TW200412611A - Methods of nanotube films and articles - Google Patents

Methods of nanotube films and articles Download PDF

Info

Publication number
TW200412611A
TW200412611A TW092100451A TW92100451A TW200412611A TW 200412611 A TW200412611 A TW 200412611A TW 092100451 A TW092100451 A TW 092100451A TW 92100451 A TW92100451 A TW 92100451A TW 200412611 A TW200412611 A TW 200412611A
Authority
TW
Taiwan
Prior art keywords
substrate
nanotubes
nanotube
manufacturing
layer
Prior art date
Application number
TW092100451A
Other languages
Chinese (zh)
Other versions
TWI324786B (en
Inventor
Thomas Rueckes
Brent M Segal
Original Assignee
Nantero Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/128,117 external-priority patent/US6835591B2/en
Application filed by Nantero Inc filed Critical Nantero Inc
Publication of TW200412611A publication Critical patent/TW200412611A/en
Application granted granted Critical
Publication of TWI324786B publication Critical patent/TWI324786B/en

Links

Abstract

Nanotube films and articles and methods of making the same are disclosed. A conductive article includes an aggregate of nanotube segments in which the nanotube segments contact other nanotube segments to define a plurality of conductive pathways along the article. The nanotube segments may be single walled carbon nanotubes, or multi-walled carbon nanotubes. The various segments may have different lengths and may include segments having a length shorter than the length of the article. The articles so formed may be disposed on substrates, and may form an electrical network of nanotubes within the article itself. Conductive articles may be made on a substrate by forming a nanotube fabric on the substrate, and defining a pattern within the fabric in which the pattern corresponds to the conductive article. The nanotube fabric may be formed by growing the nanotube fabric on the substrate using a catalyst, for example, in which the catalyst is a gas phase catalyst, or in which the catalyst is a metallic gas phase catalyst. The nanotube fabric may be formed by depositing a solution of suspended nanotubes on the substrate. The deposited solution may be spun to create a spin-coating of the solution. The solution may be deposited by dipping the substrate into the solution. The nanotube fabric is formed by spraying an aerosol having nanotubes onto a surface of the substrate.

Description

200412611 A7 B7 五、發明說明(/) 相關申請案之交互參照資料 本申請案與下述申請案相關,全部案件都讓渡給本申 請案之受讓人,且全部之案件係列入作參考: 使用毫微管帶狀物之電機記憶體陣列及其製造方法 5 (Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same)(美國專利申請序號 09/915093,申請曰為2001年7月25曰); 具有利用毫微管技術所構成之單元選擇電路之電機記 憶體(Electromechanical Memory Having Cell Selection ίο Circuitry Constructed with Nanotube Technology^美國專 利申請序號09/915173,申請曰為2001年7月25日);以 及 、 具有毫微管電機記憶體之混合電路(Hybrid Circuit Having Nanotube Electromechanical Memory)(美國專利申 15 請序號09/915095,申請日為2001年7月25曰)。 【發明領域】 經濟部智慧財產局員工消費合作社印製 本發明一般係關於毫微碳管薄膜、織物、層、以及物 件,尤其關於以毫微碳管薄膜、織物、或層來製造導電物 件以供電路等等方面上的各種使用。 20【發明背景】 ,- 要確實製造在次10 nm範圍内的導電、超薄金屬層 與電極是存在有問題的,參見例如S· Wolf,VLSI時代之 石夕處理(Silicon Processing for the VLSI era);第 2 卷-整合 處理(Lattice Press,Sunset Beach,1990)。在這個尺寸範 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 200412611 A7 B7 五、發明說明(2) 圍内的金屬冑通常是在廣大的距離範圍内呈現不連續且不 V 7特丨生。再者,這些次1〇 nm薄膜易因電流而遭受到 、、員壞藉以使得它們不適合半導體裝置中例如電性互連 =應用。由它們的低熱傳導性所導致的薄金屬互連之熱損 壞係為抑制局度集積化半導體裝置之戲劇性的小型化與性 能改善之主要因素之一。 ^習知之互連技術具有因損害半導體裝置之性能的熱損 壞,金屬擴散而蒙受損害之趨勢,尤其因電性特性之退化 =冢^損害。對尺寸縮小之現代的G.18//II1與G.13//m構 仏而&,廷些影響例如因金屬擴散通過超薄閘極氧化層而 變得甚至更顯著。 因此,習知技術需要可在具有高電流密度之情況下或 在極熱狀況下仍能良好運作之導電元件。這包含具有很小 15 經濟部智慧財產局員工消費合作社印製 特徵尺寸之電路情況,也包含其他高電流錢極熱環境情 況。亦需要較不可能將不期望數量之污染物擴散進入其他 電路元件之導電元件。 【發明之概述】 本發明提供毫微管薄膜與物件及其製造方法。在本發 明之-個樣態之下,導電物件包含毫微管段之集合," 毫微管段會接觸其他毫微管段以沿著物件定μ複數條 電小徑。 發明之其他樣態之下’毫微管段可以是單壁毫微 反&或夕壁毫微碳管。各段可具有不同長度,且可包含呈 有比物件之長度來得短的段。 /、 4 200412611 五、發明說明(3) 15 經濟部智慧財產局員工消費合作社印製 如此形成之物件可能被配置在基板上且可在物件本 身内形成耄微管之電性網路。 在本發明之其他樣態之下,藉由在基板上形成毫微管 —亚界定在織物内之圖案’可能將導電物件製造在基板 上,其中上述圖案係對應至導電物件。 在本發明之其他樣態之下,毫微管織物係藉由使用催 1 匕劑來使毫微管織物成長在基板上而形成,其中催化劑係 :'、、譬如一種氣相催化劑,或催化劑係為譬如—種金屬氣相 催化劑。 古^發明之其他樣態之下,毫微f織物係藉由使懸浮 笔微s之冷液沈積在基板上而形成。沈積溶液可被旋轉以 建立溶液之旋轉塗佈。 在本發明之其他樣態之下,可藉由將基板浸入溶液中 而使溶液沈積。 在本發明之其他樣態之下,毫微管織物係藉由將具有 毫微管之懸浮微粒⑽⑽叫噴灑至基板之表面之上 成。 本發明提供一種導電毫微管之薄膜之製造方法。在本 發明之-個樣態之下,提供基板,並導入汽相催化劑以促 進宅微管之成長。亦導入碳源以使實質上平行於基板之主 表面之一層毫微管成長。 Μ在本發明之另-個樣態之下,汽相催化劑係為一種金 屬茂(metallocene)。 本發明提供一種導電毫微管之薄膜之製造方法。在本 裝 訂 線 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 200412611 五、發明說明(4) A7 B7 15 部 智 慧 財 員 工 消 f 合 作 社 印 製 20 發明之一個樣能夕τ , 毫微管之成長:亦導心:基板並導入汽相催化劑以促進 面之一層毫微管成Ϊ 使實質上平行於基板之主表 屬茂在本考X月之另一個樣態之下,汽相催化劑係為-種金 在本發明之另—個樣態之下,導+ ί 形成毫好織物;界定在 : '、其中圖案係對應至導電物件;以及移除 、、之一部份,俾能使圖案化織物殘複 數個導電物件。 仪上以形成複 驟而:i!明之另一個樣態之下,導電物件係藉由下述步 古化在基板上;提供基板;導入汽相催化 ⑽管之成長1及導人碳源以使實質上平行於基板之= 表面之一層毫微管成長。 在本發明之另一個樣態之下,導電物件係藉由下述步 驟而被製造在基板上;提供基板;提供圖案化層之材料· ,供促進毫微管成長之催化劑;以及提供碳源,俾能使實 質上平行於該基板之主表面之毫微管在由該 區域中成長。 在本發明之另一個樣態之下,圖案化層夂材斛係為一 種絕緣體或半導體,而其中毫微管係在圖案化材料上面成 長。 在本發明之另一個樣態之下,圖案化層係為一種圖案 化金屬層,而其中毫微管係在除了圖案化金屬層以外的區 訂 ___ 6 本紙張尺度適用中國國家標準(CNS)A4規格(21() χ 297公幻 丄丄 五、發明說明^---------- 域中成長。 【圖式之簡單說明】 在附圖中, ^ 、、員示依據本發明之某些實施例之毫微管帶交叉式 5 $憶體裝置; 圖2Α_β顯示依據本發明之某些實施例之記憶體單元 之兩個狀態; 圖3顯不依據本發明之某些實施例之記憶體裝置之製 造動作; 1 、圖仁11顯示依據本發明之某些實施例之建立用以完 成記憶體裝置之中間構造之數個型式; 一圖12顯示用以完成本發明之某些實施例之非編織物 宅微管或毛面毫微管層; 圖13顯示本發明之某些實施例之毛面毫微管層相對 15於隱藏之下層線路; 圖14顯示本發明之某些實施例之定址邏輯; 經濟部智慧財產局員工消費合作社印製 圖15顯示本發明之混合技術實施例,其中記憶體核 心使用毫微管技術; u 人 圖16顯示本發明之混合技術實施例,其中記憶體核 20心與定址線使用毫微管帶狀物技術; > ^ 圖17顯示依據本發明之某些實施例之導電物件之製 造動作; 圖18顯示依據本發明之某些實施例之導電物件如何 可用以連接電性元件; 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 五、發明說明(ό) 圖1 9顯示依據本發明鞏 的方法以及 月之某些實把例之建立中間構造 圖20顯示用以完成本發 毫微管或毛面毫微管層。 只也例之非編織物 5【發明之詳細說明】 本發陣列及其製造方法,其中 構:似於揭露於wo _中之nt則裝 、 之包機圯憶體單元,wo 01/03208全部伟此列 二作參然而,不像揭露於觸_施中 1〇 ϊΐ::物由毫微管之毛面層或毫微管·之非編織物製成之 2的τ狀物係被使用作為導電元件。於此揭露書中,這些 帶狀物被稱為線路或導電物件。在某些實例中,這些帶狀 物係被懸矛,而在其他實例中,它們係被配置在基板上。 f某些實例中’它們會在電性控制之下用以偏向某些狀 〜而在,、他實例中,它們並不會移動,而取而代之的是 只用以傳送電流或電壓。吾人相信新的毫微管帶構造在整 合與規模層級(所製造之裝置數目)是更容易建構的,且其 幾何尺寸更容易受到控制。吾人相信在沒有經歷金屬線路 20 所經驗或預期的上述問題的情況下,新的毫微管帶狀物能 更容易傳送高電流密度。 在本發明之某些實施例之下,導電物件可能由毫微管 織物、層、或薄膜所製造出。具有和i nm 一樣小的管直 徑之毫微碳管係為能傳送相當高的電流密度之導電體,例 如參見 Z· Yao,C.L. Kane,c. Dekker,Phys. Rev· Left· 84, 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公楚) 200412611 A7 B7200412611 A7 B7 V. Description of the invention (/) Cross-reference information of related applications This application is related to the following applications. All cases are transferred to the assignee of this application, and all cases are included for reference: Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same 5 (U.S. Patent Application No. 09/915093, application dated July 25, 2001); Electromechanical Memory Having Cell Selection Circuitry Constructed with Nanotube Technology (U.S. Patent Application Serial No. 09/915173, application dated July 25, 2001); and, Hybrid Circuit Having Nanotube Electromechanical Memory (US Patent Application No. 15/09/915095, application date is July 25, 2001). [Field of the Invention] Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics The present invention generally relates to nanocarbon tube films, fabrics, layers, and objects, and more particularly to manufacturing conductive objects with nanocarbon tube films, fabrics, or layers to For various uses in circuits and so on. 20 [Background of the Invention]-There is a problem in making conductive, ultra-thin metal layers and electrodes in the sub-10 nm range, see, for example, S. Wolf, Silicon Processing for the VLSI era ); Volume 2-Integrated Processing (Lattice Press, Sunset Beach, 1990). The paper size of this size template applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) 200412611 A7 B7 V. Description of the invention (2) The metal cymbals within the range usually show discontinuity and discontinuity over a wide distance. V 7 is born. Furthermore, these sub-10 nm thin films are susceptible to damage due to current flow, making them unsuitable for use in semiconductor devices such as electrical interconnections. Thermal damage of thin metal interconnects caused by their low thermal conductivity is one of the main factors that suppress the dramatic miniaturization and performance improvement of localized integrated semiconductor devices. ^ Conventional interconnect technology has a tendency to suffer damage due to thermal damage that impairs the performance of semiconductor devices and metal diffusion, especially due to the degradation of electrical characteristics = damage. For modern G.18 // II1 and G.13 // m structures downsized, some effects become even more significant, for example, due to metal diffusion through the ultra-thin gate oxide layer. Therefore, conventional techniques require conductive elements that can perform well with high current densities or in extreme heat conditions. This includes circuits with very small features printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, as well as other high-current, extremely hot environment conditions. There is also a need for conductive elements that are less likely to diffuse undesired amounts of contaminants into other circuit elements. [Summary of the Invention] The present invention provides a nanotube film and an article and a method for manufacturing the same. In one aspect of the present invention, the conductive object includes a collection of nano tube segments. "The nano tube segment will contact other nano tube segments to determine a plurality of electrical paths along the object. In other aspects of the invention, the 'nanotube segment' may be a single-walled nano & Each segment may have a different length and may include a segment that is shorter than the length of the object. / 、 4 200412611 V. Description of the invention (3) 15 Printed by the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs The thus formed object may be arranged on a substrate and an electric network of microtubules may be formed in the object itself. In other aspects of the present invention, it is possible to fabricate a conductive object on the substrate by forming a nanotube on the substrate-a pattern sub-defined in the fabric, wherein the above pattern corresponds to the conductive object. In other aspects of the invention, the nanotube fabric is formed by using a catalyst to grow the nanotube fabric on the substrate, wherein the catalyst system is: ', such as a gas phase catalyst, or a catalyst For example-a metal gas phase catalyst. In other aspects of the ancient invention, a nanofiber fabric is formed by depositing a cold liquid of a suspended pen micros on a substrate. The deposition solution can be rotated to establish a spin coating of the solution. In other aspects of the invention, the solution can be deposited by immersing the substrate in the solution. In other aspects of the present invention, the nanotube fabric is formed by spraying aerosols with nanotubes onto the surface of the substrate. The invention provides a method for manufacturing a thin film of conductive nanotubes. Under one aspect of the present invention, a substrate is provided, and a vapor-phase catalyst is introduced to promote the growth of house microtubules. A carbon source was also introduced to grow a layer of nanotubes substantially parallel to the main surface of the substrate. In another aspect of the present invention, the vapor phase catalyst is a metallocene. The invention provides a method for manufacturing a thin film of conductive nanotubes. In this gutter, the paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) 200412611 V. Description of the invention (4) A7 B7 15 Ministry of Intellectual Property Staff Printed by the cooperative 20 A sample of invention τ, the growth of nanotubes: also guide the heart: the substrate and the introduction of a vapor phase catalyst to promote the formation of a layer of nanotubes on the surface, so that the main surface substantially parallel to the substrate belongs to another aspect of this month In the following, the vapor phase catalyst is a kind of gold. In another aspect of the present invention, + + forms a fine fabric; it is defined in: ', where the pattern corresponds to a conductive object; and In some cases, 俾 can make the patterned fabric leave several conductive objects. On the instrument, the following steps are formed: In another aspect of i! Ming, the conductive object is ancientized on the substrate by the following steps; the substrate is provided; the growth of the vapor phase catalytic tube is introduced 1 and the carbon source is introduced to A layer of nanotubes substantially parallel to the surface of the substrate is grown. In another aspect of the present invention, a conductive object is manufactured on a substrate by the following steps; providing a substrate; providing a material for a patterned layer, a catalyst for promoting nanotube growth; and providing a carbon source俾 can make the nanotubes substantially parallel to the main surface of the substrate grow in this area. In another aspect of the present invention, the patterned layer is a kind of insulator or semiconductor, and the nano tube is grown on the patterned material. In another aspect of the present invention, the patterned layer is a patterned metal layer, and the nanotubes are ordered in areas other than the patterned metal layer ___ 6 This paper size applies to the Chinese National Standard (CNS ) A4 specifications (21 () χ 297 public magic 丄 丄 5. Description of the invention ^ ---------- Growth in the field. [Simplified description of the figure] In the drawings, ^,, and the basis for the instructions Some embodiments of the present invention have a nano tube with a cross-type 5 $ memory device; Figure 2A_β shows two states of a memory unit according to some embodiments of the present invention; Figure 3 shows some of the memory unit according to the present invention Manufacturing operations of the memory device according to the embodiment; 1. Figure 11 shows several types of intermediate structures established to complete the memory device according to some embodiments of the present invention; and FIG. 12 shows the types used to complete the present invention. Non-woven microtube or matte nanotube layer of some embodiments; FIG. 13 shows the matte nanotube layer of 15 according to some embodiments of the present invention relative to the hidden lower layers; FIG. 14 shows the present invention. Addressing logic of some embodiments; employee consumption of the Intellectual Property Bureau of the Ministry of Economic Affairs Figure 15 printed by the company shows an embodiment of the hybrid technology of the present invention, in which the memory core uses the nano tube technology; Figure 16 shows the embodiment of the hybrid technology of the present invention, in which the memory core 20 core and the address line use the nano Tube ribbon technology; > ^ Figure 17 shows the manufacturing operations of conductive objects according to some embodiments of the present invention; Figure 18 shows how conductive objects according to some embodiments of the present invention can be used to connect electrical components; 7 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) V. Description of the invention (ό) Figure 19 shows the method according to the invention and the establishment of some intermediate examples of the structure Figure 20 Shown to complete the hair nanotubes or matte nanotube layers. Non-woven fabrics only 5 [Detailed description of the invention] The hair array and its manufacturing method, in which the structure: similar to that disclosed in wo _ 中 之nt is equipped with charter flight memory unit, wo 01/03208, all of which are included in this series. However, it is not like exposed in the touch_ 施 中 1〇ϊΐ :: The material is made of the nano-tube or the nano-tube. · 2 τ-shaped quilt made of non-woven fabric Used as a conductive element. In the disclosure, these ribbons are called wires or conductive objects. In some examples, these ribbons are suspended by spears, while in other examples, they are arranged on the substrate F. In some instances, 'they will be used to bias certain states under electrical control. In other instances, they will not move, but instead will only be used to transmit current or voltage. I believe that the new nanotube band structure is easier to construct at the integration and scale level (the number of devices manufactured), and its geometry is easier to control. I believe that I have not experienced the above-mentioned problems experienced or expected by the metal line 20 In this case, the new nanotube ribbon can more easily deliver high current density. Under certain embodiments of the invention, the conductive article may be fabricated from a nanotube fabric, layer, or film. A nanocarbon tube with a tube diameter as small as i nm is a conductor capable of transmitting a relatively high current density. For example, see Z · Yao, CL Kane, c. Dekker, Phys. Rev · Left · 84, this paper Standards apply to China National Standard (CNS) A4 specifications (210x297 cm) 200412611 A7 B7

2941 (誦)。它們亦具有最高已知熱導性(例如參見s Berber,Υ·-Κ. Kwon,D. T〇manek,^ μ, 4613 (2000)),❿且是具有熱穩定性與化學穩定性(例如參 見 P.M· Ajayan,T.W. Ebbesen,Rep Pr〇g phys 6〇,1〇25 15 經濟部智慧財產局員工消費合作社印製 20 (1997))。然而,使用個別毫微管是有問題的,其乃因為 要使它們以適當控制的方向、長度等等條件來成長是有困 難的。由耄微官織物建立線路允許這些線路維持多數(如 果不是個別毫微管所有益處的話)。此外,由毫微管織物 所製造之線路具有個別毫微管未發現之益處。舉例而言, 因為線路係由多條集合之毫微管所構成·,所以線路將^會 因個別耄微管之故障或破裂之結果而失去作用。取而代之 的是,有多條可讓電子通過其中而在一條既定線路内行進 之替代路徑。事實上,由毫微管織物所製成之線路建立了 自己在所界定的線路内之個別毫微管之電性網路,每一個 都可傳導電子。此外,藉由使用毫微管織物、層、或薄膜, 目前技術可用以建構這種線路。 產_微管帶狀物交叉式記憧艚(NTRClVn 因為新的毫微管帶交叉式記憶體裝置係類似於 NT WC1V[運作,所以簡短說明它們的運作結構與原理。若 要瞭解更充足的說明與背景,可參考WO 〇1/Q3208。 圖1顯示依據本發明之較佳實施例之原理所建構之例 示的電機記憶體陣列1 〇〇。 此陣列具有複數個可以是處於”on”狀態1〇5或”0ff”狀 態1〇6之非揮發性記憶體單元1〇3。這種單元之實際數目 本紙張尺度適用中國國家標準(CNS)A4規格⑽χ 297公楚) 200412611 A7 B72941 (chanting). They also have the highest known thermal conductivity (see, for example, s Berber, Υ · κ. Kwon, D. Tomanek, ^ μ, 4613 (2000)), and are thermally and chemically stable (for example, See PM · Ajayan, TW Ebbesen, Rep Pr0g phys 60, 1025 15 Printed by Employee Consumer Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs 20 (1997)). However, the use of individual nanotubes is problematic because it is difficult to grow them in a properly controlled direction, length, etc. Establishing the circuits from the micro-weave fabric allows these circuits to maintain a majority (if not all the benefits of individual nanotubes). In addition, circuits made from nanotube fabrics have benefits not found with individual nanotubes. For example, because the circuit is composed of multiple aggregated nanotubes, the circuit will be ineffective due to the failure or rupture of individual microtubes. Instead, there are multiple alternative paths through which electrons can travel through a given route. In fact, the circuits made of nanotube fabric establish their own electrical network of individual nanotubes within the defined circuit, each of which can conduct electrons. In addition, by using nanotube fabrics, layers, or films, current technology can be used to construct such circuits. Production_Microtube ribbon cross-type memory (NTRClVn Because the new nanotube band cross-type memory device is similar to NT WC1V [operation, so briefly explain their operating structure and principle. To understand more fully For description and background, please refer to WO 〇1 / Q3208. Figure 1 shows an exemplary motor memory array 1 〇 constructed according to the principle of the preferred embodiment of the present invention. This array has a plurality of "on" states. 1 05 or "0ff" non-volatile memory unit 10 in the state 106. The actual number of such units is in accordance with the Chinese National Standard (CNS) A4 specification ⑽χ 297 Chu) 200412611 A7 B7

對理解本發明並不重要,但此技術可支持具有相當於或大 於現代非揮發性電路裝置之資訊儲存容量之裝置。 每個記憶體單元1〇3包含一條毫微管帶狀物1〇1,其 係藉由-個或更多個支撐部102而懸浮在例如電性線路:戈 5 配線104上面。 帶狀物101與例如配線104之每個交叉處形成一個交 叉接面’並定義-個記憶體單元。在某些實施例之下,ς 個單元可能藉由將電流及/或電壓施加至電極112而被讀 取或寫入,這些電極112係與帶狀物101電性連通或經2 電極(未顯示)而與線路或配線104連通。支撐部係由 一層氮化矽(ShN4)層108所製成。在層1〇8下方係為隔開 η摻雜矽線路104與下層矽晶圓11〇之閘極氧化層1〇9/ 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 此共同參見圖MB,接面康顯示在第—物理與電性 狀態下之單元,其中毫微管帶狀物1()1係、與對應的線路⑽ 15分離。接面ι〇5顯示在第二物理與電性狀態下之單元,其 中宅微管帶狀物101係偏向對應的線路1〇4。在第—狀離 下’此接面係為斷路,當這樣定址時,其可能於帶狀物^ 或線路1〇4上被感測到。在第二狀態下,此接面係為整流 接面(例如,Schottky或PN),當這樣定址時,其可能在 20管101或線路104上被感測到。 b 在某些實施例之下,毫微管帶狀物101可能藉由摩捧 而於這些支撐物固定於一定位置。在其他實施例中,帶狀 物可能使用任何—種技術,藉由其他手段⑼如藉由將帶 狀物扣牢至支樓物)而受到固定,摩擦可透過包括丘 10It is not important to understand the invention, but this technology can support devices with information storage capacity equivalent to or greater than modern non-volatile circuit devices. Each memory cell 103 includes a nanotube ribbon 101 that is suspended on, for example, an electrical circuit: a Ge 5 wiring 104 via one or more support portions 102. Each intersection of the ribbon 101 and, for example, the wiring 104 forms an intersection surface 'and defines a memory cell. In some embodiments, cells may be read or written by applying current and / or voltage to electrodes 112, which are in electrical communication with ribbon 101 or via 2 electrodes (not (Shown) and communicates with the line or wiring 104. The support portion is made of a silicon nitride (ShN4) layer 108. Below the layer 108 is a gate oxide layer 10 separating the n-doped silicon circuit 104 from the lower silicon wafer 110. / Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy Kang shows the unit in the first physical and electrical state, in which the nanotube ribbon 1 () 1 is separated from the corresponding line ⑽ 15. Junction 05 shows the unit in the second physical and electrical state, in which the microtubule ribbon 101 is biased to the corresponding line 104. In the first state of departure, this interface is an open circuit. When it is so located, it may be sensed on the ribbon ^ or the line 104. In the second state, this interface is a rectifying interface (for example, Schottky or PN), and when it is addressed in this way, it may be sensed on the 20 tube 101 or the line 104. b In some embodiments, the nanotube ribbon 101 may be fixed in position on these supports by rubbing. In other embodiments, the band may be fixed by any other technique, such as by fastening the band to a branch, by other means, and the friction may be transmitted through the mound.

200412611 A7 B7 五、發明說明(?) 價鍵結之化學交互作用之使用,及透過例如芘(pyrenes)或 其他化學反應物質之碳化合物之使用而增加。亦可添加例 如金屬、半導體或尤其是矽、鈦、氧化矽或聚醯亞胺之絕 緣體之蒸鍍或旋轉塗佈材料以增加固著強度。毫微管帶狀 5 物或個別毫微管亦可透過接合至表面之晶圓之使用而受到 固著。參見R.J.Chen等人,”供蛋白質固定用之單壁毫微 碳管之非共價側壁機能化(Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobiliation)’’,J.Am. Chem. Soc·,123,2001, ίο 3838-39 以及 Dai 等人,Appl. Phys. Lett "77,2000,3015-17 關於用以藉由金屬固著與塗佈毫微管之例示技術。又請參 見關於WO 01/03208之技術。 、 經濟部智慧財產局員工消費合作社印製 在某些較佳實施例之下,如圖2A-B所示,毫微管帶 狀物101具有大約180 nm之寬度,並被固著至最好是由 15 氮化矽所製造之支撐部102。在帶狀物101下的線路104 之局部區域形成一個η摻雜矽電極,並位於靠近支撐部102 處,且最好是不會比帶(例如180 nm)來得寬。從支撐部102 之上端至帶101附著至電極206之偏轉位置的相對間隔 208(參見圖2B)應該是大約5-50 nm。間隔208之大小係 2〇 被設計成與記憶體裝置之機電切換能力相容對本實施例 而言,5-50 nm之間隔對利用由毫微碳管所製成之帶狀物 101之某些實施例而言是較佳的,但其他間隔可能對其他 材料而言是較佳的。這個值的大小起因於偏轉毫微管之應 變能量與黏著能量之間的相互作用。這些特徵尺寸係以現 11 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 200412611200412611 A7 B7 V. Description of the invention (?) The use of chemical interactions with valence bonds, and increased through the use of carbon compounds such as pyrenes or other chemically reactive substances. Evaporation or spin-coating materials such as metals, semiconductors, or especially insulators of silicon, titanium, silicon oxide or polyimide can also be added to increase anchoring strength. Nanotube strips or individual nanotubes can also be secured by the use of wafers bonded to the surface. See RJChen et al., "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobiliation", J. Am. Chem. Soc · , 123, 2001, 3838-39 and Dai et al., Appl. Phys. Lett " 77, 2000, 3015-17 for exemplary techniques for fixing and coating nanotubes by metal. See also about The technology of WO 01/03208. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs under certain preferred embodiments, as shown in Figures 2A-B, the nanotube ribbon 101 has a width of approximately 180 nm. It is fixed to the support portion 102, which is preferably made of 15 silicon nitride. A n-doped silicon electrode is formed in a local area of the wiring 104 under the ribbon 101, and is located near the support portion 102, and the most Fortunately, it is not wider than the band (for example, 180 nm). The relative distance 208 (see FIG. 2B) from the upper end of the support portion 102 to the deflected position where the band 101 is attached to the electrode 206 should be about 5-50 nm. Size 20 is designed to work with memory devices Electrical switching capability is compatible. For this embodiment, a spacing of 5-50 nm is better for some embodiments that use a ribbon 101 made of a carbon nanotube, but other spacings may be The material is better. The value is due to the interaction between the strain energy and the adhesion energy of the deflected nanotubes. These characteristic dimensions are based on the current Chinese paper standard (CNS) A4 specification (11 paper sizes) ( 210 X 297 mm) 200412611

五、發明說明(/〇) r化胃^梃技術的觀點來提出。其他實施例可能製造小(或 大)付多的尺寸以反映製造設備的能力。 ^某些實施例之毫微管帶狀物101係由纏結或毛面毫微 &之非、、扁織物所形成(以下更t羊述之)。帶狀物之切換參數 5類似個別毫微管之那些參數。因此,帶狀物之預測切換次 數與私,應該接近毫微管之相同次數與電壓。不像憑靠個 別笔微官之直接成長或化學自我裝配之習知技術的是,本 發明之較佳實施例利用包括薄膜與光刻之製造技術。這種 製造方法有助於產生過大的表面,特別是至少六吋之晶 1〇圓(相較之下,使個別毫微管成長長達超過次毫米距離 之距離目前是難以實行的)。藉由提供包含於帶狀物中之 傳導小徑之冗餘部,帶狀物應顯現出優於個別毫微管之改 善:故障公差。(如果個別毫微管損壞,則肋内之其他管 ^提供導電路徑,而如果使用單—毫微管,則此單元將故 15障)。此外,帶狀物之電阻應該大幅低於個別麾微管之電 阻,藉以減少其阻抗,其乃因為帶狀物可能被製成具有比 個別毫微管大的剖面積。 經濟部智慧財產局員工消費合作社印製 圖3顯不某些實施例之NTRCM裝置1〇〇之製造方 法。於此建構或提供一個第一中間構造3〇2。在所顯示的 2〇實施例中,此構造302包含具有絕緣層1〇9〈例如二氧化 矽)之矽基板110,並定義複數個支撐部1〇2之氮化矽層 (SisN4)108。在此狀況下,雖然可能採用許多其他配置(例 如複數行),但這些支撐部102係藉由複數列之圖案化氮 化矽而形成。導電線路104係在支撐部1〇2之間延伸。 12 200412611 五、發明說明(//) 此狀況下,所顯示的線路104在本質上與支撐部ι〇2接觸, 但亦可能採用其他幾何配置;舉例而言, 線與支撐部102之間,且線路可能被做成一條 配線或可具有包含三角形或梯形的非長方形橫剖面。犧牲 層304係配置在線路1〇4之上,俾能與支料ι〇2之上表 面一起定義一個平面306。舲插巫; 此種千面(如以下將說明的)可 促進某些實施例之毛面毫微管層之成長。 -旦建構或提供這樣的構造3G2,上表面編就接收 催化劑綱。舉例而言,在某些實施例之下,係藉由旋轉 塗佈或其他應用技術來塗敷催化劑金屬· 3〇8(包含鐵(Fe)、 鉬(Mo)、鈷或其他金屬)以建構第二中間構造3⑺。 接著,毫微管之毛面層312成長成為單壁毫微碳管 (SWNT)之非編織物以形成第三中間構造3 14。舉例而言, 15 20 員 工 消 費 社 印 製 田包a奴源、氫與鈍氣(例如氬氣或氮)之氣體流動遍及上 表面時’可將第二中間構造31〇置入烘爐中並加熱至高溫 (譬如二約8GG-12GG°C)。這個環境促進單壁毫微碳管之毛面 層或薄膜312之產生或成長。層si】最初是一個毫微管厚, 而^種管係經由凡得瓦爾力(Van der Waals f0rce)而彼此 黏著。有時,一個毫微管會成長在另一個之上端上面(雖 然這種成長由於材料之成長趨勢是相當稀罕妁)二在某些 實施例(未顯示)之下,可將催化劑3〇8圖案化以幫助具有 特定密度之毫微管成長如所期望的更密集或更不密集。當 催化劑成分與密度、成長環境、以及時間之狀況適當受到 控制時’可將毫微管製成均勻分配在主要是單層之毫微管 ___ 13 本紙張尺度適用中關家標準(CNS)A4規格^χ 297公爱) A7V. Description of the invention Other embodiments may manufacture small (or large) sizes to reflect the capabilities of the manufacturing equipment. ^ The capillary tube ribbon 101 of some embodiments is formed of tangled or matte nano & non-, flat fabrics (described more below). Ribbon switching parameters 5 are similar to those of individual nanotubes. Therefore, the predicted switching times of the ribbon and the private number should be close to the same number and voltage of the nanotubes. Unlike the conventional techniques relying on the direct growth of a micro pen or chemical self-assembly, the preferred embodiment of the present invention utilizes manufacturing techniques including thin films and photolithography. This manufacturing method helps to create oversized surfaces, especially 10-inch crystals at least 6 inches (compared to the fact that individual nanotubes can grow as long as more than sub-millimeter distance is currently difficult to implement). By providing a redundant portion of the conductive path contained in the ribbon, the ribbon should show an improvement over individual nanotubes: fault tolerance. (If individual nanotubes are damaged, other tubes in the ribs provide a conductive path, and if single-nanotubes are used, the unit will fail.) In addition, the resistance of the ribbon should be significantly lower than the resistance of the individual microtubules, thereby reducing its resistance, because the ribbon may be made to have a larger cross-sectional area than the individual nanotubes. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Figure 3 shows the manufacturing method of the NTRCM device 100 in some embodiments. A first intermediate structure 3202 is constructed or provided here. In the shown 20 embodiment, the structure 302 includes a silicon substrate 110 having an insulating layer 109 (such as silicon dioxide), and defines a silicon nitride layer (SisN4) 108 of a plurality of support portions 102. In this case, although many other configurations (for example, plural rows) may be adopted, these support portions 102 are formed by patterned silicon nitride in plural rows. The conductive line 104 extends between the support portions 102. 12 200412611 V. Description of the invention (//) Under this condition, the displayed line 104 is in contact with the support portion ι2 in essence, but other geometric configurations may also be adopted; for example, between the line and the support portion 102, And the wiring may be made as a wiring or may have a non-rectangular cross section including a triangle or a trapezoid. The sacrificial layer 304 is disposed on the line 104, and can define a plane 306 together with the surface above the branch material 02. Cuttings; Such a thousand faces (as will be described below) can promote the growth of the matte nanotube layer in some embodiments. -Once such a structure 3G2 is constructed or provided, the upper surface editor receives the catalyst class. For example, in some embodiments, the catalyst metal is coated by spin coating or other application techniques (including iron (Fe), molybdenum (Mo), cobalt, or other metals) to construct The second intermediate structure is 3⑺. Then, the rough surface layer 312 of the nanotube grows into a non-woven fabric of a single-walled nanotube (SWNT) to form a third intermediate structure 3 14. For example, when a 15-20 employee consumer agency prints a Tianbaoa source, hydrogen and inert gas (such as argon or nitrogen) flows across the upper surface, 'the second intermediate structure 31 can be placed in an oven and Heat to high temperature (for example, about 8GG-12GG ° C). This environment promotes the production or growth of the matte layer or film 312 of the single-walled carbon nanotube. The layer si] is initially a nanotube thick, and the tube systems are adhered to each other via Van der Waals f0rce. Sometimes, one nanotube will grow on top of another (although this growth is quite rare due to the growth trend of the material). 2 In some embodiments (not shown), the catalyst 308 can be patterned. To help nanotubes with a particular density grow as denser or less dense as desired. When the conditions of catalyst composition and density, growth environment, and time are properly controlled, the nanotubes can be made uniformly distributed in mainly single-layered nanotubes. 13 This paper standard applies the Zhongguan Standard (CNS) A4 specifications ^ χ 297 public love) A7

15 經濟部智慧財產局員工消費合作社印製 200412611 之既定範11上面。適當的成長需要控制包含但並未受限於 催化劑成分與濃度、下層表面之機能化、旋轉塗佈參數(長 度與RPM)、成長時間、溫度以及氣體濃度之參數。、 一然後,可將光阻塗敷至層312並將其圖案化,用以界 定宅微管312之毛面層中的帶狀物。帶狀物圖案譬如垂直 地與下層線路104交叉。光阻會被移除,以留下位於平面 306上之非編織物毫微管之帶狀物1〇1而形成第四中間構 造 318 〇 第四中間構造318具有其下層犧牲層3〇4之露出部分 320,如所示。然後,以例如HF之酸来處理此構造3 i 8 以移除包含在帶狀物1〇1下的部分之犧牲層3〇4,從而形 成懸洋在線路104上面並被支撐部1〇2所支持之帶狀物 101之陣列322。15 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, 200412611, above the established standard 11. Proper growth requires controlling parameters including but not limited to catalyst composition and concentration, functionalization of the underlying surface, spin coating parameters (length and RPM), growth time, temperature, and gas concentration. First, a photoresist can be applied to the layer 312 and patterned to define the ribbon in the matte layer of the house microtube 312. The stripe pattern intersects the lower line 104, for example, vertically. The photoresist will be removed to leave a ribbon 101 of the non-woven nanotubes on the plane 306 to form a fourth intermediate structure 318. The fourth intermediate structure 318 has its lower sacrificial layer 304 The exposed portion 320 is shown. Then, this structure 3 i 8 is treated with, for example, an acid of HF to remove the sacrificial layer 30 of a portion contained under the ribbon 101, thereby forming an overhang on the line 104 and being supported by 102 An array 322 of supported ribbons 101.

Ik後的金屬化可能用以形成圖1所示之例如定址電極 112。Post-Ik metallization may be used to form, for example, the address electrode 112 shown in FIG.

上述技術之一個樣態係為:各種成長、圖案化以及蝕 刻動作,係可能使用例如光刻圖案化之習知技術。目前, 這可此需要大約180 nm至和130 nm —樣低的輪廓尺寸(例 如帶狀物101之寬度),但如果製造能力允許的話,元件 之物理特徵應經得起甚至更小的輪廓尺寸的考驗I 如以下所將說明的,存在有許多建構上述之中間構造 或類似構造之可能方法。舉例而言,圖4顯示建構第一中 間構造302之一種方法。 石夕晶圓400設有一層氧化層402。氧化層之厚度最好 14 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)One aspect of the above-mentioned technology is that various growth, patterning, and etching actions may use conventional techniques such as photolithography patterning. At present, this may require approximately 180 nm to 130 nm—like low profile dimensions (such as the width of the ribbon 101), but the physical characteristics of the component should withstand even smaller profile dimensions if manufacturing capabilities permit The test of I. As will be explained below, there are many possible ways to construct the above intermediate structures or similar structures. For example, FIG. 4 shows one method of constructing the first intermediate structure 302. The Shixi wafer 400 is provided with an oxide layer 402. The thickness of the oxide layer is best. 14 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm)

200412611 A7 ___ _ B7 五、發明說明(/3) 是幾個毫微米,但可以是差不多1 # m。氮化矽(si3N4)層 404係沈積在氧化物表面4〇2之上面。氮化矽層最好是至 少30 nm厚。 接著,將氮化矽層404圖案化並蝕刻以產生孔穴406, 5用以形成支撐構造407。關於現代化技術,孔穴寬度可能 是大約180 nm寬或可能更小。剩下的氮化矽材料界定出 支撐部102(例如列或可能是行)。 然後,使η摻雜矽之覆蓋物408沈積以填滿孔穴406。 例示實施例之覆蓋物408可以是大約1 # m厚,但可以是 ίο 像30 nm —樣薄。 接著,譬如藉由自我平整化厚矽層或藉由回火來處理 覆蓋物408以產生上述所討論的平面3q6,用以形成構造 411。在自我平整化的情況下,可能利用具有端點偵測(epd) 之反應性離子蝕刻(RIE),直到到達受到蝕刻之氮化矽之 15 上表面410為止。 然後’使構造411氧化以形成並界定深入平面3〇6大 約10-20 nm的Si02之犧牲層304。 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 石夕之未改變的殘留部分形成複數條線路1〇4。 圖5顯示可能用以建構某些實施例2NTRCM裝置1〇〇 2〇之另一種方法。本發明提供如同配合圖4所巩明鉑支撐構 造407。接著,藉由使用CVD製程、濺鍍或電鍍來增加 一層η摻雜矽層514。在某些實施例之下,將層514增加 到大約SisN4支撐部1〇2之一半高度。 在增加層514之後,執行回火步驟以產生平坦化表面200412611 A7 ___ _ B7 5. The description of the invention (/ 3) is several nanometers, but it can be almost 1 # m. A silicon nitride (si3N4) layer 404 is deposited on the oxide surface 402. The silicon nitride layer is preferably at least 30 nm thick. Next, the silicon nitride layer 404 is patterned and etched to generate holes 406, 5 for forming a supporting structure 407. With regard to modern technology, the hole width may be approximately 180 nm wide or may be smaller. The remaining silicon nitride material defines support portions 102 (e.g., columns or possibly rows). An n-doped silicon cover 408 is then deposited to fill the holes 406. The cover 408 of the exemplary embodiment may be about 1 # m thick, but may be as thin as 30 nm. Next, the cover 408 is processed, for example, by self-levelling a thick silicon layer or by tempering to produce the planar 3q6 discussed above to form the structure 411. In the case of self-leveling, it is possible to use reactive ion etching (RIE) with endpoint detection (epd) until it reaches the upper surface 410 of the silicon nitride being etched. The structure 411 is then oxidized to form and define a sacrificial layer 304 of about 10-20 nm deep into the plane 306. The unaltered residue of Shi Xi printed by the Consumer Affairs Agency of the Intellectual Property Bureau of the Ministry of Economic Affairs formed a number of lines 104. FIG. 5 shows another method that may be used to construct some embodiments of the NTRCM device 10020. The present invention provides a platinum support structure 407 as described in conjunction with FIG. Next, an n-doped silicon layer 514 is added by using a CVD process, sputtering, or electroplating. Under certain embodiments, the layer 514 is increased to approximately one and a half heights of the SisN4 support portion 102. After adding layer 514, a tempering step is performed to produce a planarized surface

200412611 A7 B7 五、發明說明(丨4) 15 經 濟 部 智 慧 財 產 局 員 306’用以形成如同上述之構造411。回火步驟使層514 之矽流入孔穴406中。 然後,如同配合圖4所說明的,使構造411氧化以形 成並界定深入平面306大約10-20 nm的Si02之犧牲層 304 ° 圖ό顯示形成另一第一中間構造302’之另一種方法。 於本實施例中,矽基板600係由一層具有至少30 nm之 高度604之氮化矽層602所覆蓋。 然後,將氮化矽層602圖案化並蝕刻以產生間距606 並界定支撐部102。蝕刻製程使矽基板600之表面部分6〇8 露出。 露出之石夕表面608係被氧化以產生具有幾個nm厚度 之一氧化石夕(Si〇2)層610。這些層610最後隔絕線路, 類似於絕緣層109為上述構造302所做的方法。 一旦已建立絕緣層610,就可能以任何一種方式建立 線路104。圖6顯示圖4-5之用以建立這種線路之處理步 驟以說明這點。 产圖7顯示形成第一中間構造3〇2之另一種方法。具有 一氧化矽層702與氮化矽層7〇4之矽基板7〇〇接收圖案化 光阻層706。舉例而言,光阻層可能被旋轉塗佈在層, ^ -隨後露出並進行光刻步驟。 裝 訂 上 製 接著,反應性離子姓刻(RIE)等等可能用以姓刻 層704以形成孔穴708並界定支撐部1〇2。 後來,n摻雜石夕710可能沈積在孔穴708中。在某些 16 本紙張尺度適用中國國家標準(CNS)A^·格(210χ297公楚)_ 五、發明說明(/左) 度Sl3N4支#部102之高 然後,將光阻706與在光阻7〇6 形成如同上述之中間構造411。 除去以 接者’使構造411氧化以產生犧牲义〇2層3〇4。 接圖8顯示形成第一中間構造302之另一種方法。在這 係提供具有最㈣層_與在其上面之最低 綱層_之起始構造卿。第二料_係位於層 面’而第二二氧化矽層808係位於第二矽層806 之上面 ° 上層二氧化邦叫層_係藉由光刻而圖案化,用 =構R!E光罩810。此光罩係用以將第二石夕層8〇6之露 ^分812向下_至第—個二氧切層_。這種 可建構孔穴814並界定線路1〇4。 15 孔穴814係填滿氮化矽(义#4) 816並被其覆蓋。200412611 A7 B7 V. Description of Invention (丨 4) 15 Member of the Intellectual Property Bureau of the Ministry of Economic Affairs 306 'used to form the structure 411 as described above. The tempering step causes the silicon of layer 514 to flow into the cavity 406. Then, as explained in conjunction with FIG. 4, the structure 411 is oxidized to form and define a sacrifice layer 304 ° of Si02 approximately 10-20 nm deep into the plane 306. The figure shows another method of forming another first intermediate structure 302 '. In this embodiment, the silicon substrate 600 is covered by a silicon nitride layer 602 having a height 604 of at least 30 nm. Then, the silicon nitride layer 602 is patterned and etched to generate a pitch 606 and define the support portion 102. The etching process exposes the surface portion 608 of the silicon substrate 600. The exposed stone surface 608 is oxidized to produce a silicon oxide (SiO2) layer 610 having a thickness of several nm. These layers 610 finally isolate the wiring, similar to the method used by the insulating layer 109 for the construction 302 described above. Once the insulating layer 610 has been established, it is possible to establish the line 104 in any way. Figure 6 shows the processing steps used to establish such a circuit in Figure 4-5 to illustrate this point. Figure 7 shows another method of forming the first intermediate structure 302. A silicon substrate 700 having a silicon oxide layer 702 and a silicon nitride layer 704 receives a patterned photoresist layer 706. For example, the photoresist layer may be spin-coated on the layer, and subsequently exposed and subjected to a photolithography step. Binding and binding Next, a reactive ion surname (RIE) or the like may be used to engrave the layer 704 to form the hole 708 and define the support portion 102. Later, n-doped stone XI 710 may be deposited in the cavity 708. In some 16 paper sizes, the Chinese National Standard (CNS) A ^ · Grid (210 × 297) is applicable. V. Description of the invention (/ left) Degree of Sl3N4 branch # 102 high. Then, the photoresist 706 and the photoresist 706 forms the intermediate structure 411 as described above. Removal of the connection ’causes the structure 411 to be oxidized to produce a sacrificial layer 202. FIG. 8 shows another method of forming the first intermediate structure 302. A starting structure with the highest layer and the lowest layer above it is provided here. The second material _ is located at the level 'and the second silicon dioxide layer 808 is located above the second silicon layer 806 ° The upper layer of the silicon dioxide layer is patterned by photolithography and is structured with an R! E mask 810. This photomask is used to lower the exposure of the second Shixian layer 806 down to 812 down to the first dioxin layer. This constructs the cavity 814 and defines the line 104. 15 holes 814 are filled with silicon nitride (Yi # 4) 816 and covered by it.

Sl3N4覆蓋物816係利用咖而回餘至與覆蓋n換雜 ^電極綱(其形成犧牲層304)之叫層8〇6之剩餘部分 相同的高度8 18。 圖9顯示形成另一第一中間構造3〇2,,之一種方法。 在這種方法之下,係提供類似4〇7(顯示於圖4皮,而非 圖9)之構造。於此狀況下,聊4支樓部1〇2具有大約3〇咖 之高度。薄金屬層9〇2係沈積在81凡支樓部ι〇2上面以 及位於如以元件903所描緣的孔穴9〇4之底部的露出部分 SK)2上面。金屬902與903形成暫時電極。接著,n二 200412611 五、發明說明(/句 雜石夕層906可沈積或藉由雷 、 由電鍍而成長,藉以覆蓋電極903 直到砍9 0 6達到主擔邱〗Λl ° 上面的高度908並接觸電極9〇2 、長過程可能由下部與上部金屬電極902、903之 間的電流起始所控制。 5 ^後’露出的金屬電極9()2可藉由濕式化學法或乾式 而移除。這會形成類似上述構造411之中間構造 41Γ’但具有隱藏電極903以作切成長過程之人工製品。 接著’使構造4U,氧化以形成位於石夕之露出部分的犧 牲層304,如上所述。舉例而言,可使這些層綱成長至 10 大約1 〇 nm之厚度。 圖10顯示形成第一中間構造302之另一種方法。矽 基板1002係被使用作為原始材料,在砍基板上面具 有:層二氧化矽1004,而在層1〇〇4上面具有矽(n摻雜) 之第一層1006。光罩層1008係被光刻圖案化而形成在層 15 1006 上面。 藉由使用氮化技術’n摻雜石夕層1006之露出部分1〇1〇 經濟部智慧財產局員工消費合作社印製 會被化學改變成Si#4支撐部102。層1006之未改變部分 形成線路104。 光罩1008會被移除,藉以形成類似上述之構造411。 20 然後,使矽表面之露出部分1〇12氧化、以聪成si〇2 犧牲層304。 圖11顯示形成另一第一中間構造3〇2,,,之一種方法。 在這種方法之下,矽基板1100上具有一層8丨#4之薄膜 1104以作為起始構造。在氮化石夕層11〇4上面,增加η摻 18 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 200412611 五 15 慧 財 員 工 消 費 社 印 製 20 、發明說明(7) 雜石夕並藉由RIE進行光刻圖案化以形成線路1〇4。 /線路1〇4之表面被氧化以形成作為犧牲層304,之另一 形式之Si〇2層11〇6。 此構造係以ShA 11〇8過度成長並被回蝕以形成平面 3〇6亚形成另一第一中間構造3〇2,,,。如熟習本項技藝者 將明白的,在這種方法之下,當犧牲層接著被移除時線 路104將與支撐部102分離。吾人可能採用此種技術之1 他變化以建立線路m之另一橫剖面。舉例而言,所建構 之線路104可具有圓頂,或具有三角形或梯形橫剖面。此 外,橫剖面可具有其他形式,例如具有錐形側之三角形。 如上所說明的,一旦形成例如第一中間構造302,毛 面毫微管層312就會被設置在構造3G2表平面鳩上面。 在較佳實施例中,非編織物層312係透過催化劑3〇8之使 用與透過成長環境之控制而成長在構造上面。其他實施例 可各別提供毛面毫微管層312,並將其直接塗敷在構造3〇2 上面。雖然在這種方法下的構造3〇2最好是包含犧牲層以 提供-個平面來接收獨立成長織物,但在這種方法下^能 不需要犧牲層。 因為成長過程使這種毫微管之下面與中間構造3〇2之 平面306接觸’所以它們顯現出”自我裝配”待色丄如由圖 12所提出的。尤其,個別毫微管容易黏著至它們所成長 之表面上(只要是非常有利的),以使它們實質上形成為” 單層”。某些毫微管可成長在另一個的上面,所以單層並 未被認為是完美的。個別毫微管並未互相,,編織,,,但^於 19 本紙張尺度適时國g家標準(CNS)A4規格(210 x 297^J^ 凡得瓦爾力而的確互相黏 織物之大概描述。因為臺外& 係為實際毫微管非編 碍宅微官之小輪麻g 掃描電子顯微鏡甚至益 守寸,所以現代化 實際織物,·毫微管且有傻不喪失準確度的情況下”拍下” 下)一樣小的輪廓尺寸。心係在SEM之準確度以 種類,然而從圖令。,圖12提議織物之毛面 存在的情況下=連:Γ到的是此織物可能在沒有管 徑1-2 nm (從而p 區域。每條管-般具有直 nm 而界定大約1β2 nm之鏞仏远、 幾個微乎$具# y 之織物層),且可能具有 能和200微米—樣長。這些管可彎 著。偶Μ此相交。這些管係經由凡得瓦爾力而彼此附 15 、,在某些實施例中,毫微管朝X與y麵方向之成長實質 上亚未受到限制’但由於自我裝配特色朝z軸(垂直於圖 12之頁面)方向之成長實質上會受到限制。其他實施例可 補充上述方法錢用圖料向或流料向成長技術來使毛 面312成長。這種補充可能用以更進一步調整成長,以使 在一個平面軸(例如x軸)中之任何成長遲緩。這允許以可 控制之密度之毫微管之平面相互編織之單層塗層來更均勻 覆盖期望之區域。 毛面毫微管層312與下層矽線路1〇4之书面視圖係顯 示於圖13中。 如上所述,一旦毛面毫微管層312被設置在表面306 上面’層312就會被圖案化並触刻以界定出與支撐部1〇2 相交之毫微管織物之帶狀物101。然後,例如利用酸來移 20 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 200412611 A7 發明說明(/?) 除犧牲層,精以形成上述與圖3才目關之陣列322。因為毫 微管312之毛面層形成非連續薄膜之非編織物,所以餘刻 劑或其他化學劑可在個別毫微管”纖維,,之間擴散,且更容 易到達例如犧牲層之下層元件。 後來的金屬化製程可能用以形成圖”斤示之例如定址 電極112,如上所描㈣。其他實施例使用毫微管技術, 以取代使用金屬化之㈣112與定址線(未顯*)來實現記 憶體單元之定址。 '具體而言,在上述某些實施例之下,毫微管係用以形 成NTRCM P車列。某些實施例使用毫微管技術(不論以個 別配線或是以帶形式)以實現定址邏輯,用以選擇供讀取 或寫入動作用之記憶體單元。這種方奸進毫微管技術整 合成系統設計,且可提供有利於較高層級之系統設計的功 能性。舉例而言’在此種方法之下,記憶體結構將不僅以 15 經濟部智慧財產局員工消費合作社印製 非揮發性的方式儲存記㈣内容,而且本質上將儲存最終 記憶體位址。 毫微管式記憶體單元具有以”〇,’與” i,,狀態間之高比率 電阻為特徵之雙穩態。這些狀態間之切換係藉由施加橫越 過毫微管帶或配線與下層線路之特定電壓而達成,其中至 少一記憶體單元元件係為毫微管或毫微管帶队物j在一種 方法中,施加”讀出電流”,並以,,感測放大器,,決^橫越過 此接面之電壓。讀取動作是非破壞性的,其意指單元可維 持其狀態,且因其利用DRAM來完成,故不需要寫回動 作。 21 200412611 A7 B7 五、發明說明(2C) 圖14說明分支二進位選擇系統或解碼器1400。如以 下將說明的,解碼器1400可能利用毫微管或毫微管帶狀 物技術而實現。此外,解碼器可能被建構在與毫微管記憶 體單元陣列(例如NTRCM或NTWCM)相同的電路元件 5 上。 兩條線1404與1406之垂直交點(描繪成點1402)表示 兩個毫微管或毫微管帶狀物之接面。關於這一點,交互作 用係類似於CMOS與其他技術中所找到的’’通道電晶體 (pass transistor)’’,於其中可能開啟或關閉交點。 ίο 例如1420之位置(於該處之一條毫,微管或毫微管帶狀 物可能與另一條相交但並不打算建構交叉接面)可能因元 件間之光刻圖案化絕緣體而彼此隔離。. 為了清楚起見,所顯示之解碼器係供在定址線1408 上傳送之3位元二進位位址使用。依據編碼之數值,交點 15 (點)將被切換,用以只建立一條讓感測電流I可流過選擇 線1418之路徑。 經濟部智慧財產局員工消費合作社印製 為了使用此種技術,從外部製作二進位位址之每個位 元之π雙執"表徵1408,俾能使每一個位址位元1410係以 真實與互補形式出現。因此,線1406可以是位址線1408a 2〇 之邏輯真實型態,而線1407可以是位址線1,4081之邏輯 互補。表徵14 0 8之電壓值係與如上所述將交叉接面切換 成’’Γ’或”0"狀態所需要之電壓值相符。 於此方式中,位址1408可能用以將感測電流I供應 至一位元或一陣列中之一列位元(例如,供應至毫微管或 22 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 200412611 A7 B7 五、發明說明(20 毫微管帶狀物)。同樣地,相同的方法可能用以感測一條 既定線路,舉例而言,由聯合選擇一列來選擇特定陣列行 以讀取感測。因此,此方法可能用來作X及/或γ解碼以 供用以讀取與用以寫入動作兩者使用。 5 本發明之某些實施例提供一種混合技術電路1500, 顯示於圖15中。核心記憶體單元陣列1502係藉由使用 NTWCM或NTRCM而建立,而那個核心係由形成X與Y 位址解碼器1504與1506 ; X與Y緩衝器1508與1510 ; 控制邏輯1512與輸出緩衝器1514之半導體電路所包圍。 ίο 圍繞NTWCM或NWBCM核心之電路,可能用於習知之連 接功能,包括提供讀取電流並感測輸出電壓。 在其他實施例中,可能以上述所討論的毫微管配線或 帶定址技術來置換另一 X與Y位址解碼器1504與1506。 在這些實施例中,核心將包含記憶體單元與定址邏輯。 15 在某些實施例中,混合電路1500可能藉由使用毫微 經濟部智慧財產局員工消費合作社印製 管核心(只具有記憶體單元或具有記憶體單元與定址邏 輯),以及藉由使用現場可程式化閘陣列實現圍繞電路而 形成。如果期望的話,核心與閘陣列電路可能包含於單一 實體封裝中。或者,可將它們可能分開封裝。舉例而言, 2〇 一種密封封裝的毫微管電路(具有記憶體或氣憶體與定址 邏輯)可能與包含I/O連接邏輯之PLD/FPGA/ASIC結合。 所產生之小型晶片組提供產品之使用者取得NT記憶體之 益處,同時使’’現成(off-the-shelf)’’技術之使用得以最大 化,這種現成技術可能由製造商依所需基礎來利用。 23 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 200412611 A7 B7 五、發明說明(22) 圖16說明混合技術之一種可能的實施例16〇〇。包含 緩衝與控制邏輯(說明於上)之fpga晶片1602,係經由一 個(可能多層)印刷電路板(PCB)l604之導電線路而連接至 包含記憶體單元與定址邏輯之毫微管(NT)晶片16〇6。 5 這種特定實施例提議遵循PCI匯流排規格,為現今 個人電腦的代表。其他被動電路(例如電容器、電阻、變 壓為'等(未繪出))亦將需要遵循PCI規格。2〇〇MHz-400 MHz 之前側匯流排速度係被註解,進而提議譬如晶片組可能運 作之各種外部時鐘脈衝速度。這種速度係受限於PCB互 1〇連、FPGA/PLD/ASIC速度、以及晶片封裝,而非Ντ記 憶體單元速度。 經濟部智慧財產局員工消費合作社印製 案微碳管薄膜、層、織物、及物件 上述實施例之NTRCM與定址線使用由毫微管層 312(例如圖3與12所示之那些)所製成之線路或導電物 15件。這些層可具有大約1 nm或更少之厚度,亦即,既定 毫微管之厚度。毫微管毛面312係成長或沈積在表面(例 如矽晶圓之表面)上,以形成既定密度之連續薄膜。接著, 可將二維薄膜刻以圖案以產生寬度範圍從1 nm(毫微管之 本徵最小尺寸)到幾百微米或更大之導電線或線路,視應 20用與情況而定。此圖案可以以多重長度與寬度比例產生, 以允許例如電晶體或記憶體元件之各種尺寸的半導體裝置 之互連,最後展開成扇形到達銲墊或其他互連材料或構成 物。因為毫微管具有易於接觸金屬或半導體材料之本徵特 性,所以如果必須連接不同材料的話,可將毫微管互連金 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 200412611 五、發明說明(23) 屬化。 線路與導電物件可能使用於其他形式之電路中。舉例 而呂,耄微管線路可能因它們的 择 ^ 匕們的月匕力而用以抵抗高電流密 又,其通吊在非常小型的線路(例如次l〇nm範圍)中被發 現。它們亦:用以降低污損其他電路特徵之可能:中被發 舉例而吕’圖17顯示基板上面之毫微管帶狀物、線 、或導電物件之例示使用。(藉由檢查,吾人可看出圖 、類似圖3’但於此狀況下’薄膜312係在基板上面成長, 以取代在中間構造31G上面成長)。於此例中,梦基板ιι〇 具有類似於圖3所示之氧化層1G9e為了促進薄膜312之 成長或沈積,可形成一個平面(顯示為圖3中之3〇6,但 未顯示於圖中)。然後,可例如藉由使用cvd而使: 有單壁及/或多壁毫微管之_ 312在組合物上面成長:、 15 經濟部智慧財產局員工消費合作社印製 20 或者例如透過旋轉塗佈而使其沈積在組合物上。如果使用 單壁毫微管,_膜312主要是一條毫微管這麼厚,但是 =果使用多壁毫微管,則薄膜312實質上可以較厚(例如, 高達 1000 nm)。 如上所述,如果欲使薄膜成長,則可能要使用催化劑。 然而,並不需要使催化劑(顯示為圖3中之3〇8,作未顯 示於圖17中)直接沈積在基板之表面上;忌外,可能二 氣體形式提供催化劑以作為CVD製程之一部份。舉Z而 吕’可使用例如二聚環茂二烯鐵之氣相金屬物質。二聚環 戊一稀鐵與其他氣相金屬物質就像其他包含鐵、銷、鶴 姑與其他過渡金屬之種類一樣會使毫微碳管成長。、*此八 .二·王 25 200412611 A7 B7 15 經濟部智慧財產局員工消費合作社印製 五、發明說明(¾) 部都適合形成氣相之催化劑。金屬氣相催化劑可與適當溫 度、壓力、表面製備與成長時間一起被充分運用或修:, 以產生毫微管毛面3 12。 μ如果欲使薄们12;尤積,則可能使用肖先成長之毫微 管。舉例而言,在本發明之某些實施例之下,可使毫微管 以可溶解或何轉形式_於溶财,域轉塗佈在此 表面上面以產生宅微官薄膜312。在這種配置下,依據 旋轉分佈圖與其他製程參數,薄膜可以是具有—條更多條 宅微管的厚度。適當的溶劑包含二甲基甲醯胺、心甲基 pyrolhdmone、η_ 甲基 f〇rmamide ' 鄰二氯苯對二氯苯、 1,2,二氯乙烷、醇類、具有適當表面活化劑(例如硫酸十 二烧基㈣TRIT0N X屬或其他)之水。例如表面機能 化、旋轉塗佈速度、溫度、pH值與時間之毫微管濃度與 沈積參數可受到調整’以依f要被控制單層或多層毫微管 之沈積。 '毫微管薄臈312亦可藉由將晶圓或基板沈浸於可溶解 或懸浮的毫微管之溶液中而沈積。薄膜亦可藉由以懸浮微 粒之型式噴灑毫微管至表面之上而形成。 當催化劑成分與密度、成長環境、以及時間之狀況受 到適當控制時,可將毫微管製成均勻分配在矣要最單層之 毫微管之既定範圍上面。 曰 古/ j形成宅微管毛面312之時,光阻層可被旋轉塗佈在 毫微官薄臈312上,並藉由曝光等等而被刻以圖案,用以 定義導電線路。在目17之例子中,線路係顯示為平行直 m張尺度適財® 祕 裝 訂 26 200412611 A7 發明說明(2¾ 線線路,但線路定義可採取其他形心依據欲被互相連接 之裝置之型式’所定義的線路可以具有至少丨η與和_ 微米一樣大或更大的寬度。 一旦如此定義,就可能處理露出的光阻以移除某些 層:但會留下線路101。隨後的金屬化可能用以形成圖η 所示之例如定址電極或扇形互連構造丨7〇6。 15 經濟部智慧財產局員工消費合作社印製 20 參考圖18,接著可將毫微管帶狀物圖案18〇2連接至 其他帶狀物ιοί、金屬線路(未顯示)或電子特徵部18〇6。 舉例而a,參考中間構造1800,毫微管線路i 〇丨可能連 接至具有不同特徵尺寸(例如寬度)之毫微管線路1802。線 路101亦可連接至元件112,其可以是金屬接點或焊墊(雖 然未按照比例顯示於此圖中)。參考中間構造18〇4,線路 101可連接至例如在1804中之記憶體元件,其可能形成 為NTRCM單元或形成有半導體部位。參考中間構造 1808,線路可連接電子處理部位或邏輯18〇6。雖然不需 要按照比例繪製,但線路1〇1亦可連接以元件112表示之 銲墊。 雖然這些互連主要可由單層之毫微管所組成,但藉由 使用適當成長條件亦可被想像為多層帶狀物與毛面。這需 要控制包含但並未受限於催化劑成分與濃度、下層表面之 機能化、旋轉塗佈參數(長度與RPM,譬如40秒,50-5000 rPm)、成長時間、溫度以及氣體濃度之參數。 上述技術之一個樣態係為··各種成長、沈積、圖案化、 以及餘刻動作,係可能使用例如光刻圖案化之習知之技 27 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 200412611 A7 15 20 五、發明說明(义) 術。以目前的技術而言,這些線路可能被製成具有大約 nm至和130nm 一樣小的寬度。然而,如果製造能力允許 的話,線路1〇1之物理特徵應經得起甚至更小的輪廓尺寸 的考驗。 習知之互連技術具有因損害半導體裝置之性能的埶損 壞2金屬擴散而蒙受受損之趨勢,尤其因電性特性之退化 2蒙^損害。對尺寸縮小之現代的〇.18/zm與0.13//〇1構 言,這些影響例如因金屬擴散通過超薄閘極氧化層而 變得甚至更顯著。相較之下,毫微碳管帶狀物ι〇ι並未受 $些問題所困擾。它們實質上更強健地具有最高已知熱傳 且不易於產生熱故障。再者,因為它們全部係由共 價結合的碳原子所建構,所以不會產生金屬或雜質熟擴 散。 ’、 圖19顯示形成第一中間構造3〇2之另一種方法。具 有氧化矽層1902之矽基板1900接收圖案化光阻層 1904。舉例而言,光阻層可被旋轉塗佈在層19〇2上,隨 後被暴露並光刻顯影,藉以產生孔穴1906盥光罩圖索 1908。 /、 μ 示 後來,η摻雜矽或例如鉬、鎢或鈕之金屬ΐ9ι〇以及 例如氧化銘之犧牲層1912可能沈積於孔穴1明6皮,亦形 成對應的特徵部1914與1916。 接者,將光阻1912、在光阻1912之上端的材料1914 ”氧化鋁(Al1 2〇3)l916剝離,以形成具有電極1〇4與犧牲 層綱之中間構造⑼8。例如可流動氧化物(f〇x)之旋塗 裴 訂 1 ____ 28 2 本紙張尺度適财國國家標準(〇^4祕 200412611 A7 五、發明說明(27) 式玻璃(SOG)係被旋轉塗佈在構造1918上面,並藉由使 用在600 C之標準技術及使用劇升溫度協定而受到回火, 藉以形成位於尚於犧牲層1912之上端高度200-2000 nm 之 Si02 層 1920。 然後,反應性離子蝕刻(PIE)等等可用以蝕刻Sl〇2層 1920 ’以與支撐部1〇2形成構造302。 電極材料之選擇係受限於將毫微管置於基板表面之上 的方法。二個上述方法包含毫微管之旋轉塗佈催化劑式成 長、氣相催化劑輔助式CVD以及旋轉塗佈或直接沈積。 在如上述已說明的催化劑式成長的情況下,催化劑係藉由 旋轉塗佈或遵循標準清洗協定而將基板沈浸在催化劑材料 而分佈在表面上。在每個情況下,毫微管係接著藉由使用 如上文已說明的含氫與碳前驅物氣體之組合,於8〇〇ι下 經由CVD製程而成長。因此,足夠強健以經歷這些溫度 15 經濟部智慧財產局員工消費合作社印製 之電極材料將是較佳的,這些材料包含鉬、鎢、钽、鎵、 銅及其合金。電極材料可以由包含矽、鎢、鉬、鈕、銅與 其他之單一或堆疊構造之材料所建構。堆疊電極構造可能 幫助或足以建立足夠調整每個記憶體位元之肖基勢壘 (Schottky barrier)。 如果毛微官係藉由使用例如二聚環茂二燦鐵之氣相催 化劑而成長,則可能設想供成長所需之實質上較低的溫 度,藉以允許使用於低於8〇〇〇c和與4〇(rc 一樣低的實質 上較低溫度下融化之電極材料。某些重要的氣相催化劑可 包含鈷、鎢、鉬或包含六元環之五個的銖金屬茂。這些化The Sl3N4 cover 816 is made up by using coffee to the same height 818 as the rest of the layer 806 covering the n-doped electrode group (which forms the sacrificial layer 304). FIG. 9 shows a method of forming another first intermediate structure 302 ′. Under this method, a structure similar to 407 (shown in Fig. 4 instead of Fig. 9) is provided. In this situation, the Liao 4 branch office 102 has a height of about 30 coffee. A thin metal layer 902 is deposited on the top of the 81st branch office section ι02 and on the exposed portion SK) 2 located at the bottom of the hole 904 as described by the element 903. The metals 902 and 903 form a temporary electrode. Next, n. 200412611 V. Description of the invention (/ 句 Zaishixi layer 906 can be deposited or grown by electroplating through thunder, so as to cover the electrode 903 until the cut 9 0 6 reaches the main load Qiu Λl ° above the height 908 and The contact electrode 902, the long process may be controlled by the initiation of the current between the lower and upper metal electrodes 902, 903. The metal electrode 9 () 2 exposed after 5 ^ can be moved by wet chemical method or dry method This will form an intermediate structure 41Γ 'similar to the above-mentioned structure 411, but with a hidden electrode 903 for the cutting growth process. Then, the structure 4U is oxidized to form a sacrificial layer 304 at the exposed part of Shi Xi, as described above. For example, these layers can be grown to a thickness of about 10 nm. Figure 10 shows another method of forming the first intermediate structure 302. A silicon substrate 1002 is used as a raw material, and on the chopped substrate has: Layer 1002 of silicon dioxide, and a first layer 1006 of silicon (n-doped) on layer 1004. A photomask layer 1008 is patterned by photolithography to form layer 15 1006. By using nitride Technology 'n-doped stone The exposed part of the evening layer 1006 is printed by the consumer property cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, which will be chemically changed to the Si # 4 support portion 102. The unchanged portion of the layer 1006 forms the line 104. The photomask 1008 will be removed, Thereby, a structure 411 similar to that described above is formed. 20 Then, the exposed portion 1012 of the silicon surface is oxidized to form a si02 sacrificial layer 304. FIG. 11 shows the formation of another first intermediate structure 302. Under this method, the silicon substrate 1100 has a thin film 1104 of 8 ## as a starting structure. On the nitride layer 11104, η is added and 18 is added. The paper size is applicable to Chinese national standards ( CNS) A4 specification (210x297 mm) 200412611 May 15 Printed by Huicai Employee Consumer Corporation 20, description of invention (7) Zaishi Xi and lithography patterning by RIE to form circuit 104. / circuit 10 The surface is oxidized to form another SiO2 layer 1106 as a sacrificial layer 304. This structure is overgrown with ShA 1108 and etched back to form a flat surface 306 to form another first Intermediate structure 302 ,,, ... If the person skilled in this art will In other words, under this method, the line 104 will be separated from the support portion 102 when the sacrificial layer is subsequently removed. We may use other variations of this technique to create another cross section of the line m. For example The constructed line 104 may have a dome, or have a triangular or trapezoidal cross section. In addition, the cross section may have other forms, such as a triangle with a tapered side. As explained above, once the first intermediate structure 302 is formed, for example, The matte nanotube layer 312 will be placed on the structure 3G2 surface plane dove. In the preferred embodiment, the non-woven fabric layer 312 is grown on the structure through the use of the catalyst 308 and the control of the growth environment. Other embodiments may separately provide a matte nanotube layer 312 and apply it directly on the structure 302. Although the structure 302 in this method preferably contains a sacrificial layer to provide a plane to receive the independently growing fabric, in this method, a sacrificial layer is not required. Because the growth process brought the underside of such nanotubes into contact with the plane 306 of the intermediate structure 302, they appeared to be "self-assembling" to be colored as proposed by FIG. In particular, individual nanotubes easily adhere to the surface on which they grow (as long as it is very advantageous), so that they form substantially a "monolayer". Some nanotubes can grow on top of another, so a single layer is not considered perfect. Individual nanotubes are not woven with each other, but are roughly described in 19 papers in a timely manner in accordance with China National Standard (CNS) A4 specifications (210 x 297 ^ J ^ where Van der Waals does indeed stick to each other.) .Because the off-stage & is the actual nano tube non-editing small round hemp g scanning electron microscope scanning electron microscope or even Shoucun, so modern practical fabrics, nano tubes and silly without losing accuracy "Photographed" down) as small as the outline size. The accuracy depends on the type of SEM, but from the order. Figure 12 proposes the existence of the matte surface of the fabric = even: Γ to the fact that this fabric may have a tube diameter of 1-2 nm (thus the p region. Each tube generally has a straight nm and defines about 1β2 nm. Yuan Yuan, a few fabric layers with a thickness of less than $ y), and may have a length of 200 microns. These tubes can be bent. Even M this intersects. These piping systems are attached to each other via Van der Waals forces. In some embodiments, the growth of the nanotubes in the X and y directions is essentially unrestricted, but due to the self-assembly feature, it is oriented toward the z-axis (vertical to The growth of the page (Figure 12) direction will be substantially limited. Other embodiments may supplement the method described above to grow the matte surface 312 using a graph-oriented or stream-oriented growth technique. This supplement may be used to further adjust growth so as to retard any growth on a plane axis (such as the x-axis). This allows for a more uniform coverage of the desired area with a single layer of interwoven braids with a flat surface of a controlled density of nanotubes. The written view of the matte nanotube layer 312 and the underlying silicon circuit 104 is shown in FIG. As described above, once the matte nanotube layer 312 is disposed on the surface 306, the layer 312 is patterned and engraved to define the ribbon 101 of the nanotube fabric intersecting the support portion 102. Then, for example, use acid to shift 20 paper sizes to apply Chinese National Standard (CNS) A4 specifications (210x297 mm) 200412611 A7 Description of invention (/?) Except for the sacrificial layer, it is refined to form the above-mentioned array 322 related to FIG. 3 . Because the matte layer of the nanotube 312 forms a non-woven fabric of a discontinuous film, the extender or other chemical agent can diffuse between individual nanotube fibers, and more easily reach the elements below the sacrificial layer Subsequent metallization processes may be used to form patterns such as address electrodes 112, as described above. Other embodiments use nano-tube technology to replace the use of metalized ㈣112 and address lines (not shown *) to achieve the addressing of the memory cells. 'Specifically, in some of the embodiments described above, the nanotubes are used to form the NTRCM P train. Some embodiments use nano-tube technology (whether in individual wiring or in the form of bands) to implement addressing logic to select memory cells for read or write actions. This approach integrates the design of the nano-tube technology into a comprehensive system design and can provide functionalities that are conducive to higher-level system design. For example, ‘under this approach, the memory structure will not only store the recorded content in a non-volatile way printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, but also essentially store the final memory address. Nanotube memory cells have a bi-stable state characterized by a high ratio resistance between "0, 'and" i ,. Switching between these states is achieved by applying a specific voltage across the nanotube band or wiring and the underlying circuit, where at least one memory cell element is a nanotube or a nanotube leader. In one method Apply a "reading current" and, with the sense amplifier, determine the voltage across this junction. The read action is non-destructive, which means that the cell can maintain its state, and because it uses DRAM to complete, no write-back action is required. 21 200412611 A7 B7 V. Description of the Invention (2C) FIG. 14 illustrates a branch binary selection system or decoder 1400. As will be explained below, the decoder 1400 may be implemented using a nanotube or nanotube ribbon technology. In addition, the decoder may be built on the same circuit element 5 as an array of nanotube memory cells (such as NTRCM or NTWCM). The perpendicular intersection of two lines 1404 and 1406 (depicted as point 1402) represents the junction of two nanotubes or nanotube ribbons. In this regard, the interaction is similar to the '' pass transistor '' found in CMOS and other technologies, where the intersection may be turned on or off. ίο For example, the location of 1420 (where one microtube, microtube, or nanotube ribbon may intersect the other but is not intended to construct a cross-over interface) may be isolated from each other by lithographically patterned insulators between the components. For clarity, the decoder is shown as a 3-bit binary address transmitted on address line 1408. According to the coded value, the intersection 15 (point) will be switched to establish only a path for the sensing current I to flow through the selection line 1418. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. To use this technology, externally produce a π dual-implementation "characterization 1408" for each bit of a binary address, so that each address bit 1410 is true. With complementary forms. Therefore, line 1406 may be the logically true type of address line 1408a 20, and line 1407 may be the logical complement of address line 1,4081. The voltage value representing 1 0 8 corresponds to the voltage value required to switch the cross-connected surface to the "Γ" or "0 &" state as described above. In this way, the address 1408 may be used to change the sense current I Supplied to one bit or one column of an array (for example, to nanotubes or 22 sheets) Paper size applies to China National Standard (CNS) A4 (210x297 mm) 200412611 A7 B7 V. Description of invention (20 millimeters) Microtubule ribbons). Similarly, the same method may be used to sense a given line. For example, a column is selected jointly to select a specific array row to read the sense. Therefore, this method may be used as X And / or gamma decoding for both reading and writing. 5 Some embodiments of the present invention provide a hybrid technology circuit 1500, shown in Figure 15. The core memory cell array 1502 is implemented by It is built using NTWCM or NTRCM, and that core is surrounded by semiconductor circuits forming X and Y address decoders 1504 and 1506; X and Y buffers 1508 and 1510; control logic 1512 and output buffer 1514. ίο Around NTWCM Or NWBCM The circuit of the heart may be used for the conventional connection function, including providing a read current and sensing the output voltage. In other embodiments, another X and Y may be replaced with the nanotube wiring or the band addressing technology discussed above. Address decoders 1504 and 1506. In these embodiments, the core will include memory cells and addressing logic. 15 In some embodiments, the hybrid circuit 1500 may be printed by using the Intellectual Property Bureau staff of the Ministry of Nanoeconomics to print consumer cooperatives. Control cores (with memory cells only or with memory cells and addressing logic), and formed around the circuit by using a field programmable gate array. If desired, the core and gate array circuits may be contained in a single physical package Alternatively, they may be packaged separately. For example, a hermetically sealed nanotube circuit (with memory or gas memory and addressing logic) may be connected to a PLD / FPGA that contains I / O connection logic / ASIC combination. The resulting small chipset provides users of the product with the benefits of NT memory, while enabling `` off-the-shelf '' 'The use of technology is maximized, and this off-the-shelf technology may be used by the manufacturer on a required basis. 23 This paper size applies the Chinese National Standard (CNS) A4 specification (210x297 mm) 200412611 A7 B7 V. Description of the invention (22 Figure 16 illustrates a possible embodiment of the hybrid technology 160. The fpga chip 1602 containing buffering and control logic (described above) is connected via a (possibly multilayered) printed circuit board (PCB) l604 conductive line. To a nano tube (NT) chip 1606 containing a memory cell and addressing logic. 5 This particular embodiment proposes to follow the PCI bus specification and is representative of today's personal computers. Other passive circuits (such as capacitors, resistors, transformers, etc. (not shown)) will also need to comply with PCI specifications. The bus speeds before 200MHz-400MHz are noted, and it is proposed that various external clock speeds such as the chipset may operate. This speed is limited by PCB interconnects, FPGA / PLD / ASIC speeds, and chip packaging, not Nτ memory unit speed. Ministry of Economic Affairs, Intellectual Property Bureau, Employees' Cooperatives, Printed Cases, Carbon Tube Films, Layers, Fabrics, and Objects 15 lines or conductive objects. These layers may have a thickness of about 1 nm or less, that is, the thickness of a given nanotube. The nanotube matte surface 312 is grown or deposited on a surface (such as the surface of a silicon wafer) to form a continuous film of a predetermined density. Then, the two-dimensional thin film can be patterned to produce conductive wires or lines with a width ranging from 1 nm (the intrinsic minimum size of the nanotube) to several hundred microns or more, depending on the application and the situation. This pattern can be produced in multiple length to width ratios to allow interconnection of semiconductor devices of various sizes, such as transistors or memory elements, and finally expand into a fan shape to reach pads or other interconnecting materials or structures. Because nanotubes have the inherent characteristics of easy access to metal or semiconductor materials, if different materials must be connected, the nanotube interconnect gold paper size can be adapted to the Chinese National Standard (CNS) A4 (210 X 297 mm) 200412611 V. Description of Invention (23) Attribute. Wiring and conductive objects may be used in other forms of electrical circuits. By way of example, Lu and Wei ’s microtubule lines may be used to resist high current densities due to their moon force, and they have been found to hang in very small lines (such as the sub-10nm range). They are also used to reduce the possibility of fouling other circuit features: the example is shown in Fig. 17 and Fig. 17 shows an illustrative use of a nanotube ribbon, wire, or conductive object on the substrate. (By inspection, we can see that the figure is similar to Figure 3 ', but in this case, the' film 312 is grown on the substrate instead of growing on the intermediate structure 31G). In this example, the dream substrate has an oxide layer 1G9e similar to that shown in FIG. 3. In order to promote the growth or deposition of the thin film 312, a plane can be formed (shown as 306 in FIG. 3, but not shown in the figure). ). Then, for example, by using cvd: _ 312 with single-walled and / or multi-walled nanotubes grows on the composition: 15 printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 20 or for example by spin coating Instead, it is deposited on the composition. If a single-walled nanotube is used, the membrane 312 is mainly as thick as a nanotube, but if a multi-walled nanotube is used, the film 312 can be substantially thicker (for example, up to 1000 nm). As described above, if a thin film is to be grown, a catalyst may be used. However, the catalyst (shown as 308 in FIG. 3 and not shown in FIG. 17) need not be deposited directly on the surface of the substrate; in addition, the catalyst may be provided in two gas forms as part of the CVD process. Serving. For example, a gas phase metal substance such as dicyclopentadiene iron can be used. Dimeric cyclopentadiene and other gaseous metal materials, like other types of metals containing iron, pins, cranes, and other transition metals, will make nano-carbon tubes grow. * * 8.2 · Wang 25 200412611 A7 B7 15 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. The description of invention (¾) is suitable for the formation of gas phase catalysts. Metal gas-phase catalysts can be fully utilized or repaired together with appropriate temperature, pressure, surface preparation and growth time: to produce nano-tube matte surface 3 12. If you want to make thinners, you may use the nanotubes that Xiao Xian grew up with. For example, under certain embodiments of the present invention, nanotubes can be made in a soluble or dissolvable form to dissolve the domains, and the domains can be coated on this surface to produce a house micro-office film 312. In this configuration, according to the rotation profile and other process parameters, the film can have a thickness of one or more microtubes. Appropriate solvents include dimethylformamide, cardiac methyl pyrroldmone, η-methyl formamide 'o-dichlorobenzene p-dichlorobenzene, 1,2, dichloroethane, alcohols, with suitable surfactants ( For example, dodecyl sulfate (TRITON X or other) water. For example, surface functionalization, spin coating speed, temperature, pH, and time, the nanotube concentration and deposition parameters can be adjusted 'to control the deposition of single or multilayer nanotubes depending on f. The 'nanotube thin tube 312' can also be deposited by immersing a wafer or substrate in a solution that can dissolve or suspend the nanotubes. Films can also be formed by spraying nanotubes onto the surface in the form of suspended particles. When the conditions of the catalyst composition and density, growth environment, and time are properly controlled, the nanotubes can be made to be uniformly distributed over a predetermined range of the nanotubes that require the most monolayer. When the ancient / j forms the rough surface 312 of the microtube, the photoresist layer can be spin-coated on the nanofiber thin film 312, and patterned by exposure or the like to define the conductive circuit. In the example of item 17, the lines are shown as parallel straight m-sheet scales Sekisui® Secret Binding 26 200412611 A7 Invention Description (2¾ line lines, but the line definition can take other centroids depending on the type of device to be connected to each other ' A defined line can have a width that is at least as large as or larger than _ microns. Once so defined, it is possible to process the exposed photoresist to remove certain layers: but will leave the line 101. Subsequent metallization may It is used to form, for example, an address electrode or a sector interconnect structure shown in Figure η. 7006. 15 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 20 Refer to Figure 18, and then the nanotube ribbon pattern 1802 can be printed. Connect to other ribbons, metal wiring (not shown), or electronic features 1806. For example, a, referring to the intermediate structure 1800, the nanotube wiring i 〇 丨 may be connected to a different feature size (such as width) Nanotube line 1802. Line 101 can also be connected to component 112, which can be a metal contact or a pad (although not shown to scale in this figure). With reference to the intermediate structure 1804, line 101 can Connected to, for example, a memory element in 1804, which may be formed as an NTRCM unit or formed with semiconductor parts. With reference to the intermediate structure 1808, the line can be connected to an electronic processing part or logic 1806. Although it is not necessary to draw to scale, line 1 〇1 can also be connected to the pad indicated by the element 112. Although these interconnections can mainly consist of a single layer of nanotubes, they can also be imagined as multilayer ribbons and matte surfaces by using appropriate growth conditions. This requires Control includes but is not limited to catalyst composition and concentration, functionalization of the underlying surface, spin coating parameters (length and RPM, such as 40 seconds, 50-5000 rPm), growth time, temperature, and gas concentration parameters. One aspect is: various growth, deposition, patterning, and time-lapse actions, which may use known techniques such as photolithographic patterning. 27 This paper size is applicable to China National Standard (CNS) A4 (210 X 297) (Mm) 200412611 A7 15 20 V. Description of the invention (meaning). With current technology, these circuits may be made to have a size of about nm to as small as 130nm. However, if manufacturing capabilities allow, the physical characteristics of circuit 101 should stand the test of even smaller profile sizes. Conventional interconnect technology suffers from 埶 damage due to damage to the performance of semiconductor devices. 2 Metal diffusion The tendency to damage, especially due to the degradation of electrical properties. 2 Damage to modern size reductions of 18.18 / zm and 0.13 // 〇1, such as metal diffusion through ultra-thin gate oxide layers And it becomes even more significant. In contrast, the carbon nanotube ribbons are not plagued by some problems. They are substantially more robust with the highest known heat transfer and are less prone to thermal failure. Furthermore, since they are all constructed from covalently bonded carbon atoms, no metal or impurities will diffuse and diffuse. ', Fig. 19 shows another method of forming the first intermediate structure 302. A silicon substrate 1900 having a silicon oxide layer 1902 receives a patterned photoresist layer 1904. For example, a photoresist layer can be spin-coated on layer 192, and then exposed and photolithographically developed to create a cavity 1906 and a photomask 1908. /, Μ show that later, n-doped silicon or a metal such as molybdenum, tungsten, or button ι 9ι〇 and a sacrificial layer 1912, such as an oxide oxide, may be deposited on the holes 1 to 6 and also form corresponding features 1914 and 1916. Then, the photoresist 1912, the material 1914 "aluminum oxide (Al1 2 03) l916 above the photoresist 1912, is peeled off to form an intermediate structure with an electrode 104 and a sacrificial layer ⑼8. (F〇x) spin-coated Pei Ding 1 ____ 28 2 This paper is a national standard of the country (00 ^ 4 secret 200412611 A7 V. Description of the invention (27) Type glass (SOG) is spin-coated on the structure 1918 And was tempered by using standard technology at 600 C and using a sharp temperature agreement to form a Si02 layer 1920 at a height of 200-2000 nm above the sacrificial layer 1912. Then, reactive ion etching (PIE ) Etc. can be used to etch the S02 layer 1920 'to form a structure 302 with the support portion 102. The choice of electrode material is limited by the method of placing the nanotubes on the surface of the substrate. Spin-coated catalyst-type growth of microtubes, gas-phase catalyst-assisted CVD, and spin-coating or direct deposition. In the case of catalyst-type growth as described above, the catalyst is spin-coated or follows standard cleaning protocols. Immerse the substrate The catalyst material is distributed on the surface. In each case, the nanotube system is then grown through a CVD process at 800 m by using a combination of a hydrogen-containing and carbon precursor gas as described above. Therefore, strong enough to withstand these temperatures. 15 Electrode materials printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs will be better. These materials include molybdenum, tungsten, tantalum, gallium, copper and their alloys. , Tungsten, molybdenum, button, copper and other single or stacked construction materials. Stacked electrode construction may help or be sufficient to establish a Schottky barrier sufficient to adjust each memory bit. By growing using a gas-phase catalyst such as dimerized cyclocene and ferrocene, it is possible to envisage a substantially lower temperature required for growth, thereby allowing use at temperatures below 800 ° c and 40 ° (rc) Electrode materials that melt at substantially lower temperatures, as low as certain. Some important gas-phase catalysts can include cobalt, tungsten, molybdenum, or baht metallocenes containing five of six-membered rings.

200412611 A7 ------ B7 五、發明說明(2¾ 合物可利用無機化學之正確知識而藉由發泡室之使用,使 匕們合成並造成氣相以作為基板上之成核位置來供毫微管 成長用。當然’這些材料實際上將與文獻中已知且被標準 工業製造設備所使用的一般CMOS製程相容。 5 如果毫微管係藉由旋轉塗佈毫微管之溶液或懸浮而於 室溫下沈積於表面上,則電極材料之選擇實質上會擴大。 於此情況下’不會有高溫步驟,且一般與標準CMOS金 屬化條件相容之任何金屬(特別是鋁及其合金)將是可接受 的。 10 犧牲層304可由八丨2〇3、金屬氧化·物、鹽、金屬與其 他材料所建構。中間構造302可藉由使用各種材料而形 成,用以形成包含S0G、Si02與其他之支撐部102。如果 選擇毫微管協定之低溫旋轉塗佈,則適合作為犧牲層之材 料實質上會膨脹。這可包含例如PMMA或其他聚合物, 15金屬(例如鎢、鉻、鋁,鉍)以及其他過渡與主·族金屬之材 料又包έ例如蘇之其他半導體以及例如鹽、氧化物與其 他硫屬之絕緣體。 …、 經濟部智慧財產局員工消費合作社印製 支撐層之材料的選擇,大幅取決於為毫微管成長所選 擇的方法以及其他因素。如果選擇低溫製程用以將毫微管 20置放在表面上,則吾人可設想利用像八丨2〇3、一氨化矽、 半導體、絕緣體那樣的材料以及例如聚醯亞胺之聚合物。 材料選擇過程侷限於與上述製程相容之那些材料。那 些充分熟習本項技藝者應理解到,在選擇特定電極材料之 時,基於半導體製造上可取得的一般處理步驟,犧牲層與 __ 30 本紙張尺度準(CNS)A4規格(210 X 297公爱)-—---—___ 200412611 、發明說明(2¾ 支撐材料自然會受到限制。同樣地,如果選擇特定犧牲層, 則電極與犧牲層材料之選擇會適當地受到限制。再者y 選擇特定支撐材料之時,結果當然是電極與犧牲層 = 選擇同樣受到限制。 7 旦,圖2 0顯示例示的毫微管織物3 12之原子力顯微(A F M 影像。於此圖中,每個毫微管之直徑大約為15 ,模糊不清是由於顯微鏡之固有限制,而非由於既定毫: 管之實際紋理)。此種影像係處》鑛之橫向解析度限 制0 又义 雖然上述大部分的揭露書寫得好像織物係由相 之毫微管(例如’全部是單壁)所構成,但織物可能由所; 夕壁構造或單壁與多壁構造之組合所構成。 其他實施例 15 經濟部智慧財產局員工消費合作社印製 為了促進互連或電極材料之成長,首先藉由使用標準 先刻方法來形成一個圖案,用以界定毫微管打算以水平方 式成長在表面上面之區域可能會變成有用的。這樣一種方 法^被使用以肖Si02構造進行圖案化,以使厚的多壁垂 直宅微管成長。利用類似的方法’為了使具有厚度為 之水平笔微官薄膜成長之目的可使用圖案化s⑴2以 ^上述例如ΗΠ之形式之構造。提供供毫微管成長與成 核用之例如絕緣體與金屬氧化物之支撐物的其他材料在 與適當選擇的氣相金屬茂竣1 次其他可汽化金屬前驅物共同使 用以產生圖案化毫微管帶狀物時可能是有用的。此種下層 圖案化層亦可作為移除時將形成懸浮毫微管之犧牲層。此 ____ 31 本紙張尺度適用中國國家標準(CNS)A4規核"7!]^7^7 200412611 五、發明說明(3〇) 2成長方法表示,,正,,成長之一種形 先圖案化的表㈣為成核位置。 讀Μ吏用預 在又—實施例中,吾人可設想使用— ” 法,藉以受到光刻圖案化之基板包含並 、=方 5之金屬或其他材料。當提供例如金屬茂或類成長 當氣相前驅物時,毫微管實際上將只在沒有圖。t適 區域中成長。在移除圖案化金屬物質之時,下声料之 除可提供懸浮毫微管101或互連構造。 θ ;'之移 在又另一實施例中,可使用電極之受 10二18nm寬的電極之15nm敍刻),來取代使用 :: 除犧牲層以將毫微管懸浮於在電極上面之特定^予矛夕 金屬(例如銅)與半導體(例如石夕)電極 例如 米之姓刻速度受到姓刻。 $用母移數毫微 在另貝施例中,係藉由使用一層重疊薄塗 b ^管壓在支撐部之上,用以避免毫微管在運作期間滑^ 這將打開正好在記憶體單元本身上面之,,窗孔,,。 經濟部智慧財產局員工消費合作社印製 這些層與導電物件之電性特性,係可藉由控制毫微管 f狀物之橫剖面而受到調整。舉例而言,帶狀物厚度可能 以既定寬度與毫微管密度來增加。橫剖面越高,導致b 2〇電性特性之傳導通道之數目越大。 , ^ 宅微管帶狀物之製備方法甚至允許在粗糖表面形態上 面之連續導電性。相較之下,一般金屬電極之蒸鍍將;受 到構造缺陷,從而蒙受到電性缺陷。 除毫微碳管以外,可設想其他具有適合機電切換之電 _____ 32 本紙張尺度_巾關家標準(CNS)A4規格(2^7297公 200412611 五、發明說明(3|) ^與機械特性之材料。這些材料將具有類似於毫微碳管之 二:!具有不同且可能減少的抗拉強度。材料之張應變 ,黏者⑥量必祕在允許接面之雙穩態與機電切換特性存 在於可接受公差内的範圍之内。200412611 A7 ------ B7 V. Description of the invention (2¾ The compound can use the correct knowledge of inorganic chemistry and use the foaming chamber to synthesize the daggers and create the gas phase as the nucleation site on the substrate. For nanotube growth. Of course 'these materials will actually be compatible with general CMOS processes known in the literature and used by standard industrial manufacturing equipment. 5 If the nanotubes are spin-coated with a solution of the nanotubes Or suspended and deposited on the surface at room temperature, the choice of electrode material will be substantially expanded. In this case, there is no high temperature step and any metal (especially aluminum that is generally compatible with standard CMOS metallization conditions) And its alloys) will be acceptable. 10 The sacrificial layer 304 may be constructed of metal oxides, salts, metals, and other materials. The intermediate structure 302 may be formed by using various materials to form Contains SOG, SiO2 and other supporting parts 102. If the low temperature spin coating of the nanotube agreement is selected, the material suitable as the sacrificial layer will expand substantially. This may include, for example, PMMA or other polymers, 15 metals (Such as tungsten, chromium, aluminum, bismuth) and other transition and main group metals, including other semiconductors such as Soviet and other insulators such as salts, oxides and other chalcogens ...., Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economy The choice of materials for the printed support layer depends greatly on the method chosen for the growth of the nanotubes and other factors. If a low temperature process is chosen to place the nanotubes 20 on the surface, we can envisage the use of 203. Materials such as monoammonium silicon, semiconductors, insulators, and polymers such as polyimide. The material selection process is limited to those materials that are compatible with the above process. Those skilled in the art should understand that When selecting a specific electrode material, based on the general processing steps available in semiconductor manufacturing, the sacrificial layer and __ 30 paper standard (CNS) A4 specifications (210 X 297 public love) -------------___ 200412611 、 DESCRIPTION OF THE INVENTION (2¾) The support material is naturally limited. Similarly, if a specific sacrificial layer is selected, the choice of materials for the electrode and the sacrificial layer will be appropriately limited. When y choose a specific support material, the result is of course that the electrode and sacrificial layer = the choice is also limited. Once, Figure 20 shows an atomic force microscope (AFM image) of the illustrated nanotube fabric 3 12. In this figure, The diameter of each nanotube is about 15 and the blur is due to the inherent limitation of the microscope, not the actual texture of the tube (the actual texture of the tube). This type of image is limited by the horizontal resolution of the mine. Most of the disclosures are written as if the fabric is composed of phase nanotubes (for example, 'all single-walled'), but the fabric may be composed of; a wall structure or a combination of single-wall and multi-wall structures. Other Examples 15 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs To promote the growth of interconnects or electrode materials, a pattern is first formed by using a standard inscribed method to define the area where the nanotubes are intended to grow horizontally on the surface. Will become useful. Such a method is used for patterning with the SiO 2 structure to grow thick multi-wall vertical microtubes. Using a similar method ', for the purpose of growing a horizontal pen micro-manufacturer film having a thickness of 50 Å, the structure of the patterned s⑴2 in the form of, for example, ΗΠ may be used. Other materials that provide support for nanotube growth and nucleation, such as insulators and metal oxide supports, are used in conjunction with appropriately selected gas phase metallocenes and other vaporizable metal precursors to produce patterned nanotubes May be useful when ribboning. Such an underlying patterned layer can also be used as a sacrificial layer that will form suspended nanotubes when removed. This ____ 31 This paper size is subject to the Chinese National Standard (CNS) A4 Regulations " 7!] ^ 7 ^ 7 200412611 V. Description of the Invention (3〇) 2 The growth method indicates that it is a positive pattern of growth. The transformed surface is nucleated. In the present embodiment, we can envisage the use of the "" method, whereby the substrate subjected to photolithography patterning includes a metal or other material of the formula 5. When providing, for example, metallocene or similar growth In the case of phase precursors, the nanotubes will actually grow only in areas where there is no picture. When removing the patterned metal material, the removal of the bottom material can provide suspended nanotubes 101 or interconnect structures. Θ ; 'In another embodiment, instead of using the sacrificial layer to suspend the nanotubes on the specific ^ instead of using the sacrificial layer to replace the sacrificial layer with the 15nm engraving of the electrode (1018 18nm wide electrode); The speed of Yu Maoxi metal (such as copper) and semiconductor (such as Shixi) electrodes such as rice is engraved by the surname. $ Use the mother to shift the number of nanometers. In another embodiment, it is coated with a thin layer b ^ The tube is pressed on the support to prevent the nanotube from slipping during operation ^ This will open the window just above the memory unit itself. The Intellectual Property Bureau Staff Consumer Cooperative of the Ministry of Economic Affairs prints these layers and Electrical characteristics of conductive objects can be controlled by The cross-section of the microtube f-shaped object is adjusted. For example, the thickness of the ribbon may increase with a given width and the density of the nanotubes. The higher the cross-section, the more the number of conductive channels of b 2 0 electrical characteristics The method of preparing the microtubule ribbons allows continuous electrical conductivity even on the surface of the crude sugar. In contrast, the evaporation of general metal electrodes will suffer from structural defects and thus electrical defects. In addition to nano carbon tubes, other electricity suitable for electromechanical switching can be envisaged. _____ 32 paper size _ Towel Standard (CNS) A4 specification (2 ^ 7297 public 200412611 V. Description of the invention (3 |) ^ and mechanical characteristics Materials. These materials will have similar carbon nanotubes to two: have different and possibly reduced tensile strengths. The tensile strain of the material, the amount of adhesion, ⑥ must exist in the bistable state and electromechanical switching characteristics of the interface Within acceptable tolerances.

’為了整合供定址用的CMos邏輯,可設想兩種方法。 :::施例中’毫微管陣列將在金屬化之前但在CMOS 广與平坦化之後被合併。第二種方法需要毫 微:陣:!在製造包括離子實施與高溫回火步驟之cm〇S 的成長。在完成這些步驟之時,毫微管帶狀物盘 CMOS元件兩者最後的金屬化將藉由使用 用、 的協定而得以繼續進行。 ’、之便用 亦可設想由位在某些金屬或半導體線上面的η摻雜矽 所組成之電極。這仍將提供處於〇Ν狀態之整流接面,所 以沒有多重電流小經會存在。 15 除了整流接面以外,存在有其他廣泛被接受與使用之 方法’用以避免交叉式陣列中之電性干擾(亦即,多 流小徑)的發生。在靜態 '光刻製造的電極上面的隧 阻絕,係避免了歐姆ΟΝ狀態之形成。於零偏覆下 電流將產生,但必須施加小偏壓以供載荷子用,用以 相交線間之此種阻絕層與隨道。 經由離子、共價或其他力量之使用以增加黏著能量之 方法,可被設想成是改變與電極表面之交互作用。 法可用以延伸具有這些接面之雙穩態之範圍。 — 毫微管可利用例如芘之平面共軛烴而發生作用,然 33 200412611 A7 B7 五、發明說明(32) 後,其可幫助提高帶狀物内之毫微管之間的内部黏著性。 上述樣態之某些(例如混合電路與用以定址之毫微管 技術)係適合於個別毫微管(例如使用直接成長技術等)或 毫微管帶狀物。 5 吾人將更進一步明白到,本發明之範疇並未受限於上 述實施例,而是由以下申請專利範圍所界定,且這些申請 專利範圍將包含任何已說明之改善之修改。 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 200412611 A7 B7 15 經濟部智慧財產局員工消費合作社印製 五、發明說明(纪) 【圖式之代號說明】 100〜NTRCM裝置 102〜支撐部 10 4〜下層線路 10 6〜接面 109〜閘極氧化層 112〜電極 208〜間隔 302’〜中間構造 302…〜中間構造 304’〜犧牲層 3 08〜催化劑 312〜毫微管層’In order to integrate the CMos logic for addressing, two approaches can be envisaged. ::: In the example, the 'nanotube array will be merged before metallization but after CMOS wide and planarization. The second method requires nanometers: arrays:! Cms growth in manufacturing including ion-implementation and high-temperature tempering steps. When these steps are completed, the final metallization of both the nanoribbon ribbon disk CMOS elements will continue through the use of the CMOS protocol. It can also be used as an electrode composed of n-doped silicon on some metal or semiconductor lines. This will still provide a rectifying junction in the ON state, so no multiple currents will exist. 15 In addition to rectifying junctions, there are other methods that are widely accepted and used to avoid the occurrence of electrical interference (ie, multiple current paths) in a cross array. Tunneling on electrodes made by static 'lithography prevents the formation of ohmic ON states. Under zero bias, current will be generated, but a small bias must be applied for the charge carriers to intersect the barrier layer and the trail between the lines. A method of increasing adhesion energy through the use of ions, covalent or other forces can be conceived to change the interaction with the electrode surface. The method can be used to extend the range of bistable states with these junctions. — Nanotubes can work by using planar conjugated hydrocarbons such as tritium. However, after 2004 200411 A7 B7 V. Description of the invention (32), it can help improve the internal adhesion between the nanotubes in the ribbon. Some of the above aspects (such as hybrid circuits and nano-tube technology for addressing) are suitable for individual nano-tubes (such as using direct growth technology, etc.) or nano-tube ribbons. 5 I will further understand that the scope of the present invention is not limited to the above-mentioned embodiments, but is defined by the scope of the following patent applications, and these patent applications will include any improvements that have been described. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs of the Consumer Cooperatives. The paper size is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 200412611 A7 B7 15 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs of the Consumer Cooperatives. [Description of the code of the drawing] 100 ~ NTRCM device 102 ~ Support 10 4 ~ Lower line 10 6 ~ Junction 109 ~ Gate oxide 112 ~ Electrode 208 ~ Interval 302 '~ Intermediate structure 302 ... ~ Intermediate structure 304' ~ Sacrificial layer 3 08 ~ catalyst 312 ~ nanotube layer

3 18〜中間構造 322〜陣歹丨J 402〜氧化層 406〜孑L穴 4 0 8〜覆蓋物 411〜中間構造 514〜η摻雜石夕層 602〜氮化矽層 606〜間距 610〜絕緣層 702〜二氧化矽層 101〜毫微管帶狀物 103〜記憶體單元 105〜接面 108〜氮化矽層 110〜碎基板 206〜電極 302〜中間構造 302’’〜中間構造 304〜犧牲層 306〜上表面 310〜中間、構造 314〜中間構造 3 2 0〜部分 4〇〇〜矽晶圓 404〜氮化矽層 407〜支撐構造 410〜上表面 41Γ〜中間構造 6〇〇〜矽基板备 604〜高度 608〜露出之石夕表g 700〜叾夕基板 704〜氮化矽層 35 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 200412611 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明說明(^0 706〜圖案化光阻層 710〜η摻雜矽 8 0 0〜起始構造 804〜二氧化碎層 5 808〜二氧化矽層 812〜露出部分 816〜氮化矽 902〜金屬電極 904〜孔穴 ίο 908〜高度 1004〜二氧化矽 1008〜光罩層 1012〜露出部分 1104〜氮化矽層 15 1108〜氮化石夕 1402〜點 14 0 6〜線 1408a〜位址線 1410〜位址位元 2〇 1500〜混合電路 1504〜位址解碼器 1508〜緩衝器 1512〜控制邏輯 1600〜實施例 708〜孔穴 712〜高度 802〜最低矽層 806〜第二矽層 810〜RIE光罩 814〜孔穴 818〜南度 903〜金屬電極 906〜η摻雜矽層 1002〜矽基板 1006〜η摻雜矽層 1010〜露出部分 1100〜矽基板 1106〜二氧化矽層 1400〜解碼器 14 0 4〜線 1407〜線 1408〜定址線 1418〜選擇線 1502〜核心記憶ν體單元陣列 1506〜位址解碼器 1510〜緩衝器 1514〜輸出緩衝器 1602〜FPGA晶片 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 2004126113 18 to intermediate structure 322 to array 歹 丨 J 402 to oxide layer 406 to 孑 L cavity 4 0 8 to cover 411 to intermediate structure 514 to n doped stone layer 602 to silicon nitride layer 606 to pitch 610 to insulation Layer 702 to Silicon dioxide layer 101 to Nanotube ribbon 103 to Memory cell 105 to Junction 108 to Silicon nitride layer 110 to Broken substrate 206 to Electrode 302 to Intermediate structure 302 '' to Intermediate structure 304 to Sacrificial Layer 306 to upper surface 310 to middle, structure 314 to intermediate structure 3 2 0 to part 400 to silicon wafer 404 to silicon nitride layer 407 to support structure 410 to upper surface 41 Γ to intermediate structure 600 to silicon substrate Equipment 604 ~ height 608 ~ exposed stone table g 700 ~ substrate substrate 704 ~ silicon nitride layer 35 This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 200412611 Α7 Β7 Intellectual property of the Ministry of Economic Affairs Printed by the Bureau ’s Consumer Cooperatives. 5. Description of the invention (^ 0 706 ~ patterned photoresist layer 710 ~ η doped silicon 8 0 0 ~ starting structure 804 ~ silicon dioxide fragment layer 5 808 ~ silicon dioxide layer 812 ~ exposed part 816 ~ Silicon nitride 902 ~ Metal electrode 904 ~ Cavity ίο 908 ~ Height 10 04 ~ Silicon dioxide 1008 ~ Photomask layer 1012 ~ Exposed part 1104 ~ Silicon nitride layer 15 1108 ~ Stone nitride 1402 ~ Dot 14 0 6 ~ Line 1408a ~ Address line 1410 ~ Address bit 201500 ~ Mixed Circuit 1504 ~ Address decoder 1508 ~ Buffer 1512 ~ Control logic 1600 ~ Embodiment 708 ~ Hole 712 ~ Height 802 ~ Minimum silicon layer 806 ~ Second silicon layer 810 ~ RIE mask 814 ~ Cavity 818 ~ Nando 903 ~ Metal electrode 906 to n-doped silicon layer 1002 to silicon substrate 1006 to n-doped silicon layer 1010 to exposed portion 1100 to silicon substrate 1106 to silicon dioxide layer 1400 to decoder 14 0 4 to line 1407 to line 1408 to address line 1418 ~ selection line 1502 ~ core memory ν body unit array 1506 ~ address decoder 1510 ~ buffer 1514 ~ output buffer 1602 ~ FPGA chip This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 200412611

五、發明說明(¾) 1604〜印刷電路板 1706〜扇形互連構造 1802〜毫微管線路 1806〜電子特徵部 1900〜矽基板 1904〜圖案化光阻層 1908〜光罩圖案 1912〜犧牲層 1916〜特徵部 氧化層 1606〜毫微管晶片 1800〜中間構造 1804〜中間構造 1808〜中間構造 1902〜二氧化石夕層 1906〜孔穴 1910〜金屬 1914〜特徵部 1918〜中間構造 經濟部智慧財產局員工消費合作社印製 7 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)V. Description of the invention (¾) 1604 ~ printed circuit board 1706 ~ fan interconnect structure 1802 ~ nanotube circuit 1806 ~ electronic feature 1900 ~ silicon substrate 1904 ~ patterned photoresist layer 1908 ~ mask pattern 1912 ~ sacrifice layer 1916 ~ Characteristic oxide layer 1606 ~ Nanotube wafer 1800 ~ Intermediate structure 1804 ~ Intermediate structure 1808 ~ Intermediate structure 1902 ~ Dioxide layer 1906 ~ Cavity 1910 ~ Metal 1914 ~ Feature 1918 ~ Intermediate structure Ministry of Economic Affairs Intellectual Property Office Printed by Consumer Cooperatives 7 3 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

1·種在基板上製造導電物件之製造方法,包含: 在基板上形成毫微管織物; 界疋在錢物内之圖案,其中該圖案係對應至該導電 物件; 5 和除β織物之—部份,俾能使該圖案化織物殘留在該 基板上以形成複數個導電物件。 …2.如中請專利範圍第1項所述之製造方法,其中該毫 微&織物係藉由使用催化劑來使該基板上之該毫微管織物 成長而形成。 10 3 ·如申明專利範圍第2項所述之製.造方法,其中該催 化劑係為一種氣相催化劑。 4·如申請專利範圍第3項所述之製造方法,其中該催 化劑係為一種金屬氣相催化劑。 5. 如申請專利範圍第1項所述之製造方法,其中該毫 μ微官織物係藉由使懸浮毫微管之溶液沈積在該基板上而形 成。 經濟部智慧財產局員工消費合作社印製 6. 如申請專利範圍第5項所述之製造方法,其中該沈 積溶液係被旋轉以建立該溶液之旋轉塗佈。 7·如申請專利範圍第5項所述之製造方法,其中該溶 液係藉由將該基板浸入該溶液中而沈積。 备_ 8.如申請專利範圍第1項所述之製造方法,其中該毫 微官織物係藉由將具有毫微管之懸浮微粒喷灑至該基板之 表面之上而形成。 9· 一種導電毫微管之薄膜之製造方法,包含: 38 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) 200412611 Α81. A method for manufacturing a conductive object on a substrate, comprising: forming a nanotube fabric on the substrate; a pattern bounded in money, wherein the pattern corresponds to the conductive object; In some cases, the patterned fabric can be left on the substrate to form a plurality of conductive objects. ... 2. The manufacturing method as described in item 1 of the patent scope, wherein the nano & fabric is formed by using a catalyst to grow the nano-tube fabric on the substrate. 10 3 The manufacturing method as described in item 2 of the declared patent scope, wherein the catalyst is a gas phase catalyst. 4. The manufacturing method as described in item 3 of the scope of patent application, wherein the catalyst is a metal gas phase catalyst. 5. The manufacturing method as described in item 1 of the scope of patent application, wherein the nano official fabric is formed by depositing a solution of suspended nano tubes on the substrate. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 6. The manufacturing method described in item 5 of the scope of patent application, wherein the deposition solution is rotated to establish a spin coating of the solution. 7. The manufacturing method according to item 5 of the scope of patent application, wherein the solution is deposited by immersing the substrate in the solution. Preparation_ 8. The manufacturing method as described in item 1 of the scope of patent application, wherein the nano-office fabric is formed by spraying suspended particles with nanotubes on the surface of the substrate. 9. · A method for manufacturing a conductive nanotube film, comprising: 38 paper sizes that comply with the Chinese National Standard (CNS) A4 (21 × 297 mm) 200412611 Α8 提供基板; 導入汽相催化劑以促進毫微管之成長;以及 導入碳源以使實質上平行於該基板之主表面之一層毫 微管成長。 5 1〇.如申請專利範圍帛9項所述之製造方法,其中該 汽相催化劑係為一種金屬茂。 11·如申請專利範圍帛9項所述之製造方法,其中該 等毫微管包含單壁毫微碳管。 12.如申請專利範圍帛9項所述之製造方法,其中該 1〇等毫微管包含多壁毫微碳管。 13·—種導電物件之製造方法,包含: 提供基板; 提供圖案化層之材料; 提供促進毫微管之成長之催化劑.;以及 …提供碳源,俾能使實質上平行於該基板之主表面之毫 微管在由該圖案所界定的區域中成長。 經濟部智慧財產局員工消費合作社印製 、14.如申請專利範圍第13項所述之製造方法,其中該 碳源與該催化劑係在單一動作中被導入。 15·如申請專利範圍第13項所述之製造方法,其中該 碳源與該催化劑係依照分離之動作而被導入、令 16·如申請專利範圍第13項所述之製造方法,其中該 圖案化層之材料係為一種絕緣體或半導體,而其中該等毫 微管係在該圖案化材料上面成長。 〃 17·如申請專利範圍第13項所述之製造方法其中該 ______ 39 本_尺度適用中國國家標準(CNS)A4規格(2ig χ 297公爱) ------ 200412611 A8 B8 C8 _D8 六、申請專利範圍 圖案化層係為一種圖案化金屬層,而其中該等毫微管係在 除該圖案化金屬層以外的區域中成長。 經濟部智慧財產局員工消費合作社印製 ο 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)A substrate is provided; a vapor phase catalyst is introduced to promote the growth of the nanotubes; and a carbon source is introduced to grow a layer of nanotubes substantially parallel to the main surface of the substrate. 5 1 10. The manufacturing method as described in item 9 of the scope of the patent application, wherein the vapor phase catalyst is a metallocene. 11. The manufacturing method according to item 9 of the scope of patent application, wherein the nanotubes include single-walled carbon nanotubes. 12. The manufacturing method as described in item 9 of the scope of patent application, wherein the 10th-class nano tube includes a multi-walled nano carbon tube. 13 · —A method for manufacturing a conductive object, including: providing a substrate; providing a material for a patterned layer; providing a catalyst to promote the growth of a nanotube; and ... providing a carbon source that can be substantially parallel to the substrate of the host The surface nanotubes grow in the area defined by the pattern. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 14. The manufacturing method described in item 13 of the scope of patent application, wherein the carbon source and the catalyst are introduced in a single action. 15. The manufacturing method according to item 13 in the scope of the patent application, wherein the carbon source and the catalyst are introduced in accordance with the action of separation, so that 16. The manufacturing method according to item 13 in the scope of patent application, wherein the pattern The material of the patterned layer is an insulator or a semiconductor, and the nanotubes are grown on the patterned material. 〃 17. The manufacturing method described in item 13 of the scope of patent application, where ______ 39 This _ standard is applicable to China National Standard (CNS) A4 specification (2ig χ 297 public love) ------ 200412611 A8 B8 C8 _D8 6. Patent application scope The patterned layer is a patterned metal layer, and the nanotubes are grown in a region other than the patterned metal layer. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ο 4 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW092100451A 2002-04-23 2003-01-10 Methods of nanotube films and articles TWI324786B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/128,117 US6835591B2 (en) 2001-07-25 2002-04-23 Methods of nanotube films and articles
PCT/US2002/023452 WO2003027003A2 (en) 2001-07-25 2002-07-25 Methods of nanotube films and articles

Publications (2)

Publication Number Publication Date
TW200412611A true TW200412611A (en) 2004-07-16
TWI324786B TWI324786B (en) 2010-05-11

Family

ID=45074201

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092100451A TWI324786B (en) 2002-04-23 2003-01-10 Methods of nanotube films and articles

Country Status (1)

Country Link
TW (1) TWI324786B (en)

Also Published As

Publication number Publication date
TWI324786B (en) 2010-05-11

Similar Documents

Publication Publication Date Title
TWI240270B (en) Hybrid circuit having nanotube electromechanical memory
KR100899587B1 (en) Nanotube films and articles
JP4505683B2 (en) Electromechanical memory array using nanotube ribbon and manufacturing method thereof
TWI241687B (en) Electromechanical memory having cell selection circuitry constructed with nanotube technology
US20040159833A1 (en) Nanotube films and articles
TW200412611A (en) Methods of nanotube films and articles

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent