TW200412217A - Method and apparatus for high volume assembly of radio frequency identification tags - Google Patents
Method and apparatus for high volume assembly of radio frequency identification tags Download PDFInfo
- Publication number
- TW200412217A TW200412217A TW092121188A TW92121188A TW200412217A TW 200412217 A TW200412217 A TW 200412217A TW 092121188 A TW092121188 A TW 092121188A TW 92121188 A TW92121188 A TW 92121188A TW 200412217 A TW200412217 A TW 200412217A
- Authority
- TW
- Taiwan
- Prior art keywords
- grains
- die
- patent application
- majority
- item
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 229
- 239000000758 substrate Substances 0.000 claims abstract description 283
- 230000001070 adhesive effect Effects 0.000 claims abstract description 82
- 239000000853 adhesive Substances 0.000 claims abstract description 78
- 230000007246 mechanism Effects 0.000 claims abstract description 74
- 238000004080 punching Methods 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims description 276
- 238000012546 transfer Methods 0.000 claims description 272
- 239000013078 crystal Substances 0.000 claims description 168
- 238000011049 filling Methods 0.000 claims description 78
- 238000002360 preparation method Methods 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 24
- 239000004848 polyfunctional curative Substances 0.000 claims description 19
- 150000002118 epoxides Chemical class 0.000 claims description 18
- 238000007639 printing Methods 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 239000000945 filler Substances 0.000 claims description 6
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 239000004005 microsphere Substances 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 238000005019 vapor deposition process Methods 0.000 claims description 2
- 210000002784 stomach Anatomy 0.000 claims 2
- 239000000969 carrier Substances 0.000 claims 1
- 238000010411 cooking Methods 0.000 claims 1
- 238000007790 scraping Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 73
- 235000013339 cereals Nutrition 0.000 description 345
- 235000012431 wafers Nutrition 0.000 description 184
- 239000010410 layer Substances 0.000 description 25
- 239000007789 gas Substances 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 22
- 239000002390 adhesive tape Substances 0.000 description 20
- 238000000926 separation method Methods 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 18
- 238000012805 post-processing Methods 0.000 description 14
- 239000003570 air Substances 0.000 description 13
- 230000005855 radiation Effects 0.000 description 9
- 230000002040 relaxant effect Effects 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010329 laser etching Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000002654 heat shrinkable material Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005289 physical deposition Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/96—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07718—Constructional details, e.g. mounting of circuits in the carrier the record carrier being manufactured in a continuous process, e.g. using endless rolls
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07745—Mounting details of integrated circuit chips
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
- G06K19/0775—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
- G06K19/07758—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68313—Auxiliary support including a cavity for storing a finished device, e.g. IC package, or a partly finished device, e.g. die, during manufacturing or mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68318—Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
- H01L2221/68322—Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68354—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81191—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83191—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01077—Iridium [Ir]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19042—Component type being an inductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19043—Component type being a resistor
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Credit Cards Or The Like (AREA)
- Wire Bonding (AREA)
Abstract
Description
200412217 (1) 玖、發明說明 【發明所屬之技術領域】 本發明一般而言係有關電子裝置之組裝。更明確地, 本發明係有關射頻識別(RFID )標籤之組裝。 【先前技術】 挑選及放置技術經常被使用以組裝電子裝置。此等技 術涉及一操縱器,諸如機器人手臂,用以從一晶圓移除積 體電路(1C )晶粒並將其安裝至一具有其他電子組件(諸 如天線、電容、電阻、及電感)之基底上以形成一電子裝 置。 挑選及放置技術涉及複雜的機器人組件及控制系統, 其僅操作一晶粒於某一時刻。此技術具有限制生產量的缺 點。再者,挑選及放置技術限制了放置準確度,並具有一 最小晶粒尺寸需求。 一種可使用挑選及放置技術而被組裝的電子裝置型式 爲RFID “標籤”。RFID標籤可被固定至一項目,以利檢 測及/或監督此項目之存在。RFID標籤之存在,及因而標 籤所固定之項目的存在,可由已知爲“讀取器”之裝置所 檢查及監督。 隨著市場對於諸如RFID標籤等產品之要求增加,及 隨著晶粒尺寸縮小’對於極小晶粒之商組裝生產率、以及 低生產成本均爲提供商業上可實行產品之關鍵要素。因此 ,所需的是一種用於電子裝置(諸如RFID標籤)之高產 (2) (2)200412217 量組裝的方法及設備,其克服這些限制。 【發明內容】 本發明係有關用以製造一或更多電子裝置(諸如 RFID標籤)之方法、系統、及設備,此等電子裝置各包 含一具有一或更多導電接觸墊之晶粒,該等導電接觸墊提 供電連接至一基底上之電子電路。 於第一型態中,多數RFID標籤係依據本發明而被組 裝。多數晶粒被分離自一劃線晶圓並安裝至一轉移或支撐 表面(一般在工業中被稱爲“綠色帶”)。晶粒係從支撐 表面被轉移至相應的標籤基底,無論是直接地或是經由一 或更多中間表面。 於第一型態中,晶粒係使用黏著表面機構及製程而被 轉移於表面之間。 於另一型態中,晶粒係使用衝壓(punching)機構及 製程而被轉移於表面之間。 於另一型態中,晶粒係多桶晶粒筒夾(collet )機構 及製程而被轉移於表面之間。 於另一型態中,形成一晶粒框。再者,使用晶粒框以 轉移晶粒。 於用以製造晶粒框之一型態中,一包含多數晶粒之晶 圓被安裝至一帶結構之表面上。一溝槽(grooves )柵( grid )被形成於晶圓中以分離帶結構之表面上的多數晶粒 。可透過栅之溝槽而存取之帶結構的一部分被致使硬化爲 -6 - (3) (3)200412217 柵狀的結構。柵狀結構可移除式地固持多數晶粒。多數晶 粒之一或更多晶粒可從柵狀結構被移動至一靶表面上。 於用以製造晶粒框之一另型態中,一包含多數晶粒之 晶圓被安裝至一帶結構之表面上。帶結構包含一囊封( encapsulated )硬化材料。一溝槽柵被形成於晶圓中以分 離帶結構之表面上的多數晶粒。帶結構之表面被破壞於溝 槽中(於形成溝槽時)以致使囊封硬化材料於溝槽中硬化 成爲柵狀的硬化材料於柵之溝槽中。 於一型態中,晶粒可被轉移自一依據本發明而製造的 晶粒框。一晶粒框被放置緊鄰一基底之表面以致其可移除 式地固持於晶粒框中的多數晶粒之一晶粒係緊鄰基底。各 晶粒可以此方式從晶粒框被轉移至緊鄰的表面。晶粒可從 晶粒框被一個接一個地轉移,或者多數晶粒可被同時地轉 移。 於一型態中,晶粒可被轉移於“墊朝上(pads up ),, 定向的表面之間。當晶粒以“墊朝上”定向被轉移至一基底 時,則相關的電子電路可被印刷或者被形成以將晶粒之接 觸墊耦合至標籤基底之相關電子電路。 於一替代型態中,晶粒可被轉移於“墊朝下(pads down) ”定向的表面之間。當晶粒以“墊朝下”定向被轉移 至一基底時,則相關的電子電路可被預先印刷或者被預先 沈積於標籤基底上。 於另一型態中,描述一種用以形成晶粒之系統。一晶 圓備製模組供應一晶圓至一帶結構之表面。晶圓備製模組 -7- 200412217 晶之多至 數構持動 多結固移 的帶地被 上的式構 面取除結 表存移狀 之而可栅 構槽構從 結溝結可 帶之狀粒 離柵柵晶 分過。多 以透構更 中可結或 圓其狀一 晶使柵之 一 致一粒 於源爲晶 柵劑成數。 槽化化多上 溝硬硬。面 1 一 分粒表 成。部晶祀 形粒一數一 於又另一型態中,描述另一種用以形成晶粒框之系統 。一晶圓備製模組供應一晶圓至一帶結構之表面。晶圓備 製模組形成一溝槽柵於一晶圓中以分離帶結構之表面上的 多數晶粒。帶結構包含一囊封硬化材料。一晶圓切斷( singulation )模組形成一溝槽柵於晶圓中以分離帶結構之 表面上的多數晶粒。晶圓切斷模組破壞溝槽中之帶結構的 表面(當形成溝槽時)以致使囊封硬化材料於溝槽中硬化 成爲柵狀的硬化材料。 於本發明之另一型態中,一種系統及設備致能RFID 標籤之組裝。存在有一晶粒轉移模組以從支撐表面轉移多 數晶粒至標籤基底,以墊朝上或朝下方式。 於本發明之另一型態中,一替代系統及設備致能 RFID標籤之組裝。存在有一晶圓備製模組以從支撐表面 轉移晶粒至一轉移表面。一晶粒轉移模組從轉移表面轉移 晶粒至標籤基底,以墊朝上或朝下方式。 這些及其他優點及特徵將透過以下本發明之詳細敘述 而變得淸楚明白。 實施方式 -8- (5) (5)200412217 本發明提供用以組裝電子裝置(包含RFID標籤)之 改良的方法及系統。本發明提供對於目前方法之改良。習 知技術包含版本爲基礎的系統,其一次一個地挑選及放置 晶粒於基底上。本發明可同時地轉移多數晶粒。版本爲基 礎的系統受限於其可被操作之晶粒尺寸,諸如被限制爲大 於600微米平方之晶粒。本發明可應用於100微米及甚至更 小的晶粒。再者,習知系統之產量是不佳的,其中可能意 外地一次拾取兩個或更多晶粒,其造成額外晶粒之損失。 本發明提供簡化之優點。習知的晶粒轉移帶機構可由 本發明使用。再者,得以達成高得多的製造速率。目前的 技術於每小時處理5 - 8千個單元。本發明可提供對於這些 速率之N因數的改良。例如,本發明之實施例可處理晶. 粒以五倍於習知技術之速率、1 00倍於習知技術之速率、 及甚至更快的速率。再者,因爲本發明容許倒裝晶片( flip-chip)晶粒安裝技術,所以無須線路接合。 此處所述之實施例的元件可以任何方式結合。範例 RFID標籤被描述於以下章節.中。RFID標籤之組裝實施例 被描述於下一章節。進一步的處理方法被接著描述,然後 描述標籤組裝系統。 1*0 RFID 標籤 本發明係有關用以製造電子裝置(諸如RFID標籤) 之技術。爲了說明之目的,此處之描述主要係有關RFID 標籤之製造。然而,其插述亦適用於進一步電子裝置型式 -9- (6) (6)200412217 之製造,如那些熟悉相關技術者將從此處之教導淸楚瞭解 〇 圖1 A顯示一示“範RFID標籤1 00之方塊圖,依據本發 明之一實施例。如圖1 A中所示,RFID標籤100包含一晶 粒1 〇 4及置於一標籤基底1 1 6上之相關電子電路1 〇 6。相關 電子電路106包含一天線1 14於本範例中。圖1B及1C顯示 示範RFID標籤1〇〇之詳細視圖,其被標示爲RFID標籤 100a及100b。如圖1B及1C中所示,晶粒1〇4可被裝設於 相關電子電路1〇6之天線1 14上。如此處另外進一步描述, 晶粒104可被裝設以一墊朝上或墊朝下定向。 RFID標籤1〇〇可被置於一存在有大量(或集合) RFID標籤之區域中。RFID標籤100接收其由一或更多標 籤讀取器所傳輸之詢問信號。依據詢問協定,RFID標籤 1 〇 〇回應這些信號。每一回應包含其識別現有RF ID標籤 之潛在集合的相應RFID標籤1 〇 〇。於接收回應時,標籤 讀取器決定回應標籤之身分(identity ),藉此確認標籤 存在於標籤讀取器所界定之涵蓋區域內。 RFID標籤100可被使用於各種應用中,諸如庫存控制 、機場行李監督、以及保全及監視應用。因此,RFID標 籤1〇〇可被附加至各種項目,諸如航空公司行李、零售庫 存、倉庫庫存、汽車、迷你碟片(CDs )、數位視頻碟片 (DVDs )、錄影帶、及其他物件。RFID標籤100致能此 等項目之位置監督及即時追蹤。200412217 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention generally relates to the assembly of electronic devices. More specifically, the present invention relates to the assembly of radio frequency identification (RFID) tags. [Prior Art] Selection and placement techniques are often used to assemble electronic devices. These technologies involve a manipulator, such as a robotic arm, to remove the integrated circuit (1C) die from a wafer and mount it to a device with other electronic components such as antennas, capacitors, resistors, and inductors. An electronic device is formed on the substrate. The selection and placement technology involves complex robotic components and control systems that operate only one die at a time. This technology has the disadvantage of limiting production. Furthermore, selection and placement techniques limit placement accuracy and have a minimum grain size requirement. One type of electronic device that can be assembled using pick and place technology is an RFID "tag". RFID tags can be fixed to an item to facilitate the detection and / or supervision of the item's existence. The presence of an RFID tag, and therefore the item to which the tag is fixed, can be checked and monitored by a device known as a "reader". As the market demands for products such as RFID tags increase, and as the die size shrinks, the assembly productivity for very small die and low production costs are the key elements for providing commercially viable products. Therefore, what is needed is a method and apparatus for high-volume assembly of electronic devices such as RFID tags (2) (2) 200412217, which overcome these limitations. SUMMARY OF THE INVENTION The present invention relates to methods, systems, and equipment for manufacturing one or more electronic devices, such as RFID tags, each of which includes a die with one or more conductive contact pads, the Such conductive contact pads provide electronic circuits that are electrically connected to a substrate. In the first form, most RFID tags are assembled in accordance with the present invention. Most dies are separated from a scribe wafer and mounted to a transfer or support surface (commonly referred to in the industry as a "green belt"). The grains are transferred from the support surface to the corresponding label substrate, either directly or via one or more intermediate surfaces. In the first type, the grains are transferred between the surfaces using an adhesion surface mechanism and process. In another form, the grains are transferred between the surfaces using a punching mechanism and process. In another type, the grains are transferred between surfaces by a multi-barreled grain collet mechanism and process. In another form, a die frame is formed. Furthermore, a grain frame is used to transfer the grains. In one form used to fabricate a die frame, a crystal circle containing most of the die is mounted on the surface of a band structure. A grooves grid is formed in the wafer to separate most of the dies on the surface of the tape structure. A part of the band structure which can be accessed through the gate trench is hardened into a -6-(3) (3) 200412217 grid structure. The grid structure removably holds most of the crystal grains. One or more of most crystal grains can be moved from the grid-like structure to a target surface. In an alternative form for making a die frame, a wafer containing a large number of die is mounted on a surface of a tape structure. The belt structure contains an encapsulated hardened material. A trench gate is formed in the wafer to separate most of the die on the surface of the tape structure. The surface of the belt structure is destroyed in the trench (when the trench is formed) so that the encapsulated hardened material is hardened in the trench to become a grid-like hardened material in the trench of the gate. In one form, the grains can be transferred from a grain frame made in accordance with the present invention. A grain frame is placed next to the surface of a substrate so that one of the most grains removably held in the grain frame is immediately adjacent to the substrate. Individual grains can be transferred from the grain frame to the immediate surface in this way. The grains can be transferred one by one from the grain frame, or most grains can be transferred simultaneously. In a type, the grains can be transferred between "pads up", oriented surfaces. When the grains are transferred to a substrate in a "pads up" orientation, the relevant electronic circuit It may be printed or formed to couple the contact pads of the die to the associated electronic circuitry of the label substrate. In an alternative form, the die may be transferred between "pads down" oriented surfaces. When the die is transferred to a substrate in a "pad down" orientation, the associated electronic circuits can be pre-printed or pre-deposited on the label substrate. In another form, a type of die is described. System. A wafer preparation module supplies a wafer to the surface of a belt structure. Wafer preparation module-7- 200412217 A crystal-to-digital structure holds a multi-structured fixed-surface tape surface. Remove the structure of the junction table, and the grid structure can be separated from the grid crystal from the grains that can be brought into the junction groove. Most of the structure can be knotted or rounded to make the grid consistent. The source is the number of crystalline grid agents. The grooves are hard and the grooves are hard. The surface 1 is divided into grains. In the form of counting the number of crystal grains in another type, another system for forming a die frame is described. A wafer preparation module supplies a wafer to a surface with a structure. Wafer preparation mold The group forms a trench grid in a wafer to separate most of the grains on the surface of the tape structure. The tape structure contains an encapsulated hardened material. A wafer singulation module forms a trench grid on the wafer Most of the grains on the surface of the separation belt structure are separated. The wafer cutting module destroys the surface of the belt structure in the groove (when the groove is formed) so that the encapsulation hardening material is hardened into a grid in the groove. Hardened material. In another form of the present invention, a system and equipment enable the assembly of RFID tags. There is a die transfer module to transfer most of the die from the support surface to the label substrate, with the pad facing up or down In another form of the present invention, an alternative system and equipment enables the assembly of RFID tags. There is a wafer preparation module to transfer the die from the support surface to a transfer surface. A die transfer module Die transfer from transfer surface to label The substrate, with the pad facing up or down. These and other advantages and features will become apparent from the detailed description of the present invention below. Embodiment -8- (5) (5) 200412217 The present invention provides for assembly Improved methods and systems for electronic devices (including RFID tags). The present invention provides improvements over current methods. Known technologies include version-based systems that select and place dies on a substrate one at a time. The present invention can be simultaneously Transfers most grains. Version-based systems are limited by the size of grains they can be manipulated, such as grains limited to more than 600 microns square. The present invention can be applied to grains of 100 microns and even smaller. Furthermore, the yield of conventional systems is poor, where two or more grains may be accidentally picked up at once, which results in the loss of additional grains. The invention provides the advantage of simplicity. The conventional grain transfer belt mechanism can be used by the present invention. Furthermore, much higher manufacturing rates can be achieved. Current technology processes 5-8,000 units per hour. The present invention can provide improvements to the N factor of these rates. For example, embodiments of the present invention can process crystals at a rate five times faster than conventional techniques, 100 times faster than conventional techniques, and even faster. Furthermore, since the present invention allows flip-chip die mounting technology, no wire bonding is required. The elements of the embodiments described herein may be combined in any manner. Example RFID tags are described in the following sections. An assembly example of the RFID tag is described in the next section. Further processing is described next, followed by the label assembly system. 1 * 0 RFID Tag The present invention relates to technology for manufacturing electronic devices such as RFID tags. For the purpose of illustration, the description here is mainly related to the manufacture of RFID tags. However, the interpolation is also applicable to the manufacture of further electronic device types-9- (6) (6) 200412217, such as those familiar with the relevant technology will understand from the teaching here. Figure 1 A shows a "standard RFID tag The block diagram of 100 is according to an embodiment of the present invention. As shown in FIG. 1A, the RFID tag 100 includes a die 100 and a related electronic circuit 106 on a tag substrate 116. The related electronic circuit 106 includes an antenna 114 in this example. Figures 1B and 1C show a detailed view of an exemplary RFID tag 100, which is labeled as RFID tags 100a and 100b. As shown in Figures 1B and 1C, the die 104 may be mounted on the antenna 1 14 of the related electronic circuit 106. As further described herein, the die 104 may be mounted with a pad facing up or pad facing down. RFID tags 100 may It is placed in an area where a large number (or collection) of RFID tags are present. The RFID tag 100 receives interrogation signals transmitted by one or more tag readers. According to the interrogation agreement, the RFID tag 100 responds to these signals. Each response contains its potential set of identifying existing RF ID tags Corresponding RFID tag 100. Upon receiving the response, the tag reader decides to respond to the identity of the tag, thereby confirming that the tag exists within the coverage area defined by the tag reader. The RFID tag 100 can be used in various Applications such as inventory control, airport baggage supervision, and security and surveillance applications. Therefore, RFID tags 100 can be attached to various items such as airline luggage, retail inventory, warehouse inventory, cars, mini discs (CDs) , Digital video discs (DVDs), video tapes, and other items. RFID tags 100 enable location monitoring and real-time tracking of these items.
於本實施例中,晶粒]04係一積體電路,其執行RF1D (7) (7)200412217 操作,諸如依據各種詢問協定而通訊與一或更多標籤讀取 器(未顯示)。示範的詢問協定被描述於美國專利編號 6,002,344,其係於1999年十二月14日核准給Bandy等人 ,案名爲電子庫存之系統及方法、以及美國專利申請案號 10/0 7 2,8 85,其係於20 02年二月12日提出申請。晶粒104 包含多數接觸墊,其各提供與相關電子電路106之電連接 〇 相關電子電路106係透過1C晶粒104之多數接觸墊而 被連接至晶粒1 04。於實施例中,相關電子電路1 06提供一 或更多能力,包含RF接收及傳輸能力、感應器功能、電 力接收及儲存功能、以及額外的能力。相關電子電路1 0 6 之組件可被印刷至一標籤基底11 6上,以諸如導電墨水等 材料。導電墨水之範例包含銀導體5000、5021及5025,其 係由 DuPont Electronic Materials of Research Triangle Park, N.C·所製造。其他適於將相關電子電路106印刷至標 籤基底116上之材料或機構包含聚合物介電成分5018及碳 基的 PTC 電阻膏72 82,其亦由 DuPont Electronic Materials of Research Triangle Park,N.C.所製造。熟悉相 關技術之人士將從此處之教導淸楚瞭解其他可被用以沈積 組件材料於基底上之材料或機構。 如圖1A-1C中所示,標籤基底116具有一第一表面, 其容納晶粒104、相關電子電路106、以及標籤1〇〇之進一 步組件。標籤基底116亦具有一第二表面,其係與第一表 面相反。一黏著劑材料或襯底(backing )可被包含於第 -11 - (8) (8)200412217 二表面上。當存在時,黏著劑襯底致使標籤100得以被安 裝至物件,諸如書本或消費者產品。標籤基底1 1 6被製作 至下列材料如聚酯、紙張、塑膠、織品(如布)V及/ 或其他材料(諸如商業上可得的Tyvec®)。 於標籤100之某些實施中,標籤基底116可包含一刻痕 或“胞”(未顯示於圖1A-1C ),其容納晶粒104。此一實 施之範例被包含於晶粒104之“墊朝上”定向中,如別處之 進一步描述。 圖2A及2B顯示一範例晶粒104之平面及側視圖。晶 粒104包含四個接觸墊204a-d,其提供介於相關電子電路 106與晶粒1〇4的內部電路之間的電連接。注意到雖然係顯 示四個接觸墊2 0 4 a- d,但可根據特定應用而使用任何數目 的接觸墊。接觸墊204係由導電材料所致,於晶粒之製造 期間。接觸墊2 0 4可進一步由額外及/或其他材料(諸如金 或助焊劑)之沈積所建立,假如組裝製程需要的話。此等 後處理(或“緩衝(bumping)”)將是那些熟悉相關技術者 所熟知的。 圖2C顯示一安裝有晶粒104之基底116的一部分,依 據本發明之一實施例。如圖2中所示,晶粒1 〇 4之接觸墊 2(Ha-d被耦合至基底116之個別接觸區域210a-d。接觸區 域21 Oa-d提供電連接至相關電子電路1〇6。矩形形狀之接 觸墊204 a-d的配置容許晶粒104安裝至基底n6之彈性、以 及良好的機械黏合。此配置容許I C晶粒1 〇 4之不完美放置 於基底]1 6上的容限範圍,而仍達成可接受的電耦合於接 -12- (9) (9)200412217 觸墊204a-d與接觸區域2 1 Oa-d之間。例如,圖2D顯示基 底1 16上之1C晶粒} 〇4的不完.美放置。然而,.即使1C晶 粒1 〇 4被不當地放置,仍達成可接受的電耦合於接觸墊 204a-d與接觸區域21〇a_d之間。 注意到雖然圖2A-2D顯示共同地形成一矩形形狀之四 個接觸墊204a-d的佈局,但亦可使用較多或較少數目的接 觸墊204。再者,接觸墊2〇4 a-d可於本發明之實施例中被 設計爲其他形狀。 2.0 RFID標籤組裝 本發明係有關連續輥組裝技術及其他用以組裝標籤( 諸如RFID標籤1 〇 〇 )之技術。此等技術涉及標籤天線基 底116之材料的連續網(或輥),其能夠被分離成多數標 籤。如此處所述,所製造的一或更多標籤可接著被後處理 以利個別的使用。爲了說明之目的,此處所述之技術係參 考RFID標籤10 0之組裝。然而,這些技術可被應用於其 他標籤實施及其他適當的裝置,如那些熟悉相關技術人士 可從此處教導所得知。 本發明有利地去除一次一個地組裝電子裝置(諸如 RFID標籤)的限制,而容許多數電子裝置被平行地組裝 。本發明提供連續輥技術,其係可擴充的且提供較習知挑 選及放置技術更高得多產量的組裝速率。 圖3顯示一具有相關於RFID標籤1〇〇之連續輥製造之 範例步驟的流程圖3 〇〇,依據本發明之範例實施例。圖3顯 -13 - (10) (10)200412217 示一流程圖’其說明一用以組裝標籤100之製程3〇〇。製程 3 0 0從步驟3 0 2開始。·於步驟3 〇 2,製造一具有多數晶粒1 〇 4 之晶圓400。圖4A顯示一示範晶圓4〇〇之平面·圖。圖4A中 所示’多數晶粒1〇4被配置於多數列402m。 於步驟3 04,晶圓400被供應至一支撐表面404。支撐 表面404包含一黏著劑材料以提供黏合。例如,支撐表面 4 04可爲一黏著劑帶,其將晶圓.4〇〇固持於定位以利後續處 理。圖4B顯示其接觸與一範例支撐表面4〇4之晶圓4〇〇的 範例視圖。 於步驟3 06,晶圓4〇〇上之多數晶粒ι〇4被分離。例如 ,步驟3 0 6可包含依據一製程(諸如雷射蝕刻)以爲晶圓 4 0 0劃線。圖5顯示晶圓4 0 0之一視圖,此晶圓4 0 0具有與支 撐表面404接觸之範例分離晶粒丨〇4。圖5顯示多數劃線 5 〇 2 a · 1,其標示晶粒1 〇 4被分離之位置。 於步驟3 08,多數晶粒i〇4係從支撐表面404被轉移至 基底1 1 6。於一實施例中,步驟3 〇 8可容許“墊朝下,,轉移 。另一方面,步驟3 0 8可容許“墊朝上”轉移。如此處所使 用,“墊朝上”及“墊朝下”表示RFID標籤1 00之替代實施。 明確地,這些術語指示相關於標籤基底1 1 6之連接墊2 0 4的 定向。於標籤1〇〇之“墊朝上”定向,晶粒104被轉移至標籤 基底1 1 6,以其接觸墊2 0 4 a - d背向標籤基底1 1 6。於標籤 1 00之“墊朝下”定向,晶粒1 04被轉移至標籤基底1 1 6,以 其接觸墊2 0 4 a - d面朝向(並接觸與)標籤基底丨1 6。有關“ 墊朝上”轉移之步騾3 0 8的範例係參考圖丨}而被更詳細地描 -14 - (11) (11)200412217 述。有關“墊朝下”轉移之步驟3 0 8的範例係參考圖1 6而被 更詳細地描述。 於步驟3 1 0,執行後處理。於步驟3 1 0期間,完成了 RFID標籤100之組裝。步驟310係參考圖54而被更詳細地 描述於下。 2.1晶粒轉移實施例 圖3中所述(以及以上所討論)之步驟3 〇 8係關於從一 支撐表面轉移分離的晶粒至一標籤基底。被安裝至支撐表 面(如圖5中所示者)之分離晶粒可藉由多種技術而被轉 移至標籤基底。習知地,此轉移係使用一種挑選及放置工 具而完成。挑選及放置工具使用一種真空晶粒筒夾,其係 由一機器人機構所控制,此機器人機構藉由吸力作用以從 支撐結構拾取晶粒、並將晶粒穩固地固持於晶粒統夾。挑 選及放置工具將晶粒置入一晶粒載具或轉移表面。例如, 一種適當的轉移表面係由Mulbauer,Germany所製造的 “ 衝壓帶”。目前的挑選及放置方式之缺點在於其一次僅有 一晶粒可被轉移。因此,目前的挑選及放置方式無法適當 地擴充於極高產量的速率。 本發明容許從一支撐表面一次地轉移一個以上晶粒至 一轉移表面。事實上,本發明容許一個以上晶粒之轉移於 任何兩個表面之間,包含從一支撐表面轉移晶粒至一中間 表面、於多數中間表面之間轉移晶粒、於一中間表面與最 終基底表面之間轉移晶粒、及直接從一支撐表面轉移晶粒 -15- (12) (12)200412217 至最終基底表面。 圖6顯示一流程圖600,其提供用以從第一表面轉移晶 粒至第一表面之步驟’依據本發明之實施例。本發明之結 構實施例將根據以下討論而使熟悉相關技術人士淸楚明白 。這些步驟被詳細地描述如下。 流程圖600從步驟602開始。於步驟602,多數安裝至 一支撐表面之晶粒被承接。例如,晶粒爲晶粒丨〇 4,其係 顯不爲女裝至圖4A中之一支撐表面404。支撐表面可爲 ‘‘ 綠色帶” ’如熟悉相關技術人士所熟知的。 於步驟6 0 4,多數晶粒被轉移至一後續表面。例如, 晶粒1 0 4可依據本發明之實施例而被轉移。例如,晶粒可 由一黏著劑帶(諸如衝壓帶)、多桶輸送機構及/或製程 、或晶粒框(諸如以下之進一步描述)來轉移,且亦可由 其他機構及製程、或者由此處所述之機構/製程的組合來 轉移。於實施例中,後續表面可爲中間表面或實際的最終 表面。例如,中間表面可爲一轉移表面,其包含“藍色帶 ”,如熟悉相關技術人士所熟知的。當後續表面爲基底時 ’後續表面可爲一基底結構,其包含多數標籤基底,或者 可爲另一基底型式。 於步驟606,決定其後續表面是否爲最終表面。假如 後續表面是晶粒將被永久安裝之基底,則流程圖600之製 程便完成。因此,如圖6中所示,此製程進行至流程圖3 00 之步驟3 1 0,如圖3中所示。假如後續表面並非最終表面, 則製程進行至步驟6〇4,其中多數晶粒被接著轉移至另一 (13) (13)200412217 後續表面。步驟604及606可依據特定應用所需而被重複任 意次數。 任何中間/轉移表面及最終基底表面可或可不具有形 成於其中以供晶粒駐存之胞。各種以下所述之製程均可被 使用以同時地轉移多數晶粒於第一與第二表面之間,依據 本發明之實施例。於此處所述之任何製程中,晶粒可被轉 移以墊朝上或墊朝下定向,從一表面至另一表面。 此處所述之晶粒轉移製程包含使用一黏著劑表面、一 平行晶粒衝壓製程、一多桶晶粒筒夾製程、一晶粒框、及 一晶粒支撐框之轉移。此處所述之晶粒轉移的元件可被結 合以任何方式,如熟悉相關技術人士所瞭解的。這些晶粒 轉移製程、及用以執行這些製程之相關範例結構被進一步 描述於下列次章節中。 2-1.1使用黏著劑表面之晶粒轉移 依據本發明之一實施例,一塗敷於第二表面上之黏著 劑物質可被壓在其駐存於第一表面上之分離晶粒上,其致 使晶粒安裝至黏合性塗敷的第二表面上。第二表面可被移 動離開第一表面,以攜載所安裝之晶粒離開第一表面。晶 粒可接著被轉移至後續中間/轉移表面,或者至一最終表 面(諸如基底)。 圖7顯示一流程圖7 00,其提供使用一黏著劑表面以從 第一表面轉移多數晶粒至第二表面的步驟。爲了說明之目 的,流程圖7 00將參考圖8_]〇而被描述,雖然流程圖7 00之 (14) (14)200412217 製程並不限定於圖-l 〇中所示之結構。 流程圖7 0 0從步驟7 0 2開始。於步驟7 〇 2,第二表面被 設置緊鄰第一表面,其安裝有多數晶粒。例如,如圖8中 所示,多數晶粒1〇4被安裝至第—表面8 02。一第二表面 8 〇 4被設置接近第一表面8 〇 2。例如,於實施例中,第一表 面8 0 2可爲一劃線晶圓或者支撐表面,或可爲一中間表面 。再者,第二表面8 04可爲一中間或轉移表面,或者可爲 一基底表面。圖4A顯示一範例支撐表面,如支撐表面404 。第二表面804可爲一綠帶或者一藍帶,如本工業中所熟 知者。 於步驟704,介於第一表面與第二表面之間的距離被 減小直到多數晶粒接觸第二表面並由於第二表面之黏合性 而安裝至第二表面。其範例顯示於圖9。如圖9中所示,第 二表面804係接觸與多數晶粒104。第一及第二表面802及 804之任一或兩者可被移動以致使接觸。注意第二表面8〇4 可具有黏合性,因爲其爲一黏著劑帶,或者可爲一具有黏 合材料之表面,諸如塗敷有環氧、膠、或蠟,以致使其具 有黏合性。 於步驟706,第一表面及第二表面被移開,而多數晶 粒仍保持安裝至第二表面。例如,其顯示於圖1 〇。如圖i 〇 中所示,第一表面802及第二表面804已被移開,且多數晶 粒104保持安裝至第二表面804。多數晶粒104被分開自第 一表面802。多數晶粒104保持安裝至第二表面804,由於 第二表面804相對於第一表面802之較大的黏合性。 (15) (15)200412217 於一實施例中,流程圖700可包含額外的步驟,其中 一黏著劑材料被塗敷至第二表面以致其第二表面之黏合性 大於第一表面之黏合性。 / 注意到可使用重疊(包含同一)機構以執行步驟7 0 4 至7 0 6以減少第一與第二表面之間的距灕,並移開第一與 第二表面,或者可使用不同的機構。例如,用以執行步騾 704及/或706之機構可包含使用滾筒、活塞型衝壓技術、 空氣噴射、及/或任何本說明書之別處所述的其他適當機 構或其他已知的機構。 注意到流程圖700可應用於其在任一第一及第二表面 8 02及8 04上被定向以墊朝上或墊朝下之晶粒。例如,流程 圖700可包含進一步步驟,其中多數安裝至第一表面之晶 粒被定向以致其多數晶粒之各晶粒的至少一接觸墊係背向 第一表面。因此,當第一表面與第二表面被移開時,則多 數晶粒將以墊朝下方式保持安裝至第二表面。另一方面, 流程圖700可包含步驟,其中多數安裝至第一表面之晶粒 被定向以致其多數晶粒之各晶粒的至少一接觸墊係面朝向 第一表面。因此,當第一表面與第二表面被移開時,則多 數晶粒將以墊朝上方式保持安裝至第二表面。 於實施例中,流程圖7〇〇之製程可被實施於第一表面 上之任何部分的或所有的分離晶粒。例如,此製程可被完 成以一或更多次重複,使用一或更多黏著劑塗敷的第二表 面8 0 4之帶,其係各黏附至(並將單一行晶粒1 0 4帶離開自 )第一表面8 02。另一方面,可使用薄片大小的黏著劑塗 (16) (16)200412217 敷第二表面8 0 4以黏附至(並將多行/任何大小陣列晶粒 104帶離開自)第一表面802。 爲了說明之目的’於此提出以下兩個次章節以提供使 用一黏著劑表面之晶粒轉移的更詳細範例。然而,本發明 並不限定於這些範例。 2.1.1.1墊朝上轉移 如參考圖3所述,於步驟3 0 8中,晶粒1 〇 4可從支撐表 面404被轉移至標籤基底116,以一“墊朝上,,方式。當晶 粒1 0 4係以此方式被轉移至標籤基底1 1 6時,其被定向以致 接觸墊204a-d係背向標籤基底1 16。 圖1 1係一流程圖,其更詳細地說明“墊朝上”轉移之 步驟3 0 8的執行。此執行係從步驟1 1 〇 2開始。於步驟1 1 〇 2 中,一或更多晶粒1 〇 4被定向以利從支撐表面4 0 4轉移至標 籤基底U 6上。步驟1 1 02係參考圖12A、12B、13、14、及 1 5而被更詳細地描述,其提供一“墊朝上”轉移操作之各 個階段期間的晶粒1 04、支撐表面404、一轉移表面.1 202、 及標籤基底1 1 6之範例視圖。 步驟1 102包含步驟1 120及1 122。於步驟1 120 ,晶粒 104被設置接觸與轉移表面1 202。此步驟之執行被說明於 圖12A及12B,其提供接觸與支撐表面404及轉移表面1202 之一晶粒104的視圖。設置晶粒104接觸與轉移表面1202可 包含減少支撐表面404與轉移表面1 202間之實際分離直到 晶粒104接觸轉移表面1 202的步驟。此亦可透過滾筒、活 -20- (17) (17)200412217 塞型衝壓技術、及/或空氣噴射之使用而執行。 步驟1120進一步包含對齊轉移表面12〇2與一或更多列 402之步驟。例如,圖12A顯示對齊與列4〇2a之轉移表面 1 2 0 2。於此範例中,轉移表面1 2 0 2具有一寬度1 2 0 4,其被 選擇以接觸晶粒1 0 4之單一列4 0 2。然而,亦可利用其他的 寬度,其達成與多數列402之接觸。 於步驟1 122,晶粒104被移除自支撐表面404,藉此達 成從支撐表面404轉移至轉移表面1202。圖13係其轉移至 轉移表面1 202之多數晶粒1 〇4的視圖。從支撐表面404移除 晶粒104可包含下列步驟:於轉移表面1 2 0 2上提供較支撐 表面404上更強的黏著劑、及增加支撐表面404與轉移表面 1 2 02之間的實際分離。另一方面,從支撐表面404移除晶 粒104可包含下列步驟:提供一鬆弛黏著劑於支撐表面404 上,其藉由鬆驰作用(諸如暴露至熱能量、輻射、或紫外 線光)而使之喪失其黏合性質、及產生一鬆弛作用於需要 移除時。 在步驟1 1 02之後,執行一步驟1 104。於步騾1 104,塗 敷一黏著劑至標籤基底1 1 6。此黏著劑將提供介於晶粒1 04 與標籤基底1 16之間的接合。 步驟1 1 〇 6接續於步驟1 1 04之後。於步驟1 1 0 6,晶粒 1 04係以“墊朝上”方式被轉移至標籤基底U 6上。步驟 1 106包含下列步驟:設置晶粒104接觸與標籤基底1 16並移 除晶粒104自轉移表面1202。圖Μ及15顯示來自步驟1106 之執行的圖片。 -21 - (18) (18)200412217 圖14顯示一接觸與轉移表面1 202及標籤基底116之晶 粒104η。晶粒104η係接觸與一形成於標籤基底1 16上之胞 或刻痕1 402。刻痕1 402致使接觸墊204得以成爲大致上整·· 平(even)與其容納相關電子電路106之標籤基底U6上的 表面。設置晶粒.104接觸與標籤基底1 16包含一步驟:減少 介於轉移表面1 202與標籤基底1 16之間的實際分離直到晶 粒1 04接觸標籤基底1 1 6。此可透過滾筒、活塞型衝壓技術 、及/或空氣噴射之使用而執行。此外,以“墊朝上”定向 設置晶粒104接觸與標籤基底1 16包含將晶粒104對齊與相 應刻痕1 4 0 2之步驟。 從轉移表面1 202移除晶粒104可包含下列步驟:提供 一較轉移表面1 202上更強的黏著劑於標籤基底1 16上、及 增加介於轉移表面1 202與標籤基底1 16之間的實際分離。 另一方面,從支撐表面404移除晶粒104可包含下列步驟: 提供一鬆弛黏著劑於轉移表面1 202上,其藉由鬆弛作用( 諸如暴露至熱能量、輻射、或紫外線光)而使之喪失其黏 合性質、及產生一鬆弛作用於需要移除時。 圖1 5顯示一晶粒1 0 4 η從轉移表面1 2 0 2釋放並轉移至 標籤基底1 1 6。如圖1 5中所示,接觸墊2 0 4係大致上整平與 標籤基底1 16之表面1 50 2及1 504,藉此致使電連接得以被 輕易地形成於接觸墊204與印刷在這些表面上的相關電子 電路1 〇 6之間。 在步驟1 1 0 6之後,執行一步驟1 1 〇 8。於步驟1 1 0 8,相 關電子電路106被印刷於標籤基底U6上。步驟I 106可包含 (19) 200412217 透過一絲網(screen)印刷製程、噴墨製程、及/或熱噴霧 製程而將.相關電子電路1 06印刷至標籤基底1 1 6上的步驟。 另一方面,步驟1106可包含透過一奉獻(oblation)製程 以移除其已配置在標籤基底U 6上之導電材料的步驟。 在步驟1 1 0 8之後,執行一步驟1 1 1 〇。於步驟1 1 1 〇,塗 敷一塗層於標籤基底1 1 6上。此塗層保護標籤1 0 0之元件, 諸如晶粒1 〇 4及相關電子電路1 0 6,不受機械力影響。此外 ,此塗層提供電絕緣。再者,此塗層可提供一壓縮力於標 籤基底116上以進一步確保相關電子電路106與晶粒104之 間的適當連接。此一壓縮力可透過使用熱可收縮材料而被 提供。 2.1 . 1 . 2墊朝下轉移In this embodiment, the dies 04 are integrated circuits that perform RF1D (7) (7) 200412217 operations, such as communicating with one or more tag readers (not shown) in accordance with various interrogation protocols. An exemplary interrogation agreement is described in U.S. Patent No. 6,002,344, which was approved to Bandy et al. On December 14, 1999 under the name Electronic Systems and Methods, and U.S. Patent Application No. 10/0 7 2, 8 85, which was filed on February 12, 2002. The die 104 includes a plurality of contact pads, each of which provides electrical connection to the related electronic circuit 106. The related electronic circuit 106 is connected to the die 104 through the majority of the 1C die 104 contact pads. In an embodiment, the related electronic circuit 106 provides one or more capabilities, including RF receiving and transmitting capabilities, sensor functions, power receiving and storing functions, and additional capabilities. The components of the related electronic circuit 106 can be printed on a label substrate 116 using a material such as conductive ink. Examples of the conductive ink include silver conductors 5000, 5021, and 5025, which are manufactured by DuPont Electronic Materials of Research Triangle Park, N.C. Other materials or mechanisms suitable for printing related electronic circuits 106 onto the label substrate 116 include polymer dielectric components 5018 and carbon-based PTC resistive pastes 72 82, which are also manufactured by DuPont Electronic Materials of Research Triangle Park, N.C. Those skilled in the art will understand from the teachings here other materials or mechanisms that can be used to deposit component materials on a substrate. As shown in FIGS. 1A-1C, the label substrate 116 has a first surface that houses the die 104, related electronic circuits 106, and further components of the label 100. The label substrate 116 also has a second surface that is opposite to the first surface. An adhesive material or a backing may be included on the two surfaces of -11-(8) (8) 200412217. When present, the adhesive substrate enables the label 100 to be mounted to an article, such as a book or consumer product. The label substrate 1 1 6 is made to the following materials such as polyester, paper, plastic, fabric (such as cloth), V, and / or other materials (such as commercially available Tyvec®). In some implementations of the label 100, the label substrate 116 may include a score or "cell" (not shown in Figs. 1A-1C) that houses the die 104. An example of this implementation is included in the "pad-up" orientation of die 104, as further described elsewhere. 2A and 2B show plan and side views of an example die 104. FIG. The crystal grain 104 includes four contact pads 204a-d, which provide an electrical connection between the associated electronic circuit 106 and the internal circuits of the crystal grain 104. Note that although four contact pads 2 0 4 a-d are shown, any number of contact pads may be used depending on the particular application. The contact pads 204 are made of a conductive material during the fabrication of the die. The contact pads 204 may be further established by deposition of additional and / or other materials such as gold or flux, if required by the assembly process. Such post-processing (or "bumping") will be familiar to those skilled in the relevant art. Figure 2C shows a portion of a substrate 116 on which the die 104 is mounted, according to an embodiment of the invention. As shown in FIG. 2, the contact pads 2 (Ha-d of the die 104) are coupled to individual contact areas 210a-d of the substrate 116. The contact areas 21 Oa-d provide electrical connection to the relevant electronic circuit 106. The configuration of the rectangular contact pads 204 ad allows the die 104 to be mounted to the substrate n6 with elasticity and good mechanical adhesion. This configuration allows the IC die 1 0 to be placed imperfectly on the substrate] 16 within the tolerance range, An acceptable electrical coupling is still achieved between the -12- (9) (9) 200412217 contact pads 204a-d and the contact area 2 1 Oa-d. For example, FIG. 2D shows the 1C grains on the substrate 116 〇4's incomplete placement. However, even if the 1C die 104 is improperly placed, acceptable electrical coupling is achieved between the contact pads 204a-d and the contact area 21〇a_d. Note that although the figure 2A-2D shows a layout of four contact pads 204a-d that collectively form a rectangular shape, but a larger or smaller number of contact pads 204 can also be used. Furthermore, the contact pad 204a can be used in the present invention The embodiment is designed in other shapes. 2.0 RFID tag assembly The present invention relates to continuous roll assembly technology and other uses for assembly (Such as RFID tags 100). These technologies involve a continuous web (or roll) of material for the tag antenna substrate 116, which can be separated into a majority of tags. As described herein, one or more are manufactured The tags can then be post-processed for individual use. For illustrative purposes, the techniques described here refer to the assembly of RFID tags 100. However, these techniques can be applied to other tag implementations and other suitable devices, such as Those skilled in the relevant art can learn from the teaching here. The present invention advantageously removes the limitation of assembling electronic devices such as RFID tags one at a time, and allows most electronic devices to be assembled in parallel. The present invention provides continuous roll technology, which is a system An assembly rate that is scalable and provides a much higher yield than conventional pick and place techniques. Figure 3 shows a flowchart of an example step with continuous roll manufacturing related to RFID tag 100, according to the present invention. An example embodiment. Figure 3 shows -13-(10) (10) 200412217 shows a flowchart 'which illustrates a process 300 for assembling the label 100. Process 3 0 0 starts from step 302. · At step 3 02, a wafer 400 having a large number of dies 104 is manufactured. FIG. 4A shows a plan view of an exemplary wafer 400. As shown in FIG. 4A 'Most grains 104 are arranged in most rows 402m. At step 3 04, wafer 400 is supplied to a support surface 404. The support surface 404 contains an adhesive material to provide adhesion. For example, the support surface 4 04 may be An adhesive tape that holds wafer .400 in position for subsequent processing. FIG. 4B shows an exemplary view of a wafer 400 in contact with an exemplary support surface 400. FIG. At step 306, the majority of the dies 04 on the wafer 400 are separated. For example, step 306 may include marking the wafer 400 according to a process (such as laser etching). FIG. 5 shows a view of wafer 400, which has an exemplary separation die 104 in contact with support surface 404. FIG. FIG. 5 shows a plurality of scribe lines 50 2 a · 1, which indicate the positions where the crystal grains 104 are separated. At step 308, the majority of the crystal grains 104 are transferred from the support surface 404 to the substrate 116. In one embodiment, step 308 may allow "pad-down, transfer." On the other hand, step 308 may allow "pad-up" transfer. As used herein, "pad-up" and "pad-up" "Down" indicates an alternative implementation of the RFID tag 100. Specifically, these terms indicate the orientation of the connection pad 2 0 4 related to the tag substrate 1 16. The "pad up" orientation of the tag 100, the die 104 is Transfer to the label substrate 1 1 6 with its contact pads 2 0 4 a-d facing away from the label substrate 1 1 6. With the "pad down" orientation of the label 100, the die 1 04 is transferred to the label substrate 1 1 6 , With its contact pads 2 0 4 a-d facing (and contacting) the label substrate 丨 1 6. The steps related to the "pad upward" transfer 骡 3 0 8 are described in more detail with reference to the drawing 丨} -14-(11) (11) 200412217. The example of step 308 for "pad down" transfer is described in more detail with reference to Fig. 16. At step 3 10, post-processing is performed. At step During 3 10, the assembly of the RFID tag 100 is completed. Step 310 is described in more detail below with reference to FIG. 54. 2.1 Grain Transfer Example FIG. 3 The (and discussed above) step 3 08 is about transferring the separated die from a support surface to a label substrate. The separated die mounted on the support surface (as shown in FIG. 5) can be obtained by A variety of techniques were transferred to the label substrate. Conventionally, this transfer was accomplished using a picking and placing tool. The picking and placing tool used a vacuum die collet, which was controlled by a robotic mechanism that borrowed Suction acts to pick up the die from the support structure and hold the die firmly in the die holder. Pick and place tools to place the die into a die carrier or transfer surface. For example, a suitable transfer surface system The "punching belt" manufactured by Mulbauer, Germany. The disadvantage of the current selection and placement method is that only one die can be transferred at a time. Therefore, the current selection and placement method cannot be appropriately expanded at a very high production rate. The present invention allows one or more grains to be transferred from one support surface to one transfer surface at a time. In fact, the present invention allows the transfer of more than one grain to Between any two surfaces, including transferring grains from a supporting surface to an intermediate surface, transferring grains between most intermediate surfaces, transferring grains between an intermediate surface and the final substrate surface, and directly from a supporting surface Transfer grain-15- (12) (12) 200412217 to the final substrate surface. Figure 6 shows a flowchart 600 that provides steps for transferring grains from a first surface to a first surface, according to an embodiment of the present invention The structural embodiment of the present invention will be clearly understood by those skilled in the relevant arts based on the following discussion. These steps are described in detail below. The flowchart 600 starts from step 602. At step 602, most of the dies mounted on a support surface are received. For example, the grains are grains 04, which are not women's clothing to one of the support surfaces 404 in FIG. 4A. The support surface may be a "green belt" as is well known to those skilled in the relevant art. At step 604, most of the crystal grains are transferred to a subsequent surface. For example, the crystal grains 104 may be formed according to an embodiment of the present invention. Transferred. For example, the die may be transferred by an adhesive tape (such as a stamping belt), a multi-barrel conveying mechanism and / or process, or a die frame (such as further described below), and may also be transferred by other mechanisms and processes, or Transferred by the mechanism / process combination described herein. In embodiments, the subsequent surface may be the intermediate surface or the actual final surface. For example, the intermediate surface may be a transfer surface that contains a "blue band", such as Those skilled in the art are familiar. When the subsequent surface is a substrate, the 'subsequent surface may be a substrate structure, which includes most label substrates, or may be another substrate type. In step 606, it is determined whether the subsequent surface is the final surface. If the subsequent surface is a substrate on which the die is to be permanently installed, the process of flowchart 600 is completed. Therefore, as shown in FIG. 6, this process proceeds to flowchart 3 00 Step 3 10, as shown in Figure 3. If the subsequent surface is not the final surface, the process proceeds to step 604, where most of the crystal grains are then transferred to another (13) (13) 200412217 subsequent surface. Step 604 and 606 can be repeated any number of times as needed for a particular application. Any intermediate / transfer surface and final substrate surface may or may not have cells formed therein for the resident grains. Various processes described below can be used To simultaneously transfer most of the grains between the first and second surfaces, according to an embodiment of the present invention. In any of the processes described herein, the grains can be transferred with the pad facing up or the pad facing down, from One surface to another surface. The grain transfer process described herein includes the use of an adhesive surface, a parallel die stamping process, a multi-barrel die collet process, a die frame, and a die support frame. The grain transfer components described here can be combined in any way, as understood by those skilled in the relevant arts. These grain transfer processes, and the related example structures used to perform these processes, are further described. In the following subsections. 2-1.1 Grain Transfer Using Adhesive Surface According to an embodiment of the present invention, an adhesive substance coated on a second surface can be pressed against the separation where it resides on the first surface. On the die, it causes the die to mount onto the adhesively coated second surface. The second surface can be moved away from the first surface to carry the mounted die away from the first surface. The die can then be transferred To a subsequent intermediate / transfer surface, or to a final surface (such as a substrate). Figure 7 shows a flowchart 700, which provides the step of using an adhesive surface to transfer most of the grains from the first surface to the second surface. To For the purpose of illustration, the flowchart 7 00 will be described with reference to FIG. 8 —], although the process of (14) (14) 200412217 in the flowchart 7 00 is not limited to the structure shown in FIG. The flowchart 70 0 starts from step 70 2. At step 702, the second surface is disposed immediately adjacent to the first surface, and it is mounted with a plurality of dies. For example, as shown in FIG. 8, most of the crystal grains 104 are mounted to the first surface 802. A second surface 804 is disposed close to the first surface 802. For example, in the embodiment, the first surface 802 may be a scribe wafer or a support surface, or may be an intermediate surface. Further, the second surface 804 may be an intermediate or transfer surface, or may be a substrate surface. FIG. 4A shows an example support surface, such as the support surface 404. The second surface 804 may be a green belt or a blue belt, as is known in the industry. In step 704, the distance between the first surface and the second surface is reduced until most of the crystal grains contact the second surface and are mounted on the second surface due to the adhesion of the second surface. An example is shown in Figure 9. As shown in FIG. 9, the second surface 804 is in contact with the majority of the crystal grains 104. Either or both of the first and second surfaces 802 and 804 may be moved to cause contact. Note that the second surface 804 may be adhesive because it is an adhesive tape, or it may be a surface having an adhesive material, such as coated with epoxy, glue, or wax, so as to make it adhesive. At step 706, the first surface and the second surface are removed, and most of the crystals remain mounted on the second surface. For example, it is shown in FIG. 10. As shown in FIG. 10, the first surface 802 and the second surface 804 have been removed, and most of the crystal grains 104 remain mounted to the second surface 804. The majority of the grains 104 are separated from the first surface 802. Most of the dies 104 remain mounted to the second surface 804 due to the greater adhesion of the second surface 804 to the first surface 802. (15) (15) 200412217 In one embodiment, the flowchart 700 may include additional steps in which an adhesive material is applied to the second surface such that the adhesion of the second surface is greater than the adhesion of the first surface. / Note that overlapping (including the same) mechanism can be used to perform steps 7 0 to 7 0 6 to reduce the distance between the first and second surfaces and move the first and second surfaces away, or a different mechanism. For example, the mechanism used to perform steps 704 and / or 706 may include the use of rollers, piston-type stamping techniques, air jets, and / or any other suitable mechanism or other known mechanism described elsewhere in this specification. It is noted that flowchart 700 may be applied to a die that is oriented on either the first and second surfaces 802 and 804 with pads facing up or down. For example, the flow chart 700 may include further steps in which the majority of the crystal particles mounted to the first surface are oriented such that at least one contact pad of each of the plurality of crystal particles is facing away from the first surface. Therefore, when the first surface and the second surface are removed, most of the crystal grains will remain mounted on the second surface with the pad facing down. On the other hand, the flowchart 700 may include a step in which most of the crystal grains mounted to the first surface are oriented such that at least one contact pad surface of each of the crystal grains of the plurality of crystal grains faces the first surface. Therefore, when the first surface and the second surface are removed, most of the dies will remain mounted on the second surface with the pad facing up. In an embodiment, the process of flowchart 700 can be implemented on any or all of the discrete grains on the first surface. For example, this process can be completed in one or more iterations, using one or more adhesive-coated second surface strips of 804, each of which is adhered to (and a single row of dies of 104 strips Leaving from) the first surface 8 02. On the other hand, (16) (16) 200412217 can be coated with a sheet-sized adhesive on the second surface 804 to adhere to (and bring multiple rows / arrays of any size 104 away from) the first surface 802. For illustrative purposes' the following two subsections are presented here to provide a more detailed example of grain transfer using an adhesive surface. However, the present invention is not limited to these examples. 2.1.1.1 Transfer of pad upwards As described with reference to FIG. 3, in step 308, the crystal grains 104 can be transferred from the support surface 404 to the label substrate 116 in a "pad upwards" manner. When the pellet 10 is transferred to the label substrate 1 16 in this manner, it is oriented so that the contact pads 204a-d are facing away from the label substrate 116. Figure 1 1 is a flowchart that illustrates the "pad The "upward" transfer of step 308 is performed. This execution starts from step 1 1 02. In step 1 1 02, one or more grains 104 are oriented to facilitate removal from the support surface 4 0 4 Transfer to label substrate U 6. Step 1 1 02 is described in more detail with reference to Figures 12A, 12B, 13, 14, and 15 and provides a die during each stage of a "pad-up" transfer operation 1 04, support surface 404, a transfer surface. 1 202, and an example view of the label substrate 1 1 6. Step 1 102 includes steps 1 120 and 1 122. In step 1 120, the die 104 is set to contact and transfer the surface 1 202. The execution of this step is illustrated in Figures 12A and 12B, which provides contact and support surfaces 404 and one of the grains 104 of the transfer surface 1202. Figure. Setting the die 104 to contact the transfer surface 1202 may include steps to reduce the actual separation between the support surface 404 and the transfer surface 1 202 until the die 104 contacts the transfer surface 1 202. This can also be done through a roller, live -20- (17 (17) 200412217 The use of plug stamping technology and / or air jets is performed. Step 1120 further includes a step of aligning the transfer surface 1202 with one or more columns 402. For example, FIG. 12A shows the alignment with column 4. 2a's transfer surface 1 2 0 2. In this example, the transfer surface 1 2 0 2 has a width 1 2 0 4 which is selected to contact a single row 4 0 2 of grains 104. However, it is also possible to use For other widths, it comes into contact with the majority of columns 402. At step 1 122, the die 104 is removed from the support surface 404, thereby achieving a transfer from the support surface 404 to the transfer surface 1202. Figure 13 shows its transfer to the transfer surface 1 202 view of most of the grains 104. Removing the grains 104 from the support surface 404 may include the following steps: providing a stronger adhesive on the transfer surface 1 2 0 2 than on the support surface 404, and adding a support surface Actual between 404 and transfer surface 1 2 02 Separating. On the other hand, removing the die 104 from the support surface 404 may include the step of providing a relaxing adhesive to the support surface 404 by relaxation (such as exposure to thermal energy, radiation, or ultraviolet light). After that, the adhesive property is lost, and a relaxation effect is generated when it needs to be removed. After step 1 102, step 1 104 is performed. At step 1 104, apply an adhesive to the label substrate 1 1 6. This adhesive will provide a bond between die 104 and label substrate 116. Step 1 106 is subsequent to step 1 104. At step 1 106, the dies 104 are transferred to the label substrate U 6 in a "pad-up" manner. Step 1 106 includes the following steps: placing the die 104 in contact with the label substrate 116 and removing the die 104 from the transfer surface 1202. Figures M and 15 show pictures from the execution of step 1106. -21-(18) (18) 200412217 Fig. 14 shows a crystal particle 104η which contacts and transfers the surface 1 202 and the label substrate 116. The grain 104η is in contact with a cell or score 1 402 formed on the label substrate 116. The score 1 402 causes the contact pad 204 to be approximately evenly on the surface of the label substrate U6 with which the associated electronic circuit 106 is housed. Setting the die. 104 Contacting the label substrate 1 16 includes a step: reducing the actual separation between the transfer surface 1 202 and the label substrate 1 16 until the crystal particle 04 contacts the label substrate 1 1 6. This can be performed through the use of rollers, piston-type stamping technology, and / or air jets. In addition, placing the die 104 in contact with the label substrate 116 in a "pad-up" orientation includes the steps of aligning the die 104 with the corresponding scores 1 2 0 2. Removing the die 104 from the transfer surface 1 202 may include the following steps: providing a stronger adhesive on the label substrate 116 than the transfer surface 1 202, and adding between the transfer surface 1 202 and the label substrate 116 Actual separation. On the other hand, removing the grains 104 from the support surface 404 may include the following steps: Provide a relaxing adhesive on the transfer surface 1 202, which is caused by a relaxation effect such as exposure to thermal energy, radiation, or ultraviolet light It loses its adhesive properties and produces a relaxing effect when it needs to be removed. Figure 15 shows that a grain of 10 4 η is released from the transfer surface 1 2 0 2 and transferred to the label substrate 1 1 6. As shown in FIG. 15, the contact pad 2 0 4 is substantially flat with the surfaces 1 50 2 and 1 504 of the label substrate 116, thereby enabling the electrical connection to be easily formed on the contact pad 204 and printed on these The relevant electronic circuits on the surface are between 1.06. After step 1 106, a step 11 08 is performed. At step 108, the relevant electronic circuit 106 is printed on the label substrate U6. Step I 106 may include (19) 200412217 the step of printing the related electronic circuit 106 on the label substrate 1 16 through a screen printing process, an inkjet process, and / or a thermal spray process. On the other hand, step 1106 may include a step of removing a conductive material that has been disposed on the label substrate U 6 through an oblation process. After step 1 108, a step 1 11 is performed. In step 1110, a coating is applied on the label substrate 1116. This coating protects the components of tag 100, such as die 104 and related electronic circuits 106, from mechanical forces. In addition, this coating provides electrical insulation. Furthermore, the coating can provide a compressive force on the label substrate 116 to further ensure proper connection between the associated electronic circuit 106 and the die 104. This compressive force can be provided by using a heat-shrinkable material. 2.1. 1.2 Transfer of pad down
如參考圖3所述,於步驟3 0 8中,晶粒1 0 4可從支撐表 面404被轉移至標籤基底1 16,以一“墊朝下”方式。當晶 粒104係以此方式被轉移至標籤基底1 16時,其被定向以致 接觸墊204a-d係面朝向標籤基底1 1 6。 圖16係一流程圖,其更詳細地說明“墊朝下”轉移之 步驟3 0 8的執行。此執行係從步驟1 6 0 2開始。於步驟1 6 0 2 中,一或更多晶粒1〇4被定向以利從支撐表面404轉移至標 籤基底116上。步驟1602係參考圖12A、12B、13-14、及 1 7 · 2 0而被更詳細地描述。這些圖形提供一 “墊朝下”轉移 操作之各個階段期間的晶粒1 〇 4、支撐表面4 0 4、一轉移表 面1 202、一次要轉移表面1 7 02、及標籤基底116之範例視 -23- (20) (20)200412217 圖。 步驟1 62 0包含一轉移晶.粒104至一主要轉移表面上之 步驟1 62 0及一轉移晶粒1〇4至一次要轉移表面上之步驟 1 622 〇 於步驟1 620,晶粒104被設置接觸與轉移表面1 202並 移除自支撐表面404,藉此導致晶粒104從支撐表面404轉 移至轉移表面1202。 圖12A及12B提供接觸與支撐表面404及轉移表面 1 2 0 2之一晶粒1 0 4的視圖。轉移表面1 2 0 2係一黏著劑材料 ,諸如帶。設置晶粒104接觸與轉移表面1202可包含減少 支撐表面4 0 4與轉移表面1 2 0 2間之實際分離直到晶粒1 〇 4接 觸轉移表面1 202的步驟。此亦可透過滾筒、活塞型衝壓技 術、及/或空氣噴射之使用而執行。 圖13係移除自支撐表面404並轉移至轉移表面1202之 多數晶粒1 0 4的視圖。從支撐表面4 0 4移除晶粒1 〇 4可包含 下列步驟:於轉移表面1 202上提供較支撐表面404上更強 的黏著劑、及增加支撐表面4 0 4與轉移表面1 2 〇 2之間的實 際分離。另一方面,從支撐表面404移除晶粒1〇4可包含下 列步驟:提供一鬆弛黏著劑於支撐表面4 〇 4上,其藉由鬆 弛作用(諸如暴露至熱能量、輻射、或紫外線光)而使之 喪失其黏合性質、及產生一鬆弛作用於需要移除時。 在步驟1 620之後,執行一步驟1 622。於步驟1 622,晶 粒1 0 4係彳皮轉移表面1 2 0 2被轉移至次要轉移表面1 7 〇 2上。 於步驟1 622,晶粒1〇4被放置接觸與次要轉移表面17〇2 ^ (21) (21)200412217 圖1 7提供此一接觸之示範視圖,其中晶粒1 0 4係接觸與轉 移表面1202及次要轉移表面17〇2。放置晶粒ι〇4接觸與次 要轉移表面1702可包含減少支撐表面4〇4與轉移表面12〇2 間之實際分離直到晶粒1 0 4接觸轉移表面1 2 〇 2的步驟。此 亦可透過滾筒、活塞型衝壓技術、及/或空氣噴射之使甩 而執行。 接下來’根據步驟1622’晶粒104被移除自轉移表面 1202以完成轉移至次要轉移表面1702。圖18係其已被移除 自轉移表面1202且之後被轉移至次要轉移表面no〗之晶粒 1 〇 4的視圖。如此處所述,轉移表面1 2 〇 2及次要轉移表面 1 7 0 2均爲黏著劑表面。因此,從轉移表面〗2 〇 2移除晶粒 1 〇 4可包含下列步驟:於次要轉移表面1 7 0 2上提供較轉移 表面1 2 0 2上更強的黏著劑、及轉移表面1 2 0 2與次要轉移表 面1 7 02之間的實際分離。另一方面,從轉移表面丨2〇2移除 晶粒1 0 4可包含下列步驟:提供一鬆弛黏著劑於轉移表面 1 2 02上,其藉由鬆驰作用(諸如暴露至熱能量、輻射、或 紫外線光)而使之喪失其黏合性質、及產生一鬆驰作用於 需要移除時。 於步驟1 6 0 4,相關電子電路1 〇 6被印刷於標籤基底n 6 上。步驟1 6 0 4可包含透過一絲網印刷製程、噴墨製程、及 /或熱噴霧製程而將相關電子電路1 〇 6印刷至標籤基底1 ^ 6 上的步驟。另一方面,步驟1604可包含透過一奉獻製程以 移除其已配置在標籤基底116上之導電材料的步驟。 於步驟1 6 0 6,一導電黏著劑層被放置於標籤基底n 6 (22) 200412217 之上。此步驟包含塗敷一各向異性黏著劑,其係導電於單 一維。一種此類黏著劑係商業可得的 “ζ軸”黏著劑,其 係相關技術中所熟知的。各向異性黏著劑導電於單一方向 。因此,其有利地致使電連接得以被建立於連接墊204與 相關電子電路106之間而不會將連接墊204短路在一起。 於步驟1 608,晶粒104係以“墊朝下”方式被轉移至標 籤基底116上。在步驟1606中被置於標籤基底116上之各向 異性黏著劑層提供一電連接於各連接墊204與相關電子電 路106的相應元件之間。步驟1 60 8包含下列步驟:設置晶 粒104接觸與標籤基底1 16及從次要轉移表面1 702移除晶粒 104°As described with reference to Fig. 3, in step 308, the grains 104 can be transferred from the support surface 404 to the label substrate 116 in a "pad-down" manner. When the crystal particles 104 are transferred to the label substrate 116 in this manner, they are oriented so that the contact pads 204a-d face toward the label substrate 116. Figure 16 is a flowchart illustrating the execution of step 308 of the "pad down" transfer in more detail. This execution starts at step 16 0 2. In step 16 02, one or more grains 104 are oriented to facilitate transfer from the support surface 404 to the label substrate 116. Step 1602 is described in more detail with reference to FIGS. 12A, 12B, 13-14, and 17 · 20. These figures provide example views of the grains 104, support surface 4 04, transfer surface 1 202, primary transfer surface 1 7 02, and label substrate 116 during various stages of a "pad-down" transfer operation- 23- (20) (20) 200412217 Figure. Step 1 62 0 includes a transferred crystal grain 104 to a step 1 62 on a main transfer surface and a transferred crystal grain 104 to a step 1 622 on a primary transfer surface. In step 1 620, the grain 104 is The contact and transfer surface 1 202 is disposed and the self-supporting surface 404 is removed, thereby causing the die 104 to be transferred from the support surface 404 to the transfer surface 1202. 12A and 12B provide views of the contact and support surface 404 and one of the grains 104 of the transfer surface 1220. The transfer surface 1 2 0 2 is an adhesive material, such as a tape. Setting the die 104 to contact and transfer the surface 1202 may include a step of reducing the actual separation between the support surface 400 and the transfer surface 1220 until the die 104 contacts the transfer surface 1202. This can also be performed through the use of rollers, piston-type stamping technology, and / or air jets. Figure 13 is a view of the majority of the crystal grains 104 removed from the self-supporting surface 404 and transferred to the transfer surface 1202. Removing the grains 104 from the support surface 4 0 4 may include the following steps: providing a stronger adhesive on the transfer surface 1 202 than on the support surface 404, and increasing the support surface 4 0 4 and the transfer surface 1 2 0 2 The actual separation between. On the other hand, removing the grain 104 from the support surface 404 may include the following steps: providing a relaxing adhesive on the support surface 404 by a relaxation action such as exposure to thermal energy, radiation, or ultraviolet light ) So that it loses its cohesive properties and creates a relaxing effect when it needs to be removed. After step 1 620, a step 1 622 is performed. At step 1 622, the crystal grains 104-series crust transfer surface 1220 is transferred to the secondary transfer surface 1702. At step 1 622, the grain 104 is placed in contact with the secondary transfer surface 1702 (21) (21) 200412217. Figure 17 provides an exemplary view of this contact, where grain 104 is contacted and transferred. Surface 1202 and secondary transfer surface 1702. Placing the grains in contact with the secondary transfer surface 1702 may include a step of reducing the actual separation between the support surface 400 and the transfer surface 1202 until the grains 104 contact the transfer surface 1220. This can also be performed by means of drums, piston-type stamping techniques, and / or air jets. Next, according to step 1622 ', the grains 104 are removed from the transfer surface 1202 to complete the transfer to the secondary transfer surface 1702. Figure 18 is a view of the crystal grains 104 which have been removed from the transfer surface 1202 and have since been transferred to the secondary transfer surface no. As described herein, the transfer surface 12 02 and the secondary transfer surface 17 02 are both adhesive surfaces. Therefore, removing the grains 104 from the transfer surface 02 may include the following steps: providing a stronger adhesive on the secondary transfer surface 1720 than on the transfer surface 1202, and the transfer surface 1 Actual separation between 2 0 2 and the secondary transfer surface 1 7 02. On the other hand, removing the grains 104 from the transfer surface 202 may include the following steps: providing a relaxing adhesive on the transfer surface 1 02 02, which acts by relaxation (such as exposure to thermal energy, radiation, etc.) , Or ultraviolet light) so that it loses its adhesive properties, and produces a relaxation effect when it needs to be removed. At step 16 0, the relevant electronic circuit 106 is printed on the label substrate n 6. Step 1604 may include a step of printing the relevant electronic circuit 106 on the label substrate 1 ^ 6 through a screen printing process, an inkjet process, and / or a thermal spray process. On the other hand, step 1604 may include a step of removing a conductive material that has been disposed on the label substrate 116 through a dedication process. In step 16 06, a conductive adhesive layer is placed on the label substrate n 6 (22) 200412217. This step involves applying an anisotropic adhesive, which is electrically conductive in a single dimension. One such adhesive is a commercially available "zeta axis" adhesive, which is well known in the related art. Anisotropic adhesives conduct electricity in a single direction. Therefore, it advantageously enables an electrical connection to be established between the connection pad 204 and the associated electronic circuit 106 without shorting the connection pad 204 together. At step 1 608, the die 104 is transferred to the label substrate 116 in a "pad-down" manner. The anisotropic adhesive layer placed on the label substrate 116 in step 1606 provides an electrical connection between each connection pad 204 and the corresponding component of the associated electronic circuit 106. Step 1 60 8 includes the following steps: setting the crystal grains 104 in contact with the label substrate 1 16 and removing the grains from the secondary transfer surface 1 702 104 °
設置晶粒104接觸與標籤基底11 6可包含減少次要轉移 表面1 702與標籤基底1 16間之實際分離直到晶粒104接觸標 籤基底1 1 6的步驟。此亦可透過滾筒、活塞型衝壓技術、 及/或空氣噴射之使用而執行。圖19係一接觸與次要轉移 表面1 7 〇 2及標籤基底1 1 6之“墊朝下”定向的晶粒1 0 4之視 圖。如圖19中所示,可使用一衝壓構件1 902以於晶粒104 相反之位置上對次要轉移表面1 702衝壓,以將晶粒104從 次要轉移表面1 702轉移至標籤基底116。如上所述,亦可 替代地使用其他轉移機構及/或製程。 從次要轉移表面1 7 0 2移除晶粒1 〇 4可包含下列步驟: 於標籤基底116上提供較次要轉移表面17〇2上更強的黏著 劑、及增加次要轉移表面1 7 0 2與標籤基底1 1 6之間的實際 分離。另一方面,從次要轉移表面1 702移除晶粒104可包 -26 - (23) (23)200412217 含下列步驟:提供一鬆弛黏著劑於次要轉移表面1 702上, 其藉由鬆弛作用(諸如暴露至熱能量、輻射、或紫外線光 )而使之喪失其黏合性質、及產生一鬆弛作用於需要移除 時。圖20係一安裝至標籤基底1 16之“墊朝下”定向的晶粒 104之視圖。 2.1.2 平行晶粒衝壓至一支撐表面上 依據本發明之平行晶粒衝壓製程,一第二表面(諸如 一衝壓帶)被對齊於安裝到第一表面之分離晶粒上。衝壓 帶具有多數晶粒承接器洞,“凹陷區(divots ) ”,或胞 形成於一表面中。衝壓帶中之各承接器胞被對齊與第一表 面之一相應晶.粒。多重機械孔被啓動以將晶粒從第一表面 推入衝壓帶之相應承接器胞。以此方式,任何數目的晶粒 (包含數十及數百晶粒)可被同時地轉移入衝壓帶,而非 一次僅$專移一晶粒。 圖2 1顯示一流程圖2 1 00,其提供使用一平行衝壓製程 以從第一表面轉移多數晶粒至第二表面的步驟,依據本發 明之實施例。注意到其爲可選擇的流程圖8 00之步驟被顯 示爲封入於虛線內。進一步的結構實施例將根據下列討論 而使熟悉相關技術人士淸楚明白。 流程圖21 00將配合圖22-29而被描述,以利說明之目 的。一範例衝壓帶2200之透視圖被顯示於圖22,依據本發‘ 明之一實施例。圖23顯示衝壓帶22 00之橫斷面圖。如圖22 中所示,衝壓帶22 00具有多數胞2202形成於一頂部表面中 (24) (24)200412217 。於某些實施例中,衝壓帶2200可進一步具有多數導引洞 2204形成於頂部表面中。 如圖2 3中所示之範例,衝壓帶2 2 0 0可被形成自一衝壓 帶主體2 3 0 2及一黏著劑帶2 3 0 4。黏著劑帶2 3 0 4被安裝至衝 壓帶主體23 02之一底部表面。衝壓帶主體23 02通常爲撓性 的,且可具有多種厚度,包含範圍從5 mil至1 1 mils之厚 度、或其他厚度。衝壓帶主體23 02可被製作以塑膠或者其 他撓性或非撓性材料。黏著劑帶2 3 04可爲黏著劑帶或其他 黏著劑材料之任何帶。另一方面,衝壓帶2200可爲一種習 知的晶片載具(如工業中可取得者),及/或可爲單件衝 壓帶。 胞22 02開口於衝壓帶22 00之一頂部表面上而未開口於 衝壓帶2200之底部表面上。多數胞2202係形成自多數通過 衝壓帶主體23 02之開口,其一端係由黏著劑帶2 3 04所覆蓋 。開口可藉由雷射蝕刻或藉由其他製程而被預形成、或可 被形成於衝壓帶2 2 0 0中。 當存在時,導引洞2204可穿透將於衝壓帶2200之底部 及頂部表面上開口的衝壓帶2200,或可開口於兩表面之僅 僅其中之一。導引洞2204可被使用以使衝壓帶22 00對齊與 一表面。 於以下之討論中,衝壓帶22 00被描述爲接收晶粒自 一支撐表面,並轉移晶粒至一基底。然而,於實施例中, 例如,衝壓帶2200可接收晶粒自一表面(其爲一劃線晶圓 或支撐表面)、或者一中間表面。再者,衝壓帶2200可轉 (25) (25)200412217 移晶粒至一中間或轉移表面、或者至一基底表面。 圖21中所示之流程圖21 00從步驟2102開始。於步驟 2102,一支撐表面被定位緊鄰於衝壓帶表面中之多數空胞 的一相應空胞。圖24說明步驟2102。例如,如圖24中所示 ,步驟2102之支撐表面可爲支撐表面404,其被定位緊鄰 於衝壓帶2200。如圖24中所示,多數晶粒104a被安裝至 支撐表面404,而其他的多數晶粒104b被安裝至支撐表面 4 04之表面。多數晶粒104a之各晶粒被定位緊鄰於衝壓帶 2200中之一空胞2202。 圖24亦顯示一定位鄰近於支撐表面404之衝壓設備 2402,依據本發明之一範例實施例。衝壓設備2402包含一 主體2404及多數衝壓構件2406。衝壓構件2406被安裝至主 體24 04。於實施例中,衝壓設備24 02可爲任何型式之適用 的衝壓裝置,包含一平坦表面(其具有延伸自該表面之衝 壓構件2406),或者可爲滾拴(r〇lling-pin)型裝置(其 具有從該裝置徑向朝外延伸之衝壓構件2406 )。衝壓設備 2402亦可被組裝以額外的方式。 於步驟2104,所有多數晶粒係從支撐表面被同時地轉 移入緊鄰的、相應空胞。例如,如圖2 5中所示,所有多數 晶粒104A係藉由衝壓設備2402而被同時地轉移入相應的 空胞2202。如圖25中所示,衝壓設備2402已朝上移動以藉 由推動支撐表面4 0 4而將每一多數晶粒1 0 4 A推入其相應的 胞2202。如圖25中所示,支撐表面404實質上屈曲以容許 衝壓構件24〇6朝上推動多數晶粒l〇4a而不會對支撐表面 -29- (26) (26)200412217 404造成實質的損害。雖未顯示於圖25,多數晶粒l〇4a係 由於黏著劑帶23 04之黏合性而安裝於胞2202中,且在衝壓 構件2406被移除或縮回後仍1呆持於胞22〇2中。 於可選擇的步驟2 1 06中,衝壓帶被遞增相對於支撐表 面以將其安裝至裝置之第一表面的其他多數晶粒之各晶粒 定位緊鄰於衝壓帶之表面中的其他多數空胞之一相應空胞 。例如,如圖26中所示,衝壓帶2200已被移動並定位緊鄰 於多數晶粒l〇4b以致其衝壓帶22 00之一空胞22 02係緊鄰 於多數晶粒l〇4b之各晶粒。 注意其遞增衝壓帶22 00相對於支撐表面404之製程表 示其任一或更多衝壓帶2200、支撐表面404、及/或衝壓設 備2402均可被移動以適當地定位這些元件相對於晶粒104 在支撐表面404上。 於可選擇的步驟2 1 0 8中,所有的其他多數晶粒係從支 撐表面被轉移入緊鄰的相應空胞。例如,如圖2 6中所示, 衝壓設備2402將多數晶粒104b之各晶粒推入相鄰的胞 2202中。多數晶粒104b係由於黏著劑帶2304之黏合性而 安裝於胞2 2 0 2中。 於可選擇的步驟2110中,步驟2106及2108可被重複直 到實質上安裝至支撐表面之所有晶粒已從支撐表面被轉移 至衝壓帶。注意其可選擇的步驟2106、2108、及2110適用 於實施例,其中需要多次重複以從一表面衝壓多數晶粒至 另一表面以使得其所有安裝至第一表面之晶粒被轉移至第 二表面。換言之,例如,於單一步驟中被轉移之多數晶粒 (27) (27)200412217 可實質上等於其安裝至支撐表面之晶粒總數的每N個晶 粒之一。因此,於此一實施例中,支撐表面可被定位緊鄰 於衝壓帶之表面,以使得其安裝至支撐表面之第一表面的 每N個晶粒之一的各晶粒係緊鄰於衝壓帶表面中之多數 空胞的一相應空胞。 於一替代實施例中,多數已轉移之晶粒可爲所有安裝 至第一表面的晶粒,以致其無須進一步的重複。例如,圖 2 7顯示多數安裝至支撐表面404之晶粒104,其中各晶粒被 定位緊鄰於衝壓帶2200中之相應胞2202。如圖27中所示, 衝壓設備2 4 0 2具有相應於多數晶粒1 0 4之多數衝壓構件 2406。因此,當衝壓構件24 06同時地朝上衝壓入支撐表面 4 04時,則所有多數晶粒1 04被同時地移入衝壓帶2200之相 應胞2202中。 注意其此處所述之衝壓機構晶粒轉移實施例可應用於 墊朝上及墊朝下晶粒定向。於此,多數晶粒1 〇 4可被轉移 入相應的胞2202,以其墊面朝著相應胞22〇2之內或外,如 所需。再者’衝壓機構實施例可被替代以如上所述之黏著 劑帶轉移實施例以翻轉晶粒1 〇4之定向。因此,黏著劑帶 可被使用以轉移晶粒一或更多次,接續以藉由衝壓機構之 多數晶粒1 04的最終轉移。因此,黏著劑帶實施例可被使 用來以墊朝上或墊朝下定向晶粒,在被衝壓入胞22〇2之前 〇 例如,於一範例步驟2 1 0 6中,支撐表面4 0 4可被遞增 以晶粒1 0 4之一行相對於衝壓帶。衝壓帶2 2 0 〇可被纒繞於 (28) (28)200412217 一滾筒上。衝壓帶2200被推進.以致其空晶粒承接器胞2202 被對齊於支撐表面404上之一晶粒104行上。支撐表面404 之行中的晶粒1 04被衝壓入空晶粒承接器胞2202,於步驟 2108。支撐表面4 04可接著被再次遞增一行,且衝壓帶 2200被再次推進,以致其支撐表面404之晶粒104的下一行 可被衝壓入衝壓帶2 2 0 0之進一步空晶粒承接器胞。此程序 可被重複直到支撐表面404用盡晶粒1〇4爲止。 使用一衝壓機構之範例晶粒轉移實施例被詳細地描述 於下列次章節中。 2·1·2·1 從支撐表面直接轉移至天線基底 依據本發明之一實施例,一衝壓機構可同時地從一第 一表面轉移多數晶粒之各晶粒至一相應天線基底上。於其 中第一表面爲一安裝有來自一晶圓之分離晶粒的支撐表面 之實施例中,此製程容許大量電子裝置(諸如rFID標籤 100 )之極快速製造。 流程圖2100之步驟2102及2104支援從一支.撐表面至一 基底之晶粒的轉移,其中取代其使用一衝壓帶爲第二表面 ’一基底被使用爲第二表面。圖28說明使用衝壓設備2402 之一範例,以從支撐表面4 04轉移多數晶粒1 〇4至一基底結 構2802,其包含多數標籤基底部分(亦即,標籤基底 116a-d ) 〇 如圖2 8中所示,衝壓設備2 4 〇 2具有多數衝壓構件2 4 〇 6 ’其被定位鄰近支撐表面404之一相反表面上的晶粒104。 (29) (29)200412217 於一修改過的步驟2102中,支撐表面404被定位緊鄰基底 結構2 8 0 2之一表面,以致其多數晶粒之各晶粒1 〇 4係緊鄰 一標鐵基底116。各標飯基底116具有接觸區域2i〇a及 2 10b以供耦合至各晶粒1〇4之接觸墊204a及204b。 注意其一塡充材料層28 04可被可選擇地塗敷至基底結 構2802之表面。如此容許各晶粒1〇4成爲塡充,當安裝至 基底結構28 02時。 於一修改過的步驟2104中,所有多數晶粒104被同時 地從支撐表面404轉移至緊鄰、相應的標籤基底! 16上。例 如,如圖28中所示,衝壓構件2406可被移動於箭號2408之 方向以轉移晶粒1 〇 4。圖2 9顯示基底結構2 8 0 2,以各晶粒 1〇4安裝至標籤基底116a-d之一相應者。塡充材料層28〇4 提供一塡充材料以被置於各晶粒104與標籤基底1 16之間。 適於塡充材料層2 8 04之範例塡充材料被進一步描述於下列 章節。 以此方式,多數RFID標籤100可被快速地產生,以 較少的製程步驟。圖29中所示之標籤基底116a-d可隨後被 分離以產生多數個別的RFID標籤1 00。注意雖然圖28及 29顯示以一“墊朝下,,定向直接地轉移晶粒ι〇4至標籤基底 1 1 6 ’但熟悉相關技術人士將從此處之教導暸解此直接地 轉移晶粒至標籤基底u 6亦可被完成以一“墊朝上,,定向。 2 · 1 · 2 · 2 塡充材料實施例 ί衣據本發明之平行晶粒衝壓實施例,一第二表面(諸 -33- (30) (30)200412217 如衝壓帶2200)被對齊於安裝至一第一表面之分離晶粒 104上。衝壓帶2200中之各承_接器胞2202具有一置於其中 之相應晶粒]04。各胞22 02被接著塡入以一塡充材料,。衝 壓設備24 02被啓動以從衝壓帶2200移動晶粒104至基底結 構2 8 0 2之相應標籤基底1 1 6上。以此方式,任何數目的晶 粒(包含數十及數百晶粒)可被同時地轉移自衝壓帶2 2 〇 〇 ,而非一次僅轉移一晶粒。再者,藉由在轉移晶粒1 〇 4至 標籤基底1 1 6之前塗敷塡充材料,則各晶粒可被輕易地塡 充於個別標籤基底1 1 6上,於轉移製程期間,其提供數項 優點。 圖3 0顯示一流程圖3 000,其提供用以組裝RFID標籤 之步驟,依據本發明之實施例。注意其爲可選擇的流程圖 3 0 0 0之步驟被顯示爲封入於虛線內。流程圖3 0 0 0將配合圖 3 1-47而被描述,以利說明之目的。進一步的結構實施例 將根據下列討論而使熟悉相關技術入士淸楚明白。 流程圖3 000從步驟3 002開始。於步驟3 002,多數晶粒 係從一支撐表面被轉移至一晶片載具,其具有多數可存取 於晶片載具之一第一表面上的胞,以致其多數晶粒之各晶 粒駐存於多數胞之一相應胞中且係凹陷在相關於第一表面 之相應胞中。例如,晶片載具係一衝壓帶,諸如圖3 1中所 示之衝壓帶2200。如圖31中所示,衝壓帶2200具有範例空 的第一及第二胞2202a及2202b。圖32及33顯示其被轉移 入第一及第二胞2202a及2202b中之第一及第二晶粒l〇4a 及104b。第一及第二晶粒l〇4a及l(Mb可藉由任何此處所 (31) (31)200412217 述之製程或其他已知製程(包含藉由一種挑選及放置製程 )而被轉移入第一及第二胞22 02a及2202b。第一及第二 晶粒104a及l〇4b可一次一個地被轉移入第一及第二胞 2202a及2202b (如圖32及33所示),或者同時地。注意 其兩個晶粒被顯示於目前範例中以利說明之目的,且本發 明可應用至任何數目的晶粒。 於步驟3 004,一塡充材料被塗敷入多數晶粒之各晶粒 。例如,如圖34中所示,一塡充材料3402被塗敷入第一及 第二胞2202a及2202b以實質上覆蓋每一晶粒i〇4a及l〇4b ’其係顯不爲弟一及第二塡充材料部分3402a及3402b。 塡充材料3402被用以塡充晶粒ι〇4當其安裝至—基底(諸 如標籤基底1 1 6 )時,以利諸如環境及密封保護等目的( 除了其他原因之外)。 於實施例中’塡充材料3 402可爲熟悉相關技術人士所 傳統上已知的任何塡充材料。塡充材料3 4 〇 2可爲導電的、 或非導電的。例如,塡充材料3402可爲等向導電,亦即, 於所有方向爲實質上均勻地導電。再者,塡充材料3 4〇2可 爲各向異性導電,亦即,於一所欲方向導電。例如,塡充 材料3402可爲一種Z軸環氧化物。 於一實施例中,塗敷於各胞2202之塡充材料34〇2的量 可被控制’以致其提供特定應用所需的量。例如,圖34顯 示其第一及第二塡充材料3402a及34〇21)已被塗敷以致其 塡充材料延伸超出第一及第二胞22〇2a及22〇2b。於另— 範例中,圖35顯示其第一及第二塡充材料34〇2a及34〇几 -35- (32) (32)200412217 已被塗敷以致其塡充材料係齊平(flush )或整平與衝壓 帶2 2Ό0之頂部表面。例如,爲了致使塡充材料34〇2齊平或 整平與衝壓帶2200之頂部表面,可使用一種“刮平( s q u e e g e e ) ”製程。圖3 6顯示所執行之一範例刮平製程。 例如,一刮平元件3 602被傳遞沿著衝壓帶22〇〇之頂部表面 ,平滑化第一胞2202a中之第一塡充材料34〇2a。顯示其 一過量塡充材料3604被移除。於圖36之範例中,塡充材料 3 402被塗敷至胞2202,在刮平元件3 602被供應之前。另— 方面,塡充材料3402可藉由刮平元件3602而被塗敷。 於圖3 4-3 6之範例中,各晶粒1〇4之高度約略等於相應 胞2202之高度的一半。塡充材料36〇4塡入胞2202之剩餘的 一半高度。以此胞2 2 0 2中之塡充材料3 6 0 4的量相對於晶粒 104之尺寸,可提供足夠的塡充材料36〇4至晶粒1〇4 (當安 裝至基底116時)’而不會有過量的塡充材料。然而,本 發明可應用於胞2202中之塡充材料36〇4的更高或更低部分 〇 於流程圖3 000之可選擇步驟3 006,晶片載具之第一表 面被定位緊鄰一具有多數標籤基底部分之基底結構的表面 。例如,圖37顯示一範例基底結構2802。基底結構2802包 含多數標籤基底部分(亦即,標籤基底1 1 6 ),亦被稱爲 標籤基底之網或陣列。基底結構2802包含任何數目的標籤 基底1 1 6,且可被成形爲標籤基底1 1 6之任何尺寸、行、列 、或陣列。圖38顯示圖37之基底結構2802,在已被分離爲 個別的條狀標籤基底結構2802a、2 802b、2802c、及2 8 02d (33) (33)200412217 。基底結構2 8 0 2可藉由鋸、切.、藉由雷射、及藉由其他製 程而被分離爲長條。基底結構2 8 02之一長條可被便利地使 用以轉移晶粒10 4自衝/壓帶2200,其通常亦形成條狀。 圖39顯示條狀基底結構2 8 02 a之一部分的視圖。基底 結構28 02包含第一及第二標籤基底116a及116b。第一標 籤基底116a包含一天線114a及一導引洞3902a。第二標籤 基底116b包含一天線114b及一導引洞3902b。 導引洞3 902可被使用以對齊基底結構2802a與衝壓帶 2200。例如,導引洞3 902可被使用與圖22中所示之導引洞 2204以提供對齊。導引洞3 902及導引洞2204可被使用以機 械地或光學地對齊基底結構2802a與衝壓帶2200。例如, 機械對齊可包含使用一具有其連結與導引洞22 04之間隔栓 (pegs )的第一輪以對齊衝壓帶2200、及使用一具有其連 結與導引洞3 902之間隔栓的第二輪以對齊基底結構2 8 02 a 。第一輪及第二輪被同步化。 圖40顯示其被定位緊鄰於基底結構2 8 02a之衝壓帶 2200的頂部表面,依據步驟3006。標籤基底116 a被定位 緊鄰於胞2202a。 於可選擇的步驟3 008,晶片載具之第二表面被衝壓鄰 近一與多數胞之各胞相反的位置,以移動各晶粒離開相應 胞以致其覆蓋各晶粒之塡充材料接觸多數標籤基底部分之 一相應標籤基底。例如,如圖41中所示,一衝壓構件4102 衝壓其相反於第一胞22 02a之衝壓帶2200的底部表面。第 一晶粒104移動離開第一胞22 02a朝向標籤基底1 16a。塡 (34) (34)200412217 充材料3402a接觸標籤基底1 16a。如圖42中所示,衝壓構 件4 1 0 2移動第一晶粒1 〇 4直到第一晶粒1 0 4接觸與標籤基底 1 16a 〇 於可選擇的步驟3010,各晶粒之第一表面被安裝至相 應的標籤基底以致其各晶粒之至少一接觸墊被電耦合至相 應標籤基底之至少一相應接觸墊。例如,第一晶粒1 〇 4被 安裝至標籤基底116a以致其接觸墊204 a-d被電耦合至標 籤基底116a之接觸區域210a-d。第一晶粒104a可以多種 方式被安裝至標籤基底116a。例如,步驟3010可包含一步 驟,其中塡充材料3402被硬化以安裝各晶粒104至相應的 標籤基底116。一可硬化塡充材料3402可爲閃光可硬化、 熱可硬化、聲音可硬化、電子束可硬化、紫外線(UV ) 光可硬化、紅外線光可硬化、壓力可硬化、及其他型式的 可硬化材料。因此,熱、聲源、電子束、UV光、IR光、 及/或壓力可被供應如所需,以硬化塡充材料3 402 ^例如 ,一種雙組環氧化物可被使用於一閃光可硬化塡充材料。 於一實施例中,塡充材料3 4 0 2之硬化致使塡充材料 3 4〇2收縮或縮小。藉由收縮,塡充材料3402可致使介於各 晶粒1 04與相應標籤基底1 16之間的距離減小,而導致各晶 粒1〇4之接觸墊204a-d之增進的機械及/或電耦合至相應標 籤基底116之相應的接觸區域21 Oa-d。於此一實施例中, 塡充材料3402具有其支配當硬化時之收縮量的擴張/收縮 之一熱係數。藉由選擇用於塡充材料34〇2之材料’此係數 可被調整。因此,塡充材料3 4 0 2之熱係數可被調整以匹配 (35) (35)200412217 標纖基底1 1 6之熱係數’或以其他方式。例如,塡充材料 3 402可被調整以.收縮一特定的量.,諸如其質量的2倍或3倍 。例如,塡充材料3 4 0 2可另被調整以施加一特定的力於二 區域上,諸如50 kg/cm2。 例如,塡充材料3402之收縮可致使接觸墊204a-d接觸 與相應的接觸區域2 1 0 a - d,其產生一足夠的電連接以供所 得裝置之操作。接觸墊204a-d及/或接觸區域210a-d之平 滑度及平坦度可爲實質上一致的以致有一大面積可接觸於 其間。於另一範例中,接觸墊204a-d及/或接觸區域2l〇a-d之平滑度及平坦度可爲不一致的以提升導電度。例如, 接觸墊204a-d (及/或接觸區域210a-d)可具有一或更多凸 塊、釘狀物、尖峰,等等。因此,當接觸墊2〇4a-d接觸與 接觸區域21 Oa-d時,則一或更多凸塊、釘狀物、尖峰可部 分地或完全地穿透或刺穿接觸區域21 Oa-d,其產生一增進 的電及機械連接。 於另一範例中,於一實施例中,塡充材料34〇2包含導 電微球以提供導電性。例如,微球可爲金、銀、其他金屬 、或金屬之組合/合金。因此,當硬化時,可收縮塡充材 料致使塡充材料收縮,則一壓力被產生於各晶粒與相應的 標籤基底之間。增加的壓力致使微球形成一接觸於晶粒與 基底之間、變形、電耦合接觸墊204a-d至接觸區域210a-d 〇 在晶粒104a被安裝至標籤基底116a之後,晶粒 可被類似地安裝至標籤基底1 I6b。另一方面,晶粒104 a (36) (36)200412217 及1 0 4 b可被同時地安裝至其個別的標籤基底。 於圖3 2-42之範例中,晶粒1〇4被定向而以墊朝下方式 被裝設於標籤基底1 1 6上。圖4 3;- 4 7顯示伊範例,其中晶粒 1 04被定向而以墊朝上方式被裝設於標籤基底n 6上。例如 ,如圖43中所示,第一及第二晶粒1〇4&及i〇4b已被插入 胞2202a及2202b中以致其接觸墊204a-d面朝向胞。 如圖44中所示,衝壓帶2200被定位緊鄰於基底結構 2802a之標籤基底116a。如圖45中所示,衝壓帶2200被衝 壓鄰近胞2202a之一位置以將胞2202a中之晶粒l〇4a移入 標籤基底116a中之一相應胞或空腔44〇2,以致其塡充材 料3402a實質上塡入一介於晶粒l〇4a外緣與空腔4402之間 的間隙。如圖4 5中所示,晶粒1 0 4 a之一表面及塡充材料 3402a之一表面係實質上齊平或整平與標籤基底usa之表 面。 圖4 6顯示一安裝於標籤基底1 1 6之空腔中的單一晶粒 1 0 4。如圖4 6中所示,於目前範例中,晶粒1 〇 4之接觸墊 204a及204b並未電耦合至標籤基底116之信號。圖47顯示 其已藉由第一及第二電導體4702a及4702b而被電耦合至 標籤基底116之接觸區域210a及21 Ob的晶粒104之接觸墊 204a及2 04b。例如,電導體4702可被列印、藉由一蒸汽 沈積製程而被塗敷、及另被形成於各晶粒1 0 4的接觸墊2 0 4 與相應標籤基底1 1 6表面上的接觸區域2 1 〇之間。 2.1.3 多桶轉移晶粒 -40 - (37) (37)200412217 依據本發明之一實施例,多數晶粒1 04可使用一種多 桶晶粒轉移設備而從一第一表面被轉移至一第二表面。圖 48A顯示一範例多桶晶粒轉移設備48〇2,依據本發明之一 實施例。多桶晶粒轉移設備48〇2包含一主體4804、及多數 桶4 8 06。主體4 8 04該桶4 8 0 6耦合至一氣體供應及真空源 4 8 1 0。例如,可由真空源4 8丨〇供應諸如空氣、氮氣、或其 他氣體等氣體。於實施例中,可存在有一或更多任何數目 的桶4 8 0 6,但通常存在多數桶4 8 0 6以增加晶粒1 0 4之轉移 率達到所存在之桶4 8 06數的因數。例如,可存在數十或數 百個桶。 圖48A中所示,具有多數桶4806之多桶晶粒轉移設備 4802被定位於其安裝至第一表面的分離晶粒104之上。第 一表面被顯示爲支撐表面404,於圖48A之範例中。各桶 4 806被定位以致其桶4 806之一個別端係位於支撐表面404 上之一個別晶粒104之上。多桶晶粒轉移設備48 02接收晶 粒104,並將其儲存於多數桶4806之晶粒104堆。如圖48B 中所示,多桶晶粒轉移設備4 802被接著定位於一第二表面 之上。第二表面被顯示爲轉移表面1202,於圖48B之範例 中。多桶晶粒轉移設備4802將其儲存於桶4806中之晶粒 104放置在第二表面上。 圖4 9顯示一流程圖4900,其提供用以轉移晶粒之範例 步驟,依據本發明之一實施例。爲說明之目的,流程圖 4 9 0 〇之步驟可被進一步描述關連於多桶晶粒轉移設備4 8 〇 2 ,如圖4 9 - 5 2中所示。然而’其他的結構實施例將使熟悉 _41~ (38) (38)200412217 相關技術人士根據下列討論而淸楚明白。這些步驟被詳細 描述於下。 . 流程圖4900從步驟4902’開始。於步驟4902,多數中空 桶之各中空桶被供應平行於一駐存在第一表面上之個別晶 粒。例如,圖50顯示其被供應至第一表面8 02之多桶晶粒 轉移設備4 8 02的橫斷面圖。多數中空桶爲桶4 8 06。桶4806 爲中空以致其至少單一晶粒104可一次傳遞入桶4 8 06,且 被儲存於其中。如圖48A中所示,各桶4 8 06被供應平行與 其他桶4806,而至第一表面上之一個別晶粒104。 於步驟4904,個別晶粒被致使平行地移入各中空桶中 。例如,如圖5 0中所示,各中空桶4 8 0 6具有一個SU晶粒 104,其已被移入個別中空桶48 06中。 於步驟4906,步驟4902及4904被重複以產生晶粒堆於 各中空桶中。因此,例如,多桶晶粒轉移設備4 8 02可被移 動如所需之多次以定位桶48 06於個別晶粒上以致其桶4 8 0 6 可收集個別的晶粒1 04。例如,如圖5 0中所示,足夠的晶 粒104已移入各桶48 06以產生晶粒104堆5 002於各桶4806中 。如圖50中所示之堆5002包含兩晶粒104,但於實施例中 可包含任何數目的晶粒1 04,包含數十、數百、數千、及 甚至更多晶粒。 於步驟490 8,來自各中空桶之晶粒被平行地放置於第 二表面之上直到各中空桶中之晶粒堆被實質上用盡。例如 ,圖51及52顯示其被供應至各個第二表面8 04之多桶晶粒 轉移設備4 8 0 2的橫斷面圖。如圖5 1及5 2中所示,多桶晶粒 - 42 - (39) 200412217 轉移設備4802之桶4806平彳了地將晶粒104放置於第二表面 804之上。桶4 8 06放置晶粒104直到其實質上用盡晶粒1〇4 。換言之,桶4 8 0 6可將不同數量的晶粒1 〇 4放置於第二表 面804上,根據第二表面804所需之晶粒數目,及/或直到 —或更多桶4806接近或完全用盡晶粒104。Placing the die 104 in contact with the label substrate 116 may include a step of reducing the actual separation between the secondary transfer surface 1 702 and the label substrate 116 until the die 104 contacts the label substrate 1 16. This can also be performed through the use of rollers, piston-type stamping techniques, and / or air jets. Fig. 19 is a view of a grain 104 of a contact and secondary transfer surface 1702 and a label substrate 116 oriented "pad down". As shown in FIG. 19, a stamping member 1 902 may be used to punch the secondary transfer surface 1 702 at an opposite position from the die 104 to transfer the die 104 from the secondary transfer surface 1 702 to the label substrate 116. As mentioned above, other transfer mechanisms and / or processes may be used instead. Removal of the grains 104 from the secondary transfer surface 170 may include the following steps: providing a stronger adhesive on the label substrate 116 than on the secondary transfer surface 170, and adding the secondary transfer surface 17 Actual separation between 0 2 and label substrate 1 1 6. On the other hand, removing the grains 104 from the secondary transfer surface 1 702 may include -26-(23) (23) 200412217 including the following steps: providing a relaxing adhesive on the secondary transfer surface 1 702 by relaxation Effects (such as exposure to thermal energy, radiation, or ultraviolet light) that cause them to lose their adhesive properties, and produce a relaxing effect when removal is required. Figure 20 is a view of a die 104 oriented "pad down" mounted to the label substrate 116. 2.1.2 Parallel die stamping onto a supporting surface According to the parallel die stamping process of the present invention, a second surface (such as a stamping tape) is aligned on the separate die mounted on the first surface. The stamping strip has most of the die socket holes, "divots", or cells formed in a surface. Each socket cell in the stamped belt is aligned with a corresponding crystal grain on one of the first surfaces. Multiple mechanical holes are activated to push the die from the first surface into the corresponding receptacle cells of the stamping belt. In this way, any number of grains (including tens and hundreds of grains) can be transferred into the stamping belt at the same time, instead of only one grain at a time. FIG. 21 shows a flowchart 21 00, which provides a step of transferring a plurality of grains from a first surface to a second surface using a parallel stamping process, according to an embodiment of the present invention. It is noted that the steps of the optional flowchart 800 are shown enclosed in dashed lines. Further structural embodiments will be apparent to those skilled in the relevant art based on the following discussion. Flowchart 21 00 will be described in conjunction with Figures 22-29 for illustrative purposes. A perspective view of an example stamped strip 2200 is shown in FIG. 22, according to an embodiment of the present invention. Fig. 23 shows a cross-sectional view of the punching belt 22 00. As shown in FIG. 22, the punched band 22 00 has a majority cell 2202 formed in a top surface (24) (24) 200412217. In some embodiments, the punching tape 2200 may further have a plurality of guide holes 2204 formed in the top surface. As an example shown in FIG. 23, the punched tape 2 2 0 0 can be formed from a punched tape body 2 3 2 2 and an adhesive tape 2 3 0 4. The adhesive tape 2 3 0 4 is attached to a bottom surface of one of the punching tape bodies 23 02. The stamped tape body 23 02 is generally flexible and can have a variety of thicknesses, including thicknesses ranging from 5 mils to 1 1 mils, or other thicknesses. The stamped tape main body 230 can be made of plastic or other flexible or non-flexible materials. The adhesive tape 2 3 04 may be an adhesive tape or any other tape of adhesive material. On the other hand, the stamping tape 2200 may be a conventional wafer carrier (such as available in the industry), and / or may be a single piece stamping tape. The cell 22 02 is opened on one of the top surfaces of the punching strip 22 00 and is not opened on the bottom surface of the punching strip 2200. The majority cell 2202 is formed from the majority through the opening of the punching tape main body 2302, and one end thereof is covered by the adhesive tape 2304. The openings may be pre-formed by laser etching or by other processes, or may be formed in the punching tape 2 2 0. When present, the guide hole 2204 may penetrate the punching strip 2200 which will be opened on the bottom and top surfaces of the punching strip 2200, or may be opened on only one of the two surfaces. A pilot hole 2204 may be used to align the punching tape 2200 with a surface. In the following discussion, the stamping strip 22 00 is described as receiving the die from a supporting surface and transferring the die to a substrate. However, in an embodiment, for example, the punching tape 2200 may receive the die from a surface (which is a scribe wafer or a support surface), or an intermediate surface. Furthermore, the stamping belt 2200 can be transferred to (25) (25) 200412217 to transfer the grains to an intermediate or transfer surface, or to a substrate surface. The flowchart 2100 shown in FIG. 21 starts from step 2102. At step 2102, a support surface is positioned next to a corresponding cell of a plurality of cells in the surface of the stamping strip. FIG. 24 illustrates step 2102. For example, as shown in FIG. 24, the support surface of step 2102 may be the support surface 404, which is positioned immediately adjacent to the stamping belt 2200. As shown in FIG. 24, the majority of the dies 104a are mounted to the support surface 404, and the other majority of the dies 104b are mounted to the surface of the support surface 404. Each of the plurality of grains 104a is positioned next to one of the cells 2202 in the stamping strip 2200. FIG. 24 also shows a stamping device 2402 positioned adjacent to the support surface 404, according to an exemplary embodiment of the present invention. The stamping equipment 2402 includes a main body 2404 and a plurality of stamping members 2406. The stamped member 2406 is mounted to the main body 24 04. In the embodiment, the punching device 2402 may be any type of applicable punching device, including a flat surface (having a punching member 2406 extending from the surface), or may be a rolling-pin type device (It has a stamped member 2406 extending radially outward from the device). The stamping equipment 2402 can also be assembled in additional ways. At step 2104, all majority grain systems are simultaneously transferred from the support surface into the immediately adjacent corresponding cells. For example, as shown in Fig. 25, all the majority of the grains 104A are simultaneously transferred into the corresponding cells 2202 by the punching equipment 2402. As shown in Figure 25, the stamping device 2402 has been moved upwards to push each majority grain 104 A into its corresponding cell 2202 by pushing the support surface 4 0 4. As shown in FIG. 25, the support surface 404 is substantially buckled to allow the stamped member 2406 to push most of the grains 104a up without causing substantial damage to the support surface -29- (26) (26) 200412217 404 . Although not shown in FIG. 25, most of the crystal grains 104a are installed in the cell 2202 due to the adhesiveness of the adhesive tape 23 04, and remain in the cell 22 after the stamped member 2406 is removed or retracted. 2 in. In optional step 2 06, the stamping strip is incrementally positioned relative to the supporting surface to mount it to the other majority of the grains of the first surface of the device. One corresponding empty cell. For example, as shown in FIG. 26, the stamping strip 2200 has been moved and positioned immediately adjacent to the majority of the grains 104b so that one of its punching bands 22 00 is a cell 22 02 immediately adjacent to the majority of the grains 104b. Note that the process of its incremental punching belt 22 00 relative to the support surface 404 means that any one or more of the punching belt 2200, the support surface 404, and / or the punching equipment 2402 can be moved to properly position these components relative to the die 104. On the support surface 404. In optional step 2 108, all other majority grain systems are transferred from the support surface into the immediately adjacent corresponding cells. For example, as shown in FIG. 26, the punching device 2402 pushes each of the plurality of grains 104b into the adjacent cell 2202. Most of the crystal grains 104b are installed in the cell 2 2 0 2 due to the adhesiveness of the adhesive tape 2304. In optional step 2110, steps 2106 and 2108 may be repeated until substantially all of the die mounted to the support surface have been transferred from the support surface to the stamping belt. Note that the optional steps 2106, 2108, and 2110 are applicable to the embodiment, in which multiple iterations are required to punch most of the grains from one surface to the other surface so that all the crystals mounted to the first surface are transferred to the Two surfaces. In other words, for example, the majority of the grains transferred in a single step (27) (27) 200412217 may be substantially equal to one of every N grains of the total number of grains mounted to the supporting surface. Therefore, in this embodiment, the support surface may be positioned immediately adjacent to the surface of the punching strip, so that each of the crystal grains mounted on the first surface of the support surface is adjacent to the surface of the punching strip. A corresponding empty cell of the majority of empty cells. In an alternative embodiment, the majority of the transferred dies may be all the dies mounted to the first surface, so that it does not require further repetition. For example, FIG. 27 shows most of the dies 104 mounted to a support surface 404, where each die is positioned next to a corresponding cell 2202 in a stamping strip 2200. As shown in FIG. 27, the stamping apparatus 2404 has a majority of the stamped members 2406 corresponding to the majority of the grains 104. Therefore, when the stamping member 24 06 is punched into the support surface 4 04 at the same time, all the majority of the crystal grains 104 are simultaneously moved into the corresponding cells 2202 of the punching belt 2200. Note that the stamping mechanism grain transfer embodiments described herein can be applied with pad-up and pad-down grain orientation. Here, most of the crystal grains 104 can be transferred into the corresponding cells 2202 with their pads facing inside or outside the corresponding cells 2202, as required. Furthermore, the embodiment of the 'stamping mechanism' can be replaced with the adhesive tape transfer embodiment described above to reverse the orientation of the die 104. Therefore, an adhesive tape can be used to transfer the grains one or more times, followed by the final transfer of the majority of the grains 104 by the stamping mechanism. Therefore, the adhesive tape embodiment can be used to orient the die with pads up or down, before being stamped into the cells 2202. For example, in an example step 2 106, the support surface 4 0 4 It can be incremented by one row of grains 104 relative to the punched strip. The stamping belt 2 2 0 0 can be wound on a roller (28) (28) 200412217. The stamping strip 2200 is advanced so that its empty grain acceptor cells 2202 are aligned on a row of grains 104 on the support surface 404. The grains 104 in the row of the support surface 404 are punched into the empty grain receiver cells 2202, at step 2108. The support surface 4 04 may then be incremented by one more row, and the punching strip 2200 is pushed again, so that the next row of the grains 104 of its support surface 404 may be punched into the further empty grain receptacle of the punching strip 2 2000. This procedure can be repeated until the support surface 404 runs out of grains 104. An exemplary grain transfer embodiment using a stamping mechanism is described in detail in the following subsections. 2. · 1 · 2 · 1 Transfer directly from the support surface to the antenna substrate According to an embodiment of the present invention, a stamping mechanism can simultaneously transfer the individual crystal grains of a plurality of crystal grains from a first surface to a corresponding antenna substrate. In an embodiment in which the first surface is a support surface on which a separate die from a wafer is mounted, this process allows extremely fast manufacturing of a large number of electronic devices, such as rFID tag 100. Steps 2102 and 2104 of flow chart 2100 support the transfer of grains from a support surface to a substrate, in which a stamping tape is used instead of the second surface 'and a substrate is used as the second surface. FIG. 28 illustrates an example of using a stamping device 2402 to transfer the majority of the grains 104 from the support surface 04 to a substrate structure 2802, which contains the majority of the label substrate portion (ie, the label substrate 116a-d). FIG. 2 As shown in 8, the stamping apparatus 2 4 02 has a majority of the stamping members 2 4 06 'which are positioned adjacent to the grains 104 on one of the opposite surfaces of the support surface 404. (29) (29) 200412217 In a modified step 2102, the support surface 404 is positioned next to one of the surfaces of the base structure 2 802, so that each of the grains 104 of most of its grains is next to a standard iron substrate 116. Each standard rice substrate 116 has contact areas 2ioa and 210b for coupling to the contact pads 204a and 204b of each die 104. Note that one of the filling material layers 28 04 may be optionally applied to the surface of the base structure 2802. This allows each of the crystal grains 104 to be filled when mounted to the base structure 280. In a modified step 2104, all of the majority of the dies 104 are simultaneously transferred from the support surface 404 to the immediate, corresponding label substrate! 16 on. For example, as shown in Figure 28, the stamped member 2406 can be moved in the direction of arrow 2408 to transfer the grain 104. FIG. 29 shows a base structure 2802, which is mounted on one of the label substrates 116a-d with each die 104. The filling material layer 2804 provides a filling material to be placed between each die 104 and the label substrate 116. Examples of filling materials suitable for the filling material layer 2 8 04 are further described in the following sections. In this way, most RFID tags 100 can be generated quickly with fewer process steps. The tag substrates 116a-d shown in FIG. 29 can then be separated to produce a majority of individual RFID tags 100. Note that although Figures 28 and 29 show a direct orientation of die transfer to the label substrate 1 1 6 'with a "pad down" orientation, those skilled in the relevant art will understand this directly from the teachings here to transfer the die to the label The base u 6 can also be finished with a "pad up," oriented. 2 · 1 · 2 · 2 Example of filling material According to the parallel die stamping example of the present invention, a second surface (Zhu-33- (30) (30) 200412217 such as stamping tape 2200) is aligned to the installation To a first surface of the separated grains 104. Each of the socket cells 2202 in the stamping strip 2200 has a corresponding die in it] 04. Each cell 22 02 was then scooped in with a filling material. The punching device 24 02 is activated to move the die 104 from the punching tape 2200 onto the corresponding label substrate 1 16 of the substrate structure 2 8 0 2. In this way, any number of grains (including tens and hundreds of grains) can be transferred from the stamping tape 2200 at the same time, instead of transferring only one grain at a time. In addition, by applying a filling material before transferring the crystal grains 104 to the label substrate 116, the individual crystal grains can be easily packed on the individual label substrates 116. During the transfer process, Provides several advantages. FIG. 30 shows a flowchart 3000, which provides steps for assembling an RFID tag, according to an embodiment of the present invention. Note that it is an optional flowchart. The steps of 3 0 0 are shown enclosed in dotted lines. The flowchart 3 0 0 0 will be described in conjunction with FIG. 3 1-47 for the purpose of illustration. Further structural examples will be made apparent to those skilled in the art based on the following discussion. The flowchart 3 000 starts from step 3 002. At step 3 002, most of the grains are transferred from a support surface to a wafer carrier, which has most of the cells accessible on a first surface of the wafer carrier, so that each grain of most of the grains is It exists in the corresponding cell of one of the majority cells and is recessed in the corresponding cell related to the first surface. For example, the wafer carrier is a stamped tape such as the stamped tape 2200 shown in FIG. As shown in Fig. 31, the punched strip 2200 has first and second cells 2202a and 2202b which are example empty. Figures 32 and 33 show the first and second grains 104a and 104b transferred into the first and second cells 2202a and 2202b. The first and second dies 104a and 1 (Mb can be transferred into the first through any of the processes described herein (31) (31) 200412217 or other known processes (including by a selection and placement process). The first and second cells 22 02a and 2202b. The first and second cells 104a and 104b can be transferred into the first and second cells 2202a and 2202b one at a time (as shown in Figures 32 and 33), or at the same time Note that its two grains are shown for the purpose of illustration in the present example, and the invention can be applied to any number of grains. At step 3 004, a filling material is applied to each of the majority of grains. For example, as shown in FIG. 34, a filling material 3402 is applied to the first and second cells 2202a and 2202b to substantially cover each of the crystal grains 104a and 104b. The first and second filling material parts 3402a and 3402b. The filling material 3402 is used to fill the grains 04 when it is mounted to a substrate (such as a label substrate 1 1 6), such as environmental and sealing Protection and other purposes (among other reasons). In the embodiment, the 'filling material 3 402 can be passed on by those skilled in the relevant art. Any filling material known above. The filling material 3 4 02 may be conductive or non-conductive. For example, the filling material 3402 may be isotropically conductive, that is, substantially uniformly conductive in all directions. In addition, the filling material 3 402 may be anisotropically conductive, that is, conductive in a desired direction. For example, the filling material 3402 may be a Z-axis epoxide. In one embodiment, coating The amount of filling material 3402 applied to each cell 2202 can be controlled so that it provides the amount required for a particular application. For example, Figure 34 shows that its first and second filling materials 3402a and 3402) have been Coated so that its filling material extends beyond the first and second cells 2202a and 2202b. In another example, FIG. 35 shows that its first and second filling materials 3402a and 3400-35- (32) (32) 200412217 have been coated so that the filling material is flush. Or level the top surface with 2 2 0. For example, in order to make the filling material 3402 flush or level with the top surface of the stamping strip 2200, a "squeeze (sq u e e g e e)" process may be used. Figure 36 shows an example of a smoothing process performed. For example, a flattening element 3 602 is passed along the top surface of the stamping belt 2200 to smooth the first filling material 3402a in the first cell 2202a. It was shown that one of the excess filling materials 3604 was removed. In the example of FIG. 36, the filling material 3 402 is applied to the cell 2202 before the leveling element 3 602 is supplied. On the other hand, the filling material 3402 can be applied by a smoothing element 3602. In the example of Fig. 3 4-36, the height of each grain 104 is approximately equal to half the height of the corresponding cell 2202. The filling material 3604 is filled with the remaining half of the height of the cell 2202. The amount of filling material 3 6 0 4 in this cell 2 2 0 2 is relative to the size of die 104, which can provide sufficient filling material 3604 to die 104 (when mounted to substrate 116) 'Without excessive filling materials. However, the present invention can be applied to the higher or lower portion of the filling material 3604 in the cell 2202. In the optional step 3 006 of the flowchart 3 000, the first surface of the wafer carrier is positioned immediately adjacent to a surface having a majority The surface of the base structure of the base portion of the label. For example, FIG. 37 shows an example base structure 2802. The base structure 2802 contains a majority of the label base portion (ie, the label base 1 1 6), also referred to as a web or array of label bases. The base structure 2802 contains any number of label substrates 1 1 6 and can be shaped into any size, row, column, or array of label substrates 1 1 6. Fig. 38 shows the base structure 2802 of Fig. 37, which has been separated into individual strip-shaped tag base structures 2802a, 2802b, 2802c, and 2 8d (33) (33) 200412217. The base structure 2 8 0 2 can be separated into strips by sawing, cutting, laser, and other processes. One of the strips of the base structure 2 8 02 can be conveniently used to transfer the grains 10 4 self-punching / pressing tape 2200, which also usually forms a strip. Figure 39 shows a view of a part of a strip-shaped base structure 2 8 02 a. The substrate structure 28 02 includes first and second label substrates 116 a and 116 b. The first tag substrate 116a includes an antenna 114a and a guide hole 3902a. The second tag substrate 116b includes an antenna 114b and a guide hole 3902b. A pilot hole 3 902 may be used to align the base structure 2802a with the stamped tape 2200. For example, guide hole 3 902 may be used with guide hole 2204 shown in FIG. 22 to provide alignment. The pilot hole 3 902 and the pilot hole 2204 may be used to mechanically or optically align the base structure 2802a and the punching tape 2200. For example, mechanical alignment may include using a first round with spacers (pegs) with its links and guide holes 22 04 to align the punching strip 2200, and using a first round with spacers with its links and guide holes 3 902. Two rounds to align the base structure 2 8 02 a. The first and second rounds are synchronized. FIG. 40 shows the top surface of the punching strip 2200 positioned next to the base structure 2 8 02a, according to step 3006. The label substrate 116a is positioned next to the cell 2202a. At optional step 3 008, the second surface of the wafer carrier is stamped adjacent to a position opposite to the cell of the majority cell to move each die away from the corresponding cell so that the filling material covering the die contacts the majority label One of the base portions corresponds to a label base. For example, as shown in FIG. 41, a stamping member 4102 stamps the bottom surface of the stamping tape 2200 opposite to the first cell 2202a. The first die 104 moves away from the first cell 22 02a toward the label substrate 116a. (34) (34) 200412217 The filling material 3402a contacts the label substrate 1 16a. As shown in FIG. 42, the stamping member 4 1 2 moves the first die 1 04 until the first die 104 contacts the label substrate 1 16a 0. In an optional step 3010, the first surface of each die Is mounted to the corresponding label substrate such that at least one contact pad of each die thereof is electrically coupled to at least one corresponding contact pad of the corresponding label substrate. For example, the first die 104 is mounted to the label substrate 116a such that its contact pads 204a-d are electrically coupled to the contact areas 210a-d of the label substrate 116a. The first die 104a can be mounted to the label substrate 116a in a variety of ways. For example, step 3010 may include a step in which the filling material 3402 is hardened to mount each die 104 to a corresponding label substrate 116. A hardenable filling material 3402 can be flash hardenable, heat hardenable, sound hardenable, electron beam hardenable, ultraviolet (UV) light hardenable, infrared light hardenable, pressure hardenable, and other types of hardenable materials . Therefore, heat, sound source, electron beam, UV light, IR light, and / or pressure can be supplied as required to harden the filling material 3 402. For example, a two-group epoxy can be used in a flash Hardened filling material. In one embodiment, the hardening of the filling material 3 402 causes the filling material 3 402 to shrink or shrink. By shrinking, the filling material 3402 can cause the distance between each die 104 and the corresponding label substrate 116 to decrease, resulting in an improved mechanism of the contact pads 204a-d of each die 104 and / Or electrically coupled to the respective contact areas 21 Oa-d of the respective tag substrate 116. In this embodiment, the filling material 3402 has a thermal coefficient of expansion / contraction which governs the amount of shrinkage when hardened. This coefficient can be adjusted by selecting the material for the filling material 3402. Therefore, the thermal coefficient of the filling material 3 4 0 2 can be adjusted to match the thermal coefficient of the standard fiber substrate 1 1 6 (35) (35) 200412217 or otherwise. For example, the filling material 3 402 can be adjusted to shrink by a specific amount, such as 2 or 3 times its mass. For example, the filling material 3 4 0 2 can be additionally adjusted to apply a specific force to two areas, such as 50 kg / cm2. For example, the shrinkage of the filling material 3402 may cause the contact pads 204a-d to contact the corresponding contact areas 210a-d, which creates a sufficient electrical connection for operation of the resulting device. The smoothness and flatness of the contact pads 204a-d and / or the contact areas 210a-d may be substantially uniform such that a large area is accessible therebetween. In another example, the smoothness and flatness of the contact pads 204a-d and / or the contact areas 210a-d may be inconsistent to improve the conductivity. For example, the contact pads 204a-d (and / or the contact areas 210a-d) may have one or more bumps, spikes, spikes, and so on. Therefore, when the contact pads 204a-d are in contact with the contact area 21 Oa-d, one or more bumps, nails, spikes may partially or completely penetrate or pierce the contact area 21 Oa-d. It produces an improved electrical and mechanical connection. In another example, in one embodiment, the filling material 3402 includes conductive microspheres to provide conductivity. For example, the microspheres can be gold, silver, other metals, or a combination / alloy of metals. Therefore, when hardened, the shrinkable filler material causes the filler material to shrink, and a pressure is generated between each crystal grain and the corresponding label substrate. The increased pressure causes the microspheres to form a contact between the die and the substrate, deform, and electrically couple the contact pads 204a-d to the contact areas 210a-d. After the die 104a is mounted to the label substrate 116a, the die may be similar The ground is mounted to the label substrate 1 I6b. On the other hand, die 104a (36) (36) 200412217 and 104b can be simultaneously mounted to their individual label substrates. In the example of Fig. 3 2-42, the die 104 is oriented and mounted on the label substrate 1 16 in a pad-down manner. Figures 4 3;-4 7 show an example of Yi, in which the grains 104 are oriented and mounted on the label substrate n 6 in a pad-up manner. For example, as shown in FIG. 43, the first and second crystal grains 104 and 104 have been inserted into the cells 2202a and 2202b so that the contact pads 204a-d face the cells. As shown in FIG. 44, the stamping tape 2200 is positioned immediately adjacent the label substrate 116a of the base structure 2802a. As shown in FIG. 45, the punching tape 2200 is punched adjacent to one of the cells 2202a to move the crystal grains 104a in the cell 2202a into a corresponding cell or cavity 442 in one of the label substrates 116a so that it is filled with material 3402a substantially penetrates a gap between the outer edge of the grain 104a and the cavity 4402. As shown in Fig. 4, one surface of the crystal grain 104a and one surface of the filling material 3402a are substantially flush or flat with the surface of the label substrate usa. FIG. 46 shows a single die 104 mounted in a cavity of the label substrate 116. As shown in FIG. 46, in the current example, the contact pads 204a and 204b of the die 104 are not electrically coupled to the signal of the tag substrate 116. Figure 47 shows the contact pads 204a and 204b of the die 104 which have been electrically coupled to the contact areas 210a and 21 Ob of the label substrate 116 through the first and second electrical conductors 4702a and 4702b. For example, the electrical conductor 4702 can be printed, coated by a vapor deposition process, and formed on the contact area of the contact pad 2 0 4 of each die 104 and the corresponding label substrate 1 16 surface. 2 1 〇. 2.1.3 Multi-barrel Transfer of Grains -40-(37) (37) 200412217 According to an embodiment of the present invention, most of the grains 104 can be transferred from a first surface to a multi-barrel grain transfer device第二 表面。 The second surface. Fig. 48A shows an exemplary multi-barrel grain transfer device 48002, according to one embodiment of the present invention. The multi-barrel grain transfer equipment 4802 includes a main body 4804, and a plurality of barrels 408. The main body 4 8 04 is coupled to a gas supply and vacuum source 4 8 0 0. For example, a gas such as air, nitrogen, or other gas may be supplied by the vacuum source 48. In embodiments, there may be one or more barrels of any number 4 8 0 6, but usually there are a large number of barrels 4 8 0 6 to increase the transfer rate of the grains 104 to a factor of the number of barrels 4 8 06 existing . For example, there may be tens or hundreds of barrels. As shown in FIG. 48A, a multi-barrel grain transfer device 4802 having a plurality of barrels 4806 is positioned above the separated grain 104 mounted to the first surface. The first surface is shown as a support surface 404, in the example of FIG. 48A. Each bucket 4 806 is positioned so that one individual end of its bucket 4 806 lies above an individual die 104 on the support surface 404. The multi-barrel grain transfer equipment 48 02 receives the crystal grains 104 and stores them in the heaps of grains 104 of the majority of the barrels 4806. As shown in Figure 48B, the multi-barrel grain transfer device 4 802 is then positioned over a second surface. The second surface is shown as a transfer surface 1202, in the example of FIG. 48B. The multi-barrel grain transfer device 4802 places the grains 104 stored in the barrel 4806 on the second surface. FIG. 49 shows a flowchart 4900, which provides exemplary steps for transferring grains, according to an embodiment of the present invention. For the purpose of illustration, the steps of the flowchart 4 900 can be further described in relation to a multi-barrel grain transfer device 4 800, as shown in Figures 4-52. However, ′ other structural embodiments will make those skilled in the art understand _41 ~ (38) (38) 200412217 based on the following discussion. These steps are described in detail below. The flowchart 4900 starts at step 4902 '. In step 4902, each of the plurality of hollow barrels is supplied in parallel with an individual crystal residing on a first surface. For example, FIG. 50 shows a cross-sectional view of a multi-barrel grain transfer device 4 8 02 that is supplied to a first surface 8 02. Most hollow barrels are barrels 4 8 06. The barrel 4806 is hollow so that at least a single grain 104 of it can be passed into the barrel 4 8 06 at one time and stored therein. As shown in Fig. 48A, each bucket 408 is supplied in parallel with the other buckets 4806 to an individual die 104 on the first surface. At step 4904, individual grains are caused to move into the hollow buckets in parallel. For example, as shown in FIG. 50, each of the hollow barrels 4 806 has one SU die 104, which has been moved into an individual hollow barrel 48 06. At step 4906, steps 4902 and 4904 are repeated to produce grains piled in each hollow bucket. Thus, for example, the multi-barrel grain transfer device 4 8 02 can be moved as many times as needed to position the barrel 48 06 on individual grains so that its barrel 4 8 0 6 can collect individual grains 104. For example, as shown in Fig. 50, enough grains 104 have been moved into each barrel 48 06 to produce a heap of grains 104 5 002 in each barrel 4806. The stack 5002 as shown in FIG. 50 includes two grains 104, but in an embodiment may include any number of grains 104, including tens, hundreds, thousands, and even more grains. At step 4908, the grains from each hollow bucket are placed in parallel on the second surface until the grain piles in each hollow bucket are substantially exhausted. For example, FIGS. 51 and 52 show cross-sectional views of a multi-barrel grain transfer device 4 802 which is supplied to each second surface 804. As shown in FIGS. 5 1 and 5 2, the barrel 4806 of the multi-barrel die-42-200412217 transfer device 4802 places the die 104 flat on the second surface 804. The barrel 4 8 06 places the grains 104 until it essentially runs out of grains 104. In other words, bucket 4 8 0 6 may place a different number of grains 104 on the second surface 804, depending on the number of grains required for the second surface 804, and / or until—or more buckets 4806 are near or complete. Exhausted die 104.
第二表面804可具有黏合性,其容許晶粒104之黏附。 例如,第二表面8 0 4可爲一黏著劑帶,或者可具有黏著劑 材料,諸如被塗敷以提供黏合性之蠟物質。如圖5 1中所示 ,第二表面8〇4具有形成於其中之胞5102,其中晶粒1〇4係 從桶4806被放置。另一方面,如圖52中所示,第二表面 8 04可具有一實質上平坦的表面,其晶粒104被放置於此表 面上。再者,如圖5 1及5 2中所示,晶粒可被放置以墊朝下 或墊朝上定向。桶4806可在收集晶粒之後被反轉以改變晶 粒104之定向,在其被放置於第二表面804上之前。例如, 圖50中所示之端4 8 0 8與5 004可在收集晶粒104之後被反轉 。另一方面,桶4 8 0 6可被保持未反轉。 於一實施例中,可於步驟4904及4908中使用真空以將 晶粒移入或移出桶4806。例如,一真空源48 10被顯示爲安 裝至圖48 A、48B、及50-51中之多桶晶粒轉移設備4 8 02。 真空源48 10可被供應至多桶晶粒轉移設備4802以造成一或 更多桶4 8 0 6中之真空或吸力來將個別晶粒104移入桶4 806 。真空或吸力可爲連續的或者被供應以受控的脈衝。真空 源48 10亦可被供應或改變以將來自桶4 806之晶粒104移至 第二表面8 0 4上。例如,真空源4 8 1 0可供應正壓脈衝以移 -43 ~ (40) (40)200412217 動個別晶粒104離開桶48 06。. 桶4806可被構成以容許真空源48 10之較佳供應。圖53 顯示一內部具有晶粒104之範例桶48 06的橫斷面頂部視圖 ,依據本發明之一實施例。桶4 8 〇 6可爲如圖5 3中所示之矩 形,或者可爲圓形、或其他形狀。桶4 8 06可具有一平滑的 內部表面5 3 02,於本發明之一實施例中。另一方面,如圖 53中所示,內部表面5302可具有一形成於一或更多角落之 通道5304,以容許氣體通過晶粒104周圍。通道5304可被 使用以控制桶4806中之真空或壓力。 桶48 06可被製作以金屬、塑膠、或其他可應用材料。 例如’ 48 06可爲桶、管、或類似於注射針之針狀物。桶 4 8 0 6被構成以共同地固持任何數目的晶粒〗〇4。於一實施 例中,各桶48 06之數目及長度將被構成以具有至少有—晶 圓之晶粒1 〇4的累積晶粒1 〇4固持能力。例如,累積固持能 力可爲50,000至1〇〇,〇〇〇個晶粒1〇4。 塡入的多桶晶粒筒夾可被移動(自動地或其他方式) 至標籤總成之一晶粒分配站。一空的多桶晶粒筒夾可接著 被定位鄰近分離晶粒之一新的晶圓,於一支撐表面上,以 重複製程。 注意到其他的機構及/或製程可替代地被使用於步驟 4 9 0 4以致使晶粒移入各中空桶中,及於步驟4 9 〇 8以從各中 空桶放置晶粒。例如,機械結構及力、化學製程及力、靜 電力、黏著劑材料、氣體壓力系統、及進一步的機構及製 均4被丨史用,如熟悉相關技術人士根據此處教導所將瞭 -44 - (41) (41)200412217 解者。 2.1.4 使用晶粒框之晶粒轉移 依據本發明之一實施例,可使用“晶粒框”或“晶圓 帶”以轉移多數晶粒104至一目標表面。晶粒框或晶圓帶被 直接形成自一晶圓以固持晶圓之晶粒以致其可被輕易地轉 移至目標表面。晶粒可從晶粒框/晶圓帶被轉移至一中間 表面、或直接至一最終表面,諸如基底。因此,本發明之 晶粒框或晶圓帶容許較少的必要製造步驟(當轉移晶粒至 一基底時),相較於習知的轉移製程。例如,於一種典型 的習知製程中,晶粒係藉由一挑選及放置機器而從晶圓被 個別地轉移至一中間轉移表面。晶粒被接著從中間表面被 轉移至最終目的地表面。此二步驟製程容許晶粒被翻轉。 依據本發明,晶粒可被直接地從晶粒框/晶圓帶被轉移至 基底,而無須轉移至一中間表面。再者,晶粒可藉由轉移 而被翻轉或不被翻轉,如所需。 注意本發明之晶粒框/晶圓帶於下被稱爲晶粒框,以 簡化敘述。晶粒框可依據本發明之製程而被形成,其某些 範例被描述於下以利說明之目的,而非限制之目的。圖 57A及5 7B顯示用以製造晶粒框之流程圖,依據本發明之 範例實施例。本發明的晶粒框、及用以製造本發明的晶粒 框之進一步實施例將根據下列討論而使熟悉相關技術人士 淸楚明白。再者,圖6 6及6 8 A - B顯示使用一晶粒框以轉移 晶粒之範例流程圖,依據本發明之範例實施例。使用本發 -45- (42) (42)200412217 明之晶粒框以轉移晶粒之進一步實施例將根據下列討論而 使熟悉相關技術人士淸楚明白。 圖57A顯示—流程圖5 700,其提供用以製造一晶粒框 之範例步驟,依據本發明之一實施例。流程圖5 7 00將參考 圖5 8 - 6 3而被描述於下,以利說明之目的。流程圖5 700從 步驟5 7 0 2開始。於步驟5 7 0 2,一環狀溝槽被形成於一晶圓 之一第一表面中,圍繞多數形成於晶圓之第一表面中的晶 粒。例如,圖5 8顯示一範例晶圓5 8 0 0。如圖5 8中所示,一 環狀溝槽5 8 02已被形成於晶圓5 8 00之一表面中,緊鄰晶圓 5 8 00之一外緣。例如,環狀溝槽5 802之深度可約略等於一 積體電路晶粒(如晶粒1 04 )之厚度,其係形成於晶圓 5 8 0 0之表面中(未顯示於圖5 8 )。於圖5 8之範例中,環狀 溝槽5 8 02實質上爲圓形或橢圓,且爲連續的。於替代實施 例中,環狀溝槽5 8 02可被形成以其他形狀,包含方形及其 他多角形。再者,環狀溝槽5 8 0 2不一定需爲連續的,如圖 5 8之範例中所示者,而可被取代爲非連續的,且例如,可 包含形成於晶圓5 8 0 0之表面中的兩或更多分離部分。 於步驟5 7 0 4,晶圓之第一表面被劃線以形成溝槽之柵 於晶圓之第一表面中,其分離多數晶粒。例如,圖59顯示 已被劃線之後的晶圓5800。晶圓5800之劃線已產生一柵 5902於晶圓5 8 00之表面中。柵5 902係形成自晶圓5 8 00之表 面中所形成的多數水平及垂直溝槽5904。例如,圖59中顯 示柵5902之第一溝槽59(MA、第二溝槽5904B、第三溝槽 59CMC、及第四溝槽59(MD。於柵5902中駐存著晶圓5800 (43) (43)200412217 之表面的多數區域,其中可駐存晶粒1 〇 4。例如,圖5 9顯 示其駐存於柵5 9 0 2中之第一晶粒1 〇 4 a的區域及第二晶粒 104b的區域。注意其晶粒104之特徵並未顯示於圖58及圖 59 ° 圖60顯不晶圓5800之一部分的橫斷面圖。如圖6〇中所 示,環狀溝槽5802及溝槽5904a與59(Mb具有深度6002之 厚度。例如,深度6002可爲1〇〇微米、或其他厚度。深度 6 0 0 2通常係等於或大於晶圓5 8 0 0之晶粒的厚度。如圖6 〇中 所示,晶圓5800具有厚度6004。厚度6004可爲習知或特殊 目的晶圓之任何厚度,其可爲,例如,6 0 0至7 0 0微米。 於步驟5 7 0 6,可固化材料被塗敷至晶圓之第一表面以 實質上塡入環狀溝槽及柵之溝槽。圖6 1顯示,例如,一可 固化材料6102,其已被塗敷至晶圓5800之表面以實質上塡 入環狀溝槽5802及柵59 Q2之溝槽5904。可固化材料6102實 質上塡入環狀溝槽5 8 0 2及溝槽5 9 0 4。例如,可固化材料 6 1 0 2可塡入溝槽至一低於晶圓5 8 0 0之表面的位準,至與晶 圓5800之表面相同的位準(如圖62中所示)、或者甚至稍 微地突出於晶圓5 8 0 0之表面上。可固化材料6 1 0 2可爲,例 如,一聚合物、環氧化物、樹脂、氨基鉀酸酯、玻璃、或 其他材料。 可使用多種製程以致使可固化材料61 02塡入溝槽5 8 02 及5 904 (當塗敷至晶圓5 8 00時),而不會留下其他於晶圓 5800之表面上之實質上過量的可固化材料6102。例如,一 真空源可被供應至晶圓5 8 0 0之相反表面、或者至一帶(諸 (44) 200412217The second surface 804 may have adhesion, which allows the adhesion of the crystal grains 104. For example, the second surface 804 may be an adhesive tape, or may have an adhesive material, such as a wax substance coated to provide adhesion. As shown in FIG. 51, the second surface 804 has a cell 5102 formed therein, in which a crystal grain 104 is placed from a bucket 4806. On the other hand, as shown in Fig. 52, the second surface 804 may have a substantially flat surface on which the crystal grains 104 are placed. Further, as shown in Figs. 51 and 52, the dies may be placed with the pads facing down or the pads facing up. The barrel 4806 may be inverted after collecting the grains to change the orientation of the grains 104 before they are placed on the second surface 804. For example, the ends 4 8 0 and 5 004 shown in FIG. 50 may be reversed after the grains 104 are collected. On the other hand, the barrel 4 8 0 6 can be left unreversed. In one embodiment, a vacuum may be used in steps 4904 and 4908 to move the die into or out of the bucket 4806. For example, a vacuum source 48 10 is shown as being mounted to a multi-barrel grain transfer device 4 8 02 in Figures 48 A, 48B, and 50-51. A vacuum source 48 10 may be supplied to a multi-barrel grain transfer device 4802 to cause a vacuum or suction in one or more barrels 4 8 06 to move individual grains 104 into barrels 4 806. The vacuum or suction may be continuous or supplied with controlled pulses. A vacuum source 48 10 may also be supplied or changed to move the grains 104 from the bucket 4 806 onto the second surface 804. For example, the vacuum source 4 8 10 can supply a positive pressure pulse to move -43 ~ (40) (40) 200412217 to move individual grains 104 away from the barrel 48 06. The barrel 4806 may be constructed to allow a better supply of the vacuum source 4810. FIG. 53 shows a cross-sectional top view of an exemplary bucket 48 06 having grains 104 inside, according to an embodiment of the present invention. The barrel 4 8 06 may be rectangular as shown in FIG. 53 or may be circular or other shapes. The bucket 4 8 06 may have a smooth inner surface 5 3 02 in one embodiment of the invention. On the other hand, as shown in FIG. 53, the inner surface 5302 may have a channel 5304 formed in one or more corners to allow gas to pass around the die 104. Channel 5304 can be used to control the vacuum or pressure in barrel 4806. Bucket 48 06 can be made of metal, plastic, or other applicable materials. For example, '48 06 may be a barrel, a tube, or a needle similar to an injection needle. The barrel 4 8 6 is configured to collectively hold any number of grains. In one embodiment, the number and length of each barrel 48 06 will be configured to have a cumulative grain holding capacity of 104 grains with at least -crystal grains 104. For example, the cumulative holding capacity may be 50,000 to 100,000 grains 104. The incoming multi-barrel die collets can be moved (automatically or otherwise) to one of the die distribution stations of the label assembly. An empty multi-barrel die collet can then be positioned adjacent to a new wafer on a separate die on a support surface to replicate the process. It is noted that other mechanisms and / or processes may alternatively be used in step 4904 to cause the grains to move into the hollow buckets, and in step 4908 to place the grains from each hollow bucket. For example, mechanical structures and forces, chemical processes and forces, electrostatic forces, adhesive materials, gas pressure systems, and further mechanisms and systems are all used by history. -(41) (41) 200412217 Debunker. 2.1.4 Grain transfer using a die frame According to one embodiment of the present invention, a "die frame" or "wafer strip" may be used to transfer most of the die 104 to a target surface. The die frame or wafer strip is formed directly from a wafer to hold the die of the wafer so that it can be easily transferred to the target surface. The die can be transferred from the die frame / wafer to an intermediate surface, or directly to a final surface, such as a substrate. Therefore, the die frame or wafer tape of the present invention allows fewer necessary manufacturing steps (when transferring the die to a substrate) compared to conventional transfer processes. For example, in a typical conventional process, the dies are individually transferred from the wafer to an intermediate transfer surface by a pick and place machine. The grains are then transferred from the intermediate surface to the final destination surface. This two-step process allows the die to be flipped. According to the present invention, the dies can be transferred directly from the die frame / wafer to the substrate without having to transfer to an intermediate surface. Furthermore, the grains can be flipped or not flipped by transfer, as desired. Note that the die frame / wafer tape of the present invention is hereinafter referred to as a die frame to simplify the description. The die frame can be formed in accordance with the process of the present invention, and some examples thereof are described below for the purpose of illustration, not limitation. 57A and 57B show a flowchart for manufacturing a die frame according to an exemplary embodiment of the present invention. The die frame of the present invention and further embodiments for manufacturing the die frame of the present invention will be clearly understood by those skilled in the relevant art based on the following discussion. Furthermore, FIGS. 6 and 6 8 A-B show exemplary flowcharts for transferring a die using a die frame, according to an exemplary embodiment of the present invention. Further examples of using the crystal frame of the present invention -45- (42) (42) 200412217 to transfer the crystal grains will be made clear to those skilled in the relevant art based on the following discussion. FIG. 57A shows a flowchart 5700, which provides exemplary steps for manufacturing a die frame according to an embodiment of the present invention. Flowchart 5 7 00 will be described below with reference to FIGS. 5 8-63 for the purpose of illustration. Flowchart 5 700 starts at step 5 7 02. At step 507, an annular groove is formed in a first surface of a wafer, surrounding most of the crystal grains formed in the first surface of the wafer. For example, FIG. 58 shows an example wafer 580. As shown in FIG. 58, an annular groove 5 8 02 has been formed in one surface of the wafer 5 8 00 immediately adjacent to an outer edge of the wafer 5 8 00. For example, the depth of the annular groove 5 802 may be approximately equal to the thickness of an integrated circuit die (such as die 1 04), which is formed in the surface of the wafer 5 8 0 (not shown in FIG. 5) . In the example of FIG. 58, the annular groove 5 8 02 is substantially circular or elliptical and is continuous. In alternative embodiments, the annular groove 5 8 02 may be formed in other shapes, including square and other polygons. Furthermore, the annular groove 5 8 0 2 does not necessarily need to be continuous, as shown in the example of FIG. 5, but may be replaced with a discontinuous one, and for example, may include a wafer 5 8 0 Two or more separate parts of the surface of 0. In step 504, the first surface of the wafer is scribed to form a trench grid. In the first surface of the wafer, most of the dies are separated. For example, Figure 59 shows wafer 5800 after it has been scribed. The scribe of wafer 5800 has produced a grid 5902 in the surface of wafer 5 800. The gate 5 902 is formed from most of the horizontal and vertical trenches 5904 formed in the surface of the wafer 5 8 00. For example, FIG. 59 shows the first trench 59 (MA, the second trench 5904B, the third trench 59CMC, and the fourth trench 59 (MD) of the gate 5902. In the gate 5902, a wafer 5800 (43 ) (43) 200412217 Most areas of the surface, where the grains 104 can reside. For example, Figure 5 9 shows the area and the first grains 104a of the first grains resident in the gate 5 902. The area of the two grains 104b. Note that the characteristics of the grains 104b are not shown in FIG. 58 and FIG. 59 °. FIG. 60 shows a cross-sectional view of a part of the wafer 5800. As shown in FIG. The grooves 5802 and the grooves 5904a and 59 (Mb have a thickness of 6002. For example, the depth 6002 may be 100 micrometers, or other thickness. The depth 6 0 2 is usually equal to or larger than the wafer 5 800 As shown in FIG. 60, the wafer 5800 has a thickness of 6004. The thickness 6004 may be any thickness of a conventional or special purpose wafer, which may be, for example, 600 to 700 microns. 5 7 0 6, a curable material is applied to the first surface of the wafer to substantially penetrate the annular groove and the groove of the gate. Figure 6 1 shows, for example, a curable material 6102, which The surface of the wafer 5800 has been applied to substantially penetrate the annular groove 5802 and the groove 5904 of the gate 59 Q2. The curable material 6102 substantially penetrates the annular groove 5 8 0 2 and the groove 5 9 0 4. For example, the curable material 6 1 0 2 can be inserted into the trench to a level lower than the surface of the wafer 5 8 0 0, to the same level as the surface of the wafer 5800 (as shown in FIG. 62). (Shown), or even slightly protrude from the surface of the wafer 5 8 0. The curable material 6 1 2 may be, for example, a polymer, epoxy, resin, urethane, glass, or other Materials. Various processes can be used to cause the curable material 61 02 to penetrate into the grooves 5 8 02 and 5 904 (when applied to the wafer 5 8 00) without leaving other materials on the surface of the wafer 5800. A substantial excess of the curable material 6102. For example, a vacuum source may be supplied to the opposite surface of the wafer 5 8 0, or to a strip ((44) 200412217
如晶圓5 8 0 0所安裝至之藍或綠帶),以致使可固化材料 6102被拉入溝槽58〇2及5 904。於另一實施例中,一氣體源 可將一氣體導引朝向晶圓5 8 0 0之表面(其係被可固化材料 6102塗敷),以將可固化材料6102吹動、迫使、或推動進 入溝槽5 8 02及5 904。於另一實施例中,可固化材料61 02以 一旋塗方式被塗敷至晶圓5 8 0 0之表面,以致其晶圓5 8 0 0之 一旋轉動作致使可固化材料61 02移動或 “wick”進入溝槽 5 8 02及5 904。可固化材料6102可被塗敷以額外的方式以塡 入溝槽5802及5904,包含藉由“刮平(squeegee) ”應用、 噴灑、蒸汽沈積、物理沈積、或化學沈積。Such as the blue or green tape to which the wafer 5 8 0 is mounted), so that the curable material 6102 is pulled into the grooves 5802 and 5 904. In another embodiment, a gas source may direct a gas toward the surface of the wafer 5800 (which is coated by the curable material 6102) to blow, force, or push the curable material 6102. Enter the grooves 5 8 02 and 5 904. In another embodiment, the curable material 61 02 is applied to the surface of the wafer 5 8 0 by a spin coating method, so that one of the wafer 5 8 0 ’s rotating action causes the curable material 61 02 to move or "Wick" enters the grooves 5 8 02 and 5 904. The curable material 6102 can be coated in additional ways to penetrate the grooves 5802 and 5904, including by "squeegee" application, spraying, vapor deposition, physical deposition, or chemical deposition.
於步驟5 7 0 8,可固化材料被致使硬化成爲環狀溝槽中 之環狀硬化材料,並成爲柵之溝槽中之柵狀硬化材料以形 成晶粒框。例如,於圖61及62之範例中,可固化材料6102 被致使硬化於環狀溝槽5 8 02中、及柵5902之溝槽5904中。 於一實施例中,硬化材料係藉由以一硬化製程致使可固化 材料6102硬化而形成。因此,可固化材料6102可爲任何可 硬化的材料,諸如可硬化聚合物、環氧化物、樹脂、氨基 鉀酸酯、玻璃、或其他材料。可固化材料61 02可爲一種以 不同方式被致使硬化的材料,包含藉由熱、藉由容許足夠 的時間量供可固化材料6 1 02自行硬化、藉由供應光、或藉 由其他本說明書所述之其他方式或者另外已知的方式。 於步驟5 7 1 0,晶圓被減薄以致其柵狀的硬化材料可移 除地固持多數晶粒。例如,圖63顯示依據本發明所形成之 一晶粒框6 3 0 0。晶粒框6 3 0 0包含一種得自環狀溝槽5 8 0 2中 -48- (45) (45)200412217 及柵5902之溝槽5904中的可固化材料6102之硬化的硬化材 料63 (Μ。晶粒框63 00進一步得自晶圓5 8 00之減薄。如圖63 中所示,晶圓5 8 0 0以被減潛以形成厚度約爲深度6 0 0 2之晶 粒框6 3 00。於實施例中,晶粒框63 00可被形成或減薄以具 有約略等於深度60 02之厚度、或較小的厚度。因此,因爲 晶粒框6 3 0 0具有約略等於或小於深度6 0 0 2之厚度,所以晶 粒框6 3 0 0可移除地固持晶粒1 0 4於相應的開口 6 3 0 2中。換 言之,晶粒104可被輕易地移除自開口 6 3 0 2。例如,如圖 63中所示,晶粒框63 00可移除地固持晶粒104A於開口 6302A中,並可移除地固持晶粒104B於一開口 6302B中 。晶粒框63 00提供環狀溝槽5 8 02及溝槽5904之形狀的支撐 結構’其能夠可移除地固持晶粒1 0 4於開口 6 3 0 2中。晶粒 104可被移除自晶粒框6300藉由推動、向前擠、或者以其 他方式迫使其從晶粒框63 00之任一表面離開而至另一表面 上。根據其晶粒104被迫使自晶粒框63 00之哪個表面將會 決定晶粒1〇4是否以墊朝上或墊朝下定向被轉移至一表面 〇 注意其晶圓5 8 00可依據任何習知或另外已知的機構而 被減薄於步驟5710。再者,注意其可固化材料61 〇2被選擇 以使得其並非實質上黏合至晶粒104,以致其晶粒104可被 輕易地移除自晶粒框63 00且因而被可移除地固持於其中。 圖57B顯示一流程圖5 720,其提供用以製造一晶粒框 之範例步驟,依據本發明之另一實施例。流程圖5 72 0將參 考圖64A-64C、65A、及65B而被描述於下,以利說明之 (46) 200412217At step 5708, the curable material is caused to harden into a ring-shaped hardened material in the ring-shaped groove and a grid-shaped hardened material in the groove of the gate to form a grain frame. For example, in the examples of FIGS. 61 and 62, the curable material 6102 is caused to harden in the annular trench 5 8 02 and the trench 5904 of the gate 5902. In one embodiment, the hardened material is formed by hardening the curable material 6102 in a hardening process. Therefore, the curable material 6102 may be any hardenable material such as a hardenable polymer, an epoxy, a resin, a urethane, glass, or other materials. The curable material 61 02 may be a material that is caused to harden in different ways, including by heat, by allowing a sufficient amount of time for the curable material 6 1 02 to harden itself, by supplying light, or by other instructions Other ways described or otherwise known. At step 5 7 10, the wafer is thinned so that its grid-like hardened material removably holds most of the die. For example, FIG. 63 shows a die frame 6 3 0 0 formed according to the present invention. The die frame 6 3 0 0 contains a hardened hardened material 63 from the curable material 6102 in -48- (45) (45) 200412217 in the groove 5 8 0 2 and the groove 5904 in the gate 5902. ( M. The die frame 63 00 is further obtained from the thinning of the wafer 5 8 00. As shown in FIG. 63, the wafer 5 8 0 is submerged to form a die frame having a thickness of approximately 6 0 2 6 3 00. In an embodiment, the die frame 63 00 may be formed or thinned to have a thickness approximately equal to the depth 60 02, or a smaller thickness. Therefore, because the die frame 6 3 0 0 has approximately equal to or The thickness is less than the depth of 6 0 2, so the die frame 6 3 0 0 removably holds the die 1 4 in the corresponding opening 6 3 0 2. In other words, the die 104 can be easily removed from the opening. 6 3 0 2. For example, as shown in FIG. 63, the die frame 63 00 removably holds the die 104A in the opening 6302A, and removably holds the die 104B in an opening 6302B. The die frame 63 00 provides a support structure in the shape of an annular groove 5 8 02 and a groove 5904 'which can removably hold the grain 1 10 in the opening 6 3 0 2. The grain 104 can be removed from the grain Box 6300 Borrow Pushing, squeezing forward, or otherwise forcing it to leave from any surface of the grain frame 63 00 and onto another surface. Depending on which surface of the grain frame 104 is forced from which surface of the grain frame 63 00 will determine the crystal Whether the granule 104 is transferred to a surface with the pad facing up or down. Note that the wafer 5 8 00 can be thinned in step 5710 according to any conventional or otherwise known mechanism. Furthermore, note Its curable material 61 02 is selected so that it is not substantially adhered to the die 104, so that its die 104 can be easily removed from the die frame 63 00 and thus removably held therein. 57B shows a flowchart 5 720, which provides exemplary steps for manufacturing a die frame, according to another embodiment of the present invention. The flowchart 5 72 0 will be described with reference to FIGS. 64A-64C, 65A, and 65B. Next, Eli explains (46) 200412217
目的。流程圖5 7 2 0從步驟5 7 2 2開始。於步驟5 7 2 2,一安裝 至黏著劑表面之晶圓被劃線以致其所得的多.數晶粒係由其 延·伸通過晶圓而至黏著劑表面之溝槽柵所分離。例如,圖 6 4 A顯示一安裝至黏著劑表面6 4 0 4之劃線晶圓6 4 0 2。黏著 劑表面6404被固持於一晶圓框6406中。晶圓框6406亦可被 稱爲晶圓載具或帶狀環。例如,黏著劑表面6 4 0 4可爲一綠 帶、藍帶、或者其他黏著劑表面帶。晶圓框640 6以拉緊方 式固持及支撐黏著劑表面6404以致其劃線晶圓64 02可被存 取。因爲晶圓64 02已被劃線,所以晶圓64 02具有溝槽5 904 之柵5902 (未顯示於圖64A中),其分離晶圓6402之晶粒 104。晶圓6402被劃線以致其溝槽5904延伸通過晶圓6402 而至黏著劑表面6 4 0 4。因此,晶圓6 4 0 2之晶粒1 0 4被個別 地安裝至黏著劑表面6404。圖64B顯示一具有由溝槽5 904 所分離之三個晶粒104的範例劃線晶圓6402之橫斷面圖。 注意其劃線晶圓64 02被顯示爲具有三個晶粒104以利說明 之目的,而非限制之目的。圖64C顯示一安裝至黏著劑表 面6 4 0 4之範例劃線晶圓6 4 0 2的一部分之透視圖’其具有多 數由栅5 902之溝槽5904所分離的晶粒104。 於步驟5 724,一可固化材料被塗敷至劃線晶圓以實質 上塡入柵之溝槽。例如,如圖6 5 A中所示,可固化材料 6 1 02被塗敷至劃線晶圓64 02以部分地或完全地塡入晶粒 104之間的溝槽5904。如圖65A所示,可固化材料61〇2a塡 入晶粒1 〇 4之間的溝槽5 9 0 4 °於一實施例中’可固化材料 6102可被塗敷以致其存在可固化材料6102b以塡入黏著劑 - 50· (47) (47)200412217 表面6404上之一空間6 5 00,介於晶圓6402的外緣與晶圓框 6406的內緣之間。注意於一實施例中,可固化材料61〇2可 甚至部分地延伸於晶·圓框64 06之內,如圖65 A中所示,雖 然其並非必要。可固化材料6 1 02可被塗敷以本說明書之他 處所述的任何方式,諸如以上參考圖61及62所述,或者其 他已知者。 於步驟5 726,可固化材料被致使硬化爲柵之溝槽中的 柵狀硬化材料。例如,圖65A中所示之可固化材料6102a 及6 1 0 2 b被致使硬化爲柵狀硬化材料,諸如以上參考圖6 3 有關硬化材料之敘述。 於步驟5 7 2 8,黏著劑表面被移除以致其柵狀硬化材料 可移除地固持多數晶粒。例如,圖65B顯示一晶粒框63〇〇 ,其係得自黏著劑表面64 04之移除。硬化材料63 04a出現 於晶粒104之間,而硬化材料63 04b存在於晶粒1〇4之外。 硬化材料63 04可移除地固持晶粒104 ’以晶粒框63 00之柵 形狀,如上所述。注意其黏著劑表面6404可被移除或分離 ,藉由剝離、化學地溶解、或以其他方式將其移除自晶粒 框 6 3 0 0 〇 注意其晶粒框6 3 00可被形成以墊朝上或墊朝下方式。 例如,流程圖5 72 0可包含類似於圖7之流程圖700中所示的 步驟702、704、及706之步驟,以利翻轉晶粒104之定向, 在步驟5 7 2 2之執行以前。因此’晶粒1 0 4之墊可面朝向或 背向黏著劑表面6404,根據所選擇之定向。 晶粒框63 0 0之結構具有數項優點。例如’以環形狀形 (48) (48)200412217 成於環狀溝槽5 8 02中之晶粒框63 00的部分容許一周持機構 (諸如一夾鉗或夾具)可靠地固持晶粒框63 0 0,當其被用 於(例如)轉移晶粒時。以柵形狀形成於柵5 9 0 2中之晶粒 框63 0 0的部分容許晶粒104之固持,可相當輕易地移除晶 粒1 0 4,如以下所述。晶粒框6 3 0 0之結構具有進一步優點 。注意於某些實施例中,晶粒框6 3 0 0之環狀部分可能非必 要,且不存在。 最好是,過量的可固化材料6 1 02不剩餘在晶圓5 8 0 0之 表面上。於實施例中,流程圖5 7 0 0可包含一額外的步驟, 其被執行在步驟5 70 4之前,其中一保護材料層被塗敷至晶 圓之表面上。保護材料可,例如,爲光阻材料、或其他保 護材料,其可被旋塗或以其他方法被塗敷至晶圓之表面上 。因此,於一實施例中,流程圖5 7 0 0亦可包含其中將保護 材料移除自晶圓之表面的步驟。例如,從晶圓移除保護材 料可致使過量可固化材料6 1 02之移除於其硬化狀態或於其 非硬化狀態(亦即,在步驟5 7 0 8之前或之後)。例如,晶 圓5800可被進入溶劑,或者可塗敷有一溶劑以從晶圓58〇〇 之表面溶解保護材料。保護材料可藉由其熟悉相關技術人 士已知的其他方式而被移除自晶圓5 8 00。 晶粒框63 00可被使用以轉移晶粒104至—後續的目的 地或轉移表面。後續表面可爲一中間表面,諸如藍或綠帶 或其他已知的或本說明書別處所不的中間表面,或者可 被使用以轉移晶粒1 04至一最終目的地表面,諸如基底。 再者,晶粒框63 00容許晶粒之精確轉移。例如,因爲其可 >52- (49) 200412217 移除地固持於晶粒框6 3 00中之晶粒的位置係準確已知的, 所以存在晶粒之精確登記。因此,可能無須昂貴的光學及 /或其他型式的登記系統以找出及準確地放置晶粒。 · 圖66顯示一流程圖6600,其提供使用一框以轉移多數 晶粒至一表面的步驟,依據本發明之實施例。注意其爲可 選擇的流程圖6 600之步驟被顯示爲包含於虛線內。流程圖 6600將參考圖67而被描述,以利說明之目的。進一步的結 構實施例將使熟悉相關技術人士根據下列討論而淸楚明白purpose. The flowchart 5 7 2 0 starts from step 5 7 2 2. In step 5 7 2 2, a wafer mounted on the surface of the adhesive is scribed so that the obtained number of grains is separated by extending and extending through the wafer to the trench grid on the surface of the adhesive. For example, FIG. 6 4A shows a scribe wafer 6 4 0 2 mounted on the adhesive surface 6 4 0 4. The adhesive surface 6404 is held in a wafer frame 6406. The wafer frame 6406 may also be referred to as a wafer carrier or a ribbon ring. For example, the adhesive surface 6 4 0 4 may be a green, blue, or other adhesive surface tape. The wafer frame 6406 holds and supports the adhesive surface 6404 in a tensioned manner so that the scribe wafer 602 can be accessed. Because wafer 64 02 has been scribed, wafer 64 02 has a grid 5902 (not shown in FIG. 64A) of trench 5 904, which separates die 104 of wafer 6402. The wafer 6402 is scribed so that its groove 5904 extends through the wafer 6402 to the adhesive surface 6 4 0 4. Therefore, the crystal grains 104 of the wafer 64 2 are individually mounted on the adhesive surface 6404. 64B shows a cross-sectional view of an example scribing wafer 6402 having three dies 104 separated by trenches 5 904. Note that the scribe wafer 602 is shown as having three dies 104 for illustrative purposes, not limitation purposes. Fig. 64C shows a perspective view of a portion of an example scribing wafer 6 4 0 2 mounted to the adhesive surface 6 4 0 4 'having a plurality of dies 104 separated by a trench 5904 of a gate 5 902. At step 5724, a curable material is applied to the scribe wafer to substantially penetrate the gate trench. For example, as shown in FIG. 65A, a curable material 6102 is applied to the scribe wafer 602 to partially or fully penetrate the trench 5904 between the dies 104. As shown in FIG. 65A, the curable material 61〇2a penetrates into the groove 5 between the crystal grains 104. In one embodiment, the 'curable material 6102 may be coated so that the curable material 6102b is present. A space 6 5 00 on the surface 6404 of the adhesive-50 · (47) (47) 200412217 is interposed between the outer edge of the wafer 6402 and the inner edge of the wafer frame 6406. Note that in one embodiment, the curable material 6102 may even partially extend within the crystal-frame 64 06, as shown in FIG. 65A, although it is not necessary. The curable material 6 1 02 may be applied in any manner described elsewhere in this specification, such as described above with reference to Figures 61 and 62, or others known. At step 5 726, the curable material is caused to harden into a grid-like hardened material in the trench of the grid. For example, the curable materials 6102a and 6 1 0 2b shown in FIG. 65A are caused to harden into a grid-shaped hardened material, such as the above description of the hardened material with reference to FIG. 6 3. At step 5 7 2 8, the surface of the adhesive is removed so that its grid-shaped hardening material removably holds most of the crystal grains. For example, FIG. 65B shows a grain frame 6300, which is obtained from the removal of the adhesive surface 64 04. The hardened material 63 04a appears between the grains 104, and the hardened material 63 04b exists outside the grains 104. The hardened material 63 04 removably holds the grains 104 'in the shape of a grid of the grain frame 63 00, as described above. Note that the adhesive surface 6404 can be removed or separated, and peeled, chemically dissolved, or otherwise removed from the grain frame 6 3 0 0 〇 Note that the grain frame 6 3 00 can be formed to Pad up or pad down mode. For example, flowchart 5 72 0 may include steps similar to steps 702, 704, and 706 shown in flowchart 700 of FIG. 7 to facilitate reversing the orientation of die 104 before execution of step 5 7 2 2. Therefore, the pads of the 'grain 104' can face or face away from the adhesive surface 6404, depending on the orientation chosen. The structure of the die frame 6300 has several advantages. For example, 'the shape of the ring shape (48) (48) 200412217 formed in the ring groove 5 8 02 part of the grain frame 63 00 allows a one-week holding mechanism (such as a clamp or clamp) to reliably hold the grain frame 63 0 0 when it is used, for example, to transfer grains. The part of the grain frame 63 0 0 formed in the gate shape in the gate 5 9 2 allows the holding of the crystal grain 104 and the crystal grain 104 can be removed quite easily, as described below. The structure of the die frame 6 300 has further advantages. Note that in some embodiments, the ring portion of the die frame 6300 may be unnecessary and not present. Preferably, an excess of the curable material 6 102 is not left on the surface of the wafer 5800. In an embodiment, the flowchart 5 7 0 0 may include an additional step, which is performed before step 5 70 4, wherein a protective material layer is applied to the surface of the wafer. The protective material may, for example, be a photoresist material, or other protective material, which may be spin-coated or otherwise applied to the surface of the wafer. Therefore, in an embodiment, the flowchart 5700 can also include a step in which the protective material is removed from the surface of the wafer. For example, removing the protective material from the wafer may cause the excess curable material 6 1 02 to be removed in its hardened state or in its non-hardened state (ie, before or after step 5 7 08). For example, the wafer 5800 can be exposed to a solvent, or it can be coated with a solvent to dissolve the protective material from the surface of the wafer 5800. The protective material may be removed from the wafer 5 800 by other means known to those skilled in the relevant art. The die frame 63 00 may be used to transfer the die 104 to a subsequent destination or transfer surface. The subsequent surface may be an intermediate surface, such as a blue or green strip or other intermediate surface known or not elsewhere in this specification, or it may be used to transfer grain 104 to a final destination surface, such as a substrate. Furthermore, the die frame 63 00 allows precise transfer of the die. For example, since the positions of the crystal grains which can be removably held in the crystal grain frame 6 3 00 are accurately known, there is an accurate registration of the crystal grains. Therefore, expensive optical and / or other types of registration systems may not be required to find and accurately place the die. Fig. 66 shows a flowchart 6600, which provides the steps of using a frame to transfer the majority of grains to a surface, according to an embodiment of the invention. Note that it is optional that the steps of Flowchart 6 600 are shown enclosed in dotted lines. Flowchart 6600 will be described with reference to FIG. 67 for illustrative purposes. Further structural embodiments will make those skilled in the related art understand clearly based on the following discussion.
流程圖66 00從步驟6602開始。於步驟6602,一晶粒框 被定位緊鄰一包含多數基底之基底帶的表面以致其可移除 地固持於晶粒框中的多數晶粒之一晶粒係緊鄰基底帶之多 數基底的一相應基底。例如,圖67顯示一種使用晶粒框 63 00以轉移晶粒至一表面的系統6700。系統6700包含晶粒 框63 00、衝壓構件2406、一晶粒框夾具6702、一第一捲軸 (reel) 6 7 06、一第二捲軸6708、及一基底帶6710。如圖 67中所示,基底帶6710包含多數基底6712 a-c。基底帶 6710可包含任何數目的基底6712。如圖67中所不’晶粒框 6300被定位緊鄰基底帶6710之一表面。晶粒框6300被定位 緊鄰基底帶6 7 1 0以致其一晶粒1 〇4可從晶粒框6 3 0 0被衝壓 至基底帶67 10之一基底6712,如以下所述。 於步驟6 6 0 4,晶粒係從晶粒框被轉移至緊鄰的相應基 底。如圖6 7中所示,晶粒1 〇 4已從晶粒框6 3 0 0被轉移至基 底帶6 7 10之基底6712b之一表面。例如’如圖67中所示, -53- (50) (50)200412217 晶粒104可從晶粒框63 00 (其可移除地固持晶粒104 )被衝 壓至基底6712a上。例如,可使用一衝壓構件2406以從晶 粒框63 00衝壓晶粒104至基底6712a上。於進一步實施例 中,可使用其他的機構以從晶粒框63 00轉移晶粒104至一 基底6712 。 多數晶粒可以此方式從晶粒框63 00被轉移至基底帶 6710。於步驟6606,基底帶被遞增。例如,如圖67之範例 所示,基底帶6710可包含多數被串列配置之基底6712。基 底帶6 7 1 0可依據一種捲軸至捲軸系統(諸如圖6 7中所示者 )而被遞增。於圖67中,一第一捲軸6706可供應基底帶 6 7 10至一第二捲軸6708,其承接基底帶6710。藉由轉動第 一及第二捲軸6706及6708,則基底帶6710可被遞增以移動 下一基底67 12至定位以從晶粒框63 00承接晶粒104。其他 的機構可被使用以遞增基底帶6 7 1 0。再者,於其他實施例 中,基底帶可包含基底67 12之N xM陣列,其中 N>1且 Μ > 1,而取代串列對齊的基底6 7 1 2。 於步驟66 0 8,晶粒框被定位緊鄰於基底帶之表面以致 其可移除地固持於晶粒框中的多數晶粒之另一晶粒係緊鄰 於基底帶之多數基底的下一相應基底。例如,如圖6 7中所 示,晶粒框6 3 0 0被固持於晶粒框夾具6 7 0 2中。晶粒框夾具 6 702可被橫向地移動相對於基底帶67 10以定位下一晶粒 104於下一基底6712之上,諸如基底6712a或基底6712b。 因爲晶粒104之尺寸爲熟知的,晶粒框夾具6702可藉由晶 粒1〇4之寬度或長度而被重新定位,以取代藉由一光學及/ -54- (51) 200412217 或其他登記系統型式(其必須決定一晶粒之位置)來被重 新定位。例如,於一實施例中,對於一 5 00x5 0 0微米·尺寸 的晶粒,晶粒框夾具67 02可被移動5 0 0微米(可能加上溝 槽5 904之寬度)以放置下一晶粒1〇4於供轉移的位置內。 注意本發明可應用於任何尺寸的晶粒。Flowchart 66 00 starts at step 6602. At step 6602, a grain frame is positioned adjacent to a surface of a substrate band containing a plurality of substrates such that one of the plurality of grains removably held in the grain frame is a corresponding one of the plurality of substrates of the substrate band. Base. For example, FIG. 67 shows a system 6700 that uses a die frame 63 00 to transfer die to a surface. The system 6700 includes a die frame 63 00, a stamping member 2406, a die frame holder 6702, a first reel 6 7 06, a second reel 6708, and a base tape 6710. As shown in FIG. 67, the substrate tape 6710 includes a plurality of substrates 6712a-c. The substrate tape 6710 may include any number of substrates 6712. As shown in FIG. 67, the grain frame 6300 is positioned next to one surface of the base tape 6710. The die frame 6300 is positioned next to the substrate tape 6 7 10 such that one of the grains 104 can be punched from the die frame 6 300 to one of the substrate tapes 6712, as described below. At step 666, the grain system is transferred from the grain frame to the corresponding substrate next to it. As shown in Fig. 67, the crystal grains 104 have been transferred from the grain frame 6 3 0 0 to one surface of the substrate 6712b of the base tape 6 7 10. For example, as shown in FIG. 67, -53- (50) (50) 200412217 die 104 may be pressed onto die 6712a from die frame 63 00 (which removably holds die 104). For example, a stamped member 2406 may be used to stamp the die 104 from the grain frame 63 00 onto the substrate 6712a. In further embodiments, other mechanisms may be used to transfer the die 104 from the die frame 63 00 to a substrate 6712. Most of the grains can be transferred from the grain frame 63 00 to the base tape 6710 in this manner. At step 6606, the base tape is incremented. For example, as shown in the example of FIG. 67, the substrate tape 6710 may include a plurality of substrates 6712 arranged in series. The base band 6 7 1 0 can be incremented according to a reel-to-reel system, such as that shown in FIG. 6. In FIG. 67, a first reel 6706 can supply a base tape 6 7 10 to a second reel 6708, which receives the base tape 6710. By rotating the first and second reels 6706 and 6708, the substrate tape 6710 can be incremented to move the next substrate 67 12 to be positioned to receive the die 104 from the die frame 63 00. Other mechanisms can be used to increase the base band 6 7 1 0. Furthermore, in other embodiments, the substrate tape may include an N x M array of substrates 67 12, where N > 1 and M > 1 instead of serially aligned substrates 6 7 1 2. At step 66 08, the grain frame is positioned immediately adjacent to the surface of the substrate band so that another grain of the plurality of grains removably held in the crystal grain frame is next to the next corresponding of the majority of the substrate of the substrate band. Base. For example, as shown in Fig. 67, the die frame 6 3 0 0 is held in the die frame holder 6 7 2. The die frame holder 6 702 can be moved laterally relative to the substrate tape 67 10 to position the next die 104 on a next substrate 6712, such as a substrate 6712a or a substrate 6712b. Because the size of the die 104 is well known, the die frame holder 6702 can be repositioned by the width or length of the die 104, instead of being registered by an optical and / -54- (51) 200412217 or other The system type (which must determine the location of a die) is repositioned. For example, in an embodiment, for a 500x500 micron · size die, the die frame holder 67 02 may be moved by 500 micron (possibly plus the width of the groove 5 904) to place the next die. 104 is in the position for transfer. Note that the invention can be applied to grains of any size.
於步驟6 6 1 0,。因此,以此方式,多數晶粒1 〇 4可另 一晶粒係從晶粒框被轉移至緊鄰的下一相應基底從晶粒框 6 3 00被轉移至基底帶67 10之相應基底67 12上。以此方式, 例如,大量標籤基底/晶粒組合可被產生以一相當快速的 方式,以較習知製程更少的步驟。At step 6 6 1 0. Therefore, in this way, most of the crystal grains 104 can be transferred from the crystal grain frame to the next corresponding substrate from the crystal grain frame 6 3 00 to the corresponding substrate 67 10 of the substrate tape 67 12 on. In this way, for example, a large number of label substrate / die combinations can be generated in a fairly fast manner with fewer steps than conventional processes.
注意其多重晶粒框63 0 0可被放置成一堆疊,其晶粒 104可從該堆疊被轉移至一目的地表面。晶粒104可使用一 衝壓機構、一真空/氣體源、及任何其他本說明書之別處 所述的或其他已知的機構。例如,圖6 8 A顯示一流程圖 6 8 00,其提供使用一晶粒框堆疊以轉移多數晶粒至一表面 的步驟,依據本發明之另一實施例。注意其爲可選擇的流 程圖6 8 00之步驟被顯示封入於虛線內。進一步的結構實施 例將根據下列討論而使熟悉相關技術人士淸楚明白。 流程圖6 8 0 0將配合圖6 9而被描述,以利說明之目的。 流程圖6800從步驟6 8 02開始。於步驟68 02,形成一晶粒框 堆疊,各晶粒框包含一具有多數矩形開口之柵,其中多數 矩形開口之各開口可移除地固持一晶粒,其中堆疊中的晶 粒框之相應的矩形開口被對齊於一行以形成開口之多數行 。例如,圖69顯示晶粒框之堆疊6902。堆疊6902包含多數 -55- 200412217 j iNote that its multiple die frame 6300 can be placed into a stack, and its die 104 can be transferred from the stack to a destination surface. The die 104 may use a stamping mechanism, a vacuum / gas source, and any other mechanism described elsewhere in this specification or otherwise known. For example, FIG. 6 A shows a flowchart 6 800, which provides a step of using a die frame stack to transfer most of the die to a surface, according to another embodiment of the present invention. Note that it is an optional flow. The steps in Figure 6 800 are shown enclosed in dotted lines. Further structural embodiments will be apparent to those skilled in the relevant art based on the following discussion. The flowchart 6 8 0 0 will be described in conjunction with FIG. 6 9 for the purpose of illustration. Flowchart 6800 starts at step 6 802. At step 68 02, a die frame stack is formed, each die frame includes a grid with a plurality of rectangular openings, wherein each opening of the majority of the rectangular openings removably holds a die, and the corresponding die frame in the stack corresponds The rectangular openings are aligned in a row to form a plurality of rows of openings. For example, FIG. 69 shows a stack 6902 of die frames. Stack 6902 contains most -55- 200412217 j i
I I (52)I I (52)
I ; 晶粒框63 00。爲說明之目的,堆疊6902被顯示爲包含六個 晶粒框6 3 0 0 a- f,但是可包含任何數目的兩個或更多晶粒 框6 3 0 0。如上所述,各晶粒框6 3Ό 0包含構形爲柵5 9 0 2之形 式的硬化材料63 04。多數開口 63 02存在於各晶粒框63 00中 ,其各可移除地固持一晶粒104。晶粒框6 3 00被對齊以致 其相應的開口 6 3 0 2形成堆疊6 9 0 2中之行(未顯示於圖6 9中 )° 於步驟6 8 04,一可移除地固持於開口中的晶粒係從多 數行之至少一行被轉移至目的地表面。換言之,一或更多 晶粒104係從來自一或更多行之堆疊69 02被轉移至目的地 表面。晶粒104可從堆疊6902被轉移以數種方式。例如, 如圖69中所示,一或更多衝壓構件24 06可被應用於堆疊 6902中之開口 63 02的相應行。一衝壓構件24〇6推動堆疊 6 9 02以從堆疊69〇2中之開口63〇2的個別行移動晶粒1〇4至 目的地表面。一衝壓構件2406可被步進以一次推出單一晶 粒104。任何數目的衝壓構件24〇6可平行地操作,諸如圖 69之範例中所示的衝壓構件2406a-c,以增加晶粒轉移率 〇 可使用其他方法以從堆疊6 9 0 2轉移晶粒][〇 4,包含使 用氣體或真空源(以施加氣體壓力、靜電力)、挑選及放 置裝置、及本說明書之別處所述的方法、或者其他已知的 方法。以下參考圖6 8 B以詳細地描述另一範例的此等方法 〇 注思其目的地表面可爲一基底帶或結構,如圖6 9中所 -56- (53) (53)200412217 示。另一方面,目的地表面可爲一衝壓帶或晶片載具(諸 如圖22中所示)、任何中、間表面(諸如綠帶或藍帶)、或 任何其他表面。再者,晶粒1 04可被轉移至目的地表面以 墊朝上或朝下架構,根據堆疊6902之定向。堆疊6902可被 插入一晶粒放置設備,其固持並對齊一堆疊中之個別晶粒 框6 3 0 0,且容許晶粒從該處被轉移。 圖6 8 B顯示流程圖6 8 0 0之一範例實施例的進一步細節 。圖68B將配合圖70而被描述,以利說明之目的。圖70顯 示一種系統7000,用以使用一多桶晶粒轉移設備4802而從 晶粒框6 3 0 0轉移晶粒,依據本發明之一範例實施例。如圖 70中所示,多桶晶粒轉移設備4 8 02包含多數桶4 8 06a-c。 再者,系統7000包含晶粒框63 00之堆疊6902,其包含第一 、第二、第三、及第四晶粒框63 0 Oa-d。堆疊6902可包含 任何數目的晶粒框63 00。 於步驟6 802,形成一晶粒框堆疊,各晶粒框包含一具 有多數矩形開口之柵,其中多數矩形開口之各開口可移除 地固持一晶粒,其中堆疊中之晶粒框的相應開口被對齊於 一行。例如,如圖70所示,晶粒框堆疊6902之晶粒框 63 00a-d被對齊以致其多數行7002被形成。各行7002包含 一可移除地固持於每一晶粒框63 00a-d中之開口中的晶粒 〇 於步驟6812,多數中空桶之各中空桶被應用於晶粒框 之堆疊的開口之一個別行。例如,如圖7 〇中所示,一第一 行7002a具有其被供應至之第一桶4 8 06a,一第二行7002b (54) (54)200412217 具有其被供應至之第二桶4 8 06b,及一第三行7002c具有 其被供應至之第三桶4806c。 於步驟6 8 1 4,可移除地固持於個別開口行之開口中的 晶粒被致使平行地移入各中空桶。如圖7 0中所示,其被可 移除地固持於晶粒框63 00a-63 00dz中的晶粒1〇4被致使移 入桶4 8 06。晶粒104可被致使移入中空桶4806,藉由真空 、藉由氣體壓力、藉由機械機構、或藉由本說明書之他處 所述或另外已知的其他機構。 於步驟6816’步驟6812及6814被重複直到一或更多桶 4806a-c變爲充滿、直到堆疊69 02用盡晶粒、或當任意數 目之晶粒104已被移動自堆疊6902時。 於步驟68 1 8,來自各中空桶之晶粒被放置於表面上直 到其各中空桶所內含之晶粒堆疊被實質上用盡。因此,來 自中空桶4 8 06之晶粒104可被放置於目標表面之目的地上 ’直到中空桶4 8 0 6中之晶粒1 〇 4被用盡、或直到表面充滿 了晶粒1 0 4、或直到任意數目的晶粒1 〇 4已被轉移。如上所 述’晶粒104可被放置自桶4806,藉由機械機構、藉由真 空、藉由氣體壓力、或藉由本說明書之他處所述或另外已 知的其他機構。 因此’晶粒框63 00可被使用以多種方式來轉移晶粒至 一目標表面。再者,晶粒框6 3 0 0可被結合與任何本說明書 之他處所述的其他的晶粒轉移機構及製程以提供增進的晶 粒轉移機構及製程。進一步的範例晶粒框實施例被描述於 下列章節中,以利說明之目的。 -58- (55) (55)200412217 2.1.4.1 形成於一帶結構中之晶粒框 :於一實施例中,晶粒框可被形成以一撓:性的、平坦帶 結構,類似於其被用以安裝晶圓/晶粒之“藍帶,,或“綠帶 ”。帶結構被製造以包含一可硬化材料或物質。一晶圓被 安裝至帶結構,且被分離爲多數晶粒。帶結構被處理以致 使一硬化的柵結構形成於帶結構中,其可移除地固持多數 晶粒。圖7 1顯示一流程圖7 1 0 0,其提供用以製造此一晶粒 框或晶粒支撐框之步驟,依據本發明之一範例實施例。流 程圖71 00係參考圖72、73 A、73B、及74而被描述,以利 說明之目的。 流程圖7100從步驟7102開始。於步驟7102,一包含多 數晶粒之晶圓被安裝至一帶結構之表面。例如,如上所述 ,圖4B顯示一安裝至範例支撐表面404之晶圓400。如圖 4A中所示,晶圓400包含多數晶粒104。於本實施例中, 晶圓400被安裝以類似於帶結構之方式。帶結構之表面及/ 或晶圓400可具有一塗敷於其上之黏著劑材料以將晶圓400 黏合至帶結構。帶結構被更詳細地描述於下。 於步驟7 1 04,一溝槽柵被形成於晶圓中以分離帶結構 之表面上的多數晶粒。例如,圖72顯示其安裝至一帶結構 7200之表面7202的晶圓400,依據本發明之一範例實施例 。晶圓400被分離爲帶結構7200上之多數晶粒104,依據任 何習知的晶圓分離技術,包含藉由鋸、雷射、機械或化學 蝕刻、及其他技術以劃線或分離晶圓400。晶圓400之分離 (56) (56)200412217 產生溝槽5 904之柵5 9 02於晶圓400中。 帶結構7200係一撓性結構,其包含一硬化或可固化材 料,其可藉由數種技術而被致使硬化。例如,帶結構7200 可包含一種材料,其可藉由供應光(包含藉由供應紫外線 (UV)或其他頻帶的光)而被致使硬化。另一方面,帶 結構7200可包含一種材料,其可藉由供應固體、液體、或 氣體而被致使硬化,該等固體、液體、或氣體係作用與帶 結構7200之材料以致使帶結構7200之部分硬化或固化。 帶結構7200之全部或部分可包含其可被致使硬化之材 料。例如,圖73A顯示帶結構72 00之一橫斷面圖,其爲一 具有可固化或可硬化材料貫穿之單層結構。另一方面,圖 73B顯示帶結構7200爲一多層結構,其包含一可固化或可 硬化材料層7302。層7302可被製作爲帶結構7200,或者可 被散佈、塗敷、或噴灑至帶結構7200上。例如,可固化或 可硬化材料可爲一塗敷至帶結構7200之光阻材料或者一環 氧化物。帶結構7200可進一步包含一紙張、帶、聚合物、 或其他材料層以提供結構支撐。 注意其步驟7102及7104可藉由此處所述或另外已知的 結構而執行;且可藉由相同結構、或不同結構而執行。例 如,一晶圓備製模組可執行步驟71 02及7104。此晶圓備製 模組之一範例被進一步描述於以下之章節3.0-3 ·2。晶圓備 製模組可包含一晶圓供應設備,用以供應一晶圓至帶結構 7200,及/或可包含一晶圓切斷設備,用以分離/切斷表面 7 202上之晶圓。 (57) (57)200412217 •於步驟7106,其可透過柵之溝槽而存取之帶結構被致 使硬化爲柵狀結構。例如,圖74顯示一範例系統7400.,用 以致使其可透過柵5902之溝槽5904而存取之帶結構7200的 部分硬化爲柵狀結構。如圖74中所示,一硬化劑源74 02傳 輸一硬化劑7404朝向分離的晶圓4 00及帶結構7200。由於 晶粒104之位置,硬化劑7404透過溝槽5 904而到達帶結構 7200且位於周邊區域上。因此,可透過溝槽5 904而存取及 位於周邊區域中之帶結構7 2 0 0的部分被致使硬化,其個別 被顯示爲硬化的溝槽部分7410及硬化的周邊區域7420。其 無法存取至硬化劑7404 (由於硬化劑7404之供應被晶粒 104所阻擋)之帶結構7200的部分不會硬化。例如,圖74 顯示其未硬化之帶結構7200的範例部分743 0。 硬化劑源74 02可包含硬化劑之各種來源,根據帶結構 7 2 0 0中之硬化或可固化材料的型式。例如,硬化劑源7 4 0 2 可包含一光源及個別的光學設備,包含UV光源或紅外線 (IR )光源,用於一暴露至光便硬化之材料。例如,硬化 材料可爲一光阻材料。於此一實施例中,硬化劑7404可爲 光,諸如UV、IR、或其他頻帶的光。 另一方面,硬化劑源74 02可包含一氣體或液體供應, 以供應或噴灑氣體或液體朝向分離的晶圓400及帶結構 7 200。例如,硬化劑7404可爲雙組環氧化物之環氧化物, 以反應與帶結構72 00中所含有之相應的環氧化物。其他的 硬化劑源及硬化劑亦可應用於本發明,包含熱源。 因而形成一晶粒框7460。依據流程圖7100所形成之晶 (58) (58)200412217 粒框7460係可移除地固持多數晶粒104。因此,多數晶粒 104之一或更多晶粒104可從|晶粒框7460之柵狀結構被移動 至一目標表面上。圖75顯示一晶粒框7460,其包含範例 的柵狀結構75 0 0。晶粒框7460係由晶粒框夾具6 702所固持 。如圖75中所示,一晶粒1〇4係從晶粒框7460被移動至一 基底67 12。於圖75之範例中,晶粒104係藉由一衝壓構件 2406而被移動。晶粒1 〇4可被移動自晶粒框7460以多種方 式,包含藉由衝壓、藉由氣體之動作、及任何其他本說明 書之別處所述的或其他已知的方式。 注意其各非硬化區域743 0可或可不分裂自晶粒框7460 ,當個別晶粒104被移動自晶粒框74 60時。 晶粒框74 6 0可被使用以多種方式來轉移晶粒104至一 目標表面,包含本說明書之別處所述之用以轉移晶粒的任 何方式。再者,晶粒框7460可被結合與本說明書之別處所 述之任何其他的晶粒轉移機構及製程,以提供增進的晶粒 轉移機構及製程。 2.1.4.2 藉由鬆弛囊封的可硬化材料所形成之晶粒框 於一實施例中,一晶粒框可被形成於一平坦帶結構上 ,類似於用以安裝晶圓晶粒之“藍帶”或“綠帶”。帶結 構被製作以包含一囊封的、其硬化的可鬆驰材料或物質。 一晶圓被安裝至帶結構,且被分離爲多數晶粒。將晶圓分 離爲晶粒之製程會破壞帶結構,其鬆弛了囊封材料。鬆弛 的材料硬化以產生一硬化的栅結構於帶結構上,其可移除 -62- (59) (59)200412217 地固持多數晶粒。剩餘的帶結構可接著被可選擇地移除。 圖7 6顯示一流程圖7600,其提供用以製造此一晶粒框或晶 粒支撐框之步驟,依據本發明之另一範例實施例。流程圖 7600將配合圖7 7- 8 2而被描述於下,以利說明之目的。 流程圖760 0從步驟7602開始。於步驟7602,一包含多 數晶粒之晶圓被安裝至一帶結構之表面,其中帶結構包含 一囊封的可鬆弛硬化或可硬化材料。例如,如上所述,圖 4B顯示安裝至一範例支撐表面404之晶圓400。於本實施 例中,晶圓400被類似地安裝至一帶結構。然而,於當前 實施例中,帶結構包含一囊封的硬化或可固化材料,其可 被鬆弛及硬化。 例如,圖77顯示其安裝至一帶結構7702之表面7706。 表面7706及/或晶圓400可具有一被塗敷之黏著劑材料,以 供黏合晶圓400至表面7706。 帶結構7702可爲一單或多層結構。帶結構7 702之一範 例多層結構被顯示於圖77。如圖77中所示,帶結構7702包 含一層7704。層7740包含一囊封的硬化材料,其可被鬆弛 及硬化。例如,層7704可包含一被鬆弛自層7704之氣體、 液體、或固體,且當塗敷一適當的劑至層77 04時會硬化。 層7 704之操作及結構被進一步描述如下。 帶結構7702通常是撓性的,但亦可以是剛性的。如圖 77之範例實施例中所示,帶結構7702可可包含一帶層7708 以供額外的結構支撐,雖然帶層7708並非必要的。帶層 7 70 8可從多種材料來製造。例如,帶層7708可爲紙張、聚 (60) (60)200412217 合物、基底材料 '玻璃、金屬或金屬/合金之組合、塑膠 、或其他適當的物質、或者其組合。 於步驟7604 ’晶圓之溝槽柵被形成以分離帶結構之表 面上的多數晶粒,其包含破壞溝槽中之帶結構的表面以致 使囊封硬化材料而於溝槽中硬化爲柵狀硬化材料於柵之溝 槽中。例如,圖78顯示其被分離爲帶結構7702之表面7 706 上的晶粒104之晶圓400的橫斷面圖,依據本發明之一範例 實施例。晶圓4 0 〇之分離產生溝槽5 9 0 4之柵5 9 0 2 (類似於 圖5 9中所示者)。 晶圓400可被分離爲帶結構77 02上之多數晶粒104,依 據任何習知的晶圓分離技術,包含藉由鋸、雷射、機械或 化學蝕刻、及其他技術以劃線或分離晶圓400。例如,圖 78顯示其使用雷射78 10而被分離爲多數晶粒104之晶圓400 的橫斷面圖,依據本發明之一實施例。圖7 9顯示使用鋸 79 10而被分離爲多數晶粒104之晶圓400之一部分的透視圖 ,依據本發明之另一實施例。 如步驟7604所述,形成溝槽之柵會破壞溝槽中之帶結 構的表面以致使溝槽中之囊封硬化材料硬化爲柵狀的硬化 材料。例如,如各圖78及79所示,帶結構7 702之表面7706 被破壞。表面7706中之一範例缺口被指示爲一缺口 7820。 一足夠的缺口 7 820形成在沿著各溝槽5 9 04之長度的表面 7706中以致其囊封的硬化材料實質上塡入各溝槽5 904。缺 口 7 820可具有任何所需的寬度及深度以鬆弛囊封硬化材料 之足夠的量。根據用以產生缺口 7 8 20之特定分離技術’則 (61) (61)200412217 個別缺口 7 8 2 0可爲一開口、一破洞、一裂縫、或者一抓痕 於表面7706中。 圖78及79各顯示一鬆弛的硬化材料78 02,其部分地或 完全地塡入一個別溝槽5 904。缺口 7 820鬆弛硬化材料7 8 02 自帶結構7702之層7 7 04。硬化材料7802可爲氣體、液體、 固體、或者其組合。例如,層77〇4中所囊封之材料可被鬆 弛爲泡沫、凝膠、環氧化物、或其他液體。硬化材料7 8 0 2 可被致使硬化以多種方式。例如,於一實施例中,硬化材 料7 802會硬化,當其遭遇周遭空氣時、或者當其遭遇一選 定的氣體或氣體之組合時。於另一實施例中,硬化材料 7 8 02會硬化當其藉由特定晶圓分離技術而被加熱時,諸如 藉由與雷射7810之光束接觸或者藉由鋸7910之動作所產生 的熱。於另一實施例中,硬化材料7802會硬化當其接觸或 混合與一環氧化物或其他材料時。 於另一實施例中,層7 7 0 4可包含微囊封球或小珠,其 含有硬化材料。球或小珠會破裂當以特定晶圓分離技術破 壞層7 7 0 4時。硬化材料被鬆弛自球或小珠,並會硬化當被 加熱時、當接觸空氣或其他氣體時、或者另以其他方式。 圖80顯示帶結構7702上之一分離晶圓400之一部分的 透視圖,以其硬化材料7802形成一柵狀硬化材料8000於多 數晶粒1 0 4周圍,依據本發明之一範例實施例。 注意其步驟7602及76〇4可由此處所述之結構或其他已 知的結構來執行,且可由相同結構、或不同結構來執行^ 例如’ 一晶圓備製模組可執行步驟7 6 〇 2及7 6 〇 4。此一範例 (62) (62)200412217 晶圓備製模組被進一步描述於以下之章節3.0-3.2。晶圓備 製模組可包含一晶圓供應設備,用以供應晶圓至帶結構 7 7 02、及/或可包含一晶圓切斷設備,用以分離/切斷表面 7706上之晶圓,並用以破壞表面7 7 06。例如,晶圓切斷設 備可包含雷射78 10及/或鋸7910。 於步驟7606,帶結構被移除以致其柵狀硬化材料可移 除地固持多數晶粒。圖81顯示一已被拆卸自帶結構7 7 02之 晶粒框8100,依據本發明之一範例實施例。帶結構77 02可 被剝離、溶解、鈾刻、或者以其他方式移除。 晶粒框81 00依據流程圖7600而被形成。晶粒框81 00可 被使用以多種方式來轉移晶粒至一目標表面,包含任何本 說明書之別處所述用以轉移晶粒的方式。再者,晶粒框 8 1 00可被結合與本說明書之別處所述的任何其他晶粒轉移 機構及製程以提供增進的晶粒轉移機構及製程。 2.2 後處理 如參考圖3所述,於步.驟3 1 0,後處理被執行以完成 RFID標籤100之組裝。 圖54係一流程圖,其更詳細地說明步驟310之執行。 此操作從步驟5402開始,其中穿孔被形成於標籤100之間 的標籤基底1 1 6上。這些穿孔致使使用者得以分離標籤1 00 以供個別放置於各個物體上。 於步驟5404,各標籤100被檢視以確保適當的組裝。 此步驟包含確保相關電子電路106及晶粒104之適當放置。 (63) (63)200412217 於步驟54〇6,標籤100之、連續輥被切割並配置爲薄片 〇 於步驟5 40 8,二黏著劑襯底被塗敷至標籤基底1 16。 此黏著劑襯底致使標籤1 0 0得已被安裝至物體,諸如書本 或消費者產品。 3.〇 標籤組裝設備 本發明亦有關一種標ϋ組裝設備。圖5 5及5 6爲利用此 處所述之技術的兩個標籤組裝設備。 3.1 “墊朝上”組裝設備 圖55顯示一 “墊朝上”組裝設備5500。組裝設備5 5 00 以“墊朝上”方式組裝標籤,如此處所述。因此,組裝設 備5 5 0 0執行此處參考圖3及1 1所述之步驟。 組裝設備5500包含一支撐表面供應器5502、一支撐表 面收集器5 504、一晶圓備製模組5 5 06、一第一晶粒轉移模 組5508、一轉移表面供應器5510、一轉移表面收集器5512 、一第二晶粒轉移模組5 5 1 4、一標籤基底供應器5 5 1 6、一 後處理模組5518、一黏著劑塗敷模組5 520、及一印刷模組 5 522 〇 支撐表面供應器5502及支撐表面收集器5504輸送支撐 表面404以某一方向,如圖55中之箭號所示。這些元件爲 捲軸。然而,其他適當的輸送機構亦可被使用。 晶圓備製模組5 5 0 6執行步驟3 0 4及3 0 6。因此,晶圓備 - 67- (64) (64)200412217 製模組5 5 06供應晶圓400至支撐表面404。此外·,晶圓備製 模組5 5 06分離晶圓400上之多數晶粒104。晶圓備製模組 5 5 06被實施以適當的機構及劃線器具,諸如雷射。 第一晶粒轉移模組5 5 0 8從支撐表面4 0 4轉移晶粒1 〇 4至 轉移表面1 202。亦即,第一晶粒轉移模組5 5 0 8執行步驟 1 102。因此,第一晶粒轉移模組5 508包含活塞、滾筒、空 氣噴射、及/或衝壓裝置。第一晶粒轉移模組5 5 0 8可包含 一黏著劑帶、一衝壓帶、一多桶輸送機構、及/或晶粒框 ,及關連與這些組件之其他組件,諸如以上進一步用於晶 粒轉移所述者。第一晶粒轉移模組5 50 8亦包含用以從支撐 表面4 0 4釋放晶粒1 0 4之元件,諸如加熱組件及/或輻射裝 置° 轉移表面供應器55 1〇及轉移表面收集器5512輸送轉移 表面1202以某一方向,如圖55中之箭號所示。這些元件爲 捲軸。然而,其他適當的輸送機構亦可被使用。 第二晶粒轉移模組55 14從轉移表面1 202轉移晶粒1〇4 至標籤基底1 1 6。因此,第二晶粒轉移模組5 5 1 4執行步驟 1 106。因此,第二晶粒轉移模組55 14包含活塞、滾筒、空 氣噴射、及/或衝壓裝置。第二晶粒轉移模組5 5 1 4可包含 一黏著劑帶、一衝壓帶、一多桶輸送機構、及/或晶粒框 ,及關連與這些組件之其他組件,諸如以上進一步用於晶 粒轉移所述者。第二晶粒轉移模組5 5 1 4亦包含用以從支撐 表面404釋放晶粒104之元件,諸如加熱組件及/或輻射裝 置。 -68- (65) (65)200412217 標籤基底供應器5 5 1 6輸送標籤基底1 1 6朝向後處理模 組5 5 1 8,如圖5 5中之箭號所示..。標籤基底供應器5516包含 滾筒。然而,其他適當的輸送機構亦可被使用。 後處理模組5 5 1 8執行此處參考步驟3 1 0所述之後處理 操作。 黏著劑塗敷模組5 5 20塗敷黏著劑至標籤基底116,根 據步驟1 104。爲了執行此步驟,黏著劑塗敷模組5 5 20包含 一噴灑器。然而,黏著劑塗敷模組5 5 2 0可利用其他適當的 裝置以執行此步驟。 印刷及塗敷模組5 5 22印刷相關電子電路106並塗敷一 敷層至標籤基底1 1 6上,根據步驟1 1 0 8及1 1 1 0。因此,印 刷及塗敷模組5 5 22包含絲網印刷組件及噴灑器。然而,印 刷及塗敷模組5 5 22可利用其他適當的裝置,胃者如噴墨、熱 噴灑設備、及/或奉獻裝置。 3.2 “墊朝下”組裝設備 圖5 6顯示一“墊朝下”組裝設備5 600。組裝設備5 6 00 以“墊朝下”方式組裝標籤,如此處所述。因此,組裝設 備執行此處參考圖3及1 6所述之步驟。 組裝設備5 600包含一支撐表面供應器5 5 02、一支撐表 面收集器5504、一晶圓備製模組5506、一第一晶粒轉移模 組5 5 0 8、一第一轉移表面供應器5 5 i 〇、一第二晶粒轉移模 組5 602、一第二轉移表面供應器56〇4、一第一轉移表面收 集器5512、一第二轉移表面收集器5606、一標籤基底供應 (66) (66)200412217 器5 6 0 8、一第三晶粒轉移模組5 6 1 0、一後處理模組5 5 5 6、 一黏著劑塗敷模組5 6 2 8、及一印刷模組5 6 2 6。、 支撐表面供應器5502及支撐表面收集器5504輸送支撐 表面404以某一方向,如圖56中之箭號所示。這些元件爲 捲軸。然而,其他適當的輸送機構亦可被使用。 晶圓備製模組5 5 06執行步驟3 04及3 06。因此,晶圓備 製模組5 5 06供應晶圓400至支撐表面404。此外,晶圓備製 模組5 5 06分離晶圓400上之多數晶粒104。晶圓備製模組 5 5 06被實施以適當的機構及劃線器具,諸如雷射。 第一晶粒轉移模組5 5 08從支撐表面404轉移晶粒104至 轉移表面1 202。亦即,第一晶粒轉移模組5 5 0 8執行步驟 1 620。因此,第一晶粒轉移模組5 5 08包含活塞、滾筒、空 氣噴射、及/或衝壓裝置。第一晶粒轉移模組5 5 0 8可包含 一黏著劑帶、一衝壓帶、一多桶輸送機構及/或製程、及/ 或晶粒框,及關連與這些組件之其他組件,諸如以上進一 步用於晶粒轉移所述者。第一晶粒轉移模組5 5 0 8亦包含用 以從支撐表面4 0 4釋放晶粒1 0 4之元件,諸如加熱組件及/ 或輻射裝置。 第一轉移表面供應器5510及第一轉移表面收集器5512 輸送轉移表面1202以某一方向,如圖56中之箭號所示。這 些元件爲捲軸。然而,其他適當的輸送機構亦可被使用。 第二晶粒轉移模組5 6 0 2從轉移表面1 2 0 2轉移晶粒1 〇 4 至第二轉移表面1 202。因此,第二晶粒轉移模組5 602執行 步驟1 622。因此,第二晶粒轉移模組5602包含活塞、滾筒 (67) (67)200412217 、空氣噴射、及/或衝壓裝置。第二晶粒轉移模組5 602可 包含一黏著劑帶、一衝壓帶、一多桶輸送機構及/或製程 、及/或晶粒框,及關連與這些組件之其他組件,諸如以 上進一步用於晶粒轉移所述者。第二晶粒轉移模組5 602亦 包含用以從轉移表面1 202釋放晶粒104之元件,諸如加熱 組件及/或輻射裝置。 第二轉移表面供應器5510及第二轉移表面收集器5512 輸送轉移表面12 02以某一方向,如圖56中之箭號所示。這 些元件爲捲軸。然而,其他適當的輸送機構亦可被使用。 標籤基底供應器5 60 8輸送標籤基底116朝向後處理模 組5 5 5 6,如圖56中之箭號所示。標籤基底供應器5 60 8包含 滾筒。然而,其他適當的輸送機構亦可被使用。 第三晶粒轉移模組56 10從第二轉移表面1 20 2轉移晶粒 104至標籤基底1 16。因此,第三晶粒轉移模組5610執行步 驟1 608。因此,第三晶粒轉移模組56 10包含活塞、滾筒、 空氣噴射、及/或衝壓裝置。第三晶粒轉移模組5 6 1 0可包 含一黏著劑帶、一衝壓帶、一多桶輸送機構及/或製程、 及/或晶粒框,及關連與這些組件之其他組件,諸如以上 進一步用於晶粒轉移所述者。第三晶粒轉移模組56 1 0亦包 含用以從第二轉移表面1202釋放晶粒104之元件,諸如加 熱組件及/或輻射裝置。 黏著劑塗敷模組5 62 8塗敷黏著劑至標籤基底1 16,根 據步驟1 606。爲了執行此步驟,黏著劑塗敷模組5 628包含 一噴灑器。然而,黏著劑塗敷模組5 62 8可利用其他適當的 (68) (68)200412217 裝置以執行此步驟。 印刷模組5 626印刷相關電子電路106,根據步驟1606 。因此,印刷模組5 62 6包含絲網印刷組件及噴灑器。然而 ,印刷及塗敷模組5 626可利甩其他適當的裝置,諸如噴墨 、熱噴灑設備、及/或奉獻裝置。 後處理模組5 5 5 6執行此處參考步驟310所述之後處理 操作。 注意其“墊朝下”裝置設備5 600 (及其他此處所述之 組裝設備)亦可被調適以直接地從一支撐表面轉移晶粒至 一基底,如熟悉相關技術者從此處之教導所將瞭解。 4.0 結論 雖然本發明之數個實施例已被描述於上,但應理解其 僅藉由範例而被提供,而非限制。熟悉相關技術人士將瞭 解其形式及細節上之改變可被執行於其中而不背離本發明 之精神及範圍。因此本發明不應由任何上述範例實施例所 限制,而應僅依下列申請專利範圍及其同等物來界定。 【圖式簡單說明】 後附圖形(其被倂入於此並形成說明書之一部分)說 明本發明’並連同其敘述,進一步用以解釋本發明之原理 且致使熟悉相關技術人士得以製造及使用本發明。 圖1A顯示一示範RFID標籤之方塊圖,依據本發明之 -72- (69) (69)200412217 一實施例。 圖1B及1C顯示示範RFID標籤之詳細視圖,依據本 發明之實施例。 圖2A及2B個別地顯示一示範晶粒之平面及側視圖。 圖2C及2D顯示一安裝有一晶粒之基底的部分,依據 本發明之範例實施例。 圖3係一流程圖,其說明一連續輥(r〇ll)標籤組裝操 作。 圖4A及4B個別爲具有附加至支撐表面之多晶粒的晶 圓之平面及側視圖。 圖5係一具有附加至支撐表面之分離晶粒的晶圓之視 圖。 圖6顯示一流程圖,其提供從第一表面至第二表面轉 移晶粒的步驟,依據本發明之實施例。 圖7顯示一流程圖,其提供使用一黏著劑表面以從第 一表面轉移多數晶粒至第二表面的步驟。 圖8-10顯示多數使用一黏著劑以從第一表面被轉移至 第二表面的多數晶粒之視圖,依據圖7之製程。 圖1 1係一流程圖,其說明將一 “墊朝上,,晶粒轉移至 一標籤基底上。 圖12A及12B個別爲接觸與一支撐表面及一轉移表面 之多數晶粒的平面及側視圖。 圖1 3係安裝至一轉移表面之多數晶粒的視圖。 匱! 14係一接觸與一轉移表面及一標籤基底之“墊朝上 (70) (70)200412217 ,’定向的晶粒之視圖。 圖1 5係一安裝至一標籤基底之“墊朝上”定向的晶粒 之視圖。 圖1 6係一流程圖,其說明將一 “墊朝下,,晶粒轉移至 一標籤基底上。 圖1 7係多數接觸與主要及次要轉移表面之晶粒的視圖 〇 圖1 8係多數安裝至一次要轉移表面之晶粒的視圖。 圖19係一接觸與一轉移表面及一標籤基底之“墊朝下 ”定向的晶粒之視圖。 圖2 0係一安裝至一標籤基底之“墊朝下”定向的晶粒 之視圖。 圖2 1顯示一流程圖,其提供使用一平行衝壓製程以從 第一表面轉移多數晶粒至第二表面的步驟,依據本發明之 實施例。 圖22-29顯示使用圖21之衝壓製程而被從第一表面轉 移至第二表面的多數晶粒之視圖。 圖3 0顯示一流程圖,其提供用以組裝RFID標籤之步 驟’依據本發明之實施例。 圖3 1-36顯示使用圖30之衝壓製程而被從一晶片載具 轉移至一基底的多數晶粒之視圖。 圖37-39顯示其包含多數個別基底之基底結構的視圖 〇 圖4 0-45顯示使用圖30之衝壓製程而被從一晶片載具 -74^ (71) (71)200412217 轉移至一基底的多數晶粒之視圖。 圖.46及47顯示形成電導體於一基底上之視圖.。 圖48 A及48B顯示一範例多桶晶粒轉移設備之視圖。 圖49顯示一流程圖,其提供使用多桶晶粒轉移設備以. 轉移晶粒的範例步驟。 圖5 0顯示一被應用於第一表面之多桶轉移晶粒的橫斷 面圖。 圖5 1及52顯示將晶粒轉移至第二表面之一多桶轉移設 備的橫斷面圖。 圖5 3顯示一內部具有晶粒之範例桶的橫斷面頂視圖, 依據本發明之一實施例。 圖5 4係一流程圖,其說明一後處理操作。 圖5 5及56係標籤組裝裝置之方塊圖。 圖5 7A及57B顯示流程圖,其提供用以製造一晶粒框 之步驟,依據本發明之實施例。 圖58_62顯不不冋製程步驟時之一晶圓的範例視圖, 於形成爲一晶粒框時,依據本發明之實施例。 圖6 3顯示一範例晶粒框之橫斷面圖,依據本發明之一 實施例。 圖6 4 A - 6 4 C顯示一安裝至黏著劑表面(並固持於晶粒 框)之劃線(scribed )晶圓的視圖。 圖65A及65B顯示圖64A-64C之劃線晶圓,其塗敷有 可固化材料,依據本發明之範例實施例。 圖6 6顯不一流程圖,其提供使用一晶粒框以轉移晶粒 -75 - (72) (72)200412217 之範例步驟,依據本發明之一實施例。 、 圖6 7顯示從一晶粒框被轉移至一基底帶之晶粒的方塊 圖,依據本發明之一範例實施例。 , 圖6 8 A及6 8 B顯示流程圖,其提供使用一晶粒框以轉 移晶粒之範例步驟,依據本發明之實施例。 圖6 9顯示一用以從晶粒框堆疊轉移晶粒至一基底結構 的系統,依據本發明之一範例實施例。 圖7〇顯示從晶粒框堆疊被轉移入一多桶晶粒轉移設備 之晶粒的方塊圖,依據本發明之一範例實施例。 圖7 1 —流程圖,其提供用以製造一晶粒框之步驟,依 據本發明之一範例實施例。 圖72、73 A及73B顯示一安裝至帶結構之一黏著劑表 面的分離晶粒之晶圓的視圖,依據本發明之範例實施例。 圖7 4顯示一用以形成硬化柵於帶結構中之系統,此帶 結構係支撐圖7 1 - 7 3中所示之分離晶粒,依據本發明之一 範例實施例。 圖75顯示一從硬化柵(如圖74中所示)被移動之晶粒 ,依據本發明之一範例實施例。 圖7 6顯示一流程圖,其提供用以製造一晶粒框之步驟 ,依據本發明之一範例實施例。 圖7 7顯不一安裝至帶結構之黏著劑表面的晶圓,此帶 結構包含一囊封硬化材料,依據本發明之一範例實施例。 圖78顯示一雷射’其被用以分離圖77之晶圓的晶粒並 被用以致使囊封硬化材料硬化,依據本發明之一範例實施 (73) 200412217 例0 圖79顯示一鋸子(saw)之透視圖,其被用以分離圖 77之一部分晶圓的晶粒.並被用以致使囊封硬化材料硬化爲 晶粒框’依據本發明之一範例實施例。 圖8 0顯示圖77之一部分晶圓的透視圖,其已被分離於 帶結構上’以一由囊封硬化材料所形成的晶粒框,依據本 發明之一範例實施例。 圖8 1顯示一晶粒框,其係由一已從帶結構被分開之囊 封硬化材料所形成,依據本發明之一範例實施例。 本發明將參考後附圖形而被描述。於圖形中,類似的 參考數字一般係指示完全相同、功能上類似、及/或結構 上類似的元件。參考數字之最左邊數位代表一元件所首先 出現的圖形。I; grain box 63 00. For illustrative purposes, the stack 6902 is shown as containing six die frames 6 3 0 a-f, but may contain any number of two or more die frames 6 3 0 0. As described above, each of the grain frames 6 3Ό 0 includes a hardened material 63 04 configured in the form of a gate 5 9 0 2. A plurality of openings 63 02 exist in each die frame 63 00, each of which holds a die 104 removably. The die frame 6 3 00 is aligned so that its corresponding opening 6 3 0 2 forms a row in the stack 6 9 0 2 (not shown in FIG. 6 9). At step 6 8 04, a removably held in the opening The grains in are transferred from at least one of the plurality of rows to the destination surface. In other words, one or more dies 104 are transferred from the stack 69 02 from one or more rows to the destination surface. The die 104 may be transferred from the stack 6902 in several ways. For example, as shown in FIG. 69, one or more stamped members 24 06 may be applied to corresponding rows of openings 63 02 in the stack 6902. A stamping member 2406 pushes the stack 6 9 02 to move the die 104 from the individual row of openings 6302 in the stack 6902 to the destination surface. A stamped member 2406 may be stepped to push out a single crystal grain 104 at a time. Any number of stamped members 2406 can be operated in parallel, such as the stamped members 2406a-c shown in the example of Figure 69, to increase the grain transfer rate. Other methods can be used to transfer the grains from the stack 6 9 0 2 [04] Including methods using a gas or vacuum source (to apply gas pressure, electrostatic force), picking and placing devices, and methods described elsewhere in this specification, or other known methods. In the following, reference is made to FIG. 6 8B to describe in detail another method of this method. Θ Note that the destination surface may be a base band or structure, as shown in FIG. 6 -56- (53) (53) 200412217. On the other hand, the destination surface may be a stamped or wafer carrier (as shown in Fig. 22), any intermediate or intermediate surface (such as a green or blue tape), or any other surface. Furthermore, the die 104 can be transferred to the destination surface with pads facing up or down, according to the orientation of the stack 6902. Stack 6902 can be inserted into a die placement device that holds and aligns individual die frames 630 in a stack and allows die to be transferred therefrom. FIG. 6B shows further details of an exemplary embodiment of the flowchart 6800. FIG. 68B will be described in conjunction with FIG. 70 for illustrative purposes. FIG. 70 shows a system 7000 for transferring grains from a grain frame 6300 using a multi-barrel grain transfer device 4802, according to an exemplary embodiment of the present invention. As shown in FIG. 70, the multi-barrel grain transfer device 4 8 02 contains a majority of the barrels 4 8 06a-c. Furthermore, the system 7000 includes a stack 6902 of a die frame 63 00, which includes first, second, third, and fourth die frames 63 0 Oa-d. The stack 6902 may contain any number of die frames 63 00. At step 6 802, a die frame stack is formed, each die frame includes a grid with a plurality of rectangular openings, wherein each opening of the most rectangular openings removably holds a die, and the corresponding die frame in the stack corresponds to The openings are aligned in a row. For example, as shown in FIG. 70, the die frames 63 00a-d of the die frame stack 6902 are aligned so that most of their rows 7002 are formed. Each row 7002 contains a die removably held in an opening in each die frame 63 00a-d. In step 6812, each of the hollow buckets of most hollow buckets is applied to one of the openings of the die frame stack Individual lines. For example, as shown in FIG. 70, a first row 7002a has the first bucket 4 8 06a to which it is supplied, and a second row 7002b (54) (54) 200412217 has the second bucket 4 to which it is supplied. 8 06b, and a third row 7002c has a third bucket 4806c to which it is supplied. At step 6 8 1 4, the crystal grains removably held in the openings of the individual opening rows are caused to move into the hollow barrels in parallel. As shown in Fig. 70, the crystal grains 104, which are removably held in the crystal grain frames 63 00a-63 00dz, are caused to be moved into the barrel 4 008. The die 104 may be caused to move into the hollow barrel 4806 by vacuum, by gas pressure, by a mechanical mechanism, or by other mechanisms described elsewhere in this specification or otherwise known. At steps 6816 ', steps 6812 and 6814 are repeated until one or more barrels 4806a-c become full, until stack 69 02 runs out of grains, or when any number of grains 104 have been moved from stack 6902. At step 68 1 8, the grains from each hollow bucket are placed on the surface until the stack of grains contained in each hollow bucket is substantially exhausted. Therefore, the grains 104 from the hollow barrel 4 8 06 can be placed on the destination of the target surface 'until the grains 104 in the hollow barrel 4 8 0 6 are exhausted, or until the surface is full of grains 104 Or until any number of grains 104 have been transferred. As mentioned above, the 'grain 104 may be placed from the barrel 4806 by mechanical mechanisms, by vacuum, by gas pressure, or by other mechanisms described elsewhere in this specification or otherwise known. Therefore, the 'grain frame 63 00' can be used in a variety of ways to transfer grains to a target surface. Furthermore, the grain frame 6300 can be combined with any other grain transfer mechanism and process described elsewhere in this specification to provide an enhanced grain transfer mechanism and process. Further exemplary die frame embodiments are described in the following sections for illustrative purposes. -58- (55) (55) 200412217 2. 1. 4. 1 Die frame formed in a tape structure: In one embodiment, the die frame can be formed with a flexible: flat, tape structure similar to the "blue tape" used to mount wafers / die , Or "green tape". The tape structure is manufactured to contain a hardenable material or substance. A wafer is mounted to the tape structure and is separated into a plurality of grains. The tape structure is processed so that a hardened gate structure is formed. In the belt structure, it removably holds most of the crystal grains. FIG. 7 shows a flow chart 7 100, which provides steps for manufacturing the crystal grain frame or the crystal grain supporting frame, according to one of the present invention. Example embodiment. Flowchart 71 00 is described with reference to Figures 72, 73 A, 73B, and 74 for illustrative purposes. Flowchart 7100 starts at step 7102. At step 7102, a wafer containing most die Mounted to the surface of a strip structure. For example, as described above, FIG. 4B shows a wafer 400 mounted to an example support surface 404. As shown in FIG. 4A, the wafer 400 includes a plurality of dies 104. In this embodiment, The wafer 400 is mounted in a manner similar to the tape structure. The tape structure The surface and / or the wafer 400 may have an adhesive material applied thereon to adhere the wafer 400 to a tape structure. The tape structure is described in more detail below. At step 7 04, a trench gate is Most die formed on the surface of the wafer to separate the tape structure. For example, FIG. 72 shows a wafer 400 mounted on the surface 7202 of a tape structure 7200, according to an exemplary embodiment of the present invention. The wafer 400 is separated The majority of the die 104 on the band structure 7200, according to any conventional wafer separation technology, includes scoring or separating the wafer 400 by sawing, laser, mechanical or chemical etching, and other techniques. Separation (56) (56) 200412217 produces a trench 5 904 and a grid 5 9 02 in wafer 400. The band structure 7200 is a flexible structure that contains a hardened or curable material that can be processed by several techniques Is caused to be hardened. For example, the band structure 7200 may include a material that may be caused to be hardened by supplying light (including by supplying ultraviolet (UV) or other frequency band light). On the other hand, the band structure 7200 may include a Material, which can be supplied by solid, liquid Or gas is caused to harden, and these solid, liquid, or gas systems interact with the material of the belt structure 7200 to harden or solidify a portion of the belt structure 7200. All or part of the belt structure 7200 may include that it may be caused to harden For example, FIG. 73A shows a cross-sectional view of one of the belt structures 72 00, which is a single layer structure with a curable or hardenable material penetrating. On the other hand, FIG. 73B shows that the belt structure 7200 is a multilayer structure, It includes a layer 7302 of a curable or hardenable material. The layer 7302 can be made as a tape structure 7200, or can be spread, coated, or sprayed onto the tape structure 7200. For example, the curable or hardenable material may be a photoresist material applied to the belt structure 7200 or an epoxide. The tape structure 7200 may further include a layer of paper, tape, polymer, or other material to provide structural support. Note that steps 7102 and 7104 may be performed by a structure described herein or otherwise known; and may be performed by the same structure, or different structures. For example, a wafer preparation module can perform steps 71 02 and 7104. An example of this wafer preparation module is further described in Chapter 3 below. 0-3 · 2. The wafer preparation module may include a wafer supply device for supplying a wafer to the tape structure 7200, and / or may include a wafer cutting device for separating / cutting the wafer on the surface 7 202 . (57) (57) 200412217 • At step 7106, the belt structure which can be accessed through the trench of the gate is caused to harden into a gate structure. For example, Figure 74 shows an example system 7400. A portion of the band structure 7200 that is made accessible through the trench 5904 of the gate 5902 is hardened into a gate-like structure. As shown in Fig. 74, a hardener source 74 02 transmits a hardener 7404 toward the separated wafer 400 and the tape structure 7200. Due to the location of the grain 104, the hardener 7404 penetrates the groove 5 904 to reach the band structure 7200 and is located on the peripheral region. Therefore, the portion of the belt structure 7 2 0 which can be accessed through the trench 5 904 and located in the peripheral region is caused to harden, and it is shown individually as the hardened trench portion 7410 and the hardened peripheral region 7420. The part of the belt structure 7200 which cannot access the hardener 7404 (because the supply of the hardener 7404 is blocked by the grain 104) is not hardened. For example, FIG. 74 shows an example portion 7430 of its unhardened belt structure 7200. The hardener source 74 02 may include various sources of hardeners, depending on the type of hardened or curable material in the belt structure 7 2 0. For example, the hardener source 7 402 may include a light source and individual optical devices, including a UV light source or an infrared (IR) light source, for materials that harden upon exposure to light. For example, the hardening material may be a photoresist material. In this embodiment, the hardener 7404 can be light, such as light in the UV, IR, or other frequency bands. On the other hand, the hardener source 74 02 may include a gas or liquid supply to supply or spray the gas or liquid toward the separated wafer 400 and the tape structure 7 200. For example, the hardener 7404 may be an epoxide of a two-group epoxide to react with the corresponding epoxide contained in the band structure 7200. Other hardener sources and hardeners can also be used in the present invention, including heat sources. Thus, a die frame 7460 is formed. The crystals formed according to the flowchart 7100 (58) (58) 200412217 The grain frame 7460 removably holds the majority of the crystal grains 104. Therefore, one or more of the plurality of grains 104 can be moved from the grid structure of the grain frame 7460 to a target surface. FIG. 75 shows a die frame 7460 that includes an example grid structure 7500. The die frame 7460 is held by the die frame holder 6 702. As shown in Fig. 75, a die 104 is moved from a die frame 7460 to a substrate 6712. In the example of FIG. 75, the die 104 is moved by a stamped member 2406. The die 104 may be moved from the die frame 7460 in a variety of ways, including by stamping, action by gas, and any other means described elsewhere in this specification or otherwise known. Note that each of the non-hardened regions 743 0 may or may not be split from the grain frame 7460 when individual grains 104 are moved from the grain frame 74 60. The die frame 74 6 0 can be used to transfer the die 104 to a target surface in a variety of ways, including any method for transferring die described elsewhere in this specification. Furthermore, the die frame 7460 may be combined with any other die transfer mechanism and process described elsewhere in this specification to provide an enhanced die transfer mechanism and process. 2. 1. 4. 2 A die frame formed by a loosely encapsulated hardenable material. In one embodiment, a die frame can be formed on a flat tape structure, similar to a "blue tape" used to mount wafer die. Or "green belt." The band structure is made to contain an encapsulated, loosenable material or substance. A wafer is mounted to a tape structure and is separated into a plurality of dies. The process of separating the wafer into dies will destroy the tape structure, which relaxes the encapsulation material. The slack material hardens to produce a hardened gate structure on the band structure, which can be removed to retain most of the grains -62- (59) (59) 200412217. The remaining band structure can then be optionally removed. FIG. 76 shows a flowchart 7600, which provides steps for manufacturing such a die frame or a crystal support frame, according to another exemplary embodiment of the present invention. Flowchart 7600 will be described below in conjunction with Figures 7 7-8 2 for illustrative purposes. The flowchart 7600 starts at step 7602. At step 7602, a wafer containing a plurality of dies is mounted to a surface of a tape structure, wherein the tape structure includes an encapsulated relaxable or hardenable material. For example, as described above, FIG. 4B shows a wafer 400 mounted to an example support surface 404. In this embodiment, the wafer 400 is similarly mounted to a tape structure. However, in the current embodiment, the tape structure includes an encapsulated hardened or curable material that can be relaxed and hardened. For example, FIG. 77 shows a surface 7706 mounted to a belt structure 7702. FIG. The surface 7706 and / or the wafer 400 may have a coated adhesive material for bonding the wafer 400 to the surface 7706. The band structure 7702 may be a single or multilayer structure. An exemplary multilayer structure with a band structure 7 702 is shown in FIG. 77. As shown in Figure 77, the band structure 7702 includes a layer of 7704. Layer 7740 contains an encapsulated hardened material that can be relaxed and hardened. For example, layer 7704 may contain a gas, liquid, or solid that is relaxed from layer 7704 and will harden when a suitable agent is applied to layer 77 04. The operation and structure of layer 7 704 is further described below. The band structure 7702 is generally flexible, but may also be rigid. As shown in the example embodiment of FIG. 77, the tape structure 7702 may include a tape layer 7708 for additional structural support, although the tape layer 7708 is not necessary. The tape layer 7 70 8 can be made from a variety of materials. For example, the tape layer 7708 may be paper, poly (60) (60) 200412217 compound, base material 'glass, metal or metal / alloy combination, plastic, or other suitable substance, or a combination thereof. At step 7604 ', the trench grid of the wafer is formed to separate most of the grains on the surface of the strip structure, which includes damaging the surface of the strip structure in the trench such that the hardened material is encapsulated and hardened into a grid in the trench The hardened material is in the trench of the gate. For example, FIG. 78 shows a cross-sectional view of a wafer 400 separated into dies 104 on a surface 7 706 with a structure 7702, according to an exemplary embodiment of the present invention. The separation of wafer 4 0 0 produces a trench 5 9 0 4 of grid 5 9 0 2 (similar to that shown in Figure 5 9). The wafer 400 can be separated into a plurality of dies 104 on the band structure 77 02. According to any conventional wafer separation technology, including scribe or separation of the wafer by sawing, laser, mechanical or chemical etching, and other techniques Round 400. For example, FIG. 78 shows a cross-sectional view of a wafer 400 that is separated into a plurality of dies 104 using a laser 78 10 according to an embodiment of the present invention. FIG. 7-9 shows a perspective view of a portion of a wafer 400 separated into a plurality of dies 104 using a saw 7910, according to another embodiment of the present invention. As described in step 7604, forming the grid of the trench destroys the surface of the band structure in the trench, so that the encapsulated hardening material in the trench is hardened into a grid-like hardened material. For example, as shown in FIGS. 78 and 79, the surface 7706 of the band structure 7 702 is broken. One example notch in surface 7706 is indicated as a notch 7820. A sufficient notch 7 820 is formed in the surface 7706 along the length of each groove 5 9 04 so that the hardened material it encapsulates substantially penetrates each groove 5 904. The notch 7 820 may have any width and depth required to relax the sufficient amount of the encapsulated hardened material. According to the specific separation technique used to generate the gap 7 8 20, then (61) (61) 200412217 The individual gap 7 8 2 0 can be an opening, a hole, a crack, or a scratch in the surface 7706. Figures 78 and 79 each show a loose hardened material 78 02 which is partially or completely inserted into a separate groove 5 904. Notch 7 820 Relaxation hardening material 7 8 02 Comes with layer 7702 of structure 7 7 04. The hardening material 7802 may be a gas, a liquid, a solid, or a combination thereof. For example, the material encapsulated in layer 7704 can be relaxed into a foam, gel, epoxide, or other liquid. The hardened material 7 8 0 2 can be caused to harden in a variety of ways. For example, in one embodiment, the hardened material 7 802 will harden when it encounters ambient air, or when it encounters a selected gas or combination of gases. In another embodiment, the hardened material 7 8 02 is hardened when it is heated by a specific wafer separation technique, such as by contact with a beam of a laser 7810 or by the action of a saw 7910. In another embodiment, the hardened material 7802 is hardened when it contacts or mixes with an epoxide or other material. In another embodiment, the layer 7 7 0 4 may include microencapsulated balls or beads that contain a hardened material. Balls or beads can rupture when the layer 7 704 is broken by a specific wafer separation technique. The hardened material is relaxed from the balls or beads and hardens when heated, when exposed to air or other gases, or otherwise. FIG. 80 shows a perspective view of a part of a separate wafer 400 on the band structure 7702. A hardening material 7802 is used to form a grid-shaped hardening material 8000 around a plurality of grains 104, according to an exemplary embodiment of the present invention. Note that steps 7602 and 7604 can be performed by the structure described herein or other known structures, and can be performed by the same structure or different structures ^ For example, 'a wafer preparation module can perform step 7 6 〇 2 and 7 6 〇4. This example (62) (62) 200412217 wafer preparation module is further described in Chapter 3 below. 0-3. 2. The wafer preparation module may include a wafer supply device for supplying wafers to the belt structure 7 7 02, and / or may include a wafer cutting device for separating / cutting wafers on the surface 7706. And used to damage the surface 7 7 06. For example, wafer cutting equipment may include a laser 78 10 and / or a saw 7910. At step 7606, the band structure is removed so that its grid-like hardened material removably holds the majority of the crystal grains. FIG. 81 shows a die frame 8100 with its own structure 7 7 02 removed, according to an exemplary embodiment of the present invention. The band structure 77 02 may be stripped, dissolved, engraved, or otherwise removed. The die frame 8100 is formed according to the flowchart 7600. The die frame 8100 can be used in a variety of ways to transfer grains to a target surface, including any of the ways described herein to transfer grains. Furthermore, the die frame 8 100 may be combined with any other die transfer mechanism and process described elsewhere in this specification to provide an enhanced die transfer mechanism and process. 2. 2 Post-processing As described with reference to Figure 3, in step. In step 3 10, post-processing is performed to complete the assembly of the RFID tag 100. FIG. 54 is a flowchart illustrating the execution of step 310 in more detail. This operation starts at step 5402 in which perforations are formed on the label substrate 1 1 6 between the labels 100. These perforations allow the user to separate the label 100 for individual placement on each object. At step 5404, each tag 100 is inspected to ensure proper assembly. This step includes ensuring proper placement of the associated electronic circuit 106 and die 104. (63) (63) 200412217 At step 5406, the continuous roll of the label 100 is cut and configured as a thin sheet. At step 5 40 8, the two adhesive substrates are applied to the label substrate 116. This adhesive substrate causes the tag 100 to be mounted to an object, such as a book or consumer product. 3. 〇 Label assembly equipment The present invention also relates to a label assembly equipment. Figures 5 5 and 56 are two tag assembly equipment utilizing the technology described herein. 3. 1 "Pad-Up" Assembly Equipment Figure 55 shows a "Pad-Up" Assembly Equipment 5500. Assembly equipment 5 5 00 Assemble the label in a "pad-up" manner, as described here. Therefore, the assembly device 5 5 0 0 performs the steps described herein with reference to FIGS. 3 and 11. The assembly equipment 5500 includes a support surface supplier 5502, a support surface collector 5 504, a wafer preparation module 5 5 06, a first die transfer module 5508, a transfer surface supplier 5510, and a transfer surface. Collector 5512, a second die transfer module 5 5 1 4, a label substrate supplier 5 5 1 6, a post-processing module 5518, an adhesive coating module 5 520, and a printing module 5 522 The support surface supplier 5502 and the support surface collector 5504 convey the support surface 404 in a certain direction, as shown by the arrow in FIG. 55. These components are scrolls. However, other suitable conveying mechanisms may be used. The wafer preparation module 5 5 0 6 performs steps 3 04 and 3 06. Therefore, the wafer preparation-67- (64) (64) 200412217 module 5 5 06 supplies the wafer 400 to the support surface 404. In addition, the wafer preparation module 5 5 06 separates most of the dies 104 on the wafer 400. The wafer preparation module 5 5 06 is implemented with an appropriate mechanism and a scribing device such as a laser. The first die transfer module 5 5 0 8 transfers the die 104 from the support surface 4 0 4 to the transfer surface 1 202. That is, the first die transfer module 5 5 0 8 performs step 1 102. Therefore, the first die transfer module 5 508 includes a piston, a roller, an air jet, and / or a punching device. The first die transfer module 5 5 0 8 may include an adhesive tape, a punched tape, a multi-barrel conveying mechanism, and / or a die frame, and other components associated with these components, such as the above, which are further used in the die Grain transfer. The first die transfer module 5 50 8 also includes elements for releasing the die 104 from the support surface 4 4 such as a heating element and / or a radiating device ° transfer surface supplier 55 10 and a transfer surface collector 5512 conveys the transfer surface 1202 in a certain direction, as shown by the arrow in FIG. 55. These components are scrolls. However, other suitable conveying mechanisms may be used. The second die transfer module 55 14 transfers the die 104 from the transfer surface 1 202 to the label substrate 1 16. Therefore, the second die transfer module 5 5 1 4 performs step 1 106. Therefore, the second die transfer module 55 to 14 includes a piston, a roller, an air jet, and / or a punching device. The second die transfer module 5 5 1 4 may include an adhesive tape, a stamped belt, a multi-barrel conveying mechanism, and / or a die frame, and other components associated with these components, such as the above, which are further used in the die Grain transfer. The second die transfer module 5 5 1 4 also includes elements for releasing the die 104 from the support surface 404, such as heating elements and / or radiation devices. -68- (65) (65) 200412217 The label substrate feeder 5 5 1 6 conveys the label substrate 1 1 6 toward the post-processing module group 5 5 1 8 as shown by the arrow in Figure 5 5. . . The label substrate feeder 5516 includes a roller. However, other suitable conveying mechanisms may be used. The post-processing module 5 5 1 8 performs the post-processing operation described here with reference to step 3 1 0. The adhesive application module 5 5 20 applies adhesive to the label substrate 116 according to step 1 104. To perform this step, the adhesive application module 5 5 20 includes a sprayer. However, the adhesive coating module 5 5 2 0 may use other suitable devices to perform this step. The printing and coating module 5 5 22 prints the relevant electronic circuit 106 and applies a coating to the label substrate 1 1 6 according to steps 1 108 and 1 1 10. Therefore, the printing and coating module 5 5 22 includes a screen printing module and a sprayer. However, the printing and coating module 5 5 22 may utilize other suitable devices such as inkjet, thermal spray equipment, and / or donation devices. 3. 2 "Pad-down" assembly equipment Figure 5 6 shows a "Pad-down" assembly equipment 5 600. The assembly device 5 6 00 assembles the label "pad down" as described here. Therefore, the assembly apparatus performs the steps described herein with reference to FIGS. 3 and 16. The assembly equipment 5 600 includes a support surface supplier 5 5 02, a support surface collector 5504, a wafer preparation module 5506, a first die transfer module 5 508, and a first transfer surface supplier. 5 5 i 〇, a second die transfer module 5 602, a second transfer surface supplier 5604, a first transfer surface collector 5112, a second transfer surface collector 5606, a label substrate supply ( 66) (66) 200412217 device 5 6 0 8, a third die transfer module 5 6 1 0, a post-processing module 5 5 5 6, an adhesive coating module 5 6 2 8 and a printing Module 5 6 2 6. The support surface supplier 5502 and the support surface collector 5504 transport the support surface 404 in a certain direction, as shown by the arrow in FIG. 56. These components are scrolls. However, other suitable conveying mechanisms may be used. The wafer preparation module 5 5 06 performs steps 3 04 and 3 06. Therefore, the wafer preparation module 5 506 supplies the wafer 400 to the support surface 404. In addition, the wafer preparation module 5 5 06 separates most of the dies 104 on the wafer 400. The wafer preparation module 5 5 06 is implemented with an appropriate mechanism and a scribing device such as a laser. The first die transfer module 5 5 08 transfers the die 104 from the support surface 404 to the transfer surface 1 202. That is, the first die transfer module 5 5 0 8 performs step 1 620. Therefore, the first die transfer module 5 5 08 includes a piston, a roller, an air jet, and / or a punching device. The first die transfer module 5 5 0 8 may include an adhesive tape, a stamped tape, a multi-barrel conveying mechanism and / or process, and / or a die frame, and other components associated with these components, such as the above It is further used for grain transfer. The first die transfer module 5 5 0 8 also includes elements, such as heating elements and / or radiation devices, for releasing the die 104 from the support surface 4 0 4. The first transfer surface supplier 5510 and the first transfer surface collector 5512 transport the transfer surface 1202 in a certain direction, as shown by an arrow in FIG. 56. These components are scrolls. However, other suitable conveying mechanisms may be used. The second grain transfer module 5 6 0 2 transfers the grains 104 from the transfer surface 1 2 0 2 to the second transfer surface 1 202. Therefore, the second die transfer module 5 602 performs step 1 622. Therefore, the second die transfer module 5602 includes a piston, a roller (67) (67) 200412217, an air jet, and / or a stamping device. The second die transfer module 5 602 may include an adhesive tape, a stamped tape, a multi-barrel conveying mechanism and / or process, and / or a die frame, and other components associated with these components, such as the above-mentioned further use For grain transfer. The second die transfer module 5 602 also includes elements for releasing the die 104 from the transfer surface 1 202, such as heating elements and / or radiation devices. The second transfer surface supplier 5510 and the second transfer surface collector 5512 transport the transfer surface 12 02 in a certain direction, as shown by an arrow in FIG. 56. These components are scrolls. However, other suitable conveying mechanisms may be used. The label substrate feeder 5 60 8 conveys the label substrate 116 toward the post-processing module 5 5 5 6 as shown by the arrow in FIG. 56. The label base feeder 5 60 8 includes a roller. However, other suitable conveying mechanisms may be used. The third die transfer module 56 10 transfers the die 104 from the second transfer surface 1 20 2 to the label substrate 116. Therefore, the third die transfer module 5610 performs steps 1 608. Therefore, the third die transfer module 56 10 includes a piston, a roller, an air jet, and / or a punching device. The third die transfer module 5 6 10 may include an adhesive tape, a stamped tape, a multi-barrel conveying mechanism and / or process, and / or a die frame, and other components associated with these components, such as the above It is further used for grain transfer. The third die transfer module 56 1 0 also includes components for releasing the die 104 from the second transfer surface 1202, such as heating elements and / or radiation devices. The adhesive application module 5 62 8 applies adhesive to the label substrate 1 16 according to step 1 606. To perform this step, the adhesive application module 5 628 includes a sprayer. However, the adhesive coating module 5 62 8 may utilize other suitable (68) (68) 200412217 devices to perform this step. The printing module 5 626 prints the relevant electronic circuit 106 according to step 1606. Therefore, the printing module 5 62 6 includes a screen printing assembly and a sprayer. However, the printing and coating module 5 626 may benefit from other suitable devices, such as inkjet, thermal spray equipment, and / or dedication devices. The post-processing module 5 5 5 6 performs the post-processing operation described herein with reference to step 310. Note that its "pad-down" device 5 600 (and other assembly equipment described herein) can also be adapted to transfer die directly from a support surface to a substrate, as taught by those skilled in the art Will understand. 4. 0 Conclusion Although several embodiments of the invention have been described above, it should be understood that they are provided by way of example only, and not limitation. Those skilled in the relevant art will understand that changes in form and details can be implemented therein without departing from the spirit and scope of the invention. Therefore, the present invention should not be limited by any of the above exemplary embodiments, but should be defined only by the scope of the following patent applications and their equivalents. [Brief Description of the Drawings] The following drawings (which are incorporated herein and form part of the description) illustrate the invention, and together with its description, further explain the principles of the invention and enable those skilled in the relevant art to make and use the invention. Fig. 1A shows a block diagram of an exemplary RFID tag, according to an embodiment of the invention -72- (69) (69) 200412217. 1B and 1C show detailed views of an exemplary RFID tag according to an embodiment of the present invention. 2A and 2B show plan and side views of an exemplary die individually. 2C and 2D show a portion of a substrate having a die mounted thereon, according to an exemplary embodiment of the present invention. Fig. 3 is a flowchart illustrating a continuous roll (roll) label assembling operation. 4A and 4B are respectively a plan view and a side view of a crystal circle having multiple crystal grains attached to a support surface. Fig. 5 is a view of a wafer having separated dies attached to a support surface. Figure 6 shows a flow chart that provides the steps of transferring grains from a first surface to a second surface, according to an embodiment of the invention. Figure 7 shows a flow chart that provides the steps of using an adhesive surface to transfer the majority of the crystal grains from the first surface to the second surface. Figures 8-10 show views of most grains using an adhesive to transfer from the first surface to the second surface, following the process of Figure 7. Figure 11 is a flow chart illustrating the transfer of a "pad up and die to a label substrate. Figures 12A and 12B are the planes and sides of most of the grains in contact with a support surface and a transfer surface, respectively. Views. Figure 13 is a view of the majority of the die mounted on a transfer surface. 14 is a contact with a transfer surface and a label substrate with "pad up (70) (70) 200412217, 'oriented die. Its view. Figure 15 is a view of a "pad-up" oriented die mounted to a label substrate. Figure 16 is a flow chart illustrating the transfer of a "pad down and the die to a label substrate. Figure 17 is a view of the majority of the grains in contact with the major and minor transfer surfaces. Figure 18 A view of the majority of the die mounted to the primary transfer surface. Figure 19 is a view of a die that contacts the "pad down" orientation of a transfer surface and a label substrate. Figure 20 is a view of a die mounted to a label substrate. View of the "pad down" oriented grains. Figure 21 shows a flowchart that provides the steps of transferring a majority of grains from a first surface to a second surface using a parallel stamping process, according to an embodiment of the invention. Figures 22-29 show views of the majority of the dies transferred from the first surface to the second surface using the stamping process of Figure 21. Figure 30 shows a flow chart that provides the steps for assembling an RFID tag according to the present invention An example. Figure 3 1-36 shows a view of the majority of the dies transferred from a wafer carrier to a substrate using the stamping process of Figure 30. Figures 37-39 show a view of the substrate structure containing most individual substrates. Figure 4 0-45 shows the use of Figure 30 View of the majority of the grains that were transferred from a wafer carrier -74 ^ (71) (71) 200412217 to a substrate by a stamping process. Figure. 46 and 47 show views forming electrical conductors on a substrate. . 48A and 48B show views of an example multi-barrel grain transfer device. Figure 49 shows a flowchart that provides the use of multi-barrel grain transfer equipment to. Example steps for transferring grains. Figure 50 shows a cross-sectional view of a multi-barrel transfer grain applied to the first surface. Figures 51 and 52 show cross-sectional views of a multi-barrel transfer device that transfers grains to a second surface. Figure 53 shows a cross-sectional top view of an example bucket with grains in it, according to an embodiment of the invention. Figure 54 is a flowchart illustrating a post-processing operation. Figure 5 5 and 56 are block diagrams of the label assembly device. Figures 5A and 57B show a flowchart that provides steps for manufacturing a die frame according to an embodiment of the present invention. 58-62 show an exemplary view of a wafer when the manufacturing process steps are not performed. When formed into a die frame, according to an embodiment of the present invention. Fig. 63 shows a cross-sectional view of an exemplary die frame according to an embodiment of the present invention. Figures 6 A-64C show views of a scribed wafer mounted on the surface of the adhesive (and held on the die frame). 65A and 65B show the scribe wafers of FIGS. 64A-64C, which are coated with a curable material, according to an exemplary embodiment of the present invention. FIG. 66 shows a flowchart, which provides exemplary steps for transferring a die using a die frame -75-(72) (72) 200412217, according to an embodiment of the present invention. Fig. 67 shows a block diagram of a die transferred from a die frame to a base tape, according to an exemplary embodiment of the present invention. Figures 6 8 A and 6 8 B show flowcharts that provide exemplary steps for transferring a die using a die frame, according to an embodiment of the present invention. FIG. 69 shows a system for transferring dies from a die frame stack to a base structure, according to an exemplary embodiment of the present invention. FIG. 70 shows a block diagram of a die transferred from a die frame stack into a multi-barrel die transfer apparatus, according to an exemplary embodiment of the present invention. FIG. 7 1-A flowchart illustrating steps for manufacturing a die frame according to an exemplary embodiment of the present invention. Figures 72, 73 A, and 73B show views of a wafer with separated dies mounted to the surface of an adhesive with a structure, according to an exemplary embodiment of the present invention. Fig. 74 shows a system for forming a hardened grid in a band structure which supports the separated grains shown in Figs. 7 1-73, according to an exemplary embodiment of the present invention. FIG. 75 shows a die that is moved from a hardened gate (as shown in FIG. 74), according to an exemplary embodiment of the present invention. FIG. 76 shows a flowchart that provides steps for manufacturing a die frame according to an exemplary embodiment of the present invention. FIG. 7 shows a wafer mounted on the adhesive surface of a tape structure including an encapsulated hardening material according to an exemplary embodiment of the present invention. FIG. 78 shows a laser which is used to separate the die of the wafer of FIG. 77 and is used to harden the encapsulating hardened material. According to an example implementation of the present invention (73) 200412217 Example 0 (Saw) a perspective view, which is used to separate a part of the wafer die of Figure 77. And used to cause the encapsulation hardening material to harden into a grain frame 'according to an exemplary embodiment of the present invention. FIG. 80 shows a perspective view of a portion of the wafer of FIG. 77, which has been separated from the tape structure and is formed with a die frame formed from an encapsulated hardened material, according to an exemplary embodiment of the present invention. Figure 81 shows a die frame formed from an encapsulated hardened material that has been separated from the belt structure, according to an exemplary embodiment of the present invention. The invention will be described with reference to the following drawings. In the drawings, similar reference numbers generally indicate identical, functionally similar, and / or structurally similar elements. The left-most digit of the reference number represents the graphic in which the element first appears.
[圖號說明] 100 RFID標籤 1 04 m 106 電子電路 114 天線 116 標籤基底 204a-d 接觸墊 21Oa-d 接觸區域 400 晶圓 4 0 2 a - η 歹!J -77- (74)200412217 404 支 撐 表 面 802 第 -- 表 面 804 第 二 表 面 1202 轉 移 表 面 1204 寬 度 1402 刻 痕 1502, 1504 表 面 1702 次 要 轉 移 表 面 1902 衝 壓 構 件 2200 衝 壓 帶 2202 胞 2204 導 引 洞 23 02 衝 壓 帶 主 體 23 04 黏 著 劑 帶 2402 衝 壓 設 備 2404 主 體 2406 衝 壓 構 件 2802 基 底 結 構 2804 塡 充 材 料 層 3402 塡 充 材 料 3 602 刮 平 元 件 3 604 過 旦 里 塡 充 材 料 3 902 導 引 洞 4 1 02 衝 壓 構 件[Illustration of drawing number] 100 RFID tag 1 04 m 106 electronic circuit 114 antenna 116 tag base 204a-d contact pad 21Oa-d contact area 400 wafer 4 0 2 a-η 歹! J -77- (74) 200412217 404 support Surface 802-Surface 804 Second surface 1202 Transfer surface 1204 Width 1402 Scoring 1502, 1504 Surface 1702 Secondary transfer surface 1902 Stamping member 2200 Stamping tape 2202 Cell 2204 Guide hole 23 02 Stamping tape body 23 04 Adhesive tape 2402 Stamping equipment 2404 Body 2406 Stamping member 2802 Base structure 2804 Filler material layer 3402 Filler material 3 602 Screed element 3 604 Filler material 3 902 Guide hole 4 1 02 Stamping member
-78- (75)200412217 44 0 2 空 腔 4 7 02 電 導 體 4 8 02 多 桶 晶 松 轉 移 設 備 4 8 04 主 體 4 8 0 6 桶 4 8 0 8 端 48 10 真 空 源 5 002 堆 5 0 04 端 5 102 胞 5 3 02 內 部 表 面 5 3 04 通 道 5 5 0 0 組 裝 設 備 5 5 0.2 支 撐 表 面 供 應 器 5 5 04 支 撐 表 面 收 集 器 5 5 06 晶 圓 備 製 模 組 5 5 0 8 第 一 晶 粒 轉 移 模 組 55 10 轉 移 表 面 供 應 器 55 12 轉 移 表 面 收 集 器 55 14 第 二 晶 粒 轉 移 模 組 55 16 標 籤 基 底 供 應 器 55 18 後 處 理 模 組 5 520 黏 著 劑 塗 敷 模 組 5 5 22 印 刷 模 組-78- (75) 200412217 44 0 2 cavity 4 7 02 electrical conductor 4 8 02 multi-barrel crystal pine transfer equipment 4 8 04 body 4 8 0 6 barrel 4 8 0 8 end 48 10 vacuum source 5 002 stack 5 0 04 End 5 102 Cell 5 3 02 Internal surface 5 3 04 Channel 5 5 0 0 Assembly equipment 5 5 0.2 Support surface supplier 5 5 04 Support surface collector 5 5 06 Wafer preparation module 5 5 0 8 First die Transfer module 55 10 Transfer surface feeder 55 12 Transfer surface collector 55 14 Second die transfer module 55 16 Label substrate feeder 55 18 Post-processing module 5 520 Adhesive coating module 5 5 22 Printing module
-79 (76) 200412217 5 5 5 6 後 5 600 組 5 602 第 5 604 第 5 606 第 5 608 標 56 10 第 5 626 印 5 628 黏 5 8 00 晶 5 8 02 5 902 柵 5 904 溝 6002 深 6004 厚 6 1 02 可 63 00 晶 6 3 02 開 63 04 硬 6402 晶 6404 黏 6406 晶 65 00 空 6 7 00 系 處理模組 裝設備 二晶粒轉移模組 二轉移表面供應器 二轉移表面收集器 籤基底供應器 三晶粒轉移模組 刷模組 著劑塗敷模組 圓 狀溝槽 槽 度 度 固化材料 粒框 □ 化材料 圓 著劑表面 圓框 間 統 -80- (77)200412217 6 702 晶粒框夾具 6 7 06 第一捲軸 6 7 08 弟—捲軸 67 10 基底帶 67 12 基底 69 02 堆疊 7 000 系統 7002 行 7200 帶結構 7202 表面 7 3 02 層 7400 系統 7 4 0.2 硬化劑源 7404 硬化劑 74 10 溝槽部分 7420 周邊區域 7 4 3 0 範例部分 7460 晶粒框 7 5 00 柵狀結構 7702 帶結構 7704 層 7 706 表面 7 708 帶層 7 8 02 硬化材料 (78)200412217 7 8 10 雷射 7 820 缺口 79 10 鋸 8 0 0 0 柵狀硬化材料 8 100 晶粒框-79 (76) 200412217 5 5 5 6 back 5 600 group 5 602 5 604 5 5 606 5 608 56 56 5 626 5 5 628 5 5 00 5 5 02 02 5 902 grid 5 904 trench 6002 deep 6004 thickness 6 1 02 can 63 00 crystal 6 3 02 open 63 04 hard 6402 crystal 6404 stick 6406 crystal 65 00 empty 6 7 00 series processing mold assembly equipment two grain transfer module two transfer surface supplier two transfer surface collector Signed the base supplier three die transfer module brush module coating agent coating module round groove groove degree curing material grain frame Die frame clamp 6 7 06 First reel 6 7 08 Brother—reel 67 10 base tape 67 12 base 69 02 stack 7 000 system 7002 row 7200 belt structure 7202 surface 7 3 02 layer 7400 system 7 4 0.2 hardener source 7404 harden Agent 74 10 Groove section 7420 Peripheral area 7 4 3 0 Example section 7460 Grain frame 7 5 00 Grid structure 7702 Band structure 7704 Layer 7 706 Surface 7 708 Band layer 7 8 02 Hardened material (78) 200412217 7 8 10 Thunder Shot 7 820 Notch 79 10 Saw 8 0 0 0 Grid-shaped hardened material 8 100 Grain frame
-82 --82-
Claims (1)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40010102P | 2002-08-02 | 2002-08-02 | |
US10/322,467 US7117581B2 (en) | 2002-08-02 | 2002-12-19 | Method for high volume assembly of radio frequency identification tags |
US10/322,701 US7102524B2 (en) | 2002-08-02 | 2002-12-19 | Die frame apparatus and method of transferring dies therewith |
US10/322,702 US6848162B2 (en) | 2002-08-02 | 2002-12-19 | System and method of transferring dies using an adhesive surface |
US10/322,718 US6915551B2 (en) | 2002-08-02 | 2002-12-19 | Multi-barrel die transfer apparatus and method for transferring dies therewith |
US10/429,803 US7023347B2 (en) | 2002-08-02 | 2003-05-06 | Method and system for forming a die frame and for transferring dies therewith |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200412217A true TW200412217A (en) | 2004-07-01 |
TWI226813B TWI226813B (en) | 2005-01-11 |
Family
ID=31499693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092121188A TWI226813B (en) | 2002-08-02 | 2003-08-01 | Method and apparatus for high volume assembly of radio frequency identification tags |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1545828A4 (en) |
JP (1) | JP2005535149A (en) |
AU (1) | AU2003257016B2 (en) |
CA (1) | CA2494487A1 (en) |
TW (1) | TWI226813B (en) |
WO (1) | WO2004012896A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050005434A1 (en) * | 2003-06-12 | 2005-01-13 | Matrics, Inc. | Method, system, and apparatus for high volume transfer of dies |
DE602006016425D1 (en) | 2005-04-06 | 2010-10-07 | Hallys Corp | DEVICE FOR PRODUCING ELECTRONIC COMPONENTS |
DE102005022780B4 (en) * | 2005-05-12 | 2017-12-28 | Infineon Technologies Ag | Semiconductor chips for tag applications and method for packaging semiconductor chips |
US7684781B2 (en) * | 2005-11-25 | 2010-03-23 | Semiconductor Energy Laboratory Co., Ltd | Semiconductor device |
US8067253B2 (en) | 2005-12-21 | 2011-11-29 | Avery Dennison Corporation | Electrical device and method of manufacturing electrical devices using film embossing techniques to embed integrated circuits into film |
EP2140407A1 (en) | 2007-04-26 | 2010-01-06 | Confidex OY | Rfid tag |
US7678667B2 (en) * | 2007-06-20 | 2010-03-16 | Silverbrook Research Pty Ltd | Method of bonding MEMS integrated circuits |
DE102008046742A1 (en) | 2008-09-11 | 2010-03-18 | Mtu Aero Engines Gmbh | Method for connecting components |
US20100072490A1 (en) * | 2008-09-24 | 2010-03-25 | Kerr Roger S | Low cost flexible display sheet |
US7879691B2 (en) | 2008-09-24 | 2011-02-01 | Eastman Kodak Company | Low cost die placement |
US8034663B2 (en) | 2008-09-24 | 2011-10-11 | Eastman Kodak Company | Low cost die release wafer |
US9633883B2 (en) | 2015-03-20 | 2017-04-25 | Rohinni, LLC | Apparatus for transfer of semiconductor devices |
US10504767B2 (en) * | 2016-11-23 | 2019-12-10 | Rohinni, LLC | Direct transfer apparatus for a pattern array of semiconductor device die |
US11075093B2 (en) | 2017-03-24 | 2021-07-27 | Cardlab Aps | Assembly of a carrier and a plurality of electrical circuits fixed thereto, and method of making the same |
KR102609560B1 (en) * | 2017-09-08 | 2023-12-04 | 삼성전자주식회사 | Semiconductor manufacturing apparatus |
US11094571B2 (en) | 2018-09-28 | 2021-08-17 | Rohinni, LLC | Apparatus to increase transferspeed of semiconductor devices with micro-adjustment |
JP6627001B1 (en) * | 2019-01-21 | 2019-12-25 | 株式会社東京精密 | Wafer peeling cleaning equipment |
US11217471B2 (en) * | 2019-03-06 | 2022-01-04 | Rohinni, LLC | Multi-axis movement for transfer of semiconductor devices |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55118690A (en) * | 1979-03-05 | 1980-09-11 | Matsushita Electric Ind Co Ltd | Device for carrying electronic part |
US5255430A (en) * | 1992-10-08 | 1993-10-26 | Atmel Corporation | Method of assembling a module for a smart card |
US6027027A (en) * | 1996-05-31 | 2000-02-22 | Lucent Technologies Inc. | Luggage tag assembly |
US6107920A (en) * | 1998-06-09 | 2000-08-22 | Motorola, Inc. | Radio frequency identification tag having an article integrated antenna |
US6451154B1 (en) * | 2000-02-18 | 2002-09-17 | Moore North America, Inc. | RFID manufacturing concepts |
DE10017431C2 (en) * | 2000-04-07 | 2002-05-23 | Melzer Maschinenbau Gmbh | Method and device for producing data carriers with an integrated transponder |
-
2003
- 2003-07-30 JP JP2005506084A patent/JP2005535149A/en active Pending
- 2003-07-30 AU AU2003257016A patent/AU2003257016B2/en not_active Ceased
- 2003-07-30 EP EP03766981A patent/EP1545828A4/en not_active Withdrawn
- 2003-07-30 WO PCT/US2003/023792 patent/WO2004012896A1/en active Application Filing
- 2003-07-30 CA CA002494487A patent/CA2494487A1/en not_active Abandoned
- 2003-08-01 TW TW092121188A patent/TWI226813B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1545828A1 (en) | 2005-06-29 |
AU2003257016A1 (en) | 2004-02-23 |
JP2005535149A (en) | 2005-11-17 |
AU2003257016B2 (en) | 2009-03-12 |
CA2494487A1 (en) | 2004-02-12 |
WO2004012896A1 (en) | 2004-02-12 |
EP1545828A4 (en) | 2008-07-23 |
TWI226813B (en) | 2005-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6848162B2 (en) | System and method of transferring dies using an adhesive surface | |
US7023347B2 (en) | Method and system for forming a die frame and for transferring dies therewith | |
TWI226813B (en) | Method and apparatus for high volume assembly of radio frequency identification tags | |
US7795076B2 (en) | Method, system, and apparatus for transfer of dies using a die plate having die cavities | |
US20070158024A1 (en) | Methods and systems for removing multiple die(s) from a surface | |
US8072333B2 (en) | RFID device and method of forming | |
US20060012020A1 (en) | Wafer-level assembly method for semiconductor devices | |
US20080124842A1 (en) | Method and apparatus for linear die transfer | |
US20070131016A1 (en) | Transferring die(s) from an intermediate surface to a substrate | |
JP3822043B2 (en) | Chip part assembly manufacturing method | |
US20100072490A1 (en) | Low cost flexible display sheet | |
JP4697228B2 (en) | Manufacturing method of electronic device | |
TW200539037A (en) | Method of manufacturing electronic device | |
KR20130108068A (en) | Manufacturing rfid inlays | |
US7772042B2 (en) | Solvent softening to allow die placement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |