TW200419467A - A general purpose stereoscopic 3D format conversion system and method - Google Patents

A general purpose stereoscopic 3D format conversion system and method Download PDF

Info

Publication number
TW200419467A
TW200419467A TW093101201A TW93101201A TW200419467A TW 200419467 A TW200419467 A TW 200419467A TW 093101201 A TW093101201 A TW 093101201A TW 93101201 A TW93101201 A TW 93101201A TW 200419467 A TW200419467 A TW 200419467A
Authority
TW
Taiwan
Prior art keywords
data
video
format
output
input
Prior art date
Application number
TW093101201A
Other languages
Chinese (zh)
Inventor
Adam W Divelbiss
Walter V Tserkovnyuk
Original Assignee
Vrex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vrex Inc filed Critical Vrex Inc
Publication of TW200419467A publication Critical patent/TW200419467A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/139Format conversion, e.g. of frame-rate or size

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

Because of the numerous possibilities in the capture, transmission, and display of stereoscopic image pairs during 3D format conversion, there are numerous compatibility issues between the various stereoscopic image sources and stereoscopic display systems. A general purpose stereoscopic 3D format conversion system and method is described that eliminates these compatibility issues by providing a system that performs conversion of any stereoscopic image stream within a specified set of 3D formats to any other 3D format within the set. The system also performs numerous other image processing functions that are beneficial for stereoscopic image processing such as image pan, alignment, zoom, crop, keystone correction, video format conversion, scan-rate conversion, and an array of standard 2D image enhancements including brightness, contrast, hue saturation, and sharpness.

Description

玖、發明說明: 【發明所屬之技術領域】 發明領域 本發明係關於3D格式之格式轉換,並且尤其是關於進 行在一組特定的3D内的任何立體影像流轉換為在該組内之 任何其他3D格式之3D格式轉換的裝置與方法。 L· y 發明背景 在最近二十年,許多用於多種目的和不同顧客的立體 3D顯示和記錄裝置已經被發展出。在此類裝置之發展中必 須回答之主要問題是有關那一方法將被使用以捕獲、編碼 、及/或顯示立體影像組對。所有的立體顯示裝置需要左眼 影像至各觀察者之左眼且右眼影像至各觀察者之右眼的顯 不。被使用以捕獲、傳輸、或顯示此類影像之方法取決於 包含顯不或記錄系統之型式的許多要素,以及影像組對將 被呈現之方法。例如,立體快門玻璃系統一般需要一種被 傳輸至CRT監視器的左右影像組對之時間多工化的序列。 其他顯示系統(例如,那些依據Reve〇小孔者)以—種交錯列 格式(列交錯式)而顯示立體影像組對,以至於,例如,顯八 的奇數線(以及被傳輸之影像)包含左眼影像,而偶數線包八 右眼影像。其他顯示和記錄裝置亦採用其他的31^格式,二 包含上下式、側並側式、行交錯式、以及雙通道式(實際= 分別的頻道)。甚至有更多的卿像格式,其包含將在; 信號之不同色彩頻道上或在非重疊光頻譜區域内的左右: 200419467 影像組對編碼。 &為在立體影像組對之捕獲、傳輸、以及顯示之許多 的可月匕性,應該是容易理解,在各種影像源和顯示系統之 間有許多的匹配性發生。 有°午夕的系統具有本發明能力的各部份。但是,它們 無-種於單-裝置中提供本發明之多功能和彈性範圍。 有許多裝置料在這裡提及 ,但是www.stereo3d.com保持著: 近的3D鱗和顯示裝置以及轉換器盒之_最新的列表。、 ι 、現有的立體袼式轉換器以3D多工器或3D解多工器之 里式^現。3D多工器採用兩組分離視訊影像流並且將它們 起夕工化成為一組用於漸進視訊的框對框方式或用於交 ^視訊的場對場方式之單—視訊流。就本發明而論,這些 裝置進行場或框序列至雙通道式轉換。另外地,3D解多工 器進行反向操作,它們將單一視訊影像流中以框對框或場 15對場方式被編碼的3D影像資料分離成為兩組分離之資訊流 。就本發明而論,這鍊置進行場或框序列至雙通道式的 轉換。通常,這些裝置被建立以供用於特定視訊格式(例如 ’NTSC或PAL視訊、或電腦VGA袼式)。此類裝置的一些範 例包含下面所述者。 2〇 VRex 3D袼式轉換器1〇一_3〇格式轉換器1〇是本發明 刖身之舉例說明。其具有僅接收來自NTSC或pAL兩格式中 之複合視訊或S-視訊源連續的3D視訊場之能力並且於輸出 時轉換該視訊為用於電腦VGA視訊之單一3D格式。該裝置 可以被組態以輸出2D、雙通道式、框序列、場序列、列交 6 200419467 錯式、或行交錯式,但是僅在製造時。使用者不可能在各 種3 D輸出格式之間有所改變。 VRex MUX-1…MUX-1是一種3D視訊多工器,其使用 場序列3D格式而轉換兩組分離NTSC視訊信號成為一組單 5 一NTSC視訊信號。此兩組輸入信號必須被同步鎖相。於此 發明中,不需有同步鎖相或共同被同步化的輸入信號。 VRex MUX-3…除了支援PAL視訊標準之外,MUX-3 是相同於MUX-1之物件。发明 Description of the invention: [Technical field to which the invention belongs] Field of the invention The present invention relates to format conversion of 3D formats, and in particular to conversion of any stereoscopic image stream in a specific set of 3D into any other in the group Device and method for 3D format conversion in 3D format. L · y BACKGROUND OF THE INVENTION In the last two decades, many stereoscopic 3D display and recording devices have been developed for multiple purposes and different customers. The main question that must be answered in the development of such devices is about which method will be used to capture, encode, and / or display stereo image pairs. All stereoscopic display devices require the display of the left-eye image to the left eye of each observer and the right-eye image to the right eye of each observer. The methods used to capture, transmit, or display such images depend on the many elements of the type that include the display or recording system, and the method by which the set of images will be presented. For example, a stereo shutter glass system generally requires a time-multiplexed sequence of left and right image pairs to be transmitted to a CRT monitor. Other display systems (for example, those based on Revove holes) display stereo image pairs in a staggered column format (column interlaced), so that, for example, eight odd lines (and transmitted images) include The left-eye image, and the even-numbered line covers eight right-eye images. Other display and recording devices also use other 31 ^ formats, including up-down, side-by-side, line-interleaved, and dual-channel (actual = separate channels). There are even more image formats that contain the left and right signals on different color channels or in the area of non-overlapping optical spectrum: 200419467 image group pair encoding. & In order to capture, transmit, and display the many moons in the stereo image group, it should be easy to understand that there are many matches between various image sources and display systems. A system with ° midnight has all the capabilities of the present invention. However, none of them-planted in a single-device-provides the versatility and flexibility of the present invention. Many devices are mentioned here, but www.stereo3d.com maintains: the latest list of recent 3D scales and displays and converter boxes. , Ι, the existing three-dimensional converter is now available in 3D multiplexer or 3D demultiplexer. The 3D multiplexer uses two sets of separated video image streams and industrializes them into a set of frame-to-frame methods for progressive video or a field-to-field single-video method for video. For the purposes of the present invention, these devices perform a field or frame sequence to dual channel conversion. In addition, the 3D demultiplexers perform reverse operations. They separate 3D image data encoded in a frame-to-frame or field-to-field 15-field manner into a single stream of information in a single video stream. For the purposes of this invention, this chain performs a field or frame sequence to a two-channel conversion. Typically, these devices are built for a specific video format (such as' NTSC or PAL video, or computer VGA mode). Some examples of such devices include those described below. 2 VRex 3D type converter 101_30 format converter 10 is an example of the embodiment of the present invention. It has the ability to receive only continuous 3D video fields from composite video or S-video sources in both NTSC or pAL formats and convert the video to a single 3D format for computer VGA video when output. The device can be configured to output 2D, dual-channel, box-sequence, field-sequence, intersecting 6 200419467 staggered, or row-interleaved, but only at manufacturing time. It is not possible for the user to change between the various 3D output formats. VRex MUX-1 ... MUX-1 is a 3D video multiplexer that uses field sequence 3D format to convert two separate NTSC video signals into a single 5 NTSC video signal. These two sets of input signals must be phase-locked. In this invention, there is no need for a genlock or an input signal that is commonly synchronized. VRex MUX-3 ... MUX-3 is the same as MUX-1 except it supports the PAL video standard.

Cyviz公司-Cyviz(挪威的公司)生產兩種3D格式轉換產 10 品,xpo.l和χρ〇·2。這些產品各是一種3D視訊解多工器,其 於輸出時以一半的垂直更新速率而轉換框序列電腦視訊格 式為相同解析度之雙通道式格式。這些產品具有一些高級 特點,包含立體邊緣混和,其對於一起合併兩組或更多的 投射屏幕是有用的。更多的資訊可被發現於WWW.CVvi7Tmn 15 之中。 3DTV—3DTV具有許多3D視訊多工裔和視訊格式轉換 器之線路。更多的資訊可被發現於www.3dmagic.com之中。 維度技術(DTI)具有自動立體顯示線路,其能夠接收在 他們裝置上顯示的許多3D格式。多數3D顯示裝置接受經歷 20 任何深度感覺所需的一組單一3D格式。於DTI顯示上之更 多資訊可祐發現於www.dti3d.com之中。 2D掃瞄轉換器是一種裝置,其轉換一組視訊格式為另 —種視訊格式(例如,NTSC至PAL、或電腦格式至NTSC、 等等)。2D尺度向上或向下地改變信號之影像解析度以匹配 7 所需的輸出。市場上有許多的2D掃瞄轉換器,其包含由RGB 頻譜(www.rgb.com)和 Extron(www.extron.com)公司所鎖售 者0 因此,明顯地,3D立體顯示和記錄系統之激增已產生 多種立體3D影像格式(同時也稱為3D袼式)。因為這些顯示 袼式彼此變化很大並且一般不讓它們自己容易地彼此轉 換,於立體影像產生系統和立體顯示系統之間是有很大的 不相谷性。有許多的裝置可以在兩組不同的3D格式之間進 行轉換(一般是自像場或像框序列轉換為雙通道式的或雙 通道式轉換為像場或像框相)。但是㈣需要歸能夠轉 換任何3D格式為任何其他犯格式之通用型裝置技術。 【明内容3 發明概要 缺點,利用本發明 並且本發明之目的 先前技術的上面討論和其他問題及 之許多方法和系統而被克服或被減輕, 被達成。 此處說明之通用型三維立體格 摇徂一多从t L 得換糸統與方法利用 槌仏系、、先而消除這些相容性議題,該车 ^ 1糸統進行在被指定 的、、且3D格式内之任何立體的影像流成 〜在减組内之任何 八他3D格式之轉換。該祕同 傻虛採的使从旦,你名 灯斤夕有利於立體影 像处里的其他讀處理魏,例如 隹捲旦彡^ 〜彳冢知攝、對齊、變 “、、攝心、修剪、重點更正、視訊格式轉換 以及包含宾厣4kl 、知瞄率轉換、 標準犯影像增強。 I羊明度之-系列的 200419467 因此,此處說明之本發明允許使用者完全自由地連接 任何習知的立體影像產生或記錄系統至任何習知的立體影 像顯示裝置而提供有用的影像增強。 圖式簡單說明 5 利用下面說明、附加之申請專利範圍、以及附圖,將 更了解本發明這些和其他特點、論點、以及優點,其中圖 形是:Cyviz-Cyviz (Norwegian company) produces two 3D format conversion products, xpo.l and χρ0.2. Each of these products is a 3D video demultiplexer that converts frame-sequence computer video formats to a dual-channel format with the same resolution at half the vertical update rate when output. These products have some advanced features, including stereo edge blending, which is useful for combining two or more projection screens together. More information can be found in WWW.CVvi7Tmn 15. 3DTV—3DTV has many lines of 3D video multiplexes and video format converters. More information can be found at www.3dmagic.com. Dimensional Technology (DTI) has an auto-stereoscopic display circuit that is capable of receiving many 3D formats displayed on their devices. Most 3D display devices accept a single set of 3D formats needed to experience any sense of depth. More information on the DTI display can be found at www.dti3d.com. A 2D scan converter is a device that converts a group of video formats into another video format (eg, NTSC to PAL, or computer format to NTSC, etc.). The 2D scale changes the image resolution of the signal up or down to match the desired output. There are many 2D scan converters on the market, which include the sellers locked by RGB spectrum (www.rgb.com) and Extron (www.extron.com). Therefore, obviously, 3D stereo display and recording systems The proliferation has produced a variety of stereoscopic 3D image formats (also known as 3D styles). Because these display modes vary greatly from one another and generally do not allow them to easily switch to one another, there is a great disparity between the stereoscopic image generation system and the stereoscopic display system. There are many devices that can convert between two different sets of 3D formats (usually from a field or frame sequence to a dual channel or a two channel to a field or frame phase). However, it is necessary to return to general-purpose device technology capable of converting any 3D format to any other criminal format. [Explanation 3 Summary of the invention Disadvantages, using the present invention and the object of the present invention The above discussion and other problems of the prior art and many methods and systems are overcome or mitigated and achieved. The general three-dimensional three-dimensional lattice described here uses the system and method from t L to eliminate these compatibility issues first. The vehicle system is performed in the designated, And any 3D image stream in the 3D format is converted into any other 3D format in the minus group. This secret is the same as the foolish messenger. Your name is good for other reading and processing in the stereo image. For example, 隹 卷 丹 彡 ^ ~ 彳 Tsuzuki knows the photo, aligns, changes, ", mind, trimming , Key corrections, video format conversion, and including binocular 4kl, conversion rate, standard image enhancement. I sheep brightness series-200419467 Therefore, the invention described here allows users to completely freely connect any conventional The stereo image generating or recording system provides useful image enhancement to any conventional stereo image display device. Brief Description of the Drawings 5 These and other features of the present invention will be better understood using the following description, the scope of the appended patents, and the accompanying drawings. , Arguments, and advantages, where the graphics are:

第1圖展示三維立體格式轉換器實施例之方塊圖; 第2圖展示具有數位RGB輸出之前端處理器系統的方 10 塊圖; 第3圖展示具有數位YUV輸出之前端處理器系統的方 塊圖, 第4圖展示具有數位RGB輸入之後端處理器的方塊圖; 第5圖展示具有數位YUV輸入之後端處理器系統的方 15 塊圖;Figure 1 shows a block diagram of an embodiment of a 3D stereo format converter; Figure 2 shows a block diagram of a front-end processor system with digital RGB output; Figure 3 shows a block diagram of a front-end processor system with digital YUV output Figure 4 shows a block diagram of a rear-end processor with digital RGB input; Figure 5 shows a block 15 diagram of a rear-end processor system with digital YUV input;

第6圖展示48位元數位RGB-CHVF輸入資料匯流排之 方塊圖, 第7圖展示60位元數位RGB-CHVF輸出視訊資料匯流 排之方塊圖; 20 第8圖展示16位元數位YHVF視訊資料匯流排之方塊圖; 第9圖展示3D資料格式轉換器一實施例之方塊圖;以及 第10圖展示3D資料格式器另一實施例之方塊圖。 I:實施方式1 較佳實施例之詳細說明 9 200419467 此處之方法和系統是於單一電子裝置中從一大組的3D 格式轉換任何3D格式為任何其他3〇格式。較佳實施例所支 板之3D格式的基本組包含··標準2〇 ;雙通道式;像場序列 ’像框序列(標頁瀏覽广上下式;列交錯式;側並側式;以 及行父錯式其他可能的3D格式可以被支援,包含,但是 不限疋於,使用這裝置而光譜上被多工化之格式。更進一 步地,此處說明之實施例提供許多其他有用的特點以供用 於雙重的或多工化的立體影像流之適當的設定、增強、以 及更正。這些特點包含立體影像掃攝、對齊、變焦攝影、 〇修剪、重點更正、長寬比率轉換、以及線性和非線性尺度 變化等等。更進一步地,因為立體影像於多種標準視訊界 面上被傳輸,此處說明之本發明支援從一組視訊界面至另 一組的轉換。較佳實施例所支援之視訊界面包含RGB電腦 、構件視訊、S視訊、以及複合視訊。用於各視訊界面之各 15種視吼標準同時也由較佳實施例所支援,其包含VESA GTF 標準、HDTV標準、NTSC、PAL、SECAM、YUV以及RGB 視訊,等等。更進一步地,因為此處說明之本發明的某些 實施例部分地使用最先進FPGA(場可規劃閘陣列)技術而被 構成’因新的問題和需要可能被發現,新的功能、特點、 2〇以及3D格式可以在未來被添加至裝置中。格式轉換和其他 影像處理功能可以即時地進行而有優秀的性能。 第1圖展示本發明的基本系統結構。3D資料袼式器1〇2 進行許多包含輸入通道選擇、立體解多工、立體影像尺度 改變、掃瞄速率轉換、三維立體格式轉換以及輪出通道選 10 200419467 擇的主要功能。依據輸入選擇設定,3D資料格式器i〇2選擇Figure 6 shows a block diagram of a 48-bit digital RGB-CHVF input data bus, Figure 7 shows a block diagram of a 60-bit digital RGB-CHVF output video data bus; 20 Figure 8 shows a 16-bit digital YHVF video A block diagram of a data bus; FIG. 9 shows a block diagram of an embodiment of a 3D data format converter; and FIG. 10 shows a block diagram of another embodiment of a 3D data formatter. I: Detailed description of the preferred embodiment of the first embodiment 9 200419467 The method and system here is to convert any 3D format to any other 30 format from a large set of 3D formats in a single electronic device. The basic set of 3D formats supported by the preferred embodiment includes: · standard 20; dual channel type; image field sequence 'image frame sequence (page view wide up and down style; column staggered style; side-by-side style; and row parent Miscellaneous other possible 3D formats can be supported, including, but not limited to, a format that is spectrally multiplexed using this device. Furthermore, the embodiments described herein provide many other useful features for use Appropriate settings, enhancements, and corrections for dual or multiplexed stereo image streams. These features include stereo image scanning, alignment, zoom photography, cropping, focus correction, aspect ratio conversion, and linear and nonlinear Scale changes, etc. Furthermore, because the stereo image is transmitted on a variety of standard video interfaces, the invention described here supports conversion from one video interface to another. The video interfaces supported by the preferred embodiment include RGB computer, component video, S video, and composite video. Each of the 15 video roar standards for each video interface is also supported by the preferred embodiment, which includes VES A GTF standard, HDTV standard, NTSC, PAL, SECAM, YUV, and RGB video, etc. Furthermore, because some embodiments of the invention described here use, in part, state-of-the-art FPGAs (field-programmable gate arrays) Technology is constituted 'Because new problems and needs may be discovered, new functions, features, 20 and 3D formats can be added to the device in the future. Format conversion and other image processing functions can be performed instantly and are excellent Performance. Figure 1 shows the basic system structure of the present invention. The 3D data generator 10 performs many operations including input channel selection, stereo demultiplexing, stereo image scale change, scan rate conversion, 3D stereo format conversion, and rotation. The main function of channel selection 10 200419467 selection. According to the input selection setting, 3D data formatter i〇2 selects

多數輸入通道中何組使用於3D立體輸入。依據被輸入之3D 格式,一般一次僅一組或兩組頻道將被選擇。接著3D資料 格式器102解多工或分隔3D立體資料成為兩組分離影像處 5理頻道。極端重要地,這分離步驟被達成因而左方透視的 影像資料和右方透視的影像資料可以分別地被處理。一起 處理該等頻道如同一組資料訊框將在影像尺度改變和掃瞄 轉換處理時導致資料訛誤。接著3D資料格式器1〇2進行影像 尺度改變操作以調整被選擇之輸出所需的影像解析度。依 10據用於輸出信號之被選擇的資料格式,3D資料格式器1〇2 可以進行影像資料之掃瞄轉換。如果輸出資料格式被輸入 同步則沒有進行掃瞄轉換。這情況是其中輸入資料信號框 速率控制系統内部資料訊框速率且其中3D輸出速率直接地 被輸入k號所控制。如果輸出資料格式被輸出同步,則掃 15瞄速率轉換被達成以將被處理的3D影像資料與所需的輸出 汛框速率加以同步化。於這情況中,3D輸出速率是完全無 關於輸入信號訊框速率。此兩方法各有其優點和缺點。最 後’ 3D資料格式器102進行3D立體格式轉換以重組被處理 的立體影像資料成為輸出所需的格式。本系統能提供大量 2〇的輸入/輸出型式並且允許内部立體頻道獨立地操作,其將 說明於下。 3D貢料格式器1〇2之另一顯著特點,是其支援兩輸入信 戒族群(A和B ’如第丨圖之展示)以及兩輸出信號族群。各輸 入或輸出可以支援任何被多工化的3D格式,而無視於族群 11 辨識。 信號族群主要地提供支援非多工化(雙通道式)的伽各 …來自各族群(A和B)的一組輸入或輪出被選擇以用於各 頻道。這簡單地表示,於相同族群中之兩組輸入無法被使 用於雙通道式的3D格式。但是任何包含來自相對族群之信 说的信號組對是有效並且被支援。這導致於不同視訊界面( 例如,VGA電腦和複合視訊)上的影像可能成為有效的立體 組對。 依據被使用以傳輸原始影像至或自3〇資料格式器1〇2 10之數位影像資料格式,各信號族群被細分成為兩組。這兩 組包含數位RGB輸入/輸出和數位Yuv輸入/輸出。於第頂 中’這兩組實際上以輪人族群Α包含—組數位職輸入匯流 排A以及-、组數位Υυν輸入匯流排八而被表示。一組相似配 置對於其他二組化號族群(輸入Β、輸出Α和輸出Β)被構成, 士、第10之展示。提供兩種型式,因該兩種型式被影像界面Which group of most input channels is used for 3D stereo input. Depending on the 3D format being entered, generally only one or two channels will be selected at a time. Then the 3D data formatter 102 demultiplexes or separates the 3D stereo data into two sets of separate image processing channels. Most importantly, this separation step is achieved so that the left perspective image data and the right perspective image data can be processed separately. Processing these channels together as a set of data frames will cause data errors when the image scale changes and scan conversion processing. The 3D data formatter 102 then performs an image scaling operation to adjust the image resolution required for the selected output. According to the selected data format used for the output signal, the 3D data formatter 102 can scan and convert the image data. If the output data format is input synchronously, no scan conversion is performed. This case is where the input data signal frame rate controls the internal data frame rate of the system and where the 3D output rate is directly controlled by the input k number. If the output data format is output synchronized, a scan rate conversion is achieved to synchronize the processed 3D image data with the required output frame rate. In this case, the 3D output rate is completely independent of the input signal frame rate. Each of these two methods has its advantages and disadvantages. Finally, the 3D data formatter 102 performs 3D stereo format conversion to reconstruct the processed stereo image data into a format required for output. This system can provide a large number of 20 input / output patterns and allows the internal stereo channels to operate independently, which will be described below. Another significant feature of 3D material formatter 102 is that it supports two input signal groups (A and B 'as shown in Figure 丨) and two output signal groups. Each input or output can support any 3D format that is multiplexed, regardless of ethnic group identification. The signal group mainly provides support for non-multiplexed (dual-channel) galaxies ... A set of inputs or rotations from each group (A and B) is selected for each channel. This simply indicates that two sets of inputs in the same ethnic group cannot be used in a dual-channel 3D format. But any pair of signals that contain a belief from a relative group is valid and supported. As a result, images on different video interfaces (for example, VGA computer and composite video) may become effective stereo pairs. According to the digital image data format used to transmit the original image to or from the 30 data formatter 1020, each signal group is subdivided into two groups. These two groups contain digital RGB input / output and digital Yuv input / output. In the top section, these two groups are actually represented by the group A of humans—group digital input bus A and-, group digital Υυν input bus eight. A set of similar configurations is constructed for the other two groups of input numbers (input B, output A, and output B), shown in Figure 10. Provide two types, because these two types are imaged interface

電子(例如,二組式ADC和DAC、視訊解碼器/編碼器、HDTV 解碼器/編碼器,等等)所使用。各分別的數似仙或數位 YUV匯流排實際上㈣支援任何數量之相容裝置。數位輸 入匯流排被限定於—次僅—個仙輸人。所有在前端處理 20器之内的輸入裝置,除了作用的裳置之外,最好是具有三 態輸出以避免輸入資料之祕。但是,對於輸出匯流排, 任何能夠支援目前信號時序之裝置可以是作用的,因為沒 有資料訊*誤將發生。 圍、’x>3D>料格式器1 〇2的是週邊處理器系統。第1圖左 12 200419467 側方上之各種前端處理器系統104、106、108、110從外部 接收各種格式之影像資料並且依據所附帶之輸入匯流排而 轉換該資料為數位RGB或數位YUV。同樣地,第1圖右侧方 上之各種後端處理器系統112、114、116、118從3D資料格 5 式器1〇2接收數位RGB或數位YUV格式之影像資料並且轉 換該資料為用於傳輸至外部之各種視訊影像標準。除了一 組處理器系統之外,各數位RGB或數位YUV匯流排具有一 組附帶之擴充埠。擴充埠120、122、124、126、128、130 、132、134允許其他輸入或輸出裝置被添加至該系統。以 10此方式,當新的視訊標準被工業界產生時,擴充卡可被添 加以支援新的格式。另外地,如果有不被較佳實施例所支 援之目前視訊資料格式,則擴充卡可被產生並且被添加至 系統。 具有RGB輸出之前端處理器系統1〇4、1〇8各代表一族Used by electronics (for example, two sets of ADCs and DACs, video decoders / encoders, HDTV decoders / encoders, etc.). Individual digital or digital YUV buses do not actually support any number of compatible devices. The digital input bus is limited to-once only-one cent loser. All input devices within the front-end processor 20, in addition to the function, are best to have three-state output to avoid the secret of input data. However, for the output bus, any device that can support the current signal timing can work because no data message * error will occur. The peripheral processor system is the "x > 3D > material formatter 102. Figure 1 left 12 200419467 Various front-end processor systems 104, 106, 108, and 110 on the side receive image data in various formats from the outside and convert the data into digital RGB or digital YUV according to the attached input bus. Similarly, various back-end processor systems 112, 114, 116, and 118 on the right side of FIG. 1 receive digital RGB or digital YUV format image data from the 3D data format formatter 10 and convert the data for use. Various video image standards for external transmission. In addition to a set of processor systems, each digital RGB or digital YUV bus has a set of attached expansion ports. Expansion ports 120, 122, 124, 126, 128, 130, 132, 134 allow other input or output devices to be added to the system. In this way, when new video standards are created by the industry, expansion cards can be added to support new formats. Additionally, if there is a current video data format that is not supported by the preferred embodiment, an expansion card can be generated and added to the system. Front-end processor systems with RGB output 104 and 108 each represent a family

15群之標準影像輸入電子電路,其可以分享相同的數位RGB 輸入匯流排協定(例如,如第6和7圖之展示)。同樣地,具有 yuv輸出之兩組前端處理器系統1〇6、11〇各代表一族群之 私準影像輸入電子電路,其分享相同的數位YUV輸入匯流 排界面協定(例如,如第8圖之展示)。於較佳實施例中之標 20準輸入包含rgb電腦、Η〇τν、複合視訊、視訊、以及 構件視訊。其他可能輪入包含SDI(串列數位界面)和DVI(數 位視訊界面)。 、相似地,具有Rgb輸入之兩組後端處理器系統112、116 、 *群之^準影像輸出電子電路,其分享相同的數 13 200419467 位RGB輸出匯流排協定(例如,如第6和7圖之展示),而具有 YUV輸入之兩組後端處理器系統114 ' 118各代表一族群之 k準〜像輸出電子電路,其分享相同的數位YUV輸出匯流 排界面協定(例如,如第8圖之展示)。於較佳實施例中之標 準輸出包含RGB電腦、HDTV、複合視訊、Y/c視訊、以: 構件視訊。其他可能的輸入包含SDI(串列數位界面)和撕( 數位視訊界面)。 10 15 20 除了與犯資料格式器之分別的數位視訊界面之外,各 週邊處理H㈣Κ)4·118經由共用的—組週邊控制匯流排 138被-組控制系統⑶所控制。於—較佳實施例中,週邊 控制匯流排138包含-組雙線串列的匿流排,其使用由菲利 浦半導體公司所生產之專利Ik串面。這鮮在各種視 訊界面電氣之間已絲相當地普遍。另外地,週邊控制匯 流排138包含多數個特定如卿⑽,其相被使用作為 至控制系統13 6之中斷輸人,例如,以便從—組或多組前端 處理器及/或一組或多組後端處理器得到回授。 所展示之第二顯著特點是控制系統说,其包含一組微 控制器以及相關之支援電路。於—較佳實施例中,控制系 統136包含六個數位通訊埠’亦即包含上述之週邊控制匯流 排138、-組同步資腿流排14G、_組核心控舰流排142 、一組電腦控制界面144、-組網路控制界面146以及一組 使用者面板界面148。控㈣統136經由核心控龍流排142 和同步資訊匯流排刚監視且控制祀資料格式㈣h同步 資訊匯流排刚提供目前被選擇且作用輸人的輸入時序信15 groups of standard video input electronic circuits, which can share the same digital RGB input bus protocol (for example, as shown in Figures 6 and 7). Similarly, the two sets of front-end processor systems 106 and 110, each with a YUV output, represent a group of private quasi-video input electronic circuits that share the same digital YUV input bus interface protocol (for example, as shown in Figure 8). Display). The standard input in the preferred embodiment includes an rgb computer, Η〇τν, composite video, video, and component video. Other possible turns include SDI (Serial Digital Interface) and DVI (Digital Video Interface). Similarly, two sets of back-end processor systems 112, 116, and * groups of quasi-image output electronic circuits with Rgb inputs share the same number. 13 200419467-bit RGB output bus protocol (for example, as in Sections 6 and 7) The two sets of back-end processor systems 114'118 with YUV input each represent the standard of a group ~ like output electronic circuits that share the same digital YUV output bus interface agreement (for example, as in Section 8 Figure shows). The standard output in the preferred embodiment includes an RGB computer, HDTV, composite video, Y / c video, and component video. Other possible inputs include SDI (Serial Digital Interface) and Tear (Digital Video Interface). 10 15 20 Except for the digital video interface which is separate from the criminal data formatter, each peripheral processing unit 4 · 118 is controlled by the group control system ⑶ via a common group peripheral control bus 138. In the preferred embodiment, the peripheral control bus 138 includes a set of two-wire serial buses, which uses a patented Ik serial surface produced by Philips Semiconductors. This is rarely common among the various video interface electronics. In addition, the peripheral control bus 138 contains a plurality of specific inputs, such as a circuit board, whose phases are used as interrupt inputs to the control system 136, for example, to receive from one or more front-end processors and / or one or more The group back-end processors get feedback. The second significant feature shown is the control system, which includes a set of microcontrollers and associated supporting circuits. In the preferred embodiment, the control system 136 includes six digital communication ports, that is, the peripheral control bus 138 described above, a group of synchronous data leg buses 14G, a group of core control ship buses 142, and a group of computers. A control interface 144, a network control interface 146, and a user panel interface 148. The control system 136 has just monitored and controlled the data format via the core control bus 142 and the synchronization information bus. The synchronization information bus has just provided the input timing information that is currently selected and used for input.

14 200419467 號狀態之資訊。這連接允許控制系統136辨識用於3D資料格 式器102適當設定之進入視訊信號。於一較佳實施例中,核 心控制匯流排142是對於3D資料格式器102之内各裝置與特 定引動線的一組三線串列界面。在3D資料格式器1〇2之内的 5電子裝置具有各種彼此完全不同的串列的通訊方法。核心 控制匯流排142被產生以提供各種串列的界面型式。電腦控 制界面144可以是針對電腦系統150之任何適當的界面。例 如’標準串列通訊界面系統可以被使用。於一較佳實施例 中,這界面是使用RS-232標準。進一步地之實施例可以使 10用USB 2·〇或其他相似標準。電腦控制界面144之目的是允 許利用區域電腦系統150而控制裝置之狀態蒐集。用於各種 可程式規劃構件之新的勒體同時也可以經由界面144被上 載。網路控制界面146進行一種如電腦控制界面142之相似 功能,但允許經由標準網路界面電路至網路152,例如,社 15區網路之裝置連接。最後使用者面板界面148允許在主要裝 置和選擇的使用者控制面板154之間通訊,例如,經由一組 二線串列界面。選擇的使用者控制面板154允許在無關於任 何網路152或電腦系統150的裝置之上的區域控制。 第2圖展示具有數位RGB輸出之前端處理器系統1〇4( 20或108)的實施例。處理器系統104包含大量的各種硬體構件 ,其解碼影像資料(使用各種連接器和標準)成為被3D資料 格式器102所使用之數位RGB格式。第2圖展示此類硬體之 樣本收集。一較佳實施例使用三頻道ADC和支援硬體以轉 換各種電腦和HDTV格式,以及一視訊解碼器晶片和支援硬 15 200419467 體以轉換複合、Y/C、以及構件視訊。有許多其他的解碼器 晶片支援可以被使用的多種視訊格式輸入,如圖形所指示 。擴充埠允許利用添加額外週邊電路板所支援的新格式。 於較佳實施例中,前端類比RGB處理方塊2〇2被實施並 5且支援二組分離類比色彩通道2〇4(紅、綠、以及藍)以及兩 組同步信號(垂直和水平)與3D領域之ID信號之輸入。類比 輸入被轉換為一組48位元RGB(或24位元RGB)數位格式以 供用於傳輸至3D資料格式器1〇2。 其他前端處理區塊展示於圖形中。類比HDTV處理器 10 206提供一組特定連接以供用於使用γυν或11(}]38格式之類 比HDTV 208。數位RGB處理器210將其他位元深度之數位 RGB資料212轉換成為被數位RGB輸入匯流排所使用之48 位元深度。數位HDTV處理器214提供一組用於數位HDTV 216之格式支援。dv:[處理器218提供一組用於數位視訊界面 15標準輸入220之支援。最後,SDI處理器212提供用於串列數 位界面標準輸入224之支援。各這些前端處理器區塊202、 206、210、214、218、222經由數位RGB輸入匯流排226被 連接到3D資料格式器102並且經由週邊控制匯流排138被連 接到控制系統136。 20 具有數位YUV輸出之前端處理器系統1〇6(或110)實施 例是於取代RGB之許多數位YUV標準上輸出之視訊輸入硬 體構件的另一集合。第3圖僅展示這集合中之一組構件,但 是其他構件亦可以被包含。於一較佳實施例中,前端視訊 解碼器方塊302能夠支援三組分離視訊輸入304格式,包含 16 200419467 複合視訊、Υ/C-視訊、和構件視訊(YUV或RGB)。許多近 代的視訊解碼器晶片支援這位準功能。前端視訊解碼器3〇2 方塊同時也處理輸入視訊信號3〇4之類比至數位轉換(ADC) 。無視於輸入格式,前端視訊解碼器方塊302之輸出是被選 5擇的輸入之一組數位形式。輸入影像資料之3D格式可以採 用任何之標準形式。對於視訊輸入信號,3D格式一般是像 場序列3D(左方右方影像資料於不同的視訊信號像場上被 傳輸)或雙輸入3D(左方右方影像資料於兩組實際上分離之 輸入連接器上被輸入)。前端視訊處理區塊302的其他選擇 1〇功能包含增益控制、色彩和亮度控制、視訊格式解碼(NTSC 、PAL、SECAM、等等)以及其他可以是與視訊信號解碼相 關的特點。前端視訊解碼器302經由數位YUV輸入匯流排 306被連接到3D資料格式器102並且經由週邊控制匯流排 138被連接到控制系統136。 15 第4圖展示具有來自匯流排430之數位RGB輸入的後端 處理器系統112(或116)實施例。這系統112進行前端處理器 系統的反向功能,其轉換被3D資料格式器102所使用(如被 展示之數位RGB輸出匯流排430)之數位RGB格式成為可供 用於輸出的各種視訊格式。這系統是被使用以進行各種轉 20 換之標準硬體構件和支援硬體之聚集。較佳實施例使用一 組後端類比RGB處理器402,例如,使用一三組10-位元DAC 被製作,以供用於類比R G B輸出404。電腦視訊標準和H D T V 標準被這硬體所支援。第4圖展示其他硬體可能性,包含: 供用於類比HDTV輸出408之後端類比HDTV處理器406 ;供 17 200419467 用於數位RGB輸出412之後端數位RGB處理器410 ;供用於 數位HDTV輸出416之後端數位HDTV處理器414 ;供用於 DVI輸出420之後端DVI處理器418 ;供用於SDI輸出424之後 端SDI處理器422 ;以及其他之輸出。有許多其他轉換硬體 5 構件是可用於製作其他區塊列表。 1-1 第5圖展示具有數位YUV輸入502之詳細的後端 處理器系統114(或118)。於一較佳實施例中,僅一組後端視 訊編碼器方塊504被使用,雖然其他硬體亦可被使用。後端 視訊編碼器方塊504轉換數位YUV資料成為任何NTSC、 10 PAL、或SECAM視訊標準中之包含複合、γ/c、構件(YUV 和RGB)之任何的各種類比視訊格式。 1·2 苐6圖展示被3D資料格式器1〇2所使用之48位元 數位RGB輸入視訊匯流排602之表示。使用這匯流排系統 602 ’ 24位元或48位元RGB視訊資料可被提供。於4M立元 15模式中,兩組全影像之像素平行地被傳送以減半匯流排速 率之需求。R0和R1代表資料流中之第一和第二紅色像素。 同樣地’G0和G1代表第一和第二綠色像素且B0和B1代表第 和第一藍色像素。這些色彩頻道各是如所展示之8位元的 寬度。匯流排中的其他信號構成視訊時序和3D場ID信號。 C代表像素時脈。賊表水平同步㈣。讀表垂直同步信 號。F代表視訊場ID。SF代表立體場m。 1,3第7圖展示被3D資料格式器102所使用之6〇位元 數位RGB輸出視訊匯流排7〇2的表示。使用這匯流排系統 7〇2,60位元、3〇位元、48位元、或24位元rgb視訊資料可 18 被提仏於6〇位元模式中,兩組全影像之像素平行地被傳 送f減半匯流排速率之需求。R0和R1代表資中之第-和第二紅色像素。同樣地’⑼和⑴代表第—和第二綠色像 素且bo和B1代表第—和第二藍色像素。這些色彩頻道各是 士所展示之10位元威。s流排中之其他信號構成視訊時 序和3D%ID㈣。c代表像素時脈。H代表水平同步信號。 V代表垂直同步信號。F代表視訊場ID。SF代表立體場ID。 第8圖展示被犯資料格式ϋ的輸人和輸出賴使用之 16位元數位YUV匯流排802的表示。於ι6位元γυν中,-組 8位το頻道供梵度資訊所使用而第二8位元頻道則被使用於 色度貝吼。另外地,如果輸入或輸出處理器系統之一需要8 位元yuv資料袼式,則這匯流排系統可於8位元頻道之一組 上提供冗度和色度。於較佳實施例中,4 ·· 2 : 2格式之16位 元YUV被使用以傳輸資料至且自3D資料格式器1〇2。如其他 匯流排系統’ C代表像素時脈,Η代表水平同步信號,V代表 垂直同步仏號’ F代表視訊場ID,且SF代表立體場m。 第9圖示出3D資料格式器902之一組實施例(其可以被 使用於某些實施例中,如第丨圖展示之3£)資料格式器1〇2) 。3D資料格式器902某些功能被說明於共同擁有之美國專利 序號10/045901案和國際申請專利序號pCT/us〇2/ 〇1314案 中之頒佈文號W〇/〇2/〇761〇7案中,其標題為“使用具有數 位光處理之行交錯式資料以供立體顯示之方法與裝置,,並 且配合此處參考。3D資料格式器902進行五個主要功能,包 含·輸入通道選擇、立體解多工、立體影像尺度改變、掃 200419467 瞄速率轉換、以及三維立體格式轉換。3D資料格式器9〇2 包含五個主要構件,包含一組微控制器9〇4、一組四輸入兩 輸出RGB輸入資料切換器/路由器系統9〇6、一組兩輸入兩 輸出RGB輸出資料切換器/路由器系統9〇8、以及兩組具有 5相關記憶體914、916的分離視訊處理單元91〇、912。雙重 視訊處理器組態使得有各種功能。於某些實施例中,這功 能包含用於左方和右方透視影像資料之獨立的影像處理。 雙重處理器組態提供可用的最高影像品質而利用保持左方 和右方影像資料完全分離以防止立體之惡化。於其他實施 10例中,雙重視訊處理器系統使得有不同輸出3D袼式或視訊 格式之視訊資料的同時處理。 4-至-2 RGB輸入資料切換器/路由器系統實質上是供 用於RGBHVC資料信號之一組矩陣切換器,其具有依據輪 入信號之3D格式而引導任何輸人至任何或兩組輸出之能力 15。例如,於輸人通道A包含左方和右方透視影像資料的情況 中,輸入切換器906將引導輸入通道a至供視訊處理器仙 、912進-步地操作之兩個輸出。在左方和右方透視影像資 料被攜載於兩組分離頻道上(例如,頻道A和頻道B)的情況 中,各輸入被引導至-組單一輸出。於一較佳實施例:, 2〇這切換器使用一種高速CPLD積體電路被製作。 兩組視訊處理器910、912是視訊處理電路,其具有進 行許多有用功能的能力,該等功能包含:影像重^度、 掃猫速率轉換、色彩更正、以及重點更正。這些處理=同 時也可以控制多數分離的連續輪入影像資料訊框和多數分 20 200419467 離輸出資料訊框之記憶體中的位置。這些特點使得其可能 針對各視訊處理器910、912而於對應至左方或右方透視影 像的一組特定影像資料上操作。與輸入資料切換器/路由器 904相結合之操作,實際上任何3D立體資料格式皆可被提供 5 。一旦適當的影像資料組利用輸入框控制被分離,則各視 訊處理器910、912進行所需的尺度變化和影像增強操作。 視汛處理器910 ' 912同時也作用如同雙埠記憶體控制,因 而輸出 > 料速率可以無關於輸入資料速率。輸入和輸出資 料速率被水平同步信號、垂直同步信號和像素時脈信號所 1〇决疋。視訊處理器910、912之較佳實施例是ichip公司之 IP00C711晶片。其他具有相似功能和特點之視訊處理器積 體電路晶片同時也可以被使用。記憶體914、916的較佳實 施例疋16-兆位兀SDRAM裝置。足夠的記憶體被提供以提 供供用於對應至多數框控制的各視訊處理器9i〇、912之多 數兀整的像框緩衝器(如第9圖展示之四個)。這組態提供這 系統所需的最大控制和彈性。 2-至-2 RGB輸出資料切換器/路由器9〇8是另一種 RGBHVC數位矩陣城||,其能夠以任何可能組合按規定 路線傳运任-輸入至任一輸出。其同時也能夠按規定路線 傳运相關於兩組輸入通道的任何色彩資料至兩組輸出通道 之任何色雜置。這特點允許使用SD影像編碼之色彩順序 方法。ϋ切換器與兩組視訊處理器91〇、M2 一起作用以實 現所有可能的扣資料袼式,其可以被使用於至輸出裝置之 傳輸和其中任何相關之處理。於一較佳實施例中,各視訊 21 200419467 處理器910、912之輸出是一組24位元rGb信號,其包含供 用於各色彩紅色、綠色和藍色之8位元。為提供色彩多工化 特點,切換器906能夠按規定路線傳送任何色彩輸入至任何 其他色彩輸出。因此切換器906被作為供用於8位元數位信 5 號之一組6-輸入6-輸出矩陣切換器。於一較佳實施例中,這 切換器使用一種高速CPLD積體電路被製作。 Μ 微控制器904進行3D資料袼式器9〇2之設定和控 制功能。其使用一組EEPROM記憶體以儲存供用於各視訊 處理器910、912和資料交換器904、9〇6之暫存器設定。微 10控制器9〇4同時也可以與使用者控制功能界面。 第10圖示出3D資料格式器1002之另一實施例(其於某 些實施例中可以被使用,如第1圖展示之3d資料格式3|ι〇2) 料格式器1〇〇2進行輸入通道選擇、立體解多工、立體 影像尺度改變、掃瞄速率轉換、以及三維立體格式轉換之主 15要功能。除了這些功能之外,其進行_組輸出通道選擇。微 控制器(未展示出)被展示,如第1圖之控制系統丨%。 輸出時脈產生器1004同時也被展示。輸出時脈產生器 1004產生供用於輸出視訊流之時序信號。 本發明之3D資料格式器1002包含五個主要構件,其包 2〇含輸出時脈產生器10〇4(OCGEN)、一組輸入信號路= 1006、一組輸出信號路由器1008、視訊處理器A丨〇丨〇、二 及視訊處理器B 1〇12。3D資料格式器系統1〇〇2提供—組雙 重視訊處理器組態,其使得有左方和右方透視影像資料的 獨立影像處理。雙重處理器組態提供可用的最高影像品質 22 200419467 而利用保持左方和右方影像資料完全地分隔以防止立體之 惡化。於其他實施例中,雙重視訊處理器系統使得有不同 的輸出3D格式或視訊格式之視訊資料的同時處理。 各視訊處理器1010、1012是具有能力以進行包含影像 5 重定尺度、掃瞄速率轉換、色彩更正、重點更正以及其他 之許多有用的功能之視訊處理電路。並聯操作的視訊處理 器1010、1012被使用以實現有用的立體掃攝、對齊、變焦 攝影、以及修剪特點。這些處理器1010、1012可控制高至 多組分離連貫的輸入影像資料訊框和多組分離輸出資料訊 1〇 框記憶體中之位置(如第1〇圖展示之四組)。這些特點使得其 可能供用於各視訊處理器1〇1〇、1012以在對應至左方或右 方透視影像的一組特定影像資料上操作。這操作構成輸入 上之立體解多工的基礎。與輸入信號路由器1006配合之操 作’實際上在輸入上任何可想到的3D立體資料格式可以被 15支援。一旦適當的立體影像資料組利用輸入框控制而被分 離,則各視訊處理器1010、1012進行所需的尺度變化和影 像增強操作。視訊處理器1010、1012同時也作用如同使得 輸出資料速率無關於輸入資料速率之雙埠記憶體控制器。 輸入和輸出資料速率利用他們分別的影像資料時序信號而 20被決定。視訊處理器1010、1012的較佳實施例是作為主要 構件之iChip公司的iP00C 7丨5晶片。其他具有相似功能和特 點之視訊處理器積體電路晶片同時也被使用。記憶體訊塊 1014、1016的較佳實施例是64-兆位元之SDRAM裝置。足 夠之記憶體被提供以供對應至多數訊框控制(如第1〇圖展 23 200419467 示之四組)的各視訊處理器1〇1〇、1〇12之多數(如第1〇圖展示 之四組)完全之訊框緩衝器所用。這組態提供系統所需的最 大控制和彈性。 下面的段落說明利用視訊處理器1010、1012而被達成 5 之一些更重要特點。 掃描速率轉換可以利用視訊處理器1〇1〇、1〇12被達成 ,因而輸入的全部圖像訊框速率(垂直更新速率)被改變為在 輸出上的不同範圍。14 Information on the status of 200419467. This connection allows the control system 136 to recognize incoming video signals for proper setting of the 3D data formatter 102. In a preferred embodiment, the core control bus 142 is a set of three-line serial interfaces for the devices in the 3D data formatter 102 and specific lead lines. The 5 electronic devices within the 3D data formatter 102 have various serial communication methods that are completely different from each other. The core control bus 142 is generated to provide various serial interface patterns. The computer control interface 144 may be any suitable interface for the computer system 150. For example, a 'standard serial communication interface system can be used. In a preferred embodiment, this interface uses the RS-232 standard. Further embodiments can use USB 2.0 or other similar standards. The purpose of the computer control interface 144 is to allow the status of the control device to be collected using the local computer system 150. New hulls for various programmable components can also be uploaded via interface 144 at the same time. The network control interface 146 performs a similar function as the computer control interface 142, but allows connection to a network 152, such as a device in a 15-area network, through a standard network interface circuit. The final user panel interface 148 allows communication between the primary device and the selected user control panel 154, for example, via a set of two-line serial interfaces. The selected user control panel 154 allows zone control over devices not related to any network 152 or computer system 150. Figure 2 shows an embodiment of a front-end processor system 104 (20 or 108) with digital RGB output. The processor system 104 includes a large number of various hardware components, and its decoded image data (using various connectors and standards) has become a digital RGB format used by the 3D data formatter 102. Figure 2 shows a sample collection of this type of hardware. A preferred embodiment uses a three-channel ADC and supporting hardware to convert various computer and HDTV formats, and a video decoder chip and supporting hardware 15 200419467 to convert composite, Y / C, and component video. There are many other decoder chips that support multiple video format inputs that can be used, as indicated by the graphics. Expansion ports allow new formats supported by adding additional peripheral boards. In the preferred embodiment, the front-end analog RGB processing block 202 is implemented and supports two separate analog color channels 204 (red, green, and blue) and two sets of synchronization signals (vertical and horizontal) and 3D. Input of the ID signal of the domain. The analog input is converted to a set of 48-bit RGB (or 24-bit RGB) digital formats for transmission to a 3D data formatter 102. Other front-end processing blocks are shown in the graph. The analog HDTV processor 10 206 provides a specific set of connections for analog HDTV 208 using the γυν or 11 (}) 38 format. The digital RGB processor 210 converts digital RGB data 212 at other bit depths into a digital RGB input stream The 48-bit depth used by the row. Digital HDTV processor 214 provides a set of format support for digital HDTV 216. dv: [Processor 218 provides a set of support for digital video interface 15 standard input 220. Finally, SDI The processor 212 provides support for serial digital interface standard input 224. Each of these front-end processor blocks 202, 206, 210, 214, 218, 222 is connected to the 3D data formatter 102 via a digital RGB input bus 226 and Connected to the control system 136 via a peripheral control bus 138. 20 Front-end processor system with digital YUV output 106 (or 110) The embodiment is based on the video input hardware components that output on many digital YUV standards that replace RGB. Another set. Figure 3 shows only one set of components in this set, but other components can also be included. In a preferred embodiment, the front-end video decoder block 302 can support Three sets of separate video input 304 formats, including 16 200419467 composite video,-/ C-video, and component video (YUV or RGB). Many modern video decoder chips support this quasi-function. Front-end video decoder 3202 box At the same time, it also processes the analog to digital conversion (ADC) of the input video signal 304. Regardless of the input format, the output of the front-end video decoder block 302 is a digital form of one of the selected inputs. The 3D format of the input image data It can use any standard form. For video input signals, the 3D format is generally the image field sequence 3D (the left and right image data is transmitted on different video signal image fields) or dual input 3D (the left and right image data is Two sets of inputs are actually separated on the input connector). Other options of the front-end video processing block 302. 10 features include gain control, color and brightness control, video format decoding (NTSC, PAL, SECAM, etc.) and others Can be a feature related to video signal decoding. The front-end video decoder 302 is connected to the 3D data formatter 102 via a digital YUV input bus 306 and The edge control bus 138 is connected to the control system 136. 15 Figure 4 shows an embodiment of a back-end processor system 112 (or 116) with digital RGB input from the bus 430. This system 112 performs the inverse of the front-end processor system. The digital RGB format used by the 3D data formatter 102 (such as the digital RGB output bus 430 shown) to become a variety of video formats for output. This system is used to perform various conversions. Aggregation of standard hardware components and supporting hardware. The preferred embodiment uses a set of back-end analog RGB processors 402, for example, is made using a set of three 10-bit DACs for the analog R G B output 404. Computer video standards and HD TV standards are supported by this hardware. Figure 4 shows other hardware possibilities, including: for the analog HDTV processor 406 after the analog HDTV output 408; 17 200419467 for the digital RGB processor 410 after the digital RGB output 412; after the digital HDTV output 416 Digital HDTV processor 414; for DVI output 420 after DVI processor 418; for SDI output 424 after SDI processor 422; and other outputs. There are many other transformation hardware 5 widgets that can be used to make lists of other blocks. 1-1 Figure 5 shows a detailed back-end processor system 114 (or 118) with a digital YUV input 502. In a preferred embodiment, only one set of back-end video encoder blocks 504 is used, although other hardware may be used. The back-end video encoder block 504 converts digital YUV data into any of the various analog video formats in any NTSC, 10 PAL, or SECAM video standard, including composite, γ / c, and component (YUV and RGB). Figure 1.2 shows the representation of the 48-bit digital RGB input video bus 602 used by the 3D data formatter 102. Using this bus system 602 '24-bit or 48-bit RGB video data can be provided. In the 4M Legion 15 mode, two sets of full-image pixels are transmitted in parallel to halve the demand for the bus rate. R0 and R1 represent the first and second red pixels in the data stream. Similarly, 'G0 and G1 represent first and second green pixels and B0 and B1 represent first and second blue pixels. These color channels are each 8-bit wide as shown. The other signals in the bus constitute the video timing and 3D field ID signals. C stands for pixel clock. The thief table is synchronized horizontally. Meter reading vertical synchronization signal. F stands for video field ID. SF stands for stereo field m. 1, 3 and 7 show a representation of the 60-bit digital RGB output video bus 702 used by the 3D data formatter 102. Using this bus system 702, 60-bit, 30-bit, 48-bit, or 24-bit RGB video data can be extracted in 60-bit mode. The pixels of the two full-image groups are parallel. The need to be transmitted f halves the bus rate. R0 and R1 represent the first and second red pixels in the data. Similarly, '⑼ and ⑴ represent the first and second green pixels and bo and B1 represent the first and second blue pixels. Each of these color channels is the 10 Yuan Wei displayed by the taxi. The other signals in the s-stream constitute the video timing and 3D% ID㈣. c represents the pixel clock. H stands for horizontal synchronization signal. V stands for vertical synchronization signal. F stands for video field ID. SF stands for stereo field ID. Figure 8 shows the representation of the 16-bit digital YUV bus 802 used by the input and output of the offended data format. In ι 6-bit γυν, the -group 8-bit το channel is used for Fandu information and the second 8-bit channel is used for chroma. Additionally, if one of the input or output processor systems requires an 8-bit YUV data format, this bus system can provide redundancy and chrominance on a group of 8-bit channels. In the preferred embodiment, a 16-bit YUV in 4: 2: 2 format is used to transfer data to and from the 3D data formatter 102. For other bus systems, C represents the pixel clock, Η represents the horizontal synchronization signal, V represents the vertical synchronization symbol, F represents the video field ID, and SF represents the stereo field m. Fig. 9 shows a set of embodiments of the 3D data formatter 902 (which can be used in some embodiments, such as 3 £ shown in Fig. 丨 the data formatter 102). Some functions of the 3D data formatter 902 are described in the commonly-owned U.S. Patent No. 10/045901 and International Application Patent No. pCT / us〇2 / 〇1314 with the issue number W0 / 〇2 / 〇761〇7 In the case, its title is "Method and device for using line-interleaved data with digital light processing for stereoscopic display, and it is referenced here. The 3D data formatter 902 performs five main functions, including input channel selection, Stereo multiplexing, stereo image scale change, scan rate conversion, and 3D stereo format conversion. The 3D data formatter 902 contains five main components, including a set of microcontrollers 904, a set of four inputs and two Output RGB input data switcher / router system 906, a set of two-input two-output RGB output data switcher / router system 908, and two separate video processing units 91 with 5 associated memories 914, 916, 912. The dual processor configuration enables various functions. In some embodiments, this function includes independent image processing for left and right perspective image data. Dual processor set Provide the highest available image quality while keeping the left and right image data completely separated to prevent stereo degradation. In the other 10 cases, the dual-focused video processor system makes it possible to output video data in different 3D formats or video formats. Simultaneous processing. 4- to-2 RGB input data switcher / router system is essentially a matrix switcher for RGBHVC data signals, which has a 3D format to guide any input person to any or two groups based on the 3D format of the turn-in signal. Output capacity 15. For example, in the case where the input channel A contains left and right perspective image data, the input switcher 906 will guide the input channel a to two for the video processor cent and 912 to operate step by step. Output. In the case where the left and right perspective image data are carried on two sets of separate channels (for example, channel A and channel B), each input is directed to a single set of outputs. In a preferred embodiment: This switch is made using a high-speed CPLD integrated circuit. Two sets of video processors 910 and 912 are video processing circuits that have the ability to perform many useful functions. Can include: image weight, cat scan rate conversion, color correction, and focus correction. These processes = can also control the majority of the separate continuous rotation of the image data frame and the majority of the memory 20 200419467 output data frame These features make it possible for each video processor 910, 912 to operate on a specific set of image data corresponding to the left or right perspective image. Operation in combination with the input data switch / router 904, Virtually any 3D stereo data format can be provided. 5. Once the appropriate image data set is separated using the input box control, each video processor 910, 912 performs the required scale changes and image enhancement operations. The video processor 910 '912 also acts as a dual-port memory control, so the output & data rate can be independent of the input data rate. The input and output data rates are determined by the horizontal sync signal, vertical sync signal, and pixel clock signal. A preferred embodiment of the video processors 910 and 912 is an IP00C711 chip from ichip. Other video processor integrated circuit chips with similar functions and features can also be used at the same time. A preferred embodiment of the memories 914, 916 is a 16-megabit SDRAM device. Sufficient memory is provided to provide a large number of frame buffers (such as the four shown in Figure 9) for each video processor 9io, 912 corresponding to the majority frame control. This configuration provides the maximum control and flexibility required by this system. 2-to-2 RGB output data switcher / router 9008 is another RGBHVC digital matrix city ||, which can transport any input and output to any output according to the prescribed route. At the same time, it can also transport any color data related to the two sets of input channels to any color mismatch of the two sets of output channels in accordance with the prescribed route. This feature allows the use of a color sequential method of SD image coding. The switch works with two sets of video processors 91 and M2 to realize all possible data deduction methods, which can be used for transmission to the output device and any related processing. In a preferred embodiment, the output of each video 21 200419467 processor 910, 912 is a set of 24-bit rGb signals, which includes 8-bits for each color of red, green, and blue. To provide color multiplexing, the switch 906 can route any color input to any other color output in a prescribed route. Therefore, the switcher 906 is used as a group of 6-input 6-output matrix switchers for one of the 8-bit digital signals. In a preferred embodiment, the switch is fabricated using a high-speed CPLD integrated circuit. The M microcontroller 904 performs the setting and control functions of the 3D data generator 902. It uses a set of EEPROM memory to store register settings for each video processor 910, 912 and data exchangers 904, 906. The micro controller 10104 can also control the function interface with the user. FIG. 10 shows another embodiment of the 3D data formatter 1002 (which can be used in some embodiments, such as the 3d data format 3 | ι〇2 shown in FIG. 1). The data formatter 1002 performs The main functions of input channel selection, stereo multiplexing, stereo image scale change, scan rate conversion, and 3D stereo format conversion. In addition to these functions, it performs _ group output channel selection. A microcontroller (not shown) is shown, such as the control system in Figure 1. The output clock generator 1004 is also shown. The output clock generator 1004 generates a timing signal for outputting a video stream. The 3D data formatter 1002 of the present invention includes five main components, including package 20 including an output clock generator 1004 (OCGEN), a set of input signal paths = 1006, a set of output signal routers 1008, and a video processor A.丨 〇 丨 〇, 2 and video processor B 1012. The 3D data formatter system 1002 provides a set of dual-valued video processor configurations that enable independent image processing of left and right perspective image data. The dual processor configuration provides the highest image quality available 22 200419467 while keeping the left and right image data completely separated to prevent stereo degradation. In other embodiments, the dual processor system enables simultaneous processing of video data in different output 3D formats or video formats. Each video processor 1010, 1012 is a video processing circuit capable of performing image rescaling, scan rate conversion, color correction, emphasis correction, and many other useful functions. Video processors 1010, 1012 operating in parallel are used to achieve useful stereo scanning, alignment, zoom photography, and trimming features. These processors 1010, 1012 can control up to multiple sets of separated and continuous input image data frames and multiple sets of separated output data frames 10 (such as the four sets shown in Figure 10). These features make it possible for each video processor 1010, 1012 to operate on a specific set of image data corresponding to the left or right perspective image. This operation forms the basis of three-dimensional demultiplexing on the input. The operation in conjunction with the input signal router 1006 ’is actually supported by any conceivable 3D stereo data format. Once the appropriate stereo image data set is separated using the input box control, each video processor 1010, 1012 performs the required scale changes and image enhancement operations. The video processors 1010 and 1012 also function as dual-port memory controllers that make the output data rate independent of the input data rate. The input and output data rates are determined using their separate video data timing signals. The preferred embodiment of the video processor 1010, 1012 is the iP00C 7i5 chip of iChip Company as the main component. Other video processor integrated circuit chips with similar functions and features are also used. The preferred embodiment of the memory block 1014, 1016 is a 64-megabit SDRAM device. Sufficient memory is provided for the majority of the video processors 1010, 1012 (as shown in Figure 10) corresponding to the majority of the frame control (such as the four groups shown in Figure 10 23 200419467). (Group 4) Full frame buffer. This configuration provides the maximum control and flexibility required by the system. The following paragraphs describe some of the more important features achieved by using video processors 1010, 1012. The scan rate conversion can be achieved using the video processors 1010 and 1012, so the input image frame rate (vertical update rate) is changed to a different range on the output.

影像之尺度變化可以利用視訊處理器1〇1〇、1〇12被達 10成,因而視訊處理器訊塊輸入側上之信號格式在輸出側上 被轉換為較大或較小之尺寸信號格式。許多因素控制影像 如何地變化尺度,其包含是否使輸入或輸出信號交錯、3D 編碼方法、以及是否正在進行3D模式。影像尺度變化也可 使用線性和非線性方法。 15 鑑於影像尺度變化包含影像資料和信號空間之放大或 減少,一般,立體變焦攝影是在固定輸入信號空間内之輸 入影像的特定矩形視窗對在固定輸出信號空間内之輸出影 像的特定矩形視窗之放大或減少。變焦攝影功能可以利用 視訊處理器1010、1012被達成。變焦攝影允許使用者調節 和擴張影像的特定區域,但不能改變輸出影像信號之格式 。輸入側影像上之變焦攝影導致影像在輸出侧上顯示較大 些。輸出侧上之變焦攝影導致影像顯示較小些。 立體掃攝可以利用視訊處理器1〇1〇、1〇12被達成,因 而輸出2D或3D影像可以在屏幕上垂直或水平地被移動。於 24 200419467 3D权式中,立體通道—起移動因而整個立體影像被移位。 廷處理是不同於稍後討論之對齊處理程序,3〇對齊中,立 體通道以相料向的被移動而保持整體影像在巾心。掃攝 不影響任何尺度變化之因素。 5 立體對齊可以利用視訊處理器1010、1012被達成,因 而相等的和相對的掃攝轉換被應用至各視訊處理器晶片。 這導致各3D影像流之視像彼此移開或接近。這特點對於輸 出侧上之立體攝影機輸入或雙投射器系統之更正不對齊者 是非常有用的。同時對於移動影像之零視差點以減低立體 10視窗妨害和調整最大視差這也是有用的,因而被設計供用 於小屏幕之立體内容可被顯示於大屏幕上(或反之亦然)。 立體影像修剪可以利用視訊處理器1010、1〇12被達成 ,因而輸入及/或輸出影像之非所需的邊緣可以被消除。這 特點對於消除立體視窗妨害或其他影像非所需的部份是非 15 常有用的。 輸入信號路由器1006(ISR)主要責任是按規定路線傳送 影像資料和同步信號至視訊處理器1010、1012。其同時也 具有幫助控制系統136監視輸入視訊信號和控制信號解碼 硬體之其他功能。關於影像資料和同步信號,輸入信號路 20 由器1〇〇6作用如2x2矩陣開關。來源資料通道a上之資料輸 入(其包含分別地供用於電腦和視訊輸入之RGB和YUV資 料流)可以在相同時間被引導至視訊處理器A 1010或視訊 處理器B 1012或處理器1010、1012兩者。相同地,其亦適 用於來源資料通道B上之資料輸入。ISR 1〇〇6同時也允許輸 25 200419467The scale of the image can be changed to 10% by using the video processors 1010 and 1012. Therefore, the signal format on the input side of the video processor signal block is converted to a larger or smaller size signal format on the output side. . Many factors control how the image changes scale, including whether to interleave input or output signals, 3D encoding methods, and whether 3D mode is in progress. Image scale changes can also use linear and non-linear methods. 15 In view of the change in image scale including the enlargement or reduction of image data and signal space, stereo zoom photography generally refers to a specific rectangular window of an input image in a fixed input signal space to a specific rectangular window of an output image in a fixed output signal space. Zoom in or out. The zoom photography function can be achieved using the video processors 1010, 1012. Zoom photography allows users to adjust and expand specific areas of the image, but cannot change the format of the output image signal. Zoom photography on the input side image causes the image to appear larger on the output side. Zoom photography on the output side results in a smaller image display. Stereoscopic scanning can be achieved using video processors 1010 and 1012, so the output 2D or 3D image can be moved vertically or horizontally on the screen. In 24 200419467 3D weighting, the stereo channels move together and the entire stereo image is shifted. This process is different from the alignment process discussed later. In the 30 alignment, the stereo channel is moved in the same direction to keep the overall image at the center of the towel. Scanning does not affect any changes in scale. 5 Stereo alignment can be achieved using video processors 1010, 1012, so equal and relative scan conversions are applied to each video processor chip. This causes the images of the 3D image streams to move away from or approach each other. This feature is very useful for stereo camera input on the output side or to correct misalignment of the dual projector system. At the same time, it is also useful for moving the zero parallax point of the image to reduce the stereo 10-window interference and adjust the maximum parallax, so stereo content designed for small screens can be displayed on the large screen (or vice versa). Stereoscopic image trimming can be achieved using video processors 1010, 1012, so unwanted edges of the input and / or output images can be eliminated. This feature is very useful to eliminate the obstruction of the stereo window or other unwanted parts of the image. The input signal router 1006 (ISR) is mainly responsible for transmitting image data and synchronization signals to the video processors 1010 and 1012 according to a prescribed route. It also has other functions that help the control system 136 monitor input video signals and control signal decoding hardware. With regard to image data and synchronization signals, the input signal path 20 acts as a 2x2 matrix switch. Data input on source data channel a (which contains RGB and YUV data streams for computer and video input respectively) can be directed to video processor A 1010 or video processor B 1012 or processors 1010, 1012 at the same time Both. Similarly, it is also applicable to data input on source data channel B. ISR 1 06 is also allowed to lose 25 200419467

入同步信號族群(其包含垂直同步信號、水平同步信號、以 及場ID)經由用於分析之核心資訊匯流排丨4 2而獨立地切換 至控制系統136。時序信號資訊輸出控制不影響主要影像輸 出多工器。於一較佳實施例中,ISR 1006同時也提供控制 5 系統13 6分別地控制供用於r G b來源資料通道之綠色同步 (Sync-On_Green)特點之能力。ISR 1006同時也處理像場ID 來源資料之選擇。於立體3D系統中,像場ID信號被使用( 特別是以訊框序列格式)以完全地決定目前之立體像場。這 像場ID信號可以經由一組分離之立體同步輸入而外部地被 10提供至RGB連接器,或可以内部地被提供至插銷12上之 RGB連接器。缺乏這兩組信號之一時,像場ID信號可利用 ISR 1006從垂直同步信號輸入被產生。isr 1〇〇6提供選擇分 別地供用於來源資料通道之像場ID信號的任何這些來源資 料之能力。最後,ISR 1006利用提供信號至視訊處理器和 15至RGB ADC硬體以協助高頻寬RGB輸入之不同像素取樣 模式的使用而辨識奇數或偶數像素的捕獲。這特點同時也 協助行父錯式3D的立體解多工。於一較佳實施例中,isr 1006使用高速場可規劃CPLD積體電路被製作。 輸出信號路由器(OSR) 1008主要地是一組數位開關, 20其被使用以將分別立體影像流再多工化成為所需的3D格式 。其同時也包含RGB和YUV處理器以轉換來自各視訊處理 器1010、1012之RGB資料輸出為被數位YUV輸出匯流排所 使用之YUV格式。在正常情況下,各輸出在所有的時間都 是可用的’因此各輸出可同時地支援一組完全分離3d袼式 26 200419467 對於RGB輸出’ 〇sr 1008同時也能夠按規定路線傳送與 兩組輸入通道相關的任何色彩資料至兩組輸出通道之任何 其他的色彩(例如,在立體通道八神之間交換紅色資料以產 生立體影片之輸出)。這特點允許使用扣影像編碼之色彩序 歹J方法。於一較佳實施例中,這開關使用高速(場可 規劃閘陣列)積體電路被製作。這實際情況允許裳置隨新的 特點被更新。最後,OSR 1〇〇8被使用以從〇CGEN 1〇〇4引 導輸出像素時脈和記憶體時脈信號。 輸出時脈產生器1〇〇4(〇CGEN)提供供用於視訊處理器 1〇 1010、1012之輸出像素時脈和記憶體時脈信號。OCGEN 1〇〇4配合OSR麵操作以提供兩組基本的像素時脈組態, 其包含下面的組態: 組態1 :輸出信號路由器1〇〇8引導1>(:1〇至?(::1(:八及 PCK2至PCKB,因而視訊處理器1010、1〇12彼此獨立進行 15並且產生他們自有的輸出時序信號。這組態使得裝置在相 同時間輸出兩組不同的信號格式,當裝置被使用以驅動兩 組分離3D顯示器時(例如,主要的投射顯示器和操作員監視 器),其可以是有用的。這組態對於2D或雙通道式操作同 時也是有用的;以及 20 1.4.1 組悲 2 · OSR 1008 引導PCK1 至PCKA和PCKB。 這組態導致1010、1012之輸出視訊處理器相互地同步。於 這情況中,一組視訊處理器1010或1012作用如同產生供用 於處理器1010和1012之時序信號的主處理器。這組態是多 數被多工化3D格式模式之標準組態。 27 200419467 於本發明一較佳實施例中,3D資料格式器1002提供方 法和裝置以從多種來源資料提供許多的3D格式。許多不同 的方法被3D内容提供者所使用以編碼3〇影像資料成為視 訊或電腦資料格式。各主要的3D格式被支援以提供最廣泛 5之可能應用。下面將說明本發明所支援之主要的3D格式。 輸入開關1006和兩組視訊處理器1010、1012之表示組態同 時也被說明。 雙通道式輸入3D格式…雙通道式3D格式包含實際分 離通道上之左方和右方透視立體影像的傳輸。例如,當兩 10組分離視訊攝影機被組合以構成一組單一立體攝影機時, 這格式被採用。本發明能利用組態輸入信號路由器1〇〇6而 提供雙通道式3D袼式以引導各輸入通道至一組單一分離視 訊處理器1010或1012。例如,如果兩組視訊源被呈現在數 位RGB輸入匯流排A和數位化郎輸入匯流排b中,則匯流排 15 A被引導至視訊處理器A1010並且匯流排B被引導至視訊處 理器B 1012。當然,其他組合是可能的。本發明另一主要 特點是兩組分離視訊處理器1〇1〇、1〇12被使用因而雙通道 式3D格式之兩通道可各自獨立地被同步。這能力實際上是 ,視訊處理器1010、1〇12之各輸入可以獨立地被驅動。在 20視訊處理器101〇、1〇12輸出時,兩通道之同步發生。 訊框序列輸入3D格式-訊框序列3D格式依據電腦資料 輸出之垂直同步信號而將立體影像資料時間多工化。這表 示在每一垂直同步信號脈波時313像場改變。本發明將這格 式解多工之其中一種方法,是引導被選擇之輸入通道至視 28 200419467 訊處理器1010、1012。視訊處理器A 1010接著被組態以僅 處理影像資料之“偶數”訊框,而視訊處理器B 1012被組 態以僅處理“奇數,,訊框。“偶數,,和“奇數,,名詞之使 用僅是方便措施,因為電腦之RGB埠在偶數和奇數影像資 5料訊框之間並無區別。但是,在電腦支援VESA標準立體插 座之情況中,偶數和奇數訊框定義可以從埠之訊框ID信號 被導出。 %序列輸入3D格式-場序列3D格式是非常相似於訊框 序列格式’但是應用至交錯的視訊信號。於這情況中,如 10同先前之情況,被選擇之通道被引導至視訊處理器1010、 1012。因為$午多視訊格式(例如,NTSC、PAL、等等)在各 視訊資料訊框之偶數和奇數場之間區別,可能使視訊處理 器1010、1012僅處理各視訊框之偶數或奇數場。 列父錯式輸入3D格式-列交錯式3D格式是另一種rgB 15電腦格式,其依據水平同步信號信號而多工化立體影像資 料。這形成一組列接著列之多工化樣型。本發明可以將列 父錯式之3D格式解多工化的許多方法之一,是引導單一輸 入至視訊處理器1〇10、1〇12並且接著設定各視訊處理器 1010、1012之記憶體控制暫存器,以至於僅偶數或僅奇數 20列是可用於處理。另一種方法是,安排輸入信號路由器1〇〇6 以使不被處理之列成為空白之方式而引導被選擇之輸入通 道至視afL處理器1〇1〇、1〇12。例如,如果視訊處理器a 是在偶數線之被編碼的資訊上操作,則輸入信號路由器 1006將使奇數線成為空白。不論使用任何方法以將列交錯 29 200419467 式格式影像解多工,各視訊處理器1〇1〇、1〇12將應用2的基 本尺度因素於垂直方向中以復原影像為完全高度。其他尺 度因素可以被應用以將產生之影像格式化為顯示器特有的 解析度。 5 上下輸入3D袼式…上下3D格式將左方和右方立體影 像資料編碼成為各影像訊框之頂半部和底半部。例如,一 組上下方法編碼各影像訊框頂半部中的右方透視資料和底 半。卩中的左方透視資料。本發明可以將上下3D格式資料解 多工化之其中一種方法是引導被選擇之輸入至視訊處理器 10 1010、1012並且接著設定記憶體控制暫存器,以至於視訊 處理器A 1010僅於各訊框頂半部上操作並且視訊處理器B 1012於各汛框底半部上操作。其他方法同時也是可能。最 後,各視訊處理器1010、1〇12將應用2的基本尺度因素於垂 直方向中以復原影像為完全高度。其他尺度因素可以被應 15用以將產生之影像袼式化為顯示器特有的解析度。 側接側式輸入3D格式…側接側式3D格式編碼各影像 訊框左方和右方側上的左方和右方透視影像資料。如先前 的情況中,本發明將這格式中之立體資訊解多工的一種方 法是引導被選擇之通道至視訊處理器1〇1〇、1〇12。供用於 20各視訊處理器1010、1012之記憶體控制暫存器接著被組態 ,以至於視訊處理器A 1010僅在各訊框左方側上操作並且 視訊處理器B 1012在各訊框右方側上操作。相似於先前的 單一通道袼式,各視訊處理器1〇1〇、1〇12將應用2之基本尺 度因素於水平方向中以復原影像為完全寬度並且保持該適 30 畜的外觀比率。其他尺度因素可以被應用以將產生之影像 格式化為顯示器特有的解析度。 仃父錯式輸入3D格式…行交錯式31)格式編碼影像訊 框父錯行上的左方和右方透視影像資料。這格式對應至供 用於每一像素時脈脈波之3D像場的改變。如先前的情況, 本發明提供用以將這3D袼式型式予以解多工之許多選擇, 包含使輸入像素時脈上的資料行成為空白或按規定路線傳 4k擇通道至視訊處理器1〇1〇、1〇12並且接著設定記憶體 控制暫存器,以至於僅偶數或奇數行被處理。 正如同3D資料格式器1〇〇2能夠接收許多不同袼式中的 3D資料’其也可傳輸許多不同犯格式中的—種之被處理的 3Df料。為提供最廣泛之可能範圍,本發明一較佳實施例 提供一種方法和裝置以支援所有下面的31)資料格式以供用 於將3D立體資訊從3Df料袼式器傳輸至所需的輸出。 雙通道式輸出3D格式…0SR 1008將輸出從各視訊處 理器傳送至其對應的輸出或至相對的輸出。 訊框序列輸出3D格式___徽麵藉著使用輸出垂直 同步信號錢作為娜參考,在框接著鲜耻切換兩組 視訊處理器1G10、1G12間之各數位輸出匯流排來源資料而 編碼於輸出信號不同訊框上的左方和右方透視影像資料。 場序列輸出3D格式…OSR 1〇〇8藉著使用輸出垂直同 步信號信號料城參考,在雜著場準社切換兩組視 訊處理器刪、1G12間之各數位輸出匯流排來源資料而編 碼交錯輸出健㈣場上的左方和右方透視影像資料。 上下輸出3D袼式…OSR 1〇〇8藉著編碼各訊框頂半部 :的-組透視影像以及底半部中之另_透視影像而編辦 單-影像框中的左方和右方透視影像資料。這行動藉著使 用從垂直同步信號所產生的頂部底部辨識信號以切換在兩 Μ見訊處理器_、1G12間之各數位輸出匯流排來源資料 而被達成。14信號具有如同垂直同步信號之相同頻率但是 具有依據前方和後方入口處而被修改之5〇%基本責務週期 。這信號被產生並且被使用於〇SR1〇〇8内部。 側接側式輸出3D格式—-OSR 1008利用編碼各訊框左 2的-組透視影像和纟方側之另—透視影像而編碼於單 一影像框中的左方和右方透視影像資料。這行動藉著使用 自水平同步信號所產生之左方·右方側辨識信號以切換在 兩組視訊處理器1_、1G12間之各數位輸出匯流排來源資 料而被達成。這信號具有如同垂直同步信號之相同頻率, 但疋具有被調整以使得切換在可見影像之中途之一責務週 期。這栺號被產生並且被使用於〇Sr1〇〇8内部。 列交錯式輸出3D格式0SR丨008利用編碼各訊框偶 數歹i中的一組透視影像和奇數列中的另一組透視影像而編 馬單衫像框中的左方和右方透視影像資料。這行動藉著 使用自水平同步信號所產生之線辨識信號以切換在兩組視 λ處理n 、1〇12間之各數位輸出匯流排來源資料而被 達成線辨識信號是具有水平同步信號一半頻率之5〇。/〇的 貝務週期>[5號。其被產生並且被使用於丄刪内部。 订乂錯式輸出3D袼式_—0Sr 1008利用編碼各訊框偶 m的—組透視影像和奇數行中的另—組透視影像而編 使用像框中的左方和右方透視影像資料。這行動藉著 =像料脈所產生之像素_信號以切換在兩組視訊 处里為101G、1G12間之各數位輸出匯流排來源資料而被達 成j素辨識k號是具有像素時脈一半頻率之寫的責務 週期。其被產生並且被使用於OSR 1GG8内部。 、、色彩交換雙通道式輸出3D格式…這格式是相似於雙通 I弋秸式除了一組或兩組色彩在視圖之間被交換之外。 k格式疋有用於提供被下述裝置所使用之綠色交換雙通道 式格式,該裝置被說明於共同擁有之美國專利中請序號 10 09/772128案巾,該案_於細年1月29日,標題為“使 用雙投射ϋ3d立體投射系統以顯示3d影像之系統與方法” ’其配合此處參考。 此外,各3D資料傳輸格式可以被使用於輸入同步模式 15或輸出同步模式中。輸入同步模式指示從3D資料格式器 1002被輸出而同步於被輸入至裝置之外部3〇信號的資料。 輸出同步模式指示從外部3〇輸入信號獨立被同步之3D資 料格式器1002的輸出資料。輸出同步速率利用ocgen 1〇〇4 内部地被設定。 20 如同上面展示之3D格式轉換系統的製作僅是範例。熟 習本技術者將容易地了解本發明之其他製作。所有此類移 置和變化皆在本發明附加申請專利範圍所定義之範疇和精 神之内。 【班式簡單說^明】 33 200419467 第1圖展示三維立體格式轉換器實施例之方塊圖; 第2圖展示具有數位RGB輸出之前端處理器系統的方 塊圖, 第3圖展示具有數位YUV輸出之前端處理器系統的方 5 塊圖; 第4圖展示具有數位RGB輸入之後端處理器的方塊圖; 第5圖展示具有數位Y U V輸入之後端處理器系統的方 塊圖,The input synchronization signal group (which includes the vertical synchronization signal, the horizontal synchronization signal, and the field ID) is independently switched to the control system 136 via the core information bus 4 for analysis. The timing signal information output control does not affect the main image output multiplexer. In a preferred embodiment, the ISR 1006 also provides the control 5 system 13 6 with the ability to separately control the Sync-On_Green feature for the r G b source data channel. ISR 1006 also handles the selection of the source ID field data. In a stereo 3D system, the image field ID signal is used (especially in a frame sequence format) to completely determine the current stereo image field. This image field ID signal can be externally provided to the RGB connector 10 via a separate set of stereo synchronizing inputs, or it can be provided internally to the RGB connector on the pin 12. In the absence of one of these two sets of signals, the field ID signal can be generated from the vertical sync signal input using ISR 1006. isr 1006 provides the ability to select any of these source materials separately for the field ID signal of the source data channel. Finally, the ISR 1006 uses signals to the video processor and 15 to RGB ADC hardware to assist in the use of different pixel sampling modes for high-bandwidth RGB inputs to identify the capture of odd or even pixels. This feature also assists the father in staggered 3D multiplexing. In a preferred embodiment, the isr 1006 is fabricated using a high-speed field programmable CPLD integrated circuit. The output signal router (OSR) 1008 is mainly a set of digital switches, 20 which are used to re-multiplex the respective stereo image streams into the required 3D format. It also contains RGB and YUV processors to convert the RGB data output from each video processor 1010, 1012 into the YUV format used by the digital YUV output bus. Under normal circumstances, each output is available at all times 'so each output can simultaneously support a set of completely separated 3d formula 26 200419467 for RGB output' 〇sr 1008 can also transmit on the prescribed route with two sets of input Any color data related to the channel to any other color of the two sets of output channels (for example, exchanging red data between the stereo channels Iori to produce the output of a stereo movie). This feature allows the use of color-coded image coding methods. In a preferred embodiment, the switch is fabricated using a high-speed (field-programmable gate array) integrated circuit. This fact allows the clothes to be updated with new features. Finally, OSR 1008 was used to direct the output pixel clock and memory clock signals from OCGEN 1004. The output clock generator 1004 (〇CGEN) provides output pixel clock and memory clock signals for the video processor 1010, 1012. OCGEN 1004 operates in conjunction with the OSR surface to provide two sets of basic pixel clock configurations, which include the following configurations: Configuration 1: Output Signal Router 1.08 Boot 1 > (: 10 to? (: : 1 (: eight and PCK2 to PCKB, so the video processors 1010 and 1012 perform 15 independently of each other and generate their own output timing signals. This configuration allows the device to output two sets of different signal formats at the same time. It can be useful when the device is used to drive two sets of separate 3D displays (for example, the main projection display and operator monitor). This configuration is also useful for 2D or dual channel operation; and 20 1.4. 1 group of sad 2 · OSR 1008 guides PCK1 to PCKA and PCKB. This configuration causes the output video processors of 1010, 1012 to synchronize with each other. In this case, a group of video processors 1010 or 1012 function as if they were generated for use by the processor The main processor of the timing signals of 1010 and 1012. This configuration is the standard configuration of most multiplexed 3D format modes. 27 200419467 In a preferred embodiment of the present invention, the 3D data formatter 1002 provides a method and a device. Set to provide many 3D formats from a variety of sources. Many different methods are used by 3D content providers to encode 30 image data into video or computer data formats. Major 3D formats are supported to provide the widest possible 5 Application. The main 3D formats supported by the present invention will be described below. The input configuration of the input switch 1006 and the two sets of video processors 1010 and 1012 are also explained. Dual-channel input 3D format ... The dual-channel 3D format contains the actual Transmission of left and right perspective stereo images on separate channels. For example, when two 10 sets of separate video cameras are combined to form a single stereo camera, this format is adopted. The present invention can use a configuration input signal router 1 〇06 provides a dual-channel 3D mode to guide each input channel to a single set of separate video processors 1010 or 1012. For example, if two sets of video sources are presented on digital RGB input bus A and digital video input bus In row b, bus 15 A is directed to video processor A1010 and bus B is directed to video processor B 1012. Of course, other Combination is possible. Another main feature of the present invention is that two sets of separate video processors 1010 and 1012 are used so that the two channels of the dual-channel 3D format can be synchronized independently of each other. This ability is actually, Each input of the video processor 1010 and 1012 can be driven independently. When 20 video processors 1010 and 1012 output, the synchronization of the two channels occurs. Frame sequence input 3D format-Frame sequence 3D format basis The vertical synchronization signal output from the computer data multiplexes the time of the stereo image data. This means that the 313 image field changes with each vertical synchronization signal pulse. One method of the present invention to demultiplex this format is to guide the selected input channels to the video processors 1010, 1012. Video processor A 1010 is then configured to process only "even" frames of image data, while video processor B 1012 is configured to process only "odd," frames. "Even," and "odd," nouns The use is only a convenience measure, because the computer's RGB port does not differ between even and odd image frames. However, in the case that the computer supports the VESA standard stereo socket, the even and odd frame definitions can be slaved. The frame ID signal is derived. The% sequence input 3D format-the field sequence 3D format is very similar to the frame sequence format 'but applies to interlaced video signals. In this case, as 10 and the previous case, it is selected. The channel is directed to the video processors 1010, 1012. Because the multi-video format (for example, NTSC, PAL, etc.) differs between the even and odd fields of each video data frame, it may make the video processors 1010, 1012 Only the even or odd fields of each video frame are processed. Column parent error input 3D format-Column interleaved 3D format is another rgB 15 computer format, which multiplexes stereo image data based on the horizontal synchronization signal signal. This forms a group of multiplexed patterns that follow one another. One of the many methods that the present invention can use to demultiplex the 3D format of the column parent error is to guide a single input to the video processor 1010, 1. 〇12 and then set the memory control register of each video processor 1010, 1012, so that only even or only odd 20 columns can be used for processing. Another method is to arrange the input signal router 10 The processed column becomes blank to guide the selected input channel to the video afL processor 1010, 1012. For example, if video processor a operates on the encoded information on the even line, enter The signal router 1006 will make the odd lines blank. No matter what method is used to demultiplex the columns 29 200419467 format image, each video processor 1010 and 1012 will apply the basic scale factor of 2 in the vertical direction. Restoring the image to its full height. Other scaling factors can be applied to format the resulting image to a display-specific resolution. 5 Up and down input 3D mode ... The up and down 3D format converts left and right stereo images The image data is encoded into the top and bottom halves of each image frame. For example, a set of up and down methods encodes the right perspective data and the bottom half in the top half of each image frame. The left perspective data in the frame. This One of the methods to demultiplex the upper and lower 3D format data is to guide the selected input to the video processor 10 1010, 1012 and then set the memory control register, so that the video processor A 1010 only The top half of the frame is operated and the video processor B 1012 is operated on the bottom half of each flood frame. Other methods are also possible at the same time. Finally, each video processor 1010, 1012 will apply the basic scale factor of 2 in the vertical direction. Take the restored image to full height. Other scaling factors can be used to transform the resulting image into a display-specific resolution. Side-by-side input 3D format ... Side-by-side 3D format encodes each image. Left and right perspective image data on the left and right sides of the frame. As in the previous case, one method of the present invention for demultiplexing the stereo information in this format is to guide the selected channel to the video processors 1010 and 1012. The memory control registers for 20 video processors 1010, 1012 are then configured so that video processor A 1010 operates only on the left side of each frame and video processor B 1012 is on the right of each frame Operate on the side. Similar to the previous single-channel method, each video processor 1010, 1012 will apply the basic size factor of 2 in the horizontal direction to restore the image to its full width and maintain the appropriate appearance ratio. Other scaling factors can be applied to format the resulting image to a display-specific resolution.仃 Parent input 3D format ... line staggered 31) format coded image information Left and right perspective image data on parent line staggered lines. This format corresponds to a change in the 3D image field of the pulse wave for each pixel. As in the previous case, the present invention provides many options for demultiplexing this 3D model, including blanking the data lines on the input pixel clock or passing 4k selected channels to the video processor 1 according to a prescribed route. 10, 1012 and then set the memory control register so that only even or odd rows are processed. Just as the same 3D data formatter 1002 can receive 3D data in many different formats, it can also transmit 3Df data in many different formats—the kind being processed. To provide the widest possible range, a preferred embodiment of the present invention provides a method and device to support all of the following 31) data formats for transmitting 3D stereo information from a 3Df mixer to the desired output. Dual-channel output 3D format ... 0SR 1008 sends output from each video processor to its corresponding output or to the corresponding output. Frame sequence output 3D format ___ The emblem is encoded in the output by using the output vertical synchronization signal money as a reference, and then switching the digital output bus source data between the two sets of video processors 1G10, 1G12. Left and right perspective image data on different frames of the signal. Field sequence output 3D format ... OSR 1008 uses the output vertical synchronization signal signal material city reference to switch between two sets of video processor deletion and digital output bus source data between 1G12 in the hybrid field quasi agency to encode and interleave Output left and right perspective image data on the health field. Output 3D mode up and down ... OSR 1008 compiles a single-frame perspective image by encoding the top half of each frame:-a group of perspective images and another _ perspective image in the bottom half-the left and right sides of the image frame Perspective image data. This is achieved by using the top-bottom identification signal generated from the vertical synchronization signal to switch the digital output bus source data between the two MIMO processors, 1G12. The 14 signal has the same frequency as the vertical synchronization signal but has a 50% basic duty cycle that is modified based on the front and rear entrances. This signal is generated and used inside OSS1008. Side-by-side output 3D format-OSR 1008 encodes the left and right perspective image data in a single image frame by encoding-2 groups of perspective images on the left side of each frame and other-perspective images on the other side. This action is achieved by using the left and right side identification signals generated from the horizontal synchronization signal to switch the digital output bus source data between the two sets of video processors 1_, 1G12. This signal has the same frequency as the vertical sync signal, but has a duty cycle that is adjusted so that the switch is halfway through the visible image. This nickname was generated and used inside OSS1008. The column interleaved output 3D format 0SR 丨 008 encodes the left and right perspective image data of the Ma Shan shirt image frame by encoding a set of perspective images in each frame even number and another set of perspective images in the odd number column. This action is achieved by using the line identification signal generated from the horizontal synchronization signal to switch the digital output bus source data between the two sets of λ processing n and 1012. The line identification signal has half the frequency of the horizontal synchronization signal. Of 50. / 〇 of the shellfish cycle> [5. It was created and used internally in the erasure. Customize the wrong output 3D format _—0Sr 1008. Use the group of perspective images of each frame pair m and the other group of perspective images in the odd rows to compile. Use the left and right perspective image data of the image frame. This action is achieved by the pixel_signal generated by the image pulse to switch the digital output bus source data between 101G and 1G12 in two sets of video locations. The prime identification k number is half the frequency of the pixel clock. The duty cycle written. It is produced and used inside OSR 1GG8. 、 Color exchange dual-channel output 3D format ... This format is similar to the two-pass I-type except that one or two sets of colors are exchanged between views. The k format is used to provide a green-swap dual-channel format used by the following devices, which are described in a commonly owned U.S. patent, serial number 10 09/772128, the case _ on January 29, 2009 , Titled "System and Method for Displaying 3D Images Using Dual Projection 3D Stereoscopic Projection System" 'Its reference is here. In addition, each 3D data transmission format can be used in the input synchronization mode 15 or the output synchronization mode. The input synchronization mode indicates data that is output from the 3D data formatter 1002 and is synchronized with the external 30 signal input to the device. The output synchronization mode indicates the output data of the 3D data formatter 1002 which is independently synchronized from an external 30 input signal. The output synchronization rate is set internally using ocgen 004. 20 The production of the 3D format conversion system as shown above is just an example. Those skilled in the art will readily understand other fabrications of the present invention. All such displacements and variations are within the scope and spirit of the invention as defined by the scope of the appended patent application. [Class brief explanation ^ Ming] 33 200419467 Figure 1 shows a block diagram of an embodiment of a three-dimensional stereo format converter; Figure 2 shows a block diagram of a front-end processor system with digital RGB output, and Figure 3 shows a digital YUV output Figure 5 of the front-end processor system; Figure 4 shows the block diagram of the rear-end processor with digital RGB input; Figure 5 shows the block diagram of the rear-end processor system with digital YUV input,

第6圖展示48位元數位RGB_CHVF輸入資料匯流排之 10 方塊圖; 第7圖展示60位元數位RGB-CHVF輸出視訊資料匯流 排之方塊圖; 第8圖展示16位元數位YHVF視訊資料匯流排之方塊圖; 第9圖展示3D資料格式轉換器一實施例之方塊圖;以及 15 第10圖展示3D資料格式器另一實施例之方塊圖。Figure 6 shows the 10 block diagram of the 48-bit digital RGB_CHVF input data bus; Figure 7 shows the block diagram of the 60-bit digital RGB-CHVF output video data bus; Figure 8 shows the 16-bit digital YHVF video data bus Figure 9 shows a block diagram of an embodiment of a 3D data format converter; and Figure 9 shows a block diagram of another embodiment of a 3D data format converter.

【圖式之主要元件代表符號表】 102···3ϋ資料格式器 118…後端處理器系統 104···前端處理器系統 120…擴充埠 106···前端處理器系統 122…擴充埠 108···前端處理器系統 124…擴充埠 110···前端處理器系統 126…擴充埠 112···後端處理器系統 128…擴充槔 114···後端處理器系統 130…擴充埠 116···後端處理器系統 132…擴充埠 34 200419467 134…擴充埠 136···控制系統 138···週邊控制匯流排 140···同步資訊匯流排 142…核心控制匯流排 144···電腦控制界面 146···網路控制界面 148···使用者面板界面 150···電腦系統 152…網路 154···使用者控制面板 202···前端類比RGB處理器 204…分離類比色彩頻道輸入 206···類比HDTV處理器 208···類比HDTV輸入 210···數位RGB處理器 212···數位RGB資料輸入 214···數位HDTV處理器 216···數位HDTV輸入 218…DVI處理器 220···數位視訊界面標準輸入 222…前端處理器 224…串列的數位界面標準輸入 226…數位RGB輸入匯流排 228…數位RGB輸入匯流排 302…前端視訊解碼器方塊 304…視訊信號輸入 306.··數位YUV輸入匯流排 402…後端類比RGB處理器 404···類比RGB輸出 406…後端類比HDTV處理器 408···類比HDTV輸出 410···後端數位RGB處理器 412···數位RGB輸出 414···後端數位HDTV處理器 416···數位HDTV輸出 418···後端DVI處理器 420—DVI 輸出 犯2…後端SDI處理器 424...SDI 輸出 430···數位RGB輸出匯流排 502…數位YUV輸入 504…後端視訊編碼器方塊 602···3ϋ資料格式器 702…60位元數位RGB輸出視 訊匯流排 802…16位元數位YUV匯流排 902."3D資料格式器[Symbol table of main components of the diagram] 102 ... 3 data formatter 118 ... back-end processor system 104 ... front-end processor system 120 ... expansion port 106 ... front-end processor system 122 ... expansion port 108 ··· Front-end processor system 124 ... Expansion port 110 ··· Front-end processor system 126 ... Expansion port 112 ··· Back-end processor system 128 ... Expansion 槔 114 ···· Back-end processor system 130 ... Expansion port 116 ··· Back-end processor system 132 ... Expansion port 34 200419467 134 ... Expansion port 136 ... Control system 138 ... Peripheral control bus 140 ... Synchronous information bus 142 ... Core control bus 144 ... Computer control interface 146 ... Network control interface 148 ... User panel interface 150 ... Computer system 152 ... Network 154 ... User control panel 202 ... Front-end analog RGB processor 204 ... Separate analog Color channel input 206 ... Analog HDTV processor 208 ... Analog HDTV input 210 ... Digital RGB processor 212 ... Digital RGB data input 214 ... Digital HDTV processor 216 ... Digital HDTV input 218 ... number of DVI processors 220 ... Video interface standard input 222 ... Front end processor 224 ... Serial digital interface standard input 226 ... Digital RGB input bus 228 ... Digital RGB input bus 302 ... Front end video decoder block 304 ... Video signal input 306 ... YUV input bus 402 ... back-end analog RGB processor 404 ... analog RGB output 406 ... back-end analog HDTV processor 408 ... analog HDTV output 410 ... back digital RGB processor 412 ... digital RGB Output 414 ··· Back-end digital HDTV processor 416 ··· Digital HDTV output 418 ······························································································································································ RGB output bus 502 ... digital YUV input 504 ... back-end video encoder block 602 ... 3 data formatter 702 ... 60-bit digital RGB output video bus 802 ... 16-bit digital YUV bus 902. " 3D Data formatter

35 200419467 904···微控制器 906· · .RGB輸入資料切換器/路 由器系統 908—RGB輸出資料切換器/路 由器系統 910···分離視訊處理單元 912···分離視訊處理單元 914…記憶體 916…記憶體 1002...3D資料格式器 1004…輸出時脈產生器 1006…輸入信號路由器 1008…輸出信號路由器 1010…視訊處理器A 1012…視訊處理器B 1014…記憶體訊塊 1016…記憶體訊塊 3635 200419467 904 ·· Microcontroller 906 ··. RGB input data switcher / router system 908—RGB output data switcher / router system 910 ··· Separate video processing unit 912 ··· Separate video processing unit 914 ... memory Body 916 ... Memory 1002 ... 3D data formatter 1004 ... Output clock generator 1006 ... Input signal router 1008 ... Output signal router 1010 ... Video processor A 1012 ... Video processor B 1014 ... Memory block 1016 ... Memory Block 36

Claims (1)

200419467 拾、申請專利範圍: 1. 一種立體格式轉換系統,其包含: 多數個前端處理系統; 一組3D資料格式器; 5 多數個後端處理器;以及 一組控制系統。 2. —種進行立體格式轉換之方法,其包含:200419467 Patent application scope: 1. A stereo format conversion system, which includes: a plurality of front-end processing systems; a set of 3D data formatters; 5 a plurality of back-end processors; and a set of control systems. 2. —A method for performing stereo format conversion, which includes: 從一組或多組多數個3D格式輸入一組3D資料流; 處理該3D資料; 10 進行3D資料格式轉換以產生被轉換格式之資料; 處理用於輸出之該被轉換格式之資料以產生一組被 轉換的3 D資料流,並且 輸出被轉換之3D資料流。 3. —種立體格式轉換系統,其包含: 15 一組前端處理系統和一組前端擴充埠;Input a set of 3D data streams from one or more sets of multiple 3D formats; process the 3D data; 10 perform 3D data format conversion to generate data in the converted format; process data in the converted format for output to generate a Groups of converted 3D data streams, and outputs converted 3D data streams. 3. A stereo format conversion system, including: a set of front-end processing systems and a set of front-end expansion ports; 一組3D資料格式器; 一組後端處理器和一組後端擴充埠;以及 一組控制系統。 4. 一種進行立體格式轉換之方法,其包含: 20 從多數個3D格式輸入一組3D資料流; 在一組前端處理器或一組被添加至一組前端擴充埠 之處理器處理該3D資料流; 進行3D資料格式轉換以產生被轉換格式之資料; 在一組後端處理器或被添加至一組後端擴充埠的一 37 200419467 組處理器處理該被轉換格式之資料以產生一組用於輸出 之被轉換的3D資料流;並且 輸出被轉換之3D資料流,其中該立體格式轉換方法進 行轉換多數個3D格式為該等多數個3D格式之任何一種格 5 式。 5. —種立體格式轉換系統,其包含: 一組前端處理系統;A set of 3D data formatters; a set of back-end processors and a set of back-end expansion ports; and a set of control systems. 4. A method for performing stereo format conversion, comprising: 20 inputting a group of 3D data streams from a plurality of 3D formats; processing the 3D data in a group of front-end processors or a group of processors added to a group of front-end expansion ports Stream; perform 3D data format conversion to generate data in the converted format; 37 200419467 set of processors on a set of back-end processors or a set of back-end expansion ports to process the converted format of data to generate a set of The converted 3D data stream is used for output; and the converted 3D data stream is output, wherein the stereo format conversion method converts a plurality of 3D formats into any one of the plurality of 3D formats. 5. A stereo format conversion system, which includes: a set of front-end processing systems; 一組3D資料格式器; 一組後端處理器;以及 10 一組控制系統, 其中該3D資料格式器轉換立體視訊並且進行一組 功能,其選自族群包含立體影像掃攝、對齊、修剪、變 焦攝影、重點更正、長寬比率轉換、線性尺度變化、非 線性尺度變化、掃瞄速率轉換,以及包含至少一組上述 15 功能之任何組合。A set of 3D data formatters; a set of back-end processors; and 10 sets of control systems, wherein the 3D data formatter converts stereo video and performs a set of functions, which is selected from the group including stereo image scanning, alignment, trimming, Zoom photography, focus correction, aspect ratio conversion, linear scale change, non-linear scale change, scan rate conversion, and any combination containing at least one of the above 15 functions. 6. —種立體格式轉換系統,其包含: 多數個前端處理系統,其用以處理來自一組或多組 之多數3D輸入格式; 一組3D資料格式器; 20 多數個後端處理器,其用以處理至一組或多組之多 數3D輸出格式;以及 一組控制系統, 其中該一組或多組之3D輸入格式和該一組或多組 之3D輸出格式可獨立地被選擇自下列之格式族群,包含 38 200419467 標準2D ;雙通道式;場序列式;框序列式(翻頁);上下 式;列交錯式;侧接側式;行交錯式;光譜多工化;以 及包含至少一組前述格式的組合。6. A stereo format conversion system including: a plurality of front-end processing systems for processing most 3D input formats from one or more groups; a set of 3D data formatters; 20 majority of back-end processors, which For processing most 3D output formats to one or more groups; and a set of control systems, wherein the 3D input format of the one or more groups and the 3D output format of the one or more groups can be independently selected from the following Format family, including 38 200419467 standard 2D; dual channel type; field sequence type; frame sequence type (page turning); up and down type; column interleaving type; side by side type; row interleaving type; spectral multiplexing; and including at least A combination of the foregoing formats. 3939
TW093101201A 2003-01-16 2004-01-16 A general purpose stereoscopic 3D format conversion system and method TW200419467A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US44051203P 2003-01-16 2003-01-16

Publications (1)

Publication Number Publication Date
TW200419467A true TW200419467A (en) 2004-10-01

Family

ID=32771824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093101201A TW200419467A (en) 2003-01-16 2004-01-16 A general purpose stereoscopic 3D format conversion system and method

Country Status (2)

Country Link
TW (1) TW200419467A (en)
WO (1) WO2004066203A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356638A (en) * 2009-03-16 2012-02-15 Lg电子株式会社 A method of displaying three-dimensional image data and an apparatus of processing three-dimensional image data
CN102542960A (en) * 2010-11-17 2012-07-04 三星电子株式会社 Display apparatus and method of driving same
CN103841391A (en) * 2012-11-20 2014-06-04 瑞昱半导体股份有限公司 Stereo image format converter and method and stereo image format conversion method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414882A (en) 2004-06-02 2005-12-07 Sharp Kk Interlacing/deinterlacing by mapping pixels according to a pattern
KR100716982B1 (en) 2004-07-15 2007-05-10 삼성전자주식회사 Multi-dimensional video format transforming apparatus and method
KR100657275B1 (en) 2004-08-26 2006-12-14 삼성전자주식회사 Method for generating a stereoscopic image and method for scaling therefor
KR100855040B1 (en) * 2007-04-04 2008-08-29 주식회사 파버나인코리아 3d lcd monitor control system
US9491432B2 (en) 2010-01-27 2016-11-08 Mediatek Inc. Video processing apparatus for generating video output satisfying display capability of display device according to video input and related method thereof
KR20120029690A (en) 2010-09-17 2012-03-27 삼성전자주식회사 Display apparatus and method for processing image thereof
US8600151B2 (en) * 2011-01-03 2013-12-03 Apple Inc. Producing stereoscopic image
US9407907B2 (en) 2011-05-13 2016-08-02 Écrans Polaires Inc./Polar Screens Inc. Method and display for concurrently displaying a first image and a second image
WO2021243037A1 (en) 2020-05-27 2021-12-02 Looking Glass Factory, Inc. System and method for holographic displays
CN116486120B (en) * 2023-03-17 2024-01-19 广东工业大学 Phase-shift interference pattern space pixel matching method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526881B1 (en) * 1991-08-06 2002-02-06 Canon Kabushiki Kaisha Three-dimensional model processing method, and apparatus therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356638A (en) * 2009-03-16 2012-02-15 Lg电子株式会社 A method of displaying three-dimensional image data and an apparatus of processing three-dimensional image data
CN102542960A (en) * 2010-11-17 2012-07-04 三星电子株式会社 Display apparatus and method of driving same
CN102542960B (en) * 2010-11-17 2015-12-16 三星显示有限公司 Display device and driving method thereof
US9412313B2 (en) 2010-11-17 2016-08-09 Samsung Display Co., Ltd. Display apparatus and method of driving the same
CN103841391A (en) * 2012-11-20 2014-06-04 瑞昱半导体股份有限公司 Stereo image format converter and method and stereo image format conversion method

Also Published As

Publication number Publication date
WO2004066203A2 (en) 2004-08-05
WO2004066203A3 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US20040218269A1 (en) General purpose stereoscopic 3D format conversion system and method
US11012680B2 (en) Process and system for encoding and playback of stereoscopic video sequences
KR100306695B1 (en) Stereoscopic image display apparatus using micro polarizer
US20130021438A1 (en) 3d video processing unit
US20130169755A1 (en) Signal processing device for processing plurality of 3d content, display device for displaying the content, and methods thereof
EP2230857B1 (en) Image signal processing device, three-dimensional image display device, three-dimensional image transmission/display system, and image signal processing method
JP2006067596A (en) Method of generating stereoscopic image signal and method of scaling the same
TW200419467A (en) A general purpose stereoscopic 3D format conversion system and method
EP2993900A1 (en) Ultra-high definition three-dimensional conversion device and ultra-high definition three-dimensional display system
JP4657258B2 (en) Stereoscopic image display apparatus and method
JPH1118111A (en) Stereoscopic video image transmission method and system
JP4173684B2 (en) Stereoscopic image creation device
KR20120019751A (en) Real-time three dimension formating module for ultra high-definition image and system using thereof
CN102036085B (en) Transmitting device, receiving device, and communication system
WO2013152531A1 (en) High definition stereoscopic video drive and stereoscopic video conversion method thereof
JP2011135252A (en) Stereoscopic video photographing camera adjustment assisting device
KR101186573B1 (en) Multivision system and 3-dimensional image reproducing method including multi 3-dimentional image reproducing appparatus
JP5257243B2 (en) 3D image display apparatus and 3D image display method
KR100189488B1 (en) Method for converting digital stereoscopic image
CN102638701A (en) Display, image processing device and image processing method
CN106888373A (en) The processing unit and processing system of a kind of 3-D view
JPH10186550A (en) Stereoscopic image pickup device
JP2019197942A (en) Projection system and control method of projection system
JP5759728B2 (en) Information processing apparatus, information processing apparatus control method, and program
TWI404405B (en) Image processing apparatus having on-screen display function and method thereof