TW200422440A - Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby - Google Patents

Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby Download PDF

Info

Publication number
TW200422440A
TW200422440A TW092130835A TW92130835A TW200422440A TW 200422440 A TW200422440 A TW 200422440A TW 092130835 A TW092130835 A TW 092130835A TW 92130835 A TW92130835 A TW 92130835A TW 200422440 A TW200422440 A TW 200422440A
Authority
TW
Taiwan
Prior art keywords
layer
copper
patent application
item
scope
Prior art date
Application number
TW092130835A
Other languages
Chinese (zh)
Other versions
TWI255873B (en
Inventor
Valery Dubin
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW200422440A publication Critical patent/TW200422440A/en
Application granted granted Critical
Publication of TWI255873B publication Critical patent/TWI255873B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Abstract

A method of forming a copper interconnect, comprising forming an opening in a dielectric layer disposed on a substrate, forming a barrier layer over the opening, forming a seed layer over the metal layer, and forming a copper-noble metal alloy layer by electroplating and/or electroless deposition on the seed layer. The copper-noble metal alloy improves the electrical characteristics and reliability of the copper interconnect.

Description

200422440 ⑴ 玖、發明說明 【發明所屬之技術領域】 本發明是關於微電子裝置處理的領域,特別是關於使 用電鍍及/或無電技術形成銅內連接結構之方法以及所形 成之結構。 【先前技術】 電晶體-如此技術中眾人皆知者-是全部積體電路的建 立區塊。現代的積體電路精確內連接數百萬稠密構造的電 晶體,其執行各種功能。爲了達成電路元件密度之此戲劇 性的增加’已要求微電子製造者按比例減小電路元件的物 理尺寸,及使用多層內連接結構,其用以連接電路元件於 功能電路中。 此內連接過程之一稱爲鑲嵌過程(圖5),其中電介質 層202與202’沈積於基材200上。通孔204、204,與溝渠 206、206’餓刻至電介質層202與202’中。金屬層208與 208’-諸如銅或銘-接著形成於通孔204、204’與溝渠206、 2 06’上。此過程可以重複,以經由溝渠與通孔,達成複數 金屬化層的內連接。 與先前使用的金屬-諸如鋁·相比,銅金屬之使用於鑲 嵌結構中具有很多優點,例如,它的低電阻。用於沈積銅 於鑲嵌結構中的技術之一是藉由無電沈積,其具有吸引力 ,因爲它的成本低及沈積品質高。在無電噴鍍時,金屬沈 積藉由化學還原反應發生於含有還原劑的水溶液中,其中 -4 - (2) (2)200422440 不需要外部電源。然而,無電噴鍍需要活化一不導電表面 ,例如,藉由提供一種子層,以無電噴鍍金屬。 然而,使用銅當作鑲嵌結構中的內連接金屬有問題。 此問題之一是銅容易擴散或漂移至電介質層202、2 02’中( 再次參考圖5 ),於是在相鄰電路元件之間形成短路。所 以,銅內連接的結構必須由擴散屏障層-諸如鉅、氮化鉬 、氮化鈦(TiN)或鈦鎢(TiW)囊封。不幸,擴散屏障層的添 加可能增加銅內連接結構的有效電介質常數,其導致電 阻-電容(RC)延遲的增加,其使裝置的電性質惡化。 銅金屬化有關的另一問題是銅容易氧化,特別是在後 續處理步驟期間。氧化的銅使銅內連接的電與機械性質惡 化。因此,通常使用一密封的囊封層,以提供抗腐蝕性予 銅層,此囊封材料可能包括碳化矽(SiC)與氮化矽(SiN)。 此囊封層也可以當作蝕刻停止物,其防止在後續處理步驟 期間之銅層的過度蝕刻。然而,此囊封層也可能增加銅內 連接結構的有效電介質常數。 銅金屬化遭遇的另一問題是在高電流密度之銅原子的 電遷移,其可能在金屬內連接結構中導致空隙。減少電遷 移數量的方法之一是以銅、錫、銦或矽使銅金屬合金化; 然而,此可能顯著增加銅的電阻。 因此,需要一種改良的銅內連接製造過程與結構,其 增加銅的抗腐蝕性及/或抗氧化性、增加電遷移電阻、及 /或減小銅內連接結構的有效電介質常數。 -5- (3) 200422440 【發明內容】200422440 ⑴ 玖, description of the invention [Technical field to which the invention belongs] The present invention relates to the field of microelectronic device processing, and more particularly to a method for forming a copper interconnect structure using electroplating and / or electroless technology, and the formed structure. [Prior art] Transistors-well known in this technology-are the building blocks of all integrated circuits. Modern integrated circuits accurately connect millions of densely constructed transistors that perform a variety of functions. In order to achieve this dramatic increase in the density of circuit components', microelectronics manufacturers have been required to reduce the physical size of circuit components proportionally, and use multilayer interconnect structures to connect circuit components to functional circuits. One of the interconnection processes is called a damascene process (FIG. 5), in which dielectric layers 202 and 202 'are deposited on a substrate 200. The through holes 204, 204, and the trenches 206, 206 'are engraved into the dielectric layers 202 and 202'. Metal layers 208 and 208 '-such as copper or inscriptions-are then formed on the through holes 204, 204' and the trenches 206, 2 06 '. This process can be repeated to achieve internal connection of the plurality of metallization layers through the trenches and vias. The use of copper metal in embedded structures has many advantages over previously used metals such as aluminum, for example, its low resistance. One of the techniques used to deposit copper in a damascene structure is through electroless deposition, which is attractive because of its low cost and high deposition quality. During electroless plating, metal deposition occurs in an aqueous solution containing a reducing agent through a chemical reduction reaction, of which -4-(2) (2) 200422440 does not require an external power source. However, electroless plating requires activation of a non-conductive surface, for example, by providing a sub-layer, electroless plating of metal. However, there are problems with using copper as the interconnect metal in a damascene structure. One of the problems is that copper easily diffuses or drifts into the dielectric layers 202, 202 '(refer to FIG. 5 again), and a short circuit is formed between adjacent circuit elements. Therefore, copper interconnect structures must be encapsulated by diffusion barriers such as giant, molybdenum nitride, titanium nitride (TiN), or titanium tungsten (TiW). Unfortunately, the addition of a diffusion barrier layer may increase the effective dielectric constant of the copper interconnect structure, which results in an increase in resistance-capacitance (RC) delay, which deteriorates the electrical properties of the device. Another problem associated with copper metallization is that copper is susceptible to oxidation, especially during subsequent processing steps. Oxidized copper deteriorates the electrical and mechanical properties of the copper interconnects. Therefore, a sealed encapsulation layer is usually used to provide corrosion resistance to the copper layer. The encapsulation material may include silicon carbide (SiC) and silicon nitride (SiN). This encapsulation layer can also be used as an etch stop, which prevents over-etching of the copper layer during subsequent processing steps. However, this encapsulation may also increase the effective dielectric constant of the copper interconnect structure. Another problem encountered with copper metallization is the electromigration of copper atoms at high current densities, which may cause voids in the metal interconnect structure. One way to reduce the amount of electromigration is to alloy copper metal with copper, tin, indium, or silicon; however, this may significantly increase the resistance of copper. Therefore, there is a need for an improved copper interconnect manufacturing process and structure that increases the corrosion resistance and / or oxidation resistance of copper, increases the electromigration resistance, and / or reduces the effective dielectric constant of the copper interconnect structure. -5- (3) 200422440 [Summary of the invention]

在以下的詳細說明中係參考附圖,其舉例解釋以顯示 可以實施本發明的特定實施例。這些實施例足夠詳細地說 明,使專精於此技術的人能夠實施本發明。應該了解,本 發明的各種實施例-雖然不同-不需要互斥。例如,此處配 合一實施例所說明之一特殊的特性、結構或特徵可以在其 他實施例中實施,不會偏離本發明的精神和範疇。此外, 應該了解,在每一揭示的實施例中之個別元件的位置或配 置可以修改,不會偏離本發明的精神和範疇。所以,下列 詳細說明不具有限制性,且本發明的範疇只由適當詮釋的 附屬申請專利範圍及申請專利範圍所授權的等效事項的全 部範圍界定。在圖式中,同樣的號碼標示若干視圖中相同 或類似的功能。In the following detailed description, reference is made to the accompanying drawings, which are exemplified to show specific embodiments in which the invention may be practiced. These examples are detailed enough to enable those skilled in the art to practice the invention. It should be understood that various embodiments of the present invention-although different-need not be mutually exclusive. For example, a particular feature, structure, or characteristic described herein in conjunction with one embodiment can be implemented in other embodiments without departing from the spirit and scope of the invention. In addition, it should be understood that the position or configuration of individual elements in each disclosed embodiment may be modified without departing from the spirit and scope of the invention. Therefore, the following detailed description is not restrictive, and the scope of the present invention is only defined by the full scope of the properly interpreted scope of the subsidiary application patent and the equivalent scope authorized by the scope of the patent application. In the drawings, the same numbers indicate the same or similar functions in several views.

說明一種用於製造銅內連接結構的方法。該方法包含 形成一開口於沈積在基材上的電介質層中,形成一屏障層 於開口上,形成一種子層於金屬層上,及藉由電鍍及/或 無電噴鍍形成一銅-貴重金屬合金層於種子層上,其中銅· 貴重金屬合金層改良銅內連接結構的電特徵與可靠度。然 後’一蝕刻停止層或一包覆層可以形成於銅合金層上。 [實施方式】 在本發明的方法之一實施例中,如圖1 a - 1 f所示,一 電介質層104形成於基材102上(圖la)。基材〗〇2可以包 s树料,諸如砂、砂上絕緣體、鍺、銻化銦、碲化鉛、砷 -6 > (4) (4)200422440 化銦、磷化銦、砷化鎵或銻化鎵。雖然在此說明可以形成 基材1 0 2的材料之若干例子,但是可以當作基層-其上可 以建立一微電子裝置-的任何材料落在本發明的精神和範 疇內。 電介質層1 〇 4形成於基材1 0 2上。專精於此技術的人 將了解,電介質層1 0 4也可以由各種材料、厚度或複數層 材料形成。舉例解釋而非限制,電介質層1 0 4可以包括二 氧化砂(較佳)、有機材料或無機材料。雖然在此說明可以 形成電介質層1 04的材料之若干例子,但是層可以由用於 分離及絕緣不同金屬層的其他材料製造。 電介質層104可以使用傳統沈積方法形成於基材1〇2 上,例如,化學蒸氣沈積(“CVD”)、低壓化學蒸氣沈積 (“LPCVD”)、物理蒸氣沈積(“PVD,,)或原子層沈積(“ALD”) 。較佳地,使用化學蒸氣沈積過程。在此過程中,金屬氧 化物前行物(例如,金屬氯化物)與蒸汽可以選擇的流動率 饋送進入化學蒸氣沈積反應器,其然後在選擇的溫度和壓 力操作,以在基材102與電介質層104之間產生一原子平 滑介面。化學蒸氣沈積反應器必須操作足夠久’以形成具 有所欲厚度的電介質層104。在大多數應用中’電介質層 1〇4是約一微米厚,更佳爲在約6,000埃與約8,0 00埃厚 之間。 電介質層i 04可以具有至少一形成在其內的開口 1 05 (圖lb),其包含至少一通孔106及至少一溝渠, 依據專精於此技術的人習知的傳統鑲嵌技術,其可以用於 -7- (5) (5)200422440 連接至微電子裝置(未顯示)中的其他金屬層。因爲此步驟 是專精於此技術的人眾人皆知者,所以此處不更詳細說明 〇 隨著開口 105的形成,一屏障層108沈積在開口 1〇5 上(圖1 c)。專精於此技術的人將明白,屏障層1 〇 8可以由 各種材料、厚度或複數材料層形成。舉例解釋而非限制, 屏障層1 0 8可以使用傳統技術沈積,諸如物理蒸氣沈積、 原子層沈積、傳統化學蒸氣沈積、低壓化學蒸氣沈積或專 精於此技術的人習知的其他此類方法。在目前較佳的實施 例中,屏障層可以包括下列材料中的任一:鉅、鎢、鈦、 釕、鉬及它們與氮、矽、碳的合金。雖然此處說明可以用 於形成屏障層1 08的材料之若干例子,但是層可以由用以 防止金屬擴散於屏障層108的其他材料製造。屏障層108 可以在自約1 〇埃至約5 0 0埃的·範圍內。薄的屏障層1 0 8 係較佳(在約1 〇埃與5 0埃之間),因爲薄的屏障層對於銅 內連接結構的總電阻之貢獻較少。 然後,一種子層1 1 〇可以選擇性形成於屏障層1 〇 8上 (圖1 d),且可以唯獨包含銅,或它與錫、銦、鎘、鋁、鎂 的合金,或它與諸如銀、鈀、鉑、铑、釕、金、銦、餓之 貴重金屬的合金,或者,種子層110可以唯獨包含貴重金 屬。專精於此技術的人將明白,種子層1 1 0可以由各種材 料、厚度或複數材料層形成。在目前較佳的實施例中,種 子層〗10是在約1〇埃與2,000埃厚之間,且包含一銅-貴 重金屬合金。種子層]中的貴重金屬的原子百分比較佳 -8- (6) (6)200422440 爲約百分之十或更少,且最佳爲約0 . 1與4原子百分比之 間。種子層1 1 〇可使用傳統沈積方法形成在屏障層1 〇 8上 ,例如,傳統化學蒸氣沈積、低壓化學蒸氣沈積、物理蒸 氣沈積、原子層沈積或專精於此技術的人習知的其他此類 方法。雖然此處說明可以用於形成種子層1 1 〇的材料之若 千例子,但是種子層1 1 0可以由用以活化擴散屏障層表面 的其他材料製造,以製備它,用於銅的無電沈積或電鍍。 在一較佳實施例中,銅沈積過程可以使用傳統銅電鍍 過程執行,其此技術中是眾人皆知的,其中單一或雙重鑲 嵌結構使用直流(DC)電鍍過程由銅充塡(見圖4)。首先, 提供一表面(屏障層108或種子層11〇),用於銅118的電 鍍。其次,表面暴露於電鍍溶液1 1 9。然後,一銅合金層 1 1 2形成在表面1 2 0上。此外,此技術中眾人皆知,如果 表面是種子層1 1 〇,則種子層1 1 〇可能被電鍍過程消耗, 以致於種子層1 1 〇可能變成與銅合金層1 1 2連續,如圖 1 f所示。此外,應該了解,銅的電鍍可以直接形成在屏 障層上,因爲種子層是選擇性的,於是種子層可以不存在 於本發明之一實施例中(見圖1 f)。 在目前較佳的實施例中,電鍍溶液可以包含銅離子、 硫酸、氯離子、添加劑(諸如抑制劑,即,聚乙烯乙二醇 ,及抗抑制劑,即’二硫化物)、貴重金屬離子、貴重金 屬與錯合劑(諸如硫代硫酸鹽與過氧二硫酸鹽)。雖然此處 說明可以包含電鍍溶液的材料之若干例子,但是溶液可以 包含用於沈積銅的貴重金屬合金於一表面-諸如屏障層 (7) (7)200422440 108或種子層1 ι〇(見圖ie與if)-上的其他材料。 或者,銅的沈積可以使用無電沈積過程執行,其包括 經由一金屬鹽與一化學還原劑的互相作用之薄膜的任何自 動催化(即,未施加外部電源)沈積。首先,如此技術習知 者’製備或處理一表面-諸如屏障層108-是需要的,以產 生一活化表面,即,易接受無電沈積過程的表面。用於提 供一表面的活化以用於無電沈積的方法可以包括接觸位移 (其中表面由含有銅的接觸位移溶液浸泡或噴灑)或一種子 層(諸如種子層1 1 〇)的使用。在無電沈積期間,種子層 11〇(見圖lc)可以當作活化表面,而無電沈積形成於其上 。種子層11 0當作一區域,其控制沈積的金屬自無電沈積 過程的位移,因爲來自無電沈積溶液的金屬只沈積在種子 層11 〇上。無電沈積方法之固有的選擇性導致較高品質的 金屬化薄膜,因爲它改良無電沈積金屬層的均勻性與連續 性。 其次,在已提供用於無電沈積的活化表面(在本發明 的目前實施例中的種子層1 1 0)以後,活化表面暴露於無 電沈積溶液,所使用的方法包括浸泡活化表面於無電沈積 溶液中’或噴灑無電沈積溶液於活化表面上。最後,一金 屬-諸如本發明的銅合金層1 12(見圖le)-無電沈積於活 化表面上。 銅合金層1 1 2可包含下列合金:銅銀、銅鈀、銅鉑、 銅铑 '銅釕、銅金、銅銦與銅餓。合金中的貴重金屬的百 分比是約百分之四原子重量,最佳爲約〇 . 1與4百分比原 -10- (8) (8)200422440 子重量之間。貴重金屬之倂入銅合金層Π 2增加銅的抗腐 蝕性,因爲與純銅相比,由於貴重金屬的不反應性,銅合 金層112較不易於氧化。銅合金層112也比純銅更具有抗 電遷移性,因爲貴重金屬的低溶解度便利於以貴重金屬塡 塞銅合金層112的粒子邊界,以及塡塞銅層112、屏障層 108與蝕刻停止層114(其可以在稍後的步驟中沈積,見圖 2)的介面。此防止電遷移之一主要失效路經(短路等)的發 生,否則,其將沿著粒子邊界與介面發生。此外,貴重金 屬的抗氧化性防止失效路徑通過破裂或多孔的銅氧化物, 其可能形成在銅合金層112的頂表面上及在屏障層108-電介質層1 04的介面。於是,已揭示一種形成銅內連接結 構1 13的方法(見圖le與If)。 應該了解,依據本發明的方法,複數金屬化層可以沈 積在銅內連接結構1 1 3的頂部上,如圖2與3所示。在銅 合金層1 1 2、1 1 2 ’如前述形成以後,蝕刻停止層1 1 4、 1 14’可以形成在銅合金層丨12、丨12’上(圖2)。蝕刻停止層 1 1 4、1 1 4 ’可以包含碳化矽、氮化矽、矽碳氮化物及此技 術習知的其他此類材料。專精於此技術的人將明白,蝕刻 停止層1 1 4、1 1 4,可以由各種材料、厚度或複數層材料形 成。雖然在此說明可以用於形成鈾刻停止層1 1 4、1 1 4 5的 Μ料之若千例子,但是層可以由用於在後續的過程步驟期 間-諸如在後續的微影、蝕刻與淸潔處理步驟期間-停止銅 合金層1 1 2蝕刻的其他材料製造。因爲此處理步驟在此技 術中是眾人皆知的,所以此處不詳細說明。舉例解釋而非 -11 - (9) (9)200422440 限制,蝕刻停止層1 1 4、1 1 4 ’可以使用傳統技術沈積,諸 如物理蒸氣沈積、原子層沈積、傳統化學蒸氣沈積、低壓 化學蒸氣沈積或專精於此技術的人習知的其他此類方法。 蝕刻停止層1 1 4、1 1 4 ’可以在自約1 0 0埃至約1 〇 〇 〇埃的 範圍內。薄的蝕刻停止層1 1 4、1 1 4 5較佳,因爲薄層對於 銅內連接結構的總電介質常數之貢獻較少。 在另一實施例中,包覆層116、116’可以無電沈積於 銅合金層112、112’而非鈾刻停止層114、114,上(圖3) 。包覆層1 1 6、1 1 6 ’可以包含貴重金屬或它們與折射性金 屬的合金,例如,銀鎢、鈀鎢。此外,包覆層1 1 6、1 1 6, 可以包含無電沈積的鈷鎳與折射性金屬及/或它們的準金 屬(SP ’硼或磷)之合金。包覆層的使用允許完全消除蝕刻 停止層,因爲銅合金層112、112與包覆層116、116,的 局抗腐餓性,故不需要鈾刻停止功能。独刻停止層的消除 減小銅合金層的有效電介質常數,其改良電晶體裝置的電 性質與速率。 如上述,無電沈積貴重金屬銅合金金屬化結構的使用 增加銅的抗腐蝕性與抗氧化性,增加抗電遷移性,且減小 銅內連接結構的有效電介質常數。於是,微電子裝置的可 靠度與速率大爲增加。應該了解,本發明包括單一與雙重 鑲嵌結構二者以及多層金屬化結構。 雖然前述說明已詳述可以使用在本發明的方法中之某 些步驟與材料,但是專精於此技術的人明白,可以作很多 修改與替換。因此,企圖將所有此類修改、改變、替換與 -12 - (10) 200422440 添加視爲落在由附屬申請專利範圍界定之本發明的精神和 範疇內。此外,已明白,在一基材-諸如矽基材-頂部製造 複數金屬層結構以產生矽裝置在此技術中是眾人皆知的。 所以’已明白’此處提供的圖只繪示與實施本發明有關之 示範性微電子裝置的一部分。於是,本發明不限於此處說 明的結構。A method for manufacturing a copper interconnect structure is described. The method includes forming an opening in a dielectric layer deposited on a substrate, forming a barrier layer over the opening, forming a sublayer on a metal layer, and forming a copper-precious layer by electroplating and / or electroless spray plating. The metal alloy layer is on the seed layer. The copper and precious metal alloy layer improves the electrical characteristics and reliability of the copper interconnect structure. Then, an etch stop layer or a cladding layer may be formed on the copper alloy layer. [Embodiment] In one embodiment of the method of the present invention, as shown in FIGS. 1 a-1 f, a dielectric layer 104 is formed on a substrate 102 (FIG. 1 a). Substrate 〖〇2 can include s-tree material, such as sand, insulator on sand, germanium, indium antimonide, lead telluride, arsenic-6 > (4) (4) 200422440 indium phosphide, indium phosphide, gallium arsenide or Gallium antimonide. Although a few examples of materials that can form the substrate 102 are described herein, any material that can be used as a base layer upon which a microelectronic device can be built is within the spirit and scope of the present invention. A dielectric layer 104 is formed on the substrate 102. Those skilled in the art will understand that the dielectric layer 104 can also be formed from a variety of materials, thicknesses, or multiple layers. By way of illustration and not limitation, the dielectric layer 104 may include sand dioxide (preferably), organic material, or inorganic material. Although a few examples of materials that can form the dielectric layer 104 are described here, the layers may be made of other materials used to separate and insulate different metal layers. The dielectric layer 104 can be formed on the substrate 102 using conventional deposition methods, such as chemical vapor deposition ("CVD"), low pressure chemical vapor deposition ("LPCVD"), physical vapor deposition ("PVD,"), or atomic layers Deposition ("ALD"). Preferably, a chemical vapor deposition process is used. In this process, metal oxide precursors (eg, metal chlorides) and steam can be fed into the chemical vapor deposition reactor at a selectable flow rate, It is then operated at a selected temperature and pressure to create an atomic smooth interface between the substrate 102 and the dielectric layer 104. The chemical vapor deposition reactor must be operated long enough 'to form the dielectric layer 104 having a desired thickness. In most applications, the 'dielectric layer 104 is about one micron thick, more preferably between about 6,000 angstroms and about 8,000 angstroms thick. The dielectric layer i 04 may have at least one opening 10 05 formed therein ( Figure lb), which contains at least one through hole 106 and at least one trench. According to the traditional mosaic technique known to those skilled in this technology, it can be used for -7- (5) (5) 200422440 to connect to microelectronic devices. Other metal layers in the structure (not shown). Because this step is well known to everyone who is skilled in this technology, it will not be described in more detail here. With the formation of the opening 105, a barrier layer 108 is deposited on the opening 1 〇5 (Figure 1c). Those skilled in this technology will understand that the barrier layer 108 can be formed of various materials, thicknesses, or multiple material layers. By way of example and not limitation, the barrier layer 108 can use traditional Technical deposition, such as physical vapor deposition, atomic layer deposition, traditional chemical vapor deposition, low pressure chemical vapor deposition, or other such methods known to those skilled in the art. In presently preferred embodiments, the barrier layer may include Any of the following materials: giant, tungsten, titanium, ruthenium, molybdenum, and their alloys with nitrogen, silicon, and carbon. Although here are some examples of materials that can be used to form the barrier layer 108, the layers can be used by Manufactured from other materials that prevent metal from diffusing into the barrier layer 108. The barrier layer 108 may be in a range from about 10 angstroms to about 500 angstroms. A thin barrier layer 108 is preferably (at about 100 angstroms) And 50 0 Angstroms) Because the thin barrier layer contributes less to the total resistance of the copper interconnect structure. Then, a sublayer 1 10 can be selectively formed on the barrier layer 108 (Figure 1d), and can contain only copper, Or its alloy with tin, indium, cadmium, aluminum, magnesium, or its alloy with precious metals such as silver, palladium, platinum, rhodium, ruthenium, gold, indium, or hungry precious metals, or the seed layer 110 may contain only precious metals Metal. Those skilled in the art will understand that the seed layer 110 can be formed of various materials, thicknesses, or multiple material layers. In the presently preferred embodiment, the seed layer 10 is between about 10 angstroms and 2,000 Angstrom thick, and contains a copper-precious metal alloy. The atomic percentage of the precious metal in the seed layer is preferably about ten or less (6) (6) 200422440, and most preferably between about 0.1 and 4 atomic percent. The seed layer 1 10 can be formed on the barrier layer 108 using conventional deposition methods, such as traditional chemical vapor deposition, low-pressure chemical vapor deposition, physical vapor deposition, atomic layer deposition, or others known to those skilled in the art. Such methods. Although many examples of materials that can be used to form the seed layer 1 10 are described here, the seed layer 1 10 can be made of other materials used to activate the surface of the diffusion barrier layer to prepare it for the electroless deposition of copper Or electroplated. In a preferred embodiment, the copper deposition process can be performed using a conventional copper plating process, which is well known in the art, where single or dual damascene structures are filled with copper using a direct current (DC) plating process (see Figure 4) ). First, a surface (barrier layer 108 or seed layer 110) is provided for electroplating of copper 118. Second, the surface is exposed to the plating solution 1 1 9. Then, a copper alloy layer 1 12 is formed on the surface 120. In addition, it is well known in this technology that if the surface is a seed layer 1 1 0, the seed layer 1 1 0 may be consumed by the plating process, so that the seed layer 1 1 0 may become continuous with the copper alloy layer 1 1 2 as shown in the figure. 1 f. In addition, it should be understood that copper plating can be directly formed on the barrier layer because the seed layer is selective, so the seed layer may not be present in one embodiment of the present invention (see FIG. 1 f). In the presently preferred embodiment, the plating solution may contain copper ions, sulfuric acid, chloride ions, additives (such as inhibitors, ie, polyethylene glycol, and anti-inhibitors, ie, 'disulfides), precious metal ions Precious metals and complexing agents (such as thiosulfate and peroxodisulfate). Although some examples of materials that may include a plating solution are described here, the solution may contain a precious metal alloy for depositing copper on a surface such as a barrier layer (7) (7) 200422440 108 or a seed layer 1 ι0 (see figure ie with other material on if)-. Alternatively, the deposition of copper can be performed using an electroless deposition process, including any autocatalytic (i.e., no external power applied) deposition via a thin film of a metal salt interacting with a chemical reducing agent. First, it is necessary for such a skilled person ' to prepare or treat a surface, such as the barrier layer 108, to produce an activated surface, i.e., a surface that is susceptible to an electroless deposition process. Methods for providing activation of a surface for electroless deposition may include contact displacement (where the surface is soaked or sprayed with a contact displacement solution containing copper) or the use of a sub-layer (such as a seed layer 1 10). During the electroless deposition, the seed layer 110 (see FIG. 1c) can be used as an activated surface, and electroless deposition is formed thereon. The seed layer 110 is regarded as a region that controls the displacement of the deposited metal from the electroless deposition process because the metal from the electroless deposition solution is deposited only on the seed layer 110. The inherent selectivity of electroless deposition methods results in higher quality metallized films because it improves the uniformity and continuity of electrolessly deposited metal layers. Second, after an activated surface for electroless deposition (the seed layer 110 in the current embodiment of the present invention) has been provided, the activated surface is exposed to the electroless deposition solution using a method including immersing the activated surface in the electroless deposition solution. Medium 'or spray an electroless deposition solution on the activated surface. Finally, a metal-such as the copper alloy layer 112 (see Fig. 1e) of the present invention-is electrolessly deposited on the activated surface. The copper alloy layer 1 1 2 may include the following alloys: copper silver, copper palladium, copper platinum, copper rhodium, copper ruthenium, copper gold, copper indium, and copper. The percentage of precious metals in the alloy is about four percent atomic weight, preferably between about 0.1 and 4 percent of the original -10- (8) (8) 200422440 sub-weight. The intrusion of precious metals into the copper alloy layer Π 2 increases the corrosion resistance of copper because the copper alloy layer 112 is less susceptible to oxidation due to the non-reactivity of the precious metals compared to pure copper. The copper alloy layer 112 is also more resistant to electromigration than pure copper, because the low solubility of precious metals facilitates plugging the particle boundaries of the copper alloy layer 112 with the precious metals, and plugging the copper layer 112, the barrier layer 108, and the etch stop layer 114. (Which can be deposited in a later step, see Figure 2). This prevents the occurrence of one of the major failure paths (short circuits, etc.) of electromigration, which would otherwise occur along particle boundaries and interfaces. In addition, the oxidation resistance of precious metals prevents failure paths from passing through cracked or porous copper oxides, which may form on the top surface of copper alloy layer 112 and at the interface of barrier layer 108-dielectric layer 104. Thus, a method for forming a copper interconnect structure 113 has been disclosed (see Figs. Le and If). It should be understood that according to the method of the present invention, a plurality of metallization layers may be deposited on top of the copper interconnect structure 1 1 3 as shown in FIGS. 2 and 3. After the copper alloy layers 1 1 2, 1 1 2 'are formed as described above, the etch stop layers 1 1 4, 1 14' may be formed on the copper alloy layers 丨 12, 丨 12 '(Fig. 2). The etch stop layers 1 1 4, 1 1 4 ′ may include silicon carbide, silicon nitride, silicon carbon nitride, and other such materials known in the art. Those skilled in the art will understand that the etch stop layers 1 1 4 and 1 1 4 can be formed from a variety of materials, thicknesses, or multiple layers. Although many examples of materials that can be used to form the uranium etch stop layers 1 1 4 and 1 1 4 5 are described here, the layers can be used during subsequent process steps such as in subsequent lithography, etching, and During the cleaning process step-stop the copper alloy layer 1 12 etching of other materials from manufacturing. Because this process step is well known in the art, it will not be described in detail here. Exemplary explanation instead of -11-(9) (9) 200422440 Restriction, etch stop layers 1 1 4, 1 1 4 'can be deposited using conventional techniques, such as physical vapor deposition, atomic layer deposition, traditional chemical vapor deposition, low pressure chemical vapor Deposition or other such methods known to those skilled in the art. The etch stop layers 1 1 4 and 1 1 4 'may be in a range from about 100 angstroms to about 100 angstroms. Thin etch stop layers 1 1 4 and 1 1 4 5 are preferred because the thin layers contribute less to the overall dielectric constant of the copper interconnect structure. In another embodiment, the cladding layers 116, 116 'may be electrolessly deposited on the copper alloy layers 112, 112' instead of the uranium etch stop layers 114, 114, (Fig. 3). The cladding layers 1 1 6 and 1 1 6 'may contain precious metals or their alloys with refracting metals, for example, silver tungsten, palladium tungsten. In addition, the cladding layers 1 1 6 and 1 16 may include an electrolessly deposited alloy of cobalt nickel and a refracting metal and / or a quasi-metal (SP 'boron or phosphorus) thereof. The use of a cladding layer allows the complete elimination of the etch stop layer, because the copper alloy layers 112, 112 and the cladding layers 116, 116, have local corrosion resistance, so the uranium etch stop function is not required. Elimination of the single stop layer reduces the effective dielectric constant of the copper alloy layer, which improves the electrical properties and rate of the transistor device. As mentioned above, the use of electrolessly deposited precious metal copper alloy metallized structures increases the corrosion resistance and oxidation resistance of copper, increases the resistance to electromigration, and reduces the effective dielectric constant of copper interconnect structures. As a result, the reliability and speed of microelectronic devices has greatly increased. It should be understood that the present invention includes both single and dual damascene structures as well as multilayer metallization structures. Although the foregoing description has detailed certain steps and materials that can be used in the method of the present invention, those skilled in the art understand that many modifications and substitutions can be made. Therefore, an attempt is made to treat all such modifications, changes, substitutions and additions as -12-(10) 200422440 as falling within the spirit and scope of the invention as defined by the scope of the appended application patent. In addition, it is understood that fabrication of multiple metal layer structures on top of a substrate, such as a silicon substrate, to produce a silicon device is well known in the art. Therefore, it has been " understood " the figures provided herein illustrate only a portion of an exemplary microelectronic device related to the implementation of the present invention. Therefore, the present invention is not limited to the structure described here.

【圖式簡單說明】 說明書以特別指出及明確宣告視爲本發明的申請專利 範圍作爲結論,而當配合附圖閱讀時,從本發明的下列說 明,更易於確認本發明的優點,其中: 圖1 a-1 f代表當執行本發明之方法之一實施例時可能 形成的結構之剖面。 圖2代表當執行本發明之方法之一實施例時可能形成 的一結構之剖面。[Brief description of the drawings] The specification concludes by specifically pointing out and clearly declaring the scope of the patent application of the present invention, and when read in conjunction with the drawings, the advantages of the present invention are easier to confirm from the following description of the present invention, where: 1 a-1 f represents a cross-section of a structure that may be formed when performing one embodiment of the method of the present invention. Figure 2 represents a cross-section of a structure that may be formed when performing one embodiment of the method of the present invention.

圖3代表當執行本發明之方法之又一實施例時可能形 成的一結構之剖面。 圖4是依據本發明之一實施例的流程圖。 圖5是此技術中習知的鑲嵌式內連接結構之剖面繪示 圖。 圖式說明 102 基材 104 電介質層 -13 - 200422440 (11) 105 開口 106 通孔 107 溝渠 108 屏障層 110 種子層 112 銅合金層 1 1 2? 銅合金層 113 銅內連接結構 114 蝕刻停止層 114’ 蝕刻停止層 116 包覆層 1165 包覆層 118 銅 119 電鍍溶液 120 表面 200 基材 202 電介質層 2025 電介質層 204 通孔 204? 通孔 206 溝渠 2 06? 溝渠 208 金屬層 2 0 8 7 金屬層Figure 3 represents a cross-section of a structure that may be formed when performing another embodiment of the method of the present invention. FIG. 4 is a flowchart according to an embodiment of the present invention. FIG. 5 is a cross-sectional drawing of a conventional mosaic interconnect structure in this technology. Schematic description 102 Substrate 104 Dielectric layer-13-200422440 (11) 105 Opening 106 Through hole 107 Trench 108 Barrier layer 110 Seed layer 112 Copper alloy layer 1 1 2? Copper alloy layer 113 Copper interconnect structure 114 Etch stop layer 114 '' Etch stop layer 116 Cladding layer 1165 Cladding layer 118 Copper 119 Electroplating solution 120 Surface 200 Substrate 202 Dielectric layer 2025 Dielectric layer 204 through hole 204? Through hole 206 trench 2 06? Trench 208 metal layer 2 0 8 7 metal layer

Claims (1)

(1) (1)200422440 拾、申請專利範圍 1 · 一種鍍銅之方法,包含: 藉由電鍍而鍍一銅合金層於一表面上,銅合金層實質 上包含銅與一貴重金屬。 2.如申請專利範圍第1項之方法,其中銅合金層藉由 電鍍形成。 3 ·如申請專利範圍第1項之方法,其中銅合金層藉由 無電沈積形成。 4 ·如申請專利範圍第1項之方法,其中表面包含一種 子層或一屏障層。 5 ·如申請專利範圍第2項之方法,其中種子層包含小 於約10°/。原子重量的貴重金屬。 6 ·如申請專利範圍第1項之方法,其中貴重金屬包含 小於約4%原子重量的銅合金層。 7 ·如申請專利範圍第1項之方法,其中貴重金屬實質 上包含一選自於銀、鈀、鉑、铑、釕、金、銦、餓及其組 合組成的群組之材料。 8 · —種形成銅內連接之方法,包含: 形成一開口於沈積在基材上的電介質層中; 形成一屏障層於開口上; 形成一種子層於金屬層上;及 幵/成 銅口金層於種寸*層上,銅合金包含銅與—音重 金屬。 9.如申請專利範圍第8項之方法,其中銅合金層藉由 -15- (2) (2)200422440 電鍍形成。 I 0 ·如申請專利範圍第8項之方法,其中銅合金層藉 由無電沈積形成。 II ·如申請專利範圍第8項之方法,其中貴重金屬包 含小於約4%原子重量的銅合金餍。 1 2 ·如申請專利範圍第8項之方法,其中種子層包含 小於約10%原子重量的貴重金屬。 1 3 .如申請專利範圍第8項之方法,其中貴重金屬實 質上包含一選自於銀、鈀、鉑、铑、釕、金、銦' 餓及其 組合組成的群組之材料。 I4·如申請專利範圍第8項之方法,其中種子層實質 上包含一選自於銅、錫、鋁、鎂、銀、鈀、鉑、铑、釕、 金、銦、餓及其組合組成的群組之材料。 1 5 .如申請專利範圍第8項之方法,其中電介質層中 的開口是鑲嵌結構。 1 6.如申請專利範圍第8項之方法,其中屏障層可以 包含一選自於鉅、鎢、鈦、釕、氮化鉅、氮化鎢、氮化鈦 、氮化釘、砂化鉬、5夕化鎢、砂化駄、砂化釘、碳化鉬、 碳化鎢、碳化鈦、碳化釕及其組合組成的群組之材料。 1 7 ·如申請專利範圍第8項之方法,其中又包含形成 一蝕刻停止層。 1 8 ·如申請專利範圍第1 7項之方法,其中蝕刻停止層 實質上包含一選自於碳化矽、氮化矽及其組合組成的群組 之材料。 -16- (3) (3)200422440 1 9.如申請專利範圍第1 8項之方法,其中蝕刻停止層 由化學蒸氣沈積形成,且小於約1GG0埃厚。 2 0 ·如申請專利範圍第8項之方法,其中又包括形成 一包覆層。 2 1 .如申請專利範圍第2 0項之方法,其中包覆層實質 上包含一選自於銀、鈀、鉑、銬、釕、金、銦、餓、鎢及 其組合組成的群組之材料。 2 2.如申請專利範圍第21項之方法,其中包覆層藉由 無電沈積形成。 2 3 .如申請專利範圍第2 2項之方法,其中包覆層實質 上包含一選自於鈷、鎳、鎢、鈦、鉅、鉬、鉻、銶、硼、 磷及其組合組成的群組之材料。 24·—種銅內連接,包含: 一具有一開口的電介質層; 一在開口上的屏障層;及 一在屏障層上的銅合金層,銅合金層實質上包含銅與 一貴重金屬。 2 5 ·如申請專利範圍第24項之銅內連接,萁中貴重金 屬包含小於約4%原子重量的銅合金層。 26·如申請專利範圍第25項之銅內連接,其中又包括 形成一包覆層於銅合金層上。 27·如申請專利範圍第項之銅內連接,每中包覆層 實質上包含一選自於銀、鈀、鉑、铑、釕、金、銦、餓、 鎢及其組合組成的群組之材料。 -17- (4) 200422440 28.如申請專利範圍第24項之銅內連接,其中又包括 形成一鈾刻停止層於銅合金層上。 2 9 .如申請專利範圍第2 8項之銅內連接,其中蝕刻停 止層實質上包含一選自於碳化矽、氮化矽及其組合組成的 群組之材料。 -18 -(1) (1) 200422440 Scope of patent application 1 · A copper plating method includes: plating a copper alloy layer on a surface by electroplating, and the copper alloy layer substantially comprises copper and a precious metal. 2. The method of claim 1 in which the copper alloy layer is formed by electroplating. 3. The method of claim 1 in which the copper alloy layer is formed by electroless deposition. 4. The method of claim 1 in which the surface includes a sub-layer or a barrier layer. 5. The method of claim 2 in which the seed layer contains less than about 10 ° /. Atomic weight of precious metals. 6. The method of claim 1 wherein the precious metal comprises a copper alloy layer of less than about 4% atomic weight. 7. The method according to item 1 of the scope of patent application, wherein the precious metal essentially comprises a material selected from the group consisting of silver, palladium, platinum, rhodium, ruthenium, gold, indium, starvation, and combinations thereof. 8 · A method for forming copper interconnects, comprising: forming an opening in a dielectric layer deposited on a substrate; forming a barrier layer on the opening; forming a sublayer on a metal layer; and 幵 / forming copper Layered on the seed layer *, the copper alloy contains copper and -weight metals. 9. The method of claim 8 in the scope of patent application, wherein the copper alloy layer is formed by -15- (2) (2) 200422440 plating. I 0 · The method according to item 8 of the patent application scope, wherein the copper alloy layer is formed by electroless deposition. II. The method of claim 8 wherein the precious metal contains less than about 4% atomic weight copper alloy rhenium. 1 2 The method of claim 8 in which the seed layer contains a precious metal of less than about 10% atomic weight. 13. The method according to item 8 of the scope of patent application, wherein the precious metal actually comprises a material selected from the group consisting of silver, palladium, platinum, rhodium, ruthenium, gold, indium, and combinations thereof. I4. The method according to item 8 of the patent application, wherein the seed layer substantially comprises a compound selected from the group consisting of copper, tin, aluminum, magnesium, silver, palladium, platinum, rhodium, ruthenium, gold, indium, hunger, and combinations thereof. Group material. 15. The method according to item 8 of the patent application, wherein the opening in the dielectric layer is a damascene structure. 16. The method according to item 8 of the scope of patent application, wherein the barrier layer may include a material selected from the group consisting of tungsten, titanium, ruthenium, nitrided nitride, tungsten nitride, titanium nitride, nitrided nails, molybdenum sand, 5 Tungsten carbide, thorium thorium, thorium nail, molybdenum carbide, tungsten carbide, titanium carbide, ruthenium carbide and combinations thereof. 17 · The method according to item 8 of the patent application, further comprising forming an etch stop layer. 18 · The method of claim 17 in the scope of patent application, wherein the etch stop layer substantially comprises a material selected from the group consisting of silicon carbide, silicon nitride, and combinations thereof. -16- (3) (3) 200422440 1 9. The method according to item 18 of the scope of patent application, wherein the etch stop layer is formed by chemical vapor deposition and is less than about 1 GG0 Angstrom thick. 2 0. The method of claim 8 including applying a coating layer. 2 1. The method of claim 20 in the scope of patent application, wherein the coating layer substantially comprises a group selected from the group consisting of silver, palladium, platinum, shackles, ruthenium, gold, indium, starvation, tungsten, and combinations thereof. material. 2 2. The method of claim 21, wherein the coating is formed by electroless deposition. 2 3. The method according to item 22 of the scope of patent application, wherein the coating layer substantially comprises a group selected from the group consisting of cobalt, nickel, tungsten, titanium, giant, molybdenum, chromium, thorium, boron, phosphorus, and combinations thereof. Group of materials. 24. A copper internal connection comprising: a dielectric layer having an opening; a barrier layer on the opening; and a copper alloy layer on the barrier layer, the copper alloy layer substantially comprising copper and a precious metal. 2 5 · If the copper inner connection of item 24 of the patent application scope, the precious metal in rhenium contains a copper alloy layer of less than about 4% atomic weight. 26. The copper internal connection of item 25 of the patent application, which further includes forming a cladding layer on the copper alloy layer. 27. If the copper inner connection in the item of the scope of the patent application, each of the cladding layers substantially comprises a group selected from the group consisting of silver, palladium, platinum, rhodium, ruthenium, gold, indium, starvation, tungsten, and combinations thereof. material. -17- (4) 200422440 28. The copper internal connection of item 24 of the scope of patent application, which further includes forming a uranium etch stop layer on the copper alloy layer. 29. The copper internal connection according to item 28 of the patent application scope, wherein the etch stop layer substantially comprises a material selected from the group consisting of silicon carbide, silicon nitride and combinations thereof. -18-
TW092130835A 2002-12-05 2003-11-04 Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby TWI255873B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/313,760 US20040108217A1 (en) 2002-12-05 2002-12-05 Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby

Publications (2)

Publication Number Publication Date
TW200422440A true TW200422440A (en) 2004-11-01
TWI255873B TWI255873B (en) 2006-06-01

Family

ID=32468337

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092130835A TWI255873B (en) 2002-12-05 2003-11-04 Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby

Country Status (6)

Country Link
US (2) US20040108217A1 (en)
EP (1) EP1567695A1 (en)
CN (1) CN1720354A (en)
AU (1) AU2003287704A1 (en)
TW (1) TWI255873B (en)
WO (1) WO2004053202A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050006245A1 (en) * 2003-07-08 2005-01-13 Applied Materials, Inc. Multiple-step electrodeposition process for direct copper plating on barrier metals
US7404985B2 (en) * 2002-06-04 2008-07-29 Applied Materials, Inc. Noble metal layer formation for copper film deposition
US7910165B2 (en) * 2002-06-04 2011-03-22 Applied Materials, Inc. Ruthenium layer formation for copper film deposition
US7264846B2 (en) * 2002-06-04 2007-09-04 Applied Materials, Inc. Ruthenium layer formation for copper film deposition
US6958540B2 (en) * 2003-06-23 2005-10-25 International Business Machines Corporation Dual damascene interconnect structures having different materials for line and via conductors
US20050085031A1 (en) * 2003-10-15 2005-04-21 Applied Materials, Inc. Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US7300860B2 (en) 2004-03-30 2007-11-27 Intel Corporation Integrated circuit with metal layer having carbon nanotubes and methods of making same
US7119018B2 (en) * 2004-07-09 2006-10-10 International Buisness Machines Corporation Copper conductor
US7300869B2 (en) * 2004-09-20 2007-11-27 Lsi Corporation Integrated barrier and seed layer for copper interconnect technology
US20060251872A1 (en) * 2005-05-05 2006-11-09 Wang Jenn Y Conductive barrier layer, especially an alloy of ruthenium and tantalum and sputter deposition thereof
US20070059502A1 (en) * 2005-05-05 2007-03-15 Applied Materials, Inc. Integrated process for sputter deposition of a conductive barrier layer, especially an alloy of ruthenium and tantalum, underlying copper or copper alloy seed layer
TW200741960A (en) * 2005-05-13 2007-11-01 Cambrios Technologies Corp Seed layers, cap layers, and thin films and methods of making thereof
US7713876B2 (en) * 2005-09-28 2010-05-11 Tokyo Electron Limited Method for integrating a ruthenium layer with bulk copper in copper metallization
KR100702797B1 (en) * 2005-12-09 2007-04-03 동부일렉트로닉스 주식회사 Method of fabricating the copper interconnection layer in semiconductor device
US20070160756A1 (en) * 2006-01-07 2007-07-12 Helmuth Treichel Apparatus and method for the deposition of ruthenium containing films
US7694413B2 (en) * 2006-06-30 2010-04-13 Intel Corporation Method of making a bottomless via
US20080164613A1 (en) * 2007-01-10 2008-07-10 International Business Machines Corporation ULTRA-THIN Cu ALLOY SEED FOR INTERCONNECT APPLICATION
US7598163B2 (en) * 2007-02-15 2009-10-06 John Callahan Post-seed deposition process
US20090038947A1 (en) * 2007-08-07 2009-02-12 Emat Technology, Llc. Electroplating aqueous solution and method of making and using same
US7905994B2 (en) 2007-10-03 2011-03-15 Moses Lake Industries, Inc. Substrate holder and electroplating system
US7642189B2 (en) * 2007-12-18 2010-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Synergy effect of alloying materials in interconnect structures
US20090250352A1 (en) * 2008-04-04 2009-10-08 Emat Technology, Llc Methods for electroplating copper
US7928569B2 (en) * 2008-08-14 2011-04-19 International Business Machines Corporation Redundant barrier structure for interconnect and wiring applications, design structure and method of manufacture
US8262894B2 (en) 2009-04-30 2012-09-11 Moses Lake Industries, Inc. High speed copper plating bath
CN102044427B (en) * 2009-10-09 2012-06-06 中芯国际集成电路制造(上海)有限公司 Forming method of copper interconnecting wire and electroplating device
JP5436259B2 (en) * 2010-02-16 2014-03-05 日本特殊陶業株式会社 Multilayer wiring board manufacturing method and multilayer wiring board
JP5996244B2 (en) * 2011-04-19 2016-09-21 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Copper plating on semiconductors
US8970046B2 (en) * 2011-07-18 2015-03-03 Samsung Electronics Co., Ltd. Semiconductor packages and methods of forming the same
US9165895B2 (en) * 2011-11-07 2015-10-20 Infineon Technologies Ag Method for separating a plurality of dies and a processing device for separating a plurality of dies
KR20130092884A (en) * 2012-02-13 2013-08-21 에스케이하이닉스 주식회사 Interconnection structure in semiconductor device and manufacturing method for the same
US20140008234A1 (en) * 2012-07-09 2014-01-09 Rohm And Haas Electronic Materials Llc Method of metal plating semiconductors
US8749060B2 (en) * 2012-09-21 2014-06-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method of semiconductor integrated circuit fabrication
US10406774B2 (en) 2016-10-17 2019-09-10 U.S. Department Of Energy Diffusion bonding of silicon carbide using iridium and hermetic silicon carbide-iridium bonds
KR102491289B1 (en) * 2016-12-16 2023-01-25 토프쉐 에이/에스 Adhesion of Coatings to Interconnects for Solid Oxide Cell Stacks
US10515923B2 (en) 2017-05-31 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming semiconductor package structure with twinned copper layer
US10304735B2 (en) 2017-06-22 2019-05-28 Globalfoundries Inc. Mechanically stable cobalt contacts
TWI647342B (en) * 2017-08-03 2019-01-11 國家中山科學研究院 Copper-silver two-component metal plating liquid for semiconductor wires and plating method
US10580696B1 (en) 2018-08-21 2020-03-03 Globalfoundries Inc. Interconnects formed by a metal displacement reaction

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042889A (en) * 1994-02-28 2000-03-28 International Business Machines Corporation Method for electrolessly depositing a metal onto a substrate using mediator ions
US5549808A (en) * 1995-05-12 1996-08-27 International Business Machines Corporation Method for forming capped copper electrical interconnects
US5969422A (en) * 1997-05-15 1999-10-19 Advanced Micro Devices, Inc. Plated copper interconnect structure
US5989623A (en) * 1997-08-19 1999-11-23 Applied Materials, Inc. Dual damascene metallization
US6100184A (en) * 1997-08-20 2000-08-08 Sematech, Inc. Method of making a dual damascene interconnect structure using low dielectric constant material for an inter-level dielectric layer
JP3040745B2 (en) * 1998-01-12 2000-05-15 松下電子工業株式会社 Semiconductor device and manufacturing method thereof
US6174812B1 (en) * 1999-06-08 2001-01-16 United Microelectronics Corp. Copper damascene technology for ultra large scale integration circuits
US6153935A (en) * 1999-09-30 2000-11-28 International Business Machines Corporation Dual etch stop/diffusion barrier for damascene interconnects
US6136707A (en) * 1999-10-02 2000-10-24 Cohen; Uri Seed layers for interconnects and methods for fabricating such seed layers
US6344125B1 (en) * 2000-04-06 2002-02-05 International Business Machines Corporation Pattern-sensitive electrolytic metal plating
US6525425B1 (en) * 2000-06-14 2003-02-25 Advanced Micro Devices, Inc. Copper interconnects with improved electromigration resistance and low resistivity
JP4083968B2 (en) * 2000-11-02 2008-04-30 株式会社東芝 Manufacturing method of semiconductor device
US6326305B1 (en) * 2000-12-05 2001-12-04 Advanced Micro Devices, Inc. Ceria removal in chemical-mechanical polishing of integrated circuits
US6977224B2 (en) * 2000-12-28 2005-12-20 Intel Corporation Method of electroless introduction of interconnect structures
US6455409B1 (en) * 2001-02-28 2002-09-24 Advanced Micro Devices, Inc. Damascene processing using a silicon carbide hard mask
US6503828B1 (en) * 2001-06-14 2003-01-07 Lsi Logic Corporation Process for selective polishing of metal-filled trenches of integrated circuit structures
KR20040018558A (en) * 2001-08-13 2004-03-03 가부시키 가이샤 에바라 세이사꾸쇼 Semiconductor device and production method therefor, and plating solution
US6605874B2 (en) * 2001-12-19 2003-08-12 Intel Corporation Method of making semiconductor device using an interconnect
US20030116439A1 (en) * 2001-12-21 2003-06-26 International Business Machines Corporation Method for forming encapsulated metal interconnect structures in semiconductor integrated circuit devices
JP2003293193A (en) * 2002-04-02 2003-10-15 Nec Electronics Corp Method for forming fine circuit wiring and apparatus used for the same
US20040118699A1 (en) * 2002-10-02 2004-06-24 Applied Materials, Inc. Homogeneous copper-palladium alloy plating for enhancement of electro-migration resistance in interconnects

Also Published As

Publication number Publication date
AU2003287704A1 (en) 2004-06-30
WO2004053202A1 (en) 2004-06-24
CN1720354A (en) 2006-01-11
TWI255873B (en) 2006-06-01
US20040108217A1 (en) 2004-06-10
US20050230263A1 (en) 2005-10-20
EP1567695A1 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
TW200422440A (en) Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby
US7694413B2 (en) Method of making a bottomless via
TWI290736B (en) Semiconductor device and method for production thereof
TWI406361B (en) Structure and method for creating reliable via contacts for interconnect applications
US7435679B2 (en) Alloyed underlayer for microelectronic interconnects
US7737028B2 (en) Selective ruthenium deposition on copper materials
TWI443224B (en) Method of forming a metal layer over a patterned dielectric by wet chemical deposition including an electroless and a powered phase
JP3217319B2 (en) Method for manufacturing semiconductor device
WO2004001823A1 (en) Semiconductor device manufacturing method
US7799681B2 (en) Method for forming a ruthenium metal cap layer
TWI242837B (en) Semiconductor device and method of manufacturing the same
JP2004031586A5 (en) Semiconductor device manufacturing method and semiconductor device
US7479687B2 (en) Deep via seed repair using electroless plating chemistry
TW201227826A (en) Method for manufacturing semiconductor device
JP3540699B2 (en) Method for manufacturing semiconductor device
US6875260B2 (en) Copper activator solution and method for semiconductor seed layer enhancement
TWI653367B (en) Electrochemical deposition on a workpiece having high sheet resistance
TW200301524A (en) Method for improving electromigration performance of metallization features through multiple depositions of binary alloys
KR100866138B1 (en) Line of semiconductor device and method for manufacturing the same
KR100710201B1 (en) Method for forming metal line of semiconductor device
JP5214092B2 (en) Method for forming a metal layer on an insulator patterned by electroless plating using a catalyst
US6445070B1 (en) Coherent carbide diffusion barrier for integrated circuit interconnects
JP2007027177A (en) Method of manufacturing semiconductor device
JP2008042199A (en) Semiconductor element, and its manufacturing method
TW512490B (en) Insitu diffusion barrier and copper metallization for improving reliability of semiconductor devices