TW200413413A - Process of producing conjugated diene polymer - Google Patents

Process of producing conjugated diene polymer Download PDF

Info

Publication number
TW200413413A
TW200413413A TW92116872A TW92116872A TW200413413A TW 200413413 A TW200413413 A TW 200413413A TW 92116872 A TW92116872 A TW 92116872A TW 92116872 A TW92116872 A TW 92116872A TW 200413413 A TW200413413 A TW 200413413A
Authority
TW
Taiwan
Prior art keywords
polymerization
molecular weight
cis
polybutadiene
compound
Prior art date
Application number
TW92116872A
Other languages
Chinese (zh)
Other versions
TWI321135B (en
Inventor
Yoshisuke Baba
Yoshiyuki Kai
Masato Murakami
Takashi Kitamura
Hiroshi Yamashita
Yamashita Jun
Takamasa Fujii
Osamu Kimura
Original Assignee
Ube Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003032360A external-priority patent/JP2004244427A/en
Priority claimed from JP2003077990A external-priority patent/JP2004285175A/en
Priority claimed from JP2003084652A external-priority patent/JP4193539B2/en
Priority claimed from JP2003084651A external-priority patent/JP2004292535A/en
Priority claimed from JP2003088094A external-priority patent/JP4225089B2/en
Application filed by Ube Industries filed Critical Ube Industries
Publication of TW200413413A publication Critical patent/TW200413413A/en
Application granted granted Critical
Publication of TWI321135B publication Critical patent/TWI321135B/en

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

A process of producing a conjugated diene polymer comprising polymerizing a conjugated diene monomer in the presence of a catalyst system comprising (A) a cobalt compound, (B) an organic compound of a group 13 element of the Periodic Table, and (C) water, wherein the molecular weight of the conjugated diene polymer is controlled by a method including adding a specific molecular weight regulator to a polymerization solvent. A process of producing a polybutadiene composition comprising cis-1, 4 polymerization of 1, 3-butadiene by the above-described process and then syndiotactic-1, 2 polymerization in the same reaction system in the presence of a sulfur compound.

Description

200413413 玖、發明說明: 【發明所屬之技術領域】 本發明係有關一種使用含一鈷化合物之聚人^ 永口觸媒系統製 造具有高順式-1,4含量之無色、無臭共軛二慌取人 布永合物之方 法。 本發明也係有關一種藉1,3- 丁二烯聚合作 1 』灰w包含順 式_1,4聚合物及間規-1,2聚合物(乙烯基-順式橡膠, 、— 為VCR)之加強聚丁二婦之新穎方法。 … 【先前技術】 對共軛二婦如1,3-丁二稀及異戊間二烯聚合用之觸媒有 人己作過許多建議。其中有些建議己以業 卜 果規挺付諸實 仃。例如,有機鋁化合物及鈦、鈷、鈮等化合物之钟合在 具有高順式-1,4結構含量之共軛二烯聚合物之製 現有廣大用途。 。己愈 在使用鈷化合物製造具高順式-丨,4結構之共軛二缔之諸 多方法中,有-種係㈣_38·1243所揭示者,其係—種使 用包含鈷化合物及/或鎳化合物、酸性金屬鹵化物、有機鋁 化合物、及每一百萬份反應混合物2至5份水之觸媒 古 順式_ 1,4-聚丁二埽之方法。 门 JP-B-36-4747教示一種在包厶廣化— ^ #人^ 喱在包口虱化一烷基鋁及氯化鈷-呲 口疋錯合物之觸媒之存在 存在下知丨,3_丁一;布聚合,同時藉阿爾發 U1如’乙埽或丙烯)或非共軛二缔烴(例如,丙二烯戋 ^錄丁二缔)控制聚合物分子量之方法。m5474揭示 包含虱化二烷基鋁及乙醯丙酮鈷錯合物之觸媒之存 86180 200413413 在下將1,3-丁二晞聚合,同時藉非共軛二缔烴如環辛二 烯控制聚合物分子量之方法。 JP-B-46-235 1揭示-種製造具有任意分子量分佈之順式 -1,4-聚丁二烯之方法,包含在包含鹵化烷基鋁及含鈷物質 之觸媒之存在下將丁二埽聚合,同時藉由根據以丁二 缔之轉化率添加二或更多份之阿爾發婦烴、非共輛二婦烴 或環狀埽烴控制分子量分佈。 JP-B-46-2667及㈣_46_7267揭示—種製造具有所要分 子里之L、式1,4水丁 —烯之方法,此法之特徵為藉由添加 乙晞基It化合物(㈣_46_2667)或内㈣(㈣·体以乃控 制分子量。 JP-B-45.293G8教示藉由使用_包含#化三垸基減電解 沉殿金屬钴或辛酸銘之觸媒,及小量金屬錄或錄化合物作 為分子量碉節劑,將丨,3_丁二埽聚合。 —這些己知方法的共關題是,使用包括有毒苯之芳香溶 剑此外,在使用高滩點化合物作為鍵轉移劑時,為了妹 濟及產品品質關係,高滞點化合物較佳必須分離及回收再 使用’但從製得之聚合物溶液回收必須使用大量的能源。 JP-A-2002-371 103揭示一種藉由在情性有機溶劑中進行 合作用製造共輛二婦聚合物之方法,此法之特徵為 :子^二制係猎由在聚合反應容器内添加含氫惰性有機溶 二=氫惰性有機溶液係事先由惰性有機溶劑與 :乳接觸而經由氣-液平衡達到控制之氫濃度而製備。此一 技術使用金屬茂觸媒進行聚合作用,且其目的在製造且有 86180 200413413 中等乙烯基鍵含量之聚丁二烯。此一公告案除氫外並未提 及鍵轉移劑,也未提及鉛觸媒作為聚合觸媒組份。 在另一方面,JP-B-49-17666及 JP-B-49-17667描述一種製 造VCR之方法,其包含在惰性溶劑中在觸媒系統之存在下 將1,3-丁二烯順式-丨/聚合,該觸媒系統係自水、可溶性姑 化合物及有機鋁氯化物(代表式Ami)製成;接著在相 同反應系統中在間規_1,2_聚合觸媒系統之存在下將丨,3_丁 二烯間規-1,2-聚合,該間規-u-聚合觸媒系統係自可溶性 鉛化合物、有機鋁化合物(代表式AIR3)及二硫化碳製成。 JP-B-62-171 > JP-B-63-36324 ^ JP-B-2-3 7927 > JP-B-2-3808 1 及JP-B-3-63566揭示一種製造VCR之方法,其包含在有或無 二硫化碳之存在下將丨,3_丁二晞順式4,4聚合;及一種包含 製k VCR、匀別自一硫化碳回收未反應1,3 _ 丁二晞及惰性有 機溶劑、及回收再利用不含二硫化碳之丨,弘丁二晞及不含二 硫化碳之惰性有機溶劑之方法。Jp-B-4_488 15揭示抗張應 力及耐桃裂生長性(flex crack growth resistance)倶優之 VCR ’其可提供一種顯示小模膨脹比(die swell ratio)之橡 膠化合物及適合作為輪胎侧壁之硫化化合物。 氣k VCR之習知方法包含在惰性有機溶劑如芳香烴,例 如苯、一苯或二甲苯中進行聚合反應。這些溶劑之使用會 &成聚合系統黏度升高,這對揽拌、熱傳導、運送等等都 不利。此外’溶劑之回收需要非常高量的能源。 與順式-1,4-聚丁二烯之製造相似,在使用高沸點化合物 作為分子量碉節劑製造VCR時,為了經濟及產品品質,高 200413413 沸點化合物較佳應分離及回收再使用,但自製得之聚合物 回收必須需使用非常高量的能源。 JP-A-2000-44633揭示一種製造新穎VCR之方法,其包含 在主要包含C4餾份之惰性有機溶劑中在觸媒系統之存在下 將1,3-丁二烯順式1,4聚合,該觸媒系統包含含齒有機鋁化 合物、可落性鈷化合物及水;及在所得反應混合物中在間 規-1,2-聚合觸媒之存在下將丨,弘丁二晞間規],2_聚合,該 間規-1,2-聚合觸媒係自可溶性鈷化合物、三烷基鋁化合物 及二硫化碳製得。藉此一方法製得之VCR係一間規十2_聚 丁二烯組合物,其係由3至3〇重量%之沸騰正己烷不溶性餾 份及70至97重量%之沸騰正己烷可溶性餾份所組成。沸騰 正己烷不溶性餾份係為以短纖晶體之形式分散之間規,2_ 水丁一烯,而沸騰正己烷可溶性餾份係具有順式含量為 90%或以上之順式_ι,4_聚丁二烯。 、 然而,在1,3-丁二埽聚合時,製造中之聚合物,因為其雙 键之故特别疋在無芳香溶劑之存在下易於膠凝。在聚合 作用在大氣壓下進行時,為了低沸點之1,3_丁二埽,反應溫 度必須降低。而一此紘姐< w 二觸媒系統在低溫下之聚合觸媒活性較 低。因此,必須予以改進。 【發明内容】 本'發"明—目的 疋,提供一種可穩定製造具有所需分 量之共輛二缔聚合物>、 、、、 物 < 万法,薇万法不使用對健康及環 不利的芳香溶劑,Η、/ ^ 、 且必須使用大量能源始能回收及再使用 的高济點化合物含量最少。 86180 200413413 本發明之另一目的是,提供一種製造VCR之新穎方法, 該VCR包含順式-1,4聚合物及間規-1,2聚合物且具有1,3- 丁 二烯聚合所產生的低量凝膠分率。 本發明提供一種製造共軛二晞聚合物之方法,其包含在 觸媒系統之存在下將共軛二烯單體聚合,該觸媒系統包含 (A)—姑化合物、(B)—週期表第13族元素之有機金屬化合 物、及(C)水,其中共軛二烯聚合物之分子量係藉以下任一 方法控制; (I) 一方法,其包含將一自(1)一非環狀婦、(2) —環狀共輛二 烯、及(3) —具有累積雙键之化合物所組成之族群中所選出 之化合物加至聚合溶劑中作為分子量調節劑, (II) 一方法,其包含將一彿點較共輛二晞單體及聚合溶劑為 低之化合物加至聚合溶劑中作為分子量調節劑, (III) 一方法,其包含先使一聚合溶劑與一包含非環狀烯之 分子量調節劑接觸,藉氣-液平衡調整非環狀烯之濃度及使 用所得含非環狀晞之聚合溶劑, (IV) —方法,其包含先使一聚合溶劑與包含(D) —非環狀晞 及(E) —自環狀共軛二烯及具累積雙键之化合物所組成之 族群中所選出之化合物之分子量調節劑接觸,藉氣-液平衡 調整非環狀烯之濃度及使用所得含分子量調節劑之聚合溶 劑, (V) —方法,其包含使用一非環狀烯作為分子量調節劑並將 餵入聚合容器中之非環狀烯之蒸發比控制至30莫耳%或以 下,及 -10- 86180 200413413 )-万法’ /…使用(D)一非環狀烯及(E)—自環狀共軛 二缔及具累積雙鍵之化合物所組成之族群中所選出之化人 物作為分子量調節劑接觸’並將餵入聚合容器中之非環狀 缔之蒸發比控制至零(〇)。 本發明也提供一種製備聚丁二烯之方法,其包含將 聚合以製造順式·M聚合物,繼之在相同反 應系統中將1,3-丁二埽間規],2聚合以製造間規聚合 物’其中順式-1,4聚合物係藉以上所述製造共軛二烯聚合物 〈任何-種方法製造,並使用包含硫化合物之觸媒系統作 為間規-1,2聚合之觸媒。 【實施方式】 用於本發明作為觸媒組份(A)之鈷化合物較佳包括姑鹽 及鈷錯合物。特佳姑化合物包括鹽類如氯化鈷、溴化鈷、 硝酸姑、辛酸(乙基己酸)姑、環燒酸姑、醋酸姑及丙二酸 鈷;雙乙醯基丙酮姑、參乙醯基丙酮鈷、(乙基乙醯乙酸) 鈷;鈷齒化物之三芳基膦或三烷基膦錯合物;有機鹼錯合 物如呲哫錯合物及皮考淋(pic〇Hne)錯合物;及乙醇錯合物。 用A本嗇明作為觸媒組份(B)之第1 3族(週期表)金屬有機 化合物包括有機鋁化合物。較佳有機鋁化合物包括三烷基 鋁(例如,二甲基鋁、三乙基鋁、三異丁基鋁、三己基鋁、 三辛基鋁及三癸基鋁);_化有機鋁,如氯化二甲基鋁(例 如,氯化二甲基鋁及氯化二乙基鋁溴化二烷基鋁、倍半 氯烷基鋁(例如,倍半氯化乙基鋁)、倍半溴化烷基鋁、 二氯化烷基鋁(例如’二氯化乙基鋁);及氫化有機鋁(例如, 86180 -11 - 200413413 IL化二乙基铭、氫化二丁乙其 *鋁、及氫化倍半乙基鋁)。這 些有機鋁化合物可單獨或以並— ,、一種以上怎組合使用。 組份⑻與組份⑷之莫耳比較佳為〇1比5〇〇〇,更 比 2000 。 組份⑻與作為組份(C)之水之莫耳比較佳為〇 7比5,更佳 為0.8比4,特佳為1比3。 根據本發明製造共輛二埽之方法包含在自組份㈧、⑻ 及(C)所製得之觸媒系統之存在下將共軛二稀聚合,同時藉 上述方法⑴至(VI)中任—方法控制分子量。 3 [I]方法(I) 可用於分子量控制方法⑴之非環狀埽⑴包括b缔煙。 非環狀烯⑴之實例為乙#、丙缔、i丁締、異丁缔、^ f烯、1-己埽、庚缔、辛埽、丨_壬烯、卜癸埽、卜十― 烯1-十一烯、4-甲基_;!_戊缔、戊二烯、丨’5·己二缔、 1,7;辛二缔、癸二埽、十二破二締、苯乙缔、稀丙 基苯及二烯丙基苯,以乙晞為特佳。 可用於万法(I)之環狀非共軛二烯(2)包括丨,4_環己二烯、 L,5;;環辛=烯、環癸二晞、環十二碳二缔、1,5,9-環十二碳 一烯、一锿戊二烯、2,5_原冰片二烯、亞乙基原冰片烯及乙 烯基原冰片烯,以丨,5 _環辛二烯及2,5 _原冰片二埽為特佳。 可用於方法(I)之具累積雙鍵之化合物,包括丙二烯、笨 丙二烯、1,2-丁二埽、it戊二婦、it己二晞及^入辛二 稀,以丙二烯及丨,2-丁二烯為特佳。 自(1)非環狀烯、(2)環狀非共軛二烯及(3)具累積雙键之 86180 -12- 200413413 2合物所組成之族群中所選出之分子量調節劑可以任 量’較佳足以獲得所要分子量之量加入。可使用旦; 節劑作為聚合溶劑。 里口周 添加分子量調節劑及觸媒組份之順序並無特別限尺 加順序之實例顯示於下。 Φ /心 (Ο在有或無欲聚合之共軛二稀單體之存在下,將分子量 調節劑,然後組份(C)加至包含惰性有機溶劑之^合= 劑中。然後,將組份(Α)及(Β)以任何順序加入。口合 (-)在有或無欲聚合之共軛二烯單體之存在下,將組份 (C),然後分子量調節劑加至包含惰性有機溶劑之聚合 溶劑中。其後將組份(Α)及(Β)以任何順序加入。 (m)在有或無欲聚合之共軛二烯單體之存在下,將組份(Β) 加至包含惰性有機溶劑之聚合溶劑中。 ,分子量調節劑以任何順序加入。最後加入組二) 每觸知組丫77可在老化後加入。特佳為讓組份(B)及(c) 經過老化。 、組份(B)及(C)之老化係在有或無欲聚合之共軛二烯單體 之存在下將彼等混合進入惰性有機溶劑中’並將混合物維 持於-50至80。〇’較佳_1〇至5〇。(:下〇〇1至24小時,較佳〇〇5 至5小時而進行。 每一種觸媒組份都可以由無機化合物或有機聚合物支撐 4方式使用。 欲聚合之共輛二埽單體包括I、丁二烯(沸點(下稱 bp ) · ·45 C )、異戊間二浠(bp ·· 34°C )、1,3-戊二浠(bp : 86180 -13 - 200413413 )2 乙基-1,3-丁二錦r、2,3-二甲基 丁二烯(_:69。。)、 2甲基戊二烯(bp : 75。〇、3_甲基戊二婦m)、甲 基戊^希及2,4H(bP:桃)。當中,以主要包含仏 、希之/、輛一烯單體為較佳。這些單體組份可單獨或以 其二種以上之組合使用。 入餵入永合作用系統之共軛二烯單體可為欲聚合之單體之 /卩伤在後者情形時,聚合作用系統可和單體剩 1份或溶㈣餘部份混合。除共輛二烯外,單體可含有 :量、,非環狀單烯烴例如乙缔、丙烯、丁烯、丁烯:2、 ,士缔]、4-甲基戊埽-1、己稀-1或辛稀-1,環狀單 希、環己稀或原冰片婦及7或芳族乙缔基化合 产Λ _ 缔、阿爾發-甲基苯乙烯,非共輛二烯烴例如二 衣取:~、5_亞乙基_2_原冰片烯或己二烯,及類似物。 單;::Γ包括,但不限於,整體聚合作用(使用共輛二埽 溶液聚:作3用丁二晞:乍:聚合溶劑)及溶液聚合作用。用於 用疋溶劑包括脂族烴如丁燒、戊垸、…及 …裏狀烴如環戊燒及環己垸,上述埽烴化 ~系fe如順式_ 2 丁、膝# g 4 1 ^ 作聚合溶劑丁知及反式-2_ 丁婦。最好不用芳族化合物 ^^(bp: 81〇C)^^^-2T#(bp: 3.7 取反式·2-丁埽(bp : Γ〇很適合。 下水::乍二較佳係在溫度自-3°至15(rc,特別是3。至l〇〇t 取仃刀鐘至12小時,特別是5分鐘至5小時。 乍用進订—段敎時間後,如有必要接著可進行聚 86180 -14- 200413413 合容器之壓力釋除及產物聚合物之後處理,如洗滌及乾燥。 [II]方法(II) 可用於分子量控制方法(11)、具沸點低於共軛二烯單體及 Ικ合/谷劑之化合物包括氮、1 _缔煙及1,2 -二婦煙。 更明確言之,具沸點低於共軛二烯單體及聚合溶劑之化 合物括氫(bP : -253°C )、乙晞(bp : -104°C )、丙烯(bp : ·48 °C)、1-丁烯(bp: -6.3。〇、異丁晞(bp: -7°C)、丙二烯(bp : -3 4°C )、及1,2-丁二婦(bp : irc ),以乙烯為特佳。 具滞點低於共軛二埽單體及聚合溶劑之化合物可以任青 量’較佳足以獲得所要分子量之量加入。可使用此一化合 物作為聚合溶劑。 方法(II)之分子量控制可以與方法⑴相同之方式進行,但 使用上述化合物作為分子量調節劑。 [III]方法(III) 可在分子量控制方法(ΙΠ)用作為分子量調節劑之非環狀 烯包括有關方法(I)所提及者。 在方法(ΙΠ)中,聚合溶劑及非環狀烯係在混合槽中先t 相互接觸,並藉氣-液平衡調整非環狀埽之濃度。建議藉^ 例如將非環狀締氣體發泡通過聚合溶劑或用潤濕壁或料 增2氣-液接觸面積,縮短混合物達到氣_液平衡之時間。 聚合溶劑中非環狀烯之濃度隨聚合溶劑及非環狀埽 ,及接觸條件而異。該濃度為在例如氣相乙晞分壓為 ς所3 K饥下),較佳G.G2纽2MPa(35t下)下氣-液平 龄所達到之濃度。在此實例中’所得含非環狀埽之溶劑中 86180 -15 - 200413413 非每狀烯之濃度較佳在〇丨至5重量0/。之範圍内。 根據方法(III),分子量調節劑可均勻地加至聚合系統 中’從而可進行穩定之聚合物製造。 方法(III)之分子量控制可以與方法⑴相同之方式進行, 仁使用上述含非環狀烯之溶液作為聚合溶劑。 [Iv]方法(IV) 可在分子量技制方法(IV)中作為組份(D)及(E)使用之非 裱狀烯、環狀非共軛二晞及具累積雙鍵之化合物包括以上 有關用於方法(I)之非環狀烯(丨)、環狀非共軛二烯(2)及具累 和雙鍵之化合物(3)所提及者。 f万法(IV)中,聚合溶劑、作為組份(D)之非環狀缔、及 自%狀非共軛二烯及作為組份斤)之具累積雙鍵之化合物 所組成之族群中所選出之化合物係在混合槽中先行接觸, :非環狀晞之濃度係藉氣-液平衡調整。建議藉由例如將非 %狀~氣體發泡通過聚合溶劑或用潤濕壁或填料增加 液接觸面積,縮短混合物達到氣_液平衡之時間。胃* - 聚合溶劑中非環㈣之濃度隨聚合溶劑及非環 錢接觸條件該濃度為在例如氣相 重 Γ二MPa(35。。下)’較佳。.01至。指寧C下)下氣為= 衡所達到之濃度。纟此實例中,所得本 夜千 劑中非環狀烯之濃度較佳在〇·〇 P叙溶 土 3重I VO足範圍内。 為;"Τ3)與組份⑻之莫耳比較佳為1養_践,更佳 為1 · 0.0001至1。 文佳 根據方法(IV) 分子量調 郎劑可均句地加至聚合系統 86180 -16- 200413413 中’從而可進行穩定之聚合物製造。 添加分子量調節劑及觸媒組份之順序並無特別限制。添 加順序之實例顯示於下。 (0 在有或無欲聚合之共軛二婦單體之存在下,將分子量 調節劑組份(D)及(E)加至包含惰性有機溶劑之聚合溶 劑中。然後將組份(C)加入。最後將組份(A)&(B)以任 何順序加入。 (ii) 在有或操4聚合之共輛二稀單體之存在下,將組份(C) 及組份(B)以此順序加至包含惰性有機溶劑之聚合溶 劑中。然後將分子量調節劑組份(D)及(E)加入。最後 將組份(A)加入。 (iii) 在有或無欲聚合之共軛二烯單體之存在下,將組份(c) 及組份(B)以此順序加至包含惰性有機溶劑之聚合溶 劑中。然後將分子量調節劑組份(D)加入。最後將組份 (A)及分子量調節劑組份(E)加入。 方法(IV)之分子量控制可以與方法⑴相同之方式進行, 但使用上述含分子量調節劑之溶液作為聚合溶劑。 [V]方法(V) 可在分子量控制方法(V)中用作為分子量調節劍 狀烯包括以上方法⑴所用非環狀缔(1)所提及者。 非環狀缔可以任意量,較佳^ ^ ^ ^ ^ ^ ^ 平乂住疋以獲仔所要分子量之量加 入。可使用此一化合物作為聚合溶劑。 在方法(V)中,聚合容器中 。T非%狀~义蒸發比係 莫耳%或以下,較佳為灾, 于I艮制土 30 7以知入容器中之非環狀缔之量 86180 -17- 200413413 為準。經此控制 控制。 刀子里即可隨時間之消逝以穩定之方式 方法(V)之分子量控制可以與方法⑴相同之方式進行,但 僅使用非環料作為分子㈣節劑並將聚合容器中非環狀 婦之蒸發比限制至3 〇簟jp 〇/n戎0 π , 、 υ旲斗/°或以下,以餵入容器中之量為 準 〇 [VI]方法(VI) 可在分子量控制方法(VI)中用作為組份⑼及(e)之非環 狀烯、%狀非共軛二缔及具累積雙鍵之化合物包括有關用 於万法⑴之非環狀稀⑴、環狀非共輛二埽⑺及具累積雙鍵 (化合物(3)所提及者。 、(VI)中永合4③中之⑼非環狀缔之蒸發比係控 制至^⑽人容器中之非環狀缔之量為準。經此控制, 分子f即可隨時間之消逝以穩定之方式控制。 万法(VIk分子量控制可以與方法(v)相同之方式進行, 但使用⑼非環狀晞及⑻自環狀非共輛二埽及具累積雙鍵 (化合物所組成之族群中所選出之化合物作為分子量調節 劑’並將聚合容器中之非環狀埽之蒸發比控制至零,以銀 入客器中之量為準。 、,隹’、本毛明所製造共軛二烯之產量及微結構隨觸媒之種 類及聚合條件而異,但產物共輛二料合物之分子量可用 上述方法(I)至(VI)加以控制。 X本發明所製造之聚共軛二烯聚合物包括順式-^聚丁二 ~ ’其順式-1,4_結構含量較佳為8〇%或以上,更佳為或 86180 -18- 200413413 以上,特佳為9 6 %或以上。 本發明所製得共輛二烯聚合物宜具有滿足以下關係式 (1),較佳以下關係式(2), 更佳以下關係式(3 )之物理性質。 〇.5xML14-4<Tcp<4xMLi+4 (1) 〇.5xML1 + 4<Tcp<3.5xML1 + 4 (2) 1.0xML1 + 4<Tcp<3.5xML1 + 4 (3) 其中ML!+4代表慕尼(Moon 液中之黏度。 ey)黏度,及Tcp代表在5%甲苯溶 本發明之聚合方法可穩定地製造具有特性黏度[η ]為〇丄 至20 (於甲苯中在3〇r下測量)之聚丁二埽。此外,本發明 之聚合方法可穩定地製造具有聚苯乙缔當量平均分子量為 10,000 至 4,000,000 (用 GPC測量)之聚丁 二烯。 然後將說明用於製造聚丁二烯組合物之本發明方法。製 造聚丁二缔組合物之方法包含將153 - 丁二缔順式丨,‘聚合 以根據上述製造共輛二缔聚合物之方法製造順式_丨,4聚合 物,及將1,3 - 丁二烯在相同聚合系統中在有含硫化合物之觸 媒系統之存在下間規-1,2聚合以製造間規-1,2聚合物。 在順式-1,4聚合作用中’作為組(A)之姑化合物之使用量 通常為自lxicr7至ΐχΐ(Γ4莫耳,較佳χίο·6至lxio·4莫耳,對 每莫耳丁二烯。 順式-1,4聚合作用較佳在大氣壓或10大氣壓(G)下及_3〇 至100°C,特別是30至80°C下進行10分至12小時,特別是20 分至6小時。 86180 -19- 200413413 順式-1,4聚合作用較佳進行到聚合物之濃度達$至2 6重量 %。使用單一聚合容器或二或多個串聯連接之容器。容器 中之聚合系統在反應期間都保持繼續攪拌。聚合容器包括 一種裝配有為攪拌高度黏稠液體而設計之攪拌器之容器, 如JP-B-40-2645所描述之一種。 為在順式_1,4聚合作用期間壓制凝膠之形成,可使用凝膠 抑制劑。所得順式-M聚合物一般具有順式q,4結構為9〇% 或以上,較佳為95%或以上,及慕尼黏度(ML]+4,在10(rc 下測量’以下有時稱為以“為1〇至13〇,較佳15至8〇,並眘 質上不含凝膠分率。 若有需要’可在所得順式4,4聚合混合物中加入額外量之 1,3-丁二錦r。然後,讓聚合系統經過間規-丨,2_聚合作用。 使用含硫化合物之觸媒系統作為間規4,2-聚合作用之觸 媒。 含瑞化合物之觸媒系統包括一種包含三烷基鋁化合物、 硫化合物及視需要之鈷化合物之觸媒系統。 硫化合物包括二硫化碳、異硫氰酸苯酯及黃原酸,以二 硫化碳為較佳。 三燒基銘化合物及鈷化合物包括以上有關順式-1,4聚合 作用所提及者。 θ 三燒基銘化合物之使用量較佳為0· 1毫莫耳或以上,特別 是0.5至50毫莫耳,對每莫耳丁二烯。硫化合物較佳為 不含水。硫化合物之使用濃度較佳為20毫莫耳或以下,特 別是0.01至10毫莫耳八。 86180 -20- 200413413 用於間規-1,2聚合作用之反應溫度係自0至100°c,較佳10 至l〇〇°C,更佳20至100°c。1,2聚合作用所得1,2-聚丁二烯 之產量可在間規-1,2聚合作用之前,將1至50重量份,較佳1 至20重量份之1,3-丁二烯對每100重量份之反應系統加至反 應系統中而提高。聚合時間以平均保留時間而言較佳自1 0 分鐘至2小時。1,2聚合作用較佳係進行至聚合物之濃度達9 至29重量%。使用單一聚合容器或二或多個串聯連接之容 器。容器中之聚合系統在1,2聚合作用期間都保持繼續攪 拌。由於聚合系統會在1,2聚合作用進行時愈來愈黏稠且愈 易黏附於反應容器,故較佳使用裝配有為攪拌高度黏稠液 體而設計之攪拌器之聚合容器,如JP-B-4-2645所描述之一 種。 在預定聚合程度到達後,可以通常方式加入己知抗氧化 劑。有用抗氧化劑包括酚類如2,6-二-第三-丁基-對甲酚 (BUT),石粦類如亞石粦酸三壬基苯酉旨(TNP),及硫類如3,3,-硫 二丙酸二月桂酯(TPL)。這些抗氧化劑可單獨或以其二種以 上之組合使用。抗氧化劑之添加量為0.001至5重量份對100 重量份VCR。 然後加入稱為停止劑(short-stopper)之聚合終止劑以使 聚合反應停止。例如,將聚合反應混合物移至分開槽中, 並將大量之極性溶劑,如醇(例如甲醇或乙醇)或水倒入其 中,或將無機酸(例如鹽酸或硫酸)、有機酸(例如乙酸或苯 甲酸)或氯化氫氣體引入其中以終止聚合反應。200413413 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to the use of a polymer containing a cobalt compound ^ Yongkou catalyst system to produce a colorless, odorless conjugated diamine with a high cis-1,4 content Method of taking human cloth Yongtong. The present invention also relates to a polymer 1′-butadiene polymerization 1 ″ gray w containing cis-1,4 polymer and syndiotactic-1,2 polymer (vinyl-cis rubber, ——- is VCR ) 'S novel method to strengthen the two women. … [Prior art] Many suggestions have been made on the catalysts for the polymerization of conjugated diene such as 1,3-butadiene and isoprene. Some of these suggestions have been implemented in practice. For example, organic aluminum compounds and compounds of titanium, cobalt, niobium and the like are used in the manufacture of conjugated diene polymers having a high cis-1,4 structure content, and they are widely used. . Jiyu has used a cobalt compound to produce many cis-conjugated disjunctions with a high cis- 丨, 4 structure. Among them are the species ㈣_38 · 1243, which are based on the use of cobalt compounds and / or nickel compounds. , Acidic metal halide, organoaluminum compound, and catalyst gucis-1,4-polybutylene difluoride per million parts of reaction mixture 2 to 5 parts of water. The door JP-B-36-4747 teaches a method of encapsulation in broadening — ^ # 人 ^ The gel is known in the presence of a catalyst that contains monoalkyl aluminum and a cobalt chloride-cobalt complex. A method of polymerizing cloth while controlling the molecular weight of the polymer by using Alfa U1 such as' acetylene or propylene] or non-conjugated dialkylenes (eg, propadiene). m5474 reveals the existence of catalysts containing complexed dialkylaluminum and acetoacetone-cobalt complex 86180 200413413 Polymerize 1,3-butanefluorene while controlling the molecular weight of the polymer by non-conjugated dihydrocarbons such as cyclooctadiene Method. JP-B-46-235 1 discloses a method for producing cis-1,4-polybutadiene having an arbitrary molecular weight distribution, which comprises the step of dibutylene in the presence of a catalyst containing an alkyl aluminum halide and a cobalt-containing substance. Difluorene polymerization, while controlling the molecular weight distribution by adding two or more parts of Alfatrihydrocarbon, non-co-dihydrodihydrocarbon or cyclic fluorene based on the conversion of butadiene. JP-B-46-2667 and ㈣_46_7267 disclose a method for producing L, formula 1,4 hydrobutene with the desired molecule, and the method is characterized by adding an ethyl ethyl compound (㈣_46_2667) or an intrinsic compound. (㈣ · 体 is to control the molecular weight. JP-B-45.293G8 teaches the use of a catalyst containing # 化 三 垸 基 减 电 沉 殿 金属 cobalt or caprylic acid, and a small amount of metal or compound as molecular weight 碉It is a polymerization agent that polymerizes 3,4-dioxane. —The common problem of these known methods is the use of aromatic solvents including toxic benzene. In addition, when using high beach compounds as bond transfer agents, In terms of product quality, high-stagnation-point compounds must be separated, recycled, and reused. However, recovery from the polymer solution obtained requires a large amount of energy. JP-A-2002-371 103 discloses a method for using in organic solvents. The method of cooperating to manufacture a total of two polymers is characterized by the following characteristics: the system is made by adding a hydrogen-containing inert organic solvent in a polymerization reaction vessel; a hydrogen-inert organic solution is prepared by an inert organic solvent and : Milk-to-liquid via gas-liquid level It is prepared by reaching a controlled hydrogen concentration. This technology uses metallocene catalysts for polymerization and its purpose is to manufacture polybutadiene with a medium vinyl bond content of 86180 200413413. This announcement does not mention other than hydrogen And bond transfer agents, and lead catalysts are not mentioned as polymerization catalyst components. On the other hand, JP-B-49-17666 and JP-B-49-17667 describe a method for manufacturing a VCR, which includes inertness In a solvent, 1,3-butadiene cis- 丨 / polymerized in the presence of a catalyst system made of water, a soluble compound, and an organoaluminum chloride (representative formula Ami); then in In the same reaction system, the 3, butadiene syndiotactic-1,2-polymer was polymerized in the presence of syndiotactic 1, 2_ polymerization catalyst system. The syndiotactic-u-polymerized catalyst system was self-soluble lead. Compounds, organoaluminum compounds (representative formula AIR3), and carbon disulfide. JP-B-62-171 > JP-B-63-36324 ^ JP-B-2-3 7927 > JP-B-2-3808 1 And JP-B-3-63566 discloses a method for manufacturing a VCR, which comprises polymerizing cis-3,4-dioxane cis 4,4 in the presence or absence of carbon disulfide; and a Contains a method for making K VCR, recovering unreacted 1,3 _ succinic acid and inert organic solvents from carbon monosulfide, and recovering and reusing non-carbon sulfide-free, succinic acid and inert organic solvents without carbon disulfide. Jp-B -4_488 15 Reveals excellent tensile stress and flex crack growth resistance VCR 'It can provide a rubber compound showing a small die swell ratio and a vulcanization compound suitable as a tire sidewall . A conventional method of gas-k VCR involves polymerization in an inert organic solvent such as an aromatic hydrocarbon such as benzene, monobenzene or xylene. The use of these solvents will increase the viscosity of the polymerization system, which is detrimental to mixing, heat transfer, transportation and so on. In addition, the recovery of solvents requires a very high amount of energy. Similar to the production of cis-1,4-polybutadiene, when using a high boiling point compound as a molecular weight tincture to produce VCR, for economical and product quality, the high 200413413 boiling point compound should preferably be separated and recovered for reuse, but The recovery of homemade polymers requires the use of very high amounts of energy. JP-A-2000-44633 discloses a method for manufacturing a novel VCR, which comprises polymerizing 1,3-butadiene cis 1,4 in an inert organic solvent mainly containing a C4 fraction in the presence of a catalyst system, The catalyst system includes a tooth-containing organoaluminum compound, a collapsible cobalt compound, and water; and in the obtained reaction mixture, in the presence of syndiotactic-1, 2-polymerization catalyst, sintered diatomic syndiotactic], 2_ For polymerization, the syndiotactic-1,2-polymerization catalyst is prepared from a soluble cobalt compound, a trialkylaluminum compound, and carbon disulfide. The VCR prepared by this method is a syndiotactic 2-polybutadiene composition, which is composed of 3 to 30% by weight of boiling n-hexane insoluble fraction and 70 to 97% by weight of boiling n-hexane soluble fraction. Made up of. Boiling n-hexane insoluble fractions are dispersed syndiotactic in the form of short-fiber crystals, 2_ hydrobutene, while boiling n-hexane soluble fractions have cis content of 90% or more cis_ι, 4_ Polybutadiene. However, during the polymerization of 1,3-butanefluorene, the polymer in the manufacture is particularly easy to gel in the absence of aromatic solvents because of its double bonds. When the polymerization is carried out at atmospheric pressure, the reaction temperature must be lowered in order to lower the boiling point of 1,3-butanefluorene. And the sister-in-law < w two-catalyst system has lower polymerization catalyst activity at low temperature. Therefore, it must be improved. [Summary of the Invention] The present invention provides a method for stably manufacturing a total of two polymers with the required amount of>, ,,, and other materials. Wanwei does not use health and health. Aromatic solvents which are unfavorable, Η, / ^, and must use a large amount of energy before they can be recycled and reused. 86180 200413413 Another object of the present invention is to provide a novel method for manufacturing a VCR. The VCR comprises a cis-1,4 polymer and a syndiotactic-1,2 polymer, and is produced by polymerization of 1,3-butadiene. Low gel fraction. The present invention provides a method for manufacturing a conjugated difluorene polymer, which comprises polymerizing a conjugated diene monomer in the presence of a catalyst system, the catalyst system comprising (A)-a compound, (B)-a periodic table Organometallic compounds of Group 13 elements, and (C) water, wherein the molecular weight of the conjugated diene polymer is controlled by any of the following methods; (I) a method comprising the steps of (1) a non-cyclic (2) —Cyclic cyclic diene, and (3) —A compound selected from the group consisting of compounds having a cumulative double bond is added to a polymerization solvent as a molecular weight modifier, and (II) a method that (III) A method comprising adding a polymerization solvent and a compound containing acyclic olefins to a polymerization solvent as a molecular weight regulator. (IV)-a method comprising contacting a polymerization solvent with (D)-acyclic State 晞 and (E) —Self-cyclic conjugated diene with accumulation The molecular weight modifier of the compound selected from the group consisting of double-bonded compounds is contacted, the concentration of acyclic olefin is adjusted by gas-liquid equilibrium, and the obtained polymerization solvent containing the molecular weight modifier is used, (V)-a method comprising Use a non-cyclic olefin as a molecular weight regulator and control the evaporation ratio of the non-cyclic olefin fed into the polymerization vessel to 30 mol% or less, and -10- 86180 200413413)-Wanfa '/ ... use (D ) A non-cyclic olefin and (E)-selected from the group consisting of cyclic conjugated dibasic and compounds with cumulative double bonds contact as molecular weight regulators' and will feed the non- The ring-shaped evaporation ratio is controlled to zero (0). The present invention also provides a method for preparing polybutadiene, which comprises polymerizing to produce a cis · M polymer, followed by synthesizing 1,3-butadiene syndiotactic polymer in the same reaction system, and 2 polymerizing to produce a polybutadiene. The "regular polymer" in which the cis-1,4 polymer is manufactured by the above-mentioned method of producing a conjugated diene polymer (any-one method, and a catalyst system containing a sulfur compound is used as the syndiotactic-1, 2 polymer catalyst. [Embodiment] The cobalt compound used as the catalyst component (A) in the present invention preferably includes a palladium salt and a cobalt complex. Tejia compounds include salts such as cobalt chloride, cobalt bromide, nitrate, octanoic acid (ethylhexanoate), cyclopropane acid, acetic acid, and cobalt malonate; diethylacetone, cobalt Cobalt acetoacetone, (ethyl acetoacetate) cobalt; triarylphosphine or trialkylphosphine complexes of cobalt dentates; organic base complexes such as thallium complexes and picoHne Complexes; and ethanol complexes. Group 13 (Periodic Table) metal organic compounds using A Benzoamine as the catalyst component (B) include organoaluminum compounds. Preferred organoaluminum compounds include trialkylaluminum (eg, dimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, and tridecylaluminum); organoaluminum, such as Dimethyl aluminum chloride (for example, dimethyl aluminum chloride and diethyl aluminum chloride, dialkyl aluminum bromide, sesquichloro alkyl aluminum (for example, ethyl aluminum sesquichloride), sesqui bromide Alkyl aluminum, alkyl aluminum dichloride (for example, 'ethyl aluminum dichloride); and organoaluminum hydride (for example, 86180 -11-200413413 IL diethyl ester, dibutyl ethyl hydride * aluminum, and Silsesquiethylaluminum hydride). These organoaluminum compounds can be used alone or in combination, and more than one kind can be used in combination. The mole of component ⑻ and component 佳 is better than 0.001 to 5000, and more than 2000. The molar ratio of component VII to water as component (C) is preferably 0: 7, more preferably: 0.8: 4, particularly preferably: 1: 3. The method for manufacturing a total of two vehicles according to the present invention includes Conjugate dilute polymerization in the presence of catalyst systems prepared from components ㈧, ⑻, and (C), and at the same time control molecular weight by any of the methods (i) to (VI) above. 3 [I] Method (I) Non-cyclic compounds that can be used in molecular weight control methods include b-associated smoke. Examples of acyclic diene are ethyl #, allyl, i-butyl, iso-butyl, isobutyl, 1-Hexyl, heptyl, octane, 丨 _nonene, budecane, bu ten ―ene 1-undecene, 4-methyl_;! _Pentene, pentadiene, ′ 5 · hexane Diacetyl, 1,7; octadi, decanedio, dodecadi, phenylethyl, dipropyl benzene and diallyl benzene, especially acetam. It can be used in Wanfa (I) The cyclic non-conjugated diene (2) includes 丨, 4_cyclohexadiene, L, 5; cyclooctane = ene, cyclodecadiene, cyclododecadiene, 1,5,9-ring Dodecylene, monopentadiene, 2,5_orbornadiene, ethyl orthobornadiene and vinylorbornene, with 丨, 5 _cyclooctadiene and 2,5 _orbornyl Dipyridine is particularly preferred. Compounds with cumulative double bonds that can be used in method (I) include propadiene, stilbene diene, 1,2-butanefluorene, it glutarine, it hexamethylenediamine, and acetone. Octadiene, especially propadiene and 丨, butadiene. (1) acyclic olefin, (2) cyclic non-conjugated diene and (3) with cumulative double bonds 86180 -12- 200413413 The molecular weight regulator selected from the group consisting of 2 compounds can be added in any amount 'preferably sufficient to obtain the desired molecular weight. Denier can be used as a polymerization solvent. The molecular weight regulator is added around the mouth Examples of the order of the catalyst components and catalysts are not shown in the following. Φ / 心 (〇 In the presence or absence of the conjugated dilute monomer to be polymerized, the molecular weight regulator, and then the component ( C) Add to a mixture containing an inert organic solvent. Then, add the components (A) and (B) in any order. The compound (-) is added to the conjugated diene monomer with or without polymerization. In the presence of component (C), the molecular weight modifier is then added to a polymerization solvent containing an inert organic solvent. Thereafter, components (A) and (B) are added in any order. (m) Add component (B) to a polymerization solvent containing an inert organic solvent in the presence or absence of a conjugated diene monomer to be polymerized. The molecular weight modifier is added in any order. Add group 2 last) Each contact group can be added after aging. Particularly preferred is to allow components (B) and (c) to age. The aging of components (B) and (C) is to mix them into an inert organic solvent in the presence or absence of a conjugated diene monomer to be polymerized 'and maintain the mixture at -50 to 80. 〇 'is preferably from 10 to 50. (: From the next 001 to 24 hours, preferably from 0.05 to 5 hours. Each catalyst component can be used in four ways supported by inorganic compounds or organic polymers. A total of two monomers to be polymerized Including I, butadiene (boiling point (hereinafter referred to as bp) · · 45 C), isoprene (· · 34 ° C), 1,3-pentane (浠: 86180 -13-200413413) 2 Ethyl-1,3-butadiene r, 2,3-dimethylbutadiene (_: 69 ...), 2methylpentadiene (bp: 75.0, 3-methylpentadiene m), methylpentane, and 2,4H (bP: peach). Among them, it is preferable to mainly contain fluorene, Greek /, and carbene monomers. These monomer components can be used alone or in combination of two kinds. The combination of the above is used. The conjugated diene monomer fed into the permanent-cooperative system can be the monomer to be polymerized. In the latter case, the polymerization system can remain with 1 part of the monomer or dissolve the remaining part. In addition to a total of diene, the monomer may contain: amount, non-cyclic monoolefins such as ethylene, propylene, butene, butene: 2,, methacryl], 4-methylpentamidine-1 , Dilute -1 or dilute -1, ring-shaped single Greek, ring-diluted or original borneol and 7 Aromatic ethylene compounds to produce Λ_association, alpha-methylstyrene, non-co-diene such as di-coating: ~, 5_ethylidene_2_orbornene or hexadiene, and the like单 :: Γ includes, but is not limited to, overall polymerization (using a total of two dioxin solution polymerization: for three dibutyl ether: first: polymerization solvent) and solution polymerization. It is used to include aliphatic hydrocarbons such as butane Lithium, pentamidine, ... and ... like hydrocarbons such as cyclopentanyl and cyclohexane, the above-mentioned hydrocarbons ~ such as cis_ 2 丁, 膝 # g 4 1 ^ polymerization solvents Dingzhi and trans-2_ Ding Fu. It is best not to use aromatic compounds ^^ (bp: 81〇C) ^^^-2T # (bp: 3.7 take trans · 2-butyrate (bp: Γ〇 is very suitable. Sewer :: Zhao Erjiao The best line is from -3 ° to 15 ° (rc, especially 3. to 100t. Take a trowel clock to 12 hours, especially 5 minutes to 5 hours. First use order-after a period of time, if any If necessary, it can be followed by pressure release of poly 86180 -14- 200413413 container and post-treatment of product polymer, such as washing and drying. [II] Method (II) can be used for molecular weight control method (11), with boiling point lower than conjugate Diene Compounds such as nitrogen and Ικ 合 / gluten include nitrogen, 1-associated tobacco, and 1,2-di-dimethyl tobacco. More specifically, compounds with boiling points lower than conjugated diene monomers and polymerization solvents include hydrogen (bP: -253 ° C), acetamidine (bp: -104 ° C), propylene (bp: · 48 ° C), 1-butene (bp: -6.3.〇, isobutylamidine (bp: -7 ° C) , Propadiene (bp: -3 4 ° C), and 1,2-butanedione (bp: irc), with ethylene being particularly preferred. The compound having a stagnation point lower than that of the conjugated difluorene monomer and the polymerization solvent may be added in any amount, preferably in an amount sufficient to obtain a desired molecular weight. This compound can be used as a polymerization solvent. The molecular weight control in the method (II) can be performed in the same manner as in the method ⑴, but using the above-mentioned compound as a molecular weight regulator. [III] Method (III) Non-cyclic olefins which can be used as molecular weight regulators in the molecular weight control method (III) include those mentioned in the related method (I). In the method (II), the polymerization solvent and the acyclic olefin are first brought into contact with each other in the mixing tank, and the concentration of the acyclic fluorene is adjusted by gas-liquid equilibrium. It is recommended to shorten the time for the mixture to reach gas-liquid equilibrium by, for example, foaming a non-cyclic associated gas through a polymerization solvent or increasing the gas-liquid contact area with a wetted wall or material. The concentration of acyclic olefin in the polymerization solvent varies with the polymerization solvent and the acyclic fluorene, and the contact conditions. The concentration is the concentration reached at the gas-liquid age at, for example, a gaseous ethyl acetate partial pressure of 3 kPa, preferably G.G2, 2 MPa (under 35 t). In this example, the concentration of the non-cyclic olefin in the obtained non-cyclic fluorene-containing solvent 86180 -15-200413413 is preferably from 0 to 5 wt%. Within range. According to the method (III), the molecular weight modifier can be uniformly added to the polymerization system 'so that stable polymer production can be performed. The molecular weight control of the method (III) can be performed in the same manner as in the method ⑴, and the acyclic olefin-containing solution is used as a polymerization solvent. [Iv] Method (IV) Non-mounting olefins, cyclic non-conjugated difluorene, and compounds with cumulative double bonds that can be used as components (D) and (E) in molecular weight method (IV) include the above The acyclic olefin (丨), the cyclic non-conjugated diene (2), and the compound (3) having a tired and double bond are used in the method (I). f. In the method (IV), the group consisting of a polymerization solvent, a non-cyclic association as the component (D), and a compound having a cumulative double bond from a non-conjugated diene and a compound as a component). The selected compound is first contacted in the mixing tank. The concentration of the non-cyclic hydrazone is adjusted by gas-liquid balance. It is recommended to increase the liquid contact area by, for example, foaming non-%-like gas through a polymerization solvent or using a wetting wall or filler to shorten the time for the mixture to reach gas-liquid equilibrium. Stomach *-The concentration of acyclic amidine in the polymerization solvent depends on the conditions of the polymerization solvent and acyclic contact. The concentration is preferably, for example, gas phase weight Γ 2 MPa (35 ... lower) '. .01 to. Refers to Ning C) down gas is the concentration reached by the scale. In this example, the concentration of the non-cyclic olefin in the obtained night dose is preferably within a range of 3.0 VO 3 times IVO. As for " T3), it is better to use the ingredients as mol, and more preferably 1 · 0.0001 to 1. Wen Jia According to the method (IV), the molecular weight regulator can be added to the polymerization system 86180 -16- 200413413 ’in order to make stable polymer production. The order of adding the molecular weight modifier and the catalyst component is not particularly limited. Examples of the order of addition are shown below. (0) In the presence or absence of the conjugated dimer monomer to be polymerized, the molecular weight modifier components (D) and (E) are added to a polymerization solvent containing an inert organic solvent. Component (C) is then added Finally, add components (A) & (B) in any order. (Ii) In the presence of a total of two dilute monomers that are or polymerized, add component (C) and component (B). Add in this order to a polymerization solvent containing an inert organic solvent. Then add the molecular weight modifier components (D) and (E). Finally add component (A). (Iii) Conjugate with or without polymerization In the presence of a diene monomer, component (c) and component (B) are added in this order to a polymerization solvent containing an inert organic solvent. Then, the molecular weight modifier component (D) is added. Finally, the component (A) and molecular weight modifier component (E) are added. The molecular weight control of method (IV) can be performed in the same manner as method ⑴, but using the above-mentioned solution containing a molecular weight modifier as a polymerization solvent. [V] Method (V) Can be used in molecular weight control method (V) as molecular weight-regulating swordene including the acyclic method used in the above method ⑴ (1) Mentioned. The non-cyclic association may be in any amount, preferably ^ ^ ^ ^ ^ ^ ^ 乂 乂 乂 乂 乂 乂 to add the amount of molecular weight required. This compound can be used as a polymerization solvent. In the method ( V), in the polymerization container. T non-% state ~ meaning evaporation ratio is Moor% or less, preferably disaster, in Igen soil 30 7 to know the amount of non-cyclic association into the container 86180 -17 -200413413 prevails. After this control, the knife can be used in a stable manner over time. The molecular weight control of method (V) can be performed in the same way as method ⑴, but only using non-cyclic materials as molecular tincture and Limit the evaporation ratio of non-ring-shaped women in the polymerization container to 3 〇 簟 jp 〇 / n 戎 0 π,, υ 旲 斗 / ° or less, whichever is the amount fed into the container. [VI] Method (VI) Compounds which can be used as molecular weight control method (VI) as acyclic olefins (a), (e),% -shaped non-conjugated dibasic compounds, and compounds with cumulative double bonds, including those related to acyclic diluents for permethrin ⑴, ring-shaped non-common dioxins and those with cumulative double bonds (mentioned in compound (3)., (VI) Zhongyonghe 4③ of ⑼ The evaporation ratio of cyclic association is controlled to the amount of non-cyclic association in the container. After this control, the molecular f can be controlled in a stable manner with the passage of time. Method (v) is performed in the same manner, but using "non-cyclic" and "self-cyclic non-co-biene" and a compound having a cumulative double bond (a compound selected from the group consisting of compounds as a molecular weight regulator) and polymerizing The evaporation ratio of non-ring rhenium in the container is controlled to zero, which is based on the amount of silver in the passenger. The production and microstructure of conjugated diene produced by Ben Maoming depends on the type of catalyst and The polymerization conditions vary, but the molecular weights of the products in total can be controlled by the methods (I) to (VI) above. X The polyconjugated diene polymer produced by the present invention includes cis- ^ polybutadiene ~ 's cis-1,4-structure content is preferably 80% or more, more preferably 86180 -18- 200413413 or above, particularly preferred is 96% or above. The co-diene polymer prepared by the present invention preferably has physical properties satisfying the following relationship (1), preferably the following relationship (2), and more preferably the following relationship (3). 〇5xML14-4 < Tcp < 4xMLi + 4 (1) 0.5xML1 + 4 < Tcp < 3.5xML1 + 4 (2) 1.0xML1 + 4 < Tcp < 3.5xML1 + 4 (3) where ML! +4 represents Mu Viscosity in Moon liquid. Ey) Viscosity, and Tcp stands for dissolving in 5% toluene. The polymerization method of the present invention can stably produce an intrinsic viscosity [η] of 0 to 20 (measured in toluene at 30 rpm). ) Of Ju Ding Er Yi. In addition, the polymerization method of the present invention can stably produce polybutadiene having a polystyrene-equivalent average molecular weight of 10,000 to 4,000,000 (measured by GPC). The method of the present invention for producing a polybutadiene composition will then be explained. A method for manufacturing a polybutadiene composition includes polymerizing 153-butadiene cis 丨, 'polymerized to produce a cis_ 丨, 4 polymer according to the method for manufacturing a total dipolymer, and combining 1, 3- Butadiene is polymerized in the same polymerization system in the presence of a catalyst system containing sulfur compounds to syndiotactic-1,2 to produce syndiotactic-1,2 polymers. In the cis-1,4 polymerization, the amount of the compound used as the group (A) is usually from lxicr7 to ΐχΐ (Γ4mol, preferably χίο · 6 to lxio · 4mol, for each mole Diene. The cis-1,4 polymerization is preferably carried out at atmospheric pressure or 10 atmospheres (G) and _30 to 100 ° C, especially 30 to 80 ° C for 10 minutes to 12 hours, especially 20 minutes. To 6 hours. 86180 -19- 200413413 The cis-1,4 polymerization is preferably carried out until the polymer concentration reaches $ 2 to 26% by weight. Use a single polymerization vessel or two or more vessels connected in series. The polymerization system keeps stirring during the reaction. The polymerization vessel includes a vessel equipped with a stirrer designed for stirring highly viscous liquids, such as the one described in JP-B-40-2645. Gel formation can be suppressed during polymerization, and gel inhibitors can be used. The resulting cis-M polymer generally has a cis-q, 4 structure of 90% or more, preferably 95% or more, and a Mooney viscosity (ML) +4, measured at 10 (rc) 'hereinafter sometimes referred to as "from 10 to 13, preferably 15 to 80, and carefully Contains gel fraction. If necessary ', an additional amount of 1,3-butane bromide r can be added to the resulting cis 4,4 polymerization mixture. Then, the polymerization system is subjected to syndiotactic-2-2 polymerization. A catalyst system using a sulfur-containing compound is used as a syndiotactic 4,2-polymerization catalyst. The catalyst system containing a Swiss compound includes a catalyst system including a trialkylaluminum compound, a sulfur compound, and a cobalt compound as required. Sulfur compounds include carbon disulfide, phenyl isothiocyanate, and xanthic acid, and carbon disulfide is preferred. The three-carbon compounds and the cobalt compounds include those mentioned above regarding cis-1,4 polymerization. Θ Three-carbon The amount of the compound to be used is preferably 0.1 millimolar or more, especially 0.5 to 50 millimoles, for each mole of butadiene. The sulfur compound is preferably water-free. The sulfur compound is preferably used in a concentration of 20 millimoles or less, especially 0.01 to 10 millimoles. 86180 -20- 200413413 The reaction temperature for syndiotactic-1, 2 polymerization is from 0 to 100 ° C, preferably from 10 to 100. ° C, more preferably 20 to 100 ° C. 1,2-polybutadiene obtained by polymerization of 1,2 The yield can be obtained by adding 1 to 50 parts by weight, preferably 1 to 20 parts by weight of 1,3-butadiene per 100 parts by weight of the reaction system to the reaction system before syndiotactic-1, 2 polymerization. Increased. Polymerization time is preferably from 10 minutes to 2 hours in terms of average retention time. Polymerization of 1,2 is preferably performed until the polymer concentration reaches 9 to 29% by weight. Use a single polymerization vessel or two or more Containers connected in series. The polymerization system in the container keeps stirring during the 1,2 polymerization. Since the polymerization system will become more and more sticky and stick to the reaction container during the 1,2 polymerization, it is better to use A polymerization vessel equipped with a stirrer designed for stirring highly viscous liquids, such as one described in JP-B-4-2645. After the predetermined degree of polymerization has been reached, known antioxidants can be added in the usual manner. Useful antioxidants include phenols such as 2,6-di-tertiary-butyl-p-cresol (BUT), hydrazones such as trinonylphenylsulfinite (TNP), and sulfur types such as 3, 3, -Lauryl thiodipropionate (TPL). These antioxidants can be used alone or in combination of two or more kinds. The antioxidant is added in an amount of 0.001 to 5 parts by weight to 100 parts by weight of VCR. A polymerization terminator called a short-stopper is then added to stop the polymerization reaction. For example, move the polymerization reaction mixture to a separate tank and pour a large amount of a polar solvent, such as an alcohol (such as methanol or ethanol) or water, or an inorganic acid (such as hydrochloric acid or sulfuric acid), an organic acid (such as acetic acid or Benzoic acid) or hydrogen chloride gas is introduced thereinto to terminate the polymerization reaction.

若有需要,將反應容器中之壓力釋除,並將製得之VCR 86180 -21 - 200413413 分離、洗滌及乾燥。 所得VCR較佳係由(丨)丨至3〇重量%之沸騰正-己烷不溶性 名田心(ΗI)及(i i) 7 〇至9 9重量%之滞騰正-己垸可溶性館份戶斤 組成。滩騰正-己烷可溶性餾份較佳包含具9〇%或以上觸式 結構之順式-1,4-聚丁二晞。沸騰正-己烷不溶性餾份較隹具 有熔點180至215它。VCR在100°C下之ML為20至150,較隹 25至1〇〇。VCR中之間規-丨义聚丁二烯係均勻分散於噸式 _1,4_聚丁二烯基體中之微細晶體。 、工If necessary, release the pressure in the reaction vessel, and separate, wash and dry the obtained VCR 86180 -21-200413413. The obtained VCR is preferably from (丨) 丨 to 30% by weight of boiling n-hexane insoluble name Tianxin (ΗI) and (ii) 70 to 99% by weight of stagnation positive-hexanine soluble ingredients. Jin composition. Tantan n-hexane soluble fractions preferably contain cis-1,4-polybutadiene having a contact structure of 90% or more. Boiling n-hexane insoluble fractions have a melting point of 180 to 215 compared to tritium. The ML of VCR at 100 ° C is 20 to 150, which is more than 25 to 100. The syndiotactic-synthetic polybutadiene in VCR is a fine crystal uniformly dispersed in a ton-type 1,4-polybutadiene matrix. ,work

本發明所得VCR適合在需要機械特徵及耐磨性之用途4 輪I兀件例如胎面、侧壁、硬襯、珠狀填料、内襯及胎身 軟管、皮帶及其他多種工業另件等方面作為橡膠材料。/ 這些用途而言,VCR可單獨或與其他合成橡膠或天然椟f ‘混使用,及若有f要,用工程油增量及與填料(例如,膠 黑)、硫化劑、硫化加速劑及其他常用添加劑混合,繼、死 仃I化作用。本發明之VCR也可用作為塑膠改質劑。、C 本發明現將參照實例加以更詳細說明。在實例中 得聚丁二稀之物質係如下測量。 〃、 ,所製 1)微結構 利用IR光譜分析法作分析,並自74〇 cnrl (順 構),967⑽](反式」,4-結構)及911 ‘(1,2'结,結 基))之吸收強度之比測定。 σ (乙烯 2 )特性黏度[η ] 在30°C下在甲苯溶液測量。 3)Tcp(在甲苯溶液中之黏度) 86180 -22- 200413413 將重量2.28克之聚合物溶解於50 ml甲苯中。以堪農-芬斯 克(Cannon-Fenske)黏度計No· 400,使用黏度計校正之標準 流體(根據JIS Z8 8 09),在25°C下測量甲苯溶液之黏度。 4) 慕尼(Mooney)黏度(ML1 + 4,l〇〇°C) 根據JIS K6300測量。 5) 正己烷不溶性餾份(HI) 使用索格利特(Soxhlet)萃取器。將重量2克放入由濾紙製 成之套管中,並以200 ml之沸騰正-己烷萃取4小時。計算 套管中之殘渣之重量百分比。 6) HI之比濃黏度(Reduced specific viscosity)[r(sp/c] 以優比洛德(Ubbellohde)黏度計No· 50在135°C下測量。 使用0.2 g/dl沸騰正-己烷不溶性餾份在四氫化荼中之溶液。 7) HI之熔點及融合熱 自DSC圖表之峰頂溫度及峰區域測量。 8) 乙烯分壓 使用壓熱鍋試驗測量進料摻混物(feedblend ; fb)在乙烯 吸,塔m)之溫度條件τ之氣壓。自總力減除fb氣恩 所得之數值即取為乙婦之分壓。 9)乙埽蒸發比 在聚合容器中之溫度及壓力條件下加入之乙締之蒸發比 係精混合溶液之氣-液平衡計算而得。蒸發比為〇莫耳%之壓 力即取為完全之冷凝壓。 {氣相乙缔(莫耳)/(氣相乙烯+液相 乙烯·蒸發比(莫耳〇/0)= 乙烯(莫耳))}χ1〇〇 86180 -23- 200413413 氣-液平衡計算係根據以下方程式進行: P = RT/(V-b)-a/V(V + b) 其中p為壓力;v為體積;τ為溫度;R為氣體常數;a&b為 取決於混合溶液組成及溫度之變數(Chem. Eng· Sci.,v〇1. 27 (1972), 1196-1203)。 (10)連續聚合作用中分子量控制之穩定性 每小時自聚合停止容器採取一聚合系統樣本,予以乾燥 並測I慕尼黏度。當一系統顯示慕尼黏度在任何連續6小時 期間内之變化在5點以内,分子量控制穩定性即判定為良 好。 實例1 在一經氮清洗之1 · 5升壓熱鍋中,放入由2 i 〇 ―環己烷、 265 ml 2-丁烯及230 ml丁二烯所組成之溶液。將水加入至 水濃度為47 mg/卜並以700 rpm將溶液攪拌3〇分鐘。將溶液 酿度調整至25C,並將0.5 kg/cm2之乙烯引入其中。5分鐘 後’知2.2 ml之鼠化一乙基銘(DEAC)之1 mmol/1環己:):完溶液 加入’繼之攪拌5分鐘。將溶液溫度升高至58°c後,將5.6 ml 之辛酸鈷(Co(Oct)2)之1 mmol/1環己烷溶液加入,以啟動聚 合作用。在60°C下經25分鐘聚合後,將5 ml含有抗氧化劑 之1 ·· 1乙醇及庚烷之混合物加入以停止反應。將壓熱鶴中 之壓力釋除,並將聚合混合物倒入乙醇中以回收聚一 晞,其在5 0°C下真空乾燥6小時。所得結果顯示於表1。 實例2 以實例1相同方式製備聚丁二烯,但改變加入之乙埽之量 -24- 86180 至 .0 kg/( 實例3 em。所得結果顯示於表i 至1.5 實例4 X貝例1相同方式製備取一 kg/cm2。 1 ^ 水丁—烯,但改變加入之乙烯之量 所得結果顯示於表i。 以爲例1相同方式製備嘹 —乂 至2 〇 ],’ 丁 —埽,但改變加入之乙婦之量 • g/em2。所得結果顯示於表i。The VCR obtained by the present invention is suitable for applications requiring mechanical characteristics and abrasion resistance. 4 round I elements such as treads, sidewalls, hard linings, bead fillers, inner liners and tire hoses, belts, and other various industrial parts, etc. Aspect as a rubber material. / For these applications, VCR can be used alone or mixed with other synthetic rubber or natural rubber, and if necessary, use engineering oil to extend and with fillers (such as rubber black), vulcanizing agent, vulcanization accelerator and Other commonly used additives are mixed, followed by dysentery. The VCR of the present invention can also be used as a plastic modifier. , C The present invention will now be described in more detail with reference to examples. The polybutadiene obtained in the examples was measured as follows. 〃,, 1) The microstructure was analyzed by IR spectroscopy, and was analyzed from 74〇cnrl (cis-structure), 967⑽] (trans ”, 4-structure) and 911 '(1,2' knot, base )) Determination of the ratio of absorption intensity. σ (ethylene 2) intrinsic viscosity [η] is measured in a toluene solution at 30 ° C. 3) Tcp (viscosity in toluene solution) 86180 -22- 200413413 Dissolve 2.28 grams of polymer in 50 ml toluene. The viscosity of the toluene solution was measured at 25 ° C with a Cannon-Fenske viscometer No. 400 using a standard fluid (according to JIS Z8 8 09) calibrated with a viscometer. 4) Mooney viscosity (ML1 + 4,100 ° C) is measured according to JIS K6300. 5) The n-hexane insoluble fraction (HI) uses a Soxhlet extractor. A weight of 2 g was put into a sleeve made of filter paper, and extracted with 200 ml of boiling n-hexane for 4 hours. Calculate the weight percentage of the residue in the casing. 6) Reduced specific viscosity (r (sp / c) of HI) Measured with Ubbellohde viscometer No. 50 at 135 ° C. Use 0.2 g / dl boiling n-hexane insolubility The solution of the fraction in tetrahydrofuran. 7) The melting point and fusion heat of HI are measured from the peak temperature and peak area of the DSC chart. 8) Ethylene partial pressure The pressure of the feed blend (feedblend; fb) in the ethylene absorption, column m) was measured using an autoclave test. The value obtained by subtracting fb Qien from the total force is taken as the partial pressure of Yifu. 9) Evaporation ratio of acetamidine Evaporation ratio of ethylene added under the conditions of temperature and pressure in the polymerization vessel is calculated from the gas-liquid equilibrium of the refined mixed solution. A pressure with an evaporation ratio of 0 mole% is taken as the complete condensation pressure. {Gas phase ethylene (Mole) / (Gas phase ethylene + Liquid phase ethylene · Evaporation ratio (Mole 0/0) = Ethylene (Mole)) χ1〇〇86180 -23- 200413413 Vapor-liquid equilibrium calculation system According to the following equation: P = RT / (Vb) -a / V (V + b) where p is the pressure; v is the volume; τ is the temperature; R is the gas constant; a & b depends on the composition and temperature of the mixed solution Variables (Chem. Eng. Sci., V. 1.27 (1972), 1196-1203). (10) Stability of molecular weight control in continuous polymerization Take a sample of the polymerization system from the polymerization stop container every hour, dry it, and measure the I Mooney viscosity. When a system shows that the Mooney viscosity changes within 5 points in any continuous 6-hour period, the molecular weight control stability is judged to be good. Example 1 In a 1.5-pressure hot pot purged with nitrogen, a solution consisting of 2 μ-cyclohexane, 265 ml of 2-butene, and 230 ml of butadiene was placed. Water was added to a water concentration of 47 mg / b and the solution was stirred at 700 rpm for 30 minutes. The brewing degree of the solution was adjusted to 25C, and 0.5 kg / cm2 of ethylene was introduced thereinto. After 5 minutes, 2.2 mmol of 1 mmol / 1 cyclohexidine (DEAC) was known :): the solution was added, followed by stirring for 5 minutes. After raising the solution temperature to 58 ° C, 5.6 ml of a 1 mmol / 1 cyclohexane solution of cobalt octoate (Co (Oct) 2) was added to start the polymerization. After polymerization at 60 ° C for 25 minutes, 5 ml of a mixture of 1 · 1 ethanol and heptane containing an antioxidant was added to stop the reaction. The pressure in the autoclaved crane was released, and the polymerization mixture was poured into ethanol to recover the polypropene, which was dried under vacuum at 50 ° C for 6 hours. The results obtained are shown in Table 1. Example 2 Polybutadiene was prepared in the same manner as in Example 1, except that the amount of acetamidine added was -24- 86180 to .0 kg / (Example 3 em. The results obtained are shown in Tables i to 1.5. Example 4 is the same as Example 1 1 kg / cm2 was prepared by the method. 1 ^ water butene, but the amount of ethylene added was changed and the results are shown in Table i. In the same manner as Example 1, 嘹 — 乂 to 2 〇], '丁 — 埽, but changed The amount of Otome added • g / em2. The results are shown in Table i.

Tcp ML 1+4 Tcp/ ML i+4 [η] 3.74 JL17 47 2.49 2.40 48 22 2.18 1.89 __ 22 9 2.75 1.41Tcp ML 1 + 4 Tcp / ML i + 4 [η] 3.74 JL17 47 2.49 2.40 48 22 2.18 1.89 __ 22 9 2.75 1.41

聚合條件: 單體溶液:1,3-丁二烯230 ml,環己垸21〇mi,2_ 丁烯265 ml,DEAC . 3.15 mM ; [Co] : 〇.008 mM ; Al/H20=1.2 ;聚 合溫度·· 6 0 °C ;聚合時間:2 5分 實例5 在一經氮清洗之1.5升壓熱鍋中,放入由21〇 ml環己烷、 265 ml 2-丁烯及230 ml丁二烯所組成之溶液。將水加入至 水濃度為64.5 mg/Ι,並以700 rpm將溶液攪拌3〇分鐘。將溶 86180 -25 - 200413413 液溫度調整至25°C,並將i.2 kg/cm2之乙婦引入其中。5分 鐘後,將2.2 mRDEAC之丄m〇1/1環己燒溶液加入,繼之 攪拌5分鐘。將溶液溫度升高至5 s。 .. r ^ 、 丨门土 M C後,將5.0 ml之辛酸鈷 (C〇(〇ct)2)之i _〇1/1環己^容液加人,以啟動聚合作用。 在60 C下經25分鐘聚合後,將5 ―含有抗氧化劑之i :工乙 醇及庚烷之混合物加入以停止反應。將壓熱鍋中之壓力釋 除,並將聚合混合物倒入乙醇中以回收聚丁二晞,其在5〇 C下真空乾燥6小時。所得結果顯示於表2。 實例6 以實例5相同方式製備聚丁二烯,但改變水之濃度至62 mg/1。結果顯示於表2。 實例7 以貫例5相同方式製備聚丁二烯,但改變水之濃度至57 mg/1。結果顯示於表2。 實例8 、 】5相同方式製備聚丁二烯,但改變水之濃度至* 7 mg/1。結果顯示於表2。 實例9 但改變水之濃度至37 但改變水之濃度至3 3 X焉例5相同方式製備聚丁二烯 =g/1。結果顯示於表2。 貫例10 ^男例$相同方式製備聚丁 § 1結果顯示於表2。 86180 -26 - 200413413 表2 實例號 水 (mg/1) A1/ H20 產量 (g/1) 微結構 Tcp ML1+4 Tcp/ ML1+4 [η] 反式 (%) 乙婦基 (%) 順式 (%) 5 64.5 0.88 95 0.5 0.7 98.8 125 46 2.72 2.45 6 62 0.92 115 0.6 0.8 98.7 105 43 2.44 2.38 7 57 0.99 121 0.6 0.7 98.6 94 39 2.41 2.26 8 47 1.20 114 0.6 0.8 98.7 100 40 2.50 2.30 9 37 1.52 101 0.8 1.3 97.9 62 33 1.88 2.04 10 33 1.72 76 0.9 1.6 97.5 44 27 1.63 1.78 聚合條件: 單體溶液:1.3-丁二婦 230 ml,環己烷 210 ml,2-丁婦 265 ml ; DEAC : 3.15 mM ; [Co] ·· 0.007 mM ;乙烯·· 1.2kg/cm2 ; 聚合溫度:60°C ;聚合時間:25分 實例11 在一經氮清洗之1.5升壓熱鍋中,放入由190 ml環己烷、 240 ml 2-丁烯及320 ml丁二晞所組成之溶液。將水加入至 水濃度為38.5mg/l,並以700 rpm將溶液攪拌3〇分鐘。將溶 液溫度调整至25 C,並將1.5 kg/cm2之乙埽引入其中。5分 鐘後,將2.4 ml之DEAC之1 mm〇l/l環己烷溶液加入,繼之 授拌5分鐘。將溶液溫度升高至58t:後,將3〇如之辛酸鈷 (Co(Oct)2)之1 mmo 1/1環己燒溶液加入,以啟動聚合作用。 在60 C下經3 0分鐘聚合後,將5 ml含有抗氧化劑之i : i乙 醇及庚烷之混合物加入以停止反應。將壓熱鍋中之壓力釋 86180 -27- 200413413 除’並將聚合混合物倒入乙醇中以回收聚丁二烯,其在50 C下真空乾燥6小時。所得結果顯示於表3。 實例1 2 以實例11相同方式製備聚丁二埽,但改變弓丨入之乙晞之 !至2.0 kg/cm2。結果顯示於表3。 實例1 3 以實例11相同方式製備聚丁二烯,但改變引入之乙婦之 量至3 ·〇 kg/Cm2。結果顯示於表3。 表3 實例號 乙烯 (kg/cm2 ) 產量 (g/1) 微結構 Tcp MLi+4 Tcp/ ML i+4 [η] 反式 (%) 乙稀基 (%) 順式 (%) 11 1.5 126 0.9 0.7 98.4 119 48 2.48 2.44 12 2.0 117 0.9 0.7 98.4 56 25 2.24 1.96 13 3.0 100 0.9 0.7 98.3 25 9.4 2.66 1.48 聚合條件: 單體溶液:1,3-丁二烯320 ml,環己烷190 ml,2-丁烯240 ml ; DEAC : 3.2 mM ; [Co] : 0.004 mM ; A1/H20二 1.5 ;聚合 溫度:60°C ;聚合時間:30分 實例14 在一經氮清洗之1.5升壓熱鍋中,放入由21〇 mi環己烷、 265 ml 2-丁烯及230 ml丁二烯所組成之溶液。將水加入至 水濃度為70 mg/:l,並以700 rpm將溶液攪拌3〇分鐘。將溶液 86180 -28 - 200413413 溫度調整至25°C,並將1.1 kg/cm2之乙烯引入其中。5分鐘 後,將1.5 1111之〇£人0:之1则1/1環己烷溶液及151^之三乙 基鋁(TEA)之0.5 mol/1環己烷溶液加入,繼之攪拌5分鐘。 將溶液溫度升高至58°C後,將5.0 mi之辛酸鉛(c〇(〇ct)2)t i mmol/1環己烷溶液加入,以啟動聚合作用。在6〇它下經乃 分鐘聚合後,將5 ml含,有抗氧化劑之i : }乙醇及庚烷之混 合物加入以停止反應。將壓熱鍋中之壓力釋除,並將聚合 混合物倒入乙醇中以回收聚丁二烯,其在5〇。〇下真空乾燥^ 小時。所得結果顯示於表4。 實例1 5 以實例14相同方式製備聚丁二缔,但改變水之濃度至63 mg/1。結果顯示於表4。 實例1 6 以貫例14相同方式製備I 丁二烯,但改變水之濃度至$ 7 mg/l。結果顯示於表4。 實例1 7 以貫例14相同方式製備I 丁二缔,但改變水之濃度至4 7 mg/l。結果顯示於表4。 29、 86180 200413413 表 4 實例號 水 (mg/1) A1/ h2o 產量 (g/i) 微結構 Tcp ml1+4 Tcp/ MLi+4 [η] 反式 皿 乙稀基 (%) 順式 (%) 14 70 0.81 44 0.5 0.8 98.8 149 46 3.24 2.46 15 63 0.90 113 0.7 1.0 98.3 101 44 2.30 2.29 16 57 1.00 94 0.7 1.3 98.0 74 39 1.90 2.06 17 47 1.21 70 0.9 1.6 97.6 55 33 1.67 1.89 聚合條件: 單體溶液·· 1,3-丁二烯230 ml,環己烷210 ml,2-丁烯265 ml ; DEAC : 2.1 mM ; TEA : 1.1 mM ; [Co] : 0.007 mM ; 乙烯·· 1·1 kg/cm2 ;聚合溫度:60°C ;聚合時間:25分 實例1 8 在一經氮清洗之1 ·5升壓熱锅中,放入由1 75ml環己燒、 225 ml 2-丁烯及300 ml丁二烯所組成之溶液。將水加入至 水濃度為70 mg/卜並以700 rpm將溶液攪拌3〇分鐘。將溶液 溫度調整至25°C,並將1·6 kg/cm2之乙烯引入其中。5分鐘 後’將1.5 ml之DEAC之1 m〇i/i環己烷溶液及! 5 —之丁EA 之0.5 己燒溶液加入,繼之攪拌$分鐘。將溶液溫度 升高至58°(:後,將4.31111之辛酸鈷((:〇(〇(^)2)之1111111〇1/1環 己烷溶液加入,以啟動聚合作用。在6(rc下經乃分鐘聚合 後,將5 ml含有抗氧化劑之丨:}乙醇及庚烷之混合物加入 以停止反應。將壓熱財之壓力釋除,並將聚合混合物倒 入乙醇中以回收聚丁二埽,其在5〇。〇下真空乾燥6小時。所 86180 -30- 200413413 得結果顯示於表5。 實例1 9 以實例1 8相同方式製備聚丁二烯,但改變水之濃度至67 mg/1。結果顯示於表5。 實例20 以實例1 8相同方式製備聚丁二婦,但改變水之濃度至63 mg/1。結果顯示於表5。 表5 實例號 水 (mg/1) A1/ h2o 產量 (g/i) 反式 (%) 微結構 乙烯 基(%) 順式 (5) Tcp ML 1+4 Tcp/ML 1+4 [η] 18 70 0.81 58 0.6 0.8 98.6 112 39 2.87 2.3 19 67 0.85 68 0.7 0.8 98.5 115 39 2.95 2.31 20 63 0.90 130 0.7 0.9 98.4 97 40 2.43 2.29 聚合條件: 單體溶液:1,3-丁二烯300 m卜環己烷175 ml,2-丁烯225 ml ; DEAC : 2.1 mM ; TEA : 1.1 mM ; [Co] : 0.006 mM ; 二烯:1.6 kg/cm2 ;聚合溫度:60°C ;聚合時間:25分 實例2 1 在一經氮清洗之1 · 5升壓熱銷中,放入由14 5 ml環己燒、 185 ml 2-丁烯及370 ml丁二烯所組成之溶液。將水加入至 水濃度為66·5 mg/1 ’並以700 rpm將溶液攪拌30分鐘。將溶 液溫度调整至25C ’並將2.0 kg/cm2之乙烯引入其中。5分 -31 - 86180 200413413 鐘後,將2.4 ml之DEAC之1 m〇l/l環己烷溶液加入,繼之攪 拌5分鐘。將溶液溫度調整至58它後,將3〇…之辛酸鉛 (Co(Oct)2)之1 mm〇l/l環己烷溶液加入,以啟動聚合作用。 在6 0 C下經2 5分鐘聚合後’將5 m 1含有抗氧化劑之1 : 1乙 醇及庚燒之混合物加入以停止反應。將壓熱鍋中之壓力釋 除,並將聚合混合物倒入乙醇中以回收聚丁二缔,其在5 〇 °C下真空乾燥6小時。所得結果顯示於表6。 實例22 以實例2 1相同方式製備聚丁二稀,但改變水之濃度至 64.5 mg/1。結果顯示於表6。 實例23 以實例2 1相同方式製備聚丁二稀,但改變水之濃度至6 3 mg/1。結果顯示於表6。 表6 實例號 水 (mg/1) A1/ h2o 產量 (g/1) 微結構 Tcp ML 1+4 Tcp/ML 1+4 [η] 反式 (%) 乙烯 基(%) 順式 (5) 21 66.5 0.85 90 0.5 0.8 98.7 117 40 2.93 2.35 22 64.5 0.88 121 0.6 0.8 98.6 112 41 2.73 2.35 23 63.0 0.90 128 0.6 0.9 98.5 107 42 2.55 2.32 聚合條件: 單體溶液·· 1,3-丁二烯370 ml,環己烷145 ml,2-丁烯185 ml ; DEAC : 2.1 mM ; TEA : 1.1 mM ; [Co] : 0.006 mM ; 二烯:2.0 kg/cm2 ;聚合溫度:60°C ;聚合時間:25分 -32- 86180 200413413 實例24 在一趣氮清洗之1.5升壓熱鍋中,放入由wo瓜〗環己燒、 240 ml 2-丁烯及320 丁二婦所組成之溶液。將水加入至 水濃度為38.5 mg/I,並以700 rpm將溶液攪拌3〇分鐘。將溶 液溫度調整至25。0 qfl.5kg/cm2之乙烯入其中,並將 &quot;^之1,5;環辛二烷(C〇D)加入其中。5分鐘後,將2.4 ml之 DEAC &lt;1 m〇i/i環己烷溶液加入,繼之攪拌$分鐘。將溶液 溫度升高至飢後,將3.0ml之辛酸錄(Cc)(〇ct)2)之imm〇i/i 每己燒溶液加入’以啟動聚合作用。在6(TC下經30分鐘聚 合後,將5 ml含有抗氧化 ^ 匕J之1 · 1乙醉及庚烷之混合物加 入以停止反應。將壓埶鈀 倒入乙醇中以回收力釋除,並將聚合混合物 ^r ^ . .g - ^ ^ —缔,其在50°c下真空乾燥6小時。 所仔結果顯不於表7。 實例25 以實例24相同方式製傜取 備氷丁 一烯,但改變COD之量至32S mg。結果顯示於表7。 i 實例26 但不加COD。結果顯 以實例24相同方式製備聚丁二晞 示於表7。 實例27 但改變乙烯之量至2.0 以實例24相同方式製備聚丁二烯 kg/cm2。結果顯示於表7。 實例28 以實例2 7相同方式製 備氷丁二~,但改變C〇d之量至32〗 86180 -33- 200413413 mg。結果顯示於表7。 實例29 以實例27相同方式製備聚丁二婦,但不加COD。結果顯 示於表7。 實例30 以實例24相同方式製備聚丁二烯,但改變乙晞之量至3.0 kg/cm2。結果顯示於表7。 實例3 1 以實例30相同方式製備聚丁二輝r,但改變COD之量至325 kg/mg。結果顯示於表7。 實例32 以實例30相同方式製備聚丁二烯,但不加COD。結果顯 示於表7。 表7 實例號 COD (mM) 乙烯 (kg/cm2) 產量 (g/1) 微結構 Tcp ML 1+4 Tcp/M L1+4 [η] 反式 (%) 乙烯基 (%) 順式 (%) 24 8.0 1.5 112 0.9 0.8 98.3 38 17 2.24 1.71 25 4.0 1.5 121 0.8 0.8 98.4 61 26 2.35 2.05 26 0.0 1.5 126 0.9 0.7 98.4 119 48 2.48 2.44 27 8.0 2.0 103 0.8 0.8 98.4 25 10 2.50 1.49 28 4.0 2.0 107 1.0 0.7 98.3 36 17 2.12 1.69 29 0.0 2.0 117 0.9 0.7 98.4 56 25 2.24 1.96 30 8.0 3.0 88 0.9 0.8 98.4 15 3.9 3.85 1.20 86180 -34- 200413413 31 4.0 3.0 93 1.0 0.7 98.3 19 5.7 3.33 1.32 32 0.0 3.0 100 0.9 0.7 98.3 25 9.4 2.66 1.48 聚合條件: 早體溶液· 1,3 - 丁二婦3 20 m 1,環己規190 ml,2 -丁蛛240 ml ; DEAC : 3.2 mM ; [Co] : 〇·〇〇4 mM ; Al/H2〇= 1 ·5 ;聚 合溫度:60°C ;聚合時間:30分 實例33 在〆經氮清洗之1.5升壓熱鍋中,加入由i9〇ml環己烷、 240 ml 2 - 丁晞及3 20 ml 丁二晞所組成之溶液。將水加入至 水濃度為 38.5 mg/1,並將 4 ml之 1,2-丁二晞(1,2-Bd)之 1.5 mol/1環己烷溶液加入其中,繼之以7〇〇 rpm攪拌3〇分鐘。將 溶液溫度調整至25°C,將1.0 kg/cm2之乙烯引入其中。5分 鐘後,將2.4 ml之DEAC之1 mol/Ι環己烷溶液加入,繼之攪 拌5分鐘。將溶液溫度升高至58它後,將3〇如之辛酸話 (Co(Oct)2)之1 mmoi/丨環己烷溶液加入,以啟動聚合作用。 在60°C下經30分鐘聚合後,將5 ml含有抗氧化劑之i :工乙 醇及庚烷之混合物加入以停止反應。將壓熱鍋中之壓力釋 除,並將聚合混合物倒入乙醇中以回收聚丁二烯,其在$ 〇 °C下真空乾燥6小時。所得結果顯示於表8。 實例34 以實例33相同方式製備聚丁二烯,但改變欲加入之n 丁二晞溶液之量至2 m卜所得結果顯示於表8。 實例35 以實例33相同方式製備聚丁二晞,但改變欲加入之ΐ2· 86180 200413413 丁二烯溶液之量至1 ml。所得結果顯示於表8。 實例3 6 以實例3 3相同方式製備聚丁二烯,但改變欲加入之1,2_ 丁二烯溶液之量至〇 · 5 ml。所得結果顯示於表8 表8 實例號 (mM) 乙烯 (kg/cm2) 產量 (g/1) -------------—一- 微結構 Tcp ML 1+4 Tcp/M L1+4 [η] 反式 (%) 乙稀基 (%) 順式 33 8.0 1.0 28 1.1 0.8 98.1 18 1.29 34 4.0 1.0 61 0.9 0.8 98.3 55 18.0 3.03 1.89 35 2.0 1.0 94 1.0 0.8 98.2 133 45.3 2.94 2.45 36 1.0 1.0 119 0.8 0.9 98.3 244 65.7 3.71 2.88 聚合條件: 早體浴液· 1,3 -丁 一缔320 ml ’環己燒190 ml,2 -丁稀240 ml ; DEAC : 3.2 mM ; [Co] : 〇·〇〇4 mM ; Al/H2〇二 1 ·5 ;聚 合溫度:6(TC ;聚合時間:30分 實例3 7 在一經氮清洗之1.5升壓熱鍋中,放入由3〇〇 ―環己烷、 380 ml 2-丁烯及320 ml 丁二烯所組成之溶液。將水加入至 水濃度為40 mg/1,並將18㈤之2,5_原冰片二烯(2,5_NbD) 之〇.1111〇1/1環己燒溶液加入其中,繼之以7〇〇叩^授拌3〇分 鐘。將溶液溫度調整至25它,並將丨.25 kg/cm2之乙烯引入 其中。5为ί里後,將3.2ml之DEAC:之1 mol/1環己烷溶液加 -36 - 86180 200413413 入’繼之攪拌5分鐘。將溶液溫度調整至58t後,將2 2ml 之辛酸銘(Co(Oct)2)之5 mmol/1環己燒溶液加入,以啟動聚 合作用。在65 °C下經20分鐘聚合後,將5 ml含有抗氧化劑 之1 : 1乙醇及庚烷之混合物加入以停止反應。將壓熱鎢中 足壓力釋除’並將聚合混合物倒入乙醇中以回收聚丁一 烯,其在50 C下真空乾燥6小時。所得結果顯示於表9。 實例3 8 以貝例37相同方式製備聚丁二晞,但改變厶5-原冰片二缔 溶液之量至3.6 ml。所得結果顯示於表9。 布 實例3 9 、以實例37相同方式製備聚丁二缔,但改變二^原冰片二 溶液之量至5 ml。所得結果顯示於表9。 布 實例40 以實例37相同方式製借取 、灰備聚丁一%,但改變2,5-原冰片一、卜 溶液之量至7.2 ml。所;p从盥% — 〜布 %知結果頒不於表9。 實例4 1 、、办以貝^7相㈤万式製備聚丁二埽,但改變2,5-原冰片 /合履〈I至8.9 m卜所得結果顯示於表9。 實例42 以實例37相同方式製借取 、、 灰備氷丁一丨布,但改變2,5-原冰片 落液之量至1丨· 5 ml。 件結果頜π於表9。 86180 -37- 200413413 表9 實例號 2,5-NBD (mM) 乙烯(kg/cm2) 產量(g/1) ^— 微結構 反式 (%) 乙烯基 (%) 川賦[η] (%) 37 0.18 1.25 120 0.6 1.1 98.3 〗% __38 0.36 1.25 120 0.6 1.1 39 0.50 1.25 120 0.7 1.0 98.2 1 An 40 0.72 1.25 108 0.8 1.2 41 0.89 1.25 87 0.8 1.0 42 1.15 1.25 96 0.7 1.2 — 98.1 1 „ -—^^----- 聚合條件: 單體落液:1,3-丁二缔320 ml,環己烷300 m卜2-丁埽38〇 ml , DEAC : 3.2 mM ; [c〇] ·· 〇·〇π mM ; Ai/h2〇气45 ; 聚合溫度:6 5 °C ;聚合時間:2 〇分 實例43至45 利用圖1設備進行聚合作用以評估連續聚合作用之製程 效能。將進料掺混物(其組成顯示於表1〇)不停地以1〇 ^時 之速度餵入乙烯吸收塔(T1)中。乙烯吸收塔T1中有氣相及 硬相。藉由控制氣相之乙婦分壓,調整液相之溶解乙缔濃 度。猎由塔T1之總壓及溫度及藉質量流量控制器控制之乙 烯進料速度’控制氣相之乙烯分壓並不斷地用氣體色層八 析監測。 曰刀 ”將具有經調整之溶解乙烯濃度之FB&amp; 1〇丨/時之速度送至 罘—谷奋VI及與容器Vl串聯之以下諸容器。將水不斷地加 86180 -38- 200413413 至第一容器VI中,以得表10所示水濃度。將氯化二乙基鋁 (DEAC)餵入第三容器V3(老化容器V3),以得表10所示濃 度。將辛酸鈷(Co(〇ct)2)餵入反應容器R1,以得表10所示水 濃度。將預定量之抗氧化劑及停止劑(乙醇)之混合溶液加 至停止容器SS中以停止聚合反應。將所得聚合物溶液在真 空乾燥器中乾燥以得一聚合物。聚合條件及反應結果顯示 於表10。 比較實例1 以實例43至45相同方式進行聚合作用,但將乙烯加至第 二容器V2中但不加至乙烯吸收塔T1中。所得結果顯示於表 10 ° 實例43所得聚合物隨時間之分子量變化顯示於圖2,而比 較實例1所得聚合物者則顯示於圖3。可看出,在乙烯直接 加至進料摻混物(FB)之比較實例1中,聚合物之分子量(慕 尼黏度)並未隨時間而穩定。實例43則藉由利用氣-液平衡 作乙烯濃度調整,成功地使分子量隨時間之控制達到穩 定。實例44及45代表乙烯吸收塔T1中乙烯分壓之改變。在 這些實例中,所得聚合物之分子量係從實例43之分子量改 變,而同時維持分子量隨時間穩定。 39- 86180 200413413 表10 比較實例1 實例43 實例44 實例45 FB組成(重量%): 1,3-丁二烯 36 31 31 31 丁烯 33 35 35 35 環己烷 31 34 34 34 FB中觸媒組份濃度: DEAC(mmol/l) 2.89 2.89 2.89 2.89 水(mmol/1) 2.07 2.07 2.07 2.07 Co(Oct)2(pmol/l) 8.8 10.6 10.6 10.6 乙晞進料(1/時) 1.25 T1溫度(°c) 35 35 35 35 T1乙烯分壓(MPa) 0.075 0.1 0.15 V3溫度(°C) 35 35 35 35 R1 壓力(MPa) 0.78 0.78 0.78 0.78 R1溫度(°C) 65 65 65 65 容器中FB流速(1/時) 10 10 10 10 丁二烯轉化率(重量%) 51.2 46.7 44.5 45.4 慕尼黏度 34.8 35.2 25.5 12.6 實例46至48 利用圖4設備進行聚合作用以評估連續聚合作用之製程 效能。將進料摻混物(FB)(其組成顯示於表11)不停地以10 1/ 時之速度餵入乙烯吸收塔(T1)中。乙烯吸收塔T1中有氣相 -40- 86180 200413413 及液相。藉由控制氣相之乙烯分壓,調整液相之溶解乙烯 濃度。藉由塔τι之總壓及溫度及藉質量流量控制器控制之 乙烯進料速度,控制氣相之乙烯分壓並不斷地用氣體色層 分析監測。 將具有經調整之溶解乙晞濃度之FB以10 1/時之速度送至 第一容器V1及與容器V1串聯之以下諸容器。將水不斷地加 至第一容器VI中,以得表11所示水濃度。將DEAC餵入第 三容器V3(第一老化容器V3)中,以得表11所示濃度。將原 冰片二烯(NBD)餵入第四容器V4(第二老化容器V4),以得 表11所示水濃度。將辛酸鈷(Co(Oct)2)加至反應容器R1,以 得表11所示濃度。將預定量之抗氧化劑及停止劑(乙醇)之 混合溶液加至停止容器SS中以停止聚合反應。將所得聚合 物溶液在真空乾燥器中乾燥以得一聚合物。聚合條件及反 應結果顯示於表11。 在這些實例中,係使用二種鏈轉移劑(亦即,乙烯及原冰 片二烯)來控制所製備聚合物之分子量。依賴乙晞(因其低 沸點容易蒸發)來控制分子量,視乙烯添加之方式或量而 定,很不穩定。因此,採用利用氣-液平衡之技術來達成穩 定之分子量控制。 結合使用原冰片二烯可使所需之乙烯量減少,因而降低 混合溶液之氣壓,導致裝置内壓力降低。原冰片二烯(其可 加至靠近反應容器之一容器中)之使用可快速控制分子量。 -41 - 86180 200413413 表11 實例 號 46 47 48 FB組成(重量%): 1,3-丁二烯 31 31 31 丁烯 24 24 24 環己烷 45 45 45 FB中觸媒組份濃度: DEAC (mmol/1) 3.6 3.6 3.6 水(mmol/1) 2 2 2 Co(Oct)2(pmol/l) 10.1 10.1 10.1 乙烯進料(1/時) 0.55 0.55 0.55 反應條件: T1溫度(°c) 35 35 35 V3溫度(°C) 35 35 35 R1溫度(°C) 75 75 75 R1 壓力(MPa) 1 1 1 容器中FB流速(1/時) 10 10 10 T1中乙烯分壓(MPa) 0.075 0.075 0.075 NBD進料(ml/時) 0 20 25 結果: 丁二烯轉化率(重量%) 50.3 49.6 47.9 慕尼黏度 60 41.9 23 實例49至52及比較實例2至4 -42- 86180 200413413 利用圖5設備進行聚合作用以評估連續聚合作用之製程 效能。將進料摻混物(FB)(其組成顯示於表12及13)不停地以 10 1/時之速度餵入第一容器VI及與第一容器VI串聯連接 之以下諸容器中。將水不斷地餵入第一容器V1中,以得表 12及13所示水濃度。將預定量之乙烯餵入第二容器V2中。 將氯化二乙基鋁(DEAC)餵入第三容器V3 (用於老化),以得 表12及13所示濃度。將辛酸鈷(Co(Oct)2)加至反應容器R1, 以得表12及13所示濃度。在實例49至52中,反應容器R1之 内部壓力係設定於可控制乙烯之蒸發比至1 0 mol%或以 下。從第一(VI)至反應容器R1之全部容器都控制至具有實 質上相同之内部壓力。將預定量之抗氧化劑與停止劑(乙 醇)之混合溶液加至停止容器SS中以停止反應。將所得聚合 物溶液於真空乾燥器中乾燥而得一聚合物。表1 2及1 3顯示 聚合條件及反應結果。 比較實例2及實例49所得聚合物隨時間之分子量變化分 別圖解顯示於圖6及7。在乙稀蒸發比為48 mol%之比較實例 2中,雖然乙晞係以固定速度餵入,但所得聚合物之分子量 (慕尼黏度)卻隨時間變化。在反應壓力調整至控制乙烯蒸 發比至0 mol%之實例49及50中,聚合物之分子量則隨時間 穩定。在實例49中,當乙烯進料速度在5小時聚合作用後由 1.25 1/時改變至1 1/時時,所得聚合物之分子量即穩定又快 速地改變。 在乙晞蒸發比分別為24 mol%及29 mol%之實例51及52 中,聚合物之分子量則隨時間穩定。相對地,在乙烯蒸發 -43- 86180 200413413 比分別為44 mol%及48 mol%之比較實例3及4中,聚合物之 分子量則隨時間不穩定。 表12 比較實例2 實例49 實例50 FB組成(重量%): 1,3-丁二錦r 36 36 36 丁烯 33 33 33 環己烷 31 31 31 FB中觸媒組份濃度: DEAC (mmol/1) 2.89 2.89 2.89 水(mmol/1) 2.07 2.07 2.07 Co(Oct)2 (μιηοΐ/ΐ) 8.8 8.8 8.8 水乙婦進料(1/時) 1.25 1.25 1 反應條件: Τ1溫度(°c) 35 35 35 V3溫度(°C) 35 35 35 R1溫度(°C) 77 78 78 R1 壓力(MPa) 0.9 1.05 1.05 容器中FB流速(1/時) 10 10 10 乙烯蒸發比(mol%) 48 0 0 10 mol%乙烯蒸發壓力(MPa) 0.92 0.92 0.9 結果: 分子量控制穩定性 差 良 良 -44- 86180 表13 實例51 比較實例3 實例52 比較實例 4 FB組成(重量%): 1,3-丁二烯 36 36 36 36 丁烯 33 33 33 33 環己烷 31 31 31 31 FB中觸媒組份濃度: DEAC (mmol/1) 2.89 2.89 2.89 2.89 水(mmol/1) 2.07 2.07 2.07 2.07 Co(Oct)2 (μπιοΐ/ΐ) 8.8 8.8 8.8 8.8 水乙烯進料(1/時) 1 1.25 1.25 1.25 反應條件: Τ1溫度(°c) 35 35 35 35 V3溫度(°C) 35 35 35 35 R1溫度(°C) 69 69 69 69 R1 壓力(MPa) 0.78 0.77 0.95 0.9 容器中FB流速(1/時) 10 10 10 10 乙晞蒸發比(mol%) 24 44 29 48 10 mol%乙烯蒸發壓力(MPa) 0.83 0.87 1.03 1.03 結J ^ * 分子量控制穩定性 良 差 良 差 200413413 實例53及54與比較實例5及6 利用圖8設備進行聚合作用以評估連續聚合作用之製程 86180 -45 - 200413413 效能。將進料摻混物(FB)(其組成顯示於表14及ι5)不停地以 10 1/時之速度餵入第一容器VI。將水不斷地餵入第一容器 VI中,以得表14及15所示水濃度。將預定量之乙烯餵入第 一谷备V2中。將鼠化一乙基銘(DEAC)银入第三容哭V3 (第 一老化容裔V3 ),以得表14及1 5所示濃度。將原冰片二晞 (NBD)加至第四容器V4(第二老化容器V4)。將辛酸鈷 (Co(Oct)2)加至反應容器R1,以得表14及15所示濃度。將反 應容為R1之内邵壓力係設定於可控制乙婦之蒸發比至零。 從第一(VI)至反應容器R1之全部容器都控制至具有實質上 相同之内部壓力。將預定量之抗氧化劑與停止劑(乙醇)之 化合/谷液加至停止客器SS中以停止反應。將所得聚合物溶 I於真g乾:器中乾燥而得—聚合物。聚合條件及反應結 果也顯示於表1 4及1 5中。 在實例53及54與比較實例5中,係使用二種鏈轉移劑(亦 :P乙婦及原冰片二烯)之組合控制戶斤製備聚合物之分子 里如比較貝例5依賴乙埽(因其低滞點容易蒸發)來控制分 予量’視乙烯添加之方式或量而&amp;,很不穩定。因此比較 =5的U下〈乙缔蒸發比係計算為57削化。/。,而在該反應 :器R1之壓力係在實例53改變,而使乙烯蒸發比減少至 令’進而造成分予量㈣之穩定。在實例54, ^變原冰 片二埽之進料率,在隨時㈣持分子量穩m兄下,造 成所製備聚合物之分子量的改變。 、、曰—使用原冰片二烯可使所需之乙缔量減少,因而降低 匕口 /合液《乱壓’導致與比較實例6比較時裝置内壓力降低 86180 -46- 200413413 使乙烯完全冷凝。因為原冰片二晞可加至靠近反應容器之 一容器中,故分子量控制可快速達成。 表14 比較實例5 實例53 FB組成(重量%): 1,3-丁二烯 31 31 丁稀 24 24 環己烷 45 45 FB中觸媒組份濃度 DEAC (mmol/1) 3.6 3.6 水(mmol/1) 2 2 辛酸鉛(μπιοΐ/ΐ 10.1 10.1 乙婦進料(1/分) 0.55 0.55 VI溫度(°c) 35 35 V3溫度(°C) 35 35 R1溫度(°C) 75 75 R1 壓力(MPa) 0.67 1 容器中FB流速(1/時) 10 10 乙婦蒸發比(mol%) 57 0 乙晞完全蒸發之壓力(MPa) 0.76 0.76 NBD進料(ml/時) 18 18 丁二烯轉化率(重量%) 46.7 45.8 慕尼黏度 26-37 23 -47- 86180 200413413 表15 實例54 比較實例6 FB組成(重量%): 1,3-丁二烯 31 31 丁晞 24 24 環己烷 45 45 FB中觸媒組份濃度 DEAC (mmol/1) 3.6 3.6 水(mmol/1) 2 2 辛酸鉛(μηιοΐ/ΐ 10.1 10.1 乙烯進料(1/分) 0.55 1 VI溫度(°c) 35 35 V3溫度(°C) 35 35 R1溫度(°C) 75 75 R1 壓力(MPa) 1 1 容器中FB流速(1/時) 10 10 乙烯蒸發比(mol%) 0 0 乙晞完全蒸發之壓力(MPa) 0.76 0.85 NBD進料(ml/時) 24 0 丁二烯轉化率(重量%) 45.6 45.3 慕尼黏度 15.4 19.7 實例55 (1)順式-1,4-聚合物之製備 在一經氮清洗之1.5升壓熱鋼中,放入由2 1 0ml環己烷、 86180 -48 - 200413413 2 6 5 ml 2 - 丁烯及2 3 0 ml 1,3 - 丁二錦r所組成之溶液。將水加 入至水濃度為52 mg/1。進一步將二硫化碳及1,5_環辛二缔 (l,5-COD)加至濃度分別為24 mg/1及12.8 mmol/1,繼之以 700 rpm攪拌30分鐘。令溶液靜置5分鐘後,將2.3 ml之氯化 一乙基銘(DEAC)之1 mol/1環己燒溶液加入,繼之攪拌5分 鐘。將溶液溫度調整至58°C,並將6_3 ml之辛酸鈷(Co(〇ct)2) 之1 mmol/1環己悦落液加入其中,以啟動聚合作用。聚合 作用在70C下進行20分鐘。 (2)間規-1,2-聚合物之製備 將3.6 ml之三乙基鋁(TEA)之1 m〇l/l環己烷溶液加至反 應混合物中,並將〇·7 ml之辛酸鈷(Co(Oct)2)&lt;0.05 m〇1/1 甲苯落液加入其中,繼之在60°C下進行聚合作用20分鐘。 知5 ml之含抗氧化劑之1 : 1乙醇及庚燒混合物加入以使聚 合作用停止。將壓熱鍋内部之壓力釋除,並將聚合混合物 倒入乙醇中以回收聚丁二烯,其在5(rc下真空乾燥6小時。 所得結果顯示於表1 6及1 7中。 實例56 (1)順式-1,4-聚合物之製備 在一經氮清洗之1.5升壓熱鍋中,加入由21〇 mi環己烷、 265 ml 2-丁烯及230 ml丨,夂丁二烯所組成之溶液。將水加 入至水濃度為52 mg/1。進一步將二硫化碳及丨,5_環辛二晞 加至濃度分別為24 mg/1及9.2 mm〇i/i,繼之以700 rpm攪拌 30分鐘。攪拌後,將溶液濃度調整至25ι,並將〇·5 kg/cm2 乙缔引入其中。5分鐘後,將2.3 mliDEAC之1 mol/1環己 86180 -49- 200413413 k溶液加入’繼之攪拌5分鐘。將溶液溫度提升至5 81,並 將6.3 ml之辛酸鈷(Co(Oct)2)之1 mmol/1環己烷溶液加入其 中’以啟動聚合作用。聚合作用在70 °C下進行20分鐘。 (2)間規-1,2-聚合物之製備 以實例55-(2)相同方式進行聚合作用。反應條件及結果顯 示於表1 6及1 7。 實例5 7 (1) 順式-1,4-聚合物之製備 以實例56-(1)相同方式進行聚合作用,但1,5-環辛二烯之 濃度降至3.7 mmol/1及乙婦之量升至1.25 kg/cm2。 (2) 間規-1,2-聚合物之製備 以實例55-(2)相同方式進行聚合作用。反應條件令結果顯 示於表16及17。 實例5 8 (1) 順式-1,4 -聚合物之製備 以實例5 6 - (1)相同方式進行聚合作用,但不加1,5環辛二 烯且乙烯之量升至1.75 kg/cm2。 (2) 間規-1,2-聚合物之製備 以實例55-(2)相同方式進行聚合作用。反應條件及結果顯 示於表1 6及1 7。 實例5 9 (1) 順式-1,心聚合物之製備 以實例55-(1)相同方式進行聚合作用。 (2) 間規-1,2-聚合物之製備 86180 -50- 200413413 將3.6 1111之三乙基鋁(丁£八)之1111〇1/1環己烷溶液,2()1^ 水及0·7 ml之辛酸鈷(Co(0ct)2)之〇·〇5 mol/i甲笨溶液依所 述順序加至反應混合物中以在6〇它下進行聚合作用2〇分 鐘。將5 ml含抗氧化劑之i : i乙醇及庚烷混合物加入以二 聚合作用停止。將壓熱鍋中壓力釋除,並將聚合混合物倒 入乙醇中以回收聚丁二烯’其在5〇t下真空乾燥6小時。所 得結果顯示於表1 6及1 7中。 實例60 (1) 順式-1,4 -聚合物之製備 以實例5 6 - (1)相间士 、 、’和问万式進行聚合作用。 (2) 間規-1,2-聚合物之製備 以實例59-(2)相同女4、r / β Λ 一 1主 万式進行聚合作用。反應條件及結果顯 π於表1 6及1 7中。 〜 實例6 1 (1) 順式-1,4-聚合物之製備 以實例57_(1)柏nt 1 )相同万式進行聚合作用。 (2) 間規-1,2-聚合物之製備 以實例59-(2)如η、1、 &quot;万式進行聚合作用。反岸條件及社 示於表1 6及1 7中。 卜片』反L忡什夂、、'口果_ 實例62 (1) 順式-1,4-聚合物之製備 以貝例58·(1)相同方式進行聚合作$。 (2) 間規-I,聚合物之製備 以實例59-(2)鈿π、 冋万式進行聚合作用。反應條件及結果_ 86180 -51 - 200413413 示於表1 6及1 7中。 實例63 (1) 順式-1,4-聚合物之製備 以實例55_(1)相同方式進行聚合作用。 (2) 間規-1,2-聚合物之製備 將3.6 ml之三乙基鋁(tea)之1 mol/1環己烷溶液,11〇 ml 之i,3-丁二婦及ml之辛酸姑(Co(Oct)2)之0.05 m〇l/l甲苯 落液依所述順序加至反應混合物中以在⑼它下進行聚合作 用20分鐘。將5 ml含抗氧化劑之} : i乙醇及庚烷混合物加 入以使聚合作用停止。將壓熱鍋中壓力釋除,並將聚合混 合物倒入乙醇中以回收聚丁二埽,其在5〇。〇下真空乾燥6 小時。所得結果顯示於表1 6及1 7中。 實例64 (1) 順式-1,4 -聚合物之製備 以實例56·(1)相同方式進行聚合作用。 (2) 間規-1,2-聚合物之製備 一以只例63_⑺相同万式進行聚合作用。反應條件及結果顯 示於表1 6及1 7中。 … 實例65 (1) 順式-1,4-聚合物之製備 以實例57-(1)相同方式進行聚合作用。 (2) 間規-1,2-聚合物之製備 以實例63-(2)相同方式進行聚合作用。反應條件及結果顯 示於表1 6及1 7中。 86180 -52, 200413413 實例66 (1) 順式-1,4-聚合物之製備 以實例58-(1)相同方式進行聚合作用。 (2) 間規-1,2-聚合物之製備 以實例63-(2)相同方式進行聚合作用。反應條件及結果顯 示於表16及17中。 表16 實例號 1,4-聚合作用 1,2-聚合作用 產量(g/1) 乙烯 (kg/cm2) l,5-COD(mM) 額外丁二婦(ml) 水(mg) 55 0 12.8 0 0 122 56 0.5 9.2 0 0 124 57 1.25 3.7 0 0 120 58 1.75 0 0 0 122 59 0 12.8 0 20 122 60 0.5 9.2 0 20 124 61 1.25 3.7 0 20 123 62 1.75 0 0 20 126 63 0 12.8 110 0 122 64 0.5 9.2 110 0 119 65 1.25 3.7 110 0 121 66 1.75 0 110 0 122 1,4-聚合條件:單體溶液:1,3-丁二烯230 m卜環己烷210 ml,2-丁烯 265 ml ; CS2 24 mg/1 ; DEAC 3·3 mmol/1 ;水 2.9 -53 - 86180 200413413 mmol/l ; Co(Oct)2 〇·〇0 9 mmoHl ;聚合溫度 7〇 C,水泛時巧 20分。 1,2-聚合條件:TEA 5 mmol/1 ; Co(Oct)2 0.05 mmolM ;聚合 溫度6 0 °C ;聚合時間2 〇分 表17 實例號 聚合物物理性質 55 56 57 58 59 60 61 62 63 64 65 66 ΗΙ(%) 2.3 -^|sp/c 1.40 熔點(°C) 198.9 融合熱(J/g) 1.1 2.6 2.7 2.7 5.9 5.7 6.0 4.3 4.6 4.8 4.7 1.40 1.38 1.37 1.51 6.1Polymerization conditions: monomer solution: 230 ml of 1,3-butadiene, 21 mi of cyclohexane, 265 ml of 2-butene, DEAC. 3.15 mM; [Co]: 0.008 mM; Al / H20 = 1.2; Polymerization temperature · 60 ° C; polymerization time: 25 minutes Example 5 In a 1.5-pressure hot pot purged with nitrogen, put 20 ml of cyclohexane, 265 ml of 2-butene, and 230 ml of butadiene. A solution of ene. Water was added to a water concentration of 64.5 mg / 1, and the solution was stirred at 700 rpm for 30 minutes. Adjust the temperature of the solution 86180 -25-200413413 to 25 ° C, and introduce the second woman with i.2 kg / cm2. After 5 minutes, a 2.2 m RDEAC solution of 〇m〇1 / 1 cyclohexane was added, followed by stirring for 5 minutes. Increase the solution temperature to 5 s. .. r ^, 丨 after soil M C, 5.0 ml of cobalt octoate (C〇 (〇ct) 2) i 〇〇1 / 1 cyclohexane ^ volume solution was added to start polymerization. After polymerizing at 60 C for 25 minutes, a mixture of 5--antioxidant-containing i: glycol and heptane was added to stop the reaction. The pressure in the autoclave was released, and the polymerization mixture was poured into ethanol to recover polybutadiene, which was dried under vacuum at 50 ° C for 6 hours. The results obtained are shown in Table 2. Example 6 A polybutadiene was prepared in the same manner as in Example 5 except that the concentration of water was changed to 62 mg / 1. The results are shown in Table 2. Example 7 A polybutadiene was prepared in the same manner as in Example 5 except that the concentration of water was changed to 57 mg / 1. The results are shown in Table 2. Example 8] Polybutadiene was prepared in the same manner, but the concentration of water was changed to * 7 mg / 1. The results are shown in Table 2. Example 9 except that the concentration of water was changed to 37 but the concentration of water was changed to 3 3 X. Example 5 Polybutadiene was prepared in the same manner as g / 1. The results are shown in Table 2. Example 10 ^ Male example $ Polybutadiene was prepared in the same manner § 1 The results are shown in Table 2. 86180 -26-200413413 Table 2 Example No. Water (mg / 1) A1 / H20 Yield (g / 1) Microstructure Tcp ML1 + 4 Tcp / ML1 + 4 [η] Trans (%) Acetomethyl (%) Cis Formula (%) 5 64.5 0.88 95 0.5 0.7 98.8 125 46 2.72 2.45 6 62 0.92 115 0.6 0.8 98.7 105 43 2.44 2.38 7 57 0.99 121 0.6 0.7 98.6 94 39 2.41 2.26 8 47 1.20 114 0.6 0.8 98.7 100 40 2.50 2.30 9 37 1.52 101 0.8 1.3 97.9 62 33 1.88 2.04 10 33 1.72 76 0.9 1.6 97.5 44 27 1.63 1.78 Polymerization conditions: Monomer solution: 230 ml of 1.3-butane, 210 ml of cyclohexane, 265 ml of 2-butane; DEAC: 3.15 mM; [Co] · 0.007 mM; ethylene · 1.2kg / cm2; polymerization temperature: 60 ° C; polymerization time: 25 minutes Example 11 In a 1.5 pressure hot pot purged with nitrogen, put in 190 ml Cyclohexane, 240 ml of 2-butene and 320 ml of succinic acid. Water was added to a water concentration of 38.5 mg / l, and the solution was stirred at 700 rpm for 30 minutes. The solution temperature was adjusted to 25 C, and 1.5 kg / cm2 of acetamidine was introduced therein. After 5 minutes, 2.4 ml of a 1 mm / l cyclohexane solution of DEAC was added, followed by incubation for 5 minutes. The temperature of the solution was raised to 58 t: After that, a 30 mm solution of cobalt octoate (Co (Oct) 2) in 1 mmo 1/1 cyclohexane was added to start polymerization. After 30 minutes of polymerization at 60 C, 5 ml of a mixture of i: i ethanol and heptane containing an antioxidant was added to stop the reaction. The pressure in the autoclave was relieved 86180 -27- 200413413, and the polymerization mixture was poured into ethanol to recover polybutadiene, which was dried under vacuum at 50 C for 6 hours. The results obtained are shown in Table 3. Example 1 2 Polybutadiene was prepared in the same manner as in Example 11, except that the amount of ethyl acetate introduced was changed to 2.0 kg / cm2. The results are shown in Table 3. Example 1 3 A polybutadiene was prepared in the same manner as in Example 11 except that the amount of ethyl acetate introduced was changed to 3.0 kg / Cm2. The results are shown in Table 3. Table 3 Example No. Ethylene (kg / cm2) Yield (g / 1) Microstructure Tcp MLi + 4 Tcp / ML i + 4 [η] Trans (%) Ethylene (%) Cis (%) 11 1.5 126 0.9 0.7 98.4 119 48 2.48 2.44 12 2.0 117 0.9 0.7 98.4 56 25 2.24 1.96 13 3.0 100 0.9 0.7 98.3 25 9.4 2.66 1.48 Polymerization conditions: monomer solution: 1,3-butadiene 320 ml, cyclohexane 190 ml, 2-butene 240 ml; DEAC: 3.2 mM; [Co]: 0.004 mM; A1 / H20 di 1.5; polymerization temperature: 60 ° C; polymerization time: 30 minutes Example 14 In a 1.5-pressure hot pot purged with nitrogen , Put into a solution consisting of 21mi cyclohexane, 265 ml 2-butene and 230 ml butadiene. Water was added to a water concentration of 70 mg /: l, and the solution was stirred at 700 rpm for 30 minutes. Adjust the solution 86180 -28-200413413 to 25 ° C and introduce 1.1 kg / cm2 of ethylene into it. After 5 minutes, add 1.5 1111 £ 0: 1 1/1 cyclohexane solution and 151 ^ triethylaluminum (TEA) 0.5 mol / 1 cyclohexane solution, followed by stirring for 5 minutes . After the temperature of the solution was raised to 58 ° C, a 5.0 mi solution of lead octoate (c0 (ct) 2) t mmol / 1 in cyclohexane was added to start the polymerization. After polymerization at 60 ° C for 1 minute, 5 ml of a mixture of i:} ethanol and heptane containing an antioxidant was added to stop the reaction. The pressure in the autoclave was relieved, and the polymerization mixture was poured into ethanol to recover polybutadiene, which was at 50 ° C. Under vacuum for ^ hours. The results obtained are shown in Table 4. Example 15 Polybutadiene was prepared in the same manner as in Example 14 except that the concentration of water was changed to 63 mg / 1. The results are shown in Table 4. Example 16 I-butadiene was prepared in the same manner as in Example 14 except that the concentration of water was changed to $ 7 mg / l. The results are shown in Table 4. Example 17 I Butadiene was prepared in the same manner as in Example 14 except that the concentration of water was changed to 47 mg / l. The results are shown in Table 4. 29, 86180 200413413 Table 4 Example No. Water (mg / 1) A1 / h2o Yield (g / i) Microstructure Tcp ml1 + 4 Tcp / MLi + 4 [η] Ethyl (%) Cis (% ) 14 70 0.81 44 0.5 0.8 98.8 149 46 3.24 2.46 15 63 0.90 113 0.7 1.0 98.3 101 44 2.30 2.29 16 57 1.00 94 0.7 1.3 98.0 74 39 1.90 2.06 17 47 1.21 70 0.9 1.6 97.6 55 33 1.67 1.89 Polymerization conditions: monomer Solution: 1,3-butadiene 230 ml, cyclohexane 210 ml, 2-butene 265 ml; DEAC: 2.1 mM; TEA: 1.1 mM; [Co]: 0.007 mM; ethylene ... 1.1 kg / cm2; Polymerization temperature: 60 ° C; Polymerization time: 25 minutes Example 1 8 In a 1.5-pressure hot pot purged with nitrogen, put 1 75 ml of cyclohexane, 225 ml of 2-butene, and 300 ml. A solution composed of butadiene. Water was added to a water concentration of 70 mg / b and the solution was stirred at 700 rpm for 30 minutes. The solution temperature was adjusted to 25 ° C, and 1.6 kg / cm2 of ethylene was introduced therein. After 5 minutes ’1.5 ml of DEAC in a 1 mmol / i cyclohexane solution and! 5—Dibutyl EA in 0.5 hexane solution was added, followed by stirring for $ minutes. The temperature of the solution was raised to 58 ° (:), and then a 11.11111〇1 / 1 cyclohexane solution of 4.31111 cobalt octoate ((: 0 (〇 (^) 2) was added to start polymerization. After polymerizing for one minute, 5 ml of a mixture containing antioxidants: ethanol and heptane was added to stop the reaction. The pressure of the autoclave was released, and the polymerization mixture was poured into ethanol to recover polybutadiene It was dried under vacuum at 50 ° C for 6 hours. The results obtained from 86180-30-30200413413 are shown in Table 5. Example 1 9 Polybutadiene was prepared in the same manner as Example 18, but the concentration of water was changed to 67 mg / 1. The results are shown in Table 5. Example 20 Polybutadiene was prepared in the same manner as in Example 18, but the concentration of water was changed to 63 mg / 1. The results are shown in Table 5. Table 5 Example No. Water (mg / 1) A1 / h2o Yield (g / i) Trans (%) Microstructured vinyl (%) Cis (5) Tcp ML 1 + 4 Tcp / ML 1 + 4 [η] 18 70 0.81 58 0.6 0.8 98.6 112 39 2.87 2.3 19 67 0.85 68 0.7 0.8 98.5 115 39 2.95 2.31 20 63 0.90 130 0.7 0.9 98.4 97 40 2.43 2.29 Polymerization conditions: monomer solution: 1,3-butadiene 300 m cyclohexane 175 ml 2-butene 225 ml; DEAC: 2.1 mM; TEA: 1.1 mM; [Co]: 0.006 mM; diene: 1.6 kg / cm2; polymerization temperature: 60 ° C; polymerization time: 25 minutes Example 2 1 In the cleaning booster of 1. 5 pressure, put a solution consisting of 14 5 ml cyclohexane, 185 ml 2-butene and 370 ml butadiene. Add water to a water concentration of 66 · 5 mg / 1 'and stir the solution for 30 minutes at 700 rpm. Adjust the solution temperature to 25C' and introduce 2.0 kg / cm2 of ethylene into it. After 5 minutes -31-86180 200413413 minutes, 2.4 ml of DEAC 1 mol / l cyclohexane solution was added, followed by stirring for 5 minutes. After the solution temperature was adjusted to 58, 1 mm of a 1 / l cyclohexane solution of lead octoate (Co (Oct) 2) was added, To start the polymerization. After polymerization at 60 ° C for 25 minutes, 5 ml of a 1: 1 mixture of ethanol and heptane containing antioxidants was added to stop the reaction. The pressure in the autoclave was released, and The polymerization mixture was poured into ethanol to recover polybutadiene, which was dried under vacuum at 50 ° C for 6 hours. The results obtained are shown in Table 6. Example 22 Polybutadiene was prepared in the same manner as in Example 21, but the concentration of water was changed to 64.5 mg / 1. The results are shown in Table 6. Example 23 Polybutadiene was prepared in the same manner as in Example 21, but the concentration of water was changed to 63 mg / 1. The results are shown in Table 6. Table 6 Example No. Water (mg / 1) A1 / h2o Yield (g / 1) Microstructure Tcp ML 1 + 4 Tcp / ML 1 + 4 [η] Trans (%) Vinyl (%) Cis (5) 21 66.5 0.85 90 0.5 0.8 98.7 117 40 2.93 2.35 22 64.5 0.88 121 0.6 0.8 98.6 112 41 2.73 2.35 23 63.0 0.90 128 0.6 0.9 98.5 107 42 2.55 2.32 Polymerization conditions: monomer solution · 1,3-butadiene 370 ml , 145 ml of cyclohexane, 185 ml of 2-butene; DEAC: 2.1 mM; TEA: 1.1 mM; [Co]: 0.006 mM; diene: 2.0 kg / cm2; polymerization temperature: 60 ° C; polymerization time: 25 Fen-32- 86180 200413413 Example 24 In a 1.5 pressure hot pot cleaned with a fun nitrogen, put a solution consisting of wo melon cyclohexane, 240 ml of 2-butene and 320 butane. Water was added to a water concentration of 38.5 mg / I, and the solution was stirred at 700 rpm for 30 minutes. The temperature of the solution was adjusted to 25.0 qfl. 5 kg / cm2 of ethylene into it, and 1,5; cyclooctadioxane (COD) was added thereto. After 5 minutes, remove 2.4 ml of DEAC &lt; 1 mOi / i cyclohexane solution was added, followed by stirring for $ minutes. After the temperature of the solution was raised to hunger, 3.0 ml of immioi / i per hexane solution of octanoic acid (Cc) (〇ct) 2) was added to start polymerization. After polymerization at 30 ° C for 30 minutes, 5 ml of a mixture containing the anti-oxidant · J · 1 · 1 ethyl alcohol and heptane was added to stop the reaction. Pressurized palladium was poured into ethanol to release it, And the polymerization mixture ^ r ^. .G-^ ^ — association, which was dried under vacuum at 50 ° C. for 6 hours. The results are not shown in Table 7. Example 25 In the same manner as in Example 24, the prepared ice cube was prepared. Olefin but changed the amount of COD to 32S mg. The results are shown in Table 7. i Example 26 but without COD. The results are shown in Table 24. Polybutadiene was prepared in the same manner as shown in Table 7. Example 27 but changed the amount of ethylene to 2.0 to Example 24 prepared polybutadiene kg / cm2 in the same manner. The results are shown in Table 7. Example 28 Bentylene was prepared in the same manner as in Example 27, but the amount of Cod was changed to 32. 86180 -33- 200413413 mg. The results are shown in Table 7. Example 29 Polybutadiene was prepared in the same manner as in Example 27, but without COD. The results are shown in Table 7. Example 30 Polybutadiene was prepared in the same manner as in Example 24, but the amount of acetamidine was changed to 3.0 kg / cm2. The results are shown in Table 7. Example 3 1 Polybutadiene r was prepared in the same manner as in Example 30, but modified The amount of COD was changed to 325 kg / mg. The results are shown in Table 7. Example 32 Polybutadiene was prepared in the same manner as in Example 30, but without COD. The results are shown in Table 7. Table 7 Example No. COD (mM) Ethylene ( kg / cm2) Yield (g / 1) Microstructure Tcp ML 1 + 4 Tcp / M L1 + 4 [η] Trans (%) Vinyl (%) Cis (%) 24 8.0 1.5 112 0.9 0.8 98.3 38 17 2.24 1.71 25 4.0 1.5 121 0.8 0.8 98.4 61 26 2.35 2.05 26 0.0 1.5 126 0.9 0.7 98.4 119 48 2.48 2.44 27 8.0 2.0 103 0.8 0.8 98.4 25 10 2.50 1.49 28 4.0 2.0 107 1.0 0.7 98.3 36 17 2.12 1.69 29 0.0 2.0 117 0.9 0.7 98.4 56 25 2.24 1.96 30 8.0 3.0 88 0.9 0.8 98.4 15 3.9 3.85 1.20 86180 -34- 200413413 31 4.0 3.0 93 1.0 0.7 98.3 19 5.7 3.33 1.32 32 0.0 3.0 100 0.9 0.7 98.3 25 9.4 2.66 1.48 Polymerization conditions: Early body Solution · 1,3-Ding Erfu 3 20 m 1, Cyclohexanone 190 ml, 2-Dinger 240 ml; DEAC: 3.2 mM; [Co]: 〇.〇〇4 mM; Al / H2〇 = 1 · 5; Polymerization temperature: 60 ° C; Polymerization time: 30 minutes Example 33 In a 1.5 pressurized hot pot purged with nitrogen, add i90 ml of cyclohexane, 240 ml of 2-butane and 3 20 ml solution of dioxin. Water was added to a water concentration of 38.5 mg / 1, and 4 ml of a 1.5 mol / 1 cyclohexane solution of 1,2-butanefluorene (1,2-Bd) was added thereto, followed by stirring at 700 rpm for 3 hours. 〇minutes. The temperature of the solution was adjusted to 25 ° C, and 1.0 kg / cm2 of ethylene was introduced thereinto. After 5 minutes, 2.4 ml of a 1 mol / 1 cyclohexane solution of DEAC was added, followed by stirring for 5 minutes. After the temperature of the solution was raised to 58 ° C, a 1 mmoi / cyclohexane solution of 30% octanoic acid (Co (Oct) 2) was added to start polymerization. After polymerization for 30 minutes at 60 ° C, 5 ml of a mixture of i: glycol and heptane containing an antioxidant was added to stop the reaction. The pressure in the autoclave was released, and the polymerization mixture was poured into ethanol to recover polybutadiene, which was dried under vacuum at $ 0 ° C for 6 hours. The results obtained are shown in Table 8. Example 34 A polybutadiene was prepared in the same manner as in Example 33 except that the amount of the n-butadiene solution to be added was changed to 2 m, and the results are shown in Table 8. Example 35 A polybutadiene was prepared in the same manner as in Example 33 except that the amount of the butadiene solution to be added was 2.86180 200413413 butadiene solution was changed to 1 ml. The results obtained are shown in Table 8. Example 36 A polybutadiene was prepared in the same manner as in Example 3, except that the amount of the 1,2-butadiene solution to be added was changed to 0.5 ml. The results obtained are shown in Table 8. Table 8 Example No. (mM) Ethylene (kg / cm2) Yield (g / 1) ----------------Microstructure Tcp ML 1 + 4 Tcp / M L1 + 4 [η] trans (%) ethyl (%) cis 33 8.0 1.0 28 1.1 0.8 98.1 18 1.29 34 4.0 1.0 61 0.9 0.8 98.3 55 18.0 3.03 1.89 35 2.0 1.0 94 1.0 0.8 98.2 133 45.3 2.94 2.45 36 1.0 1.0 119 0.8 0.9 98.3 244 65.7 3.71 2.88 Polymerization conditions: early body bath · 1,3-butadiene 320 ml 'cyclohexane 190 ml, 2-butane 240 ml; DEAC: 3.2 mM; [Co ]: 〇〇〇〇〇4 mM; Al / H20 02 · 5; polymerization temperature: 6 (TC; polymerization time: 30 minutes Example 3 7 In a 1.5 pressure hot pot with nitrogen purging, put in a 3 〇 〇-cyclohexane, 380 ml of 2-butene and 320 ml of butadiene. Water was added to a water concentration of 40 mg / 1, and 2,5_orbornyldiene (2, 5_NbD) 〇.1111〇1 / 1 cyclohexane solution was added to it, followed by 70 ^^ for 30 minutes. Adjust the solution temperature to 25, and introduce 丨 25 kg / cm2 ethylene Among them, after 5 liters, add 3.2ml of DEAC: 1 mol / 1 cyclohexane solution to -36 -86180 200413413, followed by stirring for 5 minutes. After adjusting the solution temperature to 58t, add 2 ml of a 5 mmol / 1 cyclohexane solution of Co (Oct) 2 to start the polymerization. At 65 After polymerization for 20 minutes at ° C, 5 ml of a mixture of 1: 1 ethanol and heptane containing the antioxidant was added to stop the reaction. The autoclaved tungsten was released at full pressure and the polymerization mixture was poured into ethanol for recovery. Polybutene, which was dried under vacuum at 50 C for 6 hours. The results obtained are shown in Table 9. Example 3 8 Polybutadiene was prepared in the same manner as in Example 37, but the amount of hydrazone 5-original borneol diassociation solution was changed to 3.6 ml The results obtained are shown in Table 9. Cloth Example 39. Polybutadiene was prepared in the same manner as in Example 37, but the amount of the original borneol solution was changed to 5 ml. The results are shown in Table 9. Cloth Example 40 is an example. 37 The same method was used to borrow and prepare polybutadiene 1%, but changed the amount of 2,5-raw borneol I and Bu solution to 7.2 ml. Therefore, the results are not shown in Table 9; Example 41 1. Polybutadiene was prepared in the same manner as described above, but the results obtained by changing 2,5-raw borneol / combination <1 to 8.9 m were shown in Table 9. Example 42 The same method as in Example 37 was used to prepare a borrowed, ash-prepared butadiene cloth, but the amount of 2,5-raw borneol falling liquid was changed to 1 ·· 5 ml. Piece results jaw π in Table 9. 86180 -37- 200413413 Table 9 Example No. 2,5-NBD (mM) Ethylene (kg / cm2) Yield (g / 1) ^ — Microstructure trans (%) Vinyl (%) Chuan Fu [η] (% ) 37 0.18 1.25 120 0.6 1.1 98.3 〖% __38 0.36 1.25 120 0.6 1.1 39 0.50 1.25 120 0.7 1.0 98.2 1 An 40 0.72 1.25 108 0.8 1.2 41 0.89 1.25 87 0.8 1.0 42 1.15 1.25 96 0.7 1.2 — 98.1 1 „-— ^ ^ ----- Polymerization conditions: monomer falling off: 320 ml of 1,3-butadiene, 300 m of cyclohexane, 38 ml of 2-butane, DEAC: 3.2 mM; [c〇] ·· 〇 · 〇π mM; Ai / h20 gas 45; Polymerization temperature: 65 ° C; Polymerization time: 20 minutes Examples 43 to 45 Polymerization was performed using the equipment of Figure 1 to evaluate the process efficiency of continuous polymerization. The feed was blended The mixture (its composition is shown in Table 10) is continuously fed into the ethylene absorption tower (T1) at a rate of 10 hrs. The ethylene absorption tower T1 has a gas phase and a hard phase. The partial pressure of the liquid, adjust the dissolved ethylene concentration in the liquid phase. The total pressure and temperature of the tower T1 and the ethylene feed rate controlled by the mass flow controller 'control the partial pressure of ethylene in the gas phase and continuously use the gas color layer . Analysis of monitoring said knife "adjusted to have the concentration of dissolved ethylene FB &amp; Shu 1〇 speed / time of the supplied Fu - Gu Fen container Vl and VI the following series of the containers. Water was continuously added 86180 -38- 200413413 to the first container VI to obtain the water concentration shown in Table 10. Diethylaluminum chloride (DEAC) was fed to the third container V3 (aging container V3) to obtain the concentrations shown in Table 10. Cobalt octoate (Co (oct) 2) was fed to the reaction vessel R1 to obtain the water concentrations shown in Table 10. A predetermined amount of a mixed solution of an antioxidant and a stopper (ethanol) was added to the stopper vessel SS to stop the polymerization reaction. The obtained polymer solution was dried in a vacuum dryer to obtain a polymer. The polymerization conditions and reaction results are shown in Table 10. Comparative Example 1 Polymerization was performed in the same manner as in Examples 43 to 45, except that ethylene was added to the second vessel V2 but not to the ethylene absorption column T1. The results obtained are shown in Table 10. The molecular weight change of the polymer obtained in Example 43 with time is shown in Fig. 2, and the polymer obtained in Comparative Example 1 is shown in Fig. 3. It can be seen that in Comparative Example 1 in which ethylene was directly added to the feed blend (FB), the molecular weight (Muni viscosity) of the polymer did not stabilize with time. In Example 43, the gas-liquid equilibrium was used to adjust the ethylene concentration, and the control of molecular weight with time was successfully stabilized. Examples 44 and 45 represent changes in the ethylene partial pressure in the ethylene absorption column T1. In these examples, the molecular weight of the obtained polymer was changed from that of Example 43 while maintaining the molecular weight stable over time. 39- 86180 200413413 Table 10 Comparative Example 1 Example 43 Example 44 Example 45 FB composition (% by weight): 1,3-butadiene 36 31 31 31 butene 33 35 35 35 cyclohexane 31 34 34 34 FB catalyst Component concentration: DEAC (mmol / l) 2.89 2.89 2.89 2.89 Water (mmol / 1) 2.07 2.07 2.07 2.07 Co (Oct) 2 (pmol / l) 8.8 10.6 10.6 10.6 Acetamidine feed (1 / hour) 1.25 T1 temperature (° c) 35 35 35 35 T1 ethylene partial pressure (MPa) 0.075 0.1 0.15 V3 temperature (° C) 35 35 35 35 R1 pressure (MPa) 0.78 0.78 0.78 0.78 R1 temperature (° C) 65 65 65 65 FB in the container Flow rate (1 / hour) 10 10 10 10 Butadiene conversion (% by weight) 51.2 46.7 44.5 45.4 Mooney viscosity 34.8 35.2 25.5 12.6 Examples 46 to 48 Polymerization was performed using the equipment of Figure 4 to evaluate the process efficiency of continuous polymerization. The feed blend (FB) (the composition of which is shown in Table 11) was continuously fed into the ethylene absorption tower (T1) at a rate of 10 1 / hour. The ethylene absorption tower T1 has a gas phase of -40-86180 200413413 and a liquid phase. By controlling the ethylene partial pressure in the gas phase, the dissolved ethylene concentration in the liquid phase is adjusted. By the total pressure and temperature of the tower τι and the ethylene feed rate controlled by the mass flow controller, the ethylene partial pressure in the gas phase is controlled and continuously monitored by gas chromatography analysis. The FB having the adjusted concentration of dissolved acetamidine was sent to the first container V1 and the following containers in series with the container V1 at a rate of 10 1 / hour. Water was continuously added to the first container VI to obtain the water concentrations shown in Table 11. DEAC was fed to a third container V3 (first aging container V3) to obtain the concentrations shown in Table 11. Raw norbornadiene (NBD) was fed to a fourth container V4 (second aging container V4) to obtain the water concentrations shown in Table 11. Cobalt octoate (Co (Oct) 2) was added to the reaction vessel R1 to obtain the concentrations shown in Table 11. A predetermined amount of a mixed solution of an antioxidant and a stopper (ethanol) was added to the stopper vessel SS to stop the polymerization reaction. The obtained polymer solution was dried in a vacuum dryer to obtain a polymer. The polymerization conditions and reaction results are shown in Table 11. In these examples, two chain transfer agents (i.e., ethylene and probornadiene) are used to control the molecular weight of the polymer produced. Relying on acetamidine (because of its low boiling point and easy to evaporate) to control molecular weight, depending on the method or amount of ethylene addition, it is very unstable. Therefore, a technique using gas-liquid equilibrium is adopted to achieve stable molecular weight control. Combining the use of raw norbornadiene can reduce the amount of ethylene required, thereby reducing the gas pressure of the mixed solution, leading to a decrease in the pressure in the device. The use of orthobornadiene, which can be added to a vessel close to the reaction vessel, allows rapid molecular weight control. -41-86180 200413413 Table 11 Example No. 46 47 48 FB composition (% by weight): 1,3-butadiene 31 31 31 butene 24 24 24 cyclohexane 45 45 45 FB catalyst component concentration: DEAC ( mmol / 1) 3.6 3.6 3.6 Water (mmol / 1) 2 2 2 Co (Oct) 2 (pmol / l) 10.1 10.1 10.1 Ethylene feed (1 / hour) 0.55 0.55 0.55 Reaction conditions: T1 temperature (° c) 35 35 35 V3 temperature (° C) 35 35 35 R1 temperature (° C) 75 75 75 R1 pressure (MPa) 1 1 1 FB flow rate in the container (1 / hour) 10 10 10 partial pressure of ethylene in T1 (MPa) 0.075 0.075 0.075 NBD feed (ml / hour) 0 20 25 Results: Butadiene conversion (% by weight) 50.3 49.6 47.9 Mooney viscosity 60 41.9 23 Examples 49 to 52 and Comparative Examples 2 to 4 -42- 86180 200413413 Use Figure 5 The equipment performs polymerization to evaluate the process efficiency of continuous polymerization. The feed blend (FB) (the composition of which is shown in Tables 12 and 13) was continuously fed into the first container VI and the following containers connected in series with the first container VI at a rate of 10 1 / hour. Water was continuously fed into the first container V1 to obtain the water concentrations shown in Tables 12 and 13. A predetermined amount of ethylene is fed into the second container V2. Diethyl aluminum chloride (DEAC) was fed to the third container V3 (for aging) to obtain the concentrations shown in Tables 12 and 13. Cobalt octoate (Co (Oct) 2) was added to the reaction vessel R1 to obtain the concentrations shown in Tables 12 and 13. In Examples 49 to 52, the internal pressure of the reaction vessel R1 was set to a controllable evaporation ratio of ethylene to 10 mol% or less. All the vessels from the first (VI) to the reaction vessel R1 are controlled to have substantially the same internal pressure. A mixed solution of a predetermined amount of an antioxidant and a stopper (ethanol) was added to the stopper container SS to stop the reaction. The obtained polymer solution was dried in a vacuum dryer to obtain a polymer. Tables 1 and 2 show the polymerization conditions and reaction results. The molecular weight changes of the polymers obtained in Comparative Example 2 and Example 49 over time are shown graphically in Figs. 6 and 7, respectively. In Comparative Example 2 in which the evaporation ratio of ethylene was 48 mol%, although the acetamidine was fed at a fixed rate, the molecular weight (Muni viscosity) of the obtained polymer changed with time. In Examples 49 and 50 in which the reaction pressure was adjusted to control the evaporation ratio of ethylene to 0 mol%, the molecular weight of the polymer was stable over time. In Example 49, when the ethylene feed rate was changed from 1.25 1 / hour to 1 1 / hour after 5 hours of polymerization, the molecular weight of the obtained polymer changed steadily and rapidly. In Examples 51 and 52 in which the acetamidine evaporation ratios were 24 mol% and 29 mol%, respectively, the molecular weight of the polymer was stable over time. In contrast, in Comparative Examples 3 and 4 where the ethylene evaporation -43- 86180 200413413 ratios were 44 mol% and 48 mol%, respectively, the molecular weight of the polymer was unstable over time. Table 12 Comparative Example 2 Example 49 Example 50 Composition of FB (% by weight): 1,3-butanediol r 36 36 36 butene 33 33 33 cyclohexane 31 31 31 FB catalyst component concentration: DEAC (mmol / 1) 2.89 2.89 2.89 Water (mmol / 1) 2.07 2.07 2.07 Co (Oct) 2 (μιηοΐ / ΐ) 8.8 8.8 8.8 Water feed (1 / hour) 1.25 1.25 1 Reaction conditions: Τ1 temperature (° c) 35 35 35 V3 temperature (° C) 35 35 35 R1 temperature (° C) 77 78 78 R1 pressure (MPa) 0.9 1.05 1.05 FB flow rate in the container (1 / hour) 10 10 10 ethylene evaporation ratio (mol%) 48 0 0 10 mol% Ethylene Evaporation Pressure (MPa) 0.92 0.92 0.9 Results: Poor stability in molecular weight control-44- 86180 Table 13 Example 51 Comparative Example 3 Example 52 Comparative Example 4 FB composition (% by weight): 1,3-butadiene 36 36 36 36 Butene 33 33 33 33 Cyclohexane 31 31 31 31 Concentration of catalyst component in FB: DEAC (mmol / 1) 2.89 2.89 2.89 2.89 Water (mmol / 1) 2.07 2.07 2.07 2.07 Co (Oct) 2 (μπιοΐ / ΐ) 8.8 8.8 8.8 8.8 Water ethylene feed (1 / hour) 1 1.25 1.25 1.25 Reaction conditions: Τ1 temperature (° c) 35 35 35 35 V3 temperature (° C) 35 35 35 35 R1 temperature (° C ) 69 69 69 69 R1 Pressure (MPa) 0.78 0.77 0.95 0.9 Flow rate of FB in the vessel (1 / hour) 10 10 10 10 Ethyl alcohol evaporation ratio (mol%) 24 44 29 48 10 mol% ethylene evaporation pressure (MPa) 0.83 0.87 1.03 1.03 knot J ^ * Good stability of molecular weight control Good difference 200413413 Examples 53 and 54 and Comparative Examples 5 and 6 Polymerization was performed using the equipment of FIG. 8 to evaluate the efficiency of the continuous polymerization process 86180 -45-200413413. The feed blend (FB) (the composition of which is shown in Tables 14 and 5) was continuously fed into the first container VI at a rate of 10 1 / hour. Water was continuously fed into the first container VI to obtain the water concentrations shown in Tables 14 and 15. A predetermined amount of ethylene was fed into First Valley Preparation V2. DEAC silver was added to the third volume V3 (the first aging cell V3) to obtain the concentrations shown in Tables 14 and 15. Raw borneol diazepam (NBD) is added to the fourth container V4 (second aging container V4). Cobalt octoate (Co (Oct) 2) was added to the reaction vessel R1 to obtain the concentrations shown in Tables 14 and 15. Set the internal pressure of the reaction volume to R1 to set the evaporation ratio of the second woman to zero. All the vessels from the first (VI) to the reaction vessel R1 are controlled to have substantially the same internal pressure. A predetermined amount of a compound / valley solution of an antioxidant and a stopper (ethanol) was added to the stopper SS to stop the reaction. The obtained polymer was dissolved in a true g dryer: and the polymer was obtained. The polymerization conditions and reaction results are also shown in Tables 14 and 15. In Examples 53 and 54 and Comparative Example 5, the combination of two chain transfer agents (also: P ethyl women and probornyl diene) was used to control the molecular weight of the polymer to prepare the polymer. For example, Comparative Example 5 relies on acetamidine ( Because of its low stagnation point, it is easy to evaporate) to control the dosing amount 'depending on the way or amount of ethylene addition, it is very unstable. Therefore, the comparison of U = 5 and U <Evaporation ratio is calculated as 57 shavings. /. In this case, the pressure in the reactor R1 was changed in Example 53 so that the ethylene evaporation ratio was reduced to the order of ′ and the stability of the portion ㈣ was caused. In Example 54, the feed rate of the original borneol was changed, and the molecular weight of the prepared polymer was changed while holding the molecular weight stable at any time. 、, —— The use of raw norbornadiene can reduce the amount of ethylene required, and thus reduce the dagger / combination. “Random pressure” results in a decrease in the internal pressure of the device when compared with Comparative Example 86. 86180 -46- 200413413 causes ethylene to completely condense. . Since raw borneol dipyridine can be added to a container close to the reaction container, molecular weight control can be achieved quickly. Table 14 Comparative Example 5 Example 53 FB composition (% by weight): 1,3-butadiene 31 31 butane 24 24 cyclohexane 45 45 concentration of catalyst component in FB DEAC (mmol / 1) 3.6 3.6 water (mmol / 1) 2 2 Lead octoate (μπιοΐ / ΐ 10.1 10.1 Otome feed (1 / min) 0.55 0.55 VI temperature (° c) 35 35 V3 temperature (° C) 35 35 R1 temperature (° C) 75 75 R1 pressure (MPa) 0.67 1 FB flow rate (1 / hour) in the container 10 10 Ethylamine evaporation ratio (mol%) 57 0 Pressure of complete evaporation of acetamidine (MPa) 0.76 0.76 NBD feed (ml / hour) 18 18 Butadiene Conversion rate (% by weight) 46.7 45.8 Mooney viscosity 26-37 23 -47- 86180 200413413 Table 15 Example 54 Comparative Example 6 FB composition (% by weight): 1,3-butadiene 31 31 butane 24 24 cyclohexane 45 45 Catalyst component concentration in FB DEAC (mmol / 1) 3.6 3.6 Water (mmol / 1) 2 2 Lead octoate (μηιοΐ / ΐ 10.1 10.1 Ethylene feed (1 / min) 0.55 1 VI temperature (° c) 35 35 V3 temperature (° C) 35 35 R1 temperature (° C) 75 75 R1 pressure (MPa) 1 1 FB flow rate (1 / hour) in the container 10 10 ethylene evaporation ratio (mol%) 0 0 pressure at which ethane is completely evaporated (MPa) 0.76 0.85 NBD feed (ml / h) 24 0 Diene conversion (% by weight) 45.6 45.3 Mooney viscosity 15.4 19.7 Example 55 (1) Preparation of cis-1,4-polymer In a 1.5 pressurized hot steel purged with nitrogen, put in a 2 10 ml ring Hexane, 86180 -48-200413413 2 6 5 ml 2-butene and 2 3 0 ml 1,3-butane bromide. Add water to a water concentration of 52 mg / 1. Further add carbon disulfide and 1,5-Cyclosanthine (l, 5-COD) was added to a concentration of 24 mg / 1 and 12.8 mmol / 1, followed by stirring at 700 rpm for 30 minutes. After the solution was allowed to stand for 5 minutes, 2.3 ml A 1 mol / 1 cyclohexane solution of monoethyl chloride (DEAC) was added, followed by stirring for 5 minutes. The solution temperature was adjusted to 58 ° C, and 6-3 ml of cobalt octoate (Co (〇ct) 2 ) Of 1 mmol / 1 cyclohexyl falling solution was added to start the polymerization. The polymerization was carried out at 70C for 20 minutes. (2) Preparation of syndiotactic-1,2-polymer 3.6 ml of a 1 ml / l cyclohexane solution of triethylaluminum (TEA) was added to the reaction mixture, and 0.7 ml of caprylic acid Cobalt (Co (Oct) 2) &lt; 0.05 m〇1 / 1 toluene was added to the solution, followed by polymerization at 60 ° C for 20 minutes. 5 ml of a 1: 1 mixture of ethanol and heptane containing antioxidants was added to stop the polymerization. The pressure inside the autoclave was relieved, and the polymerization mixture was poured into ethanol to recover polybutadiene, which was dried under vacuum at 5 ° C for 6 hours. The results obtained are shown in Tables 16 and 17. Example 56 (1) Preparation of cis-1,4-polymer In a 1.5-pressure hot pot purged with nitrogen, add 20 mi of cyclohexane, 265 ml of 2-butene, and 230 ml of butadiene. The resulting solution. Water was added to a water concentration of 52 mg / 1. Carbon disulfide and 5-cyclocyclodioxane were added to a concentration of 24 mg / 1 and 9.2 mmi / i, followed by stirring at 700 rpm. 30 minutes. After stirring, the solution concentration was adjusted to 25 μm, and 0.5 kg / cm2 of ethylene was introduced into it. After 5 minutes, 2.3 mol of DEAC 1 mol / 1 cyclohexane 86180 -49- 200413413 k solution was added to the It was stirred for 5 minutes. The temperature of the solution was raised to 5 81, and 6.3 ml of a 1 mmol / 1 cyclohexane solution of cobalt octoate (Co (Oct) 2) was added thereto to start polymerization. The polymerization was performed at 70 ° C. (2) Preparation of syndiotactic-1,2-polymer Polymerization was performed in the same manner as in Example 55- (2). The reaction conditions and results are shown in Table 1. 6 and 17. 7. Example 5 7 (1) Preparation of cis-1,4-polymer Polymerization was performed in the same manner as in Example 56- (1), but the concentration of 1,5-cyclooctadiene was reduced to 3.7 mmol The amount of / 1 and Otome rose to 1.25 kg / cm2. (2) Preparation of syndiotactic-1, 2-polymer Polymerization was performed in the same manner as in Example 55- (2). The reaction conditions made the results shown in Table 16 and 17. Example 5 8 (1) Preparation of cis-1,4-polymer Polymerization was performed in the same manner as in Example 5 6-(1), but 1,5 cyclooctadiene was not added and the amount of ethylene was increased to 1.75. kg / cm2. (2) Preparation of syndiotactic-1,2-polymer Polymerization was carried out in the same manner as in Example 55- (2). Reaction conditions and results are shown in Tables 16 and 17. Example 5 9 (1) Preparation of cis-1, core polymer Polymerization was performed in the same manner as in Example 55- (1). (2) Preparation of syndiotactic-1, 2-polymer 86180 -50- 200413413 Triethyl aluminum of 3.6 1111 (British pound eight) 1111〇1 / 1 cyclohexane solution, 2 () 1 ^ water and 0. 07 mol mol / i methylbenzyl solution of cobalt octoate (Co (0ct) 2) as required This sequence was added to the reaction mixture to perform polymerization at 60 ° C for 20 minutes. 5 m l Antioxidant-containing i: i ethanol and heptane mixture is added to stop the dimerization. The pressure in the autoclave is released, and the polymerization mixture is poured into ethanol to recover the polybutadiene 'at 50 ° Dry under vacuum for 6 hours. The results obtained are shown in Tables 16 and 17. Example 60 (1) Preparation of cis-1,4-polymer Polymerization was carried out in Example 5 6-(1) Phases,, 'and Wenwan. (2) Preparation of syndiotactic-1,2-polymer Polymerization was carried out in the same manner as in Example 59- (2). The reaction conditions and results are shown in Tables 16 and 17. ~ Example 6 1 (1) Preparation of cis-1,4-polymer Polymerization was carried out in the same manner as in Example 57_ (1) Cypress nt 1). (2) Preparation of syndiotactic-1,2-polymer Polymerization was carried out according to Example 59- (2) such as η, 1, &quot; Anti-shore conditions and society are shown in Tables 16 and 17. Bu bian 反 忡 L 夂 Shi 夂 ,, 口 口 _ Example 62 (1) Preparation of cis-1,4-polymer Polymerization was performed in the same manner as in Example 58 · (1). (2) Syndiotactic-I, Preparation of Polymers Polymerization was carried out using the examples 59- (2) 钿 π and 冋 10,000. The reaction conditions and results_ 86180 -51-200413413 are shown in Tables 16 and 17. Example 63 (1) Preparation of cis-1,4-polymer Polymerization was performed in the same manner as in Example 55_ (1). (2) Preparation of syndiotactic-1,2-polymer 3.6 ml of a 1 mol / 1 cyclohexane solution of triethylaluminum (tea), 110 ml of i, 3-butanedione and ml of caprylic acid (Co (Oct) 2) 0.05 ml / l of toluene falling liquid was added to the reaction mixture in the order described to perform polymerization under it for 20 minutes. Add 5 ml of a mixture of antioxidants: i ethanol and heptane to stop the polymerization. The pressure in the autoclave was released, and the polymerization mixture was poured into ethanol to recover polybutadiene, which was at 50. Under vacuum for 6 hours. The results obtained are shown in Tables 16 and 17. Example 64 (1) Preparation of cis-1,4-polymer Polymerization was performed in the same manner as in Example 56 · (1). (2) Preparation of Syndiotactic-1,2-Polymer A polymerization was carried out in the same manner as in Example 63_⑺. The reaction conditions and results are shown in Tables 16 and 17. ... Example 65 (1) Preparation of cis-1,4-polymer Polymerization was performed in the same manner as in Example 57- (1). (2) Preparation of syndiotactic-1,2-polymer Polymerization was performed in the same manner as in Example 63- (2). The reaction conditions and results are shown in Tables 16 and 17. 86180 -52, 200413413 Example 66 (1) Preparation of cis-1,4-polymer Polymerization was performed in the same manner as in Example 58- (1). (2) Preparation of syndiotactic-1,2-polymer Polymerization was performed in the same manner as in Example 63- (2). The reaction conditions and results are shown in Tables 16 and 17. Table 16 Example No. 1,4-Polymerization 1,2-Polymerization Yield (g / 1) Ethylene (kg / cm2) 1,5-COD (mM) Extra Dingfu (ml) Water (mg) 55 0 12.8 0 0 122 56 0.5 9.2 0 0 124 57 1.25 3.7 0 0 120 58 1.75 0 0 0 122 59 0 12.8 0 20 122 60 0.5 9.2 0 20 124 61 1.25 3.7 0 20 123 62 1.75 0 0 20 126 63 0 12.8 110 0 122 64 0.5 9.2 110 0 119 65 1.25 3.7 110 0 121 66 1.75 0 110 0 122 1,4- Polymerization conditions: monomer solution: 1,3-butadiene 230 m cyclohexane 210 ml, 2-butene 265 ml; CS2 24 mg / 1; DEAC 3.3 mmol / 1; water 2.9-53-86180 200413413 mmol / l; Co (Oct) 2 0.09 mmoHl; polymerization temperature 70 ° C, water flooding 20 points. 1,2-Polymerization conditions: TEA 5 mmol / 1; Co (Oct) 2 0.05 mmolM; polymerization temperature 60 ° C; polymerization time 20 minutes Table 17 Example No. Physical properties of polymer 55 56 57 58 59 60 61 62 63 64 65 66 ΗΙ (%) 2.3-^ sp / c 1.40 Melting point (° C) 198.9 Heat of fusion (J / g) 1.1 2.6 2.7 2.7 5.9 5.7 6.0 4.3 4.6 4.8 4.7 1.40 1.38 1.37 1.51 6.1

_L44_ ΙΛ5_1^1 1.43 199.0 198.9 198.8 198.7 198.5 198.3 198.4 199.1 一 198·8 199J 199.0 1.4 1.7 1.8 4.1 4.0 4.4 4.3 3.5 3.7 4.0 3.9 36^ _38_ 显 37_ 42 43 41 38 36 37 35 實例67 (1)順式-1,4-聚合物之製備 在經氮清洗&lt; 1.5升壓熱鍋中,放入由9〇 ml環己烷、37〇 ml 2, 丁烯及 24〇 m 、 ,3 丁 一丨布所組成之落液。將水加入至 86180 -54- 200413413 水濃度為67 mg/l。將二硫化碳及1,5-環辛二烯(1,5-COD)加 至濃度分別為25 mg八及10 mmol/1,繼之以700 rpm攪拌30 分鐘。令溶液靜置5分鐘後,將1.6 ml之氯化二乙基銘 (DEAC)之1 mol/1環己烷溶液及0.8 ml之三乙基鋁(TEA)之1 mo 1/1環己燒溶液加至溶液中,繼之攪拌5分鐘。將溶液溫 度調整至58°C,並將1.8 ml之辛酸鈷(Co(Oct)2)之5 mmol/1 環己烷溶液加入其中,以啟動聚合作用。聚合作用在70°C 下進行1 5分鐘。 (2)間規-1,2-聚合物之製備 將3.0 ml之三乙基鋁(TEA)之1 mol/1環己烷溶液加至反應 混合物中。然後,將3 1 mg水,140 ml 1,3 - 丁二烯及0.7 ml 之辛酸鈷(Co(Oct)2)之0.05 mol/1甲苯溶液加入其中,繼之 在65 °C下進行聚合作用15分鐘。將5 ml含抗氧化劑之1 : 1 乙醇及庚烷混合物加入以使聚合作用停止。將壓熱鍋中壓 力釋除,並將聚合混合物倒入乙醇中以回收聚丁二烯,其 在50°C下真空乾燥6小時。所得結果顯示於表18及19中。 實例68 (1)順式-1,4-聚合物之製備 在一經氮清洗之1.5升壓熱鋼中,加入由90 ml環己燒、3 70 ml 2 - 丁晞及240 ml 1,3 - 丁二烯所組成之溶液。將水加入至 水濃度為67 mg/1。進一步將二硫化碳及1,5-環辛二晞加至 濃度分別為25 5 mmol/1,繼之以700 rpm攪拌30分 鐘。將溶液溫度調整至25°C,並將0.75 kg/cm2乙烯引入其 中。5分鐘後,將1.6ml之氯化二乙基鋁(DEAC)之1 mol/1環 -55 - 86180 200413413 己燒溶液及G.8 ml之三乙基鋁(TEA)之丄削丨/丨環己垸溶液加 入,並再繼續攪拌5分鐘。將溶液溫度提升至58t,並將18 ml之辛酸姑(〇0(〇州2)之5麵〇1/1環己垸溶液加人其中,以 啟動聚合作用。聚合作用在几艺下進行15分鐘。 (2)間規-1,2-聚合物之製備 以貫例67-(2)相同方式進行聚合作用。反應條件及結果顯 示於表1 8及1 9中。 實例69 (1) 順式-1,4 ·»聚合物之製備 以實例67-(1)相同方式進行聚合作用,但不加丨,5_環辛二 少♦ ’但引入1.5 kg/cm2之乙晞。 (2) 間規-1,2-聚合物之製備 以貝例67-(2)相同方式進行聚合作用。反應條件及結果顯 示於表1 8及1 9中。 實例70 以貝例68相同方式進行聚合作用,但加至間規-1,2-聚合 作用之辛酸鈷之0·05 mol/Ι之量增加至ι·ι ml。反應條件及 結果顯示於表1 8及丨9中。 實例7 1 以貫例68相同方式進行聚合作用,但二硫化碳濃度增加 土 30 mg/1 ’辛酸鉛之〇 〇5 m〇iA之量增加至1.1,及間規 -1,2-聚合作用之溫度降至6(rc。反應條件及結果顯示於表 1 8及19中。 86180 -56- 200413413 表18 實例號 1,4-聚合作用 1,2-聚合作用 產量(g/1) 乙烯 (kg/cm2) l,5_COD (mM) CS2(mg/l) Co(oct)2 (mmol) 溫度(°C) 67 0 10 25 0.035 65 148 68 0.75 5 25 0.035 65 147 69 1.5 0 25 0.035 65 147 70 0.75 5 25 0.053 65 154 71 0.75 5 30 0.053 60 133 1,4-聚合條件:單體溶液:1,3-丁二烯240 ml,環己烷90 ml, 2-丁晞 370ml ; DEAC 2.3 mmol/1 ; TEA 1 · 1 mmol/1 水 3.7 mmo&quot;l; Co(Oct)2〇.〇13mmol/l;聚合溫度70°C ;聚合時間 15分。 1,2-聚合條件:TEA 4·2 mmol/1 ;額外水3 lmg ;額外丁二烯 140 ml ;聚合時間15分。 表19 實例號 聚合物物理性質 HI(%) η5ρ/〇 熔點(°C) 融合熱(J/g) ML 凝膠分率(%) 67 10.3 1.66 200.0 8.1 50 0。008 68 10.5 1.62 199.8 8.3 48 0.008 69 10.6 1.59 199.7 8.5 47 0.008 70 14.2 1.51 200.7 11.3 59 0.010 71 16.7 1.72 201.2 13.8 73 0.005 86180 -57- 200413413 實例72 (1) 順式-1,4-聚合物之製備 在一經氮清洗之1.5升壓熱鍋中,加入由21〇 ―環己燒、 265 ml 2-丁稀及230 ml 1,3-丁二晞所組成之溶液。將水加 入土水濃度為52 mg/1。將二硫化碳及2,5-原冰片二缔(NBD) 加至濃度分別為25 mg/1及0.6 mmol/1,繼之以7〇〇 rpm擾拌 3〇分鐘。將溶液溫度調整至25t:,並將〇·75 kg/cm2乙晞引 入其中。5分鐘後,將2.3 ml之氯化二乙基鋁(DEAqii mo 1/1環己乾落液加入,繼之攪拌5分鐘。將溶液溫度提升 至5『C,並將6·3 -之辛酸鈷(c〇(〇ct)2)之i麵〇1/1環己烷 溶液加入其中,以啟動聚合作用。聚合作用在7〇t:下進行 2 0分鐘。 (2) 間規-1,2-聚合物之製備 刼3.6 ml之二乙基鋁(TEA)之1 m〇i/i環己烷溶液及丨1() ml 之丁二稀及〇·7 mi之辛酸鈷(c〇(〇ct)2)之〇〇5 m〇m甲苯 溶液依此順序加至反應混合物中,繼之在仍它下進行聚合 作用20分鐘。將5 ml含抗氧化劑之} : i乙醇及庚烷混合物 加入以使聚合作用停止。將壓熱鍋中壓力釋除,並將聚合 混合物倒入乙醇中以回收聚丁二烯,其在5〇。〇下真空乾燥6 小時。所得結果顯示於表2〇及2 1中。 實例73 (1)順式-1,4-聚合物之製備 在絰氮清洗之i·5升壓熱鍋中,加入由190 ml環己烷、 1 2 丁缔及320 ml 1,3- 丁二烯所組成之溶液。將水加 86180 -58- 200413413 入至水濃度為38 mg/1。將二硫化碳及丨,2_丙二晞(以⑶幻加 至濃度分別為25 mgn及3 mmol/1,繼之以7〇〇 rpm攪拌3〇分 4里私/谷液》皿度卩周整土 25 C ’並將1.〇 kg/ cm2乙晞引入其 中。5分鐘後,將2.4 ml之氯化二乙基鋁(DEAOii m〇1/1 裱己烷溶液加入,繼之攪拌5分鐘。將5·3 ―之辛酸鈷 (C〇(〇ct)2)之i mmol/1環己烷溶液加至混合物中,以啟動聚 合作用。聚合作用在6 0 °C下進行3 〇分鐘。 (2)間規-丨,2-聚合物之製備 將3.8 ml之三乙基鋁(TEA)之i m〇1/1環己烷溶液加至反應 混合物中。然後,將34mg水,5〇ml以叮二婦及〇75mi 之辛酸鈷(Co(Oct)2)之〇·05 m〇1/lf苯溶液加其中,繼之在 6〇°C下進行聚合作用15分鐘。將$ ml含抗氧化劑之ι: 1乙 醇及庚烷混合物加入以使聚合作用停止。將壓熱鍋中壓力 釋除,並將聚合混合物倒入乙醇中以回收聚丁二烯,其在 50C下真空乾燥6小時。所得結果顯示於表2〇及21中。 實例74 以實例73相同方式進行聚合作用,但改變乙婦之量至 〇.8kg/Cm2。聚合作用條件及所得結果顯示於表20及21中。 實例75 以實例73相同方式進行聚合作用,但以a 丁二缔 (1’2 BD)取代!’2_丙二婦⑷並加至濃度為4爪则&quot;卜聚 合作用條件及所得結果顯示於表嵐21中。 實例7 6 75相同方式進行聚合作用,但改變乙烯之量至 86180 -59- 200413413 0.8 kg/cm2。聚合作用條件及所得結果顯示於表20及21中。 表20 實例號 1,4-聚合作用 1,2-聚合作用 產量(g/1) 乙烯 分子量調節劑 cs2 C〇(OCt)2 溫度 (kg/cm2) 種類 量(mM) (mg/1) (mmol) (°C) 721 0.75 2,5-NBD 0.6 25 0.035 60 105 732 1 丙二烯 3 25 0.038 60 133 y42 0.8 丙二烯 3 25 0.038 60 140 752 1 1,2-BD 4 25 0.038 60 135 762 0.8 1,2-BD 4 25 0.038 60 141 86180 -60- 1 1,4-聚合條件:單體溶液:1,3-丁二晞230 ml,環己 烷 210 ml,2-丁烯 265 ml ; DEAC 3.3 mmol/1 ;水 2.97 mmol/1 ; Co(〇ct)2 0.009 mmol/1 ·,聚合溫度 70°C ;聚合 時間 20分。1,2-聚合條件·· TEA 5 mmol/1 ;額外丁 1,3-二烯 110 ml ;聚合溫度60°c ;聚合時間20分。 2 1,4-聚合條件:單體溶液:1,3-丁二烯320 m卜環己烷 190 ml,2- 丁烯 240 ml ; DEAC 3.2 mmol/1 ;水 2.1 mmol/1 ; Co(Oct)2〇.〇〇7 mmol/1 ;聚合溫度 60°C ;聚合 時間 30分。1,2-聚合條件:TEA 5 mmol/1 ;額外水34 mg ;額外1,3 - 丁二烯5 0 ml ;聚合時間1 5分。 200413413_L44_ ΙΛ5_1 ^ 1 1.43 199.0 198.9 198.8 198.7 198.5 198.3 198.4 199.1 1198 · 8 199J 199.0 1.4 1.7 1.8 4.1 4.0 4.4 4.3 3.5 3.7 4.0 3.9 36 ^ _38_ 显 37_ 42 43 41 38 36 37 35 Preparation of 1,4-Polymer In a nitrogen purged &lt; 1.5 pressurized hot pot, put 90 ml of cyclohexane, 37.0 ml of 2, butene and 24.0 m of 3, butadiene. Composition of falling liquid. Water was added to 86180 -54- 200413413 and the water concentration was 67 mg / l. Carbon disulfide and 1,5-cyclooctadiene (1,5-COD) were added to a concentration of 25 mg octa and 10 mmol / 1, respectively, followed by stirring at 700 rpm for 30 minutes. After allowing the solution to stand for 5 minutes, 1.6 ml of a 1 mol / 1 cyclohexane solution of diethylammonium chloride (DEAC) and 0.8 ml of 1 mo 1/1 cyclohexane of triethylaluminum (TEA) The solution was added to the solution, followed by stirring for 5 minutes. The temperature of the solution was adjusted to 58 ° C, and 1.8 ml of a 5 mmol / 1 cyclohexane solution of cobalt octoate (Co (Oct) 2) was added thereto to start polymerization. Polymerization was carried out at 70 ° C for 15 minutes. (2) Preparation of syndiotactic-1,2-polymer 3.0 ml of a 1 mol / 1 cyclohexane solution of triethylaluminum (TEA) was added to the reaction mixture. Then, a solution of 31 mg of water, 140 ml of 1,3-butadiene and 0.7 ml of cobalt octoate (Co (Oct) 2) in 0.05 mol / 1 toluene was added thereto, followed by polymerization at 65 ° C. 15 minutes. 5 ml of a 1: 1 mixture of ethanol and heptane containing antioxidants were added to stop the polymerization. The pressure in the autoclave was released, and the polymerization mixture was poured into ethanol to recover polybutadiene, which was dried under vacuum at 50 ° C for 6 hours. The results obtained are shown in Tables 18 and 19. Example 68 (1) Preparation of cis-1,4-polymer In a 1.5-pressurized hot steel purged with nitrogen, 90 ml of cyclohexane, 3 70 ml of 2-butane and 240 ml of 1, 3-were added. A solution composed of butadiene. Water was added to a water concentration of 67 mg / 1. Carbon disulfide and 1,5-cyclooctane dihydrazone were further added to a concentration of 25 5 mmol / 1, respectively, followed by stirring at 700 rpm for 30 minutes. The temperature of the solution was adjusted to 25 ° C, and 0.75 kg / cm2 of ethylene was introduced thereinto. After 5 minutes, 1.6 ml of 1 mol of diethylaluminum chloride (DEAC) / 1 ring-55-86180 200413413 hexane solution and G. 8 ml of triethylaluminum (TEA) were milled 丨 / 丨The cyclohexane solution was added and stirring was continued for another 5 minutes. The temperature of the solution was raised to 58t, and 18 ml of octanoic acid (〇0 (〇 州 2) 5 sides of 0/1/1 cyclohexane solution was added thereto to start the polymerization. The polymerization was carried out in several steps 15 (2) Preparation of syndiotactic-1,2-polymer Polymerization was carried out in the same manner as in Example 67- (2). The reaction conditions and results are shown in Tables 18 and 19. Example 69 (1) cis Polymer of formula-1,4 · »Polymerization was carried out in the same manner as in Example 67- (1), but without the addition of 5-cyclooctylamine. 'But the introduction of acetamidine at 1.5 kg / cm2. (2) Syndiotactic-1,2-polymer was prepared in the same manner as in Example 67- (2). The reaction conditions and results are shown in Tables 18 and 19. Example 70 The polymerization was performed in the same manner as in Example 68. However, the amount of 0.05 mol / 1 of cobalt octoate added to syndiotactic-1,2-polymerization was increased to ι · ι ml. The reaction conditions and results are shown in Tables 18 and 9. Example 7 1 Polymerization was carried out in the same manner as in Example 68, but the concentration of carbon disulfide increased by 30 mg / 1'05 mOiA of lead octoate to 1.1, and the temperature of syndiotactic-1,2-polymerization decreased to 6 ( rc The reaction conditions and results are shown in Tables 18 and 19. 86180 -56- 200413413 Table 18 Example No. 1,4-Polymerization 1,2-Polymerization Yield (g / 1) Ethylene (kg / cm2) 1,5_COD ( mM) CS2 (mg / l) Co (oct) 2 (mmol) Temperature (° C) 67 0 10 25 0.035 65 148 68 0.75 5 25 0.035 65 147 69 1.5 0 25 0.035 65 147 70 0.75 5 25 0.053 65 154 71 0.75 5 30 0.053 60 133 1,4-Polymerization conditions: monomer solution: 240 ml of 1,3-butadiene, 90 ml of cyclohexane, 370 ml of 2-butane; DEAC 2.3 mmol / 1; TEA 1 · 1 mmol / 1 water 3.7 mmo &quot; Co (Oct) 20.013 mmol / l; polymerization temperature 70 ° C; polymerization time 15 minutes. 1, 2 polymerization conditions: TEA 4.2 mmol / 1; additional water 3 lmg 140 ml additional butadiene; polymerization time 15 minutes. Table 19 Example No. Physical properties of polymer HI (%) η5ρ / 〇 Melting point (° C) Heat of fusion (J / g) ML gel fraction (%) 67 10.3 1.66 200.0 8.1 50. 008 68 10.5 1.62 199.8 8.3 48 0.008 69 10.6 1.59 199.7 8.5 47 0.008 70 14.2 1.51 200.7 11.3 59 0.010 71 16.7 1.72 201.2 13.8 73 0.005 86180 -57- 200413413 Example 72 (1) cis-1, 4-Polymer Preparation Nitrogen purge over 1.5 boost the pot were added by the 21〇 - cyclohexyl burning, 265 ml of a solution consisting of 2-butanone and 230 ml 1,3- butylene dilute Xi. Water was added to the soil at a water concentration of 52 mg / 1. Add carbon disulfide and 2,5-original borneol disodium (NBD) to concentrations of 25 mg / 1 and 0.6 mmol / 1, respectively, followed by stirring at 700 rpm for 30 minutes. The temperature of the solution was adjusted to 25t :, and 0.75 kg / cm2 of acetamidine was introduced thereinto. After 5 minutes, 2.3 ml of diethylaluminum chloride (DEAqii mo 1/1 cyclohexane) was added, followed by stirring for 5 minutes. The temperature of the solution was raised to 5 ° C, and 6.3-octanoic acid was added. The i-side 0/1/1 cyclohexane solution of cobalt (c0 (〇ct) 2) was added to start the polymerization. The polymerization was performed at 70t: 20 minutes. (2) Syndrome-1, 2-Preparation of polymer: 3.6 ml of diethylaluminum (TEA) in 1 mli / i cyclohexane solution and 1 () ml of succinic acid and 0.7 mi of cobalt octoate (c〇 ( 〇ct) 2) 〇 05m〇m toluene solution was added to the reaction mixture in this order, followed by polymerization for 20 minutes. 5 ml of antioxidant-containing}: i ethanol and heptane mixture Add to stop the polymerization. The pressure in the autoclave was released and the polymerization mixture was poured into ethanol to recover the polybutadiene, which was dried under vacuum at 50 ° for 6 hours. The results are shown in Table 2. And 2 1. Example 73 (1) Preparation of cis-1,4-polymer In an i · 5 pressurized hot pot purged with nitrogen, add 190 ml of cyclohexane, 12 butane and 320 ml A solution consisting of 1,3-butadiene. Water was added at 86180 -58- 200413413 to a water concentration of 38 mg / 1. Carbon disulfide and 2-propanedihydrazone (added to the concentration of 25 mgn and 3 mmol / 1, respectively, followed by 700). Stir for 30 minutes at 4 rpm, and then add soil at 25 ° C and introduce 1.0 kg / cm2 of ethyl acetate into it. After 5 minutes, add 2.4 ml of diethylaluminum chloride (DEAOii m〇1 / 1 hexane solution was added, followed by stirring for 5 minutes. A 5 mmol / 1 cyclohexane solution of cobalt octoate (C0 (〇ct) 2) was added to the mixture to start Polymerization. Polymerization was carried out at 60 ° C for 30 minutes. (2) Preparation of syndiotactic- 丨, 2-polymer 3.8 ml of triethylaluminum (TEA) imim 1/1 cyclohexane The solution was added to the reaction mixture. Then, 34 mg of water, 50 ml of a solution of 0.05 m mol of 1 / lf benzene and octanoate (Co (Oct) 2) of 0.05 mg were added thereto, followed by Polymerization was performed at 60 ° C for 15 minutes. $ Ml of antioxidant-containing 1: 1 ethanol and heptane mixture was added to stop the polymerization. The pressure in the autoclave was released, and the polymerization mixture was poured into ethanol. To recover polybutadiene, which Dry under vacuum at 50C for 6 hours. The results obtained are shown in Tables 20 and 21. Example 74 The polymerization was performed in the same manner as in Example 73, but the amount of Otome was changed to 0.8 kg / Cm2. The polymerization conditions and the results obtained are shown in In Tables 20 and 21. Example 75 Polymerization was performed in the same manner as in Example 73, but replaced by a butadiene (1'2 BD)! "2_ 二 二 女 女 ⑷ was added to a concentration of 4 claws." The conditions of cooperation and the results obtained are shown in Table 21-21. Example 7 6 75 Polymerization was performed in the same manner, but the amount of ethylene was changed to 86180 -59- 200413413 0.8 kg / cm2. The polymerization conditions and the results obtained are shown in Tables 20 and 21. Table 20 Example No. 1,4-Polymerization 1,2-Polymerization Yield (g / 1) Ethylene Molecular Weight Regulator cs2 C0 (OCt) 2 Temperature (kg / cm2) Kind Amount (mM) (mg / 1) ( mmol) (° C) 721 0.75 2,5-NBD 0.6 25 0.035 60 105 732 1 Allene 3 25 0.038 60 133 y42 0.8 Allene 3 25 0.038 60 140 752 1 1, 2-BD 4 25 0.038 60 135 762 0.8 1,2-BD 4 25 0.038 60 141 86180 -60- 1 1,4-Polymerization conditions: monomer solution: 1,3-butanefluorene 230 ml, cyclohexane 210 ml, 2-butene 265 ml; DEAC 3.3 mmol / 1; water 2.97 mmol / 1; Co (〇ct) 2 0.009 mmol / 1 ·, polymerization temperature 70 ° C; polymerization time 20 minutes. 1,2-Polymerization conditions · TEA 5 mmol / 1; additional but 1,3-diene 110 ml; polymerization temperature 60 ° c; polymerization time 20 minutes. 2 1,4-Polymerization conditions: monomer solution: 1,3-butadiene 320 m cyclohexane 190 ml, 2-butene 240 ml; DEAC 3.2 mmol / 1; water 2.1 mmol / 1; Co (Oct ) 2.07 mmol / 1; polymerization temperature 60 ° C; polymerization time 30 minutes. 1,2-Polymerization conditions: TEA 5 mmol / 1; additional water 34 mg; additional 1,3-butadiene 50 ml; polymerization time 15 minutes. 200413413

報據本發明,且有 使用對健康及r: 希聚合物,不必 ^健康及裱保不利之芳香溶劑即可穩定地製造,且且 =量需要大量能源始能回收及再利用之 ;; 很髁尽發 ^ ,卜莱「二烯及間規_1,2-臂丁- r =具有減低凝膠分率之加強聚丁二缔可由u_; ♦ 1方香煙溶劑巾進行聚合作用而製得。 , 【圖式簡單說明】 係實例43至45所用連續聚合設備之概 圖2係—圖表,顯示實例43所得聚合物隨 化。 切1思時間之分子量 圖3係一圖表,顯示比較f 量變化。 口物^時間之分 圖,…所用連續聚合設備 係貫例49至52所用連續聚合設備之概J。 圖6係一圖表,顧示 — 龙各圖。 比較嫌所得聚合物隨時間之分- 86180 -61 - 200413413 量變化。 圖7係係一圖表,顯示實例49所得聚合物隨時間之分子量 變化。 圖8係實例53至54所用連續聚合設備之概略圖。 【圖式代表符號說明】 T1 吸收塔 VI,V2,V3,V4 聚合容器 R1 反應容器 SS 聚合停止容器 86180 -62-According to the present invention, and the use of health and r: Greek polymers, can be produced stably without the need for aromatic solvents that are unfavorable to health and mounting, and the amount requires a large amount of energy before it can be recycled and reused; very髁 Every time ^, Bly "Diene and syndiotactic 1,2-arm butyl-r = reinforced polybutadiene with reduced gel fraction can be made by polymerization of u_; 1 square cigarette solvent towel [Simplified illustration of the figure] is a schematic diagram 2 of the continuous polymerization equipment used in Examples 43 to 45, which is a graph showing the polymer obtained in Example 43. The molecular weight of a given time Fig. 3 is a graph showing a comparison of the amount of f Changes in the mouth and time, the continuous polymerization equipment used is the summary of the continuous polymerization equipment used in Examples 49 to 52. Figure 6 is a chart, Gu Xi-each figure. Compare the suspected polymer with time Min-86180 -61-200413413. Figure 7 is a chart showing the molecular weight changes of the polymer obtained in Example 49 over time. Figure 8 is a schematic diagram of the continuous polymerization equipment used in Examples 53 to 54. [Schematic representation of the symbols ] T1 absorption tower VI, V2, V3, V4 polymerization Vessel R1 Reaction vessel SS Polymerization stop vessel 86180 -62-

Claims (1)

200413413 拾、申請專利範園: 1. 一種製造共輛二烯聚合物之方法,包含在包含(A) —銘 化合物,(B)—週期表第13族元素之有機金屬化合物及 (C)水之觸媒系統之存在下將共軛二烯單體聚合,其中 共軛二烯聚合物之分子量係藉以下任一方法控制: (I) 一方法,其包含將一自(1)一非環狀烯,(2)—環狀 非共軛二烯及(3)—具累積雙键之化合物所組成之 族群中所選出之化合物作為分子量調節劑加至一 聚合溶劑中, (II) 一方法,其包含將一沸點較共軛二烯單體及一聚合 溶劑為低之化合物作為分子量調節劑加至聚合溶 劑中, (III) 一方法,其包含先使一聚合溶劑與一包含非環狀烯 之分子量調節劑接觸,藉氣-液平衡調整非環狀烯 之濃度,及使用所得含非環狀烯之聚合溶劑, (IV) —方法,其包含先使一聚合溶劑與一包含(D)非環 狀烯及(E)自環狀非共軛二烯及具累積雙键之化合 物所組成之族群中所選出之化合物之分子量調節 劑接觸,藉氣-液平衡調整非環狀烯之濃度,及使 用所得含分子量調節劑之聚合溶劑, (V) —方法,其包含使用一非環狀烯作為分子量調節 劑,及將己餵入聚合容器中之非環狀烯之蒸發比控 制至3 0莫耳。/〇或以下,及 (VI) —方法,其包含使用(D)—非環狀烯及(E)—自環狀 86180 2, 非共輛二浠及具累積I 中所雙山、a人又鍵&lt;化合物所組成之族群 τ所述出之化合物作A八2 B ^ ^ 乍為刀子I調節劑,及將己餵入 如中社 瘵發比控制至零。 甲清專利範圍第1項之製 女、土 ^ I 4共軛二婦聚合物之 …其中聚合溶劑不含芳族化合物。 請專利範圍第丨項之製造共輛二埽聚合物之 '’其中方法(1)所用分子量調節劑係至少二種自(1) 、非%狀缔,(2)—環狀非共軛二烯及(3)一具累積雙键 4, 之化5物所組成之族群中所選出之化合物。 如申睛專利範圍第1項之製造共軛二烯聚合物之方法, 其中觸媒系統具有組份(B)與組份(c)之莫耳比為〇·7比 5。 … .如申請專利範圍第1項之製造共軛二烯聚合物之方法, 其中非環狀缔係一丨_烯。 6 ·如申請專利範圍第1項之製造共軛二烯聚合物之方法, 其中非環狀烯係乙埽。 7 ’如申請專利範圍第1項之製造共軛二烯聚合物之方法, 其中環狀非共軛二埽係丨,5-環辛二烯或2,5原冰片二烯。 8 ·如申請專利範圍第1項之製造共軛二烯聚合物之方法, 其中具累積雙鍵之化合物係丙二烯或1,2_ 丁二烯。 9 ’如申請專利範圍第1項之製造共軛二烯聚合物之方法, 其中共軛二烯聚合物係具有80%或以上順式4木結構 之順式-1,4_聚丁二缔。 1 〇 ·如申請專利範圍第1項之製造共軛二烯聚合物之方法, 86180 200413413 其中共輛二稀聚合物係具有物理性質滿足以下關係之 順式-1,4-聚丁二烯: 〇.5xML1+4&lt;Tcp&lt;4xML1+4 其中ml1+4代表慕尼黏度,及Tcp代表在5%曱苯溶液 中之黏度。 1 1 .種共軛一烯聚合物,其係藉如申請專利範園第丨至i 〇 項中任一項之方法製造。 12. —種製造聚丁二婦組合物之方法,其包含將丨,3•丁二烯 順式-1,4-聚合以製成順式_丨,4-聚合物,繼之在相同反應 系統中將1,3-丁一晞間規_ι,2-聚合以製造間規-丨,2-聚 a物,其中順式_ 1,4 -聚合物係藉如申請專利範圍第1至 1〇項中任一項之方法製造,及使用包含硫化合物之觸媒 系統作為間規-1,2 -聚合作用之觸媒。 1 3 ·如申請專利範圍第12項之製造聚丁二烯組合物之方 法,其中間規-1,2-聚合作用之觸媒系統進一步包含一姑 化合物及一三烷基鋁化合物。 14·如申請專利範圍第12或13項之製造聚丁二缔組合物之 方法,其中聚丁二晞組合物係加強聚丁二烯橡膠,其包 含ωι至3〇重量%之沸騰正己烷不溶性餾份及(11)7〇至 9 9重量%之沸騰正己燒可溶性餘份。 1 5 ·如申睛專利範圍弟12 ’ 1 3或14項之製造聚丁二埽組合物 之方法’其中聚丁二婦組合物係加強聚丁二稀橡膠,其 包含(i) 1至30重量%之沸騰正己烷不溶性餾份,其包本 間規-1,2-聚丁二稀,及(ii)70至99重量%之沸騰正己燒 86180 200413413 可溶性餾份,其包含具90%或以上順式結構之順式-1,4-聚丁二缔。 16. —種聚丁二晞組合物,其係藉如申請專利範圍第12至15 項中任一項之方法製造。 86180 4-200413413 Patent application park: 1. A method for manufacturing a co-diene polymer, comprising an organometallic compound containing (A)-Ming compound, (B)-Group 13 elements of the periodic table and (C) water The conjugated diene monomer is polymerized in the presence of a catalyst system, wherein the molecular weight of the conjugated diene polymer is controlled by any of the following methods: (I) a method comprising the step of: (1) an acyclic Ene, (2)-cyclic non-conjugated diene and (3)-compounds selected from the group consisting of compounds with cumulative double bonds are added to a polymerization solvent as a molecular weight modifier, and (II) a method , Which comprises adding a compound having a lower boiling point than the conjugated diene monomer and a polymerization solvent to the polymerization solvent as a molecular weight modifier, (III) a method comprising first bringing a polymerization solvent and a The molecular weight regulator of ene is contacted, the concentration of acyclic olefin is adjusted by gas-liquid equilibrium, and the obtained acyclic olefin-containing polymerization solvent is used. (IV)-a method comprising first bringing a polymerization solvent and a containing (D ) Acyclic olefins and (E) self-cyclic non-conjugated The molecular weight regulator of the selected compound in the group consisting of diene and compound with cumulative double bonds is contacted, the concentration of acyclic olefin is adjusted by gas-liquid equilibrium, and the obtained polymerization solvent containing the molecular weight regulator is used, (V ) A method comprising using an acyclic olefin as a molecular weight regulator and controlling the evaporation ratio of the acyclic olefin which has been fed into the polymerization vessel to 30 mol. / 〇 or below, and (VI) — a method comprising the use of (D) —acyclic olefin and (E) —from ring 86180 2, non-common vehicles and two with a cumulative I, Shuangshan, a person In addition, the compound described by the group τ composed of the compounds is used as A 8 2 B ^ ^ as a knife I regulator, and it has been fed to Ruzhongsha hairdressing ratio to zero. Manufacture of item 1 in the scope of Jiaqing's patent. Female, soil ^ I 4 conjugated dimer polymer… where the polymerization solvent does not contain aromatic compounds. Please apply for the manufacture of a total of two dimer polymers in the scope of the patent, where the method (1) uses at least two kinds of molecular weight modifiers from (1), non-%-associated, (2)-cyclic non-conjugated two Ene and (3) a compound selected from the group consisting of cumulants with a cumulative double bond of 4,5. For example, the method of manufacturing a conjugated diene polymer according to item 1 of Shenyan's patent, wherein the catalyst system has a molar ratio of component (B) to component (c) of 0.7 to 5. ... The method for manufacturing a conjugated diene polymer according to item 1 of the scope of patent application, wherein the non-cyclic associating mono-olefin is. 6 · The method for manufacturing a conjugated diene polymer according to item 1 of the scope of patent application, wherein the acyclic olefin is ethylamidine. 7 'The method for manufacturing a conjugated diene polymer according to item 1 of the scope of patent application, wherein the cyclic non-conjugated difluorene is a 5-, 5-octadiene or 2,5 probornadiene. 8. The method for manufacturing a conjugated diene polymer according to item 1 of the scope of patent application, wherein the compound having a cumulative double bond is propadiene or 1,2-butadiene. 9 'The method for manufacturing a conjugated diene polymer according to item 1 of the scope of patent application, wherein the conjugated diene polymer is cis-1,4_polybutadiene having a cis-4 wood structure of 80% or more . 1 〇 If the method of manufacturing a conjugated diene polymer according to item 1 of the scope of patent application, 86180 200413413, the total diene polymer is a cis-1,4-polybutadiene with physical properties satisfying the following relationship: 〇5xML1 + 4 &lt; Tcp &lt; 4xML1 + 4 where ml1 + 4 represents the Mooney viscosity, and Tcp represents the viscosity in a 5% toluene solution. 1 1. A conjugated monoene polymer manufactured by a method according to any one of items 丨 to i 〇 of the patent application park. 12. —A method for manufacturing a polybutadiene composition comprising polymerizing cis-1,4-butadiene cis-1,4- to produce a cis- 丨 4-polymer, followed by the same reaction In the system, 1,3-butyrene syndiotactic ι, 2- is polymerized to produce syndiotactic 丨, 2-poly alpha, in which cis-1,4-polymer is based on patent applications ranging from 1 to 10. The method of any one of the items, and the use of a catalyst system containing a sulfur compound as a syndiotactic-1,2-polymerization catalyst. 1 3. The method for manufacturing a polybutadiene composition according to item 12 of the patent application, wherein the syndiotactic-1,2-polymerization catalyst system further comprises a primary compound and a trialkylaluminum compound. 14. The method for manufacturing a polybutadiene composition as claimed in claim 12 or 13, wherein the polybutadiene composition is a reinforced polybutadiene rubber containing ωι to 30% by weight of boiling n-hexane insoluble fraction And (11) 70 to 99% by weight of a boiling n-hexane-burning soluble remainder. 1 5 · The method of manufacturing polybutadiene composition according to item 12 of the patent application, item 13 or 14, wherein the polybutadiene composition is a reinforced polybutadiene rubber, which comprises (i) 1 to 30 Weight percent of boiling n-hexane insoluble fractions, including its syndiotactic 1,2-polybutadiene, and (ii) 70 to 99% by weight of boiling n-hexane 86180 200413413 soluble fractions containing 90% or more The cis-structure of cis-1,4-polybutadiene. 16. A polybutadiene composition, which is manufactured by a method according to any one of claims 12 to 15 of the scope of patent application. 86180 4-
TW92116872A 2002-06-24 2003-06-20 Process of producing conjugated diene polymer TWI321135B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2002183032 2002-06-24
JP2002183031 2002-06-24
JP2003032360A JP2004244427A (en) 2003-02-10 2003-02-10 Polybutadiene composition and its production process
JP2003077990A JP2004285175A (en) 2003-03-20 2003-03-20 Stable molecular weight controlling method
JP2003084652A JP4193539B2 (en) 2003-03-26 2003-03-26 Stable molecular weight control method of conjugated diene polymer
JP2003084651A JP2004292535A (en) 2003-03-26 2003-03-26 Stable method for controlling molecular weight of polymer
JP2003088094A JP4225089B2 (en) 2003-03-27 2003-03-27 Method for controlling molecular weight of conjugated diene polymer

Publications (2)

Publication Number Publication Date
TW200413413A true TW200413413A (en) 2004-08-01
TWI321135B TWI321135B (en) 2010-03-01

Family

ID=34199403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92116872A TWI321135B (en) 2002-06-24 2003-06-20 Process of producing conjugated diene polymer

Country Status (3)

Country Link
CN (1) CN100567342C (en)
MY (1) MY139537A (en)
TW (1) TWI321135B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386419B (en) * 2004-12-20 2013-02-21 Ube Industries Process for producing polybutadiene rubber and rubber composition
TWI554535B (en) * 2014-03-31 2016-10-21 Ube Industries Polybutadiene

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075555A1 (en) * 2005-01-14 2006-07-20 Ube Industries, Ltd. Rubber composition and golf ball using the same as rubber base material
US7820763B2 (en) 2005-01-14 2010-10-26 Ube Industries, Ltd. Rubber composition and golf ball including the same as rubber base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386419B (en) * 2004-12-20 2013-02-21 Ube Industries Process for producing polybutadiene rubber and rubber composition
TWI554535B (en) * 2014-03-31 2016-10-21 Ube Industries Polybutadiene

Also Published As

Publication number Publication date
CN100567342C (en) 2009-12-09
TWI321135B (en) 2010-03-01
CN1468871A (en) 2004-01-21
MY139537A (en) 2009-10-30

Similar Documents

Publication Publication Date Title
JP3741760B2 (en) Techniques for reducing the molecular weight of cis-1,4-polybutadiene and improving its processability
US6383971B1 (en) Catalyst with a base consisting of compounds of the rare earth metals for polymerizing unsaturated organic compounds
JP2008163144A (en) Production method of vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP4736772B2 (en) Method for producing polybutadiene
KR20060050770A (en) Synthesis of cis-1,4-polybutadiene
JP3630502B2 (en) Rubber composition for tire
JP2002520457A (en) Copolymerization of conjugated diolefin with vinyl aromatic compound.
JP5585710B2 (en) Vinyl cis-polybutadiene
JP6701763B2 (en) Vinyl cis-polybutadiene rubber and method for producing the same
JP2011184570A (en) Method for producing vinyl-cis-polybutadiene rubber, and vinyl-cis-polybutadiene rubber
JP2000327703A (en) Suspension polymerization of conjugated diene
US4113930A (en) Hydrogenated 1,3-cyclohexadiene/1,3-butadiene copolymers
TW200413413A (en) Process of producing conjugated diene polymer
JP5447708B2 (en) Method for producing vinyl cis-polybutadiene
JP5447709B2 (en) Method for producing vinyl cis-polybutadiene
JP6790367B2 (en) Vinyl cis-polybutadiene rubber and its manufacturing method
JP2001294614A (en) Polybutadiene and method for producing the same
EP2507270A1 (en) Catalyst systems for rubber polymerizations
JP4062164B2 (en) Process for producing conjugated diene polymer
JP2004244427A (en) Polybutadiene composition and its production process
JP6701764B2 (en) Vinyl cis-polybutadiene rubber and method for producing the same
JP5151148B2 (en) Method for producing vinyl cis-polybutadiene rubber
JP7027564B2 (en) Vinyl cis-polybutadiene rubber and its manufacturing method
JP4193539B2 (en) Stable molecular weight control method of conjugated diene polymer
JP2017132958A (en) Rubber composition and tire

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees