TW200422665A - Polarization recovery system using redirection - Google Patents

Polarization recovery system using redirection Download PDF

Info

Publication number
TW200422665A
TW200422665A TW093104343A TW93104343A TW200422665A TW 200422665 A TW200422665 A TW 200422665A TW 093104343 A TW093104343 A TW 093104343A TW 93104343 A TW93104343 A TW 93104343A TW 200422665 A TW200422665 A TW 200422665A
Authority
TW
Taiwan
Prior art keywords
light
reflector
output
polarization
recovery device
Prior art date
Application number
TW093104343A
Other languages
Chinese (zh)
Other versions
TWI238901B (en
Inventor
Seiji Inatsugu
Kenneth K Li
Original Assignee
Wavien Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavien Inc filed Critical Wavien Inc
Publication of TW200422665A publication Critical patent/TW200422665A/en
Application granted granted Critical
Publication of TWI238901B publication Critical patent/TWI238901B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Telescopes (AREA)
  • Lenses (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A polarization recovery system includes a polarizing beam splitter transmitting light of a useful polarization in an output direction and reflecting light of a non-useful polarization in a first orthogonal direction substantially orthogonal to the output direction. An initial reflector may reflect the non-useful polarization light in a second orthogonal direction substantially orthogonal to the output direction and the first orthogonal direction, and a final reflector may reflect the non-useful polarization light in the output direction. The non-useful polarization light may be rotated substantially to light of the useful polarization by the initial and final reflectors.

Description

200422665 玖、發明說明: 相關申請案之交互參考 此申請案宣告擁有2003年2月21曰申請的臨時申請案 6〇/448,471號與2003年5月12日申請的6〇/469,393號的優先 權,該案的揭示以引用的方式併入本文中。此申請案係2〇〇3 年1月21曰申請之共同待審的申請案1〇/347,522號的部分追 續案,10/347,522號係2001年3月23日申請之〇9/814,97〇號-目剞為美國專利6,587,269號-的追續案。 【發明所屬之技術領域】 本發明麟光的回復,否則,光可能無法使用於投影系 統0 无丽技術】 由投射光於螢光幕上而顧+ 士、0 , 爷向頒不成品。光配置成為顏 投影藉 _ …M w兀配直珉為彥j 係精由调谐一光線與一資訊流 色或売度及暗度或二者的圖案。圖案由觀看者觀看,觀邊 者藉由結合圖案與觀看者已熟悉的影像_諸如字元或面孔 而理解圖案。圖案能夠以各種方式形成。形成圖案的方式 之一 #、藉由舖雜一伞綠咖_次&、丄 偏振光可以藉由以偏振濾光器過清 W德而凋谐。通常,如j 偏振濾光器的偏振匹配入射光的偏振, " 則偏振濾光器將专 光通過。液晶(LCD)成像器可以用於 " 執仃液晶型投影顯示s 中的調諧。液晶顯示成像器可以包枯 ° Α匕栝像素,其可藉由200422665 发明 Description of the invention: Cross-reference to related applications This application claims priority to provisional application No. 60 / 448,471, filed on February 21, 2003, and No. 60 / 469,393, filed on May 12, 2003. The disclosure of the case is incorporated herein by reference. This application is part of the follow-up application No. 10 / 347,522, which was filed on January 21, 2003, and No. 10 / 347,522 is No. 9/814, filed on March 23, 2001, No. 97-mesh is a follow-up to U.S. Patent No. 6,587,269. [Technical field to which the invention belongs] The reply of Linguang of the present invention, otherwise, the light may not be used in the projection system 0 Wuli Technology] By projecting light on the screen, + +, 0, Grandpa will not give the finished product. The light configuration becomes the projection of the light, and Mw is equipped with a straight line, which is a system that tunes a pattern of light and information flow color or intensity and darkness or both. The pattern is viewed by the viewer, and the sideviewer understands the pattern by combining the pattern with an image familiar to the viewer, such as a character or a face. The pattern can be formed in various ways. One of the ways to form a pattern #, by adding an umbrella green coffee_times & 丄 Polarized light can be tuned by clearing the W with a polarization filter. In general, if the polarization of the j polarization filter matches the polarization of the incident light, " the polarization filter will pass the special light. Liquid crystal (LCD) imagers can be used to " perform tuning in liquid crystal type projection displays. The LCD imager can pack up ° Α 栝 pixels, which can be

它們的偏振以匹配或不同於入射井 H 尤的偏振而調諧。輸入2 液晶顯示成像器的光偏振,俾栋者、六Η 二 使田液晶顯示像素調諧時 O:\91\91367.DOC4 200422665 所選擇的像素的偏振改變,且當自成像器輸出的光由另— 偏振器分析時,所選擇的像素將變暗。當光存在或不存在 時▲,圖案可以投射在一螢光幕上。如果像素的偏振以觀看 者熟悉的圖案中的資訊調諧,則觀看者可辯認投射在營光 幕上的圖案。 使液晶顯示成像器的光偏振的方式之一係藉由偏振分光 器(PBS)。偏振光可提供至一具有透鏡·諸如繩眼透鏡_陣列 及偏振分光器陣列的成像系統。拋物線反射器可以使用於 罐眼透鏡以將光聚焦’俾使光幾乎平行。光線由透鏡陣列 分成很多段,且各段由另一透鏡陣列重新聚焦至偏振分光 器陣列中。然而,拋物線反射器可能使光源_諸如電弧_的亮 度減小。此外,蠅眼透鏡回復系統的效率主要依賴二透鏡 陣列與偏振分光器陣列的對準。最後,由一抛物線反射器 ,一繩眼透鏡組成的偏振回復系統可能不適用於循序顏色 單一成像器系統。 橢圓反射器可以使用於-光管與一顏色輪,以產生循序 顏色。然而,此系統仍然需要一偏振回復系統,且不能解 決與橢圓反射器有關的亮度的固有損失。然後,自偏振分 光=1車列輸出的光將線性偏振及聚焦於目標中。各偏振分 光器將未偏振的光分成具有不同偏振的光線。只有一光線 將係在光偏振以後輸入至液晶顯示成像器的正確偏振。另 一光線將係不正確的偏振,因此不可直接使用。 偏振回復系統可以藉由將未使用的偏振光轉換成為具有 正確偏振之可使用的光,以回復未使用的偏振光。已發展 O:\91\9\367.DOC4 200422665 各種方案’以轉換不正確的偏振光為正確的偏振,以致於 它也可以使用。顯示於圖k-方法係從一偏振分m 直接透射第一偏振光1〇2至輸出106,且相對於輪出ι〇6以一 角,諸如90。角,反射第二偏振光1〇8。然後,反射第二偏 振光以致於它平行於第一偏振光1〇2,朝向輸出: 。一延遲板110-例如,四分之一波或半波板_安置於第二偏 振光108的路徑中,使它轉入第一偏振光1〇2,以致於輸出 只由第一偏振光102組成。 、 延遲板藉由使一平面中的光變慢及允許對立平面中的光 相對不受阻礙地通過,使光自一偏振轉動至另— 經由-介質傳播的速率通常與它的波長有關。於是,'光變 I*又的程度也與它的波長有關。因為施加於寬頻光的延遲板 必須讓某-波長範圍的光通過,所以某些光將比其他光更 延遲。延遲板通常調諧至—特殊波長。特別地,比所調譜 的波長更長或更短的波長將不完全從未使用的偏振轉動至 正確的偏振。於是,某些光_其波長比所調諧的波長更長或 更-將損失,或至少未恢復。此外,延遲板相當昂貴,且 通吊不可靠。延遲板使一偏振回復系統本身變成昂貴及不 可靠。 +雖然這些系統已經在商業上使用,但是元件的成本高 且2們需要關鍵性的對準及光學設計。結果,需要一種具 有同效率、簡單構造與低成本以執行偏振轉換之系統。 【發明内容】 在本發明的第一特點中,一種偏振回復系統可以包括一 O:\91\91367.DOC4 200422665 偏振分μ,其在輸以向透射 上正交於輪出方向的第—£六 々偏振光,且在大致 配置成為可 乂方向反射無用的偏振光;— α己罝成為可以反射第— , ^ 器在大致上正乂方向的初始反射器,初始反射 向反射H 向與第一正交方向的第二正交方 向的最:及:;及一配置成為可以反射第二正交方 白的取後反射器,最後反射器在方 :方 光,苴Φ盔田λα μ Π汉射無用的偏振 為有用的偏振光。振光由初始與最後反射器大致上轉動成 在本黍明的第二特點中,一種偏振回 致上使光偏振成為有用的偏振光與無用的== 方向透射可用的偏振光,在大致上正在輪出 +人 又於輪出方向的第一 第:正f無峨振光,在大致上正交於輸出方向與 出方二向的第二正交方向反射無用的偏振光,及在輸 出方向反射無用的偏振光。 翰 將點中’一種偏振回復系統可以包括用於 , 偏振成為有用的偏振光與無用的偏振光的裝置 :用於在輸出方向透射有用的光的裝置、用於在大致:正 :::出方向的第一正交方向反射無用的光的震置、用於 反射於輸出方向與第一正交方向的第二正交方向 裝置:、用的光的裝置、及用於在輸出方向反射無用的光的 【實施方式】 如果不可使用的偏振光能夠藉由將它的偏振 確或有用的偏振而回復及使用,則將係所希望的 O:\91\91367.DOC4 ζυυ422665 遲板使偏振回復系統更昂貴及更不可靠,所以,希望偏振 回復的執行不訴諸於延遲板的使用。偏振回復益寬頻輻射 上執仃將係所希望的。偏振回復系統的製造與組裝相當簡 單將係所希望的。偏振回復系統允許使用一顏色輪於單一 成像器系統中將係所希望的。 圖2中顯示一依據本發明第一實施例的偏振回復系統2〇〇 偏振回復系統2〇〇可包括一偏振分光器2〇2,諸如多層塗 佈或線光栅偏振分光器。在一實施例中,輸入至偏振分光 器202的光可直接或間接來自電磁輻射來源212,即,光。 在一實施例中,電磁輻射來源212可以係電弧燈(諸如氙燈) 、金屬鹵化物燈、高密度放電(HID)燈或水銀燈。在另一實 施例中’來源212可以係鹵素燈或白熾燈。 在一實施例中,偏振回復系統2〇〇可包括一輸入光管224 、一超級立方體268及一輸出光管232,如圖2與5所示。在 若干實施例中,輸出光管232可以係均質器或積分器。輸入 光官224的輪出可以耦合進入稜鏡配置,即,超級立方體268 。輸入光管224可使用全内反射(TIR),使光傳播至超級立 方體268。 在若干實施例中,輸入光管224、輸出光管232或輸入光 與輸出光管224、232二者可以增加推拔光管(如圖6A所示) 、減少推拔光管(如圖6B所示)或直光管(如圖6C所示)。在若 T貫施例中,輸入光管224、輸出光管232或輸入光與輸出 光官224與232二者的橫剖面可以係矩形、圓形、三角形、 長曼形、梯形、五角形、六角形或八角形,如圖所示 O:\91\91367.DOC4 -10 - 200422665 。在若干實施例中,輸入光管224、輸出光管232或輸入光 與輸出光管224與232二者可由一光纖、一光纖束、一溶合 的纖維束、一多邊形波導或一中空光管組成,如圖8A_8e 所示。 偏振回復系統200的若干實施例顯示於圖3與4。偏振分光 器202可以分離來自輸入光管224之未偏振的光成為一具有 偏振270的有用的偏振光204(如圖3A與4A所示)及一具有偏 振272的無用的偏振光208(如圖3]8與48所示)。偏振分光器 202可以在輸出方向2〇6透射有用的偏振光2〇4,及在大致上 正交於輸出方向206的第一正交方向210反射無用的偏振光 208。在一實施例中,偏振27〇可以係大致上p偏振或水平偏 振光,而偏振272係大致上s偏振或垂直偏振光。在一替代 實施例中,偏振平面可以顛倒。 有用的偏振光204可以傳播通過偏振分光器202,且由第 一輸出反射器220與第二輸出反射器222重新導向,離開第 '一輸出反射益2 2 2,而偏振270不變,如圖3A與4 A所示。另 一方面,無用的偏振光208可以在離開偏振分光器202以後 由一初始反射器214反射,如圖3B與4B所示。初始反射器 214可以相對於一軸線反射無用的偏振光2〇8,該軸線大致 上正父於無用的偏振光2 0 8的偏振平面2 7 2,其在此狀況係s 或垂直平面。然後,最後反射器218可以在平行於輸出方向 206的方向反射無用的偏振光2〇8。於是,初始反射器214 的一傾斜表面可以相對於最後反射器21 8轉動90E。雖然為 了追蹤的目的,無用的偏振光208仍然標示為無用的偏振光 O:\91\91367.DOC4 -11 - 200422665 208 ’但是它已變成有用的偏振光,因為無用的偏振光208 的偏振平面現在係水平或p偏振,以大致上匹配有用的偏振 光204。在一眘始办,丨山 丄 貫鈿例中,有用的偏振光204與無用的偏振光 208一者可以耦合至輸出光管232並均質化。 一 κ也例中 第一輸出反射器220配置成為能夠反射 輸出方向206。第—輸出反射器220可以在第二正交方向216 反射有用的偏振光204。在若干實施例中,第—輸出反射器 可以係未匹配的阻礙,諸如稜鏡、直角稜鏡或鏡。在一 =施例中,第—輸出反射器220可以具有-塗層,其透射預 :部分的電磁輻射光譜。此可以用於在不可使用的不可見 光輕合進入一成像器以前拋棄它。在若干實施例中,預定 部分的電磁輕射光譜可以係紅外光、可見光、預定波長帶 的光、特定顏色的光或其組合。在一替代實施例中,塗層 0、反射、.工外光、可見光、預定波長帶的光、特定顏色的 光或它們的某一組合。 在實加例中,如圖3A所示,一第二輸出反射器222配置 成為能夠反射第二正交方向216。第二輸出反射器222可以 在輸出方向206反射有用的偏振光2〇4。在另一實施例中, 顯不於圖4B,第二輸出反射器222配置成為能夠反射輸出方 向第二輸出反射器222可以在第二正交方向216反射無 用的偏振光208。在若干實施例中,第二輸出反射器222可 以係未匹配的阻礙,諸如棱鏡、直角稜鏡或鏡。在一實施 例中’第二輸出反射^ 222可以具有—塗層,其透射預定部 分的電磁輕射光譜。此可以用於在不可使用的不可見光耦 〇A91\9l367.D〇C4 -12- 200422665 合進入一成像器以前拋棄它。在若干實施例中,預定部分 的電磁輻射光譜可以係紅外光、可見光、預定波長帶的^ 、特定顏色的光或其組合。在一替代實施例中,塗層可以 反射紅外光、可見光、預定波長帶的光、特定顏色的光或 它們的某一組合。 在貝加例中,初始反射器214配置成為能夠反射第_正 交方向210。初始反射器214可以在大致上正交於輸出方向 206與第一正交方向21〇的第二正交方向216反射無用的偏 振光208。在若干實施例中,初始反射器214可以係未匹配 的阻礙,諸如稜鏡、直角稜鏡或鏡。未匹配的阻礙可以回 聲的方式反射波,諸如電磁波。未匹配的阻礙可以_例如· 反射一部分的波、或某一範圍的波長,且使其他部分的波 或其他波長通過。 在一實施例中,初始反射器214可以具有一塗層,其透射 預疋部分的電磁輕射光譜。此可以用於在不可使用的不可 見光耗合進入一成像器以前拋棄它。在若干實施例中,預 定部分的電磁輻射光譜可以係紅外光、可見光、預定波長 帶的光、特定顏色的光或其組合。在一替代實施例中,塗 層可以反射紅外光、可見光、預定波長帶的光、特定顏色 的光或它們的某一組合。 在一實施例中,最後反射器21 8配置成為能夠反射第二正 交方向216。最後反射器218可以在輸出方向206反射無用的 偏振光208。在若干實施例中,最後反射器21 8可以係未匹 配的阻礙,諸如稜鏡 '直角稜鏡或鏡。在一實施例中,最 O:\91\91367.DOC4 -13- 200422665 後反射器21 8可以具有— 光罐。此<1:/ 主層,其透射預定部分的電磁輻射 哭以針物婁— 不了使用的不可見光耦合進入一成像 口口以刖抛棄它。在若+每 只例中,預定部分的電磁輻射光譜 可乂係、、、工外光、可見光、 預疋波長T的光、特定顏色的光或 一且5。在—替代實施例中,塗層可以反射紅外光、可見光 、預::長帶的光、特定顏色的光或它們的某一組合。 在貝細例中,無用的偏振光208的偏振272可以由初始 與最後反射器214盥218鏟說 , ,、U轉動,以大致上匹配有用的偏振光 204的偏振270。在此實施例中 一 只呢1巧甲,弟一正交方向206與第二正 又方向216可以A致上在無用的偏振光㈣的偏振272的平 面内。此基本區塊可以用於反射及重新導向來自偏振分光 器2〇2的無用的偏振光208,如上述,俾使無用的偏振光208 勺扁振72轉換成為有用的偏振光2〇4的偏振^川及重新導 向至輸出方向2〇6。 在曰代實轭例中,顯示於圖9,初始反射器214可以相 對於-在偏振272的平面中之軸線反射無用的偏振光2〇8, 而最後反射器218可以相對於一大致上正交於偏振π的平 面之軸線反射無用的偏振光,藉以也造成無用的偏振光 2〇8的偏振270。來自最後反射器218的光可以通過一隔離器 246,以致於現在水平偏振的無用的偏振光可以如同有 用的偏振光204,在相同的平面離開。二輸出可耦合進入待 均質化的輸出光管232,及使它們的形狀與數值孔徑轉換成 為在輸出面想要的形狀與數值孔徑。在一實施例中,輸出 光官23 2也可以使用全内反射,使光傳播至它的輸出。 O:\9l\91367.DOC4 -14- 200422665 重:導:::中’在無用的偏振光2°8已由最後反射器218 向至輸出方向206以後,有用的 無用的偏振光208不同的方v J以在舁 U幻万向離開偏振分光器202。在一舍 施例中,顯示於圖3 A,筮认, 貝 哭22” H3A弟一輸出反射器220與第二輸出反射 σ Χ用於在與無用的偏振光肩相同的方向重新導向 有用的偏振光204。在一替代實施例中,第一輸出反射器 220(顯示於圖4Α)重靳宴内古田上人从 ^ )重新泠向有用的偏振光204,而第二輸出 反射器222(顯示於圖4Β)在與有用的偏振光⑽相同的方向 重新V向無用的偏振光2〇8 ^ —隔離器246可用於在任一狀 況允許有料偏振光綱在與無料偏振光⑽相同的表面 離開。此可以係有用的,以麵合有用的偏振光2(}4與無用的 偏振光208於輸出光管232中。 在一實施例中,超級立方體268可以由偏振分光器2〇2與 反射器2丨4、218、220及222組成。光可以經由全内反射傳 播通過這些光學元件。光學元件的表面可以光學拋光,以 促進全内反射。在一實施例中,用於反射器214、218、22〇 及222的光學材料可以具有咼反射率,以促進歪斜光線的全 内反射。在一貫施例中,光學元件的輸入與輸出面可以塗 有一抗反射(AR)塗層,使菲淫爾反射損失減至最小。 在一實施例中,反射器214、218、220與222可以由光學 玻璃-諸如SFll(n=1.785)製造。在另一實施例中,反射器214 、218、220與222可以由光學玻璃-諸如ΒΚ7(η=1·517)製造 。然而’在此貫施例中’光線可以從壁-特別是反射器214 、218、220與222的對角壁-開始洩漏出去。 O:\91\91367.DOC4 -15- 200422665Their polarization is tuned to match or differ from the polarization of the incident well H. Input 2 The light polarization of the liquid crystal display imager. When the tuners and Liu Erji tune the pixels of the LCD, O: \ 91 \ 91367.DOC4 200422665 The polarization of the selected pixel changes, and when the light output from the imager is changed by Another — during polarizer analysis, the selected pixels are dimmed. When light is present or absent ▲, the pattern can be projected on a screen. If the polarization of a pixel is tuned with information in a pattern familiar to the viewer, the viewer can recognize the pattern projected on the camp light screen. One of the ways to polarize the light of a liquid crystal display imager is by a polarizing beam splitter (PBS). Polarized light can be provided to an imaging system having a lens such as a rope-eye lens array and a polarizing beam splitter array. A parabolic reflector can be used in a can-eye lens to focus light ', so that the light is almost parallel. The light is divided into many segments by the lens array, and each segment is refocused into the polarization beam splitter array by another lens array. However, a parabolic reflector may reduce the brightness of a light source, such as an arc. In addition, the efficiency of the fly-eye lens recovery system mainly depends on the alignment of the two-lens array and the polarization beam splitter array. Finally, a polarization recovery system consisting of a parabolic reflector and a rope-eye lens may not be suitable for a sequential color single imager system. Elliptical reflectors can be used in light pipes and a color wheel to produce sequential colors. However, this system still requires a polarization recovery system and cannot resolve the inherent loss of brightness associated with elliptical reflectors. Then, the light output from the polarization beam splitting = 1 train will be linearly polarized and focused on the target. Each polarization beam splitter separates unpolarized light into rays with different polarizations. Only one light will be input to the LCD with the correct polarization after the light is polarized. The other light will be incorrectly polarized and cannot be used directly. The polarization recovery system can recover unused polarized light by converting unused polarized light into usable light with the correct polarization. O: \ 91 \ 9 \ 367.DOC4 200422665 Various schemes have been developed to convert incorrectly polarized light into correct polarization, so that it can also be used. The method shown in Fig. K-transmits the first polarized light 102 to the output 106 directly from one polarization minute m, and at an angle, such as 90, with respect to the wheel output ι06. Angle, reflecting the second polarized light 108. Then, the second polarized light is reflected so that it is parallel to the first polarized light 102, and toward the output:. A retardation plate 110—for example, a quarter-wave or half-wave plate—is placed in the path of the second polarized light 108 so that it turns into the first polarized light 102, so that the output is made only by the first polarized light 102 composition. The retardation plate slows the light in one plane and allows the light in the opposite plane to pass relatively unhindered, turning the light from one polarization to another—the rate of propagation through the medium is usually related to its wavelength. Therefore, the degree of 'light change I *' is also related to its wavelength. Because a retarder applied to broadband light must pass light in a certain wavelength range, some light will be more retarded than others. The delay plate is usually tuned to a special wavelength. In particular, wavelengths longer or shorter than the wavelength being tuned will not completely rotate from an unused polarization to the correct polarization. Thus, some light—whose wavelength is longer or more than the wavelength being tuned—will be lost, or at least not recovered. In addition, the delay plate is quite expensive and unreliable. Delay plates make a polarization recovery system itself expensive and unreliable. + Although these systems are already in commercial use, the cost of the components is high and they require critical alignment and optical design. As a result, there is a need for a system having the same efficiency, simple structure, and low cost to perform polarization conversion. [Summary of the Invention] In the first feature of the present invention, a polarization recovery system may include an O: \ 91 \ 91367.DOC4 200422665 polarization sub-micron, which is orthogonal to the direction of the wheel-out direction in the transmission direction. Six 々 polarized light, and in a general configuration to reflect useless polarized light in the 乂 direction;-α has become the initial reflector that can reflect the first, ^, the 反射 reflector is in the substantially positive 乂 direction, and the initial reflection is reflected in the H direction and the 第 direction. The maximum of the second orthogonal direction of an orthogonal direction: and :; and a rear reflector configured to reflect the second orthogonal square, the last reflector is at the side: Fang Guang, 苴 Φhelmfield λα μ Π Han She's useless polarization is useful polarized light. The vibrating light is roughly rotated from the initial and final reflectors. In the second feature of the present invention, a polarization response makes the polarization of the light useful. The useless == direction transmits usable polarized light. The first one that is turning out + people are in the turning out direction: the positive f has no E-zheng light, which reflects the useless polarized light in a second orthogonal direction that is approximately orthogonal to the output direction and the outgoing two directions, and in the output Directional reflection of useless polarized light. John's Point 'A polarization recovery system may include means for polarizing to become useful polarized light and useless polarized light: means for transmitting useful light in the output direction, and for roughly: positive ::: out The first orthogonal direction of the direction is used to reflect the useless light, the second orthogonal direction device is used to reflect the output direction and the first orthogonal direction: the device used, and the use is used to reflect the useless direction in the output direction. [Embodiment of the light] If the unusable polarized light can be recovered and used by correcting its polarization or useful polarization, it will be the desired O: \ 91 \ 91367.DOC4 ζυυ422665 retardation to restore the polarization The system is more expensive and less reliable, so it is desirable to perform polarization recovery without resorting to the use of a delay plate. The implementation of polarization-recovery broadband radiation would be desirable. The fabrication and assembly of a polarization recovery system would be quite simple and desirable. A polarization recovery system that allows the use of a color wheel in a single imager system would be desirable. FIG. 2 shows a polarization recovery system 2000 according to a first embodiment of the present invention. The polarization recovery system 2000 may include a polarization beam splitter 200, such as a multilayer coating or a linear grating polarization beam splitter. In an embodiment, the light input to the polarization beam splitter 202 may come directly or indirectly from the electromagnetic radiation source 212, that is, light. In an embodiment, the electromagnetic radiation source 212 may be an arc lamp (such as a xenon lamp), a metal halide lamp, a high-density discharge (HID) lamp, or a mercury lamp. In another embodiment, the 'source 212 may be a halogen or incandescent lamp. In one embodiment, the polarization recovery system 2000 may include an input light pipe 224, a super cube 268, and an output light pipe 232, as shown in FIGS. 2 and 5. In several embodiments, the output light pipe 232 may be a homogenizer or an integrator. The turn-out of the input light officer 224 can be coupled into a 稜鏡 configuration, ie, the super cube 268. The input light pipe 224 may use total internal reflection (TIR) to propagate light to the hypercube 268. In several embodiments, the input light pipe 224, the output light pipe 232, or both the input light and the output light pipes 224, 232 can increase the push-pull light pipe (as shown in FIG. 6A), and reduce the push-pull light pipe (see FIG. 6B) (Shown) or straight tube (as shown in Figure 6C). In this embodiment, the cross sections of the input light pipe 224, the output light pipe 232, or both the input light and output light officers 224 and 232 may be rectangular, circular, triangular, long-man-shaped, trapezoidal, pentagonal, or six-dimensional. Angle or octagon, as shown in the picture: O: \ 91 \ 91367.DOC4 -10-200422665. In some embodiments, the input light pipe 224, the output light pipe 232, or both the input light and output light pipes 224 and 232 may be an optical fiber, an optical fiber bundle, a fused fiber bundle, a polygonal waveguide, or a hollow optical tube. Composition, as shown in Figure 8A_8e. Several embodiments of the polarization recovery system 200 are shown in FIGS. 3 and 4. The polarization beam splitter 202 can separate the unpolarized light from the input light pipe 224 into a useful polarized light 204 with a polarization 270 (as shown in FIGS. 3A and 4A) and an unwanted polarized light 208 with a polarization 272 (as shown in FIG. 3] as shown in 8 and 48). The polarization beam splitter 202 can transmit useful polarized light 204 in the output direction 206, and reflect useless polarized light 208 in a first orthogonal direction 210 that is substantially orthogonal to the output direction 206. In one embodiment, the polarization 27 ° may be approximately p-polarized or horizontally polarized light, and the polarization 272 may be approximately s-polarized or vertically polarized light. In an alternative embodiment, the plane of polarization may be reversed. Useful polarized light 204 can propagate through the polarizing beam splitter 202 and is redirected by the first output reflector 220 and the second output reflector 222, leaving the first output reflector 2 2 2 while the polarization 270 remains unchanged, as shown in the figure 3A and 4 A are shown. On the other hand, the useless polarized light 208 may be reflected by an initial reflector 214 after leaving the polarization beam splitter 202, as shown in Figs. 3B and 4B. The initial reflector 214 can reflect useless polarized light 208 with respect to an axis that is approximately the same as the polarization plane 2 7 2 of useless polarized light 208, which in this case is s or a vertical plane. Then, the final reflector 218 can reflect useless polarized light 208 in a direction parallel to the output direction 206. Thus, an inclined surface of the initial reflector 214 can be rotated 90E relative to the final reflector 218. Although useless polarized light 208 is still labeled as useless polarized light O: \ 91 \ 91367.DOC4 -11-200422665 208 'for tracking purposes, it has become useful polarization because the polarization plane of useless polarized light 208 It is now horizontal or p-polarized to approximately match useful polarized light 204. In a cautious example, one of the useful polarized light 204 and the useless polarized light 208 can be coupled to the output light pipe 232 and homogenized. In the example, the first output reflector 220 is configured to be able to reflect the output direction 206. The first output reflector 220 may reflect useful polarized light 204 in the second orthogonal direction 216. In several embodiments, the first output reflector may be an unmatched obstruction, such as a chirp, a right-angle chirp, or a mirror. In one embodiment, the first output reflector 220 may have a coating that transmits a pre-part of the electromagnetic radiation spectrum. This can be used to discard unusable invisible light before it enters an imager. In several embodiments, the electromagnetic light emission spectrum of the predetermined portion may be infrared light, visible light, light of a predetermined wavelength band, light of a specific color, or a combination thereof. In an alternative embodiment, the coating 0, reflection, external light, visible light, light of a predetermined wavelength band, light of a specific color, or some combination thereof. In the practical example, as shown in FIG. 3A, a second output reflector 222 is configured to reflect the second orthogonal direction 216. The second output reflector 222 can reflect useful polarized light 206 in the output direction 206. In another embodiment, as shown in FIG. 4B, the second output reflector 222 is configured to be able to reflect the output direction. The second output reflector 222 can reflect useless polarized light 208 in the second orthogonal direction 216. In several embodiments, the second output reflector 222 may be an unmatched obstruction, such as a prism, a right-angle chirp, or a mirror. In one embodiment, the 'second output reflection 222' may have a coating that transmits a predetermined portion of the electromagnetic light emission spectrum. This can be used to discard the unusable invisible photocoupler 〇A91 \ 9l367.D〇C4 -12- 200422665 before entering the imager. In several embodiments, the electromagnetic radiation spectrum of the predetermined portion may be infrared light, visible light, light of a predetermined wavelength band, light of a specific color, or a combination thereof. In an alternative embodiment, the coating may reflect infrared light, visible light, light in a predetermined wavelength band, light of a specific color, or some combination thereof. In the Bega example, the initial reflector 214 is configured to be able to reflect the _th orthogonal direction 210. The initial reflector 214 may reflect useless polarized light 208 in a second orthogonal direction 216 that is substantially orthogonal to the output direction 206 and the first orthogonal direction 21o. In several embodiments, the initial reflector 214 may be an unmatched obstruction, such as a chirp, a right-angle chirp, or a mirror. Unmatched obstructions can echo waves, such as electromagnetic waves, in an echogenic manner. Unmatched obstructions can, for example, reflect part of a wave, or a range of wavelengths, and allow other parts of the wave or other wavelengths to pass. In one embodiment, the initial reflector 214 may have a coating that transmits the electromagnetic light emission spectrum of the pre-chirped portion. This can be used to discard unusable invisible light before it enters an imager. In several embodiments, the predetermined portion of the electromagnetic radiation spectrum may be infrared light, visible light, light of a predetermined wavelength band, light of a specific color, or a combination thereof. In an alternative embodiment, the coating may reflect infrared light, visible light, light in a predetermined wavelength band, light of a specific color, or some combination thereof. In one embodiment, the final reflector 218 is configured to reflect the second orthogonal direction 216. Finally, the reflector 218 may reflect useless polarized light 208 in the output direction 206. In several embodiments, the final reflector 218 may be an unmatched obstruction, such as 稜鏡 'right angle 稜鏡 or a mirror. In an embodiment, the most O: \ 91 \ 91367.DOC4 -13- 200422665 rear reflector 21 8 may have a light tank. This < 1: / main layer transmits a predetermined portion of electromagnetic radiation. The invisible light that cannot be used is coupled into an imaging port to discard it. In each case, the predetermined part of the electromagnetic radiation spectrum may be,,, external light, visible light, light having a predetermined wavelength T, light of a specific color, or one and five. In alternative embodiments, the coating may reflect infrared light, visible light, pre-: long-band light, a specific color of light, or some combination thereof. In this example, the polarization 272 of the useless polarized light 208 can be rotated by the initial and final reflectors 214 and 218 to substantially match the polarization 270 of the useful polarized light 204. In this embodiment, a single orthogonal direction 206 and a second orthogonal direction 216 may be in the plane of the polarization 272 of the useless polarized light chirp. This basic block can be used to reflect and redirect unwanted polarized light 208 from the polarizing beam splitter 200. As mentioned above, the useless polarized light 208 is converted into a useful polarized light 208 polarization. ^ Chuan and redirect to the output direction 206. In the example of a real yoke, shown in FIG. 9, the initial reflector 214 can reflect useless polarized light 208 with respect to the axis in the plane of polarization 272, and the final reflector 218 can be approximately positive with respect to a The axis of the plane crossing the polarization π reflects useless polarized light, thereby also causing useless polarized light to have a polarization 270 of 208. The light from the final reflector 218 can pass through an isolator 246 so that uselessly polarized light, which is now horizontally polarized, can leave the same plane as useful polarized light 204. The two outputs can be coupled into the output light pipe 232 to be homogenized, and their shape and numerical aperture can be converted into the desired shape and numerical aperture on the output surface. In one embodiment, the output light officer 23 2 may also use total internal reflection to cause light to propagate to its output. O: \ 9l \ 91367.DOC4 -14- 200422665 Re: guide ::: 'After the useless polarized light 2 ° 8 has been moved from the final reflector 218 to the output direction 206, the useful and useless polarized light 208 is different The square v J leaves the polarization beam splitter 202 in a 幻 U magic gimbal. In one example, shown in FIG. 3A, it is recognized that the 22 ”H3A output reflector 220 and the second output reflection σ χ are useful for redirecting in the same direction as the useless polarized light shoulder Polarized light 204. In an alternative embodiment, the first output reflector 220 (shown in FIG. 4A) revisits the useful polarized light 204 from the Jin Jinyi, and the second output reflector 222 ( (Shown in Figure 4B) Reuse V-direction useless polarized light in the same direction as the useful polarized light ^ ^ Isolator 246 can be used to allow the active polarized light to leave on the same surface as the unpolarized light This may be useful to combine useful polarized light 2 (} 4 and useless polarized light 208 in the output light tube 232. In one embodiment, the super cube 268 may be polarized by a beam splitter 202 and reflected 2, 4, 218, 220, and 222. Light can propagate through these optical elements via total internal reflection. The surface of the optical element can be optically polished to promote total internal reflection. In one embodiment, for reflectors 214, Optical materials of 218, 22, and 222 are available It has a chirped reflectivity to promote total internal reflection of skewed light. In an embodiment, the input and output surfaces of the optical element can be coated with an anti-reflection (AR) coating to minimize the loss of Filtier reflection. In an embodiment, the reflectors 214, 218, 220, and 222 may be made of optical glass, such as SF11 (n = 1.785). In another embodiment, the reflectors 214, 218, 220, and 222 may be made of optical glass-such as BKK7 (η = 1 · 517). However, in this embodiment, light can leak out from walls-especially diagonal walls of reflectors 214, 218, 220, and 222. O: \ 91 \ 91367. DOC4 -15- 200422665

在一實施例中,一隔離器246可以配合反射器214、218 、220與222使用,以形成大的立方體形,以便容易包裝。 在一實施例中,各反射器214、218、220與222可以結合一 互補的隔離器246,諸如直角隔離器,以形成小的立方體。 在一實施例中,八個小的立方體可以形成一超級立方體268 。在一實施例中,反射器214、218、220與222及隔離器272 堆疊在一起,以形成超級立方體268。在一實施例中,元件 可由黏性材料膠合在一起。在另一實施例中,元件可由機 械式支持器支持在一起。此結構可以係堅固的,且可以具 有最小的損失。 在若干實施例中,間隙可引至輸入與輸出光管224與232 、反射器214、218、220與222或偏振分光器202中的任二之 間,以促進全内反射及減少損失。在一實施例中,輸入光 管224、反射器214、218、220與222及輸出光管232可以由 小的空氣間隙分離。In one embodiment, an isolator 246 can be used with the reflectors 214, 218, 220, and 222 to form a large cube shape for easy packaging. In one embodiment, each of the reflectors 214, 218, 220, and 222 may be combined with a complementary isolator 246, such as a right-angle isolator, to form a small cube. In one embodiment, eight small cubes can form a super cube 268. In one embodiment, the reflectors 214, 218, 220 and 222 and the isolator 272 are stacked together to form a super cube 268. In one embodiment, the components may be glued together by an adhesive material. In another embodiment, the elements may be supported together by a mechanical holder. This structure can be sturdy and can have minimal losses. In some embodiments, the gap may be introduced between any of the input and output light pipes 224 and 232, the reflectors 214, 218, 220 and 222, or the polarization beam splitter 202 to promote total internal reflection and reduce losses. In one embodiment, the input light pipe 224, the reflectors 214, 218, 220, and 222 and the output light pipe 232 may be separated by a small air gap.

在一實施例中,顯示於圖5,超級立方體268可以由個別 疋件組成。在一實施例中,某些元件可以結合成為單一單 元。在一實施例中,例如,二稜鏡可以結合成為單一稜鏡 。在此實施例中,一對反射器214、218、22〇或222可以在 製造過程期間-諸如在玻璃模製過程期間-結合。在一替代實 施例中,二稜鏡可以膠合在一起,以形成單一單元。在一 貫施例中,二稜鏡可與偏振分光器202的一半結合,以形成 單一單兀。在此實施例中,全部pcs系統可以係由二元件及 隔離器246 一起製成。在另一實施例中,一稜鏡可結合 隔 O:\91\91367.DOC4 -16- 200422665 離器246。在-實施例中,系統可由二元件製成,而分離係 在偏振分光器202。在此實施例中,成本可以減至最小。 在一實施例中,偏振分光器202與反射器214、218、22〇 及222可以大致上係立方體。在一實施例中,偏振分光器2〇2 與反射器214、218、220及222的全部的邊可以係大致上類 似的尺寸,除了反射器的斜邊以外。在此實施例中,輸入 光管224的輸出可以係正方形,且輸出光管232的輸入可以 係展弦比為2:1的矩形。也可由非立方體構造實施,俾使輸 出光管232的輸入具有非2:1的展弦比,不過耦合損失可能 比較大。 在若干實施例中,輸入與輸出光管224與232、反射器214 、218、220與222或偏振分光器202可以塗有一抗反射(AR) 塗層,以增加效率。在若干實施例中,輸入與輸出光管224 與2 3 2犯夠依據應用所需者,以增加或減小的方式推拔化。 反射器214、218、220與222能夠以反射的方式塗佈,以適 用於高角度的光。除了所說明的構造以外,超級立方體268 可以使用在各種構造。 在一實施例中,一輸入光管224可以安置成為靠近偏振分 光器202的輸入226。在一實施例中,輸入光管224可以具有 一輸入表面228與一輸出表面230。在若干實施例中,輸入 光管224可以由石英、玻璃、塑膠或丙烯酸製造。在若干實 施例中,輸入光管224可以係推拔形光管(TLP)或直光管 (SLP)。在若干實施例中,輸入表面228的形狀可以係平坦 、凸出、凹入、超環面或球面。輸入光管224的一表面可以 O:\91\91367.DOC4 -17- 200422665 塗佈,俾使全内反射維持偏振。輸入表面228與輪出表面23〇 的尺寸可以選擇,俾使輸出數值孔徑(NA)匹配一接受來自 輸入光管224的光之裝置。 在一實施例中,輸出表面230可以配置成為靠近偏振分光 器202的輸入226。在若干實施例中,輸出表面23〇的形狀可 以係平坦、凸出、凹入、超環面或球面。在一實施例中, 輸入光管224可以在輸入表面228接受大致上不偏振的光, 及在輸出表面230透射不偏振的光至偏振分光器2〇2。 在一實施例中,輸人光管224可以係中空。輸出表面23〇 可以係平凸透鏡。輸出表面2 3 〇的一凸出表面可以係球或圓 柱形’依最後的構造與元件的成本而定。輸出表面的一 焦度可以設計成為俾使來自輸出表面23〇的光成像在偏振 分光器202上。輸入光管224的一内表面可以塗有—偏振維 在Λ施例中,一輪出光管232可以安置成為靠近超級立 方體268的輸出234。在_實施例中,輸出光管加可以具有 成為靠近輸出方向206的輸人表面236及面 $ ^光管232可以在輸人表面236接受有用的偏振光 與無用的偏振光扇 :振先 偏振;^與無用的偏振細 表面238透射有用的 、在右干Λ〜例中’輸人表面236的形狀可以係平坦、凸出 、凹入、超環面或球面。在若干 的形狀可以係羊+3 π, 铷出表面238 實施例中嗜出二 人、超環面或球面。在若干 輪出光管232可以由選自於石英、玻璃、塑膠或 〇^9l\9l367.D〇C4 •18- 200422665 ㈣料組h在若干實施例中,輸出光 管232可以係推拔形光管(TLP)或直光管(SLP)。輸出光管 232的-表面可以塗佈,俾使全内反射維持偏振。輸入表面 236與輸出表面238的尺寸可以選擇,俾使輪出數值孔徑 (NA)匹配一接受來自輸出光管232的光之裝置。 在貝施例中,輸出光官232可以係中空。輸出表面238可 以,凸出形。輸出表面238的—凸出表面可以係球或圓柱形, 依最後的構造與元件的成本而定。輸出表面238的一焦度可以 設計成為俾使來自輸出表面238的光成像在一影像投射系統 上。輸出光管232的一内表面可以塗有一偏振維持材料。 在一實施例中,一殼反射器24〇可以將來自來源212的光 反射至偏振分光器202。在一實施例中,殼反射器24〇可以 具有一塗層’其透射預定部分的電磁輻射光譜。此可以用 於在不可使用的不可見光耦合進入一成像器以前拋棄它。 在若干實施例中,預定部分的電磁輻射光譜可以係紅外光 、可見光、預定波長帶的光、特定顏色的光或其組合。在 一替代實施例中,塗層可以反射紅外光、可見光、預定波 長帶的光、特定顏色的光或它們的某一組合。 在一實施例中,殼反射器240可以具有一第一及一第二焦 點242及244。在一實施例中,電磁輻射來源212可以配置成 為大致上靠近殼反射器240的第一焦點242,以射出從殼反 射器240反射且大致上收歛在第二焦點244的光線。在一實 施例中,輸入表面228可以配置成為大致上靠近第二焦點 244,以大致上收集及透射所有的光。在另一實施例中,偏 O:\91\91367.DOC4 -19- 200422665 振分光器202的輸入226可以配置成為大致上靠近第二焦點 244,以大致上收集及透射所有的光。在若干實施例中,殼 反射器240可以係一大致上橢圓的轉動表面、一大致上球形 的轉動表面或一大致上環形的轉動表面的一部分。 在一實施例中,殼反射器240可以包括一具有一第一光學 軸線252的初級反射器250,且第一焦點242可以係初級反射 益250的一焦點。在此實施例中,殼反射器24〇也可以包括 一具有第二光學軸線256的次級反射器254,其安置成為大 致上對稱於初級反射器25〇,俾使第一與第二光學軸線252 與256大致上共線。在此實施例中,第二焦點244可以係次 級反射⑤254的1點’且光線可以從初級反射器25〇朝次 I反射H 254反射’且大致上收歛在第二焦點。在若干 只方也例+,初級與次級反射器250與254各係大致上橢圓的 轉動表面或大致上拋物線的轉動表面。 在κ施例中’初級反射器250可以係大致上橢圓的轉動 表面的。卩刀’且—欠級反射器254可以係大致上雙曲線的轉 動表面的4刀在另一實施例中,初級反射器250可以係 大致上雙曲線的轉動表面的-部分,且次級反射器254可以 係大致上橢圓的轉動表面的一部分。 來源212可以安置在初級反射器250的第一焦點242,以校 準所收集的光Α將它導向次級反射器254。在輸入内表面 228的輸出可以導入〜輸入光管224。在-實施例中,輸入 光s 224可以係推拔形光管(TLp)。輸入光管⑽可以用於轉 換來源212之&像的剖面區域或數值孔徑。光可以導入一超 O:\91\91367.DOC4 -20 - 200422665 級立方體偏振回復系統,以在輸出光管232獲得線性偏振光 。線性偏振光可以用在基於液晶顯示的成像器晶片-其需要 偏振光·的照明。 才父準的程度可以依來源212的尺寸而定。次級反射器.254 可以安置成為對稱於初級反射器250,俾使它們共用共同的 光學軸線。進入次級反射器254的光線收歛至第二焦點244 ’在該處安置一目標,即,輸入光管224。輸入光管224可 以輕合來自次級反射器254的第二焦點244的光。在一實施例 中’來源212可以1:1的比例成像於一目標上,俾使基本上維 持來源212的亮度。由於系統的1:1對稱性,來源212在輸入表 面228的影像可以恰相同於具有單位放大率的來源212。 偏振回復系統200能夠保留在偏振回復系統2〇〇所有來源 收木器元件的輪射傳送幾何能力(eten(jue)。在輸入表面228 之光的全角相對於來源212的一軸線可以大約係18〇E,且相 對於一與來源212的軸線正交的軸線係9〇E,此係由於反射 ασ的極限。對於诸如微顯示器的應用而言,這些角可能太 大。在一實施例中,輸入光管224可以係推拔形光管(TLp) ,以轉換高輸入數值孔徑(NA)與小輸入面積成為較低的數 值孔徑與較大的輸出面積而無亮度損失,於是使角減小。 在一實施例中,來源212可能不是圓形。在若干實施例中 ,輸入光管224的輸入可能設計成為矩形、橢圓、八角形或 其他剖面形狀,以匹配來源212的影像的形狀。一匹配來源 212的影像的輸入可以防止或減小形狀不匹配導致的系統 惡化。輸入光管224的輸出尺寸與展弦比可以設計成為匹配 O:\91\91367.DOC4 -21 - 200422665 一成像器面板的尺寸與展弦比,但是具有一基於超級立方 體的構造’其可以係相當任意。 初級與次級反射器250與254可以大致上涵蓋18〇£之轉動 弧極限,以使收集效率最大化,即,初級反射器25〇將收集 自來源212射出之光的大約一半。一後反射器258可安置於 初級反射态2 5 0的對立側,以收集射出之光的另一半。在一 實施例中,後反射器258可以係半球形後反射器。在一實施 例中,後反射器258的曲率中心可以安置成為靠近燈的來源 212。在此實施例中,幾乎全部的光可以反射回去通過來源 212,以由初級反射器25〇收集,隨後聚焦在光管中。實際 上,後反射器258的效率可以由反射損失、菲涅爾反射損失 及源自於來源212之包絡的扭曲損失減小至。 在一實施例中,一後反射器258可以配置在與殼反射器 240對立的來源212之側。在一實施例中,後反射器258可以 係球面後反射器。在一實施例中,後反射器258可整合於殼 反射器240。殼反射器258可具有一塗層,其透射預定部分 的電磁輻射光譜。此可用於在不可使用的不可見光耦合進 入一成像器以前拋棄它。在若干實施例中,預定部分的電 磁輻射光譜可以係紅外光、可見光、預定波長帶的光、特 疋顏色的光或其組合。在一替代實施例中,塗層可以反射 紅外光、可見光、預定波長帶的光、特定顏色的光或它們 的某一組合。 在本發明的一實施例中,一影像投射系統260可以配置成 為罪近輪出方向206,以大致上收集全部可用的偏振光204 O:\91\9I367.DOO -22- 200422665 。在若干實施例中,影像投射系統260可以係矽上 ’人^日白 (LCOS)成像器、數位微鏡裝置(DMD)晶片或透射式液晶顯 示(LCD)面板。 在本發明的一實施例中,一聚焦透鏡262可以配置成為靠 近輸出方向206,而影像投射系統260配置成為靠近聚焦透 鏡262的輸出側264。一由在聚焦透鏡262收集及聚焦之有用 的偏振光204照射的影像266將由投射系統26〇釋放,以顯示 影像266。 在本發明的一實施例中,一種偏振回復方法可以包括下 列步驟·大致上使光偏振成為有用的偏振光204與無用的偏 振光208,在一輸出方向206透射有用的偏振光2〇4,在大致 上正交於輸出方向206的第一正交方向21〇反射無用的偏振 光208,在大致上正交於輸出方向2〇6與第一正交方向^⑺ 的第一正交方向216反射無用的偏振光2〇8,及在輸出方向 206反射無用的偏振光2〇8。 雖然已詳細說明本發明如上,但是本發明不企圖受限於 所說明的特定實施例。I然,專料此技術的人現在可以 針對此處說明的特定實施例作很多應用及修改與變更,不 會偏離本發明的觀念。 【圖式簡單說明】 貫施例的偏振回復系統的示 圖1顯示一偏振回復系統; 圖2顯示一依據本發明之一 意圖; 圖3顯示料本發蚊—實_的偏翻復裝置; O:\91\91367.DOC4 •23- 200422665 圖4顯示用於本發明之一實施例的偏振回復裝置; 圖5顯示用於本發明之一實施例的偏振回復裝置; 圖6顯示用於本發明之一實施例的直與推拔形光管; 圖7顯示用於本發明之一實施例的光管的各剖面; 圖8顯示用於本發明之一實施例的光管的各種構造;g 圖9顯示用於本發明之一實施例的偏振回復裝置。 【圖式代表符號說明】 102 第一偏振光 104 偏振分光器 106 輸出 108 弟二偏振光 110 延遲板 200 偏振回復系統 202 偏振分光|§ 204 有用的偏振光 206 輸出方向 208 無用的偏振光 210 第一正交方向 212 來源 214 初始反射器 216 第二正交方向 218 最後反射器 220 第一輸出反射器 222 第二輸出反射器 O:\91\91367.DOC4 -24- 200422665 224 輸入光管 226 輸入 228 輸入表面 230 輸出表面 232 輸出光管 234 輸出 236 輸入表面 238 輸出表面 240 殼反射器 242 第一焦點 244 第二焦點 246 隔離器 250 初始反射器 252 第一光學軸線 254 次級反射器 256 第二光學軸線 258 後反射器 260 影像投射糸統 262 聚焦透鏡 264 輸出側 266 影像 268 超級立方體 270 偏振 272 偏振 O:\91\91367.DOC4 -25-In one embodiment, shown in FIG. 5, the hypercube 268 may be composed of individual pieces. In one embodiment, certain elements may be combined into a single unit. In one embodiment, for example, two fluorenes can be combined into a single fluorene. In this embodiment, a pair of reflectors 214, 218, 22 or 222 may be combined during a manufacturing process-such as during a glass molding process. In an alternative embodiment, the two fluorenes can be glued together to form a single unit. In a consistent embodiment, the two units can be combined with half of the polarization beam splitter 202 to form a single unit. In this embodiment, the entire pcs system can be made of two elements and an isolator 246 together. In another embodiment, one frame can be combined with a separator O: \ 91 \ 91367.DOC4 -16- 200422665 separator 246. In the-embodiment, the system may be made of two elements, and the separation is in the polarization beam splitter 202. In this embodiment, the cost can be minimized. In one embodiment, the polarizing beam splitter 202 and the reflectors 214, 218, 22, and 222 may be substantially cubic. In one embodiment, all sides of the polarizing beam splitter 20 and the reflectors 214, 218, 220, and 222 may be substantially similar in size, except for the hypotenuse of the reflector. In this embodiment, the output of the input light pipe 224 may be a square, and the input of the output light pipe 232 may be a rectangle with a aspect ratio of 2: 1. It can also be implemented by a non-cube structure, so that the input of the output light pipe 232 has a aspect ratio other than 2: 1, but the coupling loss may be relatively large. In several embodiments, the input and output light pipes 224 and 232, the reflectors 214, 218, 220 and 222, or the polarization beam splitter 202 may be coated with an anti-reflection (AR) coating to increase efficiency. In several embodiments, the input and output light pipes 224 and 2 3 2 can be promoted in an increasing or decreasing manner according to the needs of the application. The reflectors 214, 218, 220, and 222 can be coated in a reflective manner to be suitable for high-angle light. In addition to the illustrated configurations, the hypercube 268 can be used in a variety of configurations. In one embodiment, an input light pipe 224 may be disposed near the input 226 of the polarization beam splitter 202. In one embodiment, the input light pipe 224 may have an input surface 228 and an output surface 230. In several embodiments, the input light pipe 224 may be made of quartz, glass, plastic, or acrylic. In several embodiments, the input light pipe 224 may be a push-type light pipe (TLP) or a straight light pipe (SLP). In several embodiments, the shape of the input surface 228 may be flat, convex, concave, toroidal, or spherical. One surface of the input light pipe 224 may be coated with O: \ 91 \ 91367.DOC4 -17- 200422665 to maintain total internal reflection polarization. The size of the input surface 228 and the wheel-out surface 23 can be selected so that the output numerical aperture (NA) matches a device that receives light from the input light pipe 224. In one embodiment, the output surface 230 may be configured close to the input 226 of the polarization beam splitter 202. In several embodiments, the shape of the output surface 23o can be flat, convex, concave, toroidal, or spherical. In one embodiment, the input light pipe 224 can receive substantially unpolarized light on the input surface 228 and transmit the unpolarized light on the output surface 230 to the polarization beam splitter 202. In one embodiment, the human light pipe 224 may be hollow. The output surface 23o may be a plano-convex lens. A convex surface of the output surface 2 3 0 may be spherical or cylindrical ′ depending on the final structure and the cost of the component. One power of the output surface can be designed to cause the light from the output surface 230 to be imaged on the polarization beam splitter 202. An inner surface of the input light pipe 224 may be coated with a polarization dimension. In the Λ embodiment, a round of the light output pipe 232 may be positioned close to the output 234 of the super cube 268. In the embodiment, the output light tube may have an input surface 236 and a surface near the output direction 206. The light tube 232 may receive useful polarized light and useless polarized light fan at the input surface 236: first polarization The shape of the input surface 236, which is useful for transmission with the useless polarized thin surface 238, can be flat, convex, concave, toroidal, or spherical. In several shapes, it can be tied to sheep +3 π, and the surface 238 is exemplified by two people, a torus, or a sphere. In several rounds, the light emitting tube 232 may be selected from quartz, glass, plastic or 〇9l \ 9l367.Doc4 • 18- 200422665. In some embodiments, the output light tube 232 may be a push-shaped light. Tube (TLP) or straight light tube (SLP). The -surface of the output light pipe 232 can be coated to maintain total internal reflection polarization. The size of the input surface 236 and the output surface 238 can be selected so that the numerical aperture (NA) is matched to a device that receives light from the output light pipe 232. In the Bayesian example, the output light officer 232 may be hollow. The output surface 238 may be convex. The output surface 238-the convex surface can be a sphere or a cylinder, depending on the final construction and the cost of the component. A power of the output surface 238 can be designed to image the light from the output surface 238 on an image projection system. An inner surface of the output light pipe 232 may be coated with a polarization maintaining material. In one embodiment, a shell reflector 240 may reflect light from source 212 to polarization beam splitter 202. In one embodiment, the shell reflector 240 may have a coating ' which transmits a predetermined portion of the electromagnetic radiation spectrum. This can be used to discard unusable invisible light before coupling it into an imager. In several embodiments, the predetermined portion of the electromagnetic radiation spectrum may be infrared light, visible light, light of a predetermined wavelength band, light of a specific color, or a combination thereof. In an alternative embodiment, the coating may reflect infrared light, visible light, light of a predetermined wavelength band, light of a specific color, or some combination thereof. In one embodiment, the shell reflector 240 may have a first and a second focal point 242 and 244. In one embodiment, the electromagnetic radiation source 212 may be configured to be substantially close to the first focus 242 of the shell reflector 240 to emit light reflected from the shell reflector 240 and substantially converged at the second focus 244. In an embodiment, the input surface 228 may be configured to be substantially close to the second focal point 244 to collect and transmit substantially all light. In another embodiment, the input 226 of the O: \ 91 \ 91367.DOC4 -19- 200422665 optical splitter 202 may be configured to be substantially close to the second focal point 244 to collect and transmit substantially all light. In several embodiments, the shell reflector 240 may be a substantially elliptical rotating surface, a substantially spherical rotating surface, or a portion of a substantially annular rotating surface. In one embodiment, the shell reflector 240 may include a primary reflector 250 having a first optical axis 252, and the first focal point 242 may be a focal point of the primary reflection target 250. In this embodiment, the shell reflector 24o may also include a secondary reflector 254 having a second optical axis 256, which is arranged to be substantially symmetrical to the primary reflector 25o, so that the first and second optical axes 252 and 256 are roughly collinear. In this embodiment, the second focus point 244 may be 1 point ' of the secondary reflection ⑤254 and the light may be reflected from the primary reflector 250 toward the secondary I reflection 254 and substantially converge on the second focus. In several cases, the primary and secondary reflectors 250 and 254 each have a substantially elliptical rotating surface or a substantially parabolic rotating surface. In the κ embodiment, the ' primary reflector 250 may be of a substantially elliptical rotating surface. "Blade" and-the under-reflector 254 may be a 4-blade with a substantially hyperbolic rotating surface. In another embodiment, the primary reflector 250 may be a -part of a substantially hyperbolic rotating surface, and the secondary reflection The device 254 may be a portion of a substantially elliptical rotating surface. The source 212 may be positioned at the first focus 242 of the primary reflector 250 to calibrate the collected light A to the secondary reflector 254. The output from the input inner surface 228 can be imported to an input light pipe 224. In an embodiment, the input light s 224 may be a push-type light pipe (TLp). The input light pipe ⑽ can be used to convert the section area or numerical aperture of the & image of the source 212. Light can be imported into a super O: \ 91 \ 91367.DOC4 -20-200422665 class cube polarization recovery system to obtain linearly polarized light at the output light pipe 232. Linearly polarized light can be used in LCD-based imager wafers-which require polarized light. The degree of talent can depend on the size of the source 212. The secondary reflector .254 can be placed symmetrically to the primary reflector 250 so that they share a common optical axis. The light entering the secondary reflector 254 converges to a second focus point 244 'where a target, i.e., the input light pipe 224 is placed. The input light pipe 224 may light-couple the light from the second focus point 244 of the secondary reflector 254. In one embodiment, the 'source 212 can be imaged on a target in a 1: 1 ratio, so that the brightness of the source 212 is substantially maintained. Due to the 1: 1 symmetry of the system, the image of the source 212 on the input surface 228 may be exactly the same as the source 212 with unit magnification. The polarization recovery system 200 is able to retain the geometric transmission capabilities (eten (jue)) of all sources of the harvester elements of the polarization recovery system 200. The full angle of the light at the input surface 228 relative to an axis of the source 212 may be approximately 18 E, and 90 ° relative to an axis orthogonal to the axis of source 212, due to the limit of reflection ασ. For applications such as microdisplays, these angles may be too large. In one embodiment, the input The light pipe 224 may be a push-type light pipe (TLp) to convert a high input numerical aperture (NA) and a small input area into a lower numerical aperture and a larger output area without loss of brightness, so that the angle is reduced. In one embodiment, the source 212 may not be circular. In several embodiments, the input of the input light pipe 224 may be designed as a rectangle, ellipse, octagon, or other cross-sectional shape to match the shape of the image of the source 212. A match The input of the image from the source 212 can prevent or reduce the system deterioration caused by the shape mismatch. The output size and aspect ratio of the input light pipe 224 can be designed to match O: \ 91 \ 91367.DOC4 -21- 200422665 The size and aspect ratio of an imager panel, but with a supercube-based construction, 'which can be quite arbitrary. The primary and secondary reflectors 250 and 254 can roughly cover a turning arc limit of £ 18, so that The collection efficiency is maximized, that is, the primary reflector 25 will collect about half of the light emitted from the source 212. A rear reflector 258 may be placed on the opposite side of the primary reflection state 2 50 to collect the other half of the emitted light In one embodiment, the rear reflector 258 may be a hemispherical rear reflector. In one embodiment, the center of curvature of the rear reflector 258 may be positioned close to the source 212 of the lamp. In this embodiment, almost all of the The light can be reflected back through the source 212 to be collected by the primary reflector 25, and then focused in the light pipe. In fact, the efficiency of the rear reflector 258 can be derived from reflection loss, Fresnel reflection loss, and from source 212. The distortion loss of the envelope is reduced to. In one embodiment, a rear reflector 258 may be disposed on the side of the source 212 opposite to the shell reflector 240. In one embodiment, the rear reflector 25 8 may be a spherical rear reflector. In one embodiment, the rear reflector 258 may be integrated with the shell reflector 240. The shell reflector 258 may have a coating that transmits a predetermined portion of the electromagnetic radiation spectrum. The invisible light used is discarded before being coupled into an imager. In several embodiments, the predetermined portion of the electromagnetic radiation spectrum may be infrared light, visible light, light of a predetermined wavelength band, light of a particular color, or a combination thereof. In an alternative In an embodiment, the coating may reflect infrared light, visible light, light of a predetermined wavelength band, light of a specific color, or some combination thereof. In an embodiment of the present invention, an image projection system 260 may be configured as a sinner wheel. Out direction 206 to collect substantially all available polarized light 204 O: \ 91 \ 9I367.DOO -22- 200422665. In some embodiments, the image projection system 260 may be a silicon-on-silicon (LCOS) imager, a digital micromirror device (DMD) wafer, or a transmissive liquid crystal display (LCD) panel. In an embodiment of the present invention, a focusing lens 262 may be arranged close to the output direction 206, and the image projection system 260 is arranged close to the output side 264 of the focusing lens 262. An image 266 illuminated by the useful polarized light 204 collected and focused at the focusing lens 262 will be released by the projection system 260 to display the image 266. In an embodiment of the present invention, a polarization recovery method may include the following steps: roughly polarizing light into useful polarized light 204 and useless polarized light 208, transmitting useful polarized light 204 in an output direction 206, Reflects useless polarized light 208 in a first orthogonal direction 21 that is substantially orthogonal to the output direction 206, and a first orthogonal direction 216 that is substantially orthogonal to the output direction 206 and the first orthogonal direction ^ ⑺ Reflects useless polarized light 208, and reflects useless polarized light 208 in output direction 206. Although the invention has been described in detail above, the invention is not intended to be limited to the specific embodiments described. Of course, those skilled in the art can now make many applications and modifications and changes to the specific embodiments described herein without departing from the concept of the invention. [Brief description of the drawings] FIG. 1 shows a polarization restoration system of the embodiment; FIG. 2 shows an intention according to the present invention; and FIG. 3 shows a mosquito-reversing polarization turning device; O: \ 91 \ 91367.DOC4 • 23- 200422665 FIG. 4 shows a polarization recovery device used in one embodiment of the present invention; FIG. 5 shows a polarization recovery device used in one embodiment of the present invention; A straight and push-type light pipe according to an embodiment of the invention; FIG. 7 shows various sections of a light pipe used in an embodiment of the invention; FIG. 8 shows various structures of a light pipe used in an embodiment of the invention; g FIG. 9 shows a polarization recovery device used in one embodiment of the present invention. [Illustration of Symbols in the Drawings] 102 The first polarized light 104 The polarized beam splitter 106 The output 108 The second polarized light 110 The retardation plate 200 The polarization recovery system 202 The polarized beam split | § 204 The useful polarized light 206 The output direction 208 The unused polarized light 210 An orthogonal direction 212 source 214 initial reflector 216 second orthogonal direction 218 final reflector 220 first output reflector 222 second output reflector O: \ 91 \ 91367.DOC4 -24- 200422665 224 input light pipe 226 input 228 input surface 230 output surface 232 output light pipe 234 output 236 input surface 238 output surface 240 shell reflector 242 first focus 244 second focus 246 isolator 250 initial reflector 252 first optical axis 254 secondary reflector 256 second Optical axis 258 Rear reflector 260 Image projection system 262 Focusing lens 264 Output side 266 Image 268 Super cube 270 Polarization 272 Polarization O: \ 91 \ 91367.DOC4 -25-

Claims (1)

200422665 拾、申請專利範圍: 1. 一種偏振回復裝置(2 0 0)’包括: 一偏振分光器(202),其在輸出方向(2〇6)透射可用的偏 振光(204),且在大致上正交於該輸出方向(2〇6)的第一正 交方向(210)反射無用的偏振光(2〇8); 一配置成為可以反射該第一正交方向(2丨〇)的初始反射 器(214) ’該初始反射器(214)在大致上正交於該輸出方向 (206)與該第一正交方向(21〇)的第二正交方向(216)反射 該無用的偏振光(208);及 一配置成為可以反射該第二正交方向(2丨6)的最後反射 器(218) ’該最後反射器(218)在該輸出方向(2〇6)反射該無 用的偏振光(208); 其中该無用的偏振光(208)由該初始與最後反射器 (214,218)大致上轉動至該有用的偏振光(2〇4)。 2. 如申請專利範圍第1項之偏振回復裝置(2〇〇),其中又包含: 一第一輸出反射器(220),配置成為能夠反射該輸出方 向(206),該第一輸出反射器(22〇)在該第二正交方向(216) 反射該有用的偏振光(2〇4);及 一第二輸出反射器(222),配置成為能夠反射該第二正 交方向(2 1 6),該第二輸出反㈣(222)在該輸出方向⑽) 反射該有用的偏振光(2〇4)。 3·如申睛專利範圍第2項之偏振回復裝置⑻”其中該第一 輸出反射器(220)選自於以下組成的群組: 一稜鏡, O:\9l\91367.DOC5 200422665 一直角稜鏡, 一未匹配的阻礙,及 一鏡0 4. 如申請專利範圍第"之偏振回復裝置(),其中該第一 輸出反射器(220)具有一塗層,其透射選自於以下組成的 群組之預定部分的電磁輻射光譜: 紅外光, 可見光, 預定波長帶的光, 特定顏色的光,及 其組合。 5·如申請專㈣圍第2項之偏振回復裝置(2〇〇),其中該第 輸出反射器(222)選自於以下組成的群組: 一稜鏡, 一直角稜鏡, 一未匹配的阻礙,及 一鏡0 6. 群組之預定部分的電磁輻射光譜: 如申請專利範圍第2項之偏振 輸出反射器(222)具有一塗層 回復裝置(200),其中該第二 ’其透射選自於以下組成的 紅外光, 可見光, 預定波長帶的光, 特定顏色的光,及 O:\91\9l367.DOC5 ^ 2 - 200422665 其組合。 7·如申請專利範圍第1項之偏振回復裝置(200),其中又包含·· 一輸入光管(224),具有一輸入表面(228)與一輪出表面 (230),該輸出表面(230)配置成為靠近該偏振分光器(2〇2) 的輸入面(226),該輸入光管(224)在該輸入表面(228)接受 大致上不偏振的光,及在該輸出表面(23〇)透射該不偏振 的光至該偏振分光器(202)。 8·如申請專利範圍第7項之偏振回復裝置(2〇〇),其中該輸入 表面(228)的形狀選自於以下組成的群組: 平坦, 凸出, 凹入, 超環面,及 球面。 9·如申請專利範圍第7項之偏振回復裝置(2〇〇),其中該輸出 表面(230)的形狀選自於以下組成的群組: 平坦, 凸出, 凹入, 超環面,及 ι〇·如申請專利範圍第7項之偏振回復 μ…μ 衣置(200),其中該輸入 光官(224)由選自於石英、玻璃、 _或丙烯酸組成的群 組的材料製造。 O:\91\9l367.DOC5 200422665 11·如申請專利範圍第7項之偏振回復裝置_),其中該輸入 光管(224)選自於以下組成的群組: 一直光管(SLP),及 一推拔形光管(TLP)。 12.如申明專利圍第i項之偏振回復裝置(綱),其巾又包含: 一輸出光管(232),#有-酉己置成為靠近該輸出方向 (2〇6)的輸入表面(234)及—輸出表面(236),該輸出光管 (232)在該輸入表面(234)接受該有用的偏振光⑼句,且在 該輸出表面(236)透射該有用的偏振光(2〇4)。 13·如申明專利範圍第12項之偏振回復裝置(2㈧),其中該輸 入表面(234)的形狀選自於以下組成的群組·· 平坦, 凹入, 超環面,及 球面 ° 14.如申請專利範圍第12項之偏振回復裝置(2〇〇),其中該輪 出表面(236)的形狀選自於以下組成的群組: J 平坦, 凹入, 超環面,及 球面。 15·如申請專利範圍第12項之偏振回復裝置(細),其中該輪 O:\91\91367.DOC5 -4- 200422665 出光官(232)由選自於石英、玻璃、塑膠或丙稀酸組成的 群組的材料製造。 丄6·如申請專利範圍第12項之偏振回復裝置(2〇〇),其中該輸 出光官(232)選自於以下組成的群組: 一直光管(SLP),及 一推拔形光管(TLP)。 17·如申請專利範圍第!項之偏振回復裝置(2〇〇),其中該初始 反射器(214)選自於以下組成的群組: 一稜鏡, 一直角稜鏡, 一未匹配的阻礙,及 一鏡。 18.如申請專利範圍第i項之偏振回復裝置(2〇〇),其中該初始 反射器(214)具有-塗層,其透射選自於以下組成的群組 之預定部分的電磁輻射光譜: 紅外光, 可見光, 預定波長帶的光, 特定顏色的光,及 其組合。 19.如申請專利範圍第1項之偏振回復裝置(2〇〇),其中該最後 反射器(21 8)選自於以下組成的群組: 一稜鏡, 一直角稜鏡, O:\91\91367.D0C5 200422665 一未匹配的阻礙,及 一鏡。 20·如申請專利範圍第1項之偏振回復裝置(2〇〇),其中該最後 反射器(21 8)具有一塗層,其透射選自於以下組成的群組 之預定部分的電磁輻射光譜: 紅外光, 可見光, 預定波長帶的光, 特定顏色的光,及 其組合。 21.如申請專利範圍第1項之偏振回復裝置(2〇〇),其中又包含: 一殼反射器(240),具有一第一及一第二焦點(242,244); 一電磁輻射來源(212),配置成為大致上靠近該殼反射 器(240)的第一焦點(242),以射出從該殼反射器(240)反射 且大致上收歛在該第二焦點(244)的光線; 其中該輸入表面(228)配置成為靠近該第二焦點(244) ,以收集及透射所有的該光。 22·如申請專利範圍第21項之偏振回復裝置(200),其中該殼 反射器(240)包含選自於以下組成的群組之形狀的至少一 部分: 一大致上橢圓的轉動表面, 一大致上球形的轉動表面,及 一大致上環形的轉動表面。 23.如申請專利範圍第21項之偏振回復裝置(200),其中該殼 O:\91\91367.DOC5 -6- 200422665 反射器(240)包含一具有一第一光學軸線(252)的初級反 射器(250),且該第一焦點(242)係該初級反射器(250)的一 焦點,該殼反射器(240)又包含: 一具有一第二光學軸線(256)的次級反射器(254),其安 置成為大致上對稱於該初級反射器(250),俾使該第一與 第二光學軸線(252,256)大致上共線,且該第二焦點(244) 係該次級反射器(254)的一焦點;且 該光線從該初級反射器(250)朝該次級反射器(254)反 射,且大致上收歛在該第二焦點(244)。 24. 如申請專利範圍第23項之偏振回復裝置(200),其中該初 級與次級反射器(250,254)各包含選自於以下組成的群組 之形狀的一部分: 一大致上橢圓的轉動表面,及 一大致上拋物線的轉動表面。 25. 如申請專利範圍第23項之偏振回復裝置(200),其中: 該初級反射器(250)包含一大致上橢圓的轉動表面的至 少一部分;且 該次級反射器(254)包含一大致上雙曲線的轉動表面的 至少一部分。 26. 如申請專利範圍第23項之偏振回復裝置(200),其中: 該初級反射器(250)包含一大致上雙曲線的轉動表面的 至少一部分;且 該次級反射器(254)包含一大致上橢圓的轉動表面的至 少一部分。 O:\91\91367.DOC5 200422665 27·如申請專利範圍第23項之偏振回復裝置(200),其中該殼 反射器(240)具有一塗層,其透射選自於以下組成的群組 之預定部分的電磁輻射光譜·· 紅外光, 可見光, 預定波長帶的光, 特定顏色的光,及 其組合。 28·如申請專利範圍第21項之偏振回復裝置(2〇〇),其中又包 含一配置於與該殼反射器(240)對立的來源之側上的後反 射器。 29·如申請專利範圍第28項之偏振回復裝置(2〇〇),其中該後 反射器(258)包含一球形後反射器(258)。 30·如申請專利範圍第28項之偏振回復裝置(2〇〇),其中該後 反射器(258)具有一塗層,其透射選自於以下組成的群組 之預定部分的電磁輻射光譜: 紅外光, 可見光, 預定波長帶的光, 特定顏色的光,及 其組合。 31.如申請專利範圍第21項之偏振回復裝置⑼”其中該電 磁輻射來源(212)包含一電弧燈。 32·如申睛專利範圍第31項之偏振回復裝置㈧),其中該電 O:\9l\91367.DOC5 200422665 弧燈包含一燈,該燈選自於由一氤燈、一金屬鹵化物燈 、一 UHP燈、一高密度放電燈或一水銀燈組成的群組。 33·如申請專利範圍第21項之偏振回復裝置(2〇〇),其中該電 磁輻射來源(212)選自於由一 _素燈與一白熾燈組成的群 組。 34·如申請專利範圍第i項之偏振回復裝置(2〇〇),其中又包含: 一影像投射系統(260),配置成為靠近該輸出方向(2〇6) ’以大致上收集該可用的偏振光(2〇4)。 35·如申請專利範圍第34項之偏振回復裝置(2〇〇”其中該影 像投射系統(260)選自於以下組成的群組: 一矽上液晶成像器, 一數位微鏡裝置晶片,及 透射式液晶顯示面板。 36.如申請專利範圍第21項之偏振回復裝置(200),其中該偏 振分光器(202)的形狀大致上匹配該電磁輻射來源(212) 之一孔徑。 37.如申請專利範圍第丨項之偏振回復裝置(2〇〇),豆中該 分光器(202)包含一線光栅偏振分光器。 又 3 8 · —種偏振回復方法,包括·· 用的偏振 使光大致上偏振成為有用的偏振光(204)與無 光(208); 在輸出方向(206)透射該可用的偏振光(2〇4); 在大致上正交於該輸出方向(206)的第一正交方 (2 10)反射該無用的偏振光(2〇8) ; ° O:\91\91367.DOC5 -9- 200422665 在大致上正交於該輸出方向(206)與該第一正交方向 (210)的第二正交方向(216)反射該無用的偏振光㈣”及 在該輸出方向(206)反射該無用的偏振光(2〇8)。 3 9 · —種偏振回復系統,包括: 用於將光大致上偏振成為有用的偏振光(2〇4)與無用的 偏振光(208)的裝置; 正父方向 用於在輸出方向(206)透射該有用的光的裝置 用於在大致上正交於該輸出方向(2〇6)的第一 (210)反射該無用的光的裝置; 向 用於在大致上正交於該輸出方向(2G6)與㈣_正交方 的第二正交方向⑽)反射該無用的光的裳置及 用於在該輸A方向(206)反射該無用的*的裳置 O:\91\91367.DOC5 10-200422665 The scope of patent application: 1. A polarization recovery device (200) 'includes: a polarization beam splitter (202), which transmits available polarized light (204) in the output direction (206), and approximately Useless polarized light (208) is reflected in a first orthogonal direction (210) orthogonal to the output direction (206); an initial configuration configured to reflect the first orthogonal direction (2 丨 0) Reflector (214) 'The initial reflector (214) reflects the useless polarization in a second orthogonal direction (216) substantially orthogonal to the output direction (206) and the first orthogonal direction (21). Light (208); and a final reflector (218) configured to reflect the second orthogonal direction (2 丨 6) 'the final reflector (218) reflects the useless in the output direction (206) Polarized light (208); wherein the useless polarized light (208) is substantially rotated from the initial and final reflectors (214, 218) to the useful polarized light (204). 2. For example, the polarization recovery device (200) of the scope of patent application, which further includes: a first output reflector (220) configured to reflect the output direction (206), the first output reflector (22) reflecting the useful polarized light (204) in the second orthogonal direction (216); and a second output reflector (222) configured to reflect the second orthogonal direction (2 1 6), the second output reflection 222 (222) reflects the useful polarized light (204) in the output direction ⑽). 3. The polarization reverting device of item 2 in the patent application scope "wherein the first output reflector (220) is selected from the group consisting of: one, O: \ 9l \ 91367.DOC5 200422665 straight angle稜鏡, an unmatched obstruction, and a mirror 0 4. The polarization recovery device () of the scope of patent application, wherein the first output reflector (220) has a coating whose transmission is selected from the following The electromagnetic radiation spectrum of the predetermined part of the group: infrared light, visible light, light of a predetermined wavelength band, light of a specific color, and a combination thereof. 5. If applying for the polarization recovery device (2) ), Wherein the second output reflector (222) is selected from the group consisting of: a 稜鏡, a corner 未, an unmatched obstruction, and a mirror 0 6. The electromagnetic radiation spectrum of a predetermined portion of the group : For example, the polarized output reflector (222) of the scope of patent application has a coating recovery device (200), wherein the second 'transmits infrared light selected from the group consisting of infrared light, visible light, and light of a predetermined wavelength band, Specific color of light And O: \ 91 \ 9l367.DOC5 ^ 2-200422665 and their combinations. 7. The polarization recovery device (200) such as the scope of the patent application, which includes an input light pipe (224) with an input surface (228) and a round exit surface (230), the output surface (230) is configured close to the input surface (226) of the polarization beam splitter (202), and the input light pipe (224) is on the input surface (228) Accepts substantially unpolarized light, and transmits the unpolarized light to the polarization beam splitter (202) on the output surface (23). 8. The polarization recovery device (200) as claimed in item 7 of the patent application scope Where the shape of the input surface (228) is selected from the group consisting of: flat, convex, concave, toroidal, and spherical. 9. The polarization recovery device (2) as described in item 7 of the scope of patent application. 〇), wherein the shape of the output surface (230) is selected from the group consisting of: flat, convex, concave, toroidal, and ι〇 · Polarization recovery μ as described in item 7 of the patent application scope. Clothing set (200), wherein the input light officer (224) is selected from the group consisting of quartz and glass _ Or a group of materials made of acrylic. O: \ 91 \ 9l367.DOC5 200422665 11 · If the polarization recovery device of the seventh scope of the patent application_), wherein the input light pipe (224) is selected from the following composition Group: straight light pipe (SLP), and a push-type light pipe (TLP). 12. As stated in the polarization recovery device (the outline) of the patent claim i, the towel also includes: an output light pipe (232) , # 有-酉 其 置 becomes the input surface (234) and the output surface (236) near the output direction (206), and the output light pipe (232) receives the useful polarization at the input surface (234). Light haiku, and transmit the useful polarized light (204) on the output surface (236). 13. As stated in the polarization recovery device (2㈧) of the patent scope, wherein the shape of the input surface (234) is selected from the group consisting of: flat, concave, toroidal, and spherical ° 14. For example, the polarization recovery device (200) of the scope of application for a patent, wherein the shape of the wheel-out surface (236) is selected from the group consisting of: J flat, concave, toroidal, and spherical. 15. The polarization recovery device (thin) according to item 12 of the patent application scope, wherein the round O: \ 91 \ 91367.DOC5 -4- 200422665 The light-exposure officer (232) is selected from quartz, glass, plastic or acrylic acid Made up of groups of materials.丄 6. The polarization recovery device (200) according to item 12 of the patent application, wherein the output light officer (232) is selected from the group consisting of a straight light pipe (SLP), and a push-shaped light Tube (TLP). 17 · If the scope of patent application is the first! An item of polarization recovery device (200), wherein the initial reflector (214) is selected from the group consisting of: a corner, a corner corner, an unmatched obstruction, and a mirror. 18. The polarization recovery device (200) according to item i of the application, wherein the initial reflector (214) has a coating that transmits an electromagnetic radiation spectrum selected from a predetermined portion of a group consisting of: Infrared light, visible light, light of a predetermined wavelength band, light of a specific color, and combinations thereof. 19. The polarization recovery device (200) according to item 1 of the patent application range, wherein the final reflector (21 8) is selected from the group consisting of: 稜鏡, straight angle O, O: \ 91 \ 91367.D0C5 200422665 An unmatched obstruction, and a mirror. 20. The polarization recovery device (200) according to item 1 of the patent application range, wherein the final reflector (21 8) has a coating that transmits an electromagnetic radiation spectrum selected from a predetermined portion of a group consisting of : Infrared light, visible light, light of a predetermined wavelength band, light of a specific color, and combinations thereof. 21. The polarization recovery device (200) according to item 1 of the patent application scope, further comprising: a shell reflector (240) having a first and a second focus (242,244); a source of electromagnetic radiation (212 ) Configured to be near the first focus (242) of the shell reflector (240) to emit light reflected from the shell reflector (240) and converging substantially at the second focus (244); wherein the The input surface (228) is configured close to the second focus (244) to collect and transmit all the light. 22. The polarization recovery device (200) as claimed in claim 21, wherein the shell reflector (240) includes at least a part of a shape selected from the group consisting of: a substantially elliptical rotating surface, a roughly An upper spherical rotating surface, and a generally annular rotating surface. 23. The polarization recovery device (200) according to item 21 of the application, wherein the shell O: \ 91 \ 91367.DOC5 -6- 200422665 the reflector (240) includes a primary element having a first optical axis (252). A reflector (250), and the first focus (242) is a focus of the primary reflector (250), and the shell reflector (240) further comprises: a secondary reflection having a second optical axis (256) (254), which is arranged to be substantially symmetrical to the primary reflector (250), so that the first and second optical axes (252, 256) are substantially collinear, and the second focal point (244) is the secondary A focus of the reflector (254); and the light is reflected from the primary reflector (250) toward the secondary reflector (254), and substantially converges at the second focus (244). 24. The polarization recovery device (200) according to item 23 of the application, wherein the primary and secondary reflectors (250,254) each include a part of a shape selected from the group consisting of: a substantially elliptical rotating surface , And a roughly parabolic rotating surface. 25. The polarization recovery device (200) according to item 23 of the application, wherein: the primary reflector (250) includes at least a portion of a substantially elliptical rotating surface; and the secondary reflector (254) includes a substantially At least a portion of the upper hyperbolic surface of revolution. 26. The polarization recovery device (200) according to item 23 of the application, wherein: the primary reflector (250) includes at least a portion of a substantially hyperbolic rotating surface; and the secondary reflector (254) includes a At least a portion of a substantially elliptical rotating surface. O: \ 91 \ 91367.DOC5 200422665 27. The polarization recovery device (200) according to item 23 of the patent application, wherein the shell reflector (240) has a coating, and its transmission is selected from the group consisting of Electromagnetic radiation spectrum of a predetermined part ... Infrared light, visible light, light of a predetermined wavelength band, light of a specific color, and combinations thereof. 28. The polarization recovery device (200) according to item 21 of the patent application scope, further comprising a rear reflector disposed on the side of the source opposite to the shell reflector (240). 29. The polarization recovery device (200) according to item 28 of the application, wherein the rear reflector (258) includes a spherical rear reflector (258). 30. The polarization recovery device (200) of claim 28, wherein the rear reflector (258) has a coating that transmits an electromagnetic radiation spectrum selected from a predetermined portion of a group consisting of: Infrared light, visible light, light of a predetermined wavelength band, light of a specific color, and combinations thereof. 31. If the polarization recovery device ⑼ of the scope of application for the patent No. 21 "", wherein the electromagnetic radiation source (212) includes an arc lamp. 32 · The polarization recovery device 如 of the scope of the patent application No. 31), wherein the electric O: \ 9l \ 91367.DOC5 200422665 The arc lamp includes a lamp selected from the group consisting of a chirped lamp, a metal halide lamp, a UHP lamp, a high-density discharge lamp, or a mercury lamp. 33. If you apply The polarization recovery device (200) of the scope of the patent, wherein the electromagnetic radiation source (212) is selected from the group consisting of a prime lamp and an incandescent lamp. The polarization reverting device (200) further includes: an image projection system (260) configured to be close to the output direction (206) 'to substantially collect the available polarized light (204). 35 · For example, the polarization recovery device (200) of the scope of application for patent No. 34, wherein the image projection system (260) is selected from the group consisting of: a liquid crystal on silicon imager, a digital micromirror device chip, and a transmission type Liquid crystal display panel 36. If applying for a patent The polarization recovery device (200) around item 21, wherein the shape of the polarization beam splitter (202) roughly matches an aperture of the electromagnetic radiation source (212). 37. For example, the polarization recovery device (item 丨) (200)), the beam splitter (202) in the bean contains a linear grating polarization beam splitter. Another 3 8 ·-a polarization recovery method, including · · uses the polarization to make the light roughly polarized into useful polarized light (204) and No light (208); transmit the available polarized light (204) in the output direction (206); reflect the useless in a first orthogonal square (2 10) substantially orthogonal to the output direction (206) Polarized light (208); ° O: \ 91 \ 91367.DOC5 -9- 200422665 is substantially orthogonal to the second orthogonal direction (the output direction (206) and the first orthogonal direction (210)) ( 216) Reflecting the useless polarized light ㈣ "and reflecting the useless polarized light (208) in the output direction (206). 3 9 · A polarization recovery system including: used to substantially polarize light to become useful Polarized light (204) and useless polarized light (208); The direction (206) means for transmitting the useful light means for reflecting the useless light at a first (210) which is substantially orthogonal to the output direction (206); the direction (206) means for reflecting the useless light; The output direction (2G6) and ㈣_the second orthogonal direction of the orthogonal direction ⑽) reflect the useless light and the clothes set used to reflect the useless * in the direction of input A (206): 91 \ 91367.DOC5 10-
TW093104343A 2003-02-21 2004-02-20 Polarization recovery system using redirection TWI238901B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44847103P 2003-02-21 2003-02-21
US46939303P 2003-05-12 2003-05-12

Publications (2)

Publication Number Publication Date
TW200422665A true TW200422665A (en) 2004-11-01
TWI238901B TWI238901B (en) 2005-09-01

Family

ID=32930484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093104343A TWI238901B (en) 2003-02-21 2004-02-20 Polarization recovery system using redirection

Country Status (6)

Country Link
EP (1) EP1597514A4 (en)
JP (1) JP2006518486A (en)
KR (1) KR20050103500A (en)
CA (1) CA2515141A1 (en)
TW (1) TWI238901B (en)
WO (1) WO2004077102A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988209B2 (en) * 2006-01-13 2012-08-01 三洋電機株式会社 Rod fixing structure and projection-type image display device
EP3021072B1 (en) * 2014-11-14 2016-09-28 Sick Ag Lighting device and method for projecting an illumination pattern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197913A (en) * 1987-02-13 1988-08-16 Nec Corp Polarization converting element
JPH0488301A (en) * 1990-08-01 1992-03-23 Canon Inc Polarization conversion module
JP2850891B2 (en) * 1996-12-10 1999-01-27 日本電気株式会社 Optical filter module and optical amplifying device using the same
US5884991A (en) * 1997-02-18 1999-03-23 Torch Technologies Llc LCD projection system with polarization doubler
US6288840B1 (en) * 1999-06-22 2001-09-11 Moxtek Imbedded wire grid polarizer for the visible spectrum
US6587269B2 (en) * 2000-08-24 2003-07-01 Cogent Light Technologies Inc. Polarization recovery system for projection displays

Also Published As

Publication number Publication date
JP2006518486A (en) 2006-08-10
EP1597514A4 (en) 2009-08-26
EP1597514A2 (en) 2005-11-23
KR20050103500A (en) 2005-10-31
WO2004077102A2 (en) 2004-09-10
CA2515141A1 (en) 2004-09-10
TWI238901B (en) 2005-09-01
WO2004077102A3 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US6969177B2 (en) Polarization recovery system using redirection
US7452086B2 (en) Light pipe based projection engine
JP4994561B2 (en) Polarization recovery system for projection display
US7330314B1 (en) Color combiner for solid-state light sources
WO1998008118A1 (en) Polarized light separating/combining optical element, polarized light illuminating apparatus and projection-type display device
JP4420087B2 (en) Lighting device and projector
JP4273642B2 (en) Single-panel LCD projector
US6836576B2 (en) Polarization recovery system using light pipes
WO2004040366A1 (en) Projector
JP5509827B2 (en) Illumination optical system and projection apparatus
JP2006171252A (en) Projection-type display device
TW200422665A (en) Polarization recovery system using redirection
JP2002311382A (en) Illumination optical device and projective display device
US6870580B2 (en) Illumination optical system having a mirror with a curved surface having rotational symmetry about a predetermined axis
JP2000321535A (en) Parallel light polarizing conversion device, lighting device, and liquid crystal projector
JP2001109070A (en) Illuminating optical device and projection type display device using it
JP2000330204A (en) Illuminator and liquid crystal projector
JP2007249136A (en) Illuminator and projector
JP2004126184A (en) Illumination optical device and projector
JP2007293152A (en) Lighting system and projector
JP2000330195A (en) Illuminator and liquid crystal projector
JP2005156959A (en) Illumination optical system and image display using it
Dowling et al. CROSS-REFERENCE TO RELATED APPLICATIONS
JPH1054907A (en) Polarization separating synthesizing device provided with polarization selective reflection element and manufacture of cancave shaped polarization selective reflection element
JP2003222825A (en) Illuminator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees