TW200426559A - MEMS-based, computer systems, clock generation and oscillator circuits and LC-tank apparatus for use therein - Google Patents

MEMS-based, computer systems, clock generation and oscillator circuits and LC-tank apparatus for use therein Download PDF

Info

Publication number
TW200426559A
TW200426559A TW93104763A TW93104763A TW200426559A TW 200426559 A TW200426559 A TW 200426559A TW 93104763 A TW93104763 A TW 93104763A TW 93104763 A TW93104763 A TW 93104763A TW 200426559 A TW200426559 A TW 200426559A
Authority
TW
Taiwan
Prior art keywords
mems
circuit
substrate
energy storage
cmos
Prior art date
Application number
TW93104763A
Other languages
Chinese (zh)
Other versions
TWI319525B (en
Inventor
Michaels Mccorquodale
Richard B Brown
Original Assignee
Univ Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/374,446 external-priority patent/US6972635B2/en
Application filed by Univ Michigan filed Critical Univ Michigan
Publication of TW200426559A publication Critical patent/TW200426559A/en
Application granted granted Critical
Publication of TWI319525B publication Critical patent/TWI319525B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

MEMS-based, compliter system, clock generation and oscillator circuits and LC-tank. Apparatus for use therein are provided and which are fabricated using a CMOS-compatible process. A micromachined inductor (L) and a pair of varactors (C) are developed in metal layers on a silicon substrate to realize the high quality factor LC-tank apparatus. This micromachined LC-tank apparatus is incorporated with CMOS transistor circuitry in order to realize a digital, tunable, low phase jitter, and low power clock, or time base, for synchronous integrated circuits. The synthesized clock signal can be divided down with digital circuitry from several GHz to tens of MHz-a systemic approach that substantially improves stability as compared to the state of the art. Advanced circuit design techniques have been utilized to minimize power consumption and mitigate transistor flicker noise upconversion, thus enhancing clock stability.

Description

200426559 玖、發明說明: C發明所屬技術領域j 發明領域 本發明疋有關於微機電系統式電腦系統、時鐘產生及 5 振盪器電路、及其中所用之LC儲能裝置。 I:先前技術3 發明背景 在電子系統與積體電路中,振盪器是使用於多種目的 。例如,在射頻(RF)系統中,振盪器典型地使用於:各來 10往於咼低頻率之間、基本頻帶與通帶之間、經由混頻之頻 率轉換。在例如切換式電容器電路之混頻信號電路中,須 要時鐘以特定之時間期間將開關開啟與關閉。在微控制器 中,振盪器設定此系統之時間基礎或時脈,其設定在核心 中執行指令之速度。 15 在目前之時脈與其他週期信號是與其所支持之電子裝 置,以離晶片或分開元件之方式綜合。此週期性信號綜合 之目前實施例包括:用於晶片上振盡器之石英晶體參考, 其驅動相位鎖定迴路(PLL)與延遲鎖定迴路⑺ll),而此等 如迴路被使用以產生此項應用所須之—或多個頻率。使用石 矣晶體是因為它們提供用於頻率综合之高度穩定來考。秋 而,此技術與石夕積體電路技術並不相容。此時脈綜合可以 在不具有外部元件之晶片上實施,而實現電子系統與積體 電路之大幅降低成本、尺寸、與功率消耗。事實上,對於 某些低功能表現處理器,此晶體參考本身之成本超過此整 5 個處理器之成本。 如果將參考振盪器整合於處理器晶粒(die)上,則可以 實現降低尺寸,並且因此可以去除用於離散參考之印刷電 路板上所分配之面積。此外,可以實現在處理器晶片上墊 5 (Pad)數目之減少,因為不再須要至參考電子元件之界面。 取決於時脈頻率,功率耗散可以減少兩個數量級之多,因 為可以不須要功率饑渴之界面間之接收發射器。最後,隨 著使用離散絲考時脈,❿產㈣於pLL與DLL之須求,其 用於作為晶體式振盪器固定頻率之頻率產生。此等子系統 10雖然典型為整合式,可以大幅增加整體之功率預算。 儘官此整合式時脈綜合之明顯且固有之優點,此種技 術之發展並未獲得多大動力。此所面臨之挑戰有許多,以 及由於無法使用或由於不良之晶片上參考技術、溫度不穩 定性、以及漂移,使得無法在晶片上產生穩定之時脈信號 I5 。穩定性是限制各處使用單體時脈參考之最重要因素,因 為短期之不穩定性會切入處理器之時間預算並使得性能表 現妥協。 相位雜訊與不穩定松 設計此振盪器以提供穩定之輸出頻率,其理想上並不 2〇會從典型稱為f0之某中央頻率偏移。在頻率領域中,此性 能表演可以由在f〇之Dirac-Delta函數代表。然而,由於裝 置雜訊例如動與熱雜訊以及電磁干擾,此振盪器會從其 中央頻率偏移。因此,在中央頻率之周圍之頻率中存在有 限功率。將此種現象最小化非常令人須求,因為它會造成 6 各種問題,例如在_統中互相混合1及減少在微控制 器中可使用之時間預算。 相位雜訊與不穩定性為度量標準,其將週期信號之頻 率穩定性量化。相鋒訊界定在基杨率周圍之雜訊功率 頻譜。不穩定性為度量標準將在振^週财時間領域之 不穩定性量化。理想上,振盡器信號之逢緣以相同時間間 隔發生。在實際電路中,此信號之邊緣對此時間中之理想 位置在各週期中偏離一些數量。 此對相位雜訊性能表現之最重要貢獻因素為振堡器電 路之品質因素⑼。此品質因素是測量在給定系統中之損耗 ,而由以下式(1)說明: Q=2 7Γ .Ws/Wd ⑴ 其中,ws為在共振中所儲存之能量,以及Wd為每週 期所耗散之能量。 此用於電路品質因數更共同使用之表現方式為下列 式: < Q=f〇/BW.3dB (2) 其中fO為共振器頻率,以及BW-3Db為數量響應之3Db 頻寬。 此品質因數與相位雜訊之間之關係是二項式,而如同 於(3)中所示: (Np/C)fm = FkT/C (l/8Q2)(f〇/fm)2 (3) 其中Np/C為在對fO偏離之fm之相位雜訊密度,p為電 路之雜訊因素,k為波茲曼常數,T為溫度,C為輸出功率, 200426559200426559 发明 Description of the invention: C Technical field of the invention j Field of the invention The invention relates to a micro-electro-mechanical system-type computer system, a clock generator and an oscillator circuit, and an LC energy storage device used therein. I: Prior Art 3 Background of the Invention In electronic systems and integrated circuits, oscillators are used for a variety of purposes. For example, in a radio frequency (RF) system, an oscillator is typically used for frequency conversion between low frequencies, between the basic frequency band and the passband, and through frequency mixing. In a mixed-signal circuit such as a switched capacitor circuit, a clock is required to turn the switch on and off for a specific period of time. In a microcontroller, the oscillator sets the time base or clock for this system, which sets the speed at which instructions are executed in the core. 15 At the present time, the clock and other periodic signals are integrated with the electronic devices they support, either off-chip or separate components. Current examples of this periodic signal synthesis include: a quartz crystal reference for an on-chip oscillator, which drives a phase-locked loop (PLL) and a delay-locked loop (llll), and such loops are used to generate this application Required—or multiple frequencies. They are used because they provide a high degree of stability for frequency synthesis. In autumn, this technology is not compatible with Shi Xi's integrated circuit technology. The clock synthesis can be implemented on a chip without external components, and the cost, size, and power consumption of electronic systems and integrated circuits can be greatly reduced. In fact, for some low-performance processors, the cost of this crystal reference itself exceeds the cost of the entire 5 processors. If the reference oscillator is integrated on the processor die, downsizing can be achieved and therefore the area allocated on the printed circuit board for discrete reference can be removed. In addition, a reduction in the number of pads (Pads) on the processor chip can be achieved because the interface to the reference electronic component is no longer required. Depending on the clock frequency, power dissipation can be reduced by as much as two orders of magnitude, because receiving transmitters between interfaces that do not need power are hungry. Finally, with the use of discrete silk to measure the clock, it is produced in the requirements of pLL and DLL, which is used to generate a fixed frequency of the crystal oscillator. Although these subsystems 10 are typically integrated, they can greatly increase the overall power budget. Despite the obvious and inherent advantages of this integrated clock synthesis, the development of this technology has not gained much momentum. There are many challenges, and because of unusable or poor on-wafer reference technology, temperature instability, and drift, it is impossible to generate a stable clock signal I5 on the wafer. Stability is the most important factor restricting the use of a single clock reference everywhere, because short-term instability can cut into the processor's time budget and compromise performance. Phase Noise and Unstable Looseness This oscillator is designed to provide a stable output frequency, which ideally does not shift from a central frequency typically referred to as f0. In the frequency domain, this performance performance can be represented by the Dirac-Delta function at f0. However, due to device noise such as motion and thermal noise and electromagnetic interference, this oscillator will shift from its center frequency. Therefore, there is limited power in the frequencies around the center frequency. Minimizing this phenomenon is very desirable because it can cause various problems, such as mixing with each other in the system1 and reducing the time budget that can be used in the microcontroller. Phase noise and instability are metrics, which quantify the frequency stability of a periodic signal. Phase Fengxian defines the noise power spectrum around the kiang rate. Instability is a metric that quantifies instability in the realm of time. Ideally, the occurrences of the striker signal occur at the same time interval. In an actual circuit, the edge of this signal deviates from the ideal position in this time by some amount in each cycle. The most important contributing factor to the performance of phase noise is the quality factor of the vibrator circuit. This quality factor measures the loss in a given system and is described by the following formula (1): Q = 2 7Γ .Ws / Wd ⑴ where ws is the energy stored in resonance and Wd is the energy consumed per cycle Scattered energy. The more common expression used for circuit quality factors is the following formula: < Q = f〇 / BW.3dB (2) where fO is the frequency of the resonator, and BW-3Db is the 3Db bandwidth of the quantity response. The relationship between this figure of merit and phase noise is binomial, as shown in (3): (Np / C) fm = FkT / C (l / 8Q2) (f〇 / fm) 2 (3 ) Where Np / C is the phase noise density at fm deviating from fO, p is the noise factor of the circuit, k is the Boltzmann constant, T is the temperature, and C is the output power, 200426559

、及f〇為額讀出頻率。明顯地,藉由發展具有高〇因素之 振蘯裔,可以增強相位雜訊表現。此外,在功率耗散與Q ^間可以達朗顯之抵換,以符合高穩定性與低功率振盡 裔規格。 此相位雜。凡之觀念可以數學方式說明。請考慮振盈器 電路之理想輸出,其在數學上可以下列式⑷所代表: V〇(t)=V〇 sin (2 7Γ f〇t) (4) 其中,V〇為信號振幅以及{為時間,此函數之傅立葉 轉換為如同先前說明為··在頻率f〇之頻率領域中之脈衝或 10 Dirac delta函數。現在考慮導入相位雜訊。此時間領域中之 輸出信號是由下式所說明: ^〇(t)=V〇 sin (2 π f〇t+ Φ (t)) (5) 其中0(t)代表相位雜訊之隨機過程。 此將任何注入雜訊轉換成相位雜訊之過程可以經由檢 15查Hajimirii,,時間改變相位雜訊模型,,而瞭解。首先,請考 慮理想之LC網路。由於此網路無損耗,任何導入此電路之 雜訊將無限地維持。現在,考慮在某時間r注入此電路之 脈衝電流。明顯地,如果此脈衝在振盪尖峰發生,則此信 號變成振幅調變。因此,其輸出並不從最初之中央頻率偏 20離,但其振幅不確定地改變。然而,如果此脈衝在尖峰之 間某時間^生’則明顯地此振盡之相位受到干擾。因此, 當此輸出在週期此部份中,則所導入之雜訊將會對相位雜 訊造成重大之貢獻;而在此振盪尖峰所導入之雜訊對相位 雜訊完全不會造成貢獻。可對於所給定之振盪器結構設定,, 8 脈衝敏感函數(ISF)。此函數說明此振盡器對雜訊注入最敏 感之時間領域區域,且目此導致相位雜。典型的…振盡 器在與零之交叉點對雜訊最敏感,以及在尖峰對雜訊最不 敏感。此相對應之ISFP(〇t)代表此觀念。 可以使用此相當直戴了當之理論,以解釋多種振盡器 結構之相位雜歸能表現。例如,在低表現之數位系統中 ’環振盪器是非常普遍。此等振盪器使用在鏈中奇數反相 态。此ISF疋在零父又點最大化,而在輸出平坦時最小化。 當檢視此環振盪器電路時,明顯地當此等裝置之一為切斷 而其他裝置是在線性區域中操作時,其輸出信號為平坦。 當此等裝4是在料操作區域㈣,只有很少雜訊連接至 輸出。然而,當此信號與零交叉時,此等裝置均導通且飽 和。在此處用於雜訊注入之電位被最大化,因為它可以從 裝置或電力供應線發出。不幸的是此對應於ISF函數被最大 化之點。因此,此簡單之分析清楚地顯示其原因:為何環 振盪器顯示此種不良相位雜訊性能表現。此外,此例如像 此種結構之設計目的為將此裝置儘可能快地切換。因此, 將ISF不為零之時間期間最小化。 LC振盈器並不會遭受到此問題。此lc振盈器結構之選 擇決定相位雜訊之性能表現,因為此注入於儲能裝置中之 能量是高度取決於其結構。以上之討論顯示,非常令人期 望要有此種結構,其在當ISF最小化時注入能量,而當isf 最大化時並不注入能量。許多LC結構接近此種性能表現。 例如’在Colpitts結構中,此主動裝置在電壓尖峰注入電流 ’其對應於ISF為低之點。這是為什麼叫此結構是如此普 遍之原因。其相位雜訊之性能表現為極佳。 技術 存在許多用於振|器與時脈產生電路之不同技術,其 最流行者為晶體式振盈ϋ。此晶體歧觀離^㈣eh#) 元件,其被使用於㈣賴用之高品及因此高性 能表現中。此電子系統之大部份目前使用晶體振1器。此 晶體之缺點包括:它是相當的貴、大、且無法與電晶體電 子元件整合。此晶體典型為離晶片,且可占據電路板面積 而為它所支持之積體電路之相當大之部份。此密集式埋設 應用為朝向微型化之相當大瓶頸。此外,此等晶體之成本 在事實上可以接近其所支持之積體電路本身之成本。 在低表現之應用中,通常使用晶片上振盈器,因為它 們可以便宜地製造’且使用最小之矽晶片面積。然而,如 同先前所討論’此例如環振盪器之整合結構遭受到非常不 良之相位雜讯表現。而對此之一些供獻因素,可以使用小 心之設計技術而降低,但甚至在此情況巾無法達成高性能 表現。其他之積體結構包括:使用平面上使用在晶片上平 面電容器與電感器以形成LC儲能裴置。此lC儲能裝置典裂 地^供較%振盪器更穩疋之參考,但由於在標準Cmqs技術 中缺乏高品質電感器與電容器’而使得其表現仍然不良。 這可以大部份歸因於對基板以及在各裝置中串聯電阻之損 耗。例如POLY-POLY電容器具有非常高之串聯電阻,旅且 因此將品質因數Q大幅降低。 200426559 MEMS可以提供整合與高性能表現。截至目前為止已 顯示多種高Q之MEMS元件,其中只提幾個包括:順5機 械共振器、共振腔、以及共振薄膜。 對於埋設式微控制器應用,在相位鎖定式迴路(pLL) 5中典型地使用晶體,其將低頻率參考加倍:從數千萬赫茲 至數億赫«數十億㈣。此fref典型地是由低頻晶體式振 盪器所產生。此相位偵測器將此相位與來自vc〇信號之相 位比較,此信號是由預先轉換器分割。在過滤後,由於輸 出信號控制VCO。如果此PLL與晶體振盪器可以單獨晶片 10上咼性能表現可調整式振盪器取代,則可實現成本、尺寸 、以及功率消耗之大幅改善。 雖然使用動態時脈頻率,功率節省可藉減少時脈頻率 而達成,而低性能表現是在微控制器核心中實施。此動態 功率與頻率之間之關係可以下列式(6)表示: 15 P= aCLV2DDf (6) 其中P為動態功率消耗,α代表作為百分比之正切換頻 率,CL為負載電容器,vDD為功率供應電壓、以及f為時脈 頻率。因此,功率與頻率直接成正比,且此調整時脈頻率 之能力直接轉換至功率節省。此外,如果在核心中實施錯 2〇 誤檢查器,則可使用VCO將此系統過度時脈控制。於是, 在非常高性能表現應用中,可以調整此VCO儘可能快地執 行。 目前許多研究與發展已進行一些時間,將目前離晶片 (off-chip)之多種微電子元件整合。此用於振盪器電路之支 11 200426559 持電子元件例如晶體’是尚待達成整合之關鍵區域之一。在 此提及整合之動機,以及與此整合式振盈器有關之挑戰。 積體化之動機 此與高位準微電子整合有關之效益有許多。首先且最 5 重要者為成本。 此與積體電路有關成本之大部份在於用於該電路之封 裝中。因此,在任何系統中,如果可以減少圯元件之數目 ,則可以大幅降低此整個系統之成本。亦相當重要者為功 率,特別是隨著可攜式裝置之增加之重要性。此跨印刷電 10路板傳送信號所須功率、大約大於在1C上傳送内部信號所 須功率兩個數量級。因此可以藉由在IC位準之整合(積體化 )而獲得可觀之功率節省。最後,在IC技術中最近主要之動 力為尺寸減少。在許多應用中,尺寸與重量最為重要。積 體化大幅減少此微電子系統之尺寸。 15 與此積體化振盪器電路有關之挑戲 如同先前說明,大部份之振盪器電路使用石英晶體技 術。為了其可以為可行,此積體化解決方案必須提供可比 較之表現。這是困難的工作,因為由於在晶片上缺乏高〇 因數元件,大部份晶片上積體振盪器顯示非常不良之性能 20 表現。 另外,所感興趣與關切的是製造技術。如果真正採用 MEMS作為用於積體振盪器之解決方案,則它必須簡單、 具有成本效益、且真正與CMOS製程技術符合一致。已經採 購數種方法將MEMS技術與CMOS整合。這包括:預先處理 12 200426559 MEMS第一方法,例如、sandia之iMEMS製程與 UC-Berkeley之MICS製程,混合之MEMS製程與電路技術, 以及後處理、MEMS最後方法。然而,大部份之商業製造 廠由於對設備污染之關切,無法接受經預先處理之晶圓。 5 SOI技術 在整體式(bulk)矽nTFT裝置與SOI nTFT裝置間之重大 差異包括··存在BOX與圍繞S0I裝置之氧化物,其在當與整 體式石夕比較時在裝置間提供較佳之隔離。而且,s〇I裝置之 接合電容小於整體式裝置之接合電容一個數量級,此可直 10接轉換成較高速率與較低功率。此SOI技術之其他優點包括 •由於此裝置之淺的沒極區與源極區所導致之經減少之短 通路效應。此外,SOI裝置顯示較佳之次臨界斜率、缺乏體 效應、改良之封裝密度、以及免除鎖定。 S01裝置可以為完全缺乏式(FD : fully depleted)或部份 15缺乏式(PD : PartiaUy depleted)。當此FD裝置為導通時, 此在閘極下之體是完全缺乏電荷。然而,此裝置之臨界電 壓為石夕層厚度之強函數,並且因此難以控制。然而,源極 與沒極接合非常淺,以及因此源極與沒極之電阻高,而這 是非另人所欲的。截至目前為止SOI大部份工作是在PDS0I 20 ’ 閘極只將其下之體(b〇dy)之一部份空乏。此種技術克 服與FDS0I有關之問題,但導入被稱為浮體⑽如心吻) 之效應。此效應可歸因於此事實··當此裝置導通時,此裝 置之體並非完全空乏。因此,此等裝置由於來自碰撞離子 化之所產生體之充電而顯示:臨界電壓之偏移、與磁滯式 13 200426559 時間圖樣。然而,PD SOI顯示較整濟+ & & 、, 议ι篮式矽為優之20-35%表 現之改善。並且因此最近大部份 、丄1乍疋集中於PD SOI 中。 CMOS積體化機會 5 10 此S⑽現作制於整合多種技術之理想基板。首先 BOX與絕緣氧化物大幅降低裝置中之麵接 比、合彳έί虎' 數位與RF元件整合於單_ ’因此,可將類 晶片上—此在整 項挑戰。此外,其顯示可以 體式CMOS中由於絕緣不良為一 在soi中製成高性能現與低成本之MEMS裝置。最後,在s〇【 中所實現之速率與功率表現增益’使得它成為驗s〇c與微 系統解決方案所選擇之基板。 儘管SOI技術原有之效盈,大部份積體電路目前以整體 式CMOS製造。現代之整體製程提供機會將多種技術整合於 早 日日片上。例如’。基電(Taiwan Semiconductor 15 Manufacturing Company)之混合模式製程支持:用於廣泛線 路之多個金屬層、用於類比與RF電路之MIM電容器、以及 用於例如電感器之RF裝置之厚頂部金屬層。, And f0 are the readout frequencies. Obviously, the phase noise performance can be enhanced by developing a vibrator with a high factor. In addition, there is a trade-off between power dissipation and Q ^ to meet high stability and low power exhaustion specifications. This phase is mixed. Fan's ideas can be explained mathematically. Please consider the ideal output of the oscillator circuit, which can be represented mathematically by the following formula: V〇 (t) = V〇sin (2 7Γ f〇t) (4) where V〇 is the signal amplitude and {is In time, the Fourier transform of this function translates into a pulse or 10 Dirac delta function in the frequency domain of frequency f0 as previously explained. Now consider introducing phase noise. The output signal in this time domain is described by the following formula: ^ 〇 (t) = V〇 sin (2 π f〇t + Φ (t)) (5) where 0 (t) represents the random process of phase noise. The process of converting any injected noise into phase noise can be understood by checking Hajimirii, time-varying phase noise model. First, consider the ideal LC network. Since the network is lossless, any noise introduced into this circuit will be maintained indefinitely. Now, consider the pulse current injected into this circuit at a certain time r. Obviously, if this pulse occurs at an oscillation spike, this signal becomes amplitude modulation. Therefore, its output does not deviate from the initial center frequency by 20, but its amplitude changes indefinitely. However, if the pulse is generated at a certain time between spikes, the phase of this exhaustion is obviously disturbed. Therefore, when this output is in this part of the cycle, the imported noise will make a significant contribution to the phase noise; and the noise introduced at this oscillation spike will not contribute to the phase noise at all. Can be set for a given oscillator structure, 8 Pulse Sensitivity Function (ISF). This function shows that the time domain area where the exhaustor is most sensitive to noise injection, and for this reason causes phase noise. Typical ... reciprocators are most sensitive to noise at the intersection with zero, and least sensitive to noise at spikes. The corresponding ISFP (0t) represents this concept. This rather straightforward theory can be used to explain the phase miscellaneous energy performance of various striker structures. For example, ring oscillators are very common in low-performance digital systems. These oscillators use an odd number of inverting states in the chain. This ISF 疋 is maximized at the zero parent and is minimized when the output is flat. When examining this ring oscillator circuit, it is clear that when one of these devices is switched off and the other device is operating in a linear region, its output signal is flat. When these devices are in the material operating area, there is very little noise connected to the output. However, when this signal crosses zero, these devices are both on and full. The potential for noise injection is maximized here because it can be emitted from the device or the power supply line. Unfortunately this corresponds to the point at which the ISF function is maximized. Therefore, this simple analysis clearly shows the reason: why the ring oscillator shows such poor phase noise performance. Furthermore, this structure is designed, for example, to switch the device as fast as possible. Therefore, the time period when the ISF is not zero is minimized. LC oscillators do not suffer from this problem. The choice of the lc resonator structure determines the performance of the phase noise, because the energy injected into the energy storage device is highly dependent on its structure. The above discussion shows that it is very desirable to have such a structure, which injects energy when ISF is minimized, and does not inject energy when isf is maximized. Many LC structures approach this performance. For example, 'in the Colpitts structure, this active device injects current at voltage spikes' which corresponds to the point where the ISF is low. This is why this structure is so common. The performance of its phase noise is excellent. Technology There are many different technologies used for oscillators and clock generation circuits, the most popular of which is a crystal oscillator. This crystal ambiguity ^ ㈣eh #) element is used in the high-quality and therefore high-performance performance of the Lai Lai. Most of this electronic system currently uses a crystal oscillator. The disadvantages of this crystal include that it is quite expensive, large, and cannot be integrated with transistor electronics. This crystal is typically off-wafer and can take up board area and is a significant portion of the integrated circuit it supports. This intensive buried application is a considerable bottleneck towards miniaturization. In addition, the cost of these crystals can actually approach the cost of the integrated circuit itself that they support. In low performance applications, on-chip oscillators are often used because they can be manufactured cheaply 'and use the smallest silicon wafer area. However, as discussed previously, this integrated structure, such as a ring oscillator, suffers from very poor phase noise performance. Some contributing factors for this can be reduced using careful design techniques, but even in this case, high-performance performance cannot be achieved. Other integrated structures include the use of planar capacitors and inductors on a wafer to form LC energy storage devices. This lC energy storage device is typically used as a reference for more stable oscillators, but its performance is still poor due to the lack of high-quality inductors and capacitors in standard Cmqs technology. This can be largely attributed to the loss of the substrate and the series resistance in each device. For example, a POLY-POLY capacitor has a very high series resistance, and therefore the quality factor Q is greatly reduced. 200426559 MEMS can provide integration and high performance. So far, a variety of high-Q MEMS components have been shown, of which only a few include: cis-5 mechanical resonators, resonant cavities, and resonant films. For embedded microcontroller applications, crystals are typically used in phase-locked loops (pLL) 5, which double the low-frequency reference: from tens of millions of hertz to hundreds of billions of terahertz. This fref is typically generated by a low frequency crystal oscillator. The phase detector compares this phase to the phase from the vc0 signal, which is divided by a pre-converter. After filtering, the VCO is controlled by the output signal. If the PLL and the crystal oscillator can be replaced by a separate adjustable performance oscillator on the chip 10, a significant improvement in cost, size, and power consumption can be achieved. Although a dynamic clock frequency is used, power savings can be achieved by reducing the clock frequency, while low performance is implemented in the microcontroller core. The relationship between this dynamic power and frequency can be expressed by the following formula (6): 15 P = aCLV2DDf (6) where P is the dynamic power consumption, α is the positive switching frequency as a percentage, CL is the load capacitor, and vDD is the power supply voltage And f are clock frequencies. Therefore, power is directly proportional to frequency, and this ability to adjust the clock frequency is directly converted to power savings. In addition, if an error checker is implemented in the core, this system can be overclocked using a VCO. Therefore, in very high performance applications, this VCO can be adjusted to execute as fast as possible. Many researches and developments have been carried out for some time now, integrating various off-chip microelectronic components. This support for oscillator circuits 11 200426559 Holding electronic components such as crystals is one of the key areas where integration has yet to be achieved. The motivation for integration and the challenges associated with this integrated vibrator are mentioned here. Motivation for integration There are many benefits associated with high-level microelectronic integration. The first and most important are costs. A large part of the cost associated with integrated circuits is in the packaging of the circuit. Therefore, in any system, if the number of tritium components can be reduced, the cost of the entire system can be greatly reduced. Power is also important, especially as portable devices increase in importance. The power required to transmit signals across the printed circuit board is approximately two orders of magnitude greater than the power required to transmit internal signals over 1C. Therefore, considerable power savings can be achieved through integration (integration) at the IC level. Finally, size reduction has recently been the main driving force in IC technology. In many applications, size and weight are the most important. Integration has drastically reduced the size of this microelectronic system. 15 Tricks related to this integrated oscillator circuit As explained earlier, most oscillator circuits use quartz crystal technology. In order for it to be feasible, this integrated solution must provide comparable performance. This is a difficult task because most chip-on-chip oscillators exhibit very poor performance due to the lack of high-factor components on the chip. In addition, what is of interest and concern is manufacturing technology. If MEMS is truly adopted as a solution for integrated oscillators, it must be simple, cost-effective, and truly consistent with CMOS process technology. Several approaches have been purchased to integrate MEMS technology with CMOS. This includes: pre-processing 12 200426559 MEMS first method, for example, Sandia's iMEMS process and UC-Berkeley's MICS process, mixed MEMS process and circuit technology, and post-processing, MEMS final method. However, most commercial manufacturing facilities are unable to accept pre-processed wafers due to concerns over equipment contamination. 5 Significant differences between SOI technology in bulk silicon nTFT devices and SOI nTFT devices include the existence of BOX and oxides around SOI devices, which provide better isolation between devices when compared to monolithic Shi Xi . Moreover, the junction capacitance of the SOC device is an order of magnitude smaller than that of the monolithic device, which can be directly converted into higher speed and lower power. Other advantages of this SOI technology include: • Reduced short path effects due to the shallow electrodeless and source regions of the device. In addition, SOI devices show better subcritical slopes, lack of body effect, improved package density, and freedom from locking. The S01 device can be fully depleted (FD: fully depleted) or partially deficient (PD: PartiaUy depleted). When the FD device is on, the body under the gate is completely lacking in charge. However, the critical voltage of this device is a strong function of the thickness of the Shi Xi layer and is therefore difficult to control. However, the junction between the source and the electrode is very shallow, and therefore the resistance between the source and the electrode is high, which is not desirable. So far, most of the work of SOI is to empty only a part of the body (b〇dy) below the gate of the PDS0I 20 ′. This technique overcomes the problems associated with FDS0I, but introduces the effect known as floating bodies (like a heart kiss). This effect can be attributed to the fact that when the device is turned on, the body of the device is not completely empty. Therefore, these devices show a shift in the threshold voltage, and a time pattern of hysteresis 13 200426559 due to the charge from the body produced by the impact ionization. However, PD SOI showed an improvement of 20-35% over the performance of Rectification + & & Basket Silicon. And so recently, most of them are concentrated in PD SOI. CMOS Integration Opportunity 5 10 This is an ideal substrate for integrating multiple technologies. First of all, the BOX and the insulating oxide greatly reduce the face-to-face ratio in the device, and the digital and RF components are integrated in a single device. Therefore, it is possible to mount a chip-like chip—the whole challenge. In addition, its display can be made in bulk CMOS due to poor insulation as a high-performance and low-cost MEMS device in soi. Finally, the speed and power performance gains achieved in SOC [make it the substrate of choice for SOC and microsystem solutions. Despite the original benefits of SOI technology, most integrated circuits are currently manufactured in monolithic CMOS. Hyundai's holistic process provides the opportunity to integrate multiple technologies into early films. E.g'. Taiwan Semiconductor 15 Manufacturing Company's mixed-mode process support: multiple metal layers for a wide range of circuits, MIM capacitors for analog and RF circuits, and thick top metal layers for RF devices such as inductors.

在MOS中之MEMS 許多先前之工作顯示此MEMS技術,而主張此MEMS 20 裝置是與CMOS技術相容。然而,此等所報導之裝置均須要 與標準CMOS製造相當不同之一些特殊之製程步驟。此等先 前之工作並未實際顯示:在真正標準CMOS製程中之MEMS 裝置,以及在相同製程中之主動電晶體電子元件。 此在SOI中MEMS裝置最近成為令人非常感興趣之話 14 200426559 題。此則基板之整個結構提供許多機會麟製造具有低製 程複雜度之MEMS裝置。例如,可以使用則晶圓之裝置層 作為用於MEMS裝置之結構材料。此材料為單晶石夕,並且 因此其材料之特性是優於多晶矽之材料特性。此外,可以 5使用box作為用於此等結構之内設之釋放層。在事實上, 可以使用此技術以一遮罩製成懸掛之單晶矽裝置。此外, 可以使用BOX作為用於後側或前側|虫刻之姓刻終止件。這 對於應用有用於將基板區域從裝置周圍去除,以便將輕合 損失最小化。 0 iiiiifi與弱反轉雷改 弱反轉為裝置操作結構,其中此]^〇;5裝置並未被完全 反轉。當此裝置之閘極電壓超過臨界電壓、且導致在源極 與>及極間之通路時產生完全反轉。在此表面反轉發生但小 於臨界電壓之電壓範圍中,此裝置被稱為在弱反轉中。其 5操作區域具有許多有趣之特性,其中最令人注意者為:此 裝置增強之導電性。此結構中之導電性是由下式給定··Many previous works on MEMS in MOS show this MEMS technology, and it is claimed that this MEMS 20 device is compatible with CMOS technology. However, these reported devices all require special process steps that are quite different from standard CMOS manufacturing. These previous work did not actually show: MEMS devices in a truly standard CMOS process, and active transistor electronics in the same process. MEMS devices have recently become very interesting words in SOI 14 200426559. The entire structure of this substrate provides many opportunities to manufacture MEMS devices with low process complexity. For example, a device layer of a wafer can be used as a structural material for a MEMS device. This material is monocrystalline, and therefore its material characteristics are superior to those of polycrystalline silicon. In addition, the box can be used as a built-in release layer for these structures. In fact, this technique can be used to make a suspended monocrystalline silicon device with a mask. In addition, a BOX can be used as the rear end or front end | This is useful for applications where the substrate area is removed from around the device in order to minimize light-on losses. 0 iiiiifi and Weak Inversion Lightning Weak Inversion is the operating structure of the device, where]] ^ 〇; 5 The device has not been completely inverted. When the gate voltage of this device exceeds the threshold voltage and causes a complete reversal in the path between the source and the > and the electrodes. In a voltage range where this surface inversion occurs but is less than the critical voltage, the device is said to be in weak inversion. Its 5 operating areas have many interesting characteristics, the most notable of which is the enhanced conductivity of this device. The conductivity in this structure is given by ...

Sm = I〇/V τ (7) 在此處’ ID為汲極電流且Vr為熱電壓。此式可與以下 用於強反轉中裝置之式比較: 20 1/9 gm = (2//Cax(W/L)ID)1/2 (8) 其中#為漂移率,Cax為MOS電容,而W與L各為此裝 置之寬度與長度。 明顯地’此裝置之導電性是與強反轉中Id之平方根成 正比’且與弱反轉中之ID成正比。因而,此弱反轉是非常 15 吸引人,因為可以最小電流將:電流驅動以及因此裝置之 增益極大化。因而可將功率消耗最小化。在振盪器之應用 中,此方式是非常適當··因為須要最小迴路增益以啟始此 振盪器。而以使用此弱反轉技術,此啟始可以最小功率達 5 成。目前顯示使用弱反轉技術之最低功率VCO之一。 MEMSLC元件 此用於高性能表現VCO之最通常之設計為LC儲能裝 置。這主要是由於LC儲能裝置可與CMOS技術輕易整合, 且此LC儲能裝置之功能表現優於積體式環振盪器之功能表 現。此LC儲能裝置之性能表現之最佳特徵為其品質因數。 此具有高Q因數之LC儲能裝置會提供窄之響應,並且因此 適用於穩定南性能表現振盘裔。因此,將Lc儲能事置之口 質因數最大化為許多研究之主題。 截至目前為止在微機械可變電容二極體(varact〇〇之領 15域中完成許多工作。而用於此裝置之最簡單設計則顯示於 第1與2圖中。Young與B〇ster揭示—種可移動式金屬頂 板其典型為純,而懸掛於固定底板之上且由臂之機械網 路所支持,如同於第i圖中所示者。藉由跨此裝置施加電壓 vDC,此可移動式頂板可以偏移一些距離X,並且因此可以 調變此裝置之電容。此可變電容二極體可作為用於調整 VCO之可變裝置。 可回憶電容是由以下之式所給定: C = ε A/xa (9) 而ε為空氣之導電率,A為此板之重疊面積,&為板 16 200426559 之間之額定距離。因此,對於可變電阻此式成為: C = ε A/(xa-x) (10) X為由此調整電壓所強迫之位移。由此電壓在板之間所 產生之靜電力為由以下之式給定: 5 Fe = l/2(dC/dx)V2DC = 1/2 CV2DC/(Xa-x)2 (11) 此有效電性彈簧常數是由下式Q2)所示:Sm = I〇 / V τ (7) where ’ID is the drain current and Vr is the thermal voltage. This formula can be compared with the following formula for devices in strong inversion: 20 1/9 gm = (2 // Cax (W / L) ID) 1/2 (8) where # is the drift rate and Cax is the MOS capacitor , And W and L are each the width and length of the device. Obviously 'the conductivity of this device is proportional to the square root of Id in strong inversion' and proportional to ID in weak inversion. Therefore, this weak reversal is very attractive because the current can be driven with minimal current: and therefore the gain of the device is maximized. Therefore, power consumption can be minimized. In oscillator applications, this method is very suitable ... because a minimum loop gain is required to start the oscillator. By using this weak inversion technology, the starting power can be as low as 50%. One of the lowest power VCOs using weak inversion technology is currently shown. MEMSLC element The most common design used for high performance VCOs is the LC energy storage device. This is mainly because the LC energy storage device can be easily integrated with CMOS technology, and the performance of this LC energy storage device is better than that of the integrated ring oscillator. The best characteristic of the performance of this LC energy storage device is its figure of merit. This LC energy storage device with a high Q factor will provide a narrow response and is therefore suitable for stable performance. Therefore, maximizing the quality of Lc energy storage is a topic of much research. Much work has been done so far in the field of micromechanical variable capacitor diodes (Varact 00 domain 15). The simplest design for this device is shown in Figures 1 and 2. Young and Boster revealed A type of removable metal top plate, which is typically pure, suspended from a fixed bottom plate and supported by a mechanical network of arms, as shown in Figure i. By applying a voltage vDC across this device, this can be The movable top plate can be offset by some distance X, and therefore the capacitance of this device can be adjusted. This variable capacitance diode can be used as a variable device for adjusting the VCO. The reminiscent capacitance is given by: C = ε A / xa (9) and ε is the electrical conductivity of air, A is the overlapping area of the plates, and & is the rated distance between plates 16 200426559. Therefore, for the variable resistance this formula becomes: C = ε A / (xa-x) (10) X is the displacement forced by the adjusted voltage. The electrostatic force generated by the voltage between the plates is given by: 5 Fe = l / 2 (dC / dx) V2DC = 1/2 CV2DC / (Xa-x) 2 (11) This effective electrical spring constant is shown by the following formula Q2):

Ke =丨 dFe/dx 丨=CV2Dc/(xa-x)2 (X2)Ke = 丨 dFe / dx 丨 = CV2Dc / (xa-x) 2 (X2)

此機械彈性常數km是與頂板懸掛有關,而回復力F 是由此懸掛所產生。而]^與?111之間之關係是由虎克定律所 10 示:This mechanical elastic constant km is related to the ceiling suspension, and the restoring force F is generated by this suspension. And] ^ with? The relationship between 111 is shown by Hook's Law 10:

Fm = kmx (13) 此Fm與km之大小在平衡時相等 kmX =1/2 CV2DC/(xa.x)2 = 1/2 ke(Xa-x) (14) 最後,此以km來表示ke之式可以如下所示: kex = 2kmx/(xa-x) (15) 當X = xa/3時此兩個彈簧常數相等。超過此點,則電力 超過最大機械回復力,且此兩板被拉在一起,因此,與此 偏移x=xa/3有關之調整電壓稱為拉入電壓。此將是輕而易舉 顯示此裝置之理論調整範圍是小於5〇%。 在第2圖中,°γρ與CBP代表至基板之寄生電容。此等寄 生電容器使得調整範圍劣化,如同在¥〇11叩與]8〇5以之研究 中所示者。在典型之振盪器之應用中。抑為可忽略,因為此 底板與基板均接地。然而,Ctp顯得與可調整電容器並聯。 此外,存在跨越它之相當大之調整電壓。因此,此裝置無 17 去達成其理論轉換範圍,因為CTP限制由此頂板偏轉所可調 整之總電容之數量。 此項研究由Zou等人繼續,且達成69.8%之調整範圍。 於第3圖中說明其所揭示之修正。在此控制電壓是跨大之間 5隙施加’而此可變電容二極體可調整之部份是跨越小的間 隙。雖然此聰明之技術可以大幅加強其調整範圍,但其與 CMOS並不相容。Fm = kmx (13) The magnitude of this Fm and km is equal when balanced kmX = 1/2 CV2DC / (xa.x) 2 = 1/2 ke (Xa-x) (14) Finally, this is expressed in km The formula can be as follows: kex = 2kmx / (xa-x) (15) When X = xa / 3, the two spring constants are equal. Beyond this point, the power exceeds the maximum mechanical restoring force and the two plates are pulled together. Therefore, the adjustment voltage related to this offset x = xa / 3 is called the pull-in voltage. It will be easy to show that the theoretical adjustment range of this device is less than 50%. In Figure 2, ° γρ and CBP represent parasitic capacitances to the substrate. These parasitic capacitors degrade the adjustment range, as shown in the study of ¥ 〇11] and 805. In typical oscillator applications. It is negligible because both the base plate and the base plate are grounded. However, Ctp appears to be in parallel with the adjustable capacitor. In addition, there is a considerable adjustment voltage across it. Therefore, this device has no 17 to achieve its theoretical conversion range, because CTP limits the amount of total capacitance that can be adjusted by this top plate deflection. This study was continued by Zou et al. And reached an adjustment range of 69.8%. The corrections disclosed in FIG. 3 are illustrated. Here the control voltage is applied across a large gap and the adjustable part of the variable capacitor diode is across a small gap. Although this clever technology can greatly enhance its adjustment range, it is not compatible with CMOS.

Yao等人使用橫向梳之結構而顯示3〇〇%之調整範圍, 此結構是使用深反應離子蝕刻(DRIE)技術在SOI中製成。但 10 此裝置會對標準之CMOS處理產生整合之問題,並且因此不 適用於單體式應用中。表1總結在此領域中之先前研究。 表1先前MEMS可變電容二極體研究之總結 參考 裝置 調整範圍 額定電容 Q 頻率 年度 Yoon and Nguyen 平行板 7.7% 1.14pF 291 1GHz 2000 Zou等人 經修正 平行板 69.8% 58pF NA NA 2000 Yao等人 梳 300% l-5pF 100 400MHz 1998 Fan等人 懸掛式 平行板 NA 500pF NA NA 1998 Young and Boser 平行板 16% 2pF 60 1GHz 1997 最近使用微機械技術揭示多種高性能表現積體電感器 。許多此種裝置玎以達成高品質因數。例如:Yeh等人揭示 一種銅封包技術其在5<319[2產生電感器而具有超過30之⑦ 因數。Yoon等人使用在電鍍銅中之線圈結構在2〇.4GHz製成 具有Q-因素16.7之電感器。 18 200426559 在電感器Q性能表現中之關鍵因素為由於以下原因對 基板之損耗:渦輪電流與在此裝置材料中之串聯電阻。因 為此原因,此等懸掛之電感器與銅電感器為相當多研究之 主題。例如:Fan等人揭示一種高性能表現懸掛式電感器, 5 其使用微機械式鉸鍊將此電感器提升於基板上250//m。在 表2中顯示有關於此先前工作之總結。 表2有關於先前積體式電感器研究之總結 參考 裝置 額定電容 Q 頻率 年度 Roger等人 鍍銅 2.6nH 17 2.5GHz 2001 Yeh等人 銅封裝 2.12nH 30 5GHz 2000 Yoon等人 鍍銅線圈 2·67ηΗ 16.7 2.4GHz 1999 Ribas等人 懸掛 4.8ηΗ 16 16GHz 1998 Fan等人 懸掛 24ηΗ ΝΑ 6.6GHz 1998 Young等人 3D銅線圈 4.8ηΗ 30 1GHz 1997 Hisamoto 等人 懸掛於SOI中 7.7ηΗ 11 19.6GHz 1996Yao et al. Used a lateral comb structure to show an adjustment range of 300%. This structure was made in SOI using deep reactive ion etching (DRIE) technology. However, this device can cause integration problems with standard CMOS processing and is therefore not suitable for monolithic applications. Table 1 summarizes previous studies in this area. Table 1 Summary of previous MEMS variable capacitor diode research Reference device adjustment range Rated capacitance Q Frequency Annual Yoon and Nguyen Parallel plate 7.7% 1.14pF 291 1GHz 2000 Zou et al. Modified parallel plate 69.8% 58pF NA NA 2000 Yao et al. Comb 300% l-5pF 100 400MHz 1998 Fan et al. Hanging parallel plate NA 500pF NA NA 1998 Young and Boser Parallel plate 16% 2pF 60 1GHz 1997 Recently, micro-mechanical technology was used to reveal a variety of high performance integrated inductors. Many of these devices are designed to achieve high figures of merit. For example: Yeh et al. Disclose a copper encapsulation technique that produces an inductor with a factor of more than 30 at 5 < 319 [2. Yoon et al. Used a coil structure in electroplated copper to make an inductor with a Q-factor of 16.7 at 20.4 GHz. 18 200426559 The key factor in the performance of the inductor Q is the loss of the substrate for the following reasons: the turbine current and the series resistance in the device material. For this reason, these suspended inductors and copper inductors have been the subject of considerable research. For example, Fan et al. Revealed a high-performance performance suspension inductor, 5 which uses a micromechanical hinge to lift this inductor onto a substrate at 250 // m. A summary of this previous work is shown in Table 2. Table 2 summarizes the previous research on integrated inductors. Reference device Rated capacitance Q Frequency Annual Roger et al. Copper plating 2.6nH 17 2.5GHz 2001 Yeh et al. Copper package 2.12nH 30 5GHz 2000 Yoon et al. Copper-plated coil 2.67ηΗ 16.7 2.4GHz 1999 Ribas et al. Suspended 4.8η 16 16 16GHz 1998 Fan et al. Suspended 24ηΗ ΝΑ 6.6GHz 1998 Young et al. 3D copper coil 4.8ηΗ 30 1GHz 1997 Hisamoto et al. Suspended in SOI 7.7ηΗ 11 19.6GHz 1996

此等許多裝置在與CMOS技術整合方面會面臨重大挑 戰。在事實上,有一些與CMOS根本不相容。 根據報導有多種積體式振盪器。此外,可以發展多種 不同技術以便達成完全積體式振盪器。用於此等裝置之重 要優點數字包括:用於各振盪器之功率與相位雜訊功能表 現。表3總結在此領域中最近之研究。 19 200426559 表3最近VCO研究之總結 參考 技術 相位雜訊密度 功率 頻率 年度 Roger等人 銅電感器 雙極性 106dBc/Hz @100kHz 18mW 2GHz 2001 Samori等人 雙極性 -104dBc/Hz @100kHz 14mW 2.6GHz 2001 Demeui•等人 平面1C電感器 BiCMOS -125dBc/Hz @600kHz 34.2mW 2GHz 2000 Dec and Suyama MEMS可變電容 二極體接線電感 器 CMOS -126dBc/Hz @600kHz 15mW 1.9GHz 2000 Dec and Suyama MEMS可變電容 二極體接線電感 器 CMOS -122dBc/Hz @lMHz 13.5mW 2.4GHz 2000 Klesper and Ducera 積體電感器可變 電容二極體二極 體 BiCMOS •129dBc/Hz @3MHz 18mW 2.4GHz 2000 Zannoth 等人 平面1C電感器雙 極性 -139dBc/Hz @4.7MHz 29.7mW 1.8GHz 2000 Harada等人 平面1C電感器 CMOS/SIMOX -110dBc/Hz @lMHz NA 2GHz 2000 Hung and Kenneth 平面1C與接線電 感器CMOS -126dBc/Hz @600kHz 12.7mW 1.1GHz 2000 Svelto等人 MOS可變電容二 極體接線電感 器 CMOS -119dBc/Hz @600kHz 12mW 1.3GHz 2000 Young等人 MEMS可變電容 二極體CMOS -105dBc/Hz @100kHz NA 1GHz 1999 Zohios等人 積體銅電感器 二極體 BiCMOS -122dBc/Hz @600kHz 21mW 1GHz 1999 Young等人 MEMS可變電容 二極體3D線圈 電感器CMOS -136dBc/Hz @3MHz 43mW 859MHz 1998 Roessig 等人 MEMS共振器 CMOS •88dBcHz/Hz @500Hz NA 1022MHz 1998 Craninekx And Steyert 平面1C電感器 CMOS -116dBc/Hz @600kHz 6mW 1.8GHz 1996 Craninekx And Steyert 接線電感器 CMOS -115dBc/Hz @200kHz 28mW 1.8GHz 1995 許多單一封裝之時鐘零件是由商場上獲得:例如從德 州儀器公司,以及經由例如Digi-Key電子儀器經銷商獲得 5 。此種時鐘典型地使用巨觀晶體作為用於此系統之時間參 20 200426559 考。此外,此種時鐘容易消耗相當大之功率。許多電路設 計公司所使用之簡單環振盪器只適用於非常低性能表現之 應用。 在目前已經發展出用於射頻(RF)應用之許多技術。在 5 以下知章節中將引述在此領域中所作之重大貢獻。此等研 究之焦點在於發展用於蜂巢通信之低相位雜訊振盪器。 相關技術之文件 MEMS可變電容二極艚 美國專利案號 6,242,989”Article comprising a 10 Multi-Port Variable Capacitor·” 美國專利案號 5,959,516”Tunnable-Trimmable Micro Electro Mechanical System (MEMS) Capacitor·” 美國專利案號 6,215,644”High Frequency Tunable Capacitor.” 15 D. Young et al., Micromachined-Based RF Low-NoiseMany of these devices face significant challenges in integrating with CMOS technology. In fact, some are not compatible with CMOS at all. Various integrated oscillators are reported. In addition, many different technologies can be developed to achieve a fully integrated oscillator. Important advantages for these devices include: power and phase noise performance for each oscillator. Table 3 summarizes recent research in this area. 19 200426559 Table 3 Summary of recent VCO studies Reference technology Phase noise density Power frequency Annual Roger et al. Copper inductor bipolar 106dBc / Hz @ 100kHz 18mW 2GHz 2001 Samori et al. Bipolar-104dBc / Hz @ 100kHz 14mW 2.6GHz 2001 Demeui • et al. Flat 1C inductor BiCMOS -125dBc / Hz @ 600kHz 34.2mW 2GHz 2000 Dec and Suyama MEMS variable capacitor diode wiring inductor CMOS -126dBc / Hz @ 600kHz 15mW 1.9GHz 2000 Dec and Suyama MEMS variable capacitor II Polar Body Inductor CMOS -122dBc / Hz @lMHz 13.5mW 2.4GHz 2000 Klesper and Ducera Integrated Inductor Variable Capacitance Diode Diode BiCMOS • 129dBc / Hz @ 3MHz 18mW 2.4GHz 2000 Zannoth et al. Flat 1C Inductor Bipolar -139dBc / Hz @ 4.7MHz 29.7mW 1.8GHz 2000 Harada et al. Flat 1C Inductor CMOS / SIMOX -110dBc / Hz @lMHz NA 2GHz 2000 Hung and Kenneth Flat 1C and Wiring Inductor CMOS -126dBc / Hz @ 600kHz 12.7mW 1.1GHz 2000 Svelto et al. MOS variable capacitor diode wiring inductor CMOS -119dBc / Hz @ 600kHz 12mW 1.3GHz 2000 Young et al. MEMS variable capacitor diode CMOS -1 05dBc / Hz @ 100kHz NA 1GHz 1999 Zohios et al. Integrated Copper Inductor Diode BiCMOS -122dBc / Hz @ 600kHz 21mW 1GHz 1999 Young et al. MEMS Variable Capacitor Diode 3D Coil Inductor CMOS -136dBc / Hz @ 3MHz 43mW 859MHz 1998 Roessig et al. MEMS resonator CMOS • 88dBcHz / Hz @ 500Hz NA 1022MHz 1998 Craninekx And Steyert planar 1C inductor CMOS -116dBc / Hz @ 600kHz 6mW 1.8GHz 1996 Craninekx And Steyert wiring inductor CMOS -115dBc / Hz @ 200kHz 28mW 1.8GHz 1995 Many single-package clock parts are obtained from shopping malls: for example, from Texas Instruments, and via electronic distributors such as Digi-Key5. This type of clock typically uses a macroscopic crystal as the time for this system. See 20 200426559. In addition, such clocks tend to consume considerable power. The simple ring oscillators used by many circuit design companies are only suitable for very low performance applications. Many technologies have been developed for radio frequency (RF) applications. Significant contributions in this area will be cited in the following 5 chapters. The focus of these studies is on the development of low-phase noise oscillators for cellular communications. Related Technology Documents MEMS Variable Capacitor Diodes: US Patent No. 6,242,989 "Article comprising a 10 Multi-Port Variable Capacitor ·" US Patent No. 5,959,516 "Tunnable-Trimmable Micro Electro Mechanical System (MEMS) Capacitor ·" US Patent No. 6,215,644 "High Frequency Tunable Capacitor." 15 D. Young et al., Micromachined-Based RF Low-Noise

Voltage Controlled Oscillator,” IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCEpp,431-434,1997 J. Zou et·,’’Development of Wide Tunning Range MEMS Tunable Capacitor for Wireless Communication 20 Systems,,, INTERNATIONAL ELECTRON DEVICES MEETING,pp403-406,2000· J· Yao et al””High Timing Ratio MEMS Based Tunable Capacitors for RF Communications Applications,”SOLID-STATE SENSORS AND ACTUATORS WORKSHOP,PP. 124-127,1998 21 200426559 J.-B. Yoon et al.? ??A High-Q Tunable Micromechanical Capacitor with Moveable Dielectric for RF Applications,” INTERNATIONAL ELECTRON DEVICES MEETING, PP.20.4 1-20.4.4,2000. 5 L· Fan et al,· ’’Universal MEMS Platforms for Passive RF Components : Suspended Inductors and Variable Capacitors,”pp.29-33,1998. U.S Patent Νο·6,232,847 : “Trimmable Singleband and Tunable Multiband Integrated Oscillator Using Micro -Electromechanical 10 System (MEMS) Technology· ” MEMS電感器 L. Fan et al·,”Univeral MEMS Platforms for Passive RF Components : Suspended Inductors and Variable Capacitors, "pp.29-33,1998. 15 J-L. Yeh et al·,“Copper-Encapsulated Silicon MicromachinedVoltage Controlled Oscillator, "IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCEpp, 431-434, 1997 J. Zou et ·," Development of Wide Tunning Range MEMS Tunable Capacitor for Wireless Communication 20 Systems, ", INTERNATIONAL ELECTRON DEVICES MEETING, pp403-406, 2000 · J. Yao et al "" High Timing Ratio MEMS Based Tunable Capacitors for RF Communications Applications, "SOLID-STATE SENSORS AND ACTUATORS WORKSHOP, PP. 124-127, 1998 21 200426559 J.-B. Yoon et al.? ?? A High-Q Tunable Micromechanical Capacitor with Moveable Dielectric for RF Applications, "INTERNATIONAL ELECTRON DEVICES MEETING, PP.20.4 1-20.4.4, 2000. 5 L · Fan et al, ·" Universal MEMS Platforms for Passive RF Components: Suspended Inductors and Variable Capacitors, "pp. 29-33, 1998. US Patent No. 6,232,847:" Trimmable Singleband and Tunable Multiband Integrated Oscillator Using Micro -Electromechanical 10 System (MEMS) Technology · "MEMS inductor L. Fan et al ·, ”Univeral MEMS Pl atforms for Passive RF Components: Suspended Inductors and Variable Capacitors, " pp.29-33,1998. 15 J-L. Yeh et al ·, "Copper-Encapsulated Silicon Micromachined

Structure." IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,Vol.9,No. 3 pp.281-287,Sept· 2000. J.-B Yoon et al./'Surface Micromachined Solenoid On-Si and On-Glass Inductors for RF Applications. ” IEEE 20 ECECTRON DEVICE LETTERS, Vol. 20,Νο·9,pp 487-489,Sept 1999. J.W. Rogers et al./Tost-Processed Cu inductors with Application to a Completely Integrated 2-GHz VCO.”IEEE ELECTRON DEVICE LETTERS, VOL. 48,Νο·6,ρρ· 22 200426559 1284-1287?June 2001. R.P.Ribas et al·,’’Monolithic High-Performance Three-Dimensional Coil Inductors for Wireless Communication Applications, "INTERNATIONAL ELECTRON DEVICES 5 MEETING,ρρ·3·5·1-3·5·4·Structure. &Quot; IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Vol.9, No. 3 pp.281-287, Sept. 2000. J.-B Yoon et al./'Surface Micromachined Solenoid On-Si and On-Glass Inductors for RF Applications. ”IEEE 20 ECECTRON DEVICE LETTERS, Vol. 20, No. 9, pp 487-489, Sept 1999. JW Rogers et al./Tost-Processed Cu inductors with Application to a Completely Integrated 2-GHz VCO.” IEEE ELECTRON DEVICE LETTERS, VOL. 48, No. 6, ρρ. 22 200426559 1284-1287? June 2001. RPRibas et al., `` Monolithic High-Performance Three-Dimensional Coil Inductors for Wireless Communication Applications, " INTERNATIONAL ELECTRON DEVICES 5 MEETING, ρρ · 3 · 5 · 1-3 · 5 · 4 ·

D.Hisamoto et al,·’’Silicon RF Device Fabricated by USLI Processes Featuring 0.1- // m SOI-CMOS and Suspended Inductors,”·D. Hisamoto et al, · ’’ Silicon RF Device Fabricated by USLI Processes Featuring 0.1- // m SOI-CMOS and Suspended Inductors, "·

SYMPOSIUM ON VLSI TECHNOLOGY DIGEST OF 10 TECHNICAL PAPERS pp,104-105,1996. R.P.Ribas,et al./?Micromachined Planar Spiral Inductor in Standard GaAs HEMT MMIC Technology ·,,IEEE Electron Device Letters,Vol.l9,N0.8,PP .285-287,Aug,2000· 電路佈局與箪體式振盪器 15 美國專利案號 6,292,065,,Differential Control Topology forSYMPOSIUM ON VLSI TECHNOLOGY DIGEST OF 10 TECHNICAL PAPERS pp, 104-105, 1996. RPRibas, et al./? Micromachined Planar Spiral Inductor in Standard GaAs HEMT MMIC Technology · ,, IEEE Electron Device Letters, Vol. 19, N0.8 , PP.285-287, Aug, 2000 · Circuit Layout and Oscillator Oscillator 15 US Patent No. 6,292,065, Differential Control Topology for

IC vco·” J.W. Rogers et al/?A completely Integrated 2GHz VCO with Post Processed Cu Inductors,’’IEEE CUSTOM INTEGREATED CIRCUITS CONFERENCE. 20 PP,575-578,2001. C. Samori et al./?A Fully-Integrated Low-Power Low-Noise 2.6 GHz Bipolar VCO for Wireless Applications,” IEEE Micrewave AND Wireless Components LETTERS, Vol.ll3No.5?pp 199 -201,May 2001. B· Demuer et al·,“A 2GHz Low-Phase-Noise Integrated 23 200426559 LC-VCO with Flicker-Noise Upconversion Minimzation, ?ΊΕΕΕ JOURNAL OF SOLID-STATE CIRCUITS,Vol. 35 No.7? pp?1034 -1038,July 2000.IC vco · ”JW Rogers et al /? A completely Integrated 2GHz VCO with Post Processed Cu Inductors,“ IEEE CUSTOM INTEGREATED CIRCUITS CONFERENCE. 20 PP, 575-578, 2001. C. Samori et al./?A Fully-Integrated Low-Power Low-Noise 2.6 GHz Bipolar VCO for Wireless Applications, "IEEE Micrewave AND Wireless Components LETTERS, Vol.ll3No.5? Pp 199 -201, May 2001. B · Demuer et al ·," A 2GHz Low-Phase- Noise Integrated 23 200426559 LC-VCO with Flicker-Noise Upconversion Minimzation,? ΊΕΕΕ JOURNAL OF SOLID-STATE CIRCUITS, Vol. 35 No.7? Pp? 1034 -1038, July 2000.

A. Dec et al.? ''Microwave MEMS-Based Voltage-Controlled 5 Oscillators/ΊΕΕΕ TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,ν〇1·48,Νο·11,ρρ,1943-1949,Νον·2000·A. Dec et al.? '' Microwave MEMS-Based Voltage-Controlled 5 Oscillators / ΊΕΕΕ TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, ν〇1 · 48, Νο · 11, ρρ, 1943-1949, Νον · 2000 ·

I. Novof,etal·,’’Fully-integrated CMOS phase-locked loop with 15 to 240 MHz locking range and +50 ps jitter.’’Solid-State Circuits Conferene, 1995.Digest of 10 Technical Papers. 42nd ISSCC,1995 IEEE International,15-17 Feb.l995,pp 112-113,347· A. Dec et al·,“Microwave MEMS-Based Voltage-Controlled Oscillators/ΊΕΕΕ TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,Vol.48,No.ll,Nov.2000· 15 B.-U. Klepsecr et al./?A Fully Integrated SiGe BipoarI. Novof, etal, `` Fully-integrated CMOS phase-locked loop with 15 to 240 MHz locking range and +50 ps jitter. '' Solid-State Circuits Conferene, 1995. Digest of 10 Technical Papers. 42nd ISSCC, 1995 IEEE International, 15-17 Feb. 1995, pp 112-113, 347 · A. Dec et al ·, "Microwave MEMS-Based Voltage-Controlled Oscillators / ΊΕΕΕ TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, Vol. 48, No.ll, Nov. 200015 B.-U. Klepsecr et al./?A Fully Integrated SiGe Bipoar

2.4GHz Bluetooth Volatage Controlled Oscillator, "IEEE RADIO FREQUENCY INTETRATED CIRCUITS SYMPOSIUM,PP,61-64,2000. ML Zannoth et al.,,,A Single-Chip Si-Bipolar 1.6GHz VCO 20 With Integrated-Bias Network,’’IEEE TRANSACTITONS ON MICROWAVE THEORY AND TECHNIQUES, Vol. 48,No.2,pp.203-205,Feb.2000. M. Harada et al”’’2-GHz RF Front-End Circuits in CMOS/SIMOX Operating at an Extremely Low Voltage of 24 200426559 0.5V,,,IEEE JOURNAL OF SOLID-STAATE CIRCUITS, Vol.35,No.l2,pp.2000-2004,Dec.2000. C. M.Hung et al./?A Packaged 1.1GHz CMOS VCO With Phase Noise of -126dBc/Hz at a 600-kHz Offfset/ΊΕΕΕ Journal2.4GHz Bluetooth Volatage Controlled Oscillator, " IEEE RADIO FREQUENCY INTETRATED CIRCUITS SYMPOSIUM, PP, 61-64, 2000. ML Zannoth et al. ,,, A Single-Chip Si-Bipolar 1.6GHz VCO 20 With Integrated-Bias Network, ' 'IEEE TRANSACTITONS ON MICROWAVE THEORY AND TECHNIQUES, Vol. 48, No. 2, pp.203-205, Feb. 2000. M. Harada et al ”` `2-GHz RF Front-End Circuits in CMOS / SIMOX Operating at an Extremely Low Voltage of 24 200426559 0.5V ,,, IEEE JOURNAL OF SOLID-STAATE CIRCUITS, Vol.35, No.l2, pp.2000-2004, Dec.2000. CMHung et al./?A Packaged 1.1GHz CMOS VCO With Phase Noise of -126dBc / Hz at a 600-kHz Offfset / ΊΕΕΕ Journal

5 OF SOLID-STATE CIRCUITS,Vol.35, No.l,pp.l00-103,Jan.2000· F. Svelto et al./?A 1.3GHz Low-Phase Noise Fully Tunable CMOS LC VCO/?IEEE Journal OF SOLID-STATE CIRCUITS,VoL35,No.3,pp.356-361,Mar.2000·5 OF SOLID-STATE CIRCUITS, Vol.35, No.l, pp.l00-103, Jan. 2000 · F. Svelto et al./?A 1.3GHz Low-Phase Noise Fully Tunable CMOS LC VCO /? IEEE Journal OF SOLID-STATE CIRCUITS, VoL35, No. 3, pp. 356-361, Mar. 2000 ·

J,Zohios et al·,“A Fully Integrated 1 GHz BiCMOS 10 VCO/TROCEEDINGS OF THE 6th IEEE INTERNATIONAL CONFERENCE ON THE ELECTRONICS CIRCUITS ANS SYSTEMS,Vol.l,pp.l93-196,1999. D. J. Young etal./?A Low-Noise RF Voltage-Controlled Oscillator Using On-Chip High-Q Three-Dimensional Coil Inductor AndJ, Zohios et al., "A Fully Integrated 1 GHz BiCMOS 10 VCO / TROCEEDINGS OF THE 6th IEEE INTERNATIONAL CONFERENCE ON THE ELECTRONICS CIRCUITS ANS SYSTEMS, Vol.l, pp.l93-196, 1999. DJ Young etal./?A Low-Noise RF Voltage-Controlled Oscillator Using On-Chip High-Q Three-Dimensional Coil Inductor And

15 Micromachined Variable Capacior/?SOLID-STATE SENSOR AND ACTUATOR WORKSHOP,PP.128-131,1998· T.A. Roessig et al./?Surface-Micromachined 1MHz Oscillator With Low-Noise Piere Configuration. "SOLID-STATE SENSOR AND ACTUATOR WORKSHOP,1998. 20 J.Craninckx et al·,“A 1.8-GHz CMOS Low-Phase-Noise15 Micromachined Variable Capacior /? SOLID-STATE SENSOR AND ACTUATOR WORKSHOP, PP.128-131, 1998TA Roessig et al./?Surface-Micromachined 1MHz Oscillator With Low-Noise Piere Configuration. &Quot; SOLID-STATE SENSOR AND ACTUATOR WORKSHOP , 1998. 20 J. Craninckx et al., "A 1.8-GHz CMOS Low-Phase-Noise

Voltage-Controlled Oscillator Using Optimized Hollow Spiral Inductors/5 IEEE JOURNAL OF SOLID-STATE CIRCUITS,Vol.32,No.5,pp.736-744,May 1997· J.Craninckx et al·,“A 1.8-GHz CMOS Low-Phase-Noise 25 200426559Voltage-Controlled Oscillator Using Optimized Hollow Spiral Inductors / 5 IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol.32, No.5, pp.736-744, May 1997 · J. Craninckx et al ·, "A 1.8-GHz CMOS Low -Phase-Noise 25 200426559

Voltage-Controlled Oscillator With Pres calar,”IEEE JOURNAL OF SOLID-STATE CIRCUITS,Vol.30,No.l2pp. 1474-1482?Dec.l995. D. Young et al./?A Micromachined Based RF Low-Noise 5 Voltage-Controlled Oscillator/ΊΕΕΕ CUSTOM INTEGRATED CIRCUITS CONFERENCE,PP.431-434,1997· 【明内3 發明概要 本發明所揭示之内容包括:MEMS式之電腦系統,時 10脈產生與振盪電路,以及用於其中之LC儲能裝置。此電路 與裝置可製成於單一基板上而無須外部元件。 在一實施例中,此MEMS式時脈產生電路用於產生高 度穩定之數位輸出信號而無須設置外部元件。此電路包括 :基板,與設置於基板上之振盪器。此振盪器包括:高_Q 15 MEMS LC-儲能裝置裝置用於產生高頻率週期性信號。此電 路亦包括:製成於基板上之第一電路,用於將此週期信號 轉換成高頻數位輸出信號。 此週期彳自號可以為正弦波且具有原始頻率。此輸出作 號為方形波其頻率為原始頻率之一半。 2〇 此時脈產生電路可以更包括··亦製成於基板上之第二 電路,用於將此數位輸出信號之頻率分割成至少一較低所 想要之應用頻率,並且因此降低此信號之相位雜訊,因而 增加其穩定性。 可以使用與CMOS相容製程,於基板上製成此第_與第 26 200426559 二電路以及振盪器。 此與CMOS相容製程可以為整體式製程、或SOI CMOS製程。 此週期信號可以為正弦微分信號,且此第一電路可以 5 將此微分信號轉換成單一終端信號。 此第一電路亦可將此單一終端信號轉換成:高頻方波 數位輸出信號。 此第二電路可以包括連接至第一電路之正反器:用於 將此方波數位輸出信號之頻率分割成至少一較低所想要之 10 應用頻率。 此基板可以為整體式或SOI基板。 在另一實施例中,設有MEMS式振盪電路用於產生低 雜訊高頻週期信號。此振盪電路包括:基板,以及在基板 上以CMOS相容製程所製成之高-Q MEMS LC儲能裝置。此 15 電路亦包括另一電路,其以CMOS相容製程製成於基板上, 且連接至LC儲能裝置以產生週期信號。 此頻率為可變以響應控制輸入而調整振盪電路。 此與CMOS相容製程可以為整體式製程、或SOI CMOS製程。 20 此振盪電路可以為雙平衡振盪電路,以減少不穩定雜 訊之向上轉換。 此LC儲能裝置可以包括至少一微機電可變電容二極體 ,其所具有之電容響應於控制輸入而改變。 此至少一可變電容二極體可以包括頂板,且此電路可 27 200426559 以包括旁通電容器,以阻擋從電路之其餘部份至頂板之控 制輸入。 此振盪器電路可以為雙平衡式交叉耦合式振盪器電路 以減少不穩定雜訊之向上轉換。 5 在另一實施例中,設有MEMS式LC儲能裝置其具有高 品質因數。此裝置具有基板以及以與CMOS相容製程在基板 上所製之至少一微機電可變電容二極體。此裝置亦包括一 微機電電感器,其連接至至少一可變電容二極體,且以與 CMOS相容製程製成於基板上。 10 此至少一可變電容二極體可以具有可變電容,以提供 此裝置調整範圍。 此電容器可以懸掛於基板上,且在此與CMOS相容製程 期間或完成時釋出。 此電感器可以為中空,且藉由固定件而懸掛於基板上 15 ,此固定件由與CMOS相容製程所界定。 此至少一可變電容二極體可以具有:固定底板、與懸 掛在此固定底板上之可移動頂板,且在此與CMOS相容製程 期間或完成時釋出。 此頂板可以根據控制輸入而偏轉,以調整至少一可變 20 電容二極體之電容。 此頂板可以藉由以與CMOS相容製程所界定之機械懸 掛網路’而懸掛於底板之上。 此至少一可變電容二極體與電感器可以在與CM0S相 容製程中由導電層界定。 28 200426559 此導電層可以為金屬層。 此與CMOS相容製程可以為整體或s〇l SM0S製程。 此頂板可以具有多個蝕刻孔,以方便在此與c M 〇 s相容 製程期間或完成時釋放頂板。 5 此基板可以為整體式或SOI基板。 此至少一可變電容二極體與電容器可以由:MiM層或 兩位準金屬線路層界定 在還有其他實施例中,設有此MEMS式時脈產生電路 用於產生尚度穩定之數位輸出信號。此電路包括:製成於 10苐基板上之振I器,以及包括:南-Q MEMS LC儲能裝 置用於產生週期信號。此電路更包括製成於第二基板上之第 一電路,用於將此週期信號轉換成高頻率數位輸出信號。 此第一與第二基板可以為不同,或可以相同,以致於 此時脈產生電路可以為單體式電路。 15 在還有另一實施例中,設有電腦系統。此電腦系統包 括:資料匯流排、雙向連接至資料匯流排之中央處理單元 、雙向連接至資料匯流排之暫時記憶體、以及雙向連接至 貧料匯流排之持續記憶體。此電腦系統更包括: MEMS式時脈產生電路用於產生高度穩定之數位輸出 2〇信號,而適合使用於電腦系統中。此時脈產生電路包括: 製成於第一基板上之振盪器,以及包括:高·qmemslc儲 旎裴置用於產生週期信號。製成於第二基板上之第一電路 用於將此週期信號轉換成高頻率數位輸出信號。 本發明之特徵與優點,將由以下用於執行本發明之最 29 200426559 佳模式之詳細說明並參考所附圖式而為明顯。 圖式簡單說明 第1圖為習知技術微機電可變電容二極體之概要頂視 圖, 5 第2圖為習知技術可變電容二極體之第1圖中沿著線 2-2之側視圖; 第3圖為習知技術另一可變電容二極體之側視概要圖; 第4a圖為根據本發明第1實施例所建構之可變電容二 極體之透視截面圖; 10 第4b圖為根據本發明第2實施例所建構之可變電容二 極體之概要透視圖; 第4c圖為習知技術第二實施例之沿著第4b圖中線4c-4c 線之部份側視截面圖; 第5a圖為根據本發明第1實施例所建構之可變電感器 15 之透視截面圖; 第5b圖為根據本發明第2實施例所建構之可變電感_器 之透視截面圖; 第6圖為本發明儲能裝置之概要電路圖; 第7a圖為本發明第1實施例之振盪器核心之概要電路 20 圖; 第7b圖為本發明第2實施例之振蘯器核心之概要電路 圖; 第7c圖為本發明第3實施例之振盪器核心之概要電路 圖, 30 200426559 第8a圖為本發明第1實施例之振盈器結構之概要電路 圖; 第8b圖為本發明第2實施例之單體式CM〇S-MEMs時 脈參考電路之概要電路圖; 5 第9心9(1圖為透視概要圖、其集體地提供在用於本發明 之標準整體或SOI CMOS製程中之簡化製造流程圖;以及 第10圖為本發明之在單一基板上之同步半導體裝置之 概要透視圖,此裝置包括多個電子子系統與用於此裝置之 封襄。 10 【實施方式】 較佳實施例之詳細說明 現在請參考第4a圖’其說明在SOI基板上所製通常在40 所不之可變電容二極體之第一實施例,其針對與先前 MEMS可變電容二極體研究有關之最重要之缺點。第一, I5此製程是CMOS相容以便達成單體式積體化。第二,此調整 範圍是相當寬廣。第三,其品質因因數)高。以下將討 論可變電容二極體之所有此等問題。 T先,將可㈣容二極體做平行板做料製成為標 準CMOS製程之-部份,其使用金屬絕緣體金屬⑽M)層 2〇或適當之金屬接線層。支揮臂45支持在底板44上之頂板42 。可以將此等支撐臂45設計❹㈣何形狀之―,以便適 當地懸掛頂板42。並無須其他處理步驟以界定此結構。然 而’使用無遮軍後處理(p〇st pr〇cess)藉由移除上述板42與料 之間之絕緣材料而釋出板42與44。此釋出藉由使用標準 31 200426559 CMOS製程步驟而方便達成,其中界定此接線墊孔。藉由在 MEMS可變電容二極體結構周圍設置接線墊窗口,如果不 能將此裝置適出,則可將此裝置曝露。可以須要其他額外 之蝕刻,以便釋出此結構,但此蝕刻可以不使用其他遮罩 5步驟而達成,因為此接線墊蝕刻已經界定用於繼續蝕刻之 遮罩窗口。此頂板42包括蝕刻孔43以方便頂板42之釋出。 其次’經由背面餘刻將可變電容二極體4〇下之基板46 去除’而可將寄生損失最小化,且因此加強調整此範圍, 以接近用於所給定設計之理論極限5〇%。如果未將基板46 1〇 移除,則存在大的寄生電容與可變電容二極體40並聯,且 此調整範圍嚴重退化,如同在先前研究中所觀察到者。隨 著使用高敏感度SOI基板48而可將此步驟去除,因為此寄生 電容並不嚴重。SOI基板48之使用對於此等製造選擇為重要 。使用此本質埋設式氧化物(即,BOX 50)作為矽(si)背側蝕 15 刻終止件,或作為對高敏感度基板48之絕緣體。此技術無 法以標準式整體矽基板實施,因為不存在BOX 50。 最後,此可變電容二極體40是以銅設計,因此其相較 以銘製薄片之薄片電阻低許多,這加強了 Q-因數。在截至 目前為止之習知技術中並未報導銅製之可變電容二極體。 20 此可變電容二極體40呈現由此可變電容二極體之幾何形狀 與在板42與44之間之間隙Xa所設定之額定電容。藉由跨板 42與44施加正的DC電壓VDC,則此可移動式頂板54由於靜 電力而會偏移一些距離,因此可將此電容調變。因此,此 可變電容是由以下之關係式說明: 32 200426559 C = ε A/(xa«x) 其中ε為空氣之介電係數,A為板之重疊面積,xa為板 42與44之間之額定距離,以及χ為由DC調整電壓Vdc所強迫 之一些位移。可以顯示用於此設計之最大位移為xa/3,若超 5過此最大位移,則靜電力超過最大機械回復力,且將板42 與44拉在一起。此外,可以顯示此用於可變電容二極體52 之理論調整範圍小於5〇%。 此可變電容二極體40之性能表現是取決於其材料與裝 置之幾何結構。尤其,此與機械懸掛網路45有關之機械彈 1〇性常數將決定調整電壓響應。此外,此裝置幾何結構決定 此可達成之電容。 現在,請參考第4b與4c圖,其說明本發明之通常以52 所示之以整體CMOS製程所製可變電容二極體之第二實施 例。此可變電容二極體52包括··可移動頂板54與靜止底板 15 56 °頂板54是藉由機械懸掛網路58支撐於底板56上,其於 固定件62處固定於基板6〇。 尤其’此微機電可變電容二極體52具有類似於在習知 枝術中平行板設計。此可變電容二極體54藉由:將金屬頂 板54機械地懸掛在固定金屬底板65上之空氣中而建構。此 機械懸掛網路58如同所示提供用於頂板54之支撐。此可變 電容二極體52呈現額定電容,其由此可變電容二極體之幾 柯結構與板54與56之間之間隙xa設定。藉由跨板54與56施 力口正的直流(D〇電壓vDC,此可移動頂板54由於靜電力可以 偏移一些距離x,因此將電容調變。因此,此可變電容是由 33 200426559 以下之關係式說明: C = ε A/(xa-x) 其中ε為空氣之介電係數,A為核夕击# 傲之重疊面積,xa為板 5 54與65之間之額定距離’以及X為由0(:調整電壓vdc所強 迫之-些位移。可以顯示用於此設計結構之最大位移為^ ’若超過此最大位移則電力超過最大機械回復力,而將板 54與56拉在一起。此外,可以顯示此用於可變電容二極俨 52之理論調整範圍可以小於50%。 此可變電谷一極體52之性能表現是取決於其材料與裝 10 置之幾何結構。尤其,此與機械懸掛網路58有關之機械彈 性常數將決定調整電壓響應。此外,此裝置幾何結構決定 此可達成之電容。設計此可變電組器52以實現接近〇.25Pf 之額定電容,且對從0至1.2V之電壓響應。於表4中顯示此 等裝置設計參數之總結。 15 表4 MEMS可變電容二極體之設計參數 設計參數 值 額定電容(C) 0.26pF 佈局結構 平行板 重疊面積(A) 1024 "it? 間隔距離(da) 34.5nm 相對介電係數(ε r) -1 支持樑長度 8.5 β m 支持樑寬度 3 // m 支持樑高度 2 μ m 裝置材料 ΑΪ 調整電壓 0-1.2V 调整範圍(理論) 50% 估計品質因數(在2GHz) 60 34 200426559 如同可以瞭解,以上之參數僅說明之一非常特定之實 施例。然而,熟習此技術之人士瞭解:如何調整此等參數 以衫響電路’並且以本發明之指示,而容易設計例如在此 所說明之其他電路。 5 現在請參考第5a圖,其說明與先前說明與可變電容二 極體40與52之製造過程符^—致之SOI CMOS製程中所製 之懸掛式電感器64之第一實施例。 尤其’電感器64與其支撐之固定件是由標準SOI CMOS 製程所界定。此電感器線圈64為圓形且中空,這意味此螺 1〇疑線之線圈並未完全進入圓圈之中央,由於此為已知此中 空之電感器呈現較佳之品質因數Q,且此内部線圈對於整個 電感貢獻很少。此線圈亦可以為正方形或八角形以便符合 CMOS製程之要求。此電感器線圈64可以懸掛在金屬層中, 並且此外,如同於66所示,可以將電感器下之基板去除。 15 因此,可以將由於渦流(eddy current)所造成對基板68之寄 生損失最小化,此裝置之薄片電阻低,且可以獲得高Q·因 數。如同在可變電容二極體40與52之情形中,如果使用包 括BOX 70之高電阻SOI基板,則可以省略背側蝕刻步驟。 現在請參考第5b圖,此第二實施例說明以整體式CMOS 20 製程所製之懸掛式電感器,其通常顯示為72。此電感器72 可以為方形、圓形、或八角形以符合CMOS製程之要求。此 電感器72與其固定件74是由標準之整體式CMOS製程所界 定,並且其定義不須要額外製造步驟。 電感器72與第4b與4c圖之MEMS可變電容二極體52連 35 200426559 接。此電感器72亦以標準之CMOS製程所製成,且由此標準 製程所界定之固定件74懸掛在基板之上。將在電感器乃周 圍之’I電材料去除,以便增加品質因數。去除此介電質可 以減少電感器72與基板76之間之電容耦合,因此可以減少 5由於在基板76中所感應之渦電流所造成能量之損失。此電 感器72亦最後製成於持久且厚之金屬層中,以避免由於串 聯電阻所造成之損失。此電感器72亦可包含圖案式接地屏 蔽’以減少由於渦電流之損失。此接地屏蔽亦可由標準之 CMOS製程所界定。 10 此裝置之幾何形狀決定其性能表現,隨著使用簡單模 式,此電感可由以下關係式估計: L = 37.5//nV/(22r-14a) 其中a為螺旋線之平均半徑,^為螺旋線圈之圈數,# 為核心的導磁率,以及r為螺旋線圈之半徑。 15 此電感器72設計之目的為將Q-因數最大化,而實現接 近10nH之額定電感。在表4中顯示電感器設計參數之總結: 表5…MEMS電感器設計參數 _設計參數 值 …-- j定電感(C) 10nH __佈局結構 方形中空核心 — 趣目對導磁率(A) -1 〜一圈數(η) 6 均半徑(a) 92.5 β m . __半徑⑴ 125 β m ---字心核心半徑 76.25 β m ---- 高度 2// m 寬度 8 # m ...........__線圈空間 1.5 β m ...__裝置材料 Al .....估_言1^質因數(在2GHz) 20 36 200426559 現在請參考第6圖,其中顯示將MEMS可變電容二極體 與電感器設置成並聯,以形成用於振盪器之可調整LC儲能 裝置或參考。截至目前為止,並無先前研究顯示在單一相 容製程中將與單體式MEMS可變電容器與電感器連接在一 5 起’以實現高-Q儲能裝置。此儲能裝置主要是電感器與電 容器與由電阻器r所代表之寄生損耗元件並聯。此儲能裝置 顯示高-Q性能表現、而相較於低-〇性能表現。此連接儲能 裝置其提供在稱為此儲能裝置之共振頻率為中心周圍緊 密圍繞之響應。當建構此振盪器時此種形式之性能表現為 10所欲的,因為它尋求穩定之頻率輸出。 此第一實施例之電路設計佈局有兩個主要之元件。第 一為:所說明之低雜訊與低功率振盪器核心,如同於第7a 圖中說明;第二為:支持電路其實現方波數位時脈輸出, 如同於第8a圖中所示。 15 帛九圖之振盪器核心設計布局具有以下之特點。首先 ,此設計布局為熟知以提供在CMOS裝置巾殘定雜訊中不 穩定雜訊之降低,由於其在顧頻率周圍之向上轉換而成 為相位雜訊之主要來源。這如同所示藉由此雙平均結構之 本質而達成。此結構具有上下與左右對稱。此尾部電流源 2〇為不穩定雜訊之主要來源。因此,此電路是作為串聯電流 源而實施,其藉由增加共同模式拒斥比例而從共同模式點 所注入之雜訊最小化。 在先則之研究中已經顯示,經由使用共同模式電容器 科,可以減少不穩定雜訊之拒斥。此外,此尾部電流是經 37 200426559 由Pmos裝置而成為來源,其在典型之CM〇s技術中被知為 較相同之nMOS裝置顯示相當少之不穩定雜訊 。而且,例如 此種互補結構之導電率為完*nM〇s或完全pMOS結構之兩 倍。此較高之導電率允許在較低功率啟始。最後,此結構 5 與先前說明之微機電LC儲能裝置相容。 關於此LC儲能裝置而屬於此設計布局之一些關鍵特徵 為:使用旁通電容器80與MOS電阻器82,經由它們可以實 施調整、控制輸入電壓。此旁通電容器8〇阻擋在一對並聯 可變電容二極體40之頂板42上之DC調整電壓。此MOS電阻 10 益82為高阻抗裝置,其允許將調整電壓施加於可變電容二 極體40。若無此裝置,則電感器64將與旁通電容器80共振 。最後,此交叉連接裝置是在或靠近弱反轉結構被偏壓, 而將增益最大化,且將功率消耗與來自主動裝置之雜訊貢 獻最小化。以下為用於此設計部局組合特徵之總結: I5 •用於對稱、與不穩定雜成降低、以及低功率啟始之雙 平衡結構; •用於不穩定雜訊拒斥之串聯尾部電流; •用於不穩定雜訊拒斥之共同模式電容器84 ; •將不穩定雜訊拒斥最小化之pMOS尾部電流; 2〇 •與MEMS LC-儲能裝置相容;以及 •在或接近弱反轉之主動裝置用於功率與雜訊之最小 化。Voltage-Controlled Oscillator With Pres calar, "IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol.30, No.l2pp. 1474-1482? Dec.l995. D. Young et al./?A Micromachined Based RF Low-Noise 5 Voltage -Controlled Oscillator / ΊΕΕΕ CUSTOM INTEGRATED CIRCUITS CONFERENCE, PP.431-434, 1997 · [Akimoto 3 Summary of the Invention The content disclosed by the present invention includes: a MEMS-type computer system, a 10-pulse generating and oscillating circuit, and a circuit used therein LC energy storage device. This circuit and device can be made on a single substrate without external components. In one embodiment, the MEMS clock generator is used to generate a highly stable digital output signal without external components. The circuit includes: a substrate and an oscillator disposed on the substrate. The oscillator includes: a high-Q 15 MEMS LC-energy storage device for generating high-frequency periodic signals. The circuit also includes: made on a substrate The first circuit is used to convert this period signal into a high-frequency digital output signal. This period number can be a sine wave and has the original frequency. This output is numbered as a square wave The frequency is half of the original frequency. 20 The clock generation circuit may further include a second circuit also made on the substrate for dividing the frequency of this digital output signal into at least one lower desired application Frequency, and therefore reduce the phase noise of this signal, thereby increasing its stability. CMOS-compatible processes can be used to make this _ and 26 200426559 circuits and oscillators on the substrate. This CMOS-compatible process It can be a monolithic process or a SOI CMOS process. The periodic signal can be a sinusoidal differential signal, and the first circuit can convert the differential signal into a single terminal signal. The first circuit can also convert the single terminal signal into : High-frequency square-wave digital output signal. This second circuit may include a flip-flop connected to the first circuit: used to divide the frequency of this square-wave digital output signal into at least one lower desired 10 application frequency. The substrate can be a monolithic or SOI substrate. In another embodiment, a MEMS-type oscillation circuit is provided for generating a low-noise high-frequency periodic signal. The oscillation circuit includes: Board, and a high-Q MEMS LC energy storage device made on a substrate using a CMOS compatible process. This 15 circuit also includes another circuit that is made on the substrate using a CMOS compatible process and connected to the LC storage The device can be configured to generate a periodic signal. This frequency is variable to adjust the oscillating circuit in response to a control input. This CMOS-compatible process can be a monolithic process or a SOI CMOS process. 20 This oscillating circuit can be a double-balanced oscillating circuit to reduce the up conversion of unstable noise. The LC energy storage device may include at least one micro-electromechanical variable capacitor diode, and its capacitance is changed in response to a control input. The at least one variable capacitor diode may include a top plate, and the circuit may include a bypass capacitor to block control inputs from the rest of the circuit to the top plate. This oscillator circuit can be a double-balanced cross-coupled oscillator circuit to reduce the up conversion of unstable noise. 5 In another embodiment, a MEMS-type LC energy storage device is provided which has a high quality factor. The device has a substrate and at least one micro-electromechanical variable capacitor diode fabricated on the substrate in a CMOS-compatible process. The device also includes a micro-electro-mechanical inductor connected to at least one variable capacitor diode and fabricated on a substrate in a CMOS-compatible process. 10 The at least one variable-capacitance diode may have a variable capacitance to provide a range of adjustment of the device. This capacitor can be suspended from the substrate and released during or upon completion of this CMOS compatible process. The inductor may be hollow and suspended on the substrate by a fixing member 15, which is defined by a CMOS-compatible process. The at least one variable capacitor diode may have a fixed bottom plate and a movable top plate suspended on the fixed bottom plate, and is released during or upon completion of the CMOS-compatible process. The top plate can be deflected according to the control input to adjust the capacitance of at least one variable 20 capacitor diode. This top plate can be suspended from the bottom plate by a mechanical suspension network 'defined by a CMOS compatible process. The at least one variable-capacitance diode and the inductor may be defined by a conductive layer in a CMOS-compatible process. 28 200426559 This conductive layer can be a metal layer. This CMOS-compatible process can be a monolithic or sol SMOS process. The top plate may have multiple etched holes to facilitate the release of the top plate during this process or upon completion. 5 This substrate can be a monolithic or SOI substrate. The at least one variable-capacitance diode and the capacitor may be defined by a MiM layer or two quasi-metallic circuit layers. In other embodiments, the MEMS-type clock generating circuit is provided for generating a stable digital output. signal. This circuit includes: a vibrator made on a 10 苐 substrate, and includes: Nan-Q MEMS LC energy storage device for generating periodic signals. The circuit further includes a first circuit formed on the second substrate for converting the periodic signal into a high-frequency digital output signal. The first and second substrates may be different, or may be the same, so that the clock generation circuit may be a single circuit. 15 In yet another embodiment, a computer system is provided. The computer system includes: a data bus, a central processing unit bidirectionally connected to the data bus, a temporary memory bidirectionally connected to the data bus, and a persistent memory bidirectionally connected to the lean bus. The computer system further includes: a MEMS-type clock generating circuit for generating a highly stable digital output 20 signal, which is suitable for use in a computer system. The clock generation circuit includes: an oscillator made on the first substrate, and includes: a high qmemslc storage device for generating a periodic signal. A first circuit made on the second substrate is used to convert this periodic signal into a high-frequency digital output signal. The features and advantages of the present invention will be apparent from the following detailed description of the best mode for carrying out the present invention with reference to the accompanying drawings. Brief description of the drawing. Figure 1 is a schematic top view of a conventional micro-electromechanical variable capacitor diode. 5 Figure 2 is a conventional variable capacitor diode in the first figure along line 2-2. Fig. 3 is a schematic side view of another variable capacitor diode of the conventional technology; Fig. 4a is a perspective sectional view of a variable capacitor diode constructed according to the first embodiment of the present invention; 10 Fig. 4b is a schematic perspective view of a variable capacitor diode constructed according to the second embodiment of the present invention; Fig. 4c is a part along the line 4c-4c of the second embodiment of the conventional technology in Fig. 4b A side sectional view; Figure 5a is a perspective sectional view of the variable inductor 15 constructed according to the first embodiment of the present invention; Figure 5b is a variable inductor constructed according to the second embodiment of the present invention_ Perspective view of the device; Figure 6 is a schematic circuit diagram of the energy storage device of the present invention; Figure 7a is a schematic circuit diagram 20 of the oscillator core of the first embodiment of the present invention; Figure 7b is a second embodiment of the present invention. The schematic circuit diagram of the vibrator core; FIG. 7c is the schematic circuit diagram of the oscillator core of the third embodiment of the present invention 30 200426559 Fig. 8a is a schematic circuit diagram of a vibrator structure in the first embodiment of the present invention; Fig. 8b is a schematic circuit diagram of a unitary CMOS-MEMs clock reference circuit in the second embodiment of the present invention; 9 core 9 (1 is a perspective overview diagram collectively provided in a simplified manufacturing flowchart of a standard monolithic or SOI CMOS process used in the present invention; and FIG. 10 is a synchronous semiconductor device on a single substrate of the present invention A schematic perspective view of the device, which includes a plurality of electronic subsystems and seals for the device. 10 [Embodiment] Detailed description of the preferred embodiment Now please refer to FIG. 4a, whose description is usually made on an SOI substrate. The first embodiment of the variable capacitor diode in 40 is aimed at the most important disadvantages related to the previous research of MEMS variable capacitor diodes. First, I5 this process is CMOS compatible in order to achieve a single Second, this adjustment range is quite wide. Third, its quality factor is high. All these issues for variable capacitor diodes are discussed below. First, the capacitive diode is made into a parallel plate as part of a standard CMOS process, which uses a metal insulator (metal) layer 20 or a suitable metal wiring layer. The swing arm 45 supports the top plate 42 on the bottom plate 44. These support arms 45 can be designed in any shape so as to appropriately suspend the top plate 42. No further processing steps are required to define this structure. However, the plates 42 and 44 are released by using an unshielded post treatment by removing the insulating material between the plates 42 and the material. This release is conveniently achieved by using standard 31 200426559 CMOS process steps, which define this wiring pad hole. By providing a wiring pad window around the MEMS variable capacitor diode structure, the device can be exposed if it cannot be adapted. Additional etch may be required to release the structure, but this etch can be achieved without using other mask 5 steps, because this wiring pad etch has defined a mask window for further etching. The top plate 42 includes etched holes 43 to facilitate the release of the top plate 42. Secondly, 'removing the substrate 46 under the variable capacitor diode 40 through the back side of the backside' can minimize parasitic losses, and therefore strengthen the adjustment of this range to approach the theoretical limit of 50% for a given design . If the substrate 46 10 is not removed, there is a large parasitic capacitance in parallel with the variable capacitance diode 40, and this adjustment range is severely degraded, as observed in previous studies. This step can be removed with the use of a high-sensitivity SOI substrate 48 because the parasitic capacitance is not severe. The use of the SOI substrate 48 is important for these manufacturing options. This intrinsically buried oxide (ie, BOX 50) is used as a silicon (si) backside etching 15 etch stopper, or as an insulator for a highly sensitive substrate 48. This technology cannot be implemented with a standard monolithic silicon substrate because there is no BOX 50. Finally, the variable capacitor diode 40 is designed with copper, so it has a much lower sheet resistance than the sheet with an inscribed sheet, which enhances the Q-factor. Copper-based variable capacitor diodes have not been reported in the conventional technology so far. 20 The variable capacitor diode 40 exhibits a rated capacitance set by the geometry of the variable capacitor diode and the gap Xa between the plates 42 and 44. By applying a positive DC voltage VDC across the plates 42 and 44, the movable top plate 54 will be offset by some distance due to the static electricity, so this capacitance can be adjusted. Therefore, this variable capacitor is described by the following relationship: 32 200426559 C = ε A / (xa «x) where ε is the dielectric constant of air, A is the overlapping area of the plates, and xa is between plates 42 and 44 The nominal distance and χ are some displacements forced by the DC adjustment voltage Vdc. It can be shown that the maximum displacement used for this design is xa / 3. If the maximum displacement exceeds 5, the electrostatic force exceeds the maximum mechanical recovery force, and the plates 42 and 44 are pulled together. In addition, it can be shown that the theoretical adjustment range for the variable capacitor diode 52 is less than 50%. The performance of the variable capacitor diode 40 depends on the material and the geometry of the device. In particular, the mechanical elasticity constant of the mechanical suspension network 45 will determine the adjustment of the voltage response. In addition, the device geometry determines the achievable capacitance. Now, please refer to Figs. 4b and 4c, which illustrate a second embodiment of the variable capacitor diode manufactured by the overall CMOS process shown generally at 52 in the present invention. This variable capacitor diode 52 includes a movable top plate 54 and a stationary bottom plate. The 56 ° top plate 54 is supported on the bottom plate 56 by a mechanical suspension network 58 and is fixed to the base plate 60 at a fixing member 62. In particular, this micro-electromechanical variable capacitor diode 52 has a parallel plate design similar to that in conventional branches. The variable capacitor diode 54 is constructed by mechanically suspending a metal top plate 54 in the air on a fixed metal bottom plate 65. This mechanical suspension network 58 provides support for the top plate 54 as shown. This variable capacitor diode 52 exhibits a rated capacitance, which is set by the gap xa between the structure of the variable capacitor diode and the plates 54 and 56. With the positive DC voltage (D0 voltage vDC) across the plates 54 and 56, the movable top plate 54 can adjust the capacitance due to the electrostatic force that can be offset by some distance x. Therefore, this variable capacitor is composed of 33 200426559 The following relationship is explained: C = ε A / (xa-x) where ε is the dielectric coefficient of air, A is the nuclear smash # Ao's overlapping area, xa is the rated distance between plates 5 54 and 65 'and X is some displacement forced by 0 (: adjusting voltage vdc. It can be shown that the maximum displacement for this design structure is ^ 'If this maximum displacement is exceeded, the power exceeds the maximum mechanical recovery force, and the plates 54 and 56 are pulled at Together. In addition, it can be shown that the theoretical adjustment range for the variable capacitor diode 俨 52 can be less than 50%. The performance of the variable valley-pole 52 depends on its material and the geometry of the device. In particular, the mechanical elastic constant associated with the mechanical suspension network 58 will determine the voltage response adjustment. In addition, the device geometry determines the achievable capacitance. The variable generator 52 is designed to achieve a nominal capacitance close to 0.25Pf And responds to voltages from 0 to 1.2V A summary of the design parameters of these devices is shown in Table 4. 15 Table 4 Design parameters of MEMS variable capacitor diodes Design parameter values Rated capacitance (C) 0.26pF Layout structure Parallel plate overlap area (A) 1024 " it? Distance (da) 34.5nm Relative permittivity (ε r) -1 Support beam length 8.5 β m Support beam width 3 // m Support beam height 2 μ m Device material ΑΪ Adjustment voltage 0-1.2V Adjustment range (theory) 50% estimated figure of merit (at 2GHz) 60 34 200426559 As can be understood, the above parameters only describe one very specific embodiment. However, those familiar with this technology understand: how to adjust these parameters to affect the circuit 'and to The instructions of the present invention make it easy to design other circuits such as those described herein. 5 Please refer to FIG. 5a for a description which is in accordance with the previous description and the manufacturing process of the variable capacitor diodes 40 and 52. ^-SOI CMOS The first embodiment of the suspension inductor 64 manufactured in the manufacturing process. In particular, the inductor 64 and its supporting fixtures are defined by the standard SOI CMOS manufacturing process. The inductor coil 64 is circular and hollow. This means that the coil of the spiral 10 suspect line does not completely enter the center of the circle, because it is known that the hollow inductor exhibits a better quality factor Q, and the internal coil contributes little to the overall inductance. It can be square or octagonal to meet the requirements of the CMOS process. The inductor coil 64 can be suspended in a metal layer, and in addition, as shown at 66, the substrate under the inductor can be removed. 15 Therefore, due to the eddy current The parasitic loss to the substrate 68 caused by the (eddy current) is minimized, the sheet resistance of this device is low, and a high Q · factor can be obtained. As in the case of the variable capacitor diodes 40 and 52, if a high-resistance SOI substrate including the BOX 70 is used, the backside etching step can be omitted. Referring now to FIG. 5b, this second embodiment illustrates a suspension inductor manufactured in a monolithic CMOS 20 process, which is typically shown as 72. The inductor 72 can be square, round, or octagonal to meet the requirements of the CMOS process. The inductor 72 and its fixture 74 are defined by a standard monolithic CMOS process, and its definition does not require additional manufacturing steps. The inductor 72 is connected to the MEMS variable capacitor diode 52 shown in Figs. 4b and 4c. 35 200426559 is connected. The inductor 72 is also made by a standard CMOS process, and a fixing member 74 defined by the standard process is suspended on the substrate. The 'I' electrical material is removed around the inductor to increase the figure of merit. Removing this dielectric can reduce the capacitive coupling between the inductor 72 and the substrate 76, and thus can reduce the energy loss caused by the eddy current induced in the substrate 76. The inductor 72 is finally made in a durable and thick metal layer to avoid losses due to series resistance. This inductor 72 may also include a patterned ground shield 'to reduce losses due to eddy currents. This ground shield can also be defined by a standard CMOS process. 10 The geometry of this device determines its performance. With simple mode, the inductance can be estimated from the following relationship: L = 37.5 // nV / (22r-14a) where a is the average radius of the spiral and ^ is the spiral coil The number of turns, # is the permeability of the core, and r is the radius of the spiral coil. 15 This inductor 72 is designed to maximize the Q-factor and achieve a nominal inductance close to 10nH. A summary of the inductor design parameters is shown in Table 4: Table 5 ... MEMS inductor design parameters_design parameter values ...-- j fixed inductance (C) 10nH __layout structure square hollow core — interesting for magnetic permeability (A) -1 to one revolution (η) 6 average radius (a) 92.5 β m. __Radius ⑴ 125 β m --- core core radius 76.25 β m ---- height 2 // m width 8 # m. ..........__ Coil space 1.5 β m ...__ Device material Al ..... Estimation _ Speech 1 ^ Prime factor (at 2GHz) 20 36 200426559 Now refer to Figure 6 It shows that the MEMS variable capacitor diode and the inductor are arranged in parallel to form an adjustable LC energy storage device or reference for the oscillator. So far, no previous research has shown that in a single-capacity process, a single MEMS variable capacitor and inductor are connected together to achieve a high-Q energy storage device. This energy storage device is mainly an inductor and a capacitor in parallel with a parasitic loss element represented by a resistor r. This energy storage device shows high-Q performance compared to low-〇 performance. The connected energy storage device provides a response that surrounds the center around a resonance frequency called the energy storage device. When this oscillator is constructed, this form of performance is desirable because it seeks a stable frequency output. The circuit design layout of this first embodiment has two main components. The first is: the illustrated low-noise and low-power oscillator cores are as described in Figure 7a; the second is: the support circuit which implements the square wave digital clock output, as shown in Figure 8a. 15 The layout of the oscillator core design shown in Figure 9 has the following characteristics. First of all, this design layout is well known to provide a reduction of unstable noise in the residual noise of CMOS devices. It is the main source of phase noise due to its upward conversion around the frequency. This is achieved as shown by the nature of this double average structure. This structure is symmetrical up and down and left and right. This tail current source 20 is the main source of unstable noise. Therefore, this circuit is implemented as a series current source, which minimizes the noise injected from the common mode point by increasing the common mode rejection ratio. It has been shown in previous studies that the rejection of unstable noise can be reduced by using a common mode capacitor section. In addition, this tail current is sourced by the Pmos device via 37 200426559, which is known in typical CMOS technology to show considerably less unstable noise than the same nMOS device. Moreover, for example, the conductivity of such a complementary structure is twice that of a complete * nMOS or a full pMOS structure. This higher conductivity allows to start at lower power. Finally, this structure 5 is compatible with the previously described MEMS LC energy storage device. Some key features of this LC energy storage device that belong to this design layout are: the use of bypass capacitors 80 and MOS resistors 82, through which the input voltage can be adjusted and controlled. This bypass capacitor 80 blocks the DC adjustment voltage on the top plate 42 of a pair of parallel variable capacitor diodes 40. This MOS resistor 10-82 is a high-impedance device that allows an adjustment voltage to be applied to the variable-capacitance diode 40. Without this device, the inductor 64 would resonate with the bypass capacitor 80. Finally, the cross-connect device is biased at or near the weak inversion structure to maximize gain and minimize power consumption and noise contribution from the active device. The following is a summary of the characteristics of the combination of bureaus and departments used in this design: I5 • Double-balanced structure for symmetry, reduction of unstable hybrids, and low power initiation; • Series tail current for unstable noise rejection; Common mode capacitor 84 for unstable noise rejection; • pMOS tail current to minimize unstable noise rejection; 2 • Compatible with MEMS LC-energy storage devices; and • Weak inversion at or near The active device is used to minimize power and noise.

第7b圖說明雙平衡交叉連接負電阻CMOS MEMS LC 振盪器其具有本發明第二實施例之不穩定雜訊降低。此第 25 7b圖之設計提供負電阻-2/gm給先前說明之第二實施例之 38 200426559 儲能裝置電路,並且因此去除在儲能裝置中之損耗。此共 振器包括:一對可變電容二極體52、電感器72、MOS電阻 器88、以及共同模式電容器84,而非常像第7a圖之實施例 。此旁通電容器86將可變電容二極體調整電壓與電路之其 5 餘部份隔離。完成此設計以實現而在零度相位移之至少5之 迴路增盈’以便滿足具有足夠邊際之Barkhaussen啟始標準 。如同可以瞭解,此第7b圖之電路可以各種不同的參數建 立。 如同先刖讨論,此相位雜訊密度不僅可以藉由Q之增加 10而降低、而且可以藉由電路雜訊因數F中之減少而降低。此 對於在CMOS電子裝置中相位雜訊與不穩定之最重要之貢 獻是裝置不穩定雜訊。特別是來自偏壓電流源之低頻裝置 不穩定雜訊被調變,且在振盡器基本頻率周圍被向上轉換 。此經改善之技術減少來自此來源之不穩定雜訊之向上轉 換且有效地改善振盡器之雜訊因數。特別是考慮此設計 布局與偏壓點,以便降低此電路之雜訊因數。此所考慮之 因數包括下列所示: •對稱設計布局 20 選擇雙平衡結構以增加在輸出信號中之波形對稱,因 此減少前緣與後緣不相同之可能性 月^生其已顯示波形對稱可 :來自尾部電流源之不穩㈣訊向上轉換衰減。 •經穩定共同模式點設計布局 T共同模式點之穩定可以減少注入错能裝置之雜 此旁通電容器86跨尾部電流裝置連接,以便穩定此共 39 200426559 同模式點。 •最適偏壓 設定靜態電流以允許此儲能裝置在電流限制結構之邊 緣上維持電壓。在此結構中不同於電壓限制結構,可以減 5 少不穩定雜訊之向上轉換。 • PMOS偏壓 PMOS裝置典型地顯示不穩定雜訊密度,其較相同尺寸 之NMOS裝置少10dB。此可以歸因於在典型CMOS製程中 PMOS裝置之埋設式通路操作。 10 •弱反轉 先前研究顯示在弱反轉中不穩定雜訊減少,藉由將弱 反轉中之尾部電流源偏壓,此效應可以改善相位雜訊性能 表現。 第7c圖說明本發明之第三實施例。在此不須要第7a與 15 7b圖之實施例之阻障電容器,因為此用於MEMS可變電容 二極體(即,52,)之調整電壓是施加於共同節點,其藉由 MEMS可變電容二極體結構本身而與維持電路隔離。此振 盪器包括:電感器72’與共同模式電容器87’。如同由此 ’(pdme)符號所示:可變電容二極體52’、電感器72’、以及 20 電容器87’,與第7b圖中之可變電容二極體52、電感器72、 以及電容器87具有相同或類似之結構。 第8a圖之振盪器核心產生微分正弦信號,其跨此儲能 裝置而接取。 為了將此信號轉換成時脈或方波數位信號,而將此微 40 200426559 分信號轉換為單一終端信號,如同於第8a圖中所示者。然 後,以此信號時脈控制D-正反器,其將其互補之輸出連接 回D輸入。從此處可將時脈任意分割以達成任何輸出頻率。 這是與本發明有關之效盈,因為分割時脈可改善相位雜訊 5性能表現。為了明確說明其意義,以相當高的頻率設計此 高性能表現振盪器,且每次將其頻率分割,則改善其相位 雜訊表現。這是與此領域中最近驅勢正好相反,其中,在 非常低頻率產生南性能表現时脈’以及藉由將其頻率倍增 至操作頻率而使相位雜訊性能表現退化。關於在先前方法 10中頻率穩定有實質上系統之優點。相位與頻率藉由線性運 算子而相關,並且尤其頻率是由下式所示之相位之時間微 分·· ω = d 0 /dtFIG. 7b illustrates a double-balanced cross-connected negative resistance CMOS MEMS LC oscillator having unstable noise reduction in the second embodiment of the present invention. The design of Figure 25 7b provides a negative resistance of -2 / gm to the previously described second embodiment of the 2004 2004559 energy storage device circuit, and therefore removes losses in the energy storage device. The resonator includes a pair of variable capacitor diodes 52, an inductor 72, a MOS resistor 88, and a common mode capacitor 84, much like the embodiment of Figure 7a. This bypass capacitor 86 isolates the variable capacitor diode adjustment voltage from the rest of the circuit. This design is completed to achieve a circuit gain of at least 5 'with a phase shift of zero degrees' in order to meet the Barkhaussen start criteria with sufficient margin. As can be appreciated, the circuit of Figure 7b can be built with a variety of different parameters. As discussed earlier, this phase noise density can be reduced not only by an increase in Q of 10, but also by a decrease in circuit noise factor F. The most important contribution to phase noise and instability in CMOS electronic devices is device instability noise. In particular, the low-frequency device from the bias current source is unstable and modulated, and it is up-converted around the fundamental frequency of the oscillator. This improved technique reduces the up-conversion of unstable noise from this source and effectively improves the noise factor of the striker. Especially consider this design layout and bias point in order to reduce the noise factor of this circuit. The factors to be considered include the following: • Symmetrical design layout 20 Select a double-balanced structure to increase the waveform symmetry in the output signal, so reducing the possibility that the leading edge and the trailing edge are not the same : Unstable signal from the tail current source is up-converted and attenuated. • Stabilized common mode point design and layout The stability of the T common mode point can reduce the mismatch of the injection error energy device. The bypass capacitor 86 is connected across the tail current device to stabilize the total 39 200426559 same mode point. • Optimal Bias Set the quiescent current to allow this energy storage device to maintain voltage on the edges of the current limiting structure. Different from the voltage limiting structure in this structure, it can reduce the up conversion of unstable noise. • PMOS bias PMOS devices typically show unstable noise density, which is 10dB less than NMOS devices of the same size. This can be attributed to the buried via operation of PMOS devices in a typical CMOS process. 10 • Weak inversion Previous studies have shown that unstable noise is reduced in weak inversion. By biasing the tail current source in weak inversion, this effect can improve the performance of phase noise. Fig. 7c illustrates a third embodiment of the present invention. The barrier capacitor of the embodiment of Figs. 7a and 15b is not needed here because the adjustment voltage for the MEMS variable capacitor diode (ie, 52 ') is applied to a common node, which is variable by the MEMS The capacitor diode structure itself is isolated from the sustain circuit. The oscillator includes an inductor 72 'and a common mode capacitor 87'. As shown by the '(pdme) symbol: variable capacitor diode 52', inductor 72 ', and 20 capacitor 87', and variable capacitor diode 52, inductor 72, and The capacitors 87 have the same or similar structure. The oscillator core of Fig. 8a generates a differential sine signal, which is accessed across this energy storage device. In order to convert this signal into a clock or square wave digital signal, this micro 40 200426559 sub-signal is converted into a single terminal signal, as shown in Figure 8a. Then, the D-flip-flop is controlled by this signal clock, which connects its complementary output back to the D input. From here, the clock can be arbitrarily divided to achieve any output frequency. This is a benefit related to the present invention, since the division of the clock improves the performance of the phase noise 5. In order to clarify its significance, this high-performance performance oscillator is designed at a relatively high frequency, and each time its frequency is divided, its phase noise performance is improved. This is the exact opposite of the recent drive in this field, where the South Performance Clock is generated at a very low frequency and the phase noise performance is degraded by doubling its frequency to the operating frequency. Regarding the frequency stabilization in the previous method 10, there is a substantial system advantage. Phase and frequency are related by a linear operator, and in particular the frequency is the time differential of the phase shown by the following formula: ω = d 0 / dt

而ω為强共振頻率,(^為相位以及〖為時間。考慮獨立 15振盪器理想之電壓輸出v〇(t)為時間之函數。此信號可以數 學方式如下所示: v〇(t)= V〇 COS (cjt) 其中ω為基本强頻率,以及VG為額定電壓振幅。此 相同振盪器在雜訊源之影響下之輸出可以由下式說明: 20 v〇(t)= v〇c〇s 其中必⑴通常為零平均隨機過程。0(t)代表振盪器之相 位雜訊。如果此信號由整數N分割其頻率,則此信號成為: V〇(T)=: V〇 c〇S(wt/N + (/)(t)/N) 其中使用窄頻帶FM近似法’此相位雜訊功率減少N2 41 200426559 倍。相反地,如果將振盪器之輸出乘以整數N,則此輸出信 號由以下之式表示: V〇(T) = V〇 cos (Ν ω t + N 0 (t)) 以及此相位雜訊功率增加N2。明顯地本發明之方法在 5累積相位雜訊中提供實質上的減少,因此加強頻率之穩定 。最後’將正反器之Q輸出緩衝,且此時脈驅動任意負載。 在第8b圖中說明第二實施例之完全時脈參考電路。此時 脈振盈器提供微分輸出信號,其驅動具有增益1之單^一終端 至微分轉換放大器。然後,一系列正反器將信號分割成適當 10頻率。表6提供用於第8b圖電路之性能表現參數之總結。 表6用於低不穩定單體式CM0S-MEMS時脈參考之性能表 現參數之總結CM0S-MEMS時脈參考 設計參數 值 處理技術 TSMC0.18//m混合模式 電源線(Idd) 1.8V 功率耗散(Min/Max) 3.8mW/4.1mW 電壓輸出位準(高/低) 1.8V/0V -90%電壓上升/下降時間 69ps/48ps 工作週期(高/低) 44/56 週期跳動(1GHz) 8.5fs 密度(在 600kS^"Fif -130dBc/Hz 整範圍(2倍) 125MHz-lGhz 整範圍 0.15% 42 200426559 此第二實施例之微機電LC元件須要將標準MiM電容器 與電感器修正。此可變電容二極體52須要增加:機械支撐 網路58以及將|虫刻孔包括於頂板54中,以方便釋出此結構 。在此等裝置周圍製成鈍化切割。此製造技術允許無遮罩 5 後處理(P〇st-process),其如果須要藉由簡單之濕性化學蝕 刻將此結構完全釋中。然而,此結構幾乎完全由純化切割 釋出而作為標準CMOS製程之一部份。 此所發展之製造技術可以包括以下步驟,如同參考第 9a-9d圖所說明者。在各第9a-9d圖中是在幻象介電層91、92 10 、93以及94中說明。亦說明的是金屬層95、96以及97。例 如通孔98之通孔連接金屬層95、96以及97。亦顯示的為: 形成於基板90上MEMS裝置之懸掛部份1〇〇、與固定部份99 。亦在基板90上形成主動CMOS裝置102。And ω is the strong resonance frequency, (^ is the phase and [is the time. Consider the ideal voltage output of the independent 15 oscillator v0 (t) as a function of time. This signal can be mathematically shown as follows: V〇COS (cjt) where ω is the basic strong frequency and VG is the rated voltage amplitude. The output of this same oscillator under the influence of noise sources can be described by the following formula: 20 v〇 (t) = v〇c〇 s where ⑴ must be a zero-average random process. 0 (t) represents the phase noise of the oscillator. If this signal is divided by its integer N, this signal becomes: V〇 (T) =: V〇c〇S (wt / N + (/) (t) / N) where the narrowband FM approximation is used 'this phase noise power is reduced by N2 41 200426559 times. Conversely, if the output of the oscillator is multiplied by the integer N, this output The signal is represented by the following formula: V〇 (T) = V〇cos (N ω t + N 0 (t)) and this phase noise power is increased by N2. Obviously, the method of the present invention provides in 5 cumulative phase noise Substantially reduced, so the stability of the frequency is enhanced. Finally, the Q output of the flip-flop is buffered, and at this time the pulse drives any load. Figure 8b illustrates the complete clock reference circuit of the second embodiment. At this time, the pulse oscillator provides a differential output signal that drives a single-to-differential conversion amplifier with a gain of 1. Then, a series of flip-flops convert the signal Divided into appropriate 10 frequencies. Table 6 provides a summary of the performance parameters for the circuit of Figure 8b. Table 6 Summary of performance parameters for the low-stability monolithic CM0S-MEMS clock reference CM0S-MEMS clock reference Design parameter value processing technology TSMC0.18 // m mixed mode power line (Idd) 1.8V power dissipation (Min / Max) 3.8mW / 4.1mW voltage output level (high / low) 1.8V / 0V -90% voltage Rise / fall time 69ps / 48ps Duty cycle (high / low) 44/56 Cycle beat (1GHz) 8.5fs Density (at 600kS ^ " Fif -130dBc / Hz Full range (2 times) 125MHz-lGhz Full range 0.15% 42 200426559 The micro-electromechanical LC element of this second embodiment needs to be modified with standard MiM capacitors and inductors. This variable capacitor diode 52 needs to be added: a mechanical support network 58 and a worm hole in the top plate 54 to Convenient release of this structure. Made of passivation cutting. This manufacturing technology allows for a maskless 5 post-process which completely releases the structure by simple wet chemical etching if necessary. However, this structure is almost completely cut by purification Released as part of the standard CMOS process. This developed manufacturing technology may include the following steps, as explained with reference to Figures 9a-9d. In each of Figures 9a-9d, the phantom dielectric layers 91, 9210, 93, and 94 are illustrated. Also illustrated are the metal layers 95, 96, and 97. For example, the through holes of the through holes 98 connect the metal layers 95, 96, and 97. Also shown are: a suspension portion 100 and a fixing portion 99 of the MEMS device formed on the substrate 90. An active CMOS device 102 is also formed on the substrate 90.

首先,此MEMS可變電容二極體(第4a與4b圖中之40或 15 52)與MEMS電感器(第5a與5b圖中之64或72)在標準CMOS 製程中,是由:MiM層、或兩個平坦金屬接線層、以及連 接此等層之通孔而界定。而於第9a圖中完整地顯示用於具 有三個金屬連接層95、96以及97之製程。因此,不須要額 外遮罩以界定此結構。First, the MEMS variable capacitor diode (40 or 15 52 in Figures 4a and 4b) and the MEMS inductor (64 or 72 in Figures 5a and 5b) are in a standard CMOS process by the MiM layer , Or two flat metal wiring layers, and vias connecting these layers. In Fig. 9a, the process for three metal connection layers 95, 96 and 97 is shown in its entirety. Therefore, no additional mask is required to define this structure.

20 如同於第9b圖中所示,此MEMS裝置是由標準CMOS 接線墊切割而曝露。此第一與選擇式遮罩(其為選擇式:如 果如同先前說明使用高電阻SOI基板,或如果此基板為整體 式基板)是用於從背側蝕刻此矽基板(第4a與5a圖中之48或 68),以及是在各裝置周圍之BOX(第4a與5a圖中之50或70) 43 200426559 上停止。 在第9c圖中顯示被移除之基板。最後,如果此接線墊 切割未將此等裳置釋出,則可將可變電容二極體(第4a與4b 圖中之40或52) 與電感器(第5a與5b圖中之64或72)周圍之介電質材料 去除。此在第9d圖中說明之步驟,將可變電容二極體板(第 4a圖中之42與44或第4c圖中之54與56)釋出,且將電感器( 第5a與5b圖中之64或72)懸掛。20 As shown in Figure 9b, this MEMS device is exposed by cutting through a standard CMOS pad. The first and selective mask (which is selective: if a high-resistance SOI substrate is used as previously described, or if the substrate is a monolithic substrate) is used to etch the silicon substrate from the back side (Figures 4a and 5a) 48 or 68), and stop at the box (50 or 70 in Figures 4a and 5a) 43 200426559 around each device. The removed substrate is shown in Figure 9c. Finally, if this wiring pad is cut without releasing these clothes, the variable capacitor diode (40 or 52 in Figures 4a and 4b) and the inductor (64 or 64 in Figures 5a and 5b) 72) Removal of surrounding dielectric material. This step illustrated in Figure 9d releases the variable capacitor diode plate (42 and 44 in Figure 4a or 54 and 56 in Figure 4c) and the inductor (Figures 5a and 5b) 64 or 72) of the suspension.

以下總結在製造過程中所提到之主要觀念: •在標準整體或s〇ICM〇s製程中所界定之結構金屬; •以釋出蝕刻作為後處理;以及 •選擇性背面敍刻作為後處理。 在第9a-9d圖中顯示縮減之製造流程圖,其參考在表7 中所示之化學蝕刻。The following summarizes the main concepts mentioned in the manufacturing process: • Structural metals as defined in the standard monolithic or SOCICMOS process; • Post-treatment with release etching; and • Post-treatment with selective back engraving . A reduced manufacturing flow chart is shown in Figures 9a-9d, referring to the chemical etch shown in Table 7.

圖示步驟 第9a圖 第9b圖 層 製程 遮罩Illustrated steps Figure 9a Figure 9b Layer Process Mask

MiM或接線 介電質 沉積 蝕刻MiM or wiring Dielectric deposition Etching

詳細情形 標準CMOS 標準CMOSDetails Standard CMOS Standard CMOS

第9c圖 第9d圖 未圖示Figure 9c Figure 9d Not shown

Si-Ilandle 介電質 名虫刻 乾式I虫刻 H1Si-Ilandle Dielectric Insect Carved Dry I Insect Carved H1

SF6,C4F8,DRIE HF/H2S04,H202, H2o濕 強C02 44 200426559 宠全單體振湯器 此所產生之時脈產生電路提供時間基礎,其具有低的 相位雜訊且消耗低功率而可調整,以及提供數位時脈輸出 。其適用於多種應用、包括但不受限於:用於埋設式微控 5 制器與微處理器之時脈。 總之,本發明提供多個獨特效益,其包括但不受限於 下列者: •高度穩定單體式CM0S時脈產生電路,其不須要外部 元件而以高QMEMSLC儲能裝置實現; 0 ·藉由使用標準CMOS處理層與無遮罩釋出後處理,而 實現標準商業CMOS相容MEMSLC儲能裝置; •振盪器電路設計、經由不穩定雜訊向上轉換之減少 ,用於改良之頻率穩定; •從上至下(top-down)式之頻率產生,其提供與從下至 5 上式(bottom-up)之頻率產生可比較之穩定性; •用於時脈產生之成本大幅降低; •用於時脈產生之功率大幅降低; •減少接腳數目並且因此減少用於微控制器與微處理 益之封裝成本; 〗 ·由於日守脈產生是在晶片上而非在個別封裝中之離散 元件’而可大幅降低此埋設系統之整個尺寸; •由於單體式積體化而非電路板位準積體化,而導致 增加之可靠度;以及 •寬的調整範圍(連續與離散)。 45 2〇〇^26559 以本發明可以將時脈產生電路或時間基礎整合於晶片 上。在所有同步積體電路應用中須要此種信號。第1〇圖中 説明將本發明包括於積體電路之應用中。時脈產生器1〇4形 成作為積體電路之一部份,例如:微處理器、微控制器、 或其他同步裝置106。在基板上形成同步半導體裝置1〇6, 其包含多種電子子系統。提供用於半導體裝置1〇6之封裝 1〇S。換句話說,時脈產生電路可以成為完整積體電路之單 體式元件,以及可與在共同基板上其所支持之電子元件一 起製造。 雖然,以上已說明本發明之實施例,但其用意並非在 描述與說明本發明所有可能形式。而是,在說明書中所用 字之目的在於說明而非限制,城瞭解可作各種改變而不 會偏離本發明之精神與範圍。 15 例如,以上之討論主錢中於本發料體之觀點,但 熟習本發明人士可以容易瞭解本發明3 可以標準CMOS製程實現MEMS式裝置 發明為單體式。 之許多優點,例如: [之結構,而無須使本 【圖式簡單說明】 此外,本發明在特定應用中具有多種使用,例如 PDA、蜂巢電話、可攜式電腦、桌上型電腦等。 二極體之概要頂視 第1圖為習知技術微機電可變電容 圖;SF6, C4F8, DRIE HF / H2S04, H202, H2o wet strength C02 44 200426559 The clock generator circuit produced by this unit provides time basis, which has low phase noise and consumes low power and can be adjusted , And provide digital clock output. It is suitable for a variety of applications, including but not limited to: clocks for embedded microcontrollers and microprocessors. In summary, the present invention provides a number of unique benefits, including but not limited to the following: • Highly stable monolithic CMOS clock generation circuit, which does not require external components and is implemented with a high QMEMSLC energy storage device; 0. By Use standard CMOS processing layer and unmasked post-processing to achieve standard commercial CMOS-compatible MEMSLC energy storage devices; Top-down frequency generation, which provides stability comparable to bottom-to-5 frequency generation of bottom-up; • The cost for clock generation is greatly reduced; • The The power generated by the clock is greatly reduced; • The number of pins is reduced and therefore the packaging cost for microcontrollers and micro-processing benefits; ○ • Since the Risen pulses are discrete components on the chip rather than in individual packages 'And can greatly reduce the overall size of this embedded system; • Increased reliability due to single-piece integration rather than circuit board level integration; and • Wide adjustment range (continuous Discrete). 45 2〇〇 ^ 26559 According to the present invention, a clock generating circuit or a time base can be integrated on a chip. This signal is required in all synchronous integrated circuit applications. Figure 10 illustrates the application of the present invention to integrated circuits. The clock generator 104 is formed as part of an integrated circuit, such as a microprocessor, microcontroller, or other synchronization device 106. A synchronous semiconductor device 106 is formed on a substrate and includes various electronic subsystems. A package 10S for a semiconductor device 10 is provided. In other words, the clock generation circuit can be a single-piece component of a complete integrated circuit, and can be manufactured together with the electronic components it supports on a common substrate. Although the embodiments of the present invention have been described above, it is not intended to describe and illustrate all possible forms of the present invention. Rather, the words used in the description are intended to be illustrative, and not restrictive, and various changes may be made without departing from the spirit and scope of the invention. 15 For example, the above discussion discusses the point of view of the present invention, but those familiar with the present invention can easily understand the present invention. 3 The MEMS device can be implemented in a standard CMOS process. The invention is a single type. Many advantages, such as: [Structure without having to make this drawing simple] In addition, the present invention has a variety of uses in specific applications, such as PDA, cellular phone, portable computer, desktop computer and so on. Top view of the outline of the diode. Figure 1 is a conventional micro-electromechanical variable capacitor.

之侧視圖; 46 200426559 第3圖為習知技術另一可變電容二極體之側視概要圖; 第4a圖為根據本發明第1實施例所建構之可變電容二 極體之透視截面圖; 第4b圖為根據本發明第2實施例所建構之可變電容二 5 極體之概要透視圖; 第4c圖為習知技術第二實施例之沿著第4b圖中線4c-4c 線之部份側視截面圖; 第5a圖為根據本發明第1實施例所建構之可變電感器 之透視截面圖; 10 第5b圖為根據本發明第2實施例所建構之可變電感器 之透視截面圖; 第6圖為本發明儲能裝置之概要電路圖; 第7a圖為本發明第1實施例之振盪器核心之概要電路 圖; 15 第%圖為本發明第2實施例之振盪器核心之概要電路圖; 第7c圖為本發明第3實施例之振盪器核心之概要電路圖; 第8a圖為本發明第1實施例之振盪器結構之概要電路圖; 第8b圖為本發明第2實施例之單體sCM〇S-MEMS時 脈參考電路之概要電路圖; ?〇 第%_9〇1圖為透視概要圖、其集體地提供在用於本發明 之標準整體或SOICMOS製程中之簡化製造流程圖;以及 第10圖為本發明之在單一基板上之同步半導體裝置之 枝要透視圖’此裝置包括多個電子子系統與用於此裝置之 封裝。 47 200426559 【囷式之主要元件代表符號表】 40…可變電容二極體 80" 電容器 42…平行板 82" 電阻器 43···蝕刻孔 84" 電容器 44…平行板 86" 旁通電容器 45…支撐臂 87" 電容器 46…基板 87,· •電容器 48…基板 88" 電阻器 50…埋設式氧化物 90" 基板 52…可變電容二極體 91" 幻象介電層 52’···可變電容二極體 92" 幻象介電層 54…頂板 93" 幻象介電層 56…底板 94" 幻象介電層 58…機械懸掛網路 95.· 金屬層 60…基板 96" 金屬層 62…固定件 97" 金屬層 64…電感器 98" 通孔 66…基板 99·· 固定部份 68…基板 100 ••懸掛部份 70…埋設式氧化物 102 ••主動CMOS裝置 72…電感器 104 ••時脈產生器 72’…電感器 106 ••半導體裝置 74…固定件 108 ••封裝 76…基板 48Side view; 46 200426559 Figure 3 is a schematic side view of another variable capacitor diode of conventional technology; Figure 4a is a perspective section of a variable capacitor diode constructed according to the first embodiment of the present invention Fig. 4b is a schematic perspective view of a variable capacitor two 5-pole body constructed according to the second embodiment of the present invention; Fig. 4c is a line 4c-4c of the second embodiment of the conventional technology along the line 4c in Fig. 4b Partial side sectional view of the line; Figure 5a is a perspective sectional view of a variable inductor constructed according to the first embodiment of the present invention; 10 Figure 5b is a variable constructed according to the second embodiment of the present invention A perspective sectional view of an inductor; FIG. 6 is a schematic circuit diagram of an energy storage device according to the present invention; FIG. 7a is a schematic circuit diagram of an oscillator core according to the first embodiment of the present invention; Figure 7c is a schematic circuit diagram of the oscillator core of the third embodiment of the present invention; Figure 8a is a schematic circuit diagram of the oscillator structure of the first embodiment of the present invention; Figure 8b is the present invention Overview of the single sCMOS-MEMS clock reference circuit of the second embodiment The circuit diagrams are shown in Figure 1. Figure 1 is a schematic perspective view, a simplified manufacturing flowchart collectively provided in a standard monolithic or SOICMOS process used in the present invention; and Figure 10 is a single substrate of the present invention. A perspective view of a synchronous semiconductor device 'This device includes multiple electronic subsystems and a package for the device. 47 200426559 [Representative symbols for the main components of the formula] 40… variable capacitor diode 80 " capacitor 42 ... parallel plate 82 " resistor 43 ··· etched hole 84 " capacitor 44 ... parallel plate 86 " bypass capacitor 45 ... support arm 87 " capacitor 46 ... substrate 87, · • capacitor 48 ... substrate 88 " resistor 50 ... embedded oxide 90 " substrate 52 ... variable capacitor diode 91 " phantom dielectric layer 52 '·· 可Variable capacitor diode 92 " phantom dielectric layer 54 ... top plate 93 " phantom dielectric layer 56 ... bottom plate 94 " phantom dielectric layer 58 ... mechanical suspension network 95. metal layer 60 ... substrate 96 " metal layer 62 ... fixed 97 " metal layer 64 ... inductor 98 " through-hole 66 ... substrate 99 ·· fixed part 68 ... substrate 100 •• suspension part 70… buried oxide 102 •• active CMOS device 72… inductor 104 •• Clock generator 72 '... Inductor 106 • Semiconductor device 74… Fixture 108 • Package 76… Substrate 48

Claims (1)

200426559 拾、申請專利範圍: 1. 一種MEMS式時脈產生電路用於產生高度穩定數位輸 出信號而無須外部元件,此電路包括: 基板; 5 製成於基板上振盪器,且包括高Q MEMS LC儲能 裝置用於產週期性信號;以及 亦製成於基板上之第一電路,用於將週期性信號轉 換成高頻數位輸出信號。 2. 如申請專利範圍第1項之MEMS式時脈產生電路,其中 10 此週期性信號為正弦波且具有原始頻率,以及其中 此輸出信號為方波信號其頻率為原始頻率之一半,並且 其中此電路更包括亦製成於基板上之第二電路,用於將 此方波數位輸出信號之頻率分割成至少一所想要之較 低應用頻率,因此減少此信號之相位雜訊而增強其穩定 15 性。 3. 如申請專利範圍第2項之MEMS式時脈產生電路,其中 此第一與第二電路與振盪器是以CMOS相容製程製 成於基板上。 4. 如申請專利範圍第1項之MEMS式時脈產生電路,其中 20 此振盪器與第一電路是以CMOS相容製程製成於基 板上。 5. 如申請專利範圍第4項之MEMS式時脈產生電路,其中 CMOS相容製程是整體式或SOI CMOS製程。 6. 如申請專利範圍第2項之MEMS式時脈產生電路,其中 49 200426559 此正弦週期信號是微分信號,並 及丹〒此弟一電路將 此正弦微分信號轉變成正弦單端信號。 7·如申請專利範圍第6項之MEMS式時脈產生電路,盆中 此第一電路將紅弦單端㈣轉換成其頻率為原 5 來頻率一半之方波數位輸出信號。 8.如申請專利範圍第2項之MEMS式時脈產生電路,其中 此第二電路包括至少一連接至第_電路之正反哭 ,用於將方波數位輸出信號之頻率分割成至少—所想^ 較低之應用頻率。 “ 10 9.如申請專利範圍第!項之厘簡式時脈產生電路,其中 此基板為整體式或SOI基板。 10.-種MEMS式振Μ電路用於產生低雜訊高頻率週期 性信號,此振盪器電路包括·· 基板; 15 aCM_容性製程製成於基板上之高Q MEMS LC儲能裝置;以及 以CMOS相容性製程製成於基板上之電路,且連接 至LC儲能裝置以產生週期性信號。 11·如申請專利範圍第10項之振盪器電路,其中 〇 此頻率響應於控制輸入而可變以調整振盪器電路。 12.如申請專利範圍第1〇項之振盪器電路,其中 此CMOS相容性製程為整體式或s〇ICM〇s製程。 13·如申請專利範圍第10項之振蘯器電路,其中 此振盈器電路為雙平衡振盪器電路以減少不穩定 50 雜訊之向上轉換。 认如申請專利範圍第_之振盈器電路,其中 此LC儲能裝置包括至少一微機電可變電容二極體 ,其具有響應於控制輸入而改變之電容。 b·如申請專利範圍第14項之振盪器電路,其中 此至少一可變電容二極體包括一頂板,且其中此電 " 路包括旁通電容器,以阻擋控制輸入從電路之其餘部份 t 傳送至頂板。 77 从如申請專利範圍第14項之振盡器電路,其中 § 此振盪電路是雙平衡交又連接振盪器電路,以減少 不穩定雜訊之向上轉換。 17· —種具有高品質因數2MemsslC儲能裝置,此裝置包 括: 基板; 至少一個以CMOS相容製程所製成於基板上之微機 電可變電容二極體;以及 連接至此至少一可變電容二極體之微機電電感器 ’且亦以CMOS相容性製程製成於基板上。 18·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此至少一可變電容二極體具有可變電容,以提供用 於此裝置之調整範圍。 19·如申請專利範圍第17項之mEmS式LC儲能裝置,其中 此電感器懸掛於基板上,且在此CMOS相容製程期 間或完成時釋出。 51 200426559 20·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此電感器為中空。 21·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此電感器以此與CMOS相容製程所界定之固定件而 5 懸掛於基板上。 22·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此至少一可變電容二極體具有固定底板與懸掛於 底板上之可移動頂板,且在此CMOS相容製程期間或完 成時釋出。 10 23·如申請專利範圍第22項之MEMS式LC儲能裝置,其中 此頂板根據控制輸入偏移以調整此至少一可變電 容二極體之電容。 24·如申請專利範圍第22項之MEMS式LC儲能裝置,其中 此頂板以此與CMOS相容製程所界定之機械懸掛網 15 路而懸掛於底板上。 25·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此至少一可變電容二極體與電容器是在此與CMOS 相容製程中以導電層界定。 26·如申請專利範圍第25項之MEMS式LC儲能裝置,其中 20 其中此導電層是金屬層。 27·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此CMOS相容製程是整體式或SOI CMOS製程。 28·如申請專利範圍第22項之MEMS式LC儲能裝置,其中 此頂板具有多個蝕刻孔,以方便在此CMOS相容製 52 200426559 程期間或完成時釋出此頂板。 29·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此基板為整體式基板或SOI基板。 3〇·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 5 此裝置具有共振頻率。 31·如申請專利範圍第17項之MEMS式LC儲能裝置,其中 此至少一可變電容二極體與電容器是由:MiM層或 兩水平金屬接線層界定。 32·種用於產生高度穩定數位輸出信號之MEMS式時脈 1〇 產生電路,此電路包括: 製成於第一基板上振蘯器,且包括高Q MEMS LC 儲能裝置用於產週期性信號;以及 亦製成於第二基板上之第一電路,用於將週期性信 號轉換成高頻數位輸出信號。 15 %·如申請專利範圍第32項之MEMS式時脈產生電路,其中 此第一與第二基板不同。 34.如申請專利範圍第32項之MEMS式時脈產生電路,其中 此第一與第二基板為相同,以致於時脈產生電路為 單體式電路。 2〇 35·—種電腦系統,包括: 資料匯流排; 雙向連接至此資料匯流排之中央處理單元; 雙向連接至此資料匯流排之暫時記憶體; 雙向連接至此資料匯流排之持久記憶體;以及 53 r200426559 MEMS式之時脈產生電路,用於產生高度穩定數 位輸出信號而適合使用於該電腦系統中,此時脈產生電 路包括: 製成於第一基板上振盪器,且包括高Q MEMS LC 5 儲能裝置用於產週期性信號;以及 亦製成於第二基板上之第一電路,用於將週期性信 號轉換成高頻數位輸出信號。 54200426559 Patent application scope: 1. A MEMS clock generator circuit is used to generate a highly stable digital output signal without external components. This circuit includes: a substrate; 5 an oscillator on a substrate and includes a high-Q MEMS LC The energy storage device is used to generate a periodic signal; and a first circuit also made on the substrate is used to convert the periodic signal into a high-frequency digital output signal. 2. For example, the MEMS-type clock generation circuit of the first patent application range, where 10 the periodic signal is a sine wave and has the original frequency, and wherein the output signal is a square wave signal whose frequency is one and a half of the original frequency, and where This circuit also includes a second circuit also made on the substrate, which is used to divide the frequency of this square wave digital output signal into at least one desired lower application frequency, thus reducing the phase noise of this signal and enhancing it. Stable 15 sex. 3. For example, the MEMS-type clock generating circuit of the second patent application range, wherein the first and second circuits and the oscillator are manufactured on the substrate by a CMOS compatible process. 4. For example, the MEMS-type clock generation circuit of the first patent application range, in which 20 the oscillator and the first circuit are made on the substrate by a CMOS compatible process. 5. For example, the MEMS-type clock generation circuit in the patent application No. 4 wherein the CMOS compatible process is a monolithic or SOI CMOS process. 6. For example, the MEMS-type clock generation circuit in the second item of the patent application, where 20042004559 the sinusoidal periodic signal is a differential signal, and the circuit of Dan Yi converts this sinusoidal differential signal into a sinusoidal single-ended signal. 7. If the MEMS-type clock generation circuit in the sixth item of the patent application, the first circuit in the basin converts a red-string single-ended chirp into a square-wave digital output signal whose frequency is half of the original frequency. 8. The MEMS-type clock generating circuit according to item 2 of the patent application scope, wherein the second circuit includes at least one positive and negative cry connected to the _ circuit for dividing the frequency of the square wave digital output signal into at least Think ^ lower application frequency. "10 9. As described in the scope of patent application, the simplified clock generator circuit, where the substrate is a monolithic or SOI substrate. 10. A MEMS-type oscillator circuit is used to generate low-noise high-frequency periodic signals This oscillator circuit includes a substrate; 15 aCM_ high-Q MEMS LC energy storage device made on the substrate; and a circuit made on the substrate in a CMOS-compatible process and connected to the LC storage. It can be installed to generate a periodic signal. 11. The oscillator circuit of item 10 in the scope of patent application, in which the frequency is variable in response to the control input to adjust the oscillator circuit. Oscillator circuit, where the CMOS compatible process is a monolithic or soICM0s process. 13. If the oscillator circuit of the patent application item 10, wherein the oscillator circuit is a double-balanced oscillator circuit Reduce the up-conversion of unstable 50 noise. See the patent application scope of the __ oscillator circuit, where the LC energy storage device includes at least one micro-electromechanical variable capacitor diode, which has a change in response to control input Electricity B. If the oscillator circuit according to item 14 of the patent application scope, wherein the at least one variable capacitor diode includes a top plate, and wherein the electric circuit includes a bypass capacitor to block the control input from the rest of the circuit The share t is transmitted to the top plate. 77 From the exhaustion circuit of the patent application scope item 14, among which § This oscillation circuit is a double-balanced crossover oscillator circuit to reduce the up-conversion of unstable noise. 17 · —kind 2MemsslC energy storage device with high quality factor, the device includes: a substrate; at least one micro-electromechanical variable capacitor diode made on the substrate by a CMOS compatible process; and connected to at least one variable capacitor diode MEMS inductors are also fabricated on the substrate using a CMOS-compatible process. 18. For example, a MEMS-type LC energy storage device with a scope of patent application of item 17, wherein the at least one variable capacitor diode has a variable capacitor. In order to provide the adjustment range for this device. 19 · If the patent application scope of the 17th mEmS type LC energy storage device, where the inductor is suspended on the substrate, and in this CMOS compatible system Released during or upon completion. 51 200426559 20 · If the MEMS-type LC energy storage device under the scope of the patent application No. 17 in which the inductor is hollow. 21 · If the MEMS-type LC energy storage device under the scope of the patent application No. 17, The inductor 5 is suspended on the substrate by the fixing member defined by the CMOS compatible manufacturing process. 22. The MEMS-type LC energy storage device according to item 17 of the patent application scope, wherein the at least one variable capacitor diode It has a fixed bottom plate and a movable top plate suspended from the bottom plate, and is released during or upon completion of this CMOS compatible process. 10 23 · The MEMS-type LC energy storage device according to item 22 of the patent application scope, wherein the top plate is shifted according to the control input to adjust the capacitance of the at least one variable capacitance diode. 24. For example, the MEMS-type LC energy storage device under the scope of application for patent No. 22, wherein the top plate is suspended on the bottom plate by a mechanical suspension network defined by a CMOS-compatible manufacturing process. 25. The MEMS-type LC energy storage device according to item 17 of the application, wherein the at least one variable capacitance diode and the capacitor are defined by a conductive layer in the CMOS-compatible process. 26. The MEMS-type LC energy storage device according to item 25 of the application, wherein 20 of which the conductive layer is a metal layer. 27. The MEMS-type LC energy storage device according to item 17 of the patent application scope, wherein the CMOS compatible process is a monolithic or SOI CMOS process. 28. For example, the MEMS-type LC energy storage device under the scope of application for patent No. 22, wherein the top plate has a plurality of etched holes to facilitate the release of the top plate during or upon completion of the CMOS-compatible manufacturing process. 29. The MEMS-type LC energy storage device according to item 17 of the application, wherein the substrate is a monolithic substrate or an SOI substrate. 30. The MEMS-type LC energy storage device according to item 17 of the patent application scope, of which 5 this device has a resonance frequency. 31. The MEMS-type LC energy storage device according to item 17 of the application, wherein the at least one variable capacitance diode and capacitor are defined by a MiM layer or two horizontal metal wiring layers. 32 · MEMS type clock 10 generating circuit for generating a highly stable digital output signal, the circuit includes: an oscillator made on a first substrate and including a high-Q MEMS LC energy storage device for generating periodicity Signals; and a first circuit also formed on the second substrate for converting a periodic signal into a high-frequency digital output signal. 15% · The MEMS-type clock generation circuit according to item 32 of the patent application, wherein the first and second substrates are different. 34. The MEMS-type clock generating circuit according to item 32 of the application, wherein the first and second substrates are the same, so that the clock generating circuit is a monolithic circuit. 2035 · —A computer system including: a data bus; a central processing unit bidirectionally connected to the data bus; a temporary memory bidirectionally connected to the data bus; a persistent memory bidirectionally connected to the data bus; and 53 r200426559 MEMS-type clock generation circuit is used to generate highly stable digital output signals suitable for use in this computer system. The clock generation circuit includes: an oscillator fabricated on the first substrate and includes a high-Q MEMS LC 5 The energy storage device is used to generate a periodic signal; and a first circuit also made on the second substrate is used to convert the periodic signal into a high-frequency digital output signal. 54
TW93104763A 2003-02-26 2004-02-25 Mems-based clock generation and oscillator circuits and lc-tank apparatus, and computer system using the same TWI319525B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/374,446 US6972635B2 (en) 2002-02-26 2003-02-26 MEMS-based, computer systems, clock generation and oscillator circuits and LC-tank apparatus for use therein

Publications (2)

Publication Number Publication Date
TW200426559A true TW200426559A (en) 2004-12-01
TWI319525B TWI319525B (en) 2010-01-11

Family

ID=45092457

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93104763A TWI319525B (en) 2003-02-26 2004-02-25 Mems-based clock generation and oscillator circuits and lc-tank apparatus, and computer system using the same

Country Status (1)

Country Link
TW (1) TWI319525B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575242B (en) * 2012-03-26 2017-03-21 瑞薩電子股份有限公司 Semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575242B (en) * 2012-03-26 2017-03-21 瑞薩電子股份有限公司 Semiconductor integrated circuit

Also Published As

Publication number Publication date
TWI319525B (en) 2010-01-11

Similar Documents

Publication Publication Date Title
EP1479161B1 (en) Mems-based, computer systems, clock generation and oscillator circuits and lc-tank apparatus for use therein
CN107039259B (en) Method for taking piezoelectric material as gate dielectric of high-frequency RBT of IC device
Dec et al. Microwave MEMS-based voltage-controlled oscillators
US7847650B2 (en) Low phase-noise oscillator
Dec et al. A 1.9-GHz CMOS VCO with micromachined electromechanically tunable capacitors
Park et al. Fully integrated low phase-noise VCOs with on-chip MEMS inductors
EP1538747A1 (en) Micromechanical electrostatic resonator
Chiu et al. A Wide Tuning Range 69 GHz Push-Push VCO Using 0.18$\mu {\rm m} $ CMOS Technology
Fong et al. A low-voltage 40-GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology
Jang et al. A 0.18$\mu $ m CMOS Quadrature VCO Using the Quadruple Push-Push Technique
Kourani et al. A ku-band oscillator utilizing overtone lithium niobate RF-MEMS resonator for 5G
Haddad et al. Multi-band inductor-less VCO for IoT applications
TW200426559A (en) MEMS-based, computer systems, clock generation and oscillator circuits and LC-tank apparatus for use therein
Park et al. A 2.6 GHz low phase-noise VCO monolithically integrated with high Q MEMS inductors
Cazzorla et al. MEMS‐based LC tank with extended tuning range for multiband applications
Dec et al. A 2.4 GHz CMOS LC VCO using micromachined variable capacitors for frequency tuning
Young et al. A micromachined RF low phase noise voltage‐controlled oscillator for wireless communications
Quevy et al. IF MEMS filters for mobile communication
Park et al. Monolithically integrable RF MEMS passives
Bhattacharya et al. Design of a low-power low-phase noise MEMS compatible S-band oscillator in 130 nm CMOS technology
Rohde et al. Miniaturized VCOs arm configurable synthesizers
Nabki et al. A compact and programmable high-frequency oscillator based on a MEMS resonator
Khalid et al. Design and analysis of a 10GHz LC-VCO using MEMS inductor
Zhang et al. Low-Phase-Noise and Low-Power Wideband VCO Optimization Using Multi-Finger Technique
El-Hemeily et al. A Low Jitter Monolithic MEMS Thin Film SAW Oscillator in $0.13\mu\mathrm {m} $ CMOS

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees