TW200412709A - Synchronous control system of two parallel linear servo motors - Google Patents

Synchronous control system of two parallel linear servo motors Download PDF

Info

Publication number
TW200412709A
TW200412709A TW92100620A TW92100620A TW200412709A TW 200412709 A TW200412709 A TW 200412709A TW 92100620 A TW92100620 A TW 92100620A TW 92100620 A TW92100620 A TW 92100620A TW 200412709 A TW200412709 A TW 200412709A
Authority
TW
Taiwan
Prior art keywords
motor
speed
master
controller
slave
Prior art date
Application number
TW92100620A
Other languages
Chinese (zh)
Other versions
TW591880B (en
Inventor
Ming-Chi Tsai
Min-Fu Shie
Wu-Sung Yau
jun-xian Yang
Original Assignee
Ming-Chi Tsai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming-Chi Tsai filed Critical Ming-Chi Tsai
Priority to TW92100620A priority Critical patent/TW591880B/en
Application granted granted Critical
Publication of TW591880B publication Critical patent/TW591880B/en
Publication of TW200412709A publication Critical patent/TW200412709A/en

Links

Abstract

The present invention relates to a synchronous control system of two parallel linear servo motors whose cooperative applied hardware includes two motors, one coupling mechanism, and two position detectors. The two motors include one master motor and one slave motor that translate relatively. The coupling mechanism is installed across the master and the slave motors. The synchronous control system sends a speed command and a position command to the master motor first before the two position detectors start detecting the positions of the master and the slave motors, respectively. If any displacement difference is found, a synchronous displacement controller will be applied to further increase or decrease the speed of the master and/or the slave motor until the master and the slave motors are moving synchronously. Such correction adjustment synchronous technique will be applied continuously to ensure the synchronous movement of the master and the slave motors. The representative diagram of the present invention is shown in Fig. 2 and the symbols representing elements shown in the representative diagrams are: 10: Master motor, 11: First driving circuit, 12: First position detector, 20: Slave motor, 21: Second driving circuit, 22: Second position detector, 30: Force error measuring unit, 31: Force estimator, 32: Force command generator, 33: Force controller, 40: Position controller, 41: Path command generator, 42: Master motor position controller, 50: Master motor controller, 51: Master motor speed controller, 52: Subtractor, 60: Slave motor controller, 61: Slave motor speed controller, and 62: Adder.

Description

200412709 玖、發明說明 【發明所屬之技術領域】 本發明係關於一種雙平行線性伺服馬達同步控制系統,尤 指一種應用在多軸精密機器使其達到同步位移目的者。 【先前技術】 目前設計多軸機器的反饋式驅動器其最重要的關鍵在 於軸向行進軌道的精確度,特別是高速機器的應用。而在 行進軌道中所需考慮的誤差有執跡誤差(cont〇ur err〇r) ’ -般為降低軌跡誤差的手段係提高各軸的位置追跡精確 目W已提出許多運算方式以滿足降低軌跡誤差的要求 ’如回饋控制(feed-forward control)及預先控制 (―W —)及無相位誤差的追縱控制(zer… error trackmg c〇ntr〇1)等。然而對於應用在雙平行同步200412709 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a dual-parallel linear servo motor synchronous control system, and particularly to a person applied to a multi-axis precision machine to achieve synchronous displacement. [Previous technology] At present, the most important key for designing feedback drives for multi-axis machines is the accuracy of the axial travel track, especially for high-speed machines. The error that needs to be considered in the traveling track is tracking error (contorurer).-Generally, the means to reduce the trajectory error is to improve the position tracking accuracy of each axis. Many calculation methods have been proposed to reduce the trajectory. Error requirements' such as feed-forward control, advance control (-W-), and tracking control without phase error (zer ... error trackmg c〇ntr〇1). However for applications in dual parallel synchronization

馬達的同步控制上,卻因A 為钱構上的不精確性而令兩平朽 冋步馬達無法達到完全同步,是: 服因機構而無法同步的問題。 有政臾 【發明内容】 為此’本發明者的 行馬達行動的狀況,可係提供—種隨時檢測兩斗 J石Ϊ保兩馬達保持於 以應用於精密位移的多輛機器上。 ' 心下’ 欲達上述目的所使 系統的硬體結構包含有 技術手段,係令同步控帝 ,分別控制主/偉設於兩平行軌道上的主/撲馬, 馬達的驅動電路、兩分別設於主/僕 zuuHiz/uy ,上的位置檢測器’及一同時跨設於主 白機構,該耦合機構於兩馬達 、”、達之間的耦 同步位移控制單元分別與主/僕馬達的主要利用— 位置檢洌器連接,以校 電路及對應的 J 土/僕馬達呈同步作 上述同步控制方式係由同步位移吻作動, 達動作,透㈣合機構帶動僕馬達移動,以=控制主馬 達同步動作,由於兩平行軌道:广兩主/僕馬 主/禮民、去士 p %達間的硬體差異,&出 /僕馬達有非同步現象,此時 ^成 钿rf? 士+ I工, ΌΑ同步位移控制單开合 异兩位置檢測器回傳輪出 早疋會 已非同步行進,而☆如判斷兩主/僕馬達 即,採即時於M "工制兩主/僕馬達的移動速度 才木即時祆測回饋控制方式 才 其間的莩差,而、去^ 主/僕兩馬達隨時修正 7决差,而達到同步的目的。 【實施方式】 首先請參閱第一圖所示, 示咅ffl 係為本發明應用的硬體結構 0) (ml 兩平行執道上的主/僕馬達(1 (2 0 )及一同時跨設 _ )(〇 n , 、該千仃的主/僕馬達(1 〇 2 〇 )之間的耦合機構( it r 1 π ^ , 〇 再組成,其中主/僕馬 構(… 0)機構具有位置檢知功能,又該耦合機 構(7 1 )可於兩主/襟 請逸牛& (10)(20)上平移。 间牛氣^ t Q所不係為驅動前揭主/僕馬達 问步動作的控制系統方 第一皆一 4圖’上述主/僕馬達分別包含有 測器,以檢測馬達對庫4軌:第一、第二位置檢 控制系統係包含有: 道的相對位置,而同步動作 200412709 -力量誤差測量單it (30), 馬達的第一、第二位置檢測器(丄2 )( 2 2妾至主/僕 主/僕馬達間位移差對應的耦合機構變形力旦)以计异 —主馬達速度控制單元(5 〇 ),孫里 , 第一驅動電路,以控制主馬達的動作;、控制该主馬達的 一僕馬達速度控制單元(6 〇 ) 第二驅動電路,以控制主馬達的動作;、工制°亥撲馬達的 -位置控制單元(40),係分別 控制單元(50)/(60)輸入端及第/僕=達速度 ")的輸出端連接’以透過主 立置檢測器( 5〇)/(6〇)隨時控制主逮㈣ 上述同步動作控制系統主要即:達二 _ 道上的相對位置以及其位置差所廡仵主/僕馬達在軌 數值,作為回授控制主/僕馬達達二:合機構變形力量 由於位置控制單元(4 Μ /動作的計算數據。 徑命令輸入至兩馬達時二:的路徑’因此、,在新路 ’以計算目前離新位置的㈣ &所在位置進打比較 差測量單元(3 〇 ) 。耦5機構變形力量誤 形力量比較,則可更準錢差相對的輕合機構變 狀態,而達到同步動作的目的。月1J兩主/僕馬控行進的 乂上為本發明平行馬達同步 說明’以下,針對系統各組成進行說7制系統的主要技術 上述力里誤差洌量單元(3 ^ 構變形力量估測器(3工) )’係包含有一耦合機 、一力量指令產生器(32) 200412709 及力量控制器(33),其中:兩位置檢測器(12)( 22)的輸出數值相減以計算兩主/僕馬達(")(2 ◦)卩了位置誤差值’再將此位置誤差值利用力量估測器 (3 1 )估測出崎合機構變形力量數值後,再與力量 各二產生& ( 3 2 )的預設力量數值相減,將差值輸出至 力:控制器㈡3),以求得實際與預測的耗合機構變形 力里相差數值,並輸出至主/僕馬達速度控制單元( )/ ( 6 〇 )。 上述主馬達控制單元(5〇)主要決定主馬達的移動 速度,而包含有-主馬達速度控制器(51)"法器 (52),該主馬達速唐批制盟〆e,、 度控制為(5 1 )與力量控制器( 3 6 )透過減法器(5 ?、 卜 v D 2 )相減,以計算兩者之差進而透 過第-驅動電路(11)控制主馬達(iq)之速度。 上述僕馬達控制單元(6 〇 )主要決定僕馬達(2 〇 )的移=速度’其包含有一僕馬達速度控制器(6丄)及 加:為(! 2 ) ’該僕馬達速度控制器(6 1 )輪出端 與力量控制器(3 3 )的輸出信號透過加法器(6 2 )相 加,以透過第二驅動電路(21)控制撲馬達( 速度。 上述位置控制單元(4 〇 )主要輸出 (1 0 ) / ( 2 0 )的移程路僻人 俣馬達 生器(川及-主馬達位置控制器(42) = 令產生器(41)需與配合主t私 斤上 馬達(1 0 )目前位置以估 算相距距離’是以’路徑指令產生器(4ι)與第 200412709 檢測器(1 2 )輸出數值相減,再輸入至主馬達位置控制 器(4 2 ) ’而主馬達控制器(4 2 )進一步與第一位置 檢測器(1 2 )輸出數值的相對速度(以微分估測)進行 相減’以求得控制主馬達速度控制器(5 1 )的速度值, 又’至於僕馬達控制器(6 1 )的控制速度值係由路徑指 令產生器(4 1 )與第一位置檢測器(1 2 )的差進一步 與第二位置檢測器(2 2 )輸出的相對速度數值(以微分 進打估測)相減而得,是以,僕馬達(2 〇 )速度控制係 Ik主馬達(1 〇 )的目前位置而變動,而令僕馬達(2 〇 )速度及位移修正至與主馬達(丄〇)同步。 上述控制兩平行主/僕馬達(1 〇 ) / ( 2 〇 )達同 步行進的技術,於初始啟動兩主/僕馬達(丄〇 )/( 2 〇 )日寸’先對主馬$ ( 1 ◦)施以速度及位置的命令,再 依據兩第-、第二位置檢測器(12) (22)回送的數 值,配合力量誤差測量單元(3 〇 ) &主/僕馬達控制單 兀(50)/(60)調整主/僕馬達(1〇) )的行進速度,一直修正到主/僕馬達(i 〇 ) / ( 2 〇 )呈同步打進為止,此修正調整同步技術仍繼續進行,由 於前揭各單元皆可以軟體實現,故可令硬體馬達機構配人 一台電腦控制同步行進,如第三圖所示。 口 由上述可知,本發明係主要利用即時檢測位移差配人 回饋控制兩平行馬達的運轉速度,令兩馬達修正至同+二 運轉’由於僅控制主馬達的位置及速度,目此,僕:、 運轉則由前揭結構跟隨主馬達啟動, 6、 υ止至主、僕馬達 200412709 際運轉時,因硬 馬達於實際運轉 ’並且符合新穎 同乂疋以,本發明考慮到兩平行馬達實 體結構或執道產生的誤差,故可確實使兩 時,隨時保持同步運轉的狀態。 為此,本發明確實具有產業上利用性 進步性等要件,爰依法提出申請。 【圖式簡單說明】 (一)圖式部分 弟一圖 第二圖 第三圖 示意圖 係本發明的立體外觀圖。 係本發明控制手段實體化的方塊圖(代表圖)。 係本發明第一圖配合電腦實現第二圖同步控制的 (二)元件代表符號 (1 0)主馬達 (1 2 )第一位置檢測器 (2 1 )第二驅動電路 (3 〇 )力量誤差測量單 (32)力量指令產生器 (4 〇 )位置控制單元 (4 2 )主馬達位置控制器 (5 1 )主馬達速度控制器 (6 0 )僕馬達控制單 (6 2 )加法器 (71)耦合機構 (1 1 )第一驅動電路 (2 0 )僕馬達 (2 2 )第二位置檢測器 (3 1 )力量估測器 (3 3 )力量控制器 (4 1 )路徑指令產生器 (5 0 )主馬達控制單元 (5 2 )減法器 (6 1 )僕馬達速度控制器 (7 0 )電腦In the synchronization control of the motor, because of the inaccuracy of A for the money structure, the two flattened Liaobu motors could not achieve full synchronization, which is due to the problem that the mechanism cannot synchronize. You Zhengyi [Summary of the Invention] To this end, the present inventor's motor operation status can be provided-a kind of machine that can detect two buckets at any time. J Ishiba guarantees that the two motors are held on multiple machines for precise displacement. 'Under the heart' The hardware structure of the system to achieve the above purpose contains technical means to control the emperor synchronously, respectively controlling the main / puppet horse on two parallel tracks, the drive circuit of the motor, two The position detector 'on the main / servo zuuHiz / uy' and a simultaneous crossover on the main white mechanism, the coupling mechanism between the two motors, ", and the synchronous displacement control unit are respectively connected with the main / servo motor's The main use is to connect the position detector to synchronize the calibration circuit and the corresponding J soil / servo motor. The above synchronous control method is actuated by a synchronous displacement kiss. The movement is achieved by a coupling mechanism that drives the servo motor to control the master. The motors move synchronously due to the hardware differences between the two parallel tracks: the two masters / servant horse owners / limin, and the taxis %%, and the & servo motors are asynchronous, and at this time ^ 钿 钿 rf? 士 + I work, ΌΑ synchronous displacement control, single opening and closing, and the two position detectors return to the wheel. As early as possible, they will have traveled asynchronously. ☆ If two masters / servants are judged, they will be adopted at M " Speed of the motor The difference between the two control systems is the difference between the master and the slave motors. The difference between the master and slave motors can be corrected at any time to achieve synchronization. [Embodiment] First, please refer to the first figure. Hardware structure of 0) (ml of the master / slave motor (1 (2 0) and a crossover _) on two parallel tracks) (〇n,) The coupling mechanism (it r 1 π ^, 〇 is recombined, in which the main / servo structure (… 0) mechanism has a position detection function, and the coupling mechanism (7 1) can be (10) (20) panning up. Time is not good ^ t Q is not a control system that drives the master / slave motor stepping motion before the first one is shown in Figure 4 above. The above master / slave motors each contain a measuring device. In order to detect the 4 rails of the motor to the library: the first and second position detection control systems include: the relative position of the track, and synchronous action 200412709-force error measurement sheet it (30), the first and second position detection of the motor (丄 2) (2 2 妾 to the deformation force of the coupling mechanism corresponding to the displacement difference between the master / slave / slave motor) to calculate the difference—the speed of the main motor Sun Li, a control unit (50), a first drive circuit to control the movement of the main motor; a second motor speed control unit (60) to control the main motor to control the movement of the main motor; The position control unit (40) of the industrial ° Hip motor is connected to the input end of the control unit (50) / (60) and the output end of the first / second = reaching speed ") to detect through the main stand The controller (50) / (60) controls the master at any time. The above-mentioned synchronous motion control system mainly includes: the relative position on the track and the value of the master / slave motor on orbit as the feedback control master / Servo motor up to 2: The deformation force of the joint mechanism due to the position control unit (4 M / action calculation data. When the diameter command is input to the two motors, the path is ‘So’, the new path ’is used to calculate the difference from the new position ㈣ & where the difference is measured (30). The comparison of the deformation force and the misformed force of the 5 mechanism can more accurately change the status of the light-on mechanism with a relatively small difference in money, and achieve the purpose of synchronous action. On January 1J, the description of the two master / servant-controlled marching is the parallel motor synchronous description of the present invention. Below, the main technology of the 7-system system is described for each component of the system. The above-mentioned force measurement unit (3 ^ structural deformation force estimator (3 workers)) 'includes a coupling machine, a force command generator (32) 200412709 and a force controller (33), where: the output values of the two position detectors (12) and (22) are subtracted to calculate the two main / Servo motor (") (2 ◦) 卩 The position error value is' Then this position error value is estimated by the force estimator (3 1) and the deformation force value of the Qihe mechanism is generated. (3 2) Subtract the preset force value and output the difference to the force: controller ㈡ 3) to obtain the difference between the actual and predicted deformation mechanism deformation force and output it to the master / servo motor speed control unit. () / (6 〇). The above-mentioned main motor control unit (50) mainly determines the moving speed of the main motor, and includes a main motor speed controller (51) " implement (52). The control is (5 1) and the power controller (3 6) is subtracted by a subtractor (5?, V v D 2) to calculate the difference between them and then control the main motor (iq) through the first driving circuit (11). Speed. The above-mentioned servo motor control unit (60) mainly determines the displacement of the servo motor (20) = speed ', which includes a servo motor speed controller (6 丄) and plus: (! 2)' The servo motor speed controller ( 6 1) The output signal of the wheel output end and the power controller (3 3) are added through an adder (6 2) to control the flutter motor (speed) through the second driving circuit (21). The above-mentioned position control unit (4 〇) The main output (1 0) / (2 0) is a remote motor driver (Sichuan and-the main motor position controller (42) = the generator (41) needs to cooperate with the main t to load the motor ( 1 0) The current position is used to estimate the distance. 'The output value of the path command generator (4ι) and the 200412709 detector (1 2) is subtracted, and then input to the main motor position controller (4 2)' and the main motor The controller (4 2) further subtracts the relative speed (in differential estimation) of the output value of the first position detector (1 2) to obtain the speed value of the main motor speed controller (5 1). 'As for the servo motor controller (6 1), the control speed value is generated by the path command (4 1) The difference from the first position detector (1 2) is further subtracted from the relative speed value (estimated by differential calculation) output from the second position detector (2 2). Therefore, the servo motor (2) The speed control system Ik changes the current position of the main motor (10), so that the speed and displacement of the servo motor (20) are corrected to synchronize with the main motor (200). The above controls two parallel main / servo motors. (10) / (20) technology to achieve synchronous travel, initially start the two master / slave motors (丄 〇) / (20) daily inch 'first speed and position of the main horse $ (1 ◦) Command, and then adjust the master according to the values returned by the second and second position detectors (12) (22), and cooperate with the power error measurement unit (30) & master / servo motor control unit (50) / (60) / Servant motor (1〇)), until the master / slave motor (i 〇) / (2 〇) is synchronized to advance, this correction adjustment synchronization technology continues, because all units can be opened before The software is implemented, so the hardware motor mechanism can be equipped with a computer to control the synchronous travel, as shown in the third picture. It can be known that the present invention mainly uses the real-time detection of the displacement difference and the feedback of the two parallel motors to control the running speed of the two parallel motors, so that the two motors are corrected to the same + two operations. Because only the position and speed of the main motor are controlled, for this reason, the operation of The front opening structure follows the start of the main motor. 6. When the υ stops at the main motor and the servo motor 200412709, the hard motor is in actual operation and it is in line with the novel concept. The present invention takes into account the two parallel motors' physical structure or execution. Error, so it can be sure to keep the state of synchronous operation at any time. For this reason, the present invention does have the requirements of industrial applicability and progressability, etc., and the application is filed in accordance with the law. [Brief description of the drawings] (1) Schematic part 1 figure 2 figure 3 figure The diagram is a three-dimensional appearance view of the present invention. It is a block diagram (representative map) of the control means of the present invention. The second diagram of the present invention cooperates with a computer to realize the second diagram of the synchronous control of the second diagram (two) the component representative symbol (1 0) the main motor (1 2) the first position detector (2 1) the second drive circuit (30) the power error Measurement sheet (32) Force command generator (4 〇) Position control unit (4 2) Main motor position controller (5 1) Main motor speed controller (6 0) Servo motor control sheet (6 2) Adder (71 ) Coupling mechanism (1 1) First drive circuit (2 0) Servo motor (2 2) Second position detector (3 1) Force estimator (3 3) Force controller (4 1) Path command generator ( 5 0) main motor control unit (5 2) subtracter (6 1) servo motor speed controller (7 0) computer

Claims (1)

200412709 拾、申請專利範圍 1.-種雙平行線性伺服馬達同步控制系統,係控制 分設於兩平行軌道上的"僕馬達達同步動作的技術,兩 主/僕馬達之間跨設一搞合機構,其中主/僕馬達機構具 有位置檢知功能,該同步控制系統包含有: -力量誤差測量單元,係取得"僕馬達回傳的即時 對應平行執道位置,以計算主/僅 合機構變形力量值; 撲馬達間位移差對應的柄 達速度控制單元,係連接於主馬達與力量誤差 川里早7G間,以控制主馬達移動速度; 一僕馬達速度控制單元,禆查 測m n J早兀係連接於僕馬達與力量誤差 、早兀間,係控制僕馬達移動速度; 較,制單元,係將"僕馬達位置與路徑位置相 車乂,作為控制主、僕馬達速度控制單元的速度值; 僕馬達配合目前移位的相對力量差 以调整主、僕馬達間達同步作動。 2 ·如申請專利範圍 同步控制系統,該力量二雙平行線贿馬達 器、一力量指令產生器及一;;J = ^包含有一力量估測 入數值為主、禮 里控制态,力量估測器的輸 耦合機構變形力量數::位置差,以將位置差估測出相對 量數值相減,再將差值輪出指t產生器的狀力 預測的力量相差數值 j 里控制咨,以求得實際與 200412709 I如中請專利範圍第χ或2項所述雙平行線性词服 馬達同步控制系統,該主馬達移動控制單元包含有一主馬 達,度控制器及-減法器,該主馬達速度控制器與力量控 制為透過減法器相減,以計算兩者間差進而控制主馬達速 度。 一 申明專利範圍第3項所述雙平行線性伺服馬達 同步控制系統,該僕馬達速度控制單元係包含有-僕馬達 f度&制及—加法器’該僕馬達速度控制器輸出端與力 里控制$透過加法器相加,作為控制僕馬達的速度。 5如申e月專利範圍第4項所述雙平行線性祠服馬達 同步控制系統,該位置控制單元係包含有一路徑指令產生 器及-主馬達位置控制器;該路徑指令產生器係與配合主 馬達目前位置以姑瞀知和^^ 估斤相距距離,路徑指令產生器與第一位 置檢測器輸出數值相減,再輸入至主馬達位置控制器,而 、馬達才工制益$纟與微分後的第一位置檢測器輸出數值 相減’以求得控制主馬達速度控制器的速度值,又,該僕 馬達控制器的控制速度值係由路徑指令產生器與第一位置 仏測為的差進-步與微分後的第二位置檢測器相減而得。 6 4中請專利範圍第1項所述雙平行線性伺服馬達 ㈣控m該主、僕馬達為伺服馬達。 13200412709 Scope of patent application 1.- A dual-parallel linear servo motor synchronous control system, which is used to control the " servo motor's synchronous operation technology, which is divided into two parallel tracks, and a crossover between the two main / servo motors Combination mechanism, in which the master / slave motor mechanism has a position detection function, the synchronous control system includes:-a force error measurement unit, which obtains the real-time corresponding parallel execution position of the "slave motor return" to calculate the master / slave only The value of the deformation force of the mechanism; the handle speed control unit corresponding to the displacement difference between the flutter motors is connected between the main motor and the power error 7 Kawasaki, to control the speed of the main motor; a servo motor speed control unit, check and measure mn J The early unit is connected between the servo motor and the power error and the early stage, which controls the movement speed of the servo motor. The control unit is a system that controls the position of the servo motor and the path position to serve as the speed control unit for the master and servo motors. The speed of the servo motor matches the relative force difference of the current displacement to adjust the synchronous movement between the servo motor and the servo motor. 2 · If the patent application scope is a synchronous control system, the power is two pairs of parallel-line bribe motors, a power command generator, and one; J = ^ contains a power estimation based on the value, the control mode is the courtesy, and the power estimation The number of deformation forces of the transmission coupling mechanism of the actuator: position difference, to subtract the relative value from the estimated position difference, and then turn the difference out to indicate the force difference value j predicted by the shape force of the generator. Find the actual and 200412709 I dual parallel linear servo motor synchronous control system as described in the patent claim No. χ or 2, the main motor movement control unit includes a main motor, a degree controller and a-subtractor, the main motor The speed controller and power control are subtracted by a subtractor to calculate the difference between them to control the speed of the main motor. A dual-parallel linear servo motor synchronous control system according to item 3 of the stated patent scope. The servo motor speed control unit includes-servo motor f degrees & and-adder. The servo motor speed controller output terminal and force Here the control $ is added through the adder to control the speed of the servo motor. 5 As described in item 4 of the scope of patent application in January, the parallel parallel linear motor service motor synchronous control system, the position control unit includes a path command generator and a main motor position controller; the path command generator The current position of the motor is estimated by the distance between the motor and the motor. The path command generator is subtracted from the output value of the first position detector, and then input to the main motor position controller. Subtract the output value of the first position detector 'to obtain the speed value of the main motor speed controller, and the control speed value of the slave motor controller is estimated by the path command generator and the first position. The difference-step is subtracted from the second position detector after differentiation. 6. The dual-parallel linear servo motor described in item 1 of the patent scope ㈣ Control m The master and slave motors are servo motors. 13
TW92100620A 2003-01-13 2003-01-13 Synchronous control system of two parallel linear servo motors TW591880B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92100620A TW591880B (en) 2003-01-13 2003-01-13 Synchronous control system of two parallel linear servo motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92100620A TW591880B (en) 2003-01-13 2003-01-13 Synchronous control system of two parallel linear servo motors

Publications (2)

Publication Number Publication Date
TW591880B TW591880B (en) 2004-06-11
TW200412709A true TW200412709A (en) 2004-07-16

Family

ID=34058941

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92100620A TW591880B (en) 2003-01-13 2003-01-13 Synchronous control system of two parallel linear servo motors

Country Status (1)

Country Link
TW (1) TW591880B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558089B (en) * 2015-08-06 2016-11-11 財團法人工業技術研究院 Synchronous control system for multi-axis motors and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558089B (en) * 2015-08-06 2016-11-11 財團法人工業技術研究院 Synchronous control system for multi-axis motors and method thereof
US10241496B2 (en) 2015-08-06 2019-03-26 Industrial Technology Research Institute Multi-axis motor synchronization control system and method thereof

Also Published As

Publication number Publication date
TW591880B (en) 2004-06-11

Similar Documents

Publication Publication Date Title
CN101458532B (en) Synchronous control system for ultraprecise double-layer macro/micromotion platform
Mitsantisuk et al. Kalman filter-based disturbance observer and its applications to sensorless force control
JPH03500101A (en) Robot axis controller using feedback and open-loop control
KR101440702B1 (en) Parallel drive system
CN107848437A (en) Moving body
Wang et al. Output torque tracking control of direct-drive rotary torque motor with dynamic friction compensation
Heydarzadeh et al. Compensation of friction and force ripples in the estimation of cutting forces by neural networks
CN108604088A (en) Controller and transport system
Prévost et al. Feed drive modelling for the simulation of tool path tracking in multi-axis high speed machining
TW200412709A (en) Synchronous control system of two parallel linear servo motors
Andersen et al. Appearance based processes for visual navigation
CN107748496A (en) Impedance controller algorithm based on parameter adaptive regulation
TW200921316A (en) Multi-degree-of-freedom stage control apparatus
WO2022142117A1 (en) Zero resetting method and apparatus for double-shaft same-guideway device
JPH06332535A (en) Robot controller
JPH06203498A (en) Head positioning controller for disk device
JP3130426B2 (en) Motor control device
JPS59173805A (en) Industrial robot having instruction data converting function
Mobasser et al. Predictive teleoperation using laser rangefinder
Richert et al. Direct adaptive force feedback for haptic control with time delay
Motamedi et al. Robust adaptive control of a micro telemanipulation system using sliding mode-based force estimation
CN111195908B (en) Track generation device
Mobasser et al. Stable impedance reflecting teleoperation with online collision prediction
JPH0322108A (en) Mobile robot
JP2000033532A (en) Equipment monitoring and controlling device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees