TW200418987A - Coating of molecularly imprinted membranes on chips to recognize biomolecules - Google Patents

Coating of molecularly imprinted membranes on chips to recognize biomolecules Download PDF

Info

Publication number
TW200418987A
TW200418987A TW92107427A TW92107427A TW200418987A TW 200418987 A TW200418987 A TW 200418987A TW 92107427 A TW92107427 A TW 92107427A TW 92107427 A TW92107427 A TW 92107427A TW 200418987 A TW200418987 A TW 200418987A
Authority
TW
Taiwan
Prior art keywords
cys
item
patent application
acr
scope
Prior art date
Application number
TW92107427A
Other languages
Chinese (zh)
Inventor
Dar-Fu Tai
Chung-Yin Lin
Tzong-Zeng Wu
Original Assignee
Tai Da Na
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tai Da Na filed Critical Tai Da Na
Priority to TW92107427A priority Critical patent/TW200418987A/en
Publication of TW200418987A publication Critical patent/TW200418987A/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Based on the direct formation of molecularly imprinted membrane on gold electrode, we have developed an immunosensor for the detection of biomolecules. A new cross-linking monomer, (N-Acr-L-Cys-NHBn)2 was employed to attach the surface of the chip and to copolymerize with other monomers. Using quartz crystal microbalance detection, peptides and virus proteins can be monitored by their interaction with plastic antibodies specific for the target peptides. The selectivity of molecularly imprinted polymer and the sensitivity of such artificial biosensors have collaborated to differentiate traces of peptides and proteins to the ng/ml scale. Molecularly imprinted membranes also demonstrate the high ability to reuse.

Description

200418987200418987

發明的背景:Background of the invention:

欲偵測溶液中的物質可用結合儀器與技術方法來求 $于’如酵素聯結免疫分析(Enzyme linked immUn0S0rbent assay ;ElisA)或其他能與抗體結合的方 法。然而’有時候抗體並不適用於偵測物質。而且,無法 使用南毒性物質或低分子量的化學品來誘發抗體。近年來 由於登革熱流行病毒、後天免疫不全病毒(A丨DS)、腸病毒 等有明顯擴張的趨勢,目前的防治雖可抽取體液來分離病 毒、聚合酶連鎖反應(PCR)或檢測抗體等,但都需要發病 數天後’選擇適當的抗原與抗體,才可檢測出來,在時效 及需求上’無法達到防治防疫的效果。因此急需擁有一種 新的生物感測器方法,在數分鐘内即可得知檢測結果,又 具有特異性的交互作用及親和力,使得感測器能發揮高靈 敏性’取代傳統費時及昂貴的檢測,而能有效阻止疫情的 擴張,趁早做治療。To detect the substance in the solution, you can use the combination of instruments and technical methods to find the solution. For example, enzyme linked immUn0S0rbent assay (ElisA) or other methods that can be combined with antibodies. However, 'sometimes antibodies are not suitable for detecting substances. Furthermore, antibodies cannot be induced using south toxic substances or low molecular weight chemicals. In recent years, due to the dengue fever epidemic virus, acquired immunodeficiency virus (A 丨 DS), enterovirus, etc., there has been a significant expansion trend. Although the current prevention and treatment can extract body fluids to isolate the virus, polymerase chain reaction (PCR), or detect antibodies, etc., Both need to select the appropriate antigens and antibodies a few days after the onset to detect it, and in terms of timeliness and demand, the effect of preventing and preventing epidemics cannot be achieved. Therefore, there is an urgent need to have a new biosensor method, which can obtain the detection results within minutes, and has specific interaction and affinity, so that the sensor can exert high sensitivity 'to replace the traditional time-consuming and expensive detection , And can effectively prevent the spread of the epidemic, early treatment.

生物感測器使用固定化的生物分子(i m JJJ 〇 b i 1 i z e d biomolecules )結合換能器(transducer ),來偵測某游 離之待測分子,由於待測分子與固定化的生物分子可產生 南特異性之親和反應,當此二分子發生交互作用時,換能 器能使電流產生回應(黃錦成,食品工業月刊,2 9 (8) ,6〜8, 1997)。石英晶體微量天平儀(Quartz Crystal Microbalance,簡稱QCM )即為感應的一種裝 置,當生物分子和某特定待測分子反應後,會改變使QCM 上之壓電晶體的震盪頻率,因而可測出該待測分子之質量The biosensor uses im JJJ 〇bi 1 ized biomolecules in combination with a transducer to detect a certain free test molecule. Because the test molecule and the immobilized biomolecule can generate The specific affinity reaction, when these two molecules interact, the transducer can respond to the current (Huang Jincheng, Food Industry Monthly, 2 9 (8), 6 ~ 8, 1997). Quartz Crystal Microbalance (QCM) is a sensing device. After a biomolecule reacts with a specific molecule to be measured, it will change the oscillation frequency of the piezoelectric crystal on the QCM, so it can be measured. The mass of the test molecule

200418987 五、發明說明(2) 濃度,因此已被應用在不同物質的分析應用上,因為待侧 物質可被吸附在壓電石英晶體的表面上,藉由震盪器頻率 的改變可準確將物質質量變化測量出來。Konash與Nomura 首先將QCM應用於液態中之微量重量分析,因而開啟QCM作 為液態中微量感測的研究(Konash P. L. el; al,Anal. Chem· 66 :34 1 〜344,1 994 ) °Nomura 研究群將 QCM 應用於 解決液相中之電化學問題,使得固液界面分析技術增添一 有力的工具,進而對化學及生物感測器的研究發展產生重 大影響(Nomura T·,Anal· Chim· Acta· 131 : 97〜102,200418987 V. Description of the invention (2) Concentration has been applied to the analysis of different substances, because the substance on the side can be adsorbed on the surface of the piezoelectric quartz crystal, and the mass of the substance can be accurately changed by the change of the oscillator frequency Changes are measured. Konash and Nomura first applied QCM to microgravimetric analysis in liquids, so they started QCM as a microsensor in liquids (Konash PL el; al, Anal. Chem. 66:34 1 to 344, 1 994) ° Nomura research The group applied QCM to solve electrochemical problems in the liquid phase, which made solid-liquid interface analysis technology a powerful tool, and then had a significant impact on the research and development of chemical and biological sensors (Nomura T ·, Anal · Chim · Acta · 131: 97 ~ 102,

I 9 8 1 )。自此以後,以Q C Μ為主體’作為生化分析免疫探 針之研究,可藉由競爭型的免疫反應及膠乳凝集來增強其 頻率變化(Nakamra C. et al,(2 002 ) Anal· Chim·I 9 8 1). Since then, studies using Q C Μ as the main body as the biochemical analysis immunoprobe can enhance its frequency change through competitive immune response and latex agglutination (Nakamra C. et al, (2 002) Anal · Chim ·

Acta· 469, 183〜188 )。由於QCM具有高敏感性、簡易操 作、訊號易解讀及即時測量等特性,它可應用於偵測分子 反應的動力學、胜炚(pept i de)鍵結到固定相的寡核甘、 蛋白質鍵結到固定相的接受器(r e c e p 10 r s )、醫學檢測 (Su C. C. et al, (2003) Anal. Chim. Acta. 479, II 7 - 1 2 3 )、微生物病原的偵測及其他分子辨識元件上。Acta 469, 183 ~ 188). Due to its high sensitivity, simple operation, easy signal interpretation, and real-time measurement, QCM can be used to detect the kinetics of molecular reactions, oligonucleosides and protein bonds that are bound to the stationary phase by pept i de Receptor to stationary phase (recep 10 rs), medical detection (Su CC et al, (2003) Anal. Chim. Acta. 479, II 7-1 2 3), detection of microbial pathogens and other molecular identification elements on.

許多化學家所感到有興趣的是開發具有選擇性的非天 然之材質’一般構想則基於分子置換或交互作用衍生的辨 識技術’其令之一種分析方法便是分子印刷技術,分子印 刷是一種對於製造高分子印刷膜的方法,可表現出選擇性 且夕功此之分子辨識能力,這些印刷基材(ma t r i X )的特 質傾向為製作簡單且便宜,在自然界不易發生變化,並可What many chemists are interested in is the development of selective non-natural materials. 'The general idea is based on molecular displacement or interaction-derived identification technology.' One of the methods of analysis is molecular printing. The method of manufacturing a polymer printed film can show selectivity and the ability to distinguish molecularly. The characteristics of these printed substrates (ma tri X) tend to be simple and cheap to make, and are not easy to change in nature.

200418987 五、發明說明(3) 藉由合理設計或從生物來源獲得辨識待測分子 子印刷原理是藉由在模板分子存在下,聚合成有機(高^ 鏈性)或無機之聚合物,將模板分子移走後]呆留下來的 聚合體仍保有與模板分子互補的鍵結位址(Mndi叫 sites),成為一種可辯識小分子及大分子之存在的利 ,&些可辯4之分子包括胺基酸、核酸、醣類、脂類、 胜炚、蛋白質、抗體及抗原等均可做為此模板分子。 設計分子印刷高分子印刷膜有兩個主要考量,貧 找到適當的官能基基團能夠與模板分子形成強交互作用= 化合物。這強交互作用力將是未來互補的模板位址是 辨識能力之所在。第二是建構印刷高分子印刷膜的互補形 狀是否具有結合力’與單體所聚合成的聚合體是否能夠形 成疏水性交互作用力,及氫鍵的多點弱交互作用力,以 到辨識的能力。所以,選擇不同的單體(多為具共軛雙 的單體)及聚合環境所產生的高分子印刷膜會具有不同沾 合特性,這可解釋成分子印刷技術是藉由聚合體之官能^ 機制與模板分子間交互作用,所衍生出的一種化學分析$ 法。 模板分子可從不溶性的網狀材料中被萃取出來,而留 下了與分子模板互補的尺寸、形狀及官能基團的辨識位 址。製備分子印刷高分子來當分離系統中的固定相,可將 消旋的胺基酸或胜队進行選擇性分離。有些系統可將部分 的胺基酸及胜队應用於有機溶劑以保護胜炚。但對於蛋白 質結構的複雜性、序列的多變性及對摺的危險,使得具有 第7頁 200418987 五、發明說明(4) 高度特異性 基團分佈及 板分子於一 以形成分子 蛋白質為模 分子官能性 分子印 上,它實質 多的優點。 能力的方法 互結合時, 量的輸出訊 困難。實施 當高分子印 在轉移到使 進行生物分 益。目前的 體及蛋白結 技術的發展 種低濃度、 的出現,藉 力,適時的 法檢測,利 計量,即為 的蛋白質辨識能力,只能透過三度空間的官能 導入弱的互補交互作用力,在官能性單體與模 有秩序排列、低能組態下的自由基聚合反應, 印刷聚合體。因此待聚合完成後,利用胜炚或 板所聚合成的分子印刷膜,維持了與那些模板 基團互補的形狀及辨識的位址。 刷技術的成功已應用生物及化學的免疫分析 上所提供的功能比過去存在的天氣抗體具有更 人造鍵結位址的製造或許可提供一高辯識樣品 。此時,若將鍵結待測物質與分子辨識元素相 能被解讀到換能器上,成為一有用且能做為定 號以供解讀的話,將可省略許多純化或分離的 例中,先嘗試以催產素(Oxytocin)等胜狀來 刷膜的模板,以進行辨認胜炚的功能。然後, 用NS 1蛋白來當這高分子印刷膜的模板,同樣 子辨認的功能,相信這對免疫分析上多有助 分析技術,可將分子印刷模板應用於登隔熱抗 構上。由於傳統的化學分析技術無法跟上生物 ,尚有很多沒有辦法適時地量測生命現象中各 瞬時發生的反應。而分子印刷膜-生物感測器 其高特異性、高靈敏度、即時反應的敏度與能 對此一問題提出解決的辦法。以化學分析的方 用分子間相互的結合作用,來作物質的鑑定及 此技術的背景。200418987 V. Description of the invention (3) Identification of the molecule to be tested is based on the rational design or obtained from biological sources. The printing principle is to polymerize an organic (high-chain) or inorganic polymer in the presence of a template molecule to convert the template After the molecule is removed] the remaining polymer still retains complementary binding sites (Mndi called sites) to the template molecule, which has become a kind of benefit that can identify the existence of small molecules and large molecules. Molecules including amino acids, nucleic acids, sugars, lipids, tritium, proteins, antibodies, and antigens can be used as template molecules. There are two main considerations when designing a molecular printing polymer printed film. Finding the appropriate functional group can form a strong interaction with the template molecule = compound. This strong interaction will be where the complementary template address is the ability to identify in the future. The second is to construct whether the complementary shape of the printed polymer printed film has a binding force, and whether the polymer formed by the polymerization of the monomer can form a hydrophobic interaction force, and a multi-point weak interaction force of hydrogen bonding, so as to identify the ability. Therefore, the choice of different monomers (mostly conjugated double monomers) and the polymer printing film produced by the polymerization environment will have different adhesion characteristics, which can explain that the molecular printing technology is based on the function of the polymer ^ A chemical analysis method derived from the interaction between mechanism and template molecules. The template molecule can be extracted from the insoluble network material, leaving the size, shape and functional group identification sites complementary to the molecular template. The preparation of molecularly printed polymers as stationary phases in a separation system allows selective separation of racemic amino acids or acetophenones. Some systems can use some of the amino acids and winning teams to protect organic solvents. However, the complexity of the protein structure, the variability of the sequence, and the danger of folds make it have page 7 200418987 V. Description of the invention (4) Highly specific group distribution and plate molecules in one molecule to form molecular proteins Molecular imprint, it has many advantages. When the methods of ability are combined with each other, the amount of output signals is difficult. Implementation When the polymer imprint is transferred to make for biological benefits. The current development of the body and protein structure technology has the appearance of low concentration, the use of power, timely detection, and profit measurement, that is, the ability to identify proteins, which can only introduce weak complementary interaction forces through the functions of the three-dimensional space Free radical polymerization in orderly arrangement of functional monomers and molds, low energy configuration, printing polymers. Therefore, after the polymerization is completed, the molecular printed film polymerized by the saccharine or plate is used to maintain the complementary shape and the identified address to those template groups. The success of the brushing technique has been applied to biological and chemical immunoassays that provide functions that have more man-made bond sites than weather antibodies that existed in the past. The manufacture or license to provide a highly discerning sample. At this time, if the phase of the bonded test substance and the molecular identification element can be read on the transducer and become a useful and can be used as a label for interpretation, many examples of purification or separation can be omitted. Try to use the oxytocin (Oxytocin) to brush the template of the membrane to identify the function. Then, using the NS 1 protein as a template for this polymer printed membrane has the same recognition function. It is believed that this will be more helpful for immunoassay analysis techniques, and molecular printed templates can be applied to thermal insulation. Because traditional chemical analysis techniques cannot keep up with living things, there are still many ways to measure the instantaneous reactions in life phenomena in a timely manner. The molecular printed film-biosensor has high specificity, high sensitivity, sensitivity of instant response, and can propose a solution to this problem. Chemical analysis uses the interaction between molecules to identify substances and the background of this technology.

第8頁 200418987Page 8 200418987

登革病毒就結構上具有非結構蛋白Ng 1、ns2 A、 NS2B、NS3、NS4A、NS4B及NS5等7段,其功能大致為調控 病毒的生長與複製’但有些仍未十分清楚。一般來說非結 構性蛋白的基因部分產生變異的機會較小。登革熱在血清 學方面會引起抗原抗體免疫反應的部分主要有二,其一是 非結構性蛋白1 (Nonstructural pr〇tein 1 ;簡稱 NS1 )’其一疋病毒的外套蛋白(Envei〇pe protein ;簡 稱E protein ),在登革熱病人得病初期血清中最多就是 NS1與E protein。本發明將純NS1蛋白製造出來,利用分 子印刷技術(Molecularly Imprinted Polymers ;簡稱 ΜI P s )將N S1核板印在壓電晶體上,進行微重量彳貞測,以 QCM之靈敏度結合分子印刷的辨識能力,形成一能偵測生 物分子之極佳感測器。 發明說明: 本發明係以生物晶片偵測的方式,特別是在晶片的披 覆上,利用分子印刷技術來聚合成具有辨識生物分子能力 的高分子印刷膜。 本發明之目的即在提供一種能以分子印刷技術來製造 出生物晶片,並應用於壓電晶體裝置上來感測生物分子的 技術,特別是使用單體(Acr-Cys-ΝΗΒη)2於晶片上可作為一 吸附劑,亦為一聯結者(1 inker ),且易與其他單體聚合 形成高分子印刷膜,而成為一高穩定性的技術。由以下的 實施圖例所顯示的數據證實,本發明成功的藉由高分子印Dengue virus structurally has 7 segments including non-structural proteins Ng 1, ns2 A, NS2B, NS3, NS4A, NS4B and NS5. Its function is to roughly regulate the growth and replication of the virus', but some are not very clear. In general, the non-structural protein gene has a lower chance of mutation. Dengue can cause antigen-antibody immune response in serology. There are two main parts. One is Nonstructural protein 1 (NS1). One of the coat proteins of prion (Enveiope protein; E protein for short). ), NS1 and E protein are the most in the serum of patients with dengue fever in the early stage of illness. In the present invention, pure NS1 protein is manufactured, and N S1 cores are printed on a piezoelectric crystal by molecular printing technology (MI Ps), and microgravity measurement is performed. The sensitivity of QCM is combined with molecular printing. The ability to recognize forms an excellent sensor that can detect biomolecules. Description of the invention: The present invention uses the method of bio-wafer detection, especially on the coating of the wafer, to use molecular printing technology to polymerize into a polymer printed film with the ability to identify bio-molecules. The purpose of the present invention is to provide a technology capable of manufacturing a biochip by molecular printing technology and applying it to a piezoelectric crystal device to sense biomolecules, especially using a monomer (Acr-Cys-NΗΒη) 2 on a wafer It can be used as an adsorbent and also a linker (1 inker), and it is easy to polymerize with other monomers to form a polymer printed film, which has become a highly stable technology. It is confirmed by the data shown in the following examples that the present invention successfully uses polymer printing

200418987 五、發明說明(6) 刷模具有高特異性及高靈敏度來導致晶片上質量的變化, 震盪器(Oscillating circuit)亦因此產生頻率的改 變’而得以使用MIPs-QCM來偵測溶液中的胜肽及登革熱病 毒的NS1蛋白。當使用某胜收為此高分子印刷膜之模板 時’此一M IPs - QCM的晶片即可用來分辨此一胜狀,而當使 用某蛋白質當高分子印刷膜之模板時,也可分辨此一模板 蛋白質。 ' 本發明亦能偵測由登革病毒或其他病毒所引起的傳染 性疾病,且能方便、省時、迅速的應用在臨床檢測上,更200418987 V. Description of the invention (6) The brush mold has high specificity and high sensitivity to cause changes in the quality on the wafer, and the oscillator (Oscillating circuit) also changes the frequency, so that MIPs-QCM can be used to detect Peptide and NS1 protein of dengue virus. When using a template that is a polymer printed film, 'this M IPs-QCM chip can be used to distinguish this pattern, and when a protein is used as a template for a polymer printed film, this can also be distinguished. A template protein. '' The invention can also detect infectious diseases caused by dengue virus or other viruses, and can be conveniently, time-saving and quickly applied to clinical detection, and more

由於製程機械化及自動化,而得以將此類生物晶片產品商 品化。 P 技術說明: 本發明使用分子印刷技術,以自由基聚合法在晶片上 形成的向分子印刷膜’來形成辨識生物分子的能力。所使 用的壓電晶片是以石英板將兩片金電極石英晶片失在中 間,如同三明治般地將;但由於金是一惰性金屬,不易在 金表面進行氧化反應而且它可抵抗大氣中的污染。而且金 與硫有一強的特殊交互作用,能讓硫化合物的官能基團存 在下形成單層(SAMs )。 實施例一:披覆分子印刷膜於晶片上 將0.5毫克(Acr-Cys-NHBn)2 (如式一)溶於1〇毫升的 乙晴(aceton i tr i 1 e )與〇· 1毫升少量DMF混合均勻的溶液Due to the mechanization and automation of the process, such biochip products can be commercialized. P Technical Description: The present invention uses molecular printing technology to form a molecularly printed film 'on a wafer by a radical polymerization method to form the ability to identify biomolecules. The piezoelectric wafer used is a quartz plate with two gold electrode quartz wafers in the middle, like a sandwich; but because gold is an inert metal, it is not easy to carry out oxidation reactions on the gold surface and it can resist atmospheric pollution . In addition, gold and sulfur have a strong special interaction, which allows the functional groups of sulfur compounds to form monolayers (SAMs). Example 1: Covering a molecular printed film with 0.5 mg (Acr-Cys-NHBn) 2 (as shown in Formula 1) in 10 ml of aceton i tr i 1 e and a small amount of 0.1 ml DMF mixed uniform solution

第10頁 200418987 五、發明說明(7) 中。將晶片浸入溶液中過夜,使雙硫鍵分子能從溶液中吸 附到金表面上’形成一有秩序及定位的單層膜(SAj|s), 取出後以乙晴清洗數次後,置入乾燥箱中使晶片乾燥。各 配製110 //mole的丙烯醯胺、丙烯酸及N —benzyl—acryl a m i d e早體溶液以比例1 : 1 : 2混合均勻;另各將1 5毫克 催產素(Oxytocin )(如實施例二)、升壓素 (Vasopressin )(如實施例三)、NS1的部分結構胜炚 (如實施例四)或NS1蛋白(如實施例五)溶於1毫升以 比例6 : 4的乙晴與20毫莫耳ρΗ4· 0的磷酸溶液中,使混合 均勻。用微量注射針筒吸取4 # L的單體混液,輕置於晶片 上後’將晶片置入2 0 m 1的小瓶中,並蓋好瓶口。將小瓶 放入已調整好波長3 5 0 n m的光化學儀中照光6小時,使單 體溶液進行光化學聚合反應。聚合完成後,將晶月取出, 先用部份的乙晴溶劑加以清洗晶片表面,最後施予少量的 純水清洗殘存的溶液後,置入乾燥箱中,使晶片能完全乾 燥。將製備好的晶片置於注流槽中,進行注流式反應。並 以0·02 Μ的碌酸緩衝液(pH 4.0)為工作液,進行沒流式 免疫監測。實驗中使用的測試溶液為溶液濃度為! 1 ng/ml 的催產素(〇Xyt〇cin) 、1 mg/ml 〜lng/ml 的升壓 素(\^50口『633111)、111^/1111〜111它/1111的~31胜队溶液、 血管張力素II (Angiotensionll)、緩動素 (Bradykinin)及 0.1 mg/m 卜 lng/ml 的 NS1 蛋白溶液均以 同濃度的磷酸液來配製。Page 10 200418987 V. Description of Invention (7). The wafer was immersed in the solution overnight, so that the disulfide-bonded molecules could be adsorbed from the solution onto the gold surface to form an ordered and positioned single-layer film (SAj | s). The wafer is dried in a drying cabinet. Each prepared 110 // mole of acrylamide, acrylic acid, and N-benzyl-acryl amide early body solution were mixed uniformly in a ratio of 1: 1: 2; the other 15 mg of Oxytocin (as in Example 2), Vasopressin (as in Example 3), partial structure of NS1 (as in Example 4), or NS1 protein (as in Example 5) dissolved in 1 ml of acetonitrile and 20 mmol in a ratio of 6: 4 Ear phosphoric acid solution of ρΗ4.0, and mix well. Use a micro-injection syringe to suck 4 # L of the monomer mixture, place it lightly on the wafer, and then place the wafer in a 20 m 1 vial, and cap the bottle. The vial was placed in a photochemical instrument with an adjusted wavelength of 350 nm for 6 hours, and the monomer solution was subjected to photochemical polymerization. After the polymerization is completed, the crystal moon is taken out, and the surface of the wafer is cleaned with a portion of the acetic acid solvent. Finally, a small amount of pure water is used to clean the remaining solution, and then it is placed in a drying box to completely dry the wafer. The prepared wafer is placed in a jetting tank to perform a jetting reaction. No-flow immunological monitoring was performed using a 0.02 M buffered acid buffer (pH 4.0) as the working solution. The test solution used in the experiment is a solution concentration of! 1 ng / ml of oxytocin (〇Xyt〇cin), 1 mg / ml ~ 1 ng / ml of vasopressin (\ ^ 50 口 『633111), 111 ^ / 1111 ~ 111It / 1111 ~ 31 winning team solution , Angiotensionll II, Angiotensionll, Bradykinin and 0.1 mg / m 1 lng / ml NS1 protein solution were all prepared with the same concentration of phosphate solution.

第11頁 200418987Page 11 200418987

實施例二: 當以催產素(如式二)作為分子印刷的模板時, 催產素以濃度1 〇〇 pg/m 1注流入注流式分析系統中,藉由 震盪器訊號的解讀出圖一(附圖一)的頻率變化的―胃致 性,獲知催產素晶片對於有催產素有強靈敏度,在濃度 1 00 pg/ml下便可偵測出其頻率變化值約維持在6 Hz左 右。圖一為不同濃度的催產素溶液下對催產素分子的辨識 能力所偵測出的頻率值。催產素分子膜對催產素分子的交 互作用力可使催產素分子被吸引在模板分子中,而形成了 一固定頻率值。濃度愈大,分子印刷模板的辨識及結合能 力也跟著提高。其頻率變化值可由表一讀取出。 表一、催產素晶片注射不同濃度的催產素 >谷液對催產素分子的頻率變化值 催產素濃度(/ml磷酸緩衝液)頻率變化值(Hz) 100 pg 6 1 ng 11 10 ng 19 100 ng 22 1 β g 24 10 //g 26 100 g 31 1 mg 58Example 2: When oxytocin (such as formula 2) is used as a template for molecular printing, oxytocin flows into the injection flow analysis system at a concentration of 1000 pg / m 1, and the figure 1 is interpreted by the interpretation of the oscillator signal (Picture 1) The change of the frequency of the stomach is caused by oxytocin. It is known that the oxytocin chip has strong sensitivity to oxytocin. At a concentration of 100 pg / ml, it can be detected that the frequency change value is maintained at about 6 Hz. Figure 1 shows the frequency of oxytocin molecules detected by different concentrations of oxytocin solutions. The interaction force of the oxytocin molecular film on the oxytocin molecule can cause the oxytocin molecule to be attracted to the template molecule, thereby forming a fixed frequency value. The higher the concentration, the higher the recognition and binding capacity of the molecular printing template. Its frequency change value can be read from Table 1. Table 1. Oxytocin wafer injection with different concentrations of oxytocin> Frequency change value of cereal fluid to oxytocin molecules Oxytocin concentration (/ ml phosphate buffer) Frequency change value (Hz) 100 pg 6 1 ng 11 10 ng 19 100 ng 22 1 β g 24 10 // g 26 100 g 31 1 mg 58

200418987200418987

實施例三: 相同的,將血壓素(如式二 ^ 膜版來製作升堡素晶片。合二=二f來作為高分子印刷的 時,以血壓素濃度1〇〇 i '作為分子印刷的模板 藉由震盪器訊號的解讀出圖入庄流式分析系統中, 致性獲知金塵素晶片對上愿2二)㈣率變化的-1ηπ 7 ,比 了於有血壓素有強靈敏度,在濃度 1〇〇 Ρ广下便可债測出其頻率變化值約維二Embodiment 3: Similarly, a blood pressure hormone (such as the formula 2 ^ film plate is used to make a subliminin wafer. When two = two f is used for polymer printing, the blood pressure concentration is 100i ′ as a molecular printing The template uses the interpretation of the oscillator signal to draw the picture into the Zhuang flow analysis system, and it is known that the gold dust chip pair is willing. 2) The -1ηπ 7 of the rate change is stronger than that of the blood pressure factor. At a concentration of 100 ºP, the frequency change value of the debt can be measured.

的辨識及結合能力也跟著提高。其頻率值可由表二讀取 出。 圖為不冋浪度的血壓素溶液下對血壓素分子的辨識 月匕力所偵測出的頻率值。由圖二再次證明血壓素分子膜對 也壓素分子的交互作用力可使血壓素分子被吸引在模板分 子中,而形成了 一固定頻率值。濃度愈大,分子印刷模板 表一、血壓素晶片注射不同濃度的血壓素 溶液對血壓素分子的頻率變化值 血壓素濃度(/ml磷酸緩衝液) 頻率變化值(Hz)The ability to identify and combine has also improved. Its frequency value can be read from Table 2. The picture shows the identification of blood pressure molecules in the blood pressure solution without undulations. The frequency value detected by the moon force. It is proved again from Fig. 2 that the interaction between the blood pressure molecule molecule and the blood pressure molecule can cause the blood pressure molecule to be attracted to the template molecule, thereby forming a fixed frequency value. The larger the concentration, the molecular printing template Table 1. Frequency changes of blood pressure hormone molecules injected with different concentrations of blood pressure hormone wafers to blood pressure molecules. Blood pressure concentration (/ ml phosphate buffer) Frequency change value (Hz)

100 pg 5 1 ng 7 1 0 ng 10 100 ng 14 1 β g 18 10 μ g 22 100 β g 24 1 mg 32 第13頁 200418987 五、發明說明(ίο) " "" 一 " —-- 藉由圖二及圖四,發現所製作的催產素及血壓素胜狀 高分子印刷獏對於胜炚分子的辨識能力強烈,這可作為新 實施例四: 當有了聚合胜队高分子印刷膜的辨識能力後,將登革 熱病毒的N S1蛋白的胜狀結構(如式四)當分子印刷的膜 版,依相同製作過程完成後,將NS 1胜炚晶月拿來測試在 不同濃度的NS1胜炚溶液裡其頻率變化量,其測試結果如100 pg 5 1 ng 7 1 0 ng 10 100 ng 14 1 β g 18 10 μg 22 100 β g 24 1 mg 32 Page 13 200418987 V. Description of the invention (quote) " " " 一 " —- -Based on Figures 2 and 4, it was found that the produced oxytocin and blood pressure hormone-like polymer printing 貘 has a strong ability to recognize 能力 molecules, which can be used as a new embodiment 4: After the membrane's ability to recognize the dendritic virus's N S1 protein (as shown in Formula 4) as a molecularly printed membrane, after the same production process is completed, NS 1 wins crystals are used to test at different concentrations. The amount of change in frequency of NS1 tritium solution, and the test results are as follows

圖三(附圖三)所示。圖三為不同濃度的NS1胜臥溶液對 NS1胜故的辨識能力所偵測出的頻率值。再次證明NSi胜狀 $子膜對NS1胜炚的交互作用力可使以1胜肽被吸引在模板 分子中’而形成了 _固定頻率值。濃度愈大,NS1胜肽分 子印刷权板的辨識及結合能力也跟著提高。其頻率值可由 表二讀取出其頻率變化值隨著濃度增加而有靈敏度極佳 偵測效果。Figure 3 (Figure 3). Figure 3 shows the frequency values detected by the NS1 solution with different concentrations. It was proved once again that the interaction force of the NSi-winning sub-membrane on the NS1 victory can attract 1 peptide to the template molecule and form a fixed frequency value. The higher the concentration, the higher the recognition and binding capacity of the NS1 peptide molecular weight plate. Its frequency value can be read from Table 2. Its frequency change value has excellent sensitivity with increasing concentration.

第14頁 200418987 五、發明說明(11) 表三、NS1胜炚晶片注射不同濃度的NS1胜炚 溶液對NS1胜炚的頻率變化值 NS1胜炚濃度(/ml磷酸緩衝液) 頻率變化值(Hz) 1 ng 3 1 〇 ng 10 10 0 ng 15 1 β g 33 10 H g 58 1 00 // g 73 1 mg 135 實施例五··Page 14 200418987 V. Description of the invention (11) Table III. Frequency change of NS1 win solution with different concentration of NS1 win solution injected with NS1 win solution Wafer concentration of NS1 win solution (/ ml phosphate buffer solution) Frequency change value (Hz ) 1 ng 3 1 〇ng 10 10 0 ng 15 1 β g 33 10 H g 58 1 00 // g 73 1 mg 135 Example 5 ··

由於NS1胜呔高分子膜的高靈敏度及辨識能力,針對 登革熱病毒血清中的NS1蛋白使能具有特異的交互作用。 將已純化後的病毒血清注流入NS1蛋白來觀測分子印刷膜 與NS1蛋白的特異交互作用所產生的頻率變化量,由圖四 可明顯發現晶片可輕易辨識出NS1蛋白。濃度增加其頻率 值呈增加的趨勢。濃度愈大,NS1胜队分子印刷模板的辨 識及結合力也跟著提高。其頻率值可由表四讀取出其頻率 變化值隨著濃度增加而有靈敏度極佳的偵測效果。Due to the high sensitivity and identification of the NS1 polymer membrane, there is a specific interaction with the NS1 protein in dengue virus serum. The purified virus serum was injected into the NS1 protein to observe the frequency change caused by the specific interaction between the molecular printed membrane and the NS1 protein. From Figure 4, it can be clearly found that the wafer can easily identify the NS1 protein. As the concentration increases, the frequency value increases. The greater the concentration, the higher the recognition and binding power of the molecular printing template of the NS1 team. The frequency value can be read from Table 4 and its frequency change value has an excellent detection effect with increasing sensitivity.

200418987 五、發明說明(13) 表三 NS1晶片注射不同濃度的NS1蛋白 溶液對NS1蛋白的頻率變化值 NS1濃度(/ml磷酸緩衝液) 頻率變化值(Hz 1 ng 3 10 ng 6 10 0 ng 10 1 β g 13 1〇 β g 27 100 // g 45 0 . 5 mg 60 藉由以上的圖示及技術說明,本發明的特徵在於運用 分子印刷技術,使用可作為一吸附劑兼聯結者,且為單體 之(Acr-Cys - ΝΗΒη )2於晶片上,而易與其他單體聚合形 成高分子印刷膜,成為一高穩定性的技術,建立為偵測胜 队、蛋白質分子及生化抗體的MIPs —QCM的感測器,具有高 靈敏度、及時檢測及簡單操作等優點。200418987 V. Description of the invention (13) Table 3. Frequency change value of NS1 protein injected with NS1 protein solution of different concentration on NS1 wafer. NS1 concentration (/ ml phosphate buffer) Frequency change value (Hz 1 ng 3 10 ng 6 10 0 ng 10 1 β g 13 1〇β g 27 100 // g 45 0. 5 mg 60 With the above illustration and technical description, the present invention is characterized by the use of molecular printing technology, which can be used as an adsorbent and linker, and It is a monomer (Acr-Cys-ΝηΒη) 2 on the wafer, and it is easy to polymerize with other monomers to form a high-molecular printed film, which has become a highly stable technology. It is established to detect the winning team, protein molecules, and biochemical antibodies. MIPs —QCM sensors have the advantages of high sensitivity, timely detection and simple operation.

第16頁 200418987 圖式簡單說明 式一 :(Acr-Cys-NHBn)2 的結構 (Acr-Cys-NHBn)2在此發明中擔任一多重功能的角 色。首先,它利用中心雙琉鍵的功能能吸附於晶片上,使 其為一吸附劑。而它也是一交聯劑,能與混合單體及晶片 間形成一連接的作用。同時,在(Acr-Cys-NHBn)2的外圍 有二雙鍵的官能基’能夠在共聚合反應裡擔任單體的功 能,整個聚合反應完全後,移除板模,就可在聚合物之結 構中,形成了印刷分子的形狀。 式二:催產素分子的結構 九種胺基酸所構成的一胜I結構。在此發明中被用 來作為胜炚感測器的高分子膜的模板。 式二:升壓素分子的結構 同為九種胺基酸所構成的一胜肽結構。在此發明中被 用來作為胜狄感測器的高分子膜的模板。 式四:NS1胜炚的結構式 登革熱病毒NS1蛋白的15個胺基酸的片段,在此發曰 中被用來作為胜狀感測器的高分子膜的模板。 明 圖 為催產素晶片注射不同濃度的催產素溶液對催產音、 子的辨識能力圖 ’、分Page 16 200418987 Brief description of the diagram Formula 1: The structure of (Acr-Cys-NHBn) 2 (Acr-Cys-NHBn) 2 plays a multi-functional role in this invention. First, it uses the function of the central double-luo bond to adsorb onto the wafer, making it an adsorbent. It is also a cross-linking agent, which can form a connection with the mixed monomer and the wafer. At the same time, the functional group with double and double bonds on the periphery of (Acr-Cys-NHBn) 2 can function as a monomer in the copolymerization reaction. In the structure, the shape of the printed molecules is formed. Formula 2: The structure of the oxytocin molecule. The structure of one win I composed of nine amino acids. In this invention, it is used as a template for the polymer film of the Katsuya sensor. Formula 2: The structure of the vasopressin molecule is a peptide structure composed of nine amino acids. In this invention, it is used as a template for a polymer film of a Suntech sensor. Formula 4: Structural formula of NS1 tritium. The 15 amino acid fragments of the dengue virus NS1 protein were used as templates for the polymer membrane of the trigonometric sensor. The picture shows the ability of the oxytocin wafer to inject the oxytocin solution with different concentrations to identify the oxytocin and the son.

200418987 圖式簡單說明 圖二為血壓素晶片注射不同濃度的血壓素溶液對血壓素分 子的辨識能力圖 圖三為NS1胜队晶片注射不同濃度的NS1胜狀溶液對NS1胜 狀的辨識能力圖 圖四為NS1晶片注射不同濃度的NS1蛋白溶液對NS1蛋白的 辨識能力圖200418987 Brief description of the figure. Figure 2 shows the ability of the blood pressure hormone chip to inject different concentrations of blood pressure solution to identify the blood pressure molecule. Fourth, the identification of NS1 protein by injecting different concentrations of NS1 protein solution for NS1 chip

Claims (1)

200418987200418987 六、申請專職® ' ---------- 1去種#、,覆分子印刷膜於晶片上來辨識生物分子的方 ΐ;以一吸附劑兼聯結劑兼單體的有機化合物在麼電 曰曰片上吸附形成-單層’’然後再加人則貞測之生物分子ί ί;來::用心雙鍵的單體化合物所混合的溶液,藉由聚 口法末衣&具有辨識生物分子能力的高分子印刷膜。 2、如申%請專利範圍第一項所述,其中帶有雙鍵的交聯吸 附劑兼單體的有機化合物為含有光胺酸架構之衍生物。 3、如申請專利範圍第二項所述,其中帶有光胺酸架構之 丨_ 竹生物為含有L -光胺酸、D -光胺酸或消旋性光胺酸的化合 物。 4、如申請專利範圍第二項所述,其中含有光胺酸架構之 衍生物為(Acr-Cys-NHBn)2、(Acr-Cys-NH<l))2、(Macr-Cys-NHBn)2、(Macr-Cys-ΝΗΦ)2、等化合物。(Macr 為異 丁烯) 5、如申請專利範圍第一項所述,其中帶有雙鍵的單體為Six, apply for a full-time ® ® ----------- 1 go to species #, and overlay molecular printed film on the wafer to identify biomolecules; an organic compound with an adsorbent and a linker and a monomer Median said, "Single-layer adsorption formation-monolayer" and then add the biomolecules tested by humans. 来 :: A solution of a monomer compound with a heart double bond, which is identified by the polymouth method & Biomolecule-capable polymer printed films. 2. As described in the first item of the patent application, the organic compound with a double bond cross-linking adsorbent and monomer is a derivative containing a photogenic acid structure. 3. As described in the second item of the scope of the patent application, bamboo biology with a photogenic acid structure is a compound containing L-photogenic acid, D-photogenic acid or racemic photogenic acid. 4. As described in the second item of the scope of patent application, the derivatives containing the photoamine structure are (Acr-Cys-NHBn) 2, (Acr-Cys-NH < l)) 2, (Macr-Cys-NHBn) 2, (Macr-Cys-NΗΦ) 2, and other compounds. (Macr is isobutylene) 5. As described in the first item of the scope of patent application, the monomer with a double bond is (Macr-Cys-NHBn)2、(Macr-AA-NHBn)2、(Macr-Cys-ΝΗφ) 2、(Macr-AA-NH Φ)2、異丁烯醯胺、異丁烯酸、N_benzyl 一 methacryl amide、(Acr-Cys — NHBn)2、(Acr-AA-NHBn)2、 (Acr-Cys-ΝΗΦ)2、(Acr-AA-ΝΗΦ)2、丙烯醯胺、丙烯酸與N- benzyl-acΓylamide等單體。(AA為20種天然胺基酸;φ為 苯)(Macr-Cys-NHBn) 2, (Macr-AA-NHBn) 2, (Macr-Cys-NΗφ) 2, (Macr-AA-NH Φ) 2, methacrylamide, methacrylic acid, N_benzyl-methacryl amide, ( Acr-Cys — NHBn) 2, (Acr-AA-NHBn) 2, (Acr-Cys-ΝΗΦ) 2, (Acr-AA-ΝΗΦ) 2, acrylamide, acrylic acid, and N-benzyl-acΓylamide. (AA is 20 natural amino acids; φ is benzene) 第19頁 200418987 六、申請專利範圍 6、 如申請專利範圍第一項所述’其中的模板為胺基酸、 核酸、醣類、脂類、胜炚、蛋白質、抗體及抗原等。 7、 如申請專利範圍第六項所述’其中的胜肽模板為催產 素0 8、如申請專利範圍第六項所述,其中的胜肽模板為升壓 素0 9、如申請專利範圍第六項所述,其中的胜狀模板為登革 鲁 病毒之非結構性胜队。 1 0、如申請專利範圍第六項所述,其中的蛋白分子印刷模 板為登革病毒之非結構性蛋白。 11、如申請專利範圍第一項所述,其中在壓電晶片上吸附 形成〜單層,係將(Acr-Cys-NHBn)2溶於10毫升的乙晴與 〇· 1亳升少量DMF混合均勻的溶液中,再將溶液置於晶片Page 19 200418987 6. Scope of patent application 6. As described in the first item of the scope of patent application, ‘wherein the templates are amino acids, nucleic acids, sugars, lipids, tritium, proteins, antibodies, and antigens. 7. As described in the sixth item of the patent application, where the peptide template is oxytocin 0 8. As described in the sixth item, the peptide template is vasopressin 9, which is the first Among the six items, the winning template is a non-structural winning team of dengue virus. 10. As described in item 6 of the scope of the patent application, the protein molecular printing template is a non-structural protein of dengue virus. 11. As described in the first item of the patent application scope, wherein a single layer is formed by adsorption on the piezoelectric wafer, (Acr-Cys-NHBn) 2 is dissolved in 10 ml of acetic acid and mixed with a small amount of 0.1 l of DMF. Homogeneous solution, then place the solution on the wafer 弟20頁 1 2、如申請專利範圍第一項所述,其中帶有雙鍵的單體化 δ物所混合的溶液’係使用1 1 0 " m 〇 1 e的丙嫁酿胺、丙烯 酸及N-benzyl-acrylamide的單體溶液以比例1 :1 :2混合 均勻;模板分子則溶於1毫升以比例6 : 4的乙晴與2 0毫莫 200418987 六、申請專利範圍 耳pH 4· 〇的填酸溶液中’再將使兩者以1 u比例混合均 勻0 1 3、如申請專利範圍第〆項所述,其中的聚合法為, 波長3 5 0 nm的光化學儀中照光6小時,使單體形成聚入'、、於 體,或加熱至50〜1〇〇。C完成聚合反應。 ΰ 1 4、一種「披覆分子印刷膜於晶片上來辨識生物分 法」,係以(Acr-Cys-NHBn)2化合物在壓電晶片上 的方 一單層,然後再利用帶有雙鍵的丙烯醯胺、丙 附形成 化 br^:ryil:ide ^^ ^ ^ ^ n 學1合法,來製造具有…糟由光Brother page 20 1 2. As described in the first item of the scope of the patent application, where the solution of the monomeric δ compound with a double bond is a mixture of 1 1 0 " m 〇 1 e, acrylic amine, acrylic acid And N-benzyl-acrylamide monomer solution are mixed uniformly in a ratio of 1: 1: 2; the template molecule is dissolved in 1 ml of acetonitrile and 20 mmol in a ratio of 6: 4 200418987 6. Application patent scope Ear pH 4 · In the acid filling solution of 〇 ', the two will be mixed uniformly at a ratio of 1 u 0 1 3. As described in item 范围 of the scope of the patent application, the polymerization method is: light irradiation in a photochemical instrument with a wavelength of 3 50 nm Hours, the monomers are formed into polymer, polymer, or heated to 50 ~ 100. C completes the polymerization. ΰ 1 4. A method of “identifying biodiversity by coating molecular printed film on a wafer”, which uses a single layer of (Acr-Cys-NHBn) 2 compound on a piezoelectric wafer, and then uses a double bond Acrylamide and propionate formation br ^: ryil: ide ^^ ^ ^ ^ n Learn 1 law to make it with ...
TW92107427A 2003-03-27 2003-03-27 Coating of molecularly imprinted membranes on chips to recognize biomolecules TW200418987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92107427A TW200418987A (en) 2003-03-27 2003-03-27 Coating of molecularly imprinted membranes on chips to recognize biomolecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92107427A TW200418987A (en) 2003-03-27 2003-03-27 Coating of molecularly imprinted membranes on chips to recognize biomolecules

Publications (1)

Publication Number Publication Date
TW200418987A true TW200418987A (en) 2004-10-01

Family

ID=52340882

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92107427A TW200418987A (en) 2003-03-27 2003-03-27 Coating of molecularly imprinted membranes on chips to recognize biomolecules

Country Status (1)

Country Link
TW (1) TW200418987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424650B (en) * 2008-11-20 2012-08-22 上海交通大学 Sensing electrode for detecting chloramphenicol and method for producing molecular imprinting film thereof
CN101836107B (en) * 2007-09-10 2013-04-10 香港大学 Electronic tongue sensor
WO2018206122A1 (en) * 2017-05-12 2018-11-15 Universiteit Maastricht Devices and methods for detecting viral particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101836107B (en) * 2007-09-10 2013-04-10 香港大学 Electronic tongue sensor
CN101424650B (en) * 2008-11-20 2012-08-22 上海交通大学 Sensing electrode for detecting chloramphenicol and method for producing molecular imprinting film thereof
WO2018206122A1 (en) * 2017-05-12 2018-11-15 Universiteit Maastricht Devices and methods for detecting viral particles

Similar Documents

Publication Publication Date Title
Lim et al. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases
Jahanban-Esfahlan et al. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers
Darwish et al. Point-of-care tests: a review of advances in the emerging diagnostic tools for dengue virus infection
Lin et al. Determination of albumin concentration by MIP-QCM sensor
Yarman et al. Simple and robust: The claims of protein sensing by molecularly imprinted polymers
Whitcombe et al. The rational development of molecularly imprinted polymer-based sensors for protein detection
Soufi et al. Molecularly imprinted polymers for the detection of viruses: Challenges and opportunities
Jenik et al. Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance
Khan et al. An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET
kholafazad Kordasht et al. Biosensing of microcystins in water samples; recent advances
Malik et al. Molecularly imprinted polymer for human viral pathogen detection
Omar et al. Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein
Yaqub et al. Plastic antibodies as chemical sensor material for atrazine detection
Ortiz et al. Detection of antigliadin autoantibodies in celiac patient samples using a cyclodextrin-based supramolecular biosensor
US20090325147A1 (en) Molecularly imprinted polymers for detecting microorganisms
Schirhagl et al. Immunosensing with artificial antibodies in organic solvents or complex matrices
Amorim et al. Recent advances in virus imprinted polymers
Yadav et al. Molecularly imprinted polymer-based nanodiagnostics for clinically pertinent bacteria and virus detection for future pandemics
Huang Advanced surface modification technologies for biosensors
TWI321569B (en) Peptide and method for detecting amine using the same
Lim et al. Evolution of supramolecular systems towards next-generation biosensors
Singh et al. Epitope imprinting approach to monitor diseases
TW201124723A (en) Antibody probe chip linking with electron-conducting anchoring molecule
US20100297610A1 (en) Molecularly imprinted polymers for detecting hiv-1
TW200418987A (en) Coating of molecularly imprinted membranes on chips to recognize biomolecules