in the waveform 502 in FIG. 5. A data stream 522 representing one or more bits obtained from a plurality of obtained samples is further described. As mentioned above, only relevant samples obtained at positions (a), (1)) and (0) will be described in detail. FIG. 5 further describes a cross-sectional view 512 on the middle line of the groove 504, which describes the depth modulation of the groove 504. Referring back to FIG. 5 immediately, as specifically described in position (a), the depth of the groove 504 is about a quarter of the wavelength of a digital storage medium of a special media player. When a sample is taken at position (a), the light reflected from the groove 504 will destructively cancel the light reflected from the land above or below the groove 504. Therefore, the intensity reflection read value obtained by the detector of the special media player is a minimum intensity reflection read value 506, which is the correlation zero of the intensity reflection read value portion 5 14 and the binary data stream 522 Bit representation. Currently, as described at position (c), the depth of the groove 504 is approximately zero. When a sample is obtained at position (c), the value of the intensity reflection obtained through the detector of the special media player is a maximum intensity reflection reading value 5 1 〇, and the intensity reflection reading value portion 5 14 and the associated zero bit representation in the binary data stream 522. This is because the light reflected from the groove 504 at position (c) does not destructively cancel the reflected light from the land 87819 -18-200426783 ', thereby generating a maximum intensity reflection reading 5 10. As described in position (b) of FIG. 5, the depth of the groove 504 is adjusted between the depth of the groove 504 at the position (a) and the depth of the groove 504 at the position (c). Therefore, when the sample is acquired at bit i (b), the intensity reflection obtained through the detector of the special media player 1 is a fuzzy intensity reflection reading of 508, that is, approximately at the position (a ) Between the minimum intensity reflection reading and the maximum intensity reflection reading at position (c). More specifically, the intensity reflection reading portion 5 14 of the waveform 502 at position (1)) is between the maximum intensity reflection low level 5 1 8 and the minimum intensity reflection south level 516. It can be seen from the description of the cross-sectional view 512 of FIG. 5 that the depth of the groove 504 is gradually changed from about a quarter of the laser wavelength of the storage medium to about zero, and the intensity reflection reading can be effectively changed to produce One or more fuzzy bits 524-528. Fig. 6 is another example diagram 600 of one or more fuzzy bits on a storage medium track according to the present invention. According to this example, the reflectivity modulation of a metal layer 611 on land 604 can be used to generate one or more fuzzy bits. As in the previous example shown in Figures 3-5, in Figure 6, it is assumed that the laser point π 0 describes the position of the sample taken along a storage medium track. In this example, it is further assumed that samples are only taken on land 604. Figure 6 further describes the intensity reflection read value wave element 602, which includes the intensity reflection read value portion 614 corresponding to the positions (a), (b), and (c) on the storage medium. In addition, in waveform 602, it describes a minimum intensity reflection high level 616 and a maximum intensity reflection low level 618. A data stream 622 representing one or more bits obtained from a plurality of samples is further described. As mentioned above, only the relevant samples taken at positions (a), (b) and (c) will be described in detail. FIG. 6 further describes a waveform 612, which is described as a 87819-19-200426783 metal layer reflectance modulation on a land 604 that can be used to generate one or more fuzzy bits. Please refer to FIG. 6 again. As specifically described in the position (a), the reflectivity of the metal layer 611 is about 80 percent. Typically, the reflection from the metal layer 611 is uniform, that is, the metal layer can reflect approximately 80 percent of the light. According to FIG. 6, as described in the reflectance waveform 612, the reflectivity of the metal layer is adjusted between 80% and 10%. This is best achieved by modulating a high-intensity laser capable of scanning a predetermined land area and burning or cutting away the metal layer 611 corresponding to the land 604. More specifically, the burning causes the reflectivity of the metal layer 611 to decrease. Modulation of the reflection 611 from the metal layer at a predetermined location on the storage medium can be used to obtain one or more fuzzy bits. Therefore, at position (a), the reflectivity of the metal layer is at a low level of 10%. As a result, the intensity reflection read value obtained through the detector of the special media player is a minimum intensity reflection read value 606, and the intensity reflection read value portion 614 and the relevant zero position in the binary and the stream 622 Yuan said. At present, as described in the position (c), the reflectivity 611 of the metal layer is at a height of 80 percent. When a sample is obtained at position (c), the intensity reflection read value obtained through the detector of the special media player is a maximum intensity reflection read value 6 丨 〇, and the intensity reflection read value portion 614 The associated zero bit representation with the binary data stream 622. However, as described in position (b) of the reflectance waveform 612, the reflectance of the metal layer 611 is modulated between the reflectance at the position (c) and the reflectance at the position (a). Therefore, when the sampling is obtained at position (b), the intensity reflection reading obtained through the detector of the special media player is a fuzzy intensity reflection reading 608, that is, the minimum intensity at the position (... Between the reflection reading and the maximum intensity reflection reading at position (c). To be clear, at position sand) there is 87,619-20-200426783 off the intensity of the waveform 602. The reflection reading portion 614 is at the maximum intensity. The reflection low level 6! 8 and the minimum intensity reflection high level 616. It can be seen from the example 600 in FIG. 6 that the reflectivity of the metal layer is changed from about 80% to about 0%, and the intensity reflection reading from the land 604 can be effectively changed to produce one or Multiple fuzzy bits 624-628. FIG. 7 is a further exemplary diagram 700 describing one or more fuzzy bits on a storage medium track in accordance with the present invention. According to this example, the reflectivity modulation of a metal layer 611 in the groove 704 can be used to generate one or more fuzzy bits. As shown in the previous example of Fig. 6, in Fig. 7, it is assumed that the laser point 11 is a position describing the acquisition of a sample along a storage medium track. In this example, it is further assumed that the samples are taken in the groove 704. FIG. 7 further describes an intensity reflection read value waveform 702, which includes intensity reflection read value portions 714 corresponding to the positions (a), (b), and (c) of the storage medium. In addition, in waveform 702, it describes a minimum intensity reflection high level 716 and a maximum intensity reflection low level 718. Further described is a data stream 722 representing one or more bits obtained from a plurality of obtained samples. As mentioned previously, only the relevant samples taken at positions (a), (b) and (c) will be described in detail. FIG. 7 further describes a waveform 712 that describes the modulation of the reflectivity of the metal layer on the groove 704 that can be used to generate one or more fuzzy bits. With further reference to Fig. 7, as specifically described at position (a), the reflectance 611 of the metal layer is approximately 80%. The reflection from a metal layer 611 is typically consistent, i.e., the metal layer can reflect approximately 80 percent of light. According to FIG. 7, as described in the reflectance waveform 712, the reflectivity of the metal layer is adjusted between 80% and 10%. This is best achieved by adjusting the high-intensity lightning that is used to shoot a predetermined land area and burn or cut the metal layer 611 corresponding to the groove 704 to reach 87819 -21-200426783 to 611. More specifically, the firing can reduce the reflectivity of the metal layer 611. The modulation of the reflection from the metal layer 611 at the pre-footed position of the storage medium can be used to learn one or more fuzzy bits. Therefore, at position (a), the reflectivity of the metal layer is in percent < 80 height. As a result, the intensity reflection reading obtained through the detector of the special media player is a minimum intensity reflection reading of 706, and the correlation between the intensity reflection reading portion 714 and the binary data stream 722 is Zero 7G table 7F. Note that the reflectivity of the metal layer on the groove is proportional to the intensity reflection reading obtained through the media player. Specifically, when an intensity reflection from a groove represents a minimum intensity (that is, approximately 0 percent), reflections from land (above or below the groove) have no destructive interference, so from the groove The intensity reflection read value of the position is about the middle between the maximum intensity reflection read value low level 7 丨 8 and the minimum intensity reflection high level 716 on the waveform 702. However, when the intensity of the reflection from the groove is a maximum intensity (i.e., about 80 percent), the reflected light from the groove is destructive to cancel the reflected light from the land. The consequence of this is that the reflection intensity is a minimum intensity reflection. Still referring further to FIG. 7, at position (b), the reflectance of the metal layer 611 in the waveform 712 is gradually adjusted to less than a typical 80%. As a result, the intensity reflection readings obtained through the special media player ❹] f | will increase inversely, but still remain at a minimum intensity reflection reading of 708, such as the intensity reflection reading portion 714. Representation with associated zero bits in binary data stream 722. However, at position (c), the reflectivity of the metal layer 6 is adjusted to a low level of ten percent. When a sample is taken at position (c), the intensity reflection read value obtained by the detector of the special media player is a fuzzy intensity inversion 87919 -22- 200426783, and the reading value is 710, and the intensity reflection reading is 710. The value portion 714 and the relevant fuzzy bits 7 2 4 _ 7 2 8 in the binary data stream 7 2 2 are represented. The blurred intensity reflection read value of 71 0 is intermediate between the minimum intensity reflection read value at the position (a) and the maximum intensity reflection read value at the position (b). More specifically, the intensity reflection read portion 714 of the waveform 702 at position (c) is between the maximum intensity reflection low level 7118 and the minimum intensity reflection high level 716 (ie, at about the midpoint 717) . It can be seen from the example 700 of FIG. 7 that the reflectivity of the metal layer 611 is changed from about 80 percent to about 10 percent, and the intensity reflection reading from the groove 704 can be effectively changed in inverse proportion to One or more fuzzy bits 724-728 are generated. Please refer to Figure 3-7. As mentioned earlier, the laser intensity from different media players will vary by about 10%. Similarly, the minimum intensity reflection high level and the maximum intensity reflection low level of each player may be different. To account for the difference in laser intensity and media player ㈣—or multiple fuzzy bits, multiple fuzzy bits can be provided as follows. The distance adjustment between the groove groove and the groove in Fig. 3 is N. Bismuth can be provided with a plurality of groove pairs for each continuous groove pair, and each continuous groove pair has a larger groove distance adjustment. For example, the groove 30 is planted 3: the diameter of the pair having the distance between the relevant grooves changed from about zero to about the laser field size 110. In the case where the width of the groove 400 is adjusted in FIG. 4, the width of the groove 404 is changed from about half of the vertical position of the groove to approximately zero. The depth of groove 5 04 in Fig. 5 is adjusted) The main, 3, and brother 'ice degrees are changed from about a quarter of the laser wavelength in the storage medium to about zero. In the case of the reflectivity of the metal layer in FIGS. 6 and 7, the reflectance of the metal layer 61! Is changed to about 80% by about 10% (and vice versa). The agency 1 takes the high level of low intensity reflection and 87619 -23- 200426783. The low level of maximum intensity reflection is used for a special media player. It will always be the position of the intensity reflection. The read value is fuzzy (ie, fuzzy bit). . In addition, the configuration of the additional fuzzy bits (ie, the same distance modulation, width modulation, depth modulation, or metal layer reflectance modulation fuzzy bits) of the same word characteristics along redundant storage media tracks is better. In addition, different combinations of the preceding fuzzy bits may be configured along one or more tracks of a redundant storage medium. FIG. 8 is a storage medium 800 (e.g., an optical storage medium) according to the present invention. The storage medium 800 includes a lead-in area 802 that includes a digital mute (or zero data) on the main channel plus a directory on the subcode Q channel. The lead-in area allows the laser of the media player to follow the land and groove, and is synchronized with the digital content in the program area 806. The digital content in the program area 806 includes data, which can be audio, video, or computer data that is typically interleaved across multiple tracks. The lead-out area 804 includes a digital mute (or zero data) to define the end of the program area 806. According to FIG. 8, the storage medium 800 further includes an authentication program 808 configured in the lead-in area 802 or the program area 806 to authenticate the storage medium 800, thereby providing copy protection if the storage medium is not exactly as described in FIGS. 10 and 11 below. . With particular reference to the authentication program 808 in Fig. 8, when the authentication program 808 is stored in the lead-in area 802, the media player will automatically read the lead-in area 802, so that the authentication program 808 can be automatically loaded and executed. If the authentication program 808 is arranged in a position in the program area 806, when the media player reads this position, the authentication program will be automatically loaded and executed by the media player. In addition, the authentication program 808 can be combined with an installer to install the digital content stored on the digital storage medium 800 on a personal computer (ie, "PC"), such as 87619 -24- 200426783, such as the setup of the WindowsTM environment. exe file. Therefore, at the time of installation, the authentication program 808 can be executed. Further describing FIG. 8, according to the present invention, the storage medium 800 further includes (if indeed) one or more fuzzy bits arranged at predetermined positions 8 10 of one or more predetermined tracks of the storage medium 800. As described in the enlarged portion 812, one of the predetermined positions 810 containing one or more blurry bits is 10 mm in size. Conventionally, the enlarged portion 812 is described in accordance with the present invention with one or more fuzzy bits (ie, distance modulation, width modulation, depth modulation, and metal layer reflectance modulation) obtained through various techniques. ). The digital content stored on the storage medium 800 is protected in such a way that the authentication program 808 is not executed and the media player cannot read the digital content (or a part thereof). If the authentication program 808 cannot find one or more fuzzy bits το at the predetermined position 810 of the storage medium 800, the media player will stop playing the digital storage medium 800, thereby denying the user access to the storage medium Stored digital content 800. In addition, if the authentication program 808 is combined with an installation program, the installation program can determine whether the authentication program 808 cannot be found on the storage medium 800 (predetermined location 8H)-or multiple fuzzy bits , Thereby denying users access to the digital content stored on the storage medium 800. Figure 9: A media player used to execute the authentication procedure 808 according to the present invention (that is, to determine whether or not the fuzzy bits are shouldered to a predetermined position of the storage media outline) < State 900 (e.g., optical media device) 800. The media player 900 is preferably a traditional optical media player that does not require additional hardware. However, the present invention allows the present + poor Ming is not limited to the similar media # other media players can be easily implemented based on the following in Ming II a 87819 -25- 200426783 900. The media player 900 includes a motor 900 for rotating the storage medium 800 times. The electronic control and data acquisition circuit 914 can control the speed of the motor 902 and the position of the laser 910 on the storage medium 800. The incident light generated through the laser 91 is transmitted to the quarter-wave plate 907 through a beam splitter 908 to rotate the polarization of the incident laser light by 45 degrees. The objective lens 906 focuses the incident laser light on the storage medium 800. The storage medium 800 can reflect the incident laser light, and the objective lens 906 can collect the reflected light of the quarter-wave plate 907 to further rotate the polarization of the reflected light by 45 degrees. Because the polarization of the reflected light has been rotated by 90 degrees, the beam splitter can reflect the reflected light to the detector 912. The detector 912 can be said to take the reflected light intensity from the storage medium and transmit the signal to the electronic circuit 914. The electronic control and data acquisition circuit 914 can decode the signal and transfer it to the memory 918. The microprocessor 916 can control the electronic control and data acquisition circuit 914. FIG. 10 is an exemplary flowchart 1000 for authenticating a storage medium according to the present invention. Assume that the storage medium has been inserted into a media player, such as a media player 900 that can read the storage medium. It is further assumed that the user attempts to use a media player to read the storage medium. Please refer to the flowchart. At step 1002, the media player loads the authentication program 808 into the memory 918, and the microprocessor 916 executes the authentication program 808, which includes the following step 100. 4_ 1022. In step 1004, the player reads a predetermined position 810 on the storage medium 800 to obtain the bits in the binary data stream. In step 1006, the read result of the predetermined position is stored in the memory 918. In step 1008, it can be judged whether the predetermined position is read different times. If the predetermined position is to be read many times, the 'predetermined position will be read again at step 104. Otherwise, if 87819 -26-200426783 is not re-read at the predetermined position, flowchart 1000 will continue at step 1010. Preferably, the predetermined position is read at least twice. At step 1010, the results of different reads from the predetermined position 8 10 are compared with each other. With further reference to FIG. 10, in step 1012, it can be determined whether the result of reading different times changes with different readings. If the result is substantially the same for every 1 purchase, or an error message is generated for each read, the authentication program 808 will not authenticate the storage medium 800 at step 104. Therefore, in step 1016, the authentication program 808 can stop the electronic control and data acquisition circuit 914 from rotating the storage medium 800 (that is, stop the storage medium from reading by the media player). However, in step 10-12, if it is judged that each read result is arbitrarily changed with different reads, the flowchart will continue at step 丨 〇 丨 8. It is assumed here that the change in the result of different readings indicates a possible fuzzy bit 'at a predetermined position, that is, indicates a possible authentication. In step 丨 〇 丨 8, it is further judged whether it is necessary to determine a possible authentication of the storage medium 800. The authentication program 008 can be set the number of repetitions in advance to determine whether the storage medium 8000 is accurate. In step 1018, if the judgment result needs to be confirmed, the flowchart 1000 repeats to step 1004 to read another predetermined position on the storage medium 800. However, if the judgment does not require further confirmation, the storage medium may be authenticated at step 〇20. At step 1022, the player continuously loads data into the program area 806 of the data medium 800 in a conventional manner. FIG. 11 is a mud map 1100 describing another example for authenticating a storage medium according to the present invention. It is also assumed that the storage media is plugged into a media player, such as a media player 900 that can grab the storage media. It is further assumed that the user uses a media player to read the storage medium. Please refer to the flowchart 87819 -27- 200426783 1100. In step 1102, the media player inserts the authentication program 808 into the memory 918, and the microprocessor 916 can execute the authentication program 808, which includes the following steps 1104-1122. At step 1104, the media player can read the data string at a predetermined position 810 of the storage medium 800. Note that the data string contains one or more fuzzy bits and non-fuzzy bits. In step 1106, the result (ie, a series of materials) is stored in the memory 918. In step 1108, it can be judged whether or not the predetermined position is read many times. If the position is to be read many times, the flow chart 1100 will continue at step 1104. Otherwise, if it is judged that the predetermined position is not taken many times, the flow chart 1100 will continue at step 1110. It is best to read the preview position at least twice. Thereafter, it is judged whether or not the crumb is taken at another predetermined position 810 on the storage medium 800 at step 1010. Steps no # and 1108 may be repeated at all subsequent predetermined positions to be read. However, if there are no other predetermined positions to be read, in step 1112, it can be determined whether the data string read at each predetermined position has fuzzy bits. That is, the same bit in all read data strings at each pre-position can be compared to determine whether there is a fuzzy bit presentation (that is, whether the same bit arbitrarily changes with different data strings in the predetermined position ). If it is judged in step 骡 12 that no fuzzy bit exists, in step 1114, the storage medium will not be authenticated. Then in step 1U6, the authentication program 808 instructs the electronic control and data acquisition circuit 914 to stop the textile storage medium. However, in step 1112, if there is a fuzzy bit in the data string, in step 1118, the position of the fuzzy bit in the data string can be confirmed by the authentication program 808. At step 112, the storage medium may be authenticated. At step 1122, the media player can continuously load data into the program area 806 of the storage medium 800 in a conventional manner. 87819 -28- 200426783 FIG. 12 is a first example flowchart 1200 for creating a storage medium containing one or more fuzzy bits according to the present invention. At step 1202, the digital content (including the authentication program) recorded on the storage medium may be converted into a format for a storage medium type, such as optical, magneto-optical, or mixed media. At step 1204 'the one or more fuzzy bits are added in a predetermined available space in a format. One or more fuzzy bits can be added by any of the following modulation techniques: modulating the distance between two grooves; adjusting the width of a groove; and adjusting the depth of a groove. Single-layer lithography can be easily implemented to achieve distance and width adjustment, while multi-layer lithography can be easily implemented to achieve depth adjustment. In step 1206, the redundant bits in the format can be adjusted as described below to generate an increased fuzzy bit in the format via the error correction device of the player. The format is used in step 1208 to create a mask. In step 1210, a master system is established using a mask. Finally, at step 1212, a plurality of storage media are recorded using the master. Alternatively, each of the plurality of storage media may include a combination of a digital valley, an authentication program, and a fuzzy bit. FIG. 13 is a second example flowchart 1300 for creating a storage medium containing one or more fuzzy bits according to the present invention. In step 1302, one or more fuzzy bits are added to the available space in a format for the type of storage medium, such as optical, magneto-optical, or mixed media. As described in FIG. 12 above,-or multiple fuzzy bits can also be increased by any of the following modulation techniques: modulating the distance between two grooves; _ changing the groove width; and adjusting the groove

深度。再者’單層石版印刷可交且參、A 1 W J备易貫施達成距離與寬度調 變,而多層石版印刷可容易鲁、A ^ ^ 勿貫她達成冰度調變。在步驟 1 3 0 4 ’在格式的冗餘位元可姑细 j被碉整,以經由一播放器的錯 87819 -29- 200426783 誤修正裝置而以非可修正格式產生增加的模糊位元。在步 驟1306,格式是用來建立遮罩。一母體係在步驟13〇8使用 遮罩而建立。在步驟1310,在儲存媒體上記錄的數位内容 (包括認證程式)是轉換成用於儲存媒體類型的格式。在步驟 1312,格式化數位内容是經由雷射或其他可比較的寫裝置 而寫到母體。最後,在步驟13 14,複數個儲存媒體可透過 使用母體而切割供分配。 圖14是根據本發明而建立包含一或多個模糊位元的一儲 存媒體的第三範例流程圖1400。在步驟14〇2,在儲存媒體 上屺錄的數位内容(包括認證程式)是被轉換成用於儲存媒體 類型的格式,例如光學、磁光學或混合媒體。在步驟 1404,格式使是用來在開敞空間中建立具凹槽的一遮罩, 用以定位一或多個預定位置。一母體是在步驟14〇6使用遮 罩建立。在步驟1408,一儲存媒體是使用一母體切割。注 意,複數個儲存媒體可使用母體而被切割。在步驟141〇 , 一雷射的強度可調變,以減少在預定位置上的儲存媒體金 屬層的反射率,以產生一或多個模糊位元。明確而言,雷 射強度可調變,以部份切除反射金屬層的預定位置,藉此 建立降低反射率的位置(即是,一或多個模糊位元)。最後, 在步驟1412,雷射是用來調整對應加入模糊位元預定位置 的冗餘位元,以經由一播放器的錯誤修正裝置而產生非可 修正的模糊位元。 凊即參考圖12-14,冗餘位元(以錯誤修正符號形式)是在 的儲存媒體格式化期間或之後調整,以使媒體播放 87819 -30- 200426783 器的錯誤修正裝置在媒體播放器期間不能修正沿著错存媒 體的-或多個磁軌而配置的一或多個模糊位元。傳統上, 當媒體播放器讀取儲存媒體時,冗餘位元能以媒體播放器 可使用他們的此-方式而算術式判斷是否對應在儲存媒體 上窝入的其他數位内容,不僅可判斷錯誤是否發生,而且 判斷在某些情況下是否可修正錯誤。固定數量的冗餘位元 可縮減以形成已知為一錯誤修正碼字(即是,” ecc")的資料 結構。在儲存媒體的讀取_,如1 一媒體播放器遇到分 別小於"3T"(在二進位資料流中有兩個連續值丨的位元)或超 過"11T"(以超過10位元的值〇分開的兩位元值^的兩個轉變 通道序列,媒體播放器便將位元以旗號表示為無效,並將 無效位元標示為”抹除"。在解碼及重新排序命令,使用ECC 的媒體播放器可會自動修正標示為"抹除,,的無效位元。ECC 只可用來修正有限數量的錯誤。即是,媒體播放器可偵測 錯誤是否超過有限限度的可能性,但是媒體播放器不能將 他們修正。此外,當在ECC的錯誤數量増加時,偵測錯誤 的可能性會降低。 進-步參考圖調整冗餘位元的一方法是放棄或使 ECC的自動修正能力失效^此最好是透過調整在ecc的圖案 中中冗餘位元而達成,其會使ECC的錯誤超過相關限制。 此外,如果圖案是在特殊選取的ECCs建立,其中該等選取 的ECCs係對應在儲存媒體上配置的一或多個模糊位元,媒 體播放器將不能修正與特殊ECC有關的—或多個模糊位 元’但是會傳遞未修正的一或多個模糊位元。因此,冗餘 87819 -31- 200426783 位7G的調整可透過媒體播放器的錯誤修正裝置而產生一或 多個非可修正模糊位元。 / 雖然本發明特別顯示及描述較佳具體實施例,但是熟諳 此技者可了解到形式與細節的先前及其他變化可達成,而 不致脫離本發明的精神與範圍。 【圖式簡單說明】 本發明的特徵與優點可從下面連同附圖的詳細描 熟爾此技者變得更顯然,其中: 使 圖1係根據本發明而描述由一傳統CD/DVD播放器從— 學儲存媒體獲得的讀取範例; <—光 圖2係根據本發明而描述一凹槽與一陸地的組合; 圖3係根據本發明而描述在一儲存媒體磁軌上的 模糊位元範例,· — 個 圖係根據本發明而描述在一儲存媒體磁軌上的 模糊位元的另一範例; —夕 “根據本發明而仍然描述在一儲存媒體磁 多個模糊位元的另一範例; 的〜 圖6係根據本發明而描述在—儲存媒體磁軌上 模糊位元的另—範例; 次夕 圖7係根據本發明而描述在—儲存媒體磁 模糊位元的進—步範例; 次夕 圖8係根據本發明而描述一錯存媒體範例; 存Γ二根據本發明而描述用來執行-認證程式以認證 存媒隨的一播放器範例; 87819 -32 - 200426783 圖10係根據本發明 程圖; 而描述用以認證—儲存媒體的範例流 圖11係根據本發明而y 、、、 、、 · 田处用以認證—儲存媒體的另一範 例流程圖; 圖12係根據本發明而y 、、 田心用以建互一儲存媒體的第一範 例流程圖’其中該儲存媒濟 予綠隨包含一或多個模糊位元;及 圖13係根據本發明而描述用以建立-儲存媒體的第二範 例流程圖’其中該儲存媒體包含一或多個模糊位元。 圖14係根據本>^日月 、 發月而私述用以建立一儲存媒體的第三範 例流程圖,其中該儲在猫;w 一 储存媒肖豆包含一或多個模糊位元。 【圖式代表符號說明】 100描述透過—傳統媒體播放器從數位儲存媒體獲得的讀 取值。 102媒體播放器沿著光學儲存媒體的磁軌而採用的取樣 數量。 103沿著一光學儲存媒體磁軌的部份。 104—光學儲存媒體的磁軌。 105從凹槽到陸地的轉變。 106凹槽。 1 0 8陸地。 110雷射點。 112強度反射讀取值波形。 114在最大強度反射讀取值(ItQp)與最小強度反射讀取值 (Ibot)之間的差 87819 •33· 200426783 116在一最小強度反射高位準與最大強度反射低位準之間 的差(13)。 11 8二進位資料流。 120信號不對稱ASY。 122差13的上限位準 124差13的下限位準 126在用於取樣部份的資料流中的值零二進位位元。 128在用於另一取樣部份的資料流中的值零二進位位元。 130在從凹槽到陸地轉變的二進位資料流中等於1的二進 位位元。 132最小強度反射高位準。 13 4最大強度反射低位準。 200描述超過或低於陸地的一凹槽範例。 202從凹槽反射的光。 2 0 4從陸地反射的光。 300範例經由在兩個凹槽間距離調變而在儲存媒體磁軌上 的一或多個模糊位元的範例。 302強度反射讀取值波形。 304凹槽。 306凹槽。 3 0 8最小強度反射讀取值。 309模糊強度反射讀取值。 310最大強度反射讀取值。 312強度反射讀取值部份。 87819 -34- 200426783 3 14強度反射讀取值部份。 3 1 6強度反射讀取值部份。 3 1 8二進位資料流。 320轉變。 322最小強度反射高位準。 324最大強度反射低部份。 326在二進位資料流中等於〇的二進位位元。 328在二進位資料流中等於〇的二進位位元。 33 0在二進位資料流中的一模糊位元。 3 3 2在二進位資料流中的一模糊位元。 400描述經由一凹槽的寬度調變而在儲存媒體磁軌上的一 或多個模糊位元的另一範例。 4〇2強度反射讀取值波形。 404凹槽。 4 0 6最小強度反射讀取值。 408模糊強度反射讀取值。 410最大強度反射讀取值。 412凹槽的長度與寬度的方向。 414強度反射讀取值部份。 416最小強度反射南位準。 418最大強度反射低位準。 420轉變。 422二進位資料流。 424在二進位資料流中的一模糊位元。 -35 - 87819 200426783 426在二進位資料流中的模糊位元。 428在二進位資料流中的一模糊位元。 5 0 0仍然描述經由一凹槽的深声铜辦二士 . 知叼木度凋邊而在一儲存媒體磁軌 上的一或多個模糊位元的另一範例。 5〇2強度反射讀取值波形。 5 0 4凹槽。 5 0 6最小強度反射讀取值。 508模糊強度反射讀取值。 5 1 0最大強度反射讀取值。 512在中心線的凹槽橫截面圖。 5 1 4強度反射讀取值部份。 5 1 6最小強度反射高位準。 5 1 8最大強度反射低位準。 520轉變。 522二進位資料流。 524在二進位資料流中的一模糊位元。 526在二進位資料流中的模糊位元。 5 2 8在二進位資料流中的一模糊位元。 600仍然描述經由在陸地上的一金屬屉 曰X射率調·變 在儲存媒體磁軌上的一或多個模糊位元 向疮述 3另一範例。 6〇2強度反射讀取值波形。 604陸地。 6〇6最小強度反射讀取值。 6〇8模糊強度反射讀取值。 87819 -36- 200426783 610最大強度反射讀取值。 612來自陸地的金屬層反射率波形。 614強度反射讀取值部份。 616最小強度反射高位準。 618最大強度反射低位準。 620轉變。 622二進位資料流。 624在二進位資料流中的一模糊位元。 626在二進位資料流中的模糊位元。 628在二進位資料流中的一模糊位元。 700仍然描述經由在凹槽上的一金屬層的反射率調變而在 儲存媒體磁軌的一或多個模糊位元的另一範例。 702強度反射讀取值波形。 704凹槽。 706最小強度反射讀取值。 708最小強度反射讀取值。 710模糊強度反射讀取值。 712來自凹槽的金屬層反射率波形。 714強度反射讀取值部份。 7 16最小強度反射高位準。 718最大強度反射低位準。 720轉變。 722二進位資料流。 724在二進位資料流中的一模糊位元。 87819 -37- 200426783 726在二進位資料流中的模糊位元。 728在二進位資料流中的一模糊位元。 800儲存媒體。 802導入區域。 804導出區域。 806程式區域。 808認證程式。 8 10在儲存媒體的一或多個預定位置上配置的一或多個模 糊位元 812—預定位置的放大。 900媒體播放器。 902馬達。 906接物透鏡。 907四分之一波板(λ/4)。 908光束分離器。 910雷射。 912偵測器。 914電子控制與資料取得電路。 916微處理機。 918記憶體。 1 000描述用以認證一儲存媒體的範例流程圖。 1002載入一認證程式的步驟。 1004讀取在儲存媒體上的一預定位置之步騾。 1 006將讀取結果儲存在記憶體的步騾。 87819 -38- 200426783 1008判斷是否以不同次數& 、 數喟取預定位置的步騾。 1010比較預定位置不同嗜 J項取結果的步騾。 ιοί2判斷讀取結果是否舛π 疋名從不同的讀取而變化的步 1014不認證儲存媒體的步騾。 、“ 1016停止儲存媒體的步驟。 1018判斷是否確定認證的步驟。 1020認證儲存媒體的步费。 1〇22持續從儲存媒體載人資料的步驟。 1100描述認證一儲存媒體 、 妹把的另一範例流程圖。 II 02載入一認證程式的步驟。 1104讀取在儲存媒體預定位置上的資料串之步驟。 1106將讀取結果儲存在記憶體的步驟。 謂判岐否以不同次數讀取預定位置的步驟。 1110判斷是否讀取另-預定位置的步驟。 1112判斷—預定位置的結果(即是,資料串)是否有模 元的步驟。 力慢 III 4不#忍證儲存媒體的步驟。 111 6停止儲存媒體的步驟。 111 8在認證程式中以確定在讀 κ %貝枓串中的模糊位 置的步驟。 天μ 1上 1120認證儲存媒體的步·驟。 1122持續從儲存媒體載入資料的步驟。 1200用以建立包含一或多個模糊 "上凡的儲存媒體的 範例流程圖。 禾目迁] 87819 -39- 200426783 程Γ。2轉換數位内容媒雜’包拾-错存媒趙格式化的認證 1204將一或多個模糊位 騾 元加入在格式中可用空 間的步 1206調整在格式中冗餘位元的步驟。 1208使用格式來建立μ㈠^ 121 0產生一母體的步驟。 1212使用母體將使用轉 便用儲存媒體切割的步驟。 1300用以建立包本一七夕y 體的第二 口或夕個模糊位元的儲存媒 範例流程圖。 蛛 13 0 2將一或多個模翻〆上一 ^ 口模糊^加人在用於 用空間。 对伃蜾目且格式的可 1304調整在格式中冗餘位元的步驟。 1306使用格式來建立遮罩的步驟。 13 0 8產生一母體的步驟。 1310轉換數位内容的步驟,其包括格式的認證程式。 1312將格式化數位内容窝到母體的步驟。 U14透過使用母體而將複數個儲存媒體切割的步帮。 1400用以建立包含—或多個模糊位元的儲存媒 範例流程圖。 币一 1402轉換數位内容的步驟,其包括一 證程式。 丨媒-格式的認 1404使用格式來建立具凹槽的遮罩之步驟,以定俨/ 多個預定位置。 或 87819 -40 200426783 1406產生一母體的步騾。 1408透過使用母體將一儲存媒體切割的步騾。 1410調變雷射強度以減少儲存媒體金屬層反射率以產生 一或多個模糊位元的步騾。 1412使用雷射來調整對應預定位置的冗餘位元之步騾。 87819 -41 -depth. Furthermore, the single-layer lithography can be delivered and the A 1 W J can easily implement distance and width adjustments, and the multi-layer lithography can easily adjust the distance and width. In step 1 3 0 4 ′, the redundant bits in the format may be rounded up to generate an increased fuzzy bit in a non-correctable format through a player's error 87819 -29- 200426783 error correction device. In step 1306, the format is used to create a mask. A master system is established in step 1308 using a mask. At step 1310, the digital content (including the authentication program) recorded on the storage medium is converted into a format for the storage medium type. At step 1312, the formatted digital content is written to the parent via a laser or other comparable writing device. Finally, in steps 13 to 14, a plurality of storage media can be cut for distribution by using the master. FIG. 14 is a third exemplary flowchart 1400 for establishing a storage medium including one or more fuzzy bits according to the present invention. In step 142, the digital content (including authentication programs) recorded on the storage medium is converted into a format for the storage medium type, such as optical, magneto-optical, or mixed media. In step 1404, the format is used to create a recessed mask in the open space for positioning one or more predetermined positions. A parent is created in step 1406 using a mask. At step 1408, a storage medium is cut using a master. Note that a plurality of storage media may be cut using a matrix. In step 1410, the intensity of a laser is adjustable to reduce the reflectivity of the metal layer of the storage medium at a predetermined position to generate one or more fuzzy bits. Specifically, the laser intensity can be adjusted to partially remove the predetermined position of the reflective metal layer, thereby establishing a position that reduces the reflectivity (ie, one or more fuzzy bits). Finally, in step 1412, the laser is used to adjust the redundant bits corresponding to the predetermined position where the fuzzy bits are added, so as to generate non-modifiable fuzzy bits through the error correction device of a player. That is, referring to Figure 12-14, the redundant bits (in the form of error correction symbols) are adjusted during or after the formatting of the storage medium, so that the media playback error correction device of the 78719 -30- 200426783 device is in the media player. It is not possible to correct one or more fuzzy bits arranged along the -or multiple tracks of the misstored media. Traditionally, when a media player reads a storage medium, redundant bits can be used by the media player to determine whether they correspond to other digital content embedded in the storage medium in such a way that they can not only determine errors. Whether it happened, and whether the error can be corrected in some cases. A fixed number of redundant bits can be reduced to form a data structure known as an error correction codeword (that is, "ecc "). When reading from a storage medium, such as 1 a media player encounters less than " 3T " (there are two consecutive values in the binary data stream bit) or two transition channel sequences exceeding " 11T " (the two-bit value separated by a value of more than 10 bit 0, two, media The player will flag the bit as invalid, and mark the invalid bit as "Erase". In the decoding and reordering commands, media players using ECC will automatically correct the "Erase", Invalid bits. ECC can only be used to correct a limited number of errors. That is, the media player can detect whether errors exceed a limited possibility, but the media player cannot correct them. In addition, when the number of errors in ECC The probability of detecting errors will decrease when you increase it. One way to adjust the redundant bits with reference to the figure is to abandon or invalidate the automatic correction of ECC. This is best done by adjusting the redundancy in the ecc pattern. Bitwise Achieved, it will cause the ECC error to exceed the relevant limit. In addition, if the pattern is created on specially selected ECCs, where the selected ECCs correspond to one or more fuzzy bits configured on the storage medium, the media player will Can't fix special ECC-or multiple fuzzy bits' but will pass uncorrected one or more fuzzy bits. Therefore, the redundant 87619 -31- 200426783 bit 7G adjustment can be corrected by the media player's error The device generates one or more non-modifiable fuzzy bits./ Although the present invention specifically shows and describes the preferred embodiment, those skilled in the art will understand that previous and other changes in form and detail can be achieved without departing from The spirit and scope of the present invention. [Brief description of the drawings] The features and advantages of the present invention will become more apparent to those skilled in the art from the following detailed description of the accompanying drawings, in which: Figure 1 is described in accordance with the present invention by A reading example obtained by a conventional CD / DVD player from a storage medium; <-Figure 2 depicts a combination of a groove and a land according to the present invention; Figure 3 is based on The present invention describes an example of fuzzy bits on a track of a storage medium, a picture is another example of fuzzy bits described on a track of a storage medium according to the present invention; Fig. 6 is another example of fuzzy bits on a storage medium track according to the present invention; Fig. 7 is according to the present invention. The following describes an example of the progress of the magnetic-fuzzy bit of the storage medium. Figure 8 shows an example of a misstored medium according to the present invention. The memory is described according to the present invention to execute an authentication program to authenticate the storage medium. An accompanying player example; 87819 -32-200426783 FIG. 10 is a flowchart according to the present invention; and an example flow chart for describing the authentication-storage medium is shown in FIG. 11 according to the present invention. Authentication—another example flowchart of a storage medium; FIG. 12 is a first example flowchart of Tianxin used to build a storage medium according to the present invention, wherein the storage medium includes one or more Fuzzy bit The second embodiment of the storage medium flowchart Fan 'wherein the storage medium comprises a plurality of fuzzy or bits - and 13 according to the invention for establishing a system described. Fig. 14 is a third example flowchart for privately establishing a storage medium according to this > sun, moon, and month, where the storage is in a cat; w a storage medium, Xiaodou contains one or more fuzzy bits. [Schematic representation of symbols] 100 describes the read value obtained from a digital storage medium through a traditional media player. 102 The number of samples taken by a media player along a magnetic track of an optical storage medium. 103 A portion of a magnetic track of an optical storage medium. 104—The magnetic track of the optical storage medium. 105 Transition from groove to land. 106 groove. 1 0 8 land. 110 laser points. 112 intensity reflection read waveform. 114 The difference between the maximum intensity reflection reading (ItQp) and the minimum intensity reflection reading (Ibot) 87619 • 33 · 200426783 116 The difference between a minimum intensity reflection high level and a maximum intensity reflection low level (13 ). 11 8 binary data stream. 120 signal asymmetric ASY. 122 The upper limit of the difference 13 The lower limit of the difference 13 126 The value in the data stream used for the sampling portion is zero binary bits. The value 128 in the data stream used for another sampling portion is zero binary bits. 130 is a binary bit equal to 1 in the binary data stream from groove to land transition. 132 minimum intensity reflection high level. 13 4 Low level of maximum intensity reflection. 200 describes an example of a groove above or below land. 202 Light reflected from the groove. 2 0 4 Light reflected from the land. The 300 example is an example of one or more blurry bits on a storage medium track by adjusting the distance between two grooves. 302 intensity reflection read waveform. 304 groove. 306 groove. 3 0 8 Minimum intensity reflection reading. 309 Blur intensity reflection read value. 310 Maximum Intensity Reflection reading. 312 Intensity reflection read portion. 87819 -34- 200426783 3 14 Intensity reflection reading. 3 1 6 Intensity reflection read value part. 3 1 8 binary data stream. 320 transformation. 322 minimum intensity reflection high level. 324 maximum intensity reflects the low part. 326 is a binary bit equal to 0 in the binary data stream. 328 is a binary bit equal to 0 in the binary data stream. 33 0 A fuzzy bit in the binary data stream. 3 3 2 A fuzzy bit in a binary data stream. 400 describes another example of one or more obscured bits on a storage medium track through modulation of the width of a groove. Waveform of the reading value of the 402 intensity reflection. 404 groove. 4 0 6 Minimum intensity reflection reading. 408 Blur intensity reflection read value. 410 Maximum Intensity Reflection reading. 412 groove length and width direction. 414 Intensity reflection reads the value part. 416 minimum intensity reflects south. 418 maximum intensity reflects low level. 420 changes. 422 binary data stream. 424 A fuzzy bit in the binary data stream. -35-87819 200426783 426 Ambiguous bits in the binary data stream. 428 A fuzzy bit in the binary data stream. 5 0 0 still describes another example of one or more obscured bits on a magnetic track of a storage medium. 502 intensity reflection read waveform. 5 0 4 groove. 5 0 6 Minimum intensity reflection reading. 508 Blur intensity reflection read value. 5 1 0 Maximum intensity reflection reading. 512 cross-sectional view of the groove at the centerline. 5 1 4 Intensity reflection read part. 5 1 6 Highest level of minimum intensity reflection. 5 1 8 Low level of maximum intensity reflection. 520 change. 522 Binary data stream. 524 A fuzzy bit in the binary data stream. 526 Ambiguous bit in the binary data stream. 5 2 8 A fuzzy bit in the binary data stream. 600 still describes one or more fuzzy bits on a storage medium track via a metal drawer on the ground, ie, X-radiation modulation and modulation. 3 Another example. 602 intensity reflection read waveform. 604 land. 606 minimum intensity reflection read value. 608 blurred intensity reflection read value. 87819 -36- 200426783 610 Maximum intensity reflection reading. 612 Metal layer reflectivity waveform from land. 614 Intensity reflection read value part. 616 minimum intensity reflection high level. 618 maximum intensity reflects low level. 620 transformation. 622 Binary data stream. 624 A fuzzy bit in the binary data stream. 626 A fuzzy bit in the binary data stream. 628 A fuzzy bit in the binary data stream. 700 still describes another example of one or more obscured bits on a storage medium magnetic track via the reflectivity modulation of a metal layer on a groove. 702 Intensity reflection read waveform. 704 groove. 706 Minimum intensity reflection read. 708 Minimum intensity reflection reading. 710 Blur Intensity Reflection Reads. 712 Metal layer reflectance waveform from the groove. 714 Intensity reflection read portion. 7 16 Highest level of minimum intensity reflection. 718 maximum intensity reflects low level. 720 changes. 722 Binary data stream. 724 A fuzzy bit in the binary data stream. 87819 -37- 200426783 726 Ambiguous bits in the binary data stream. 728 A fuzzy bit in the binary data stream. 800 storage media. 802 import area. 804 Export area. 806 program area. 808 certification program. 8 10 One or more ambiguous bits 812 arranged at one or more predetermined positions of the storage medium 812-enlargement of the predetermined positions. 900 media player. 902 motor. 906 objective lens. 907 quarter wave plate (λ / 4). 908 beam splitter. 910 laser. 912 Detector. 914 electronic control and data acquisition circuit. 916 microprocessor. 918 memory. 1 000 describes an example flowchart for authenticating a storage medium. 1002 Steps to load a certification program. 1004 Step of reading a predetermined position on the storage medium. 1 006 Store the reading result in the memory step. 87819 -38- 200426783 1008 It is judged whether to take the step of the predetermined position with different times & 1010 Compare the steps of taking J results from different positions in the predetermined position. ιοί 2 Step to determine whether the read result is different from different reads. Step 1014 does not authenticate the storage medium. "1016 Steps to stop the storage medium. 1018 Steps to determine whether to confirm the authentication. 1020 Steps to authenticate the storage medium. 1022 Continuous steps to carry data from the storage medium. 1100 Describes the authentication of one storage medium and the other Example flow chart. II 02 Steps of loading an authentication program. 1104 Steps of reading the data string at a predetermined position on the storage medium. 1106 Steps of storing the reading result in the memory. It is judged whether the reading is performed at different times. Step of pre-determining the position. 1110 Step of judging whether to read another-predetermined position. 1112 Judgment—the result of pre-determining the position (that is, the data string) whether there is a step of the module. 111 6 Steps to stop the storage medium. 111 8 Steps to determine the fuzzy position in the κ% shellfish string in the authentication program. Step 1 1120 Steps and steps to authenticate the storage medium. 1122 Continue to load from the storage medium. Data steps. 1200 Example flow chart used to create one or more fuzzy storage media. He Muqian] 87819 -39- 200426783 Cheng Γ. 2 Converting Digits Capacitive Media Miscellaneous-Misplaced Media Zhao Formatted Authentication 1204 Adds one or more fuzzy bits to the space available in the format. Step 1206. Adjusts the redundant bits in the format. μ㈠ ^ 121 0 The step of generating a parent body. 1212 The step of using the parent body to cut the storage medium with a defecation. 1300 The example flow of the storage medium used to create the second mouth of the Tanabata y body or the fuzzy bits of the night. Figure. The spider 13 0 2 flips one or more molds into one ^ mouth blurry ^ adds people to use space. For the eyes and the format can be adjusted 1304 steps to redundant bits in the format. 1306 use Steps to create a mask by formatting. 13 0 8 Steps to generate a parent. 1310 Steps to convert digital content, which includes a format authentication program. 1312 Steps to nest formatted digital content into the parent. U14 Pluralize the number by using the parent. A step-by-step guide for storage media cutting. 1400 Example flowchart for creating storage media containing—or multiple obfuscated bits. The steps for converting a digital content into a 1402 include a certificate program. 丨 Media-format recognition 1404 The step of creating a grooved mask using a format to define a volume / multiple predetermined positions. Or 87619 -40 200426783 1406 to generate a matrix step. 1408 A step of cutting a storage medium by using the matrix. 1410 Tune Variable laser intensity to reduce the reflectivity of the metal layer of the storage medium to generate one or more fuzzy bits. 1412 Use laser to adjust the redundant bit corresponding to the predetermined position. 87819 -41-

Claims (1)

200426783 拾、申請專利範園: 1. 一種可由一播放器(900)讀取之儲存媒體(8〇〇),該儲存 媒體包含: 數位内容,其係沿著該儲存媒體的一或多個磁軌〇4) 配置; 一或多個模糊位元(33 0,332、424、426、428、524、 526、52 8、624、626、628、724、726、728),其係沿著 該儲存媒體的一或多個磁軌的一或多個預定位置(81〇)上 配置;及 爆 一認證程式(808),其係沿著該儲存媒體的一或多個磁 軌而配置,以透過判斷一或多個模糊位元是否存在該等 一或多個預定位置而認證(1〇〇()、11〇〇)該儲存媒體。 2. 如申請專利範圍第丨項之儲存媒體,其進一步包含一或 多個冗餘位元,其中該等一或多個冗餘位元是沿著被調 整的一或多個磁軌(12〇6、13〇4、1412)而配置,如此可 在該儲存媒體的讀取期間經由與該播放器有關的一修正 裝置而產生一或多個非可修正模糊位元。 3. 如申凊專利範圍第丨項之儲存媒體,其中該數位内容是 配置在該儲存媒體的一程式區域(8〇6)。 4·如申睛專利範圍第丨項之儲存媒體,其中該等一或多個 模糊位元是配置在該儲存媒體的一程式區域(8〇6)。 5·如申4專利範圍第丨項之儲存媒體,其中該認證程式是 配置在該儲存媒體的一程式區域的預定位置。 6·如申巧專利範圍第i項之儲存媒體,其中該認證程式 87819 200426783 (808)是配置在該儲存媒體的一導入區域(8〇4)的預定位 置。 7·如申請專利範圍第1項之儲存媒體,其中該等一或多個 模糊位元(330 ’ 332)之至少一者是在經由該播放器(9〇〇) 讀取該儲存媒體(800)期間,透過在沿著一預定位置 (8 10)的兩個相鄰凹槽(3〇4、306)間的距離(300)調變而產 生。 8·如申請專利範圍第1項之儲存媒體,其中該等至少兩個 模糊位元(330,3 32)是在經由該播放器(9〇〇)讀取該儲存 媒體(800)期間,經由在沿著一或多個預定位置(81〇)的 兩個相鄰凹槽(304、306)間的距離(3〇〇)調變而產生,且 距離調變是從該第一模糊位元增加到該第二模糊位元。 9 ·如申請專利範圍第1項之儲存媒體,其中該等一或多個 模糊位元(424、426、428)之至少一者是在經由該播放器 (900)讀取該儲存媒體(800)期間,經由沿著一預定位置 (810)的單一凹槽(4〇4)寬度(4〇0)調變而產生。 10·如申請專利範圍第9項之儲存媒體,其中該寬度是從該 凹槽的一端逐漸減少到該凹槽的另一端。 11 ·如申請專利範圍第1項之儲存媒體,其中該等一或多個 模糊位元(524、526、528)之至少一者是在經由該播放器 (900)讀取該儲存媒體(800)期間,經由沿著一預定位置 (810)的單一凹槽(5〇4)深度(500)調變而產生。 12 ·如申请專利範圍第11項之儲存媒體,其中該深度是從該 凹槽的一端逐漸減少到該凹槽的另一端。 87819 -2 - 200426783 13. 如申請專利範圍第1項之儲存媒體,其中該儲存媒體進 一步包含一金屬層(611),其中該等一或多個模糊位元 (624,628,628 ' 724 ' 726、728)之至少一者是在經由 該播放器(900)讀取該儲存媒體(800)期間,經由沿著一 預定位置(8 10)的金屬層反射率(600、700)調變而產生。 14. 如申請專利範圍第13項之儲存媒體,其中該金屬層(611) 的反射率是在該儲存媒體(800)預定位置(8 10)的陸地 (604)上逐漸增加(612),以獲得一或多個模糊位元(624、 626、628)的該至少一者。 15. 如申請專利範圍第13項之儲存媒體,其中該金屬層(611) 的反射率是在該儲存媒體(800)預定位置(8 10)的一凹槽 (704)上逐漸減少(712),以獲得該等一或多個模糊位元 (724、726、728)之至少一者。 16. —種可儲存能由一播放器(900)讀取的數位内容之儲存媒 體(800),該儲存媒體包含: 一認證程式(808),其係沿著該儲存媒體(800)的一或 多個磁軌(104)而配置,用以透過判斷是否有一或多個模 糊位元(330,332、424、426、428、524、526、528、 624、626、628、724、726、728)沿著該儲存媒體的一或 多個磁軌的一或多個預定位置(810)上配置而認證 (1000、1100)該媒體媒體(800)。 17. —種沿著能經由一播放器(900)讀取的一或多個磁軌 (104)而儲存數位内容之儲存媒體(800),該儲存媒體包 含: 87819 200426783 一或多個模糊位元(330、332,424、426、428、524、 526、528、624、626、628、724、726、728),其係沿著 該儲存媒體的一或多個磁軌的一或多個預定位置(8 10)而 配置,該等一或多個模糊位元之至少一者係透過將從下 列所組成的群中選取的一調變技術而產生: i) 調變在兩個凹槽(304、306)之間的距離(300); ii) 調變一凹槽(404)的寬度(400); iii) 調變一凹槽(504)的深度(500);及 iv) 調變一金屬層(611)的反射率(600、700)。 18·—種用以認證(1〇〇〇)能儲存經由一播放器(900)讀取數位 内容的儲存媒體(800)之方法,該方法包含: 數次讀取在該儲存媒體上的一預定位置(1004、810); 將來自該預定位置的複數個讀取的結果(1010)相比 較,以判斷該等結果於每個讀取是否實質相同;及 如果該等結果是實質相同,使該播放器停止讀取 (1016)在該儲存媒體上儲存的數位内容。 19. 如申請專利範圍第18項之認證方法,該方法進一步包含 一儲存步驟,以將複數個讀取的結果(1006)儲存在與該 播放器(900)有關的記憶體(918)。 20. 如申請專利範圍第18項之認證方法,該方法進一步包含 下列步驟: 如果該預定位置的複數個讀取結果是隨著不同讀取而 任意改變,便認證(1〇2〇)該儲存媒體(800);及 持續讀取(1〇22)在該儲存媒體上儲存的數位内容。 87819 -4 - 200426783 21 ·如申明專利範圍第18項之認證方法,該方法進一步包含 下列步騾: " 如果孩預定位置的複數個讀取結果表示在該預定位置 (810)上的躀取儲存媒體(8〇〇)錯誤,便不認證(1〇1句該儲 存媒體。 22.如申請專利範圍第2〇項之認證方法,該方法進一步包含 確4步騾,以確認(1〇18)該儲存媒體(8〇〇)的認證,該 確認包含下列步驟: 數次項取在該儲存媒體(8〇〇)上的另一預定位置 (810); 將來自該預定位置的複數個讀取結果(1〇1〇)相比較, 以判斷該等結果於每個讀取(1〇12)是否實質相同;及 如果該等結果是實質相同,使該播放器停止讀取 (1016)在該儲存每讀取上儲存的數位内容。 23 ·如申請專利範圍第22項之認證方法,該方法進一步包含 下列步驟: 對於確認步驟(1 〇 1 8)而言,如果該預定位置的複數個 謂取結果是隨著不同讀取而任意改變,便認證(丨〇2〇)該 儲存媒體;及 持續讀取(1022)在該儲存媒體上儲存的數位内容。 24.如申請專利範圍第20項之認證方法,其中當該等結果是 在該預定位置上任意改變時,有一模糊位元(3 3 〇、3 32、 424、426、428、524、526、528、624、626、628、 724、726、728)會在該預定位置(81〇)出現,且當該等結 87819 果在該預足位置(8 10)上是實質相同時,沒有模糊位元 (126'128>13()' 326 '328)會在該預定位置(810)上出 現。 25·—種用以認證(1100)可儲存經由一播放器(900)讀取數位 内容的儲存媒體(800)之方法,該方法包含: 數次謂取在孩儲存媒體的一預定位置(8丨〇)上的一連串 位元(1104); 將來自該預定位置的複數個讀取的位元串(1112)相比 較,以判斷在位元串中的位元於每個讀取是否實質相. 同;及 如果在位元串的該等位元是實質相同,使該播放器停 止碩取(1116)在該儲存媒體上儲存的數位内容。 26.如申請專利範圍第25項之認證方法,該方法進一步包含 一儲存步驟,以將複數個讀取的位元串(1106)儲存在與 該播放器(900)有關的一記憶體(918)。 27_如申請專利範圍第25項之認證方法,該方法進一步包含 一讀取步騾,以讀取一或多個額外預定位置(111〇、 1104) 〇 28·如申請專利範圍第25項之認證方法,該方法進一步包含 一判斷步驟’以判斷該位元串是否具有至少一模糊位元 (1112) 〇 29·如申請專利範圍第28項之認證方法,該判斷步驟進一步 包含判斷當從相同預定位置讀取的位元串中相同位置上 的一位元是否隨著不同讀取而任意改變。 87819 200426783 3 0·如申請專利範圍第29項之認證方法,該方法進一步包含 下列步驟: 確認具有至少一模糊位元的預定位置是否符合在該認 證程式(111 8)中的一預設位置;及 如果確認,認證(1120)該儲存媒體;及 持續讀取(1122)在該儲存媒體上儲存的數位内容。 31·—種用以產生(1200、1300)具有認證及可由一播放器 (900)讀取的儲存媒體(800)之方法,該方法包含: 將一或多個模糊位元加入用於該儲存媒體的一格式 (1204、1302); 調整在格式中的冗餘位元(12〇6、1304),以在該儲存 媒體讀取期間,經由與該播放器有關的錯誤修正裝置而 產生一或多個非可修正模糊位元; 使用該格式以建立一遮罩(12〇8、1306);使用該遮罩 產生一母體(1210、1308);及從該母體記錄儲存媒體 (1212 、 1314) 〇 32·如申請專利範圍第31項之產生方法,該方法進一步包含 轉換步驟,以將數位内容(12〇2、1310)轉換成該格式, 該數位内容包括在該增加步驟(12〇4)前,用以認證該儲 存媒體(800)的一認證程式(8〇8)。 33.如申請專利範圍第31項之產生方法,該方法進一步包含 下列步驟: 將數位内容(1310)轉換成該格式,該數位内容包括用 以認證該儲存媒體(8〇〇)的一認證程式(808);及 87819 200426783 容(丨3〗2)窝到該母 使用一雷射裝置將該格式化數位内 體。 34·種用以產生具有認證及可由一播放器(_)讀取的儲存 媒體(1400)之方法,該方法包含·· 使用乾儲存媒體(800)的一格式而建立一遮罩(14〇句, 该遮罩包含凹槽,用以定位—或多個預定位置⑻〇); 使用一遮罩而產生一母體(1406); 從母體記錄儲存媒體(剛),該儲存媒體包含一金屬 層(611); 透過在一或多個預定位置上調變該金屬層的反射率 (600,700)而將該等一或多個模糊位元加到該等一或多 個預足位置(8 1〇)的儲存媒體,·及 調整對應該等一或多個預定位置的冗餘位元⑽2” 以在該儲存媒體讀取期間經由與該播放器有關的錯誤修 正裝置而產生該等一或多個非可修正模糊位元。 35. 如申請專利範圍第34項之產生儲存媒體方法,該方法進 一步包含轉換步驟’以將數位内容(14〇2)轉換成格式, 該數位内奋包括用以認證該儲存媒體(8〇〇)的一認證程式 (808),其中該轉換步驟是在建立步驟(14〇4)之前。 36. —種可實質具體實施經由一機器(9〇〇)執行指令(1〇〇〇、 808)程式之程式儲存裝置(8〇〇),以執行認證該程式儲存 裝置之方法,其中Μ程式儲存裝置可儲存由該機器讀取 的數位内容,該方法包含·· 數次碩取在忒程式儲存裝置上的一預定位置(1〇〇4, 87819 810); 200426783 將來自該預定位置的複數個讀取結果(1〇1〇)相比較, 以判斷該等結果於每個讀取是否實質相同,·及 如果該等結果實質相同,使該機器停止(i i 6)讀取在 該程式儲存裝置上儲存的數位内容。 37. 如申請專利第36項之程式儲存裝置,該方法進一步包含 儲存步驟,以將複數個讀取結果(1〇〇6)儲存在與該機器 (900)有關的記憶體(918)。 38. 如申請專利第36項之程式儲存裝置,該方法進一步包含 下列步騾: 如果該預定位置的複數個讀取結果是隨著不同讀取而 任意改變,便認證(1020)該程式儲存裝置(80〇);及 持續項取(1022)在該程式儲存裝置上儲存的數位内 容。 39·如申請專利第36項之程式儲存裝置,該方法進一步包含 下列步驟: 如果該預定位置的複數個讀取結果表示在預定位置上 的該程式儲存裝置(800)讀取錯誤,便不認證(1〇14)該程 式儲存裝置。 40·如申請專利第38項之程式儲存裝置,該方法進一步包含 確s忍步驟’以確#忍(101 8 )該程式儲存裝置的認證,該 確認包含下列步驟: 數次讀取在該程式儲存裝置(8〇〇)上的另一預定位置 (810 );將來自該預定位置的複數個讀取結果(1 〇 1 〇 )相比 87819 200426783 較’以判斷該等結果於每個讀取(i 0 i 2)是否實質相同; 且如果該等結果實質相同,使機器停止(1 〇 1 6)讀取在該 程式儲存裝置上儲存的數位内容。 41 _如申請專利第40項之程式儲存裝置,該方法進一步包含 下列步騾: 對於確認步騾(1018)而言,如果該該預定位置的複數 個讀取結果是隨著不同讀曲而改變,便認證(丨〇2〇)該程 式儲存裝置;及 持續謂取(1 022)在程式儲存裝置上儲存的數位内容。 42·如申請專利第38項之程式儲存裝置,其中當該等結果是 在該預定位置上任意改變時,有一模糊位元(3 3 0、3 32、 424、426、428、524、526、528、624、626、628、 724、726、728)會出現在該預定位置(81〇),且當該等結 果在該預定位置(8 1 0)上是實質相同時,沒有模糊位元 (126、128、130、326、328)會出現在該預定位置 (810) 〇 43·—種可實質具體實施經由一機器(900)執行指令(11〇〇、 808)程式之程式儲存裝置(8〇〇),以執行認證該程式儲存 裝置之方法,其中該程式儲存裝置可儲存由該機器讀取 的數位内容,該方法包含: 數次讀取在該程式儲存裝置的一預定位置(8 1 〇)上的一 連串位元(1104);將來自該預定位置的複數個讀取的位 元串(1112)相比較,以判斷再位元串中的位元於每個讀 取是否實質相同;及 87819 -10- 200426783 如果在位元串中的位元是實質相同,使該機器停止 (1116)讀取在該程式儲存裝置上儲存的數位内容。 44·如申请專利第43項之程式儲存裝置,該方法進一步包含 儲存步騾,以將複數個讀取的位元串(11〇6)儲存在與該 機器(900)有關的記憶體(918)。 4 5 ·如申请專利笫4 3項之程式儲存裝置,該方法進一步包含 讀取步驟,以讀取一或多個額外預定位置(11丨〇、 1104)。 46·如申請專利第43項之程式儲存裝置,該方法進一步包含. 一判斷步驟,以判斷該位元串是否具有至少一模糊位元 (1112) 〇 47.如申請專利第46項之程式儲存裝置,該判斷步驟進一步 包含判斷當從相同預定位置數次讀取的位元串中相同位 置上的一位元是否隨著不同讀取而任意改變。 48·如申請專利第47項之程式儲存裝置,該方法進一步包含 下列步騾: 確忍具有至少一模糊位元的一預定位置是否付合在一 認證程式(1118)中的一預設位置;且如果確認,便認證 (1120)該程式儲存裝置;並持續讀取(1122)在該程式儲 存裝置上儲存的數位内容。 87819 -11-200426783 Patent application park: 1. A storage medium (800) that can be read by a player (900). The storage medium contains: digital content, which is one or more magnetic media along the storage medium. Orbit 04) configuration; one or more fuzzy bits (33 0, 332, 424, 426, 428, 524, 526, 52 8, 624, 626, 628, 724, 726, 728), which follow One or more predetermined positions (81) of one or more magnetic tracks of the storage medium; and an authentication program (808), which is arranged along one or more magnetic tracks of the storage medium to The storage medium is authenticated (100 (), 1100) by judging whether one or more fuzzy bits exist in the one or more predetermined positions. 2. For example, the storage medium in the scope of the patent application, further includes one or more redundant bits, wherein the one or more redundant bits are along one or more magnetic tracks (12 〇6, 1304, 1412), so that one or more non-modifiable blur bits can be generated during a reading of the storage medium via a correction device associated with the player. 3. For example, the storage medium in the scope of the patent application, wherein the digital content is arranged in a program area (806) of the storage medium. 4. The storage medium of item No. 丨 in the scope of patent application, wherein the one or more fuzzy bits are arranged in a program area (806) of the storage medium. 5. The storage medium of item No. 丨 in the scope of Patent No. 4, wherein the authentication program is arranged at a predetermined position in a program area of the storage medium. 6. The storage medium of item i in the scope of the patent application, wherein the authentication program 87819 200426783 (808) is a predetermined position arranged in an introduction area (804) of the storage medium. 7. If the storage medium of item 1 of the patent application scope, at least one of the one or more fuzzy bits (330'332) is reading the storage medium (800) through the player (900) ) Is generated by adjusting the distance (300) between two adjacent grooves (304, 306) along a predetermined position (8-10). 8. The storage medium according to item 1 of the patent application scope, wherein the at least two fuzzy bits (330, 332) are transmitted through the storage medium (800) through the player (900), The distance (300) between two adjacent grooves (304, 306) along one or more predetermined positions (81) is adjusted, and the distance modulation is from the first fuzzy bit Add to this second blur bit. 9 · If the storage medium of item 1 of the patent application scope, at least one of the one or more fuzzy bits (424, 426, 428) is reading the storage medium (800) through the player (900) ), Generated by adjusting the width (400) of a single groove (404) along a predetermined position (810). 10. The storage medium of claim 9 in which the width is gradually reduced from one end of the groove to the other end of the groove. 11 · If the storage medium of item 1 of the patent application scope, wherein at least one of the one or more fuzzy bits (524, 526, 528) is reading the storage medium (800) through the player (900) ) Is generated by adjusting the depth (500) of a single groove (504) along a predetermined position (810). 12 · The storage medium of claim 11 in which the depth is gradually reduced from one end of the groove to the other end of the groove. 87819 -2-200426783 13. For example, the storage medium of the first patent application scope, wherein the storage medium further includes a metal layer (611), wherein the one or more fuzzy bits (624, 628, 628 '724' At least one of (726, 728) is during the reading of the storage medium (800) via the player (900), through modulation of the reflectance (600, 700) of the metal layer along a predetermined position (8 10) produce. 14. For example, the storage medium of claim 13 in which the reflectivity of the metal layer (611) is gradually increased (612) on the land (604) at a predetermined position (8 10) of the storage medium (800) to Obtain the at least one of one or more fuzzy bits (624, 626, 628). 15. For example, the storage medium of claim 13 in which the reflectivity of the metal layer (611) is gradually reduced (712) on a groove (704) at a predetermined position (8 10) of the storage medium (800). To obtain at least one of the one or more fuzzy bits (724, 726, 728). 16. —A storage medium (800) that can store digital content that can be read by a player (900), the storage medium includes: an authentication program (808), which is a storage medium (800) along the storage medium (800) Or multiple magnetic tracks (104), configured to determine whether there is one or more fuzzy bits (330, 332, 424, 426, 428, 524, 526, 528, 624, 626, 628, 724, 726, 728) The media medium (800) is authenticated (1000, 1100) disposed at one or more predetermined locations (810) along one or more tracks of the storage medium. 17.-A storage medium (800) storing digital content along one or more tracks (104) that can be read by a player (900), the storage medium comprising: 87819 200426783 one or more fuzzy bits Yuan (330, 332, 424, 426, 428, 524, 526, 528, 624, 626, 628, 724, 726, 728), which is one or more of one or more tracks along the storage medium At a predetermined position (8 10), at least one of the one or more fuzzy bits is generated by a modulation technique selected from the group consisting of: i) modulation in two grooves The distance (300) between (304, 306); ii) the width (400) of a groove (404); iii) the depth (500) of a groove (504); and iv) the modulation The reflectivity (600, 700) of a metal layer (611). 18 · —A method for authenticating (1000) a storage medium (800) capable of storing digital content read via a player (900), the method comprising: reading a number of times on the storage medium The predetermined position (1004, 810); comparing the results (1010) of the plurality of readings from the predetermined position to determine whether the results are substantially the same at each reading; and if the results are substantially the same, make The player stops reading (1016) the digital content stored on the storage medium. 19. The method of claim 18, further comprising a storing step to store the plurality of read results (1006) in a memory (918) associated with the player (900). 20. If applying for the authentication method of item 18 of the patent scope, the method further includes the following steps: if the plurality of reading results of the predetermined position are arbitrarily changed with different readings, then authenticating (1022) the storage Media (800); and continuous reading (1022) of digital content stored on the storage medium. 87819 -4-200426783 21 · If the authentication method of item 18 of the patent scope is declared, the method further includes the following steps: " If a plurality of reading results of a predetermined position of the child indicate the capture at the predetermined position (810) If the storage medium (800) is wrong, it will not be authenticated (101 storage medium. 22. If the certification method of the scope of patent application No. 20, the method further includes 4 steps to confirm (1018) ) Authentication of the storage medium (800), the confirmation includes the following steps: several times to take another predetermined location (810) on the storage medium (800); read a plurality of from the predetermined location The results (1010) are compared to determine whether the results are substantially the same in each read (1012); and if the results are substantially the same, stop the player from reading (1016) in the The digital content stored on each reading is stored. 23 · If the authentication method of the scope of patent application No. 22, the method further includes the following steps: For the confirmation step (108), if a plurality of predicates at the predetermined position The result is as With the same changes as reading, the storage medium is authenticated (丨 〇2〇); and the digital content stored on the storage medium is continuously read (1022). 24. For the authentication method of the 20th in the scope of patent application, where When the results are arbitrarily changed at the predetermined position, there is a fuzzy bit (3 3 0, 3 32, 424, 426, 428, 524, 526, 528, 624, 626, 628, 724, 726, 728) Will appear at the predetermined position (81〇), and when the results 87619 are substantially the same at the pre-foot position (8 10), there are no fuzzy bits (126'128 > 13 () '326'328) Will appear at the predetermined position (810). 25 · —A method for authenticating (1100) a storage medium (800) that can store digital content read via a player (900), the method includes: Take a series of bits (1104) at a predetermined position (8 丨 〇) of the child storage medium; compare a plurality of read bit strings (1112) from the predetermined position to determine that they are in the bit string Whether the bits in each read are substantially the same; and if those bits in the bit string are substantial At the same time, the player is stopped from obtaining (1116) the digital content stored on the storage medium. 26. If the authentication method of the scope of patent application No. 25 is applied, the method further includes a storage step to read a plurality of read The bit string (1106) is stored in a memory (918) related to the player (900). 27_ If the authentication method of the scope of patent application for item 25 is applied, the method further includes a reading step to read One or more additional predetermined positions (111〇, 1104) 〇28. If the patent application scope of the 25th authentication method, the method further includes a judgment step 'to determine whether the bit string has at least one fuzzy bit (1112 ) 〇29. According to the patent application scope of the 28th authentication method, the determination step further includes determining whether a bit at the same position in a bit string read from the same predetermined position arbitrarily changes with different readings. 87819 200426783 3 0. If applying for the authentication method of item 29 of the patent scope, the method further includes the following steps: confirming whether the predetermined position with at least one fuzzy bit conforms to a preset position in the authentication program (111 8); And if confirmed, authenticate (1120) the storage medium; and continuously read (1122) the digital content stored on the storage medium. 31 · —A method for generating (1200, 1300) a storage medium (800) with authentication and readable by a player (900), the method comprising: adding one or more fuzzy bits for the storage A format of the media (1204, 1302); the redundant bits in the format (1206, 1304) are adjusted so that during the reading of the storage medium, an error correction device associated with the player generates an or Multiple non-modifiable blur bits; using the format to create a mask (1208, 1306); using the mask to generate a matrix (1210, 1308); and recording storage media (1212, 1314) from the matrix 〇32. If the method for generating item 31 of the scope of patent application, the method further includes a conversion step to convert the digital content (1202, 1310) into the format, and the digital content is included in the adding step (1204) Previously, an authentication program (808) was used to authenticate the storage medium (800). 33. If the method for generating item 31 of the scope of patent application, the method further includes the following steps: converting the digital content (1310) into the format, the digital content including an authentication program for authenticating the storage medium (800) (808); and 87619 200426783 (3) 2) The mother uses a laser device to format the digital internal body. 34. A method for generating a storage medium (1400) having authentication and readable by a player (_), the method comprising: creating a mask (14) using a format of the dry storage medium (800) Sentence, the mask contains grooves for positioning—or a plurality of predetermined positions (使用 〇); a mask is used to generate a parent body (1406); a recording medium (rigid) is recorded from the parent, the storage medium includes a metal layer (611); adding the one or more fuzzy bits to the one or more pre-foot positions by adjusting the reflectivity of the metal layer (600, 700) at one or more predetermined positions (8 1 〇) the storage medium, and adjust the redundant bits ⑽2 "corresponding to the one or more predetermined positions to generate the one or more during the reading of the storage medium via the error correction device related to the player. 35. If the method for generating a storage medium according to item 34 of the patent application scope, the method further includes a conversion step 'to convert the digital content (1402) into a format, the digital content including An authentication to authenticate the storage medium (800) A program (808), wherein the conversion step is before the establishment step (1404). 36. — a program storage that can actually implement the program (100, 808) of the instruction via a machine (900) Device (800) to execute a method for authenticating the program storage device, wherein the M program storage device can store digital content read by the machine, and the method includes: · obtaining a number of times on a program storage device; The predetermined position (104, 87819 810); 200426783 compares a plurality of reading results (1010) from the predetermined position to determine whether the results are substantially the same at each reading, and if The results were essentially the same, causing the machine to stop (ii 6) reading the digital content stored on the program storage device. 37. If the program storage device for patent item 36 is applied, the method further includes a storage step to convert the plural The reading result (1006) is stored in the memory (918) related to the machine (900). 38. If the program storage device of the patent application No. 36 is applied, the method further includes the following steps: The plurality of reading results of the position are arbitrarily changed with different readings, and the program storage device (80) is authenticated (1020); and the digital content stored on the program storage device is continuously retrieved (1022). 39 · If the program storage device of the 36th patent is applied, the method further includes the following steps: If the plurality of reading results at the predetermined position indicate that the program storage device (800) at the predetermined position has read incorrectly, no authentication is performed ( (1014) The program storage device. 40. If the program storage device of the 38th patent application is filed, the method further includes a step of confirming the tolerance of the program storage device. The confirmation includes the following: Steps: Read another predetermined location (810) on the program storage device (800) several times; compare the multiple read results (1001) from the predetermined location with 87619 200426783. Determine whether the results are substantially the same at each reading (i 0 i 2); and if the results are substantially the same, stop the machine (106) to read the digital content stored on the program storage device. 41 _If the program storage device for the patent application No. 40, the method further includes the following steps: For the confirmation step (1018), if the plurality of reading results of the predetermined position are changed with different readings , It will authenticate (丨 〇 02) the program storage device; and continue to fetch (1 022) the digital content stored on the program storage device. 42. The program storage device of claim 38, wherein when the result is an arbitrary change in the predetermined position, there is a fuzzy bit (3 3 0, 3 32, 424, 426, 428, 524, 526, 528, 624, 626, 628, 724, 726, 728) will appear at the predetermined position (81〇), and when the results are substantially the same at the predetermined position (8 1 0), there are no fuzzy bits ( 126, 128, 130, 326, and 328) will appear in the predetermined position (810). 〇43 · —a program storage device (8) that can actually implement a program (100, 808) through a machine (900). 〇〇), to perform a method of authenticating the program storage device, wherein the program storage device can store digital content read by the machine, the method includes: reading several times at a predetermined location of the program storage device (8 1 〇) a series of bits (1104); comparing the plurality of read bit strings (1112) from the predetermined position to determine whether the bits in the bit string are substantially the same for each read; And 87619 -10- 200426783 if the bits in the bit string are substantial So that the machine is stopped (1116) reads digital content stored on the program storage means. 44. The program storage device of claim 43, the method further comprising storing steps to store the plurality of read bit strings (101) in a memory (918) associated with the machine (900) ). 45. If the program storage device of item 43 of the patent application is applied, the method further includes a reading step to read one or more additional predetermined locations (11, 0, 1104). 46. If the program storage device for item 43 of the patent is applied, the method further includes. A judgment step to determine whether the bit string has at least one fuzzy bit (1112) 〇 47. For the program storage of item 46 in the patent application In the device, the determining step further includes determining whether a bit at the same position in a bit string read from the same predetermined position several times is arbitrarily changed with different readings. 48. If the program storage device of item 47 is applied for, the method further includes the following steps: determining whether a predetermined position with at least one fuzzy bit matches a preset position in an authentication program (1118); And if confirmed, the program storage device is authenticated (1120); and the digital content stored on the program storage device is continuously read (1122). 87819 -11-
TW092128126A 2002-10-25 2003-10-09 System and method for digital storage media copy protection TW200426783A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/280,934 US20040083377A1 (en) 2002-10-25 2002-10-25 System and method for digital storage media copy protection

Publications (1)

Publication Number Publication Date
TW200426783A true TW200426783A (en) 2004-12-01

Family

ID=32107061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092128126A TW200426783A (en) 2002-10-25 2003-10-09 System and method for digital storage media copy protection

Country Status (8)

Country Link
US (1) US20040083377A1 (en)
EP (1) EP1559100A1 (en)
JP (1) JP2006504219A (en)
KR (1) KR20050072455A (en)
CN (1) CN1732528A (en)
AU (1) AU2003260127A1 (en)
TW (1) TW200426783A (en)
WO (1) WO2004040570A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055962A2 (en) 1999-03-15 2000-09-21 Sony Electronics, Inc. Electronic media system, method and device
US8515773B2 (en) 2001-08-01 2013-08-20 Sony Corporation System and method for enabling distribution and brokering of content information
US7391691B2 (en) * 2003-08-29 2008-06-24 General Electric Company Method for facilitating copyright protection in digital media and digital media made thereby
US7496938B2 (en) * 2003-11-24 2009-02-24 Sabic Innovative Plastics Ip B.V. Media drive with a luminescence detector and methods of detecting an authentic article
US7175086B2 (en) 2004-04-21 2007-02-13 General Electric Company Authentication system, data device, and methods for using the same
US8768844B2 (en) 2004-10-06 2014-07-01 Sony Corporation Method and system for content sharing and authentication between multiple devices
US20060075441A1 (en) * 2004-10-06 2006-04-06 Sony Corporation Method and system for a personal video recorder comprising multiple removable storage/tuner units
US20080018886A1 (en) * 2005-11-21 2008-01-24 General Electric Company Optical article having a thermally responsive material as an anti-theft feature and a system and method for inhibiting theft of same
US7653919B2 (en) * 2005-11-21 2010-01-26 General Electric Company Optical article having anti-theft feature and a system and method for inhibiting theft of same
US20070116988A1 (en) * 2005-11-21 2007-05-24 Wisnudel Marc B Optical article having anti-theft feature and a system and method for inhibiting theft of same
US20070115762A1 (en) * 2005-11-21 2007-05-24 Wisnudel Marc B Optical article having anti-theft feature and a system and method for inhibiting theft of same
US20070122735A1 (en) * 2005-11-30 2007-05-31 Wisnudel Marc B Optical storage device having limited-use content and method for making same
US20080145721A1 (en) * 2006-12-14 2008-06-19 General Electric Company Fuel cell apparatus and associated method
JP4388102B2 (en) * 2007-06-22 2009-12-24 キヤノン株式会社 Information processing method and apparatus and system thereof
KR20090012010A (en) * 2007-07-27 2009-02-02 엘지전자 주식회사 Method for emulating optical disk and optical disk drive using the same
JP5291317B2 (en) 2007-09-28 2013-09-18 日立オートモティブシステムズ株式会社 Scroll type fluid machine and air suspension device using the same
US20090204639A1 (en) * 2008-02-11 2009-08-13 Microsoft Corporation Selective content replacement for media players
US8488428B2 (en) * 2008-05-14 2013-07-16 Nbcuniversal Media, Llc Enhanced security of optical article
US8002851B2 (en) * 2009-03-13 2011-08-23 Nbcuniversal Media Llc Thermochromic ink and coating compositions
US7977413B2 (en) * 2009-03-13 2011-07-12 Nbcuniversal Media Llc Thermally responsive ink and coating compositions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823210A (en) * 1984-08-13 1989-04-18 Verbatim Corporation Copy protected disk
TW241360B (en) * 1993-07-29 1995-02-21 Nippon Pickter Kk
EP1076902A4 (en) * 1996-08-05 2001-05-23 Ttr Technologies Ltd Digital optical media authentication and copy protection method
US6767695B2 (en) * 2001-01-17 2004-07-27 International Business Machines Corporation CDROM copy protection

Also Published As

Publication number Publication date
EP1559100A1 (en) 2005-08-03
US20040083377A1 (en) 2004-04-29
JP2006504219A (en) 2006-02-02
AU2003260127A1 (en) 2004-05-25
KR20050072455A (en) 2005-07-11
WO2004040570A1 (en) 2004-05-13
CN1732528A (en) 2006-02-08

Similar Documents

Publication Publication Date Title
TW200426783A (en) System and method for digital storage media copy protection
JP3888473B2 (en) Copy protection method for record carrier, copy protected record carrier and method for detecting access control information
US6801490B1 (en) Optical recording medium, device and method for recording optical recording medium, and device and method for reproducing optical recorded medium
US7539107B2 (en) Optical recording medium, recording method and apparatus for optical recording medium, and reproducing method and apparatus
JP2001135021A (en) Data recording medium, data reproducing method and reproducing device as well as data recording method and recording device
WO2005050638A1 (en) Dvd copy protection
US6487155B1 (en) Optical disc authentication using alternate data modulation encoding schemes
JP5074528B2 (en) Recording / reproducing method, recording / reproducing apparatus, and holographic information recording medium
KR20040094293A (en) Disk recording/reproducing apparatus and disc recording/reproducing method
JP3861878B2 (en) Data recording / reproducing method and data recording / reproducing apparatus
TWI247277B (en) Track management method and apparatus for managing tracks on a storage medium
JPWO2003088228A1 (en) Optical disc discrimination device, optical disc discrimination method, optical disc recording device, and optical disc reproducing device
TWI245260B (en) Reproducing method, reproducing apparatus, recording method, recording apparatus, and method for generating a management table
RU2300149C2 (en) Method for recording/reproducing data
Miyaoka Digital audio is compact and rugged: High-density pitted disks in conjunction with sharply focused, precision-tracking laser pickup provide quality sound reproduction
US7549176B2 (en) Recording medium, information playback apparatus and method, and information recording and playback apparatus
TWI267831B (en) Disk-shaped recording medium, method of producing same, and disk drive unit
JP2003323751A (en) Magneto-optical disk
WO2004109685A1 (en) Data transmission system, data transmission method, and data transmission program
JP3389991B2 (en) Information recording medium recording method
CN100530396C (en) Information recording medium and information recording/reproducing apparatus
RU2249259C2 (en) Optical data carrier, device and recording method for optical data carrier, and device and playback method for optical data carrier
JP4375255B2 (en) Recording apparatus, recording method, disc manufacturing method, reproducing apparatus, reproducing method
JP3389990B2 (en) Information recording medium recording method
JP2004022018A (en) Disk