TW200425607A - Multi-phase buck converter with programmable phase selection - Google Patents

Multi-phase buck converter with programmable phase selection Download PDF

Info

Publication number
TW200425607A
TW200425607A TW093101719A TW93101719A TW200425607A TW 200425607 A TW200425607 A TW 200425607A TW 093101719 A TW093101719 A TW 093101719A TW 93101719 A TW93101719 A TW 93101719A TW 200425607 A TW200425607 A TW 200425607A
Authority
TW
Taiwan
Prior art keywords
output
phase
configuration
current
voltage
Prior art date
Application number
TW093101719A
Other languages
Chinese (zh)
Other versions
TWI242921B (en
Inventor
George Schuellein
Original Assignee
Int Rectifier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Rectifier Corp filed Critical Int Rectifier Corp
Publication of TW200425607A publication Critical patent/TW200425607A/en
Application granted granted Critical
Publication of TWI242921B publication Critical patent/TWI242921B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A buck converter is provided for providing an output voltage to a load, the output voltage being produced from an input voltage in accordance with a desired voltage. The buck converter includes an output capacitor, the output voltage being provided by the output capacitor; a plurality of output switch arrangements having respective output inductors coupled to the output capacitor, the switch arrangements being controllable to provide respective phase output currents to the output capacitor through the respective output inductors; a plurality of phase output arrangements respectively coupled to the output switch arrangements, the phase output arrangements being controllable to set the respective phase output currents supplied by the output switch arrangements, each of the phase output arrangements being operable to shutdown the respective output switch arrangement if a signal representing an output current of the buck converter falls below a respective programmable threshold signal; and a phase control arrangement configured to control the phase output arrangements to set the respective phase output currents supplied by the output switch arrangements so that the output voltage approximates the desired voltage.

Description

玖、發明說明: 【發明所屬之技術領域】 相關申請 本申請是依據2003年1月28曰建檔之美國申請專利序 5說60/443210案之申請,標題是具可規劃相位選擇之多相變 換器,其整個内容配合此處參考。 發明領域 本發明係關於降壓變換器,例如使用於低電壓/高電流 應用之多相降壓變換器。 10 【】 發明背景 各種應用可提供一習見的DC至DC降壓變換器,其接受 一直流輸入電壓並且產生一較低直流輸出電壓以驅動至少 一組電路組件。降壓變換器一般被使用於需要高數量負載 15 電流(例如,30安培或者更多)之低電壓應用中。一般,如第 19圖之展示,一組單一相位降壓變換器19〇〇包含一組高側 開關1905、一組在開關節點1915被連接到該高側開關之低 側開關1910、一組被連接到該開關節點1915之輸出電感器 1920以及一組被連接到輸出電感器1920之輸出電容器1925。 2〇 操作中,高側和低側開關1905、1910利用控制電路193〇 被控制而產生跨越負載1935所需的輸出電壓。為此目的, 高側開關1905啟始被導通,而低側開關1910保持斷電。這 導致一組跨越輸出電感器1920大約為(V1N-V0UT)之電壓降 ,其導致一組電流建立於輸出電感器内。在一後續的時間 5 200425607 ,高側開關1905被切斷,且低侧開關19ι〇被導通。因為在 電感器1920之内經由開關191〇被獲得的電流無法立即改變 ,該電流繼續經由輸出電感器1920而流動,因而充電輸出 電容器1925並且導致跨越輸出電容器1925之電壓(νουτ)上 5 升。 以此方式,高側和低侧開關1905、1910可以在適當的 時間適當地被切換,直至跨越輸出電容器i 925之電壓(V0UT) 荨於所需的輸出電壓,其一般是較低於輸入電壓。一旦達 到所需的輸出電壓,高側和低側開關1905、1910可以週期 10 地被控制,因而輸出電感器1920提供等於跨越輸出電容器 1925被連接之負載1935之電流需求之電流量。利用提供不 多於和不少於負載1935之電流需求量,跨越輸出電容器 1925之電壓(V〇ut)至少大約地保持固定於所需的輸出電壓。 同時也是習知地提供一組多相DC至DC降壓變換器 15 2000,其包含多數個交錯的輸出相位2005a、2005b、2005c .....2005n,如第20圖之展示。如第20圖之展示,各輸出 相位2005a、2005b、2005c..... 2005η被指定一組分別的切 換配置,其包含一組高側開關、一組低側開關以及一組輸出 電感器。操作中,控制電路2〇1〇以一時間延遲序列而週期性 20 地操作輸出相位2005a、2005b、2005c、…、2005η。 利用以一相位延遲序列而操作輸出相位2〇〇5a、2005b 、2005c、…、2005η,習見的多相降壓變換器2000分配跨 越多數個輸出相位2005a、2005b、2005c、…、2〇〇5η之電 流產量’因而分配熱產生並且減低輸出電容器1925之需要 6 200425607 ,以至於較小之輸出電容器125可以被採用。 但是,因為習見的多相降壓變換器在控制電路2〇1〇和 輸出相位2005a、2005b、2005c、…、2005η之間需要固定 數目之點對點連接,習見的多相降壓變換器不提供具有能 5 夠容易擴張能力之強健結構以包含任何所需的相位數量。 更進一步地,習見的多相降壓變換器無法反應於降低 所需的輸出電壓之要求或者減少負載1935電流之需求而最 佳地控制輸出電壓。由於無法最佳地控制輸出電壓,習見 的多相降壓變換器可能產生不需要的電壓突波,其可能損 10 害被連接到降壓變換器輸出之電路。 t發明内容;1 發明概要 •,以及一組相位控制配置通訊 本發明之一目的是提供一種多相降壓變換器,其克服 上述先前技術降壓變換器之缺點。為達成這目的,本發明 15提供一種多相降壓變換器,以供產生一組輸出電壓至負載 ,該輸出電壓依據所需的電壓從輸入電壓中被產生,該變 換器包含一組輸出電容器,該輸出電壓被該輸出電容器所 提供;多數個輸出開關配置,其具有被耦合至輸出電容器 之分別的輸出電感器,該等開關配置是可控制以提供經由 20分別的輸出電感器而至輸出電容器的分別相位輸出電流; 夕數個相位輸出配置分別地被耦合至該等輸出開關配置, 该等相位輸出配置是可控制以設定利用該等輸出開關配置 而分別被供應的相位輸出電流,一組相位控制匯流排通訊 地被1¾合至各相位輸出配置 7 2〇〇4256〇7 地被耦合至相位控制匯流排,該相位控制配置被組態以控 制相位輸出配置而設定利用輸出開關配置分別被供應的相 位輸出電流,因而輸出電壓接近於或者被調整至所需的電 壓,其中相位控制配置和相位輸出配置被提供為分別的積 5 體電路,並且相位控制配置被組態以經由相位控制匯流排 而控制相位輸出配置。 利用分離相位控制配置和相位輸出配置之功能,依據 本發明之多相降壓變換器範例不包含未被使用或者多餘的 矽,因為降壓變換器可以僅包含特定應用所需的那些相位 10 輸出配置數目。因此,如果設計工程師需要,例如,一組 特定應用的三相降壓變換器,工程師可以設計多相降壓變 換器以僅包含三組相位輸出配置,其各被指定至三組相位 輸出之分別的一組。更進一步地,相位控制匯流排(例如, 一組5線類比匯流排)允許本發明之多相降壓變換器與可能 15無限定數目之相位輸出配置通訊,而不需要在相位控制配 置和各相位輸出配置之間的點對點電氣連接。以此方式, 多相降壓變換器允許有效且容易地調整尺度之相位結構。 依據本發明之另一貫施範例,多相降壓變換器具有一 組相位誤差檢測配置,如果一相位輪出配置不能夠提供一 組相位輸出電流以匹配相位輸出配置之平均電感器電流, 其被組態以產生-組相位誤差信號。以此方式,相位控制 配置被提供-組信號,以供檢測一有缺陷之相位並且,如 果適田的居彳以不引動該有缺陷之相位及/或引動一後援 相位輸出配置。 8 200425607 依據本發明另一實施範例,各輸出相位配置反應於較 低所需的輸出之要求(vDES)或者減少負載電流之需求,其操 作以切斷高側和低側開關。以此方式,電感器之扭轉率被 增加’其提高本發明多相降壓變換器之反應時間並且防止 5不利的負電流流經輸出電感器及可能損害電源供應。 依據本發明另一實施範例,各輸出相位配置包含一組 電流感知放大器、一組在電流感知放大器正輸入和一輸出 電感器節點之間電氣地被連接的電阻器Ecs、以及一組在電 流感知放大器正輸入和負輸入之間電氣地被連接的電容器 10 Ccs,該輸出電感器同時也被連接到電流感知放大器之負輸 入0 利用跨越輸出電感器節點而連接電阻器Rcs和電容器 Ccs,流經輸出電感器220之電流可以利用選擇電阻器Rcs* 電容器Ccs,以至於電阻器Rcs和電容器Ccs之時間常數等於 15 輸出電感器220和其DC電阻(亦即,感知係數L/電感器DCR ,其中DCR是電感器DC電阻)之時間常數,及跨越電容器之 電壓而被感知。以此方式,本發明這實施例允許各輸出相 位配置以無損方式(亦即,不干擾被提供至負載之電流)而感 知被提供至負載之電流。 2〇 依據本發明另一實施範例,相位控制配置包含下降電 路,其被組態以成比例於負載電流需求而減低輸出電壓。 以此方式,這實施範例允許有效率真簡單的方法以適應地 修改經由適應式電壓定位之輸出電麈。 依據本發明另一實施範例,各多相降壓變換器之相位輸出 9 200425607 配置是可規劃以作為多相降壓變換器輸出電流的函數而關 閉其分別被指定之輸出開關配置的高側和低側開關。於這 方面,用於特定設計之被選擇的相位輸出配置數目可取決 於符合熱需求及/或使最大輸出電流時之輸入和輪出電容 5器數目最小化之需求。但是,當降壓變換器輸出電流是較 小於最大輸出電流之時,如果較少的相位輸出配置被採用 ,則效率將增加。當輸出電流減少則切斷相位輸出配置, 因消除閘充電損失、MOSFET切換損失、以及高側和低側 開關及各相位輸出配置之輸出電感器中循環的電流,而增 10 加效率。各獨特的電路設計可在特定的輸出電流位準依序 地切斷相位輸出配置以達成在整個輸出電流範圍上之最大 效率。 圖式簡單說明 第1圖是依據本發明降壓變換器範例之方塊圖。 15 第2圖是依據本發明輸出開關配置之方塊圖。 第3圖是展示第1圖之詳細相位控制配置的方塊圖。 第4圖是展示反應於負載級減少依據本發明之降壓變 換器範例的反應圖形。 第5圖是展示第3圖之詳細相位時序配置的方塊圖。 2〇 第6圖是展示第3圖之詳細PWM配置的方塊圖。 第7圖是展示第6圖PWM配置範例之變化形式的方塊 圖,其被組態以成比例於負載電流之增加而減低輸出電壓。 第8圖是展示依據本發明另一相位控制配置範例之方 塊圖。 10 200425607 第9a圖是展示供用於輸出開關配置之週期性充電週期 持續範例的圖形。 第9b圖是展示反應於較低的所需輸出要求之輸出開關 配置控制的圖形。 5 第10圖是依據本發明相位輸出配置範例之方塊圖。 第11圖是依據本發明開始時間配置範例之方塊圖。 第12a圖是展示依據本發明相位時序信號範例之圖形。 第12b圖是展示被偏移設定點電壓值之第12a圖相位時 序信號的圖形。 10 第12c圖是展示相位時間比較器之輸出的圖形。 第12d圖是展示對於一組三角形相位時序信號之八組 相位的相位時序圖形。 第12e圖是展示依據本發明另一開始時間配置範例之 方塊圖。 15 第13圖是展示依據本發明充電持續配置範例之方塊圖。 第14圖是展示依據本發明斜波產生器範例之方塊圖。 第15圖是展示依據本發明電流感知配置範例之方塊圖。 第16圖是展示依據本發明被製作為分離積體電路的相 位輸出配置範例之方塊圖。 20 第17圖是展示依據本發明在一組相位控制配置和多數 個相位輸出配置之間的連接之方塊圖。 第18圖是展示依據本發明關於超溫檢測電路範例之方 塊圖。 第19圖是展示依據先前技術之單一相位降壓變換器的 11 200425607 方塊圖。 第20圖疋展示依據先前技術之多相降壓變換器的方塊 圖。 第21圖是依據本發明採用相位關閉電路之相位輸出配 5 置的方塊圖。 第22圖是依據本發明之變換器輸出電流檢測配置範例 的方塊圖。 【實施冷式】 較佳實施例之詳細說明 10 接著參看第1圖,可看見依據本發明之多相降壓變換器 100之第一範例。降壓變換器100包含電氣地且通訊地被耦 合至輸入匯流排130之相位控制配置105 ,電氣地且通訊地 經由相位控制匯流排115(例如,5金屬線類比匯流排)被耦合 至相位控制配置105之相位輸出配置ll〇a、ii〇b、ii〇e、… 15 、,電氣地且通訊地被耦合至輸入電壓(vIN)之輸出開 關配置120a、120b、120c、…、120η以及相位輸出配置ii〇a 、110b、110c.....ll〇n,一組輸出電容器125電氣地被搞 合至輸出開關配置120a、120b、120c.....120η而供產生 輸出電壓(V〇ut) ’以及一組負載135電氣地被連接在輸出電 2〇 壓(V0UT)和接地之間。 第1圖範例之多相降壓變換器1〇〇可以被使用,例如, 於需要小尺寸、設計彈性、各種低電壓輸出、高電流以及 迅速暫態反應之應用中,並且降壓變換器1〇〇可以包含一組 或多組的輸出相位,例如,三組相位,其各可利用相位輸 12 200425607 出配置110a、1 l〇b、1 l〇c、…、n〇n的分別一組被製作。 控制配置105包含電路,其被組態以利用經由相位控制 匯流排115傳達相位控制信號而控制相位輸出配置110a、 110b、110e.....ll〇n,因此相位輸出配置 ll〇a、ii〇b、110c 5 .....110n依據一組所需的輸出電壓變量(VDES)而產生輸出 電壓(v0UT),其可以經由輸入匯流排130而被提供至控制配 置 105。 各相位輸出配置11 〇a、11 〇b、11 〇c、…、11 On包含電 路’其被組態以反應於利用控制配置105經由相位控制匯流 10 排115被通訊之相位控制信號而控制分別的輸出開關配置 120a、120b、120c.....120η。為此目的,相位輸出配置 110a、110b、110c.....ll〇n操作以控制分別的開關配置 120a、120b、120c、…、120η而依據所需的輸出電壓變量(VDES) 以產生輸出電壓(V0UT)。 15 接著參看第2圖,可看見依據本發明輸出開關配置120η 之範例。輸出開關配置120η包含經由電感器節點215而電氣 地彼此連接之一組高側開關205和一組低側開關210(例如 ,電晶體開關、FET開關、FET整流器,等等)。輸入電壓(VIN) 電氣地被連接到高側開關205並且接地電壓電氣地被連接 20到低側開關21〇。輸出電壓(ν〇υτ)在輸出電感器220之輸出節 點側220a被產生,其同時也電氣地被連接到開關節點215。 操作時,開關配置120η之高側和低側開關205、210被 相位輸出配置110η所控制以在輸出電感器22〇之輸出節點 側220a產生所需的輸出電壓(νουτ)。為此目的,高側開關205 13 200425607 啟始地被導通,而低側開關210保持斷電。這導致一組跨越 輸出電感裔220之大約為(Vin-V〇ut)之電壓降’其導致一組 電流内建於輸出電感器。在一依序的時間,高側開關2〇5被 斷電,並且低側開關210被導通。因為在電感器220内之電 5流無法立即改變,電流繼續經由輸出電感器220流動,因而 充電輸出電容器125並且導致跨越輸出電容器125之電壓降 上升。 以此方式,高側和低側開關205、210可以在適當的時 間適當地被控制而被切換,直至跨越輸出電容器125之電壓 10降等於所需的輸出電壓(VDES)為止。一旦所需的輸出電壓 (VDES)被達到,高側和低側開關2〇5、2丨〇可週期性地被控制 ’因而輸出電感器220提供等於跨越輸出電容器125而被連 接之負載135的電流需求之電流量。利用提供不多於且不少 於負載135之電流需求,跨越輸出電容器125的電壓降(v⑼丁) 15大約地保持固定於所需的輸出電壓(VDES)。 依據本發明上述實施範例,輸出相位配置11〇n在一週 期性的充電週期持續時控制高側和低側開關2〇5、21〇,該 週期持續可以具特徵於被指定的相位延遲、週期性開始時 間以及充電持續。接著參看第知圖,可看見輸出開關配置 20 120η之一週期性充電週期持續9〇〇範例,其包含減的相位 L遲905週期性開始時間91()以及充電持續犯。如第%圖 之展示w側開關2〇5在週期性開始時間91〇被導通,在充 電持續915時保持導通,並且在充電持續犯結束時被斷電 在充電持續915屆期之後,高側開關對於其餘的週期性充 14 電1^持續9GG保持斷電。在正常操作時,低側開關训被 工制,以至於當咼側開關被切斷時低側開關210被導通,並 且反之亦然。以此方式,輸出電感器22〇在充電持續915時 建立電流並且在充電持續915之後於其餘的週期性的充電 5週期持續9〇〇時釋放至少部份之電流。 利用上述方式控制高側和低側開關2〇5、21〇,於輸出 電感器220中被建立之電流量可以利用改變相對於週期性 充電週期持續900的充電持續915而被控制。例如,如果充 電持續915等於週期性充電週期持續9〇〇之半(亦即,5〇%責 1〇務週期),則開關配置120η將以降壓變換器1〇〇最大電流的 一半提供給輸出電容器125。或者,例如,如果充電持續915 等於該週期性的充電週期持續9〇〇(亦即,1〇〇%責務週期) ’則開關配置12 0 η將提供降壓變換器1 〇 〇之最大電流給予輸 出電容器125。 15 在正常操作時,低側開關210與高側開關205以二分法 被控制。亦卽,當高側開關205被導通時,低側開關210被 斷電,並且反之亦然。以此方式,高側和低側開關205、210 之其中一組在所有的時間被導通。但是,反應於某些操作 情況,亦可以切斷兩組開關205、210。 20 因此,依據本發明另一實施範例,反應於兩組唯一操 作情況之一的發生,輸出相位配置11 On操作以切斷高側和 低側開關205、210兩者,該兩組操作情況是:較低所需輸 出(VDES)之要求或者負載135之電流需求減少(亦即,負載級 減少)。 15 200425607 較低的所需輸出之要求(vDES)可能導致負電感器電流 經由輸出電感器220而流動。負電流利用從輸出電容器125 傳送能量至輸入電壓(Vrn)而轉換降壓變換器1〇〇成為增壓 變換器。這能量可能損害電源供應(未展示出)及/或其他構 5 件,可導致電壓控制迴路成為不穩定,並且可導致能量的 浪費。 如第9b圖之展示,反應於降低所需的輸出電壓(VDES) 之要求,為防止負電感器電流產生,高側和低側開關205、 210兩者被切斷。以此方式,於輸出電感器220中被建立之 10 電流經由負載135被放電,而不是經由電源供應。 當經由負載135放電電流時,跨越輸出電容器125之輸 出電壓(V0UT)下降。一旦輸出電壓(V0UT)下降至大約為較低 之所需輸出電壓(VDES)時,負電流不再是重要的,並且高側 和低側開關205、210可以正常形式被操作。 15 當負載135之電流需求下降(亦即,負載級減少)時,高 側和低側開關205、210應該被控制以減低利用輸出電感器 220供應至輸出電容器125之電流。但是,習見的降壓變換 器,反應於負載級減少而減低輸出電感器220中之電流(亦 即,一組電流暫態)所需的最小時間依下面方程式被處理: 20 ⑴ Tslew = [L X (Imax - Imin)]/V〇ut ^ 其中高側和低側開關205、210被製作為FET整流器。 因此,當負載電流需求減少時,習見降壓變換器輸出 25電感器220的電流暫態(亦即,輸出電感器在負載級減少時 16 200425607 間被内建的電流)將導致輸出電容器125電壓上升。雖然負 載135之電流需求最後將排出輸出電容器125之超出電荷, 輸出電壓(V0UT)上之短時間持續電壓突波可能損害被連接 到降壓變換器1〇〇之敏感電路。 10 但是’依據本發明實施範例,輸出相位配置ll〇n反鹿 於負載135下降之電流需求減少(亦即,一負載級減少),其 操作以切斷高側和低側開關205、210兩者(亦即個體斷電) 。以此方式’輸出電感器220之扭轉率(亦即,電流可以被 減低之速率)可以顯著地被增加,其中高側和低側開關 、210被製作作為FET整流器。利用切斷高側和低側開關2〇5 、210,開關節點電壓被迫減少直至FET整流器之個體二極 體導通為止。這使跨越電感器之電壓從v〇UT增加至ν〇υτ + 跨越個體^一極體之電壓(亦即,VbodY DIODE)。因此,輸出電 感器220之扭轉率依據下面方程式被減低: 15 ⑺说明 Description of the invention: [Technical field to which the invention belongs] Related applications This application is based on the application of US Patent Application No. 5/60/443210 filed on January 28, 2003, and the title is Multi-Phase with Programmable Phase Selection Converter, the entire contents of which are incorporated herein by reference. FIELD OF THE INVENTION The present invention relates to buck converters, such as multi-phase buck converters used in low voltage / high current applications. [Background of the Invention] Various applications may provide a conventional DC-to-DC buck converter that accepts a DC input voltage and generates a lower DC output voltage to drive at least one set of circuit components. Buck converters are typically used in low voltage applications that require a high amount of load 15 currents (for example, 30 amps or more). Generally, as shown in FIG. 19, a set of single-phase step-down converters 1900 includes a set of high-side switches 1905, a set of low-side switches 1910 connected to the high-side switch at a switching node 1915, and a set of An output inductor 1920 connected to the switching node 1915 and a set of output capacitors 1925 connected to the output inductor 1920. In operation, the high-side and low-side switches 1905, 1910 are controlled by a control circuit 1930 to generate the output voltage required to cross the load 1935. For this purpose, the high-side switch 1905 is initially turned on, while the low-side switch 1910 remains powered off. This results in a set of voltage drops of approximately (V1N-VOUT) across the output inductor 1920, which causes a set of currents to build up in the output inductor. At a subsequent time 5 200425607, the high-side switch 1905 is turned off, and the low-side switch 19m is turned on. Because the current obtained through the switch 1910 within the inductor 1920 cannot be changed immediately, the current continues to flow through the output inductor 1920, thus charging the output capacitor 1925 and causing 5 liters across the voltage (νουτ) across the output capacitor 1925. In this way, the high-side and low-side switches 1905, 1910 can be appropriately switched at the appropriate time until the voltage (V0UT) across the output capacitor i 925 is at the desired output voltage, which is generally lower than the input voltage . Once the required output voltage is reached, the high-side and low-side switches 1905, 1910 can be controlled on a periodic basis, so the output inductor 1920 provides an amount of current equal to the current demand of the load 1935 connected across the output capacitor 1925. By providing a current demand of no more and no less than the load 1935, the voltage (Vout) across the output capacitor 1925 remains at least approximately fixed at the desired output voltage. It is also conventional to provide a set of multi-phase DC-to-DC buck converters 15 2000, which include a plurality of interleaved output phases 2005a, 2005b, 2005c ..... 2005n, as shown in FIG. 20. As shown in Figure 20, each output phase 2005a, 2005b, 2005c ..... 2005η is assigned a separate switching configuration, which includes a set of high-side switches, a set of low-side switches, and a set of output inductors. In operation, the control circuit 2010 periodically operates the output phases 2005a, 2005b, 2005c, ..., 2005n in a time delay sequence. By operating the output phases 2005a, 2005b, 2005c, ..., 2005η with a phase delay sequence, the conventional multi-phase buck converter 2000 allocates a plurality of output phases 2005a, 2005b, 2005c, ..., 2005η The current output 'thus distributes heat generation and reduces the need for the output capacitor 1925 200425607, so that a smaller output capacitor 125 can be used. However, because the conventional multi-phase buck converter requires a fixed number of point-to-point connections between the control circuit 2010 and the output phases 2005a, 2005b, 2005c, ..., 2005η, the conventional multi-phase buck converter does not provide A robust structure that can easily expand capabilities to include any number of phases required. Furthermore, conventional multi-phase buck converters cannot respond to the requirement to reduce the required output voltage or the requirement to reduce the load's 1935 current to optimally control the output voltage. Because the output voltage cannot be optimally controlled, the conventional multi-phase buck converter may generate unwanted voltage surges, which may damage the circuit connected to the output of the buck converter. Summary of the invention; 1 Summary of the invention • and a set of phase control configuration communication One object of the present invention is to provide a multi-phase buck converter which overcomes the disadvantages of the aforementioned prior art buck converter. To achieve this, the present invention 15 provides a multi-phase buck converter for generating a set of output voltages to a load. The output voltage is generated from an input voltage according to a required voltage. The converter includes a set of output capacitors. The output voltage is provided by the output capacitor; most output switch configurations have separate output inductors coupled to the output capacitors, and these switch configurations are controllable to provide output to the output via 20 separate output inductors. The respective phase output currents of the capacitors; a plurality of phase output configurations are respectively coupled to the output switch configurations, and the phase output configurations are controllable to set the phase output currents respectively supplied using the output switch configurations, one The group phase control bus communication ground is coupled to each phase output configuration 7 2204256, and is coupled to the phase control bus. The phase control configuration is configured to control the phase output configuration and set to use the output switch configuration respectively. The supplied phase output current, so the output voltage is close to or adjusted to the required Pressure, wherein the phase control arrangement and the phase output configuration is provided as a separate integrated circuits 5, and the phase control arrangement is configured to control via the phase control bus and the phase output configuration. Utilizing the functions of separate phase control configuration and phase output configuration, the multi-phase buck converter example according to the present invention does not contain unused or redundant silicon because the buck converter can only contain those phase 10 outputs required for a specific application Number of configurations. Therefore, if a design engineer requires, for example, a set of three-phase step-down converters for a specific application, the engineer can design a multi-phase step-down converter to include only three sets of phase output configurations, each of which is assigned to a separate set of three phase outputs A group that. Furthermore, the phase control bus (e.g., a set of 5-wire analog buses) allows the multi-phase buck converter of the present invention to communicate with a possible unlimited number of phase output configurations without the need for Point-to-point electrical connection between phase output configurations. In this way, the multi-phase buck converter allows effective and easy adjustment of the scaled phase structure. According to another implementation example of the present invention, a multi-phase buck converter has a set of phase error detection configurations. If a phase-out configuration cannot provide a set of phase output currents to match the average inductor current of the phase output configuration, it is State to generate a set of phase error signals. In this way, the phase control configuration is provided with a set of signals for detecting a defective phase and, if Kumida of Shida does not activate the defective phase and / or activate a backup phase output configuration. 8 200425607 According to another example of the present invention, each output phase configuration responds to a lower required output requirement (vDES) or a requirement to reduce load current, which operates to cut off the high-side and low-side switches. In this way, the twist rate of the inductor is increased 'which increases the response time of the multi-phase buck converter of the present invention and prevents 5 negative negative currents from flowing through the output inductor and may damage the power supply. According to another embodiment of the present invention, each output phase configuration includes a set of current sense amplifiers, a set of resistors Ecs electrically connected between the positive input of the current sense amplifier and an output inductor node, and a set of current sense amplifiers. A capacitor 10 Ccs which is electrically connected between the positive and negative inputs of the amplifier. The output inductor is also connected to the negative input of the current sense amplifier. 0 The resistor Rcs and the capacitor Ccs are connected across the output inductor node and flow through The current of the output inductor 220 can use the selection resistor Rcs * capacitor Ccs, so that the time constant of the resistor Rcs and the capacitor Ccs is equal to 15 the output inductor 220 and its DC resistance (ie, the sensing coefficient L / inductor DCR, where DCR is the time constant of the inductor's DC resistance) and the voltage across the capacitor is sensed. In this way, this embodiment of the invention allows each output phase configuration to sense the current provided to the load in a non-destructive manner (i.e., without disturbing the current provided to the load). 20 According to another example of the present invention, the phase control configuration includes a drop circuit configured to reduce the output voltage in proportion to the load current demand. In this way, this embodiment example allows an efficient and really simple way to adaptively modify the output voltage via adaptive voltage localization. According to another embodiment of the present invention, the phase output of each multi-phase buck converter 9 200425607 configuration can be programmed to turn off the high-side and Low-side switch. In this regard, the number of phase output configurations selected for a particular design may depend on the need to meet thermal requirements and / or minimize the number of input and wheel-out capacitors at maximum output current. However, when the buck converter output current is less than the maximum output current, if fewer phase output configurations are used, the efficiency will increase. When the output current decreases, the phase output configuration is cut off. The efficiency is increased by 10 to eliminate gate charging losses, MOSFET switching losses, and high- and low-side switches and the current circulating in the output inductors of each phase output configuration. Each unique circuit design can sequentially cut off the phase output configuration at a specific output current level to achieve maximum efficiency over the entire output current range. Brief Description of the Drawings Figure 1 is a block diagram of an example of a buck converter according to the present invention. 15 Figure 2 is a block diagram of an output switch configuration according to the present invention. Figure 3 is a block diagram showing the detailed phase control configuration of Figure 1. Fig. 4 is a reaction diagram showing an example of a step-down converter according to the present invention in response to a reduction in the load stage. Figure 5 is a block diagram showing the detailed phase timing configuration of Figure 3. 20 Figure 6 is a block diagram showing the detailed PWM configuration of Figure 3. Fig. 7 is a block diagram showing a variation of the PWM configuration example of Fig. 6, which is configured to reduce the output voltage in proportion to the increase in load current. Fig. 8 is a block diagram showing another example of a phase control configuration according to the present invention. 10 200425607 Figure 9a is a graph showing a continuous charging cycle example for an output switch configuration. Figure 9b is a graph showing output switch configuration control in response to lower required output requirements. 5 FIG. 10 is a block diagram of a phase output configuration example according to the present invention. FIG. 11 is a block diagram of a start time configuration example according to the present invention. Fig. 12a is a graph showing an example of a phase timing signal according to the present invention. Fig. 12b is a graph showing the phase timing signal of Fig. 12a shifted by the setpoint voltage value. 10 Figure 12c is a graph showing the output of a phase time comparator. Figure 12d is a phase timing graph showing eight sets of phases for a set of triangular phase timing signals. Fig. 12e is a block diagram showing another example of start time configuration according to the present invention. 15 FIG. 13 is a block diagram showing an example of continuous charging configuration according to the present invention. Fig. 14 is a block diagram showing an example of a ramp wave generator according to the present invention. FIG. 15 is a block diagram showing an example of a current sensing configuration according to the present invention. Fig. 16 is a block diagram showing an example of a phase output configuration made as a discrete integrated circuit according to the present invention. 20 Figure 17 is a block diagram showing the connections between a set of phase control arrangements and a plurality of phase output arrangements according to the present invention. Fig. 18 is a block diagram showing an example of an over-temperature detection circuit according to the present invention. Figure 19 is a block diagram showing the 11 200425607 of a single phase buck converter according to the prior art. Figure 2020 shows a block diagram of a multi-phase buck converter according to the prior art. Figure 21 is a block diagram of a phase output configuration using a phase shutdown circuit according to the present invention. Fig. 22 is a block diagram of an example of a converter output current detection configuration according to the present invention. [Implementing the cold type] Detailed description of the preferred embodiment 10 Next, referring to FIG. 1, a first example of the multi-phase buck converter 100 according to the present invention can be seen. The step-down converter 100 includes a phase control configuration 105 electrically and communicatively coupled to the input bus 130, and electrically and communicatively coupled to the phase control via a phase control bus 115 (e.g., a 5 wire analog bus). The phase output configurations 110a, ii〇b, ii〇e, ... 15 of the configuration 105 are electrically and communicatively coupled to the input voltage (vIN) output switch configurations 120a, 120b, 120c, ..., 120η and phase Output configurations ii〇a, 110b, 110c ..... ll〇n, a set of output capacitors 125 are electrically coupled to the output switch configurations 120a, 120b, 120c ..... 120η for generating an output voltage (V 〇ut) 'and a set of loads 135 are electrically connected between the output voltage 20V (ground) and ground. The multiphase buck converter 100 shown in the example in Figure 1 can be used, for example, in applications that require small size, design flexibility, various low voltage outputs, high currents, and rapid transient response, and the buck converter 1 〇〇 can include one or more sets of output phases, for example, three sets of phases, each of which can use phase input 12 200425607 output configuration 110a, 1 l0b, 1 loc, ..., no Was made. The control configuration 105 includes a circuit that is configured to control the phase output configurations 110a, 110b, 110e ..... ll〇n by communicating a phase control signal via the phase control bus 115, and therefore the phase output configurations 110a, ii Ob, 110c 5 ..... 110n generate an output voltage (v0UT) according to a set of required output voltage variables (VDES), which can be provided to the control configuration 105 via the input bus 130. Each phase output configuration 11 〇a, 11 〇b, 11 〇c, ..., 11 On contains circuits' which are configured in response to the use of a control configuration 105 to control the phase control signals communicated through the phase control bus 10 rows 115 115 respectively The output switch configuration is 120a, 120b, 120c ..... 120η. For this purpose, the phase output configurations 110a, 110b, 110c, ..., 110n operate to control the respective switch configurations 120a, 120b, 120c, ..., 120η and generate the output according to the required output voltage variable (VDES) Voltage (V0UT). 15 Referring next to Figure 2, an example of an output switch configuration 120η according to the present invention can be seen. The output switch configuration 120n includes a set of high-side switches 205 and a set of low-side switches 210 (e.g., transistor switches, FET switches, FET rectifiers, etc.) electrically connected to each other via an inductor node 215. The input voltage (VIN) is electrically connected to the high-side switch 205 and the ground voltage is electrically connected 20 to the low-side switch 21o. An output voltage (νουτ) is generated on the output node side 220a of the output inductor 220, which is also electrically connected to the switching node 215 at the same time. In operation, the high-side and low-side switches 205, 210 of the switch configuration 120η are controlled by the phase output configuration 110η to generate the required output voltage (νουτ) on the output node side 220a of the output inductor 22o. For this purpose, the high-side switch 205 13 200425607 is initially turned on, while the low-side switch 210 remains powered off. This results in a set of approximately (Vin-Vout) voltage drops' across the output inductor 220, which results in a set of currents built into the output inductor. At a sequential time, the high-side switch 205 is turned off, and the low-side switch 210 is turned on. Because the current in the inductor 220 cannot be changed immediately, the current continues to flow through the output inductor 220, thereby charging the output capacitor 125 and causing the voltage drop across the output capacitor 125 to rise. In this way, the high-side and low-side switches 205, 210 can be appropriately controlled and switched at appropriate times until the voltage 10 drop across the output capacitor 125 is equal to the required output voltage (VDES). Once the required output voltage (VDES) is reached, the high-side and low-side switches 205, 2 can be controlled periodically. Thus the output inductor 220 provides a load equal to the load 135 connected across the output capacitor 125 The amount of current required by the current. With a current requirement that provides no more and no less than the load 135, the voltage drop (v⑼) 15 across the output capacitor 125 remains approximately fixed at the desired output voltage (VDES). According to the above embodiment example of the present invention, the output phase configuration 11n controls the high-side and low-side switches 205 and 21 when a periodic charging cycle is continued. The cycle duration may be characterized by a specified phase delay, period Sexual start time and charging continue. Referring next to the known figure, it can be seen that one of the output switch configurations 20 to 120n has a periodic charging cycle lasting 900, which includes a phase L delayed of 905, a periodic start time 91 (), and a charging continual offense. As shown in Fig.%, The w-side switch 205 is turned on at the periodic start time 91 °, and remains on when the charging continues for 915, and is turned off when the charging continues to end. After the charging continues for 915, the high side The switch keeps the power off for the rest of the periodic charge 14 ^ 9 for 9GG. In normal operation, the low-side switch is trained so that the low-side switch 210 is turned on when the 咼 -side switch is turned off, and vice versa. In this way, the output inductor 22 establishes a current when charging continues for 915 and releases at least a portion of the current after the charging continues for 915 and for the remaining periodic charging 5 cycles for 900. By controlling the high-side and low-side switches 205 and 21 in the manner described above, the amount of current established in the output inductor 220 can be controlled by changing the charging duration 915 with respect to the periodic charging cycle duration 900. For example, if the charging duration of 915 is equal to the periodic charging cycle lasting half of 900 (that is, 50% duty cycle), then the switch configuration 120η will provide the output with half of the 100 maximum current of the buck converter Capacitor 125. Or, for example, if the charging duration 915 is equal to the periodic charging cycle lasting 900 (ie, 100% duty cycle) 'then the switch configuration 12 0 η will provide the maximum current of the buck converter 1000 Output capacitor 125. 15 During normal operation, the low-side switch 210 and the high-side switch 205 are controlled in a dichotomy. Also, when the high-side switch 205 is turned on, the low-side switch 210 is powered off, and vice versa. In this way, one of the high-side and low-side switches 205, 210 is turned on at all times. However, in response to certain operating conditions, the two sets of switches 205, 210 may be turned off. 20 Therefore, according to another exemplary embodiment of the present invention, in response to the occurrence of one of the two sets of unique operating conditions, the output phase is configured with 11 On operation to cut off both the high-side and low-side switches 205, 210. : Lower required output (VDES) requirement or reduced current demand of load 135 (ie, reduced load level). 15 200425607 The lower required output requirement (vDES) may cause the negative inductor current to flow through the output inductor 220. The negative current converts the buck converter 100 into a boost converter by transferring energy from the output capacitor 125 to the input voltage (Vrn). This energy can damage the power supply (not shown) and / or other components, can cause the voltage control loop to become unstable, and can result in wasted energy. As shown in Figure 9b, in response to the requirement to reduce the required output voltage (VDES), to prevent negative inductor current generation, both the high-side and low-side switches 205, 210 are turned off. In this manner, the 10 current established in the output inductor 220 is discharged through the load 135 instead of being supplied through the power source. When a current is discharged through the load 135, the output voltage (VOUT) across the output capacitor 125 decreases. Once the output voltage (VOUT) drops to approximately the lower required output voltage (VDES), negative current is no longer important, and the high-side and low-side switches 205, 210 can be operated in a normal manner. 15 When the current demand of the load 135 decreases (ie, the load stage decreases), the high-side and low-side switches 205, 210 should be controlled to reduce the current supplied to the output capacitor 125 by the output inductor 220. However, in the conventional buck converter, the minimum time required to reduce the current (ie, a set of current transients) in the output inductor 220 in response to a decrease in the load stage is processed according to the following equation: 20 ⑴ Tslew = [LX (Imax-Imin)] / V〇ut ^ where the high-side and low-side switches 205, 210 are made as FET rectifiers. Therefore, when the load current demand is reduced, the current transient of the inductor 25 of the buck converter output 25 (ie, the built-in current between the output inductor 16 and 200425607 when the load stage is reduced) will cause the output capacitor 125 voltage rise. Although the current demand of the load 135 will eventually discharge the excess charge of the output capacitor 125, a short continuous voltage surge on the output voltage (VOUT) may damage the sensitive circuit connected to the buck converter 100. 10 But according to the example of the embodiment of the present invention, the output phase configuration 110n reduces the current demand of the load 135 (ie, a load stage decreases), and it operates to cut off both the high-side and low-side switches 205 and 210 (That is, individual power failure). In this way, the twist rate of the output inductor 220 (i.e., the rate at which the current can be reduced) can be significantly increased, with the high-side and low-side switches 210 being made as FET rectifiers. By cutting off the high-side and low-side switches 205, 210, the switching node voltage is forced to decrease until the individual diodes of the FET rectifier are turned on. This increases the voltage across the inductor from vOUT to νουτ + the voltage across the individual poles (ie, VbodY DIODE). Therefore, the twist rate of the output inductor 220 is reduced according to the following equation: 15 ⑺

Tslew [L X (Imax - Imin)]/(V〇ut + Vb〇DY DIODE) 因此’依據本發明這實施範例,當比較至先前技術時 ,在負載級減少情況時被内建於輸出電感器220之電流暫態 2〇 <以更快速地被排出,因而導致更少所宣稱之電壓突波, 如第4圖之展示。事實上,因為跨越個體二極體之電壓降可 以較高於輸出電壓νουΊΓ,電感器電流扭轉率可被增大兩倍 或者更多。 接著參看第10圖,其展示依據本發明相位輸出配置 25 110η範例而以上述說明之方式控制輸出開關配置120η之高 17 侧和低側開關105、110。相位輸出配置H〇n包含開始時間 配置1005、充電持續配置1010、電氣地被耦合至充電持續 配置1010之電流感測配置1015、電氣地被耦合至開始時間 配置1005和充電持續配置1010之S-R鎖定器1〇2〇、以及電氣 地被耗合至S-R鎖定器1020和充電持續配置1〇1〇之and閘 1025。 開始時間配置1005包含被組態以決定第9a圖展示之週 期性開始時間910和相位延遲905之電路。為此目的,開始 時間配置1005從相位控制配置105接收相位時序信號1〇3〇 之開始處將低側開關21〇斷電。 相位日守序#號1030可以包含,例如,具有等於週期性充 電週期持續900的週期(例如,週期性鋸齒波形、週期性正 弦曲線波形、週期性三角形的波形,等等)之週期性類比信 號。使用週期性類比信號1〇3〇,開始時間配置1〇〇5可以決 定週期性開始時間910和相位延遲9〇5,並且在週期性開始 15時間910產生一組週期性時脈脈波1035。時脈脈波1035設定 s-R鎖定it刪,導致高側開_5導通並且在充電持續915 充電持續配置1 〇 1 〇包含電路 續9 1 5 ’而在免雷牲链Q 1 ς ’其被組態以決定充電持Tslew [LX (Imax-Imin)] / (V〇ut + Vb〇DY DIODE) Therefore, according to this example of the present invention, when compared to the prior art, it is built into the output inductor 220 when the load level is reduced. The current transient 20 < is discharged more quickly, resulting in fewer claimed voltage surges, as shown in FIG. 4. In fact, because the voltage drop across an individual diode can be higher than the output voltage νουΊΓ, the inductor current twist rate can be increased by two or more. Referring next to Fig. 10, it is shown that the high 17 side and low side switches 105, 110 of the output switch configuration 120η are controlled in the manner described above in accordance with the example of the phase output configuration 25 110η of the present invention. The phase output configuration Hon includes a start time configuration 1005, a charging continuous configuration 1010, a current sensing configuration 1015 electrically coupled to the charging continuous configuration 1010, an SR lock electrically coupled to the starting time configuration 1005, and a charging continuous configuration 1010. Device 1020, and electrically connected to the SR lock 1020 and the charging continuous configuration 1010 and the brake 1025. The start time configuration 1005 includes circuitry configured to determine the periodic start time 910 and phase delay 905 shown in Figure 9a. For this purpose, the start time configuration 1005 powers down the low-side switch 21o at the beginning of receiving the phase timing signal 1030 from the phase control configuration 105. Phase Date Order # 1030 may contain, for example, a periodic analog signal having a period equal to a periodic charging period lasting 900 (eg, a periodic sawtooth waveform, a periodic sine curve waveform, a periodic triangle waveform, etc.) . Using the periodic analog signal 1030, the start time configuration 105 can determine the periodic start time 910 and the phase delay 905, and generate a set of periodic clock waves 1035 at the periodic start 15 time 910. The clock pulse wave 1035 sets sR to lock it, causing the high-side ON_5 to turn on and the charging continues to 915. The charging continues to be configured 1 〇1 〇 Contains the circuit continued 9 1 5 'and in the mine-free animal chain Q 1 ς' its group State to determine charge holding

PWM控制信號104〇可以包含, Ϊ變(PWM)控制信號1040。 例如,一組類比信號,其具 18 200425607 有成比例於在所需輸出電壓(VDES)和實際輸出電壓(V0UT) 間差量之數值。使用PWM控制信號1040,充電持續配置 1〇1〇適當地決定供用於高側和低側開關2〇5、21〇之充電持 續915。更進一步地,充電持續配置1〇1〇被組態以依據輸出 5 電感器22〇供應至輸出電容器125之電流量而修改充電持續 915。為此目的,充電持續配置1010從電流感測配置1〇15接 收一組電流差量信號1050,該電流感測配置1〇15具特徵於 利用輸出電感器220供應之電流相對於由所有輸出開關配 置120a、12〇b、120c、…、120η所提供之平均電流1045的 10 數量,因而如果利用輸出電感器220被供應之電流量是較小 於利用所有輸出開關配置120a、120b、120c、…、120η被 提供的平均電流1045,則充電持續配置l〇10可以增加充電 持續915。利用增加充電持續915,輸出電感器220供應更多 的電流至輸出電容器125。在充電持續915屆期之後,充電 15持續配置重置S-R鎖定器1020,其對於其餘的週期性充 電週期持續900導致南側開關205切斷並且低側開關21 〇導 通。 反應於降低的所需輸出之要求(VDES)或者負載下降 之電流需求減少(亦即,負載級減少),其可以從利用相位控 20制配置105被通訊之PWM控制信號1040而被決定,充電持 續配置1010操作以切斷高側和低側開關205、210。為此目 的,充電持續配置1010重置S-R鎖定器1020並且傳輸一組邏 輯“0”至AND閘1025,因而導致高側和低側開關2〇5、21〇 斷電。 19 200425607 S-R鎖定器1020優先被重置而允許所有的相位輸出配 置110a、110b、110c、…、il〇n達到幾十個奈秒之内的零 責務週期。將導通由時脈脈波所閘控且反應於負載級增加 ,相位可以重疊且達到100%的責務週期。以此方式,這控 5 制相位輸出配置110a、110b、110c、…、110η之方法提供 “單一週期暫態反應”,其中輸出電感器220電流反應於單 一切換週期内之負載暫態而改變,因而使功率列之有效性 最大化並且使輸出電容器125之需求最少化。The PWM control signal 104 may include, a transition (PWM) control signal 1040. For example, a set of analog signals has a value that is proportional to the difference between the required output voltage (VDES) and the actual output voltage (V0UT). Using the PWM control signal 1040, the charging continuous configuration 1010 appropriately determines the charging duration 915 for the high-side and low-side switches 205, 210. Furthermore, the charging duration configuration 1010 is configured to modify the charging duration 915 according to the amount of current supplied from the output 5 inductor 22 to the output capacitor 125. For this purpose, the charging continuous configuration 1010 receives a set of current difference signals 1050 from the current sensing configuration 1015, which is characterized by the current supplied by the output inductor 220 relative to the current supplied by all output switches Configurations 120a, 120b, 120c, ..., 120η provide 10 quantities of average current 1045, so if the output inductor 220 is used to supply a smaller amount of current than all output switch configurations 120a, 120b, 120c, ... , 120η is provided with an average current of 1045, then the charging continuous configuration 1010 can increase the charging duration 915. By increasing the charging duration 915, the output inductor 220 supplies more current to the output capacitor 125. After the charging continues for 915 sessions, the charging 15 continues to configure the reset S-R locker 1020, which continues for 900 for the rest of the periodic charging cycle causing the south-side switch 205 to be turned off and the low-side switch 21 to be turned on. In response to a reduced required output (VDES) or reduced load current demand (ie, reduced load level), it can be determined from the PWM control signal 1040 communicated using the phase-controlled 20-configuration 105 The 1010 operation is continuously configured to turn off the high-side and low-side switches 205, 210. For this purpose, the charging continues to configure 1010 to reset the S-R locker 1020 and transmit a set of logic "0" to the AND gate 1025, thus causing the high-side and low-side switches 205, 21 to be powered off. 19 200425607 The S-R locker 1020 is reset preferentially, allowing all phase output configurations 110a, 110b, 110c, ..., il0n to reach zero duty cycles within tens of nanoseconds. The continuity is gated by the clock pulse and responds to the increase in load level. The phases can overlap and reach a duty cycle of 100%. In this way, this method of controlling the phase output configuration 110a, 110b, 110c, ..., 110η provides a "single-cycle transient response" in which the output inductor 220 current changes in response to a load transient within a single switching cycle. This maximizes the effectiveness of the power train and minimizes the need for the output capacitor 125.

電流感知配置1015包含電路,其被組態以依據相對於 10 由所有輸出開關配置120a、120b、120c、…、120η提供之 平均電流1045且經由輸出電感器220流動之電流而產生用 以修改充電持續915之電流差量信號1〇5〇。The current sense configuration 1015 includes a circuit configured to modify the charge based on the average current 1045 provided by all output switch configurations 120a, 120b, 120c, ..., 120η relative to 10 and the current flowing through the output inductor 220. The current difference signal of 915 is 1050.

接著參看第11圖,其是依據供用於依據週期性開始時 間910和相位延遲905以產生時脈脈波1〇35之本發明開始時 15間配置1005的範例。開始時間配置1005包含一組相位時序 比較器1105和電氣地連接到相位時序比較器丨1〇5輸出之一 組單擊脈波產生器1110。於這實施範例中,相位時序信號 1030是週期的三角形波形1030,其具有等於週期性充電週 期持續900的週期和在〇伏特和5伏特之間變化的振幅,如第 20 12a圖之展示。 接著參看第12b圖,其是展示相位時序比較器11〇5和單 擊脈波產生器1110之輸出時序圖。如第12b圖之展示,相位 時序比較器1105之輸出是等於相位時序信號1030偏移一固 定之設定點電壓1115。因此,當在時間等於相位延遲905之 20 週期性充電週期持續_時 守序比較器1105之輸出於 正的方向越過零_電壓轴一 因而導致單擊脈波產生器 1110產生時脈脈波1们5。 利用適當地選擇在〇和5伏特之間的設定點電壓1115, 單擊脈波產生nmo可以被控制以在職性相位週期持續 9〇〇第半9〇〇a時之任何時間產生時脈脈波聰。為導致單 擊脈波產生$ 111Q以在該週期性相位週期持續刪第二半 寺產生時脈脈波1()35,至相位時序比㈣⑽5之輸入 可以被切換,以至於相㈣序㈣被提供至相位時序比較 器11〇5之負輸入並且設定點電壓1115被提供至相位時序比Referring next to Fig. 11, there is shown an example of an arrangement of 15 times at the beginning 15 of the present invention for generating a clock wave 1035 based on the periodic start time 910 and the phase delay 905. The start time configuration 1005 includes a set of phase timing comparators 1105 and one of the outputs which is electrically connected to the phase timing comparator. The set of click pulse generators 1110. In this example, the phase timing signal 1030 is a periodic triangular waveform 1030, which has a period equal to a periodic charging period that lasts 900 and an amplitude that varies between 0 volts and 5 volts, as shown in Figure 20 12a. Referring next to Fig. 12b, it is a timing diagram showing the output of the phase timing comparator 1105 and the single-shot pulse generator 1110. As shown in Fig. 12b, the output of the phase timing comparator 1105 is equal to the phase timing signal 1030 offset by a fixed setpoint voltage 1115. Therefore, when the periodic charging cycle continues at a time equal to 20 of the phase delay 905, the output of the lawful comparator 1105 crosses zero in the positive direction, the voltage axis one, thus causing the click pulse generator 1110 to generate the clock pulse 1 Them 5. With a properly selected setpoint voltage of 1115 between 0 and 5 volts, clicking on the pulse wave to generate nmo can be controlled to generate a clock pulse wave at any time when the on-duty phase cycle lasts 900 hours, half 90 hours Satoshi. In order to cause the click pulse to generate $ 111Q to continuously delete the second half temple to generate the pulse 1 () 35 in this periodic phase period, the input to the phase timing ratio ㈣⑽5 can be switched so that the phase sequence is changed. The negative input is provided to the phase timing comparator 1105 and the set point voltage 1115 is provided to the phase timing ratio

10 較器1105的正輸人。以此方式,相位時序比較器ιι〇5和單 擊脈波產生H111G之輸出類似第12e圖展示之時序圖。 因此,依據本發明,各相位輸出配置11〇a、u〇b、u〇c10 The positive loser of the comparator 1105. In this way, the output of phase timing comparator ιι5 and single-shot pulse wave H111G is similar to the timing diagram shown in Figure 12e. Therefore, according to the present invention, each phase output configuration 11〇a, u〇b, u〇c

、…、110η可以在週期性相位週期持續9〇〇時被指定一獨特 的相位延遲905和週期性開始時間91〇,而不需要在相位控 制配置105和相位輸出配置11(^、n〇b、11〇c.....n〇n之 間的分別點對點電氣連接。更進一步地,如果相位輸出配 置110a、110b、ll〇c.....1 l〇n將使用分別的相位積體電 20 路被製作,如果相位時序比較器H05之兩輸入皆電氣地被 連接到分別相位積體電路的輸入插銷,則供用於各相位輸 出配置110a、110b、ll〇c、…、ιΐ〇η之相位延遲905和週期 性開始時間910之一特別有效且簡單的指定可以被形成。 接著參看第12d圖,其展示依據本發明具有八個相位輸 出配置110a、110b、ll〇c、…、ll〇h之降壓變換器100範例 21 200425607 之分別單擊脈波產生器輸出的時間圖。, ..., 110η can be assigned a unique phase delay 905 and periodic start time 91 when the periodic phase period lasts 900, without the need for phase control configuration 105 and phase output configuration 11 (^, n〇b Point-to-point electrical connections between, 11〇c ..... n〇n. Furthermore, if the phase output configuration 110a, 110b, 110c ..... 1 l0n will use separate phase products 20 body circuits are made. If both inputs of the phase timing comparator H05 are electrically connected to the input pins of the phase integration circuit, they are used for each phase output configuration 110a, 110b, 110c, ..., ιΐ〇 A particularly effective and simple designation of one of the phase delay 905 and the periodic start time 910 of η can be formed. Next, referring to FIG. 12d, it shows that there are eight phase output configurations 110a, 110b, 110c, ..., Time chart of the 100-step buck converter 100 example 21 200425607 of the single-click pulse wave generator output.

接著參看第12e圖,其展示被製作作為分別且不同的相 位1C 1250之相位輸出配置ll〇n範例的開始時間配置1〇〇5。 如第12e圖之展示,相位1C包含分別電氣地被連接到相位時 5 序比較器1105輸入之電氣接觸插銷1255a和1255b。一組分 壓器被提供在參考電壓1270和接地之間,分壓器包含在節 點1260彼此連接之電阻器1265a和1265b。利用適當地選擇電 阻器1265a和1265b,預定之設定點電壓in5可以經由電氣 接觸插銷1255b被提供至相位時序比較器11〇5。 10 接著參看第13圖,其展示依據本發明之充電持續配置 1010範例。充電持續配置1010包含充電持續放大器1305、 個體斷電檢測放大器1315、電氣地被連接到個體斷電檢測 放大器1315負輸入之分數乘法器1320、以及電氣地被辆合 至充電持續放大器1305負輸入和分數乘法器1320之斜波產 15 生器 1310。Referring next to Fig. 12e, it is shown the start time configuration 105 which is made as an example of the phase output configuration 110n of the phase 1C 1250 separately and differently. As shown in Figure 12e, phase 1C includes electrical contact pins 1255a and 1255b which are input to the phase sequence comparator 1105 when electrically connected to the phase, respectively. A set of voltage dividers is provided between the reference voltage 1270 and ground. The voltage divider contains resistors 1265a and 1265b connected to each other at node 1260. By appropriately selecting the resistors 1265a and 1265b, a predetermined set-point voltage in5 can be supplied to the phase timing comparator 1105 via the electrical contact pin 1255b. 10 Next, reference is made to FIG. 13, which shows an example of a charging continuous configuration 1010 according to the present invention. The charging continuous configuration 1010 includes a charging continuous amplifier 1305, an individual power failure detection amplifier 1315, a fractional multiplier 1320 electrically connected to the negative input of the individual power failure detection amplifier 1315, and an electrical input coupled to the negative input of the charge continuous amplifier 1305 and The fractional multiplier 1320 produces a ramp generator 1510 of the ramp wave.

在開始時間配置1005產生時脈脈波1035以設定S-R鎖 定器1020之前的時間,S-R鎖定器1020之反相輸出1020a破 定邏輯高位準"Γ在充電持續配置1010之斜波產生器1310 重置線之上。這導致斜波產生器1310於斜波輸出線1325上 2〇 產生一固定原定輸出電壓(固定原定電壓同時也長久地被 提供於原定電壓輸出線1330上)。在開始時間配置1005設定 S-R鎖定器1020之後,高側開關205被導通並且S-R鎖定器 1020之反相輸出1020a確定一組邏輯低位準”〇”在斜波產生 器1310重置線之上,導致斜波輸出線1325上之電壓從原定 22 200425607 輸出電壓躍升。充電持續放大器1305比較斜波輸出線1325 與PWM控制信號1040,在本發明這實施範例中,其是成比 例於在所需輸出電壓(VDES)和實際輸出電壓(v〇UT)之間差 量(VDES-V0UT)的一組類比電壓信號。一旦在斜波輸出線 5 1325之電壓達到PWM控制信號1040電壓位準,充電持續放 大器1305導致S-R鎖定器1020重置,其導致高側開關205切 斷且導致S-R鎖定器1020之反相輸出i〇2〇a確定邏輯高位準 π1"在斜波產生器1310重置線之上而重置斜波輸出線1325 至原定電壓。 10 以此方式,充電持續915代表在當開始時間配置1〇〇5產 生時脈脈波1035時和當斜波產生器131〇斜波輸出線1325等 於PWM控制信號1040電壓位準時之間的時間。因此,在實 際輸出電壓(v0UT)和所需輸出電壓(Vdes)之間的偏移愈大 ,貝彳PWM控制信號1〇4〇電壓位準愈大,並且因此充電持續 15 915亦愈大。 更進一步地,充電持續配置1010可以依據由輸出電感 器220供應至輸出電容器125之電流量而修改充電持續915 。為此目的,斜波產生器1310從描述輸出電感器22〇所供應 之電流相對於由所有輸出開關配置12〇a、12〇b、120c、… 20 、120n所提供的平均電流1045的數量之電流感測配置1015 而接收一組電流差量信號1050。例如,電流差量信號1〇5〇 可以提供一組成比例於在由輸出電感器所供應的電流和由 所有輸出開關配置12〇a、i2〇b、120c.....120η供應的平 均電流之間差量的電壓值。使用電流差量信號1〇5〇,斜波 23 200425607 產生器1310可以變化在輸出線路1325上電壓躍升之速率, 因而當在由輸出電感器供應之電流和由所有輸出開關配置 120a、120b、120c、…、120η供應的平均電流之間差量增 加時,在斜波輸出線1325上躍升電壓之速率減少。 5 因此,如果由輸出電感器220供應之電流量是較小於由 所有輸出開關配置120a、120b、120c、…、120η提供的平 均電流1045 ’在斜波輸出線1325之被減低電壓躍升速率將 導致充電持續915增加,因而導致輸出電感器220供應更多 的電流至輸出電容器125。 10 充電持續配置1010同時也被組態以反應於較低的所需 輸出之要求(VDES)或者負載135下降之電流需求減少(亦即 ’負載級減少)而切斷高側和低側開關2〇5、210兩者。為此 目的’分數乘法器1320產生斜波產生器131〇原定電壓之分 數倍數(例如’ 90%),並且提供該分數倍數之原定電壓至個 15體斷電檢測放大器1315。個體斷電檢測放大器π 15比較該 分數倍數之原定電壓與PWM控制信號1〇4〇電壓位準(亦即 ’成比例於VDES_V0UT之電壓位準)並且如果pwM控制信號 1040電壓位準下降至該分數倍數之原定電壓之下則產生一 組信號以切斷高側和低側開關205、210。 2〇 應該了解,各種情況可以導致個體斷電檢測放大器 1315切斷高側和低側開關205、210。例如,在能夠導致V0UT 相對於vDES上升的負載135之需求電流的突然減少,可以導 致PWM控制信號1〇4〇電壓位準下降至該分數倍數之原定 電壓之下。另外地,例如,反應於較少所需輸出電壓(VDES) 24 200425607 的要求,相位控制配置105可以迫使PWM控制信號1040在 該分數倍數之原定電壓之下,如下面更完全地被說明。 接著參看第14圖,其展示依據本發明之斜波產生器 1310的範例。斜波產生器1310包含一組钳制電路1405以及 5 一組電氣地被連接到斜波輸出線1325之可規劃電流源1410 。钳制電路1405包含一組運算放大器1415和一組钳制二極 體1420,當運算放大器1415之引動輸入1415a被確定時,兩 者一起操作以迫使斜波輸出線1325至原定電壓。 斜波產生器1310同時也包含一組相位誤差檢測放大器 10 1450、電氣地被連接到相位誤差檢測放大器145〇和原定電 壓之分數乘法器1455、以及電氣地被連接到相位誤差檢測 放大器1450輸出之開關1460,如果相位輸出配置120η不能 夠提供足夠電流以匹配由輸出開關配置120a、120b、120c 、…、120η所提供之平均電流1045時,則所有一起操作以 15 產生一組相位誤差信號1465。使用相位誤差信號1465,降 壓變換器100可以不引動被損害之相位輸出配置120η及/或 引動一支援相位輸出配置120η。 在開始時間配置1005產生時脈脈波1035以設定S_R鎖 定器1020之前的時間,S-R鎖定器1020之反相輸出1020a確 20 定邏輯高位準Π1Π於斜波產生器1310重置線之上,其引動钳 制電路1405,因而鉗制在斜波輸出線1325之電壓至原定電 壓。在開始時間配置1005設定S-R鎖定器1020之後,高側開 關205被導通並且S-R鎖定器1020之反相輸出1020a確定一 組邏輯低位準在斜波產生器1310重置線之上,其使鉗制 25 200425607 電路1405失效。鉗制電路i4〇5不被引動時’斜波電容器1425 自V1N接收經由斜波電阻器1430之電流,因而導致斜波產生 器1310斜波輸出線1325之電壓躍升。一旦輸出線1325之電 壓達到PWM控制信號1〇4〇之電壓位準,充電持續放大器 5 1305導致S-R鎖定器1020重置,其導致高側開關205切斷並 且S-R鎖定器1〇2〇之反相輸出i〇2〇a確定一組邏輯高位準 "Γ在斜波產生器131〇重置線之上,因而導致鉗制電路1405 迫使輸出線1325至原定電壓。 依據輸出電感器220利用藉由電流感測配置1〇15被產 10 生之電流差量信號1050而控制可規劃電流源1410以供應至 輸出電容器125之電流量,斜波產生器1310斜波輸出線1325 上之電壓躍升時間可以被修改。為此目的,電流源1410可 以被控制以降低來自斜波輸出線1325的一些電流,該電流 是成比例於在輸出電感器220供應之電流和所有輸出開關 15配置120a、12〇b、12〇c、…、120η供應的平均電流之間的 差量。利用移除(亦即,汲取)來自斜波輸出線1325之電流, 斜波電容器1425更緩慢地充電,因而導致在斜波輸出線 1325之電壓以較低的速率躍升。 利用從VIN經由斜波電阻器1430而將斜波電容器1425 20充電,在斜波輸出線1325電壓之躍升速率將自動地補償輸 入電壓VIN中之改變,其可能,例如,由於電源供應之輸出 電壓(未展示出)中之變化或者由於相對負載電流改變之列 刷電路板(PCB)中的電壓降而發生。 更進一步地,依據本發明另一實施範例,所需的輪出 26 200425607 電壓(VDES)被使用作為斜波產生器1310之原定電壓。因為所 需的輸出電壓(VDES)是從相位控制配置1〇5内部之d/A變換 器被產生的一組相對地穩定電壓位準,所需的輸出電壓 (VDES)不在不同的相位輸出配置ll〇a、u〇b、u〇c、…、ιι〇η 5 之間波動。以此方式,在相位輸出配置ll〇a、ii〇b、ll〇c 、…、110η之接地或者輸入電壓中的差量稍微地或者不影 響斜波產生器1310之斜波電壓輸出,因為輸出線1325之電 壓參考至所需的輸出電壓(VDES)。 如果相位輸出配置120η被損害或者不動作,則由輸出 10 電感器220所供應之電流可以下降至使電流源141〇汲取電 流比斜波電容器1425充電更快速之位準。於這情況中,斜 波輸出信號1325之電壓可以開始躍降,而導致相位誤差檢 測放大器1450觸發開關1460並且產生相位誤差信號,其可 以被使用以不引動被損害之相位輸出配置120η及/或引動 15 一備份相位輸出配置120η。 接著參看第15圖,其展示依據本發明電流感知配置 1015之範例。電流感測配置1〇15包含電路,其被組態以產 生描述由輸出電感器220所供應之電流和由所有輸出開關 配置120a、120b、120c.....120η所供應平均電流之間的 20 差量之一組電流差量信號1〇50。為此目的,電流感知配置 1015包含一組電感器電流感知配置1505,其被組態以產生 一組成比例於經由輸出電感器220流動之電流量的電感器 電流信號1510。電感器電流感知配置1505包含一組電流感 知放大器1515、電氣地被連接在電流感知放大器1515正輸 27 200425607 入和輸出電感器節點215之間的一組電阻器Rcs、以及電氣 地被連接在電流感知放大器1515正和負輸入之間的一組電 容器C c s,電感器節點22 0a同時也被連接到電流感知放大器 1515之負輸入。 5 利用連接跨越輸出電感器220節點215、220a之電阻器At the start time, 1005 is configured to generate the clock wave 1035 to set the time before the SR lock 1020. The inverting output 1020a of the SR lock 1020 breaks the logic high level. "The ramp generator 1310 is continuously configured at 1010 during charging. Place on the line. This causes the ramp generator 1310 to generate a fixed original output voltage on the ramp output line 1325 (the fixed original voltage is also provided on the original fixed voltage output line 1330 for a long time). After the start time configuration 1005 sets the SR latch 1020, the high-side switch 205 is turned on and the inverting output 1020a of the SR latch 1020 determines a set of logic low levels "0" above the reset line of the ramp generator 1310, resulting in The voltage on the ramp output line 1325 jumps from the output voltage of the original 22 200425607. The charging continuous amplifier 1305 compares the ramp wave output line 1325 with the PWM control signal 1040. In this example of the present invention, it is proportional to the difference between the required output voltage (VDES) and the actual output voltage (v〇UT). (VDES-VOUT) A set of analog voltage signals. Once the voltage on the ramp output line 5 1325 reaches the voltage level of the PWM control signal 1040, the charging continuous amplifier 1305 causes the SR latch 1020 to reset, which causes the high-side switch 205 to be turned off and the SR latch 1020's inverted output i 〇2〇a Determine the logic high level π1 " above the reset line of the ramp generator 1310 and reset the ramp output line 1325 to the original predetermined voltage. 10 In this way, the charging duration 915 represents the time between when the start time is configured to generate a clock wave 1035 of 105 and the ramp generator 1310 ramp output line 1325 is equal to the PWM control signal 1040 voltage level. . Therefore, the larger the deviation between the actual output voltage (v0UT) and the required output voltage (Vdes), the larger the voltage level of the Beam PWM control signal 1040, and therefore the larger the charging duration 15 915. Furthermore, the charging duration configuration 1010 can modify the charging duration 915 according to the amount of current supplied from the output inductor 220 to the output capacitor 125. For this purpose, the current supplied by the ramp generator 1310 from the description output inductor 22〇 is relative to the average current 1045 provided by all output switch configurations 12a, 120b, 120c, ... 20, 120n. The current sensing configuration 1015 receives a set of current difference signals 1050. For example, the current difference signal 1050 can provide a composition ratio between the current supplied by the output inductor and the average current supplied by all output switch configurations 12a, i20b, 120c ... 120n. The difference between the voltage values. Using the current difference signal 1050, the ramp wave 23 200425607 generator 1310 can change the rate of voltage jump on the output line 1325, so when the current supplied by the output inductor and all output switches are configured 120a, 120b, 120c When the difference between the average currents supplied by ..., 120n increases, the rate of the voltage jump on the ramp output line 1325 decreases. 5 Therefore, if the amount of current supplied by the output inductor 220 is smaller than the average current 1045 provided by all output switch configurations 120a, 120b, 120c, ..., 120η, the reduced voltage jump rate at the ramp output line 1325 will be As a result, the charging duration 915 increases, which causes the output inductor 220 to supply more current to the output capacitor 125. 10 Charging continuous configuration 1010 is also configured to cut off the high-side and low-side switches in response to a lower required output requirement (VDES) or a reduction in the current demand of the load 135 (ie, 'reduction in load level') 2 〇5, 210 both. To this end, the fractional multiplier 1320 generates a ramp multiple of the original voltage of the generator 1310 (e.g., 90%), and supplies the fractional multiple of the original voltage to a 15-body power-off detection amplifier 1315. The individual power-off detection amplifier π 15 compares the original voltage of the fractional multiple with the voltage level of the PWM control signal 1040 (ie, 'proportionally the voltage level of VDES_V0UT) and if the pwM control signal 1040 voltage level drops to A signal is generated below the fractional multiple of the predetermined voltage to turn off the high-side and low-side switches 205, 210. 20 It should be understood that various conditions can cause the individual power-down detection amplifier 1315 to turn off the high-side and low-side switches 205, 210. For example, a sudden decrease in the demand current of the load 135 that can cause V0UT to increase relative to vDES can cause the voltage level of the PWM control signal 1040 to fall below the fractional multiple of the original voltage. Additionally, for example, in response to the requirement of less required output voltage (VDES) 24 200425607, the phase control configuration 105 may force the PWM control signal 1040 to be below the original multiple of this fractional multiple, as explained more fully below. Referring next to Fig. 14, an example of a ramp wave generator 1310 according to the present invention is shown. The ramp generator 1310 includes a set of clamp circuits 1405 and a set of programmable current sources 1410 electrically connected to a ramp output line 1325. The clamping circuit 1405 includes a set of operational amplifiers 1415 and a set of clamping diodes 1420. When the driving input 1415a of the operational amplifier 1415 is determined, the two operate together to force the ramp output line 1325 to a predetermined voltage. The ramp generator 1310 also contains a set of phase error detection amplifiers 10 1450, electrically connected to the phase error detection amplifier 145 and a fractional multiplier 1455 of the original voltage, and electrically connected to the phase error detection amplifier 1450 output Switch 1460, if the phase output configuration 120η cannot provide enough current to match the average current 1045 provided by the output switch configurations 120a, 120b, 120c, ..., 120η, all of them operate together to generate a group of phase error signals 1465 . Using the phase error signal 1465, the buck converter 100 may not activate the damaged phase output configuration 120η and / or activate a supporting phase output configuration 120η. At the start time, 1005 is configured to generate the clock wave 1035 to set the time before the S_R locker 1020. The inverting output 1020a of the SR locker 1020 determines the logic high level Π1Π above the reset line of the ramp generator 1310. The clamp circuit 1405 is activated, so the voltage on the ramp output line 1325 is clamped to the original voltage. After the start time configuration 1005 sets the SR latch 1020, the high-side switch 205 is turned on and the inverting output 1020a of the SR latch 1020 determines that a set of logic low levels are above the reset line of the ramp generator 1310, which clamps 25 200425607 Circuit 1405 failed. When the clamp circuit i405 is not activated, the 'slope wave capacitor 1425 receives the current from the V1N via the slope resistor 1430, which causes the voltage of the slope wave generator 1310 ramp wave output line 1325 to jump. Once the voltage of the output line 1325 reaches the voltage level of the PWM control signal 1040, charging the continuous amplifier 5 1305 causes the SR latch 1020 to reset, which causes the high-side switch 205 to be turned off and the SR latch 102 to the opposite The phase output i02a determines a set of logic high levels " Γ above the reset line of the ramp generator 1310, thus causing the clamp circuit 1405 to force the output line 1325 to the original voltage. According to the output inductor 220, the current difference signal 1050 generated by the current sensing configuration 1015 is used to control the programmable current source 1410 to supply the current amount to the output capacitor 125, and the ramp wave generator 1310 ramp wave output The voltage jump time on line 1325 can be modified. For this purpose, the current source 1410 can be controlled to reduce some current from the ramp output line 1325, which is proportional to the current supplied at the output inductor 220 and all the output switches 15 are configured with 120a, 12b, 12b. c, ..., the difference between the average currents supplied by 120η. By removing (ie, drawing) the current from the ramp output line 1325, the ramp capacitor 1425 charges more slowly, thereby causing the voltage on the ramp output line 1325 to jump at a lower rate. By charging the ramp capacitor 1425 20 from VIN via the ramp resistor 1430, the ramp rate of the voltage at the ramp output line 1325 will automatically compensate for changes in the input voltage VIN, which may, for example, be due to the output voltage of the power supply (Not shown), or due to a voltage drop in a brushed circuit board (PCB) that changes relative to the load current. Furthermore, according to another exemplary embodiment of the present invention, the required output voltage 26200425607 (VDES) is used as the original voltage of the ramp generator 1310. Because the required output voltage (VDES) is a set of relatively stable voltage levels generated from the d / A converter inside the phase control configuration 105, the required output voltage (VDES) is not in a different phase output configuration ll〇a, u〇b, u〇c, ..., ιιη 5 fluctuate. In this way, the difference in the ground or input voltage of the phase output configurations 110a, ii0b, 110c, ..., 110n slightly or does not affect the ramp voltage output of the ramp generator 1310 because the output The voltage of line 1325 is referenced to the desired output voltage (VDES). If the phase output configuration 120η is damaged or inactive, the current supplied by the output 10 inductor 220 can drop to a level where the current source 1410 draws current more quickly than the ramp capacitor 1425 charges. In this case, the voltage of the ramp output signal 1325 can start to fall, which causes the phase error detection amplifier 1450 to trigger the switch 1460 and generate a phase error signal, which can be used to not cause the damaged phase output configuration 120η and / or Initiate 15-backup phase output configuration 120η. Referring next to Fig. 15, an example of a current sensing configuration 1015 according to the present invention is shown. The current sensing configuration 1015 includes a circuit configured to generate a current between the current supplied by the output inductor 220 and the average current supplied by all output switch configurations 120a, 120b, 120c ... 120n. 20 difference one group of current difference signal 1050. To this end, the current-sensing configuration 1015 includes a set of inductor current-sensing configurations 1505 that are configured to generate an inductor current signal 1510 that is proportional to the amount of current flowing through the output inductor 220. The inductor current sense configuration 1505 includes a set of current sense amplifiers 1515, a set of resistors Rcs electrically connected between the positive sense of the current sense amplifier 1515, and a 200425607 input and output inductor node 215, and electrically connected to the current A set of capacitors C cs between the positive and negative inputs of the sense amplifier 1515 and the inductor node 22 0a are also connected to the negative input of the current sense amplifier 1515. 5 Use resistors across nodes 215, 220a across the output inductor 220

Res和電容器Ccs,經由輸出電感器220流動之電流可以依據 下面的方程式被感知·· (3) Vc(s) = VL(s) x [1/(1+sRCsCcs)] 10 = iL(s) x [(Rl+sL)/(1+sRCsCcs)] 利用選擇電阻器Res和電容器Ccs以至於電阻器Res和 電容器Ccs之時間常數等於輸出電感器220之時間常數(亦 即,感應係數L/電感器DCR),跨越電容器Ccs電壓是成比例 15 於經由輸出電感器220之電流,並且電感器電流感知配置 1505可以被處理如僅有一組具有RL值之感知電阻器被使用 。時間常數不協調不影響電感器直流電流之量測,但是影 響經由輸出電感器220流動之電流的AC成份。 感知經流輸出電感器220之電流可相對於高側及/或低 2〇 側感知為有利,因為被傳送至負載135之實際輸出電流可以 被得到而不是開關電流之一峰值或者被取樣值。因此,輸 出電壓(V0UT)可以依據卽時間資訊被安置以符合一負載線 路。以此方式,依據本發明之電流檢測電路可以有利地支 援單一週期暫態反應。 25 電流感知放大器1515可以被設計,而具有隨溫度減少 28 200425607 而減少的可變化增益,以及一組標稱增益,例如,在攝氏 25度為35且在攝氏125度為31。這增益與溫度之相關性可以 補償在輸出電感器220之DCR中ppm/度(攝氏)之增加。 電流感知放大器1515將電流差量信號1510傳達至電流 5 比較器1520,其比較所有相位的電流信號1510與平均電感 器電流1045以產生用以通訊至充電持續配置1〇1〇之電流差 量信號1050。電流平均電阻器1525被提供在電流信號1510 和平均電感器電流信號1045之間。因為各相位輸出配置 110a、ll〇b、110c、…、110η在它們分別的電流信號和平 10 均電感器電流信號1045之間提供一組相似電流平均電阻器 ,平均電感器電流信號1045具有一組電壓,其成比例於相 位輸出配置110a、110b、110c、…、ll〇n之分別的電流信 號平均值。 接著參看第16圖’其展示依據本發明之相位輸出配置 15 ll〇n和輸出開關配置120η之範例。如第16圖之展示,相似 構件以如第10至15圖所使用之相同符號標示。另外地,第 16圖相位輸出配置11〇η之範例提供一組總和配置16〇5,其 用以相加所需的輸出電壓(VDES)位準至感知電流信號,因而 原定斜波電壓可以被設定為所需的輸出電壓(VDES)位準。 2〇 接著參看第3圖’其展示第1圖多相降壓變換器之範 例,其中相位控制配置105包含一組相位時序配置3〇5和一 組脈波寬度調變(PWM)配置310,其用以經由相位控制匯流 排115(例如,5金屬線類比匯流排)而分別地產生相位時序信 號1030和PWM控制信號1040。相位控制配置丨〇5同時也包 29 其用以產生另外的控制信號330, 含另外的電路配置325,其 其並非了解本發明之所需。 相位時序信號1030包含資訊Res and capacitor Ccs, the current flowing through the output inductor 220 can be sensed according to the following equation ... (3) Vc (s) = VL (s) x [1 / (1 + sRCsCcs)] 10 = iL (s) x [(Rl + sL) / (1 + sRCsCcs)] Select the resistor Res and capacitor Ccs so that the time constant of the resistor Res and capacitor Ccs is equal to the time constant of the output inductor 220 (ie, the inductance L / inductance DCR), the voltage across the capacitor Ccs is proportional to the current through the output inductor 220, and the inductor current sense configuration 1505 can be processed as if only a set of sense resistors with RL values were used. The time constant inconsistency does not affect the measurement of the DC current of the inductor, but affects the AC component of the current flowing through the output inductor 220. Sensing the current flowing through the output inductor 220 may be advantageous relative to the high side and / or low 20 side, because the actual output current delivered to the load 135 may be obtained instead of a peak or sampled value of the switching current. Therefore, the output voltage (VOUT) can be placed according to the time information to fit a load line. In this way, the current detection circuit according to the present invention can favorably support a single-cycle transient response. The 25 current sense amplifier 1515 can be designed with a variable gain that decreases with temperature 28 200425607, and a set of nominal gains, for example, 35 at 25 ° C and 31 at 125 ° C. This gain-temperature dependence can compensate for the increase in ppm / degrees (Celsius) in the DCR of the output inductor 220. The current sense amplifier 1515 communicates the current difference signal 1510 to the current 5 comparator 1520, which compares the current signal 1510 of all phases with the average inductor current 1045 to generate a current difference signal for communication to the charging continuous configuration 1010. 1050. A current average resistor 1525 is provided between the current signal 1510 and the average inductor current signal 1045. Because each phase output configuration 110a, 110b, 110c, ..., 110η provides a set of similar current average resistors between their respective current signals and 10 average inductor current signals 1045, the average inductor current signal 1045 has a set of The voltage is proportional to the average value of the respective current signals of the phase output configurations 110a, 110b, 110c, ..., 110n. Referring next to Fig. 16 ', an example of a phase output configuration 15 lOn and an output switch configuration 120n according to the present invention is shown. As shown in Figure 16, similar components are marked with the same symbols as used in Figures 10 to 15. In addition, the example of phase output configuration 11o in Fig. 16 provides a set of total configuration 1605, which is used to add the required output voltage (VDES) level to the sensed current signal, so the original ramp voltage can be Set to the desired output voltage (VDES) level. 2〇 Next, referring to FIG. 3, which shows an example of the multi-phase buck converter in FIG. 1, wherein the phase control configuration 105 includes a set of phase timing configurations 3 05 and a set of pulse width modulation (PWM) configurations 310, It is used to generate a phase timing signal 1030 and a PWM control signal 1040 via a phase control bus 115 (eg, a 5-metal wire analog bus), respectively. The phase control configuration 05 also includes 29, which is used to generate another control signal 330, including another circuit configuration 325, which is not required for understanding the present invention. Phase timing signal 1030 contains information

之貫施範例相位時序仏號1〇3〇包含一組週期電壓波形 ,、接著以如上所述之方式被相位輸出配置、u〇b、 110a、110b、ll〇c、···、11Λ 丄 110c、…、ll〇n所解碼。 10 彳纟著參看第5® ’其展示依據本㈣肖以產生週期相位 時序#唬1030的相位時序配置3〇5之範例。相位時序配置 305包含-組可規劃震|器配置5〇5,其電氣地被搞合至週 期波形產生器510,例如,週期性三角形波形產生器51〇。 週期性三角形波形產生器510被組態以依據可規劃震盪器 15配置505之頻率而產生相位時序信號1030,其可以利用輸入 匯流排130之頻率選擇輸入515被變化或者,另外地,可以 利用一組外部頻率選擇電阻器(未展示出)被規劃。以此方式 ’可規劃震盈裔配置505之頻率以及’因此,週期相位時序 信號1030的頻率,可以被設定為任何所需的頻率,例如, 20 ΙΟΟΚΗζ至1MHz範圍之頻率。 再參看第3圖,相位控制配置105之PWM配置310被組 態以產生PWM控制信號1040,其包含資訊及/或資料以允許 相位輸出配置110a、110b、ll〇c.....110η決定該等開關 配置110a、110b、110c、…、ll〇n之分別一組的高侧開關 30 200425607 205之一組導通持續915。如上所述,供用於高側開關205之 V通持續915愈長,則經由分別開關配置之輸出電感器220 "iL動的電流愈多。以此方式,開關導通持續915可以動態地 被控制以補償負載電流之改變、暫態負載情況、及/或所需 5輸出電壓變量(VDES)之改變。 接著參看第6圖,其展示依據本發明用以產生pwM控 制化號1040之卩^\^配置310的範例。如第6圖之展示,?\\/1^1 配置310包含一組數位至類比轉換器(daC)605,其被組態以 從輸入匯流排13〇之數位輸入615產生所需的輸出電壓變量 10 (Vdes)610。高增益誤差放大器620比較所需的輸出電壓變量 (Vdes)610與該實際輸出電壓(V0UT),並且產生一組誤差信 號625,其成比例於在所需輸出電壓變量(Vdes)61〇和實際輸 出電壓(V0UT)之間的差量。誤差信號625可以被通訊至相位 控制匯流排115作為P W Μ控制信號104 0。 15 因為第6圖之PWM配置310產生一組PWM控制信號320 ’其成比例於在所需輸出電壓變量(VDES)610和實際輸出電 壓(V〇ut)之間的差量,PWM控制信號326可以被相位輸出配 置110a、ll〇b、110c.....ll〇n所使用以維持所需輸出電 壓(Vdes)的實際輸出電壓(V0UT)。以此方式,PWM配置310 20 和相位輸出配置ii〇a、ii〇b、ll〇c.....ll〇n形成無關於 負載電流改變而用以控制實際輸出電壓(V0UT)的一關閉迴 路。 例如,如果實際輸出電壓(V0UT)反應於負載電流之增加 而下降在所需輸出電壓(VDES)之下,則分別開關配置的高側 31 200425607 開關205之導通持續915可以成比例於pwM控制信號1040 而被增加,因而導致分別開關配置的輸出電感器220供應更 多的電流至輸出電容器125,其依序地,導致輸出電壓(V0UT) 上升。另外地,如果實際輸出電壓(ν〇υτ)反應於負載電流之 5減少而上升至所需輸出電壓(V0UT)之上,則分別的開關配置 之高側開關205的導通持續可以成比例於PWN控制信號320 而被減少,因而導致分別開關配置的輸出電感器22〇供應較 小的電流至輸出電容器125,其依序地,導致輸出電壓(νουτ) 下降。 10 DAC 605之數位輸入615可以包含,例如,利用外部電 路,例如,移動式英特爾PentiumIV微處理機所產生之多數 個電壓辨識(VID)數位信號。電壓辨識(νπ))信號可以利用 微處理機被產生以傳送處理器核心可操作之電壓。以此方式 ,PWM配置310之數位至類比變換器(DAC)6〇5可以依據適當 15的處理器核心電壓而產生所需的輸出電壓變量(vDES)。 在某些情況之下,對於新的所需輸出電壓(Vms)之要求 可以在降壓變換器1()()正常操作時導致數位輸人615(例如 ’ VID輸入)改變。當相位控制配置i 〇 5檢測到電壓-辨識(彻) 碼中之改變時,相位控制配置1〇5可能,例如,使信號消失 20 一時間持續’例如,40〇ns,以確保被檢測之改變不是由於 偏斜或者雜訊引起。 反應於較高的所需輸出電壓(Vdes)之要求,高增益誤差 放大器62〇(經由PWM控制㈣1〇4〇)導致相位輸出配置 110a、110b、ll〇c.....11〇n之充電持續增加。另外地, 32 200425607 反應於較低所需的輸出(vDES)之要求,高增益誤差放大器 620導致相位輸出配置110a、ll〇b、110c、···、li〇n之充電 持續減少。但是,如上所述,較低所需的輸出(VDES)之要求 可能不利地導致經由輸出電感器220流動之負電流。 5 因此,依據本發明另一實施範例,相位控制配置1〇5被The phase sequence example No. 1030 includes a set of periodic voltage waveforms, and is then configured by the phase output in the manner described above, uOb, 110a, 110b, 110, ..., 11Λ 丄110c,..., 110. 10 Please refer to section 5® for an example of the phase timing configuration 3005 that generates a periodic phase timing ## 1030 according to this chapter. The phase timing configuration 305 includes a set of programmable seismic device configurations 505 that are electrically coupled to a periodic waveform generator 510, such as a periodic triangular waveform generator 51. The periodic triangle waveform generator 510 is configured to generate a phase timing signal 1030 according to the frequency of the configurable oscillator 505 configuration 505, which may be changed using the frequency selection input 515 of the input bus 130 or, in addition, may be used a Group external frequency selection resistors (not shown) are planned. In this way, the frequency of the tremor configuration 505 can be planned and therefore, the frequency of the periodic phase timing signal 1030 can be set to any desired frequency, for example, a frequency in the range of 20 100KΗζ to 1MHz. Referring again to FIG. 3, the PWM configuration 310 of the phase control configuration 105 is configured to generate a PWM control signal 1040, which contains information and / or data to allow the phase output configuration 110a, 110b, 110c, .... 110n decision Each of these switch configurations 110a, 110b, 110c,..., Lln is a group of high-side switches 30 200425607 205 and one group is turned on for 915. As described above, the longer the V-pass duration 915 for the high-side switch 205 is, the more current flows through the output inductor 220 " iL configured through the respective switches. In this manner, the switch on-duration 915 can be dynamically controlled to compensate for changes in load current, transient load conditions, and / or changes in the required output voltage variable (VDES). Referring next to Fig. 6, an example of a ^^^ configuration 310 for generating a pwM control number 1040 according to the present invention is shown. As shown in Figure 6,? \\ / 1 ^ 1 configuration 310 includes a set of digital-to-analog converters (daC) 605, which are configured to generate the required output voltage variable 10 (Vdes) 610 from the digital input 615 of the input bus 13. The high-gain error amplifier 620 compares the required output voltage variable (Vdes) 610 with the actual output voltage (VOUT) and generates a set of error signals 625, which are proportional to the required output voltage variable (Vdes) 61 and the actual The difference between the output voltage (V0UT). The error signal 625 can be communicated to the phase control bus 115 as the PWM control signal 1040. 15 Because the PWM configuration 310 of FIG. 6 generates a set of PWM control signals 320 'which are proportional to the difference between the required output voltage variable (VDES) 610 and the actual output voltage (Vout), the PWM control signal 326 It can be used by phase output configurations 110a, 110b, 110c ..... lln to maintain the actual output voltage (VOUT) of the required output voltage (Vdes). In this way, the PWM configuration 310 20 and the phase output configurations ii〇a, ii〇b, lloc .... lln form a turn-off to control the actual output voltage (V0UT) regardless of the load current change Circuit. For example, if the actual output voltage (V0UT) drops below the required output voltage (VDES) in response to an increase in load current, then the high side of the switch configuration 31 200425607 the turn-on of switch 205 continuously 915 can be proportional to the pwM control signal 1040 is increased, thereby causing the output inductor 220 of the switch configuration to supply more current to the output capacitor 125, which in turn causes the output voltage (VOUT) to rise. In addition, if the actual output voltage (ν〇υτ) rises above the required output voltage (VOUT) in response to a decrease in the load current, the conduction of the high-side switch 205 of the respective switch configuration can continue to be proportional to PWN The control signal 320 is reduced, thereby causing the output inductors 22 of the switch configurations to supply a smaller current to the output capacitor 125, which in turn causes the output voltage (νουτ) to decrease. The digital input 615 of the DAC 605 may include, for example, a plurality of voltage identification (VID) digital signals generated by an external circuit such as a mobile Intel Pentium IV microprocessor. A voltage identification (νπ) signal can be generated using a microprocessor to transmit a voltage operable by the processor core. In this way, the digital-to-analog converter (DAC) 605 of the PWM configuration 310 can generate the required output voltage variable (vDES) based on an appropriate 15 processor core voltage. In some cases, the requirement for a new required output voltage (Vms) can cause a change in digital input 615 (such as the 'VID input) during normal operation of the buck converter 1 () (). When the phase control configuration i 〇5 detects a change in the voltage-identification (complete) code, the phase control configuration 105 may, for example, make the signal disappear 20 for a period of time 'for example, 40 ns to ensure that it is detected. The change was not caused by skew or noise. In response to the requirement of higher required output voltage (Vdes), the high gain error amplifier 62o (via PWM control ㈣104) causes the phase output configuration 110a, 110b, 110c ... Charging continues to increase. In addition, 32 200425607 responds to the lower required output (vDES) requirements, and the high-gain error amplifier 620 causes the phase output configurations 110a, 110b, 110c, ..., lion to continue to decrease in charge. However, as mentioned above, the lower required output (VDES) requirement may disadvantageously cause a negative current flowing through the output inductor 220. 5 Therefore, according to another exemplary embodiment of the present invention, the phase control configuration 105 is

組態以反應於較低所需的輸出(VDES)之要求而切斷各輸出 開關配置120a、120b、120c、…、120η之高側和低側開關 205、210。為此目的,PWM配置310可以被提供一組級距 下降檢測配置850,如第8圖之展示。 10 級距下降檢測配置85 0檢測一組VID級距下降情況以防The configuration cuts off each output in response to the requirements of a lower required output (VDES) Switch configuration 120a, 120b, 120c, ..., 120η high-side and low-side switches 205, 210. For this purpose, the PWM configuration 310 may be provided with a set of step-down detection configurations 850, as shown in FIG. 10 step down detection configuration 85 0 detect a group of VID step down to prevent

止上述之負電感器電流(亦即,相關於較低所需電壓之要求 的負電感器電流)。為此目的,PWM配置310包含一組钳制 電路配置855,其被組態以钳制高增益誤差放大器82〇之輸 出至較低於各相位輸出配置ll〇a、110b、ll〇e、…、ιι〇η 15 之斜波產生器1310原定電壓之電壓位準。以此方式,利用 PWM配置310被產生之PWN控制信號1 〇4〇導致各相位輸出 配置110a、ll〇b、110c、…、ll〇n之充電持續配置1〇1〇切 斷分別的輸出開關配置120a、120b、120c、···、120η之高 側和低側開關205、210,直至輸出電壓(νουτ)下降至大約較 20 低之輸出電壓(VDES)為止。 於某些情況中,可能需要適應式電壓定位以在負載暫 態時減低輸出電壓偏移並且當負載135獲得最大電流時減 低其功率消耗。為此目的,PWM配置310可以包含下降電 路,其被組態以減低成比例於負載電流增加之實際輸出電 33 200425607 壓(ν〇υτ)。 接著參看第7圖,其展示不同於第6圖PWM配置310之 範例,其被組態以減低成比例於負載電流之增加的輸出電 壓0〇111〇。如第7圖之展示,?〜^1配置310之範例進一步地 5 包含下降電路700,其包含一組電氣地被連接到平均電感器 電流信號1045之電流信號緩衝器。於本發明這實施範例中 ,平均電感器電流信號1045被參考至所需的輸出電壓變量 (VDES),因而電流信號緩衝器705之輸出等於(VDES+ IAVG) ,其中Iavg是成比例於由輸出開關配置120a、120b、120c 10 、…、120η之輸出電感器220所提供之平均電流。一下降電 阻器Rvdrp被提供在電流信號緩衝器705輸出和高增益誤差 放大器620負輸入之間,並且一組偏移電阻器RFB被提供在 實際輸出電壓(V0UT)和高增益誤差放大器620負輸入之間。 因此,在高增益誤差放大器620之負輸入端電壓(v)利用 15 下面的方程式而獲得: (4) V = (V〇es + Uvg) x[ Rfb/(Rfb+Rvdrp)] + V0UT x [Rvdrp/(Rfb+Rvdrp)] 但是,因為高增益誤差放大器620控制電壓迴路以保持 20 其正和負輸入相等,高增益誤差放大器620操作以保持其負 輸入之電壓專於所需的輸出電壓(Vdes)。因此,實際電壓 (V0UT)可由下面的方程式被決定: (5) (V〇ut) = (Vdes)-IAvg x (Rfb/Rvdrp) 因此,第6圖PWM配置310範例操作以成比例於由輸出 34 25 200425607 開關配置120a、120b、120c、…、120η之輸出電感器220所 提供之平均電流而減低實際輸出電壓(V0UT)。定位電壓(ν) 可以利用選擇一適當的下降電阻器Rvdrp而被規劃,因而下 降阻抗產生所需的變換器輸出阻抗。 5 接著參看第17圖,其展示使用離散控制和相位1C被製 作之降壓變換器100的範例。第17圖之降壓變換器1〇〇範例 包含一組控制1C 1705,其包含相位控制配置1〇5的所有功 能以及兩相位IC 1250a、1250b(參看第16圖),其包含相位 輸出配置110a、110b的所有功能。 10 各控制和相位IC1705、1250a、1250b可以包含一超溫檢 測電路1805,如第18圖之展示。超溫檢測電路1805包含 VRHOT比較器1810、一組電氣地被連接到VRHOT比較器 1810輸出之開關1815、以及一組溫度感知配置1820,其被 組態以使用外部插銷1825而產生成比例於晶圓溫度之電壓 15 ,溫度臨限可以使用,例如,被連接到VIN之一組分壓器被 設定。如果晶圓溫度上升至溫度臨限之上,VRHOT比較器 1810導通開關Ιδί5,因而導致VRH0T信號183〇被產生。 VRHOT信號可以被使用,例如,不引動相位或者引動另外 相位以分擔電流負載。 20 對於特定設計被選擇的相位輸出配置110a、ll〇b、110c .....110n之數目可取決於符合熱量需求及/或使最大輸出 電流之輸入和輸出電容器數目最小化之需求。但是,當降 壓變換器100輸出電流是較小於最大輸出電流時,如果較小 的相位輸出配置ll〇a、ii〇b、ii〇c、…、110η被採用則效 35 200425607 率將增加。當輸出電流減少時,切斷相位輸出配置11 〇a、Stop the aforementioned negative inductor current (i.e., the required negative inductor current in relation to the lower required voltage). To this end, the PWM configuration 310 includes a set of clamping circuit configurations 855, which are configured to clamp the output of the high gain error amplifier 82o to lower than each phase output configuration 110a, 110b, 110, ..., ιι 〇η 15 The voltage level of the ramp generator 1310. In this way, the use of the PWN control signal 1 040 generated by the PWM configuration 310 results in the charging of each phase output configuration 110a, 110b, 110c, ..., lln to be continuously configured 1010 to cut off the respective output switches. Configure the high-side and low-side switches 205, 210 of 120a, 120b, 120c, ..., 120η until the output voltage (νουτ) drops to an output voltage (VDES) which is lower than about 20. In some cases, adaptive voltage positioning may be required to reduce output voltage offset during load transients and reduce power consumption when load 135 obtains maximum current. For this purpose, the PWM configuration 310 may include a drop circuit that is configured to reduce the actual output voltage that is proportional to the increase in load current. 33 200425607 Voltage (ν〇υτ). Referring next to Fig. 7, an example different from the PWM configuration 310 shown in Fig. 6 is shown, which is configured to reduce the output voltage of 0,111, which is proportional to the increase in load current. As shown in Figure 7,? The example of the ~ ^ 1 configuration 310 further includes a drop circuit 700 including a set of current signal buffers electrically connected to the average inductor current signal 1045. In this example of the present invention, the average inductor current signal 1045 is referenced to the required output voltage variable (VDES), so the output of the current signal buffer 705 is equal to (VDES + IAVG), where Iavg is proportional to the output switch Configure the average current provided by the output inductor 220 of 120a, 120b, 120c 10,..., 120η. A drop resistor Rvdrp is provided between the output of the current signal buffer 705 and the negative input of the high gain error amplifier 620, and a set of offset resistors RFB is provided between the actual output voltage (VOUT) and the negative input of the high gain error amplifier 620 between. Therefore, the voltage (v) at the negative input terminal of the high-gain error amplifier 620 is obtained using the following equation: (4) V = (V〇es + Uvg) x [Rfb / (Rfb + Rvdrp)] + V0UT x [ Rvdrp / (Rfb + Rvdrp)] However, because the high-gain error amplifier 620 controls the voltage loop to maintain 20 equal to its positive and negative inputs, the high-gain error amplifier 620 operates to keep its negative input voltage specific to the required output voltage (Vdes ). Therefore, the actual voltage (V0UT) can be determined by the following equation: (5) (V〇ut) = (Vdes) -IAvg x (Rfb / Rvdrp) Therefore, the PWM configuration 310 example operation in Figure 6 is proportional to the output by 34 25 200425607 The average current provided by the output inductors 220a, 120b, 120c, ..., 120η of the switch configuration 120a, reduces the actual output voltage (V0UT). The positioning voltage (ν) can be planned by selecting an appropriate drop resistor Rvdrp, so the drop impedance produces the required converter output impedance. 5 Referring next to Figure 17, there is shown an example of a buck converter 100 made using discrete control and phase 1C. The step-down converter 100 example in Figure 17 includes a set of control 1C 1705, which contains all the functions of phase control configuration 105, and two-phase ICs 1250a, 1250b (see Figure 16), which includes phase output configuration 110a. , All functions of 110b. 10 Each control and phase IC 1705, 1250a, 1250b can include an over-temperature detection circuit 1805, as shown in Figure 18. The over-temperature detection circuit 1805 includes a VRHOT comparator 1810, a set of switches 1815 electrically connected to the output of the VRHOT comparator 1810, and a set of temperature-sensing configurations 1820 that are configured to use an external pin 1825 to produce a proportional to crystal The voltage of the circular temperature is 15 ℃, the temperature threshold can be used, for example, a component voltage regulator connected to VIN is set. If the wafer temperature rises above the temperature threshold, the VRHOT comparator 1810 turns on the switch Iδί5, which causes the VRHOT signal 183 to be generated. The VRHOT signal can be used, for example, to not trigger a phase or to trigger another phase to share the current load. 20 The number of phase output configurations 110a, 110b, 110c ..... 110n selected for a particular design may depend on the need to meet thermal requirements and / or minimize the number of input and output capacitors for maximum output current. However, when the output current of the buck converter 100 is smaller than the maximum output current, if the smaller phase output configuration 11a, ii0b, iioc, ..., 110η is adopted, the efficiency 35 200425607 rate will increase . When the output current decreases, cut off the phase output configuration 11 〇a,

110b、110c、…、ll〇n,則因消除閘充電損失、MOSFET 切換損失、和高側和低側開關205、21〇以及各相位輸出配 置110a、110b、110c.....110n之輸出電感器中之循環電 5流而增加效率。各獨特電路設計可以在特定的輸出電流位 準而依序地切斷相位輸出配置110a、li〇b、ii〇c、…、ii〇n 而達成在整個輸出電流範圍上之最大效率。 接著參看第21圖,其展示本發明另一實施範例,其中 各相位輸出配置1 l〇a、110b、110c、···、1 ι〇η是可操作以 10 依據多相降壓轉換器100之輸出電流而關閉一組被指定的 相位。為此目的,相位輸出配置11 On包含一組變換器輸出 電流感測配置2105,其可操作以依據平均電感器電流信號 1045而產生一組代表多相降壓變換器ι〇〇電流之電流信號 2135 ’以及電氣地被耦合至電流信號2135且至臨限信號 15 2115之一組相位關閉比較器2130。 相位輸出配置ll〇n可依據特定應用需求利用提供一特 定的臨限信號值2115而被規劃。例如,於第21圖實施例之 範例中,臨限信號2115被一對彼此串列地被耦合在參考電 壓1270和接地之間的電阻器2120、2125所提供。以此方式 20 ,臨限信號2115可以由採用一組簡單地選擇分壓器適當的 電阻器值而提供。但是,應該了解到,臨限信號2115可以 另一方式被提供,例如,利用數位至類比轉換器,其可操 作以轉換所需的臨限信號2115之數位表示成為一組類比臨 限信號2115,其可以被提供至相位關閉比較器2130。 36 200425607 操作時,如果電流信號2135下降在臨限信號2115之下 ,則相位關閉比較器2130比較電流信號2135與臨限信號 2115並且產生一組相位關閉信號2130。關閉信號2130導致 相位輸出配置110η切斷分別地被指定的輸出開關配置12〇n 5 之高側和低側開關205、210兩者(例如,m〇SFET),其導致 多相降壓變換器之輸出電流哀減。這依序地導致多相降壓 變換器之輸出電壓下降,因而導致相位控制配置1Q5利用完 全如上述增加其餘相位輸出配置110a、11〇b、11()e.....110b, 110c, ..., 110n, because of eliminating the gate charge loss, MOSFET switching loss, and high-side and low-side switches 205, 21〇 and the output configuration of each phase 110a, 110b, 110c ..... 110n output The circulating current in the inductor increases the efficiency by 5 currents. Each unique circuit design can sequentially cut off the phase output configuration 110a, li0b, iioc, ..., iin at a specific output current level to achieve the maximum efficiency over the entire output current range. Referring next to Fig. 21, another embodiment of the present invention is shown, in which each phase output configuration 1 l0a, 110b, 110c, ..., 1 ιη is operable to a 10-phase multi-phase buck converter 100 The output current shuts off a specified set of phases. To this end, the phase output configuration 11 On includes a set of converter output current sensing configurations 2105, which are operable to generate a set of current signals representative of the multi-phase step-down converter current based on the average inductor current signal 1045 2135 'and a group of phase-closed comparators 2130 electrically coupled to the current signal 2135 and the threshold signal 15 2115. The phase output configuration 110n can be planned according to the specific application requirements by providing a specific threshold signal value of 2115. For example, in the example of the embodiment of Fig. 21, the threshold signal 2115 is provided by a pair of resistors 2120, 2125 coupled in series with each other between the reference voltage 1270 and the ground. In this manner 20, the threshold signal 2115 can be provided by using a simple set of suitable resistor values for the voltage divider. However, it should be understood that the threshold signal 2115 may be provided in another way, for example, using a digital-to-analog converter that is operable to convert the digital representation of the threshold signal 2115 required into a set of analog threshold signals 2115, It may be provided to a phase-off comparator 2130. 36 200425607 During operation, if the current signal 2135 falls below the threshold signal 2115, the phase shutdown comparator 2130 compares the current signal 2135 with the threshold signal 2115 and generates a set of phase shutdown signals 2130. The off signal 2130 causes the phase output configuration 110n to turn off both the high-side and low-side switches 205, 210 of the designated output switch configuration 12n 5 (eg, mSFET), which results in a multi-phase buck converter The output current is reduced. This in turn causes the output voltage of the multi-phase step-down converter to drop, thus causing the phase control configuration 1Q5 to be used as described above to increase the remaining phase output configurations 110a, 11〇b, 11 () e ...

110n-l之責務週期的方式而補償。這補償不導致平均電感 10器電流信號1045改變,因這信號1〇45代表降壓變換器1〇〇其 本身之輸出電流,而不代表分別相位輸出配置n〇a、n〇b 、110c、…、ll〇n的輸出電流。 接著參看第22圖,其展示依據本發明之變換器輸出檢 測配置2105範例。如第22圖之展示,變換器輸出檢測配置 15 2105包含一組加法器單元2205,其電氣地被耦合至平均電110n-l duty cycle compensation. This compensation does not cause the average inductor 10 current signal 1045 to change, because this signal 1045 represents the output current of the buck converter 100 itself, and does not represent the respective phase output configuration noa, nob, 110c, ..., llon output current. Referring next to Figure 22, an example of a converter output detection configuration 2105 according to the present invention is shown. As shown in Figure 22, the converter output detection configuration 15 2105 includes a set of adder units 2205, which are electrically coupled to the average power

感器電流信號1045且至所需的輸出電壓信號。操作時 ,加法器單元2205從平均電感器電流信號1〇45減去所需的 輸出電壓VDES以產生電流信號2135 〇 應該了解,雖然相位關閉電路如上面關於具有模組相 2〇位輸出配置ll〇a、U〇b、11〇c、…、110η之多相降壓變換 器範例般被敘述,相位關閉電路可以被採用於具有固定數 目之相位輸出配置或者相位(例如,兩相位、三相位、四相 位、八相位)之多相降壓變換器中。 【圖式簡單說明】 37 200425607 第1圖是依據本發明降壓變換器範例之方塊圖。 第2圖是依據本發明輸出開關配置之方塊圖。 第3圖是展示第1圖之詳細相位控制配置的方塊圖。 第4圖是展示反應於負載級減少依據本發明之降壓變 5 換器範例的反應圖形。 第5圖是展示第3圖之詳細相位時序配置的方塊圖。 第6圖是展示第3圖之詳細PWM配置的方塊圖。The sensor current signal is 1045 and reaches the required output voltage signal. In operation, the adder unit 2205 subtracts the required output voltage VDES from the average inductor current signal 1045 to generate the current signal 2135. It should be understood that although the phase shutdown circuit is as described above with the module phase 20-bit output configuration ll 〇a, U〇b, 11〇c, ..., 110η are described as examples of multi-phase step-down converters. The phase shutdown circuit can be used with a fixed number of phase output configurations or phases (for example, two-phase, three-phase , Four-phase, eight-phase) multi-phase buck converter. [Schematic description] 37 200425607 Figure 1 is a block diagram of an example of a buck converter according to the present invention. Figure 2 is a block diagram of an output switch configuration according to the present invention. Figure 3 is a block diagram showing the detailed phase control configuration of Figure 1. Fig. 4 is a reaction diagram showing an example of a step-down transformer according to the present invention in response to a reduction in the load stage. Figure 5 is a block diagram showing the detailed phase timing configuration of Figure 3. Figure 6 is a block diagram showing the detailed PWM configuration of Figure 3.

第7圖是展示第6圖PWM配置範例之變化形式的方塊 圖,其被組態以成比例於負載電流之增加而減低輸出電壓。 10 第8圖是展示依據本發明另一相位控制配置範例之方 塊圖。 第9a圖是展示供用於輸出開關配置之週期性充電週期 持續範例的圖形。 第9b圖是展示反應於較低的所需輸出要求之輸出開關 15 配置控制的圖形。Fig. 7 is a block diagram showing a variation of the PWM configuration example of Fig. 6, which is configured to reduce the output voltage in proportion to the increase in load current. 10 Figure 8 is a block diagram showing another example of a phase control configuration according to the present invention. Figure 9a is a graph showing a continuous charging cycle duration example for an output switch configuration. Figure 9b is a diagram showing the configuration control of output switch 15 in response to a lower required output requirement.

第10圖是依據本發明相位輸出配置範例之方塊圖。 第11圖是依據本發明開始時間配置範例之方塊圖。 第12a圖是展示依據本發明相位時序信號範例之圖形。 第12b圖是展示被偏移設定點電壓值之第12a圖相位時 20 序信號的圖形。 第12c圖是展示相位時間比較器之輸出的圖形。 第12d圖是展示對於一組三角形相位時序信號之八組 相位的相位時序圖形。 第12e圖是展示依據本發明另一開始時間配置範例之 38 200425607 方塊圖。 第13圖是展示依據本發明充電持續配置範例之方塊圖。 第14圖是展示依據本發明斜波產生器範例之方塊圖。 第15圖是展示依據本發明電流感知配置範例之方塊圖。 5 第16圖是展示依據本發明被製作為分離積體電路的相 位輸出配置範例之方塊圖。 第Π圖是展示依據本發明在一組相位控制配置和多數 個相位輸出配置之間的連接之方塊圖。 第18圖是展示依據本發明關於超溫檢測電路範例之方 10 塊圖。 第19圖是展示依據先前技術之單一相位降壓變換器的 15 圖 第20圖疋展示依據先前技術之多相降壓變換 器的方塊 第21圖是依據本發明採用相位關閉電路之本 置的方塊圖。 1 的方塊圖 目位輪出配 第2 2圖是依據本發明之變換器輪出電流柊、 繞圖。 例 【圖式之主要元件代表符號表】 100···多相降壓變換器 125···輪出電容器 110a-110n…相位輸出配置 135···負載 105···相位控制配置 205... 115…相位控制匯流排 210 · · ·低側開關 l2〇a-120n…輸出開關配置 215···開關節點 39 200425607 220···輸出電感器 220a…輸出節點側 305···相位時序配置 310···脈波寬度調變(PWM)配置 315···電路配置 320".PWM控制信號 325···電路配置 330···控制信號 505…可規劃震盪器配置 510···週期性三角形波形產生器 515···頻率選擇輸入FIG. 10 is a block diagram of a phase output configuration example according to the present invention. FIG. 11 is a block diagram of a start time configuration example according to the present invention. Fig. 12a is a graph showing an example of a phase timing signal according to the present invention. Figure 12b is a graph showing the sequence 20 signal when the phase of Figure 12a is shifted from the setpoint voltage value. Figure 12c is a graph showing the output of the phase time comparator. Figure 12d is a phase timing graph showing eight sets of phases for a set of triangular phase timing signals. Fig. 12e is a block diagram of a 20042004607 38 which shows another example of start time configuration according to the present invention. FIG. 13 is a block diagram showing an example of a continuous charging configuration according to the present invention. Fig. 14 is a block diagram showing an example of a ramp wave generator according to the present invention. FIG. 15 is a block diagram showing an example of a current sensing configuration according to the present invention. 5 FIG. 16 is a block diagram showing an example of a phase output configuration made as a discrete integrated circuit according to the present invention. Figure Π is a block diagram showing the connections between a set of phase control arrangements and a plurality of phase output arrangements according to the present invention. FIG. 18 is a block diagram showing an example of an over-temperature detection circuit according to the present invention. Fig. 19 is a diagram showing a single phase step-down converter according to the prior art. Fig. 20 is a block diagram showing a multi-phase step-down converter according to the prior art. Fig. 21 is a diagram of a phase-shutdown circuit according to the present invention. Block diagram. The block diagram of Figure 1 shows the layout of the eye wheel. Figure 2 shows the winding current of the converter according to the present invention. Example [Symbol table of the main components of the diagram] 100 ··· multi-phase buck converter 125 ··· wheel-out capacitors 110a-110n ... phase output configuration 135 ·· load 105 ··· phase control configuration 205 .. 115 ... Phase control bus 210 · · · Low-side switch l20a-120n ... Output switch configuration 215 ··· Switch node 39 200425607 220 ··· Output inductor 220a ·· Output node side 305 ··· Phase timing configuration 310 ... Pulse width modulation (PWM) configuration 315 ... Circuit configuration 320 " PWM control signal 325 ... Circuit configuration 330 ... Control signal 505 ... Oscillator configuration 510 ... Periodicity can be planned Triangle waveform generator 515 ... frequency selection input

605…數位至類比轉換器pAQ 610···輸出電壓變量(vDES) 615···數位輸入 620···高增益誤差放大器 625···誤差信號 700…下降電路 705···電流信號緩衝器 850" ·級距下降檢測配置 855···钳制電路配置 900…週期性充電週期持續 905···相位延遲 910…週期性開始時間 915···充電持續 1005…開始時間配置 1010…充電持續配置 1015…電流感測配置 1020…S_R鎖定 1025 …AND 閘 1035…週期性時脈脈波 1040.. .PWM控制信號 1045…平均電流 1050…電流差量信號 1105…相位時序比較器 1110…單擊脈波產生器 1115…固定設定點電壓 1255a···電氣接觸插銷 1255b···電氣接觸插銷 1260…節點 1265a···電阻器 1265b···電阻器 1270…參考電壓 1305…充電持續放大器 1310…持續配置 1315…個體斷電檢測放大器 1320.. .5-R 鎖定器 1020a··· S-R鎖定輸出 1325…斜波輸出線605… digital-to-analog converter pAQ 610 ·· output voltage variable (vDES) 615 ·· digital input 620 ··· high-gain error amplifier 625 ··· error signal 700 ... drop circuit 705 ·· current signal buffer 850 " · Step-down detection configuration 855 · · Clamping circuit configuration 900 ... Periodic charging cycle lasts 905 ... Phase delay 910 ... Periodic start time 915 ... Charging continues 1005 ... Start time configuration 1010 ... Charging continuous configuration 1015 ... Current sensing configuration 1020 ... S_R lock 1025 ... AND gate 1035 ... Periodic clock pulse 1040 ... PWM control signal 1045 ... Average current 1050 ... Current difference signal 1105 ... Phase timing comparator 1110 ... Click pulse Wave generator 1115 ... Fixed setpoint voltage 1255a ... electric contact pin 1255b ... electric contact pin 1260 ... node 1265a ... resistor 1265b ... resistor 1270 ... reference voltage 1305 ... charging continuous amplifier 1310 ... continuous Equipped with 1315… individual power-off detection amplifier 1320 .. .5-R lockout 1020a ... SR lockout output 1325 ... ramp output line

40 200425607 1330…導通原定電壓輸出線 1340*"PWM控制信號 1350…電流信號 1405…钳制電路 1410…可規劃電流源 1415…運算放大器 1415a···引動輸入 1420…鉗制二極體 1425…斜波電容器 1430…斜波電阻器 1450…相位誤差檢測放大器 1455…分數乘法器 1460…開關 1465…相位誤差信號 1505…電感器電流感知配置 1510…電感器電流信號 1515…電流感知放大器 1520…電流比較器 1605…總和配置 1705…控制1C 1805…超溫檢測電路 1810…VRHOT比較器 1815…開關 1820…溫度感知配置 1825…外部插銷 1900…單一相位降壓變換器 1905…高側開關 1910…低側開關 1915…開關節點 1920…輸出電感器 1930…控制電路 1935…負載 2000…多相DC至DC降壓變換器 2005a-2005n···輸出相位 2105…變換器輸出電流感測配置 2115…臨限信號 2130…相位關閉信號 2135…電流信號 2205…加法器單元40 200425607 1330… Conduct the original constant voltage output line 1340 * " PWM control signal 1350 ... Current signal 1405 ... Clamping circuit 1410 ... Programmable current source 1415 ... Operational amplifier 1415a. Wave capacitor 1430 ... Ramp resistor 1450 ... Phase error detection amplifier 1455 ... Fractional multiplier 1460 ... Switch 1465 ... Phase error signal 1505 ... Inductor current sensing configuration 1510 ... Inductor current signal 1515 ... Current sensing amplifier 1520 ... 1605 ... sum configuration 1705 ... control 1C 1805 ... overtemperature detection circuit 1810 ... VRHOT comparator 1815 ... switch 1820 ... temperature sensing configuration 1825 ... external pin 1900 ... single phase buck converter 1905 ... high-side switch 1910 ... low-side switch 1915 … Switch node 1920… output inductor 1930… control circuit 1935… load 2000… multiphase DC to DC buck converter 2005a-2005n ... output phase 2105 ... converter output current sensing configuration 2115 ... threshold signal 2130 ... Phase-off signal 2135 ... current signal 2205 ... adder unit

4141

Claims (1)

200425607 拾、申請專利範圍: 1· 一種用以提供一輸出電壓至一組負載之降壓變換器,該 輸出電壓依據所需的電壓從一組輸入電壓被產生,該降 壓變換器包含: 5 一組輸出電容器,該輸出電壓利用該輸出電容器而 被提供;200425607 Patent application scope: 1. A step-down converter for providing an output voltage to a group of loads. The output voltage is generated from a group of input voltages according to the required voltage. The step-down converter contains: 5 A set of output capacitors, the output voltage being provided by the output capacitors; 多數個輸出開關配置,其具有被耦合至該輸出之分 別的輸出電感器,該等開關配置可控制以提供分別的相 位輸出電流經由該等分別的輸出電感器至該輸出電容 10 器; 分別地被耦合至該等輸出開關配置之多數個相位 輸出配置,該等相位輸出配置是可控制以設定利用該等 輸出開關配置被供應的分別相位輸出電流,如果代表降 壓變換器之輸出電流之信號下降至一分別可規劃之臨 15 限信號之下,各該等相位輸出配置是可操作以關閉該分A plurality of output switch configurations having separate output inductors coupled to the output, the switch configurations being controllable to provide respective phase output currents through the respective output inductors to the output capacitor 10; A plurality of phase output configurations coupled to the output switch configurations, the phase output configurations are controllable to set the respective phase output currents supplied using the output switch configurations, if a signal representing the output current of the buck converter Lowered below a separately programmable Pro 15 limit signal, each of these phase output configurations is operable to close the branch 別的輸出開關配置;以及 一組相位控制配置,其被組態以控制該等相位輸出 配置而設定利用該等輸出開關配置被供應的分別相位 輸出電流,因而該輸出電壓接近所需的電壓。 20 2.依據申請專利範圍第1項之降壓變換器,其中各該等輸 出開關配置包含一組高側開關和一組經由一分別的開 關節點而被耦合至該高側開關之低側開關,各該等輸出 開關配置之輸出電感器被耦合至該分別的開關節點。 3.依據申請專利範圍第2項之降壓變換器,其進一步地包 42 200425607 含一組相位控制匯流排,相位控制配置經由該相位控制 匯流排而控制該等相位輸出配置,該相位控制匯流排包 含一組相位時序信號、一組PWM控制信號、以及一組 平均電感器電流信號,各該等相位輸出配置包含一組開 5 始-時間配置,其被組態以依據該相位時序信號而導通 該分別的輸出開關配置之該高側開關,各該等相位輸出 配置包含一組充電持續配置,其被組態以依據該PWM 控制信號而切斷該分別輸出開關配置的高側開關。 4·依據申請專利範圍第3項之降壓變換器,其中該開始時 10 間配置包含一組電氣地被耦合至該相位時序信號之相 位時序比較器以及一組電氣地被耦合至該相位時序比 較器輸出之單擊脈波產生器,該單擊脈波產生器被組態 以依據該相位時序信號和一組設定點電壓而產生一組 時脈脈波,該時脈脈波導通該高側開關。 5.依據申請專利範圍第4項之降壓變換器,其中該設定點 電壓利用一組被連接在一參考電壓和一接地電壓之間 的分壓器而被提供。 6·依據申請專利範圍第3項之降壓變換器,其中該充電持 續配置包含一組電氣地被耦合至該電流差量信號之斜 20 波產生器以及一組電氣地被耦合至該斜波產生器和該 PWM控制信號之充電持續放大器,該斜波產生器被組 態以依據該電流差量信號和一組原定電壓而產生一組 斜波輸出信號,該充電持續放大器被組態以依據該斜波 輸出信號和該PWM控制信號而切斷該高側開關。 43 200425607 7.依據申請專利範圍第6項之降壓變換器,其中該斜波產 生器包含一組電氣地被耦合至該斜波輸出信號之斜波 電容器、一組電氣地被耦合至該斜波輸出信號和至該原 定電壓之鉗制電路、以及一組電氣地被耦合在該斜波輸 5 出信號和一組接地電壓之間的可規劃電流源,該可規劃 之電流源是依據該電流差量信號而可控制。 8·依據申請專利範圍第7項之降壓變換器,其中該相位控 制匯流排包含一組描述所需電壓的信號,各該等相位輸 出配置接收該描述所需電壓的該信號,該原定電壓依據 10 該描述所需電壓的該信號而被設定。 9·依據申請專利範圍第7項之降壓變換器,其中該斜波產 生器進一步地包含一組相位誤差檢測配置,如果該等相 位輸出配置不能夠提供一組相位輸出電流以匹配該平 均電感器電流信號,則該相位誤差檢測配置被組態以產 15 生一組相位誤差信號。 10·依據申請專利範圍第6項之降壓變換器,其中該充電持 續配置進一步地包含一組個體斷電檢測放大器,其被組 態以反應於降低所需電壓之要求和減少負載電流之需 求之至少一組而切斷該高側開關和該低側開關。 20 η·依據申請專利範圍第10項之降壓變換器,其中降低所需 電壓之要求和減少負載電流之需求依據該PWM控制信 號被決定。 12.依據申請專利範圍第3項之降壓變換器,其中各該等相 位輸出配置進一步地包含一組電流感測配置,其電氣地 44 200425607 被連接到該分別輸出電感器的一組第一節點和一組第 二節點並且被連接到該平均電感器電流信號,該電流感 測配置被組態以檢測該分別的相位輸出電流並且依據 該平均電感Is電流信號和該分別的相位輸出電流而產 5 生一組電流差量信號。 13. 依據申請專利範圍第12項之降壓變換器,其中該電流感 測配置包含一組電流檢測配置,其被連接到該分別輸出 電感器的該第一和第二節點,以及一組電流比較器,其 電氣地被連接到該電流感測配置之一組輸出並且被連 10 接到該平均電感器電流信號,該電流感測配置依據該電 流檢測配置之輸出和該平均電感器電流信號而產生該 電流差量信號。 14. 依據申請專利範圍第13項之降壓變換器,其中該電流檢 測配置包含一組電流感知放大器、一組電氣地被耦合在 15 該電流感知放大器的一組正輸入和該第一節點之間的 電阻器Rcs,以及一組電氣地被耦合在該電流感知放大 器的該正輸入和一組負輸入之間的電容器Ccs,該第二 節點被連接到該負輸入,該電阻器Rcs和該電容器Ccs的 時間常數大約地等於該分別輸出電感器的時間常數。 20 15.依據申請專利範圍第3項之降壓變換器,其中該相位控 制配置包含一組相位時序配置以及一組PWM配置,該 相位時序配置被組態以產生該相位時序信號並且該 PWM配置被組態以產生該PWM控制信號。 16.依據申請專利範圍第15項之降壓變換器,其中該相位時 45 200425607 序配置包含一組可規劃之震盪器配置以及一組電氣地 被耦合至該可規劃震盪器配置之週期波形產生器,該可 規劃震盪器配置之一組頻率是可經由一組頻率選擇輸 入而選擇,該週期波形產生器依據該可規劃震盪器配置 之頻率而產生該相位時序信號。 17·依據申請專利範圍第15項之降壓變換器,其中該pwM 配置包含一組數位至類比轉換器,其被組態以依據多數 個數位VID信號而產生一組描述該所需電壓的變數,一 組南增益誤差放大器,其電氣地被耦合至描述該所需電 壓和該輸出電壓的該變數,該高增益誤差放大器依據描 述該所需電壓和該輸出電壓的變數而產生該pWM控制 信號。 18·依據申請專利範圍第15項之降壓變換器,其中該pwM 配置進一步地包含下降電路,其被組態以修改該PWM 控制信號’以至於該輸出電壓成比例於經由負載流動之 電流的增加而被減低。 19.依據申請專利範圍第15項之降壓變換器,其中該pwM 配置進一步地包含個體斷電電路,其被組態以修改該 PWM控制信號’以至於該等相位輸出配置反應於較低 之所需輸出電壓的要求而切斷該分別輸出開關配置的 高側和低側開關。 2〇·依據巾請專利範圍第3項之降壓變換n,其中各該相位 控制配置和該等相位輸出配置包含一組分別的超溫檢 測電路’如果分別的積體電路溫度上升至分別的溫度臨 46 200425607 限之上,則該超溫檢測電路被組態以產生一組VRHOT 信號。 21·依據申請專利範圍第1項之降壓變換器,其中該等相位 輸出配置包含一組固定數目的相位輸出配置。 5 22. —種降壓變換器之相位輸出配置,該等相位輸出配置電 氣地可耦合至具有一組輸出電感器、一組高側開關以及 一組低側開關之一組輸出開關配置,該降壓變換器提供 一組經由電氣地被耦合至該輸出電感器的一組輸出電 容器而至一組負載的輸出電壓,該輸出電壓依據一組所 10 需的電壓而從一組輸入電壓被產生,該相位輸出配置包 含: 一組配置,如果代表降壓變換器一組輸出電流之信 號下降在一可規劃臨限信號之下,則該配置被組態以關 閉該輸出開關配置之高側和低側開關。 15 23 ·依據申凊專利範圍第22項之相位輸出配置,其中如果該 代表該降壓變換器一組輸出電流之該信號下降在該可 規劃臨限信號之下,則該配置被組態以關閉該輸出開關 配置之高側和低側開關,該配置包含·· 一組變換器輸出電流檢測配置,其可操作以產生代 20 表該降壓變換器輸出電流之信號;以及 一組相位關閉比較器,其電氣地被耦合至代表該降 壓變換器輸出電流之信號並且至該可規劃之臨限信號 ,如果代表該降壓變換器輸出電流之該信號下降在可規 劃臨限信號之下,則該相位關閉比較器產生用以關閉該 47 200425607 輸出開關配置之高側和低側開關的一組關閉信號。 24. 依據申請專利範圍第22項之相位輸出配置,其中該可規 劃之臨限信號被一組外部電路所提供。 25. 依據申請專利範圍第24項之相位輸出配置,其中該外部 5 電路包含一組分壓器。Other output switch configurations; and a set of phase control configurations that are configured to control the phase output configurations and set the respective phase output currents that are supplied using the output switch configurations, so that the output voltage is close to the required voltage. 20 2. The buck converter according to item 1 of the scope of patent application, wherein each of the output switch configurations includes a set of high-side switches and a set of low-side switches coupled to the high-side switch via a separate switching node The output inductors of each of the output switch configurations are coupled to the respective switch node. 3. The step-down converter according to item 2 of the scope of patent application, which further includes 42 200425607, which includes a set of phase control buses. The phase control configuration controls the phase output configurations via the phase control bus. The phase control bus The bank includes a set of phase timing signals, a set of PWM control signals, and a set of average inductor current signals. Each of these phase output configurations includes a set of start-time configurations that are configured to be based on the phase timing signals. The high-side switches of the respective output switch configurations are turned on, and each of the phase output configurations includes a set of continuous charging configurations configured to cut off the high-side switches of the respective output switch configurations according to the PWM control signal. 4. The step-down converter according to item 3 of the scope of patent application, wherein the starting 10 configuration includes a set of phase timing comparators electrically coupled to the phase timing signal and a set of electrical timing couples to the phase timing The click pulse generator of the comparator output is configured to generate a set of clock pulses based on the phase timing signal and a set of set point voltages, and the clock waveguide passes through the high Side switch. 5. The step-down converter according to item 4 of the application, wherein the set-point voltage is provided by a set of voltage dividers connected between a reference voltage and a ground voltage. 6. The step-down converter according to item 3 of the scope of patent application, wherein the charging continuous configuration includes a set of inclined 20-wave generators electrically coupled to the current difference signal and a set of electrically coupled to the inclined waves The generator and the charging continuous amplifier of the PWM control signal. The ramp generator is configured to generate a set of ramp output signals according to the current difference signal and a set of predetermined voltages. The charging continuous amplifier is configured to The high-side switch is turned off according to the ramp wave output signal and the PWM control signal. 43 200425607 7. The step-down converter according to item 6 of the patent application scope, wherein the ramp generator includes a set of ramp capacitors electrically coupled to the ramp output signal, and a set of electrical couplings to the ramp Wave output signal and a clamping circuit to the original voltage, and a set of programmable current sources electrically coupled between the output signal of the ramp wave and a set of ground voltage, the planable current source is based on the The current difference signal can be controlled. 8. The step-down converter according to item 7 of the scope of patent application, wherein the phase control bus includes a set of signals describing the required voltage, and each of the phase output configurations receives the signal describing the required voltage. The voltage is set according to this signal which describes the required voltage. 9. The step-down converter according to item 7 of the patent application, wherein the ramp generator further includes a set of phase error detection configurations, if the phase output configurations cannot provide a set of phase output currents to match the average inductance Current signal, the phase error detection configuration is configured to generate a set of phase error signals. 10. The step-down converter according to item 6 of the scope of patent application, wherein the continuous charging configuration further includes a set of individual power-down detection amplifiers configured to respond to the requirement to reduce the required voltage and the requirement to reduce the load current At least one of them to cut off the high-side switch and the low-side switch. 20 η · The buck converter according to item 10 of the scope of patent application, in which the requirement for reducing the required voltage and the requirement for reducing the load current are determined according to the PWM control signal. 12. The buck converter according to item 3 of the scope of patent application, wherein each of the phase output configurations further includes a set of current sensing configurations, which are electrically connected to the first set of 44 200425607 Node and a set of second nodes and connected to the average inductor current signal, the current sensing configuration is configured to detect the respective phase output current and based on the average inductor Is current signal and the respective phase output current Generates a set of current difference signals. 13. The step-down converter according to item 12 of the application, wherein the current sensing configuration includes a set of current detection configurations connected to the first and second nodes of the respective output inductors, and a set of currents A comparator, which is electrically connected to a set of outputs of the current sensing configuration and is connected to the average inductor current signal, the current sensing configuration being based on the output of the current detection configuration and the average inductor current signal This current difference signal is generated. 14. The step-down converter according to item 13 of the patent application, wherein the current detection configuration includes a set of current sense amplifiers, a set of positive inputs electrically coupled to the current sense amplifier, and the first node Resistor Rcs, and a set of capacitors Ccs electrically coupled between the positive input and a set of negative inputs of the current sense amplifier, the second node is connected to the negative input, the resistor Rcs and the The time constant of the capacitor Ccs is approximately equal to the time constant of the respective output inductor. 20 15. The buck converter according to item 3 of the scope of patent application, wherein the phase control configuration includes a set of phase timing configuration and a set of PWM configuration, the phase timing configuration is configured to generate the phase timing signal and the PWM configuration It is configured to generate the PWM control signal. 16. The step-down converter according to item 15 of the scope of patent application, wherein the phase time 45 200425607 sequence configuration includes a set of programmable oscillator configurations and a set of periodic waveforms electrically coupled to the programmable oscillator configurations. One of a group of frequencies of the programmable oscillator configuration can be selected through a set of frequency selection inputs, and the periodic waveform generator generates the phase timing signal according to the frequency of the programmable oscillator configuration. 17. The buck converter according to item 15 of the scope of patent application, wherein the pwM configuration includes a set of digital-to-analog converters configured to generate a set of variables describing the required voltage based on the majority of digital VID signals A set of south gain error amplifiers electrically coupled to the variables describing the required voltage and the output voltage, the high gain error amplifier generating the pWM control signal based on the variables describing the required voltage and the output voltage . 18. The step-down converter according to item 15 of the patent application scope, wherein the pwM configuration further includes a drop circuit configured to modify the PWM control signal 'so that the output voltage is proportional to the current flowing through the load. Increase and decrease. 19. The step-down converter according to item 15 of the scope of patent application, wherein the pwM configuration further includes an individual power-off circuit, which is configured to modify the PWM control signal 'so that the phase output configuration reflects a lower The high-side and low-side switches of the respective output switch configuration are cut off by the required output voltage. 2 · According to the step-down conversion n of the third patent scope, each of the phase control configuration and the phase output configuration includes a set of separate over-temperature detection circuits. When the temperature is close to 46 200425607 limit, the over-temperature detection circuit is configured to generate a set of VRHOT signals. 21. The buck converter according to item 1 of the scope of patent application, wherein the phase output configurations include a fixed number of phase output configurations. 5 22. —A phase output configuration of a buck converter, which phase output configuration is electrically coupled to a group of output switch configurations having a set of output inductors, a set of high-side switches, and a set of low-side switches. The buck converter provides a set of output voltages to a set of loads via a set of output capacitors electrically coupled to the output inductor, the output voltage being generated from a set of input voltages based on a set of required voltages The phase output configuration includes: a set of configurations, if the signal representing a set of output currents of the buck converter drops below a programmable threshold signal, the configuration is configured to turn off the high-side and Low-side switch. 15 23 · The phase output configuration according to item 22 of the patent scope of the application, wherein if the signal representing a group of output currents of the buck converter drops below the programmable threshold signal, the configuration is configured to Turn off the high-side and low-side switches of the output switch configuration, which includes a set of converter output current detection configurations that are operable to generate a signal representative of the output current of the buck converter; and a set of phase shutdown The comparator is electrically coupled to a signal representing the output current of the buck converter and to the programmable threshold signal, if the signal representing the output current of the buck converter falls below the programmable threshold signal , The phase shutdown comparator generates a set of shutdown signals to turn off the high-side and low-side switches of the 47 200425607 output switch configuration. 24. The phase output configuration according to item 22 of the patent application scope, wherein the programmable threshold signal is provided by a set of external circuits. 25. The phase output configuration according to item 24 of the patent application scope, wherein the external 5 circuit includes a voltage divider. 26. 依據申請專利範圍第25項之相位輸出配置,其中該分壓 器包含至少兩組電阻器,其彼此串列地被連接在一組參 考電壓和一組接地電壓之間。 27. 依據申請專利範圍第24項之相位輸出配置,其中該外部 10 電路包含一組數位至類比轉換器,其可操作以輸出該可 規劃之臨限信號。26. The phase output configuration according to item 25 of the patent application, wherein the voltage divider includes at least two sets of resistors connected in series with each other between a set of reference voltages and a set of ground voltages. 27. The phase output configuration according to item 24 of the patent application, wherein the external 10 circuit includes a set of digital-to-analog converters operable to output the programmable threshold signal. 4848
TW093101719A 2003-01-28 2004-01-27 Multi-phase buck converter with programmable phase selection TWI242921B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44321003P 2003-01-28 2003-01-28
US10/761,526 US6826028B2 (en) 2003-01-28 2004-01-20 Multi-phase buck converter with programmable phase selection

Publications (2)

Publication Number Publication Date
TW200425607A true TW200425607A (en) 2004-11-16
TWI242921B TWI242921B (en) 2005-11-01

Family

ID=32738433

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093101719A TWI242921B (en) 2003-01-28 2004-01-27 Multi-phase buck converter with programmable phase selection

Country Status (7)

Country Link
US (1) US6826028B2 (en)
JP (1) JP4255474B2 (en)
KR (1) KR100651185B1 (en)
CN (1) CN1742421A (en)
DE (1) DE112004000209T5 (en)
TW (1) TWI242921B (en)
WO (1) WO2004070925A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10198320B2 (en) 2014-10-31 2019-02-05 Hewlett-Packard Development Company, L.P. Power-loss protection
TWI687035B (en) * 2019-05-03 2020-03-01 茂達電子股份有限公司 Overshoot Reduction Circuit for Buck Converter
CN113557656A (en) * 2020-02-13 2021-10-26 予力半导体公司 Reconfigurable power converter

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806689B2 (en) * 2002-03-22 2004-10-19 International Rectifier Corporation Multi-phase buck converter
US7109694B2 (en) * 2003-07-14 2006-09-19 International Rectifier Corporation Digital multiphase control system
JP4387172B2 (en) * 2003-12-02 2009-12-16 株式会社リコー Power supply circuit and method for changing output voltage of power supply circuit
US7139180B1 (en) * 2004-09-15 2006-11-21 Edward Herbert Three phase buck power converters having input current control
WO2006078544A2 (en) * 2005-01-18 2006-07-27 Timelab Corporation Low-noise switching voltage regulator and methods therefor
US7339361B2 (en) * 2006-06-26 2008-03-04 Intersil Americas Inc. Multi-phase DC-DC converter using auxiliary resistor network to feed back multiple single-ended sensed currents to supervisory controller for balanced current-sharing among plural channels
US8618788B2 (en) * 2007-03-30 2013-12-31 Malay Trivedi Dynamically adjusted multi-phase regulator
US7812581B2 (en) * 2007-05-04 2010-10-12 Intersil Americas Inc. Pulse adding scheme for smooth phase dropping at light load conditions for multiphase voltage regulators
US20090322301A1 (en) * 2008-06-26 2009-12-31 Enermax Technology Corporation Control circuit for improving efficiency of lower load of power supply device and method thereof
TWI395394B (en) * 2009-12-31 2013-05-01 Delta Electronics Inc Multi-output buck converting apparatus with shutdown protection
US8410635B2 (en) * 2010-03-16 2013-04-02 GM Global Technology Operations LLC Systems and methods for deactivating a matrix converter
DE102010019711B4 (en) * 2010-05-07 2012-03-01 Fujitsu Technology Solutions Intellectual Property Gmbh Power supply circuit, computer system, method of automatically configuring a multi-phase voltage converter and computer program product
US9106201B1 (en) 2010-06-23 2015-08-11 Volterra Semiconductor Corporation Systems and methods for DC-to-DC converter control
CN102130899B (en) * 2010-12-28 2015-04-29 华为技术有限公司 Power protocol management method, device and applied power system
US8552704B2 (en) * 2011-04-05 2013-10-08 Maxim Integrated Products, Inc. Current share compensation design
CN102281004B (en) * 2011-08-24 2014-07-16 武汉烽火网络有限责任公司 High-power switch power supply circuit
US9755517B2 (en) * 2015-12-16 2017-09-05 Dialog Semiconductor (Uk) Limited Multi-threshold panic comparators for multi-phase buck converter phase shedding control
US10651734B2 (en) * 2017-04-11 2020-05-12 Dell Products, L.P. System and method for robust body braking control to suppress transient voltage overshoot
JP6973143B2 (en) 2018-02-08 2021-11-24 株式会社デンソー Boost converter device
US10284095B1 (en) * 2018-02-19 2019-05-07 Microchip Technology Incorporated Method and apparatus for phase current balancing in multi-phase constant on-time buck converter
CN110445381B (en) * 2019-07-26 2021-07-16 成都芯源系统有限公司 Multiphase switch converter containing daisy chain structure and phase switching control method thereof
US11569747B2 (en) 2021-03-05 2023-01-31 Apple Inc. Adaptive phase add/shed for a power converter
US12003179B2 (en) * 2021-10-08 2024-06-04 Infineon Technologies Austria Ag Power supply and emulated current mode to control generation of an output voltage
US11804777B2 (en) 2021-10-08 2023-10-31 Infineon Technologies Austria Ag Power supply and emulated current mode control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166528A (en) * 1999-11-02 2000-12-26 Fairchild Semiconductor Corporation Lossless current sensing in buck converters working with low duty cycles and high clock frequencies
US6674274B2 (en) 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
US6433527B1 (en) * 2001-06-01 2002-08-13 Maxim Integrated Products, Inc. Phase failure detector for multi-phase switching regulators
US6995483B2 (en) * 2002-10-15 2006-02-07 Texas Instruments Incorporated Synchronous buck and boost regulator power reduction circuit using high side sensing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10198320B2 (en) 2014-10-31 2019-02-05 Hewlett-Packard Development Company, L.P. Power-loss protection
US10402274B2 (en) 2014-10-31 2019-09-03 Hewlett-Packard Development Company, L.P. Power loss protection
US10719402B2 (en) 2014-10-31 2020-07-21 Hewlett-Packard Development Company, L.P. Power-loss protection
TWI687035B (en) * 2019-05-03 2020-03-01 茂達電子股份有限公司 Overshoot Reduction Circuit for Buck Converter
CN113557656A (en) * 2020-02-13 2021-10-26 予力半导体公司 Reconfigurable power converter

Also Published As

Publication number Publication date
US20040145845A1 (en) 2004-07-29
KR100651185B1 (en) 2006-11-30
CN1742421A (en) 2006-03-01
WO2004070925A3 (en) 2004-12-09
DE112004000209T5 (en) 2005-12-29
KR20050105989A (en) 2005-11-08
JP2006515146A (en) 2006-05-18
WO2004070925A2 (en) 2004-08-19
JP4255474B2 (en) 2009-04-15
US6826028B2 (en) 2004-11-30
TWI242921B (en) 2005-11-01

Similar Documents

Publication Publication Date Title
TW200425607A (en) Multi-phase buck converter with programmable phase selection
US10892686B2 (en) Hysteretic control for transformer based power converters
US6806689B2 (en) Multi-phase buck converter
CN109586576B (en) Feedback method for commanding a single-phase resonant converter, related single-phase resonant converter and multi-phase resonant converter
US8314598B2 (en) Control for regulator fast transient response and low EMI noise
US7782032B2 (en) System method and apparatus for a multi-phase DC-to-DC converter
US6628106B1 (en) Control method and circuit to provide voltage and current regulation for multiphase DC/DC converters
TWI362167B (en) Step-up/step-down (buck/boost) switching regulator control methods
WO2005079486A2 (en) Dc-dc regulator with switching frequency responsive to load
US20130163287A1 (en) Regulated Controller with Self-Adjusting Output Set-Point Control
US20170187213A1 (en) Battery charging circuit with high capacity, control circuit and associated control method
TW201027888A (en) Transient processing mechanism for power converters
JP2005518775A (en) N-phase integrated buck converter
CN106469981A (en) Many topology power converter controller
Ren et al. Dual-edge modulated four-switch Buck-Boost converter
CN106537096A (en) Power conversion method and system
CN116488464A (en) Buck circuit, voltage adjustment circuit and computing equipment

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent