TW200411732A - Reversal imprint technique - Google Patents

Reversal imprint technique Download PDF

Info

Publication number
TW200411732A
TW200411732A TW092112744A TW92112744A TW200411732A TW 200411732 A TW200411732 A TW 200411732A TW 092112744 A TW092112744 A TW 092112744A TW 92112744 A TW92112744 A TW 92112744A TW 200411732 A TW200411732 A TW 200411732A
Authority
TW
Taiwan
Prior art keywords
polymer
substrate
mold
patent application
temperature
Prior art date
Application number
TW092112744A
Other languages
Chinese (zh)
Other versions
TWI230975B (en
Inventor
xu-dong Huang
Li-Rong Bao
Xing Cheng
Ling-Jle J Guo
Stella W Pagn
F Yee Albert
Original Assignee
Agency Science Tech & Res
Univ Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/SG2002/000084 external-priority patent/WO2003096123A1/en
Application filed by Agency Science Tech & Res, Univ Michigan filed Critical Agency Science Tech & Res
Publication of TW200411732A publication Critical patent/TW200411732A/en
Application granted granted Critical
Publication of TWI230975B publication Critical patent/TWI230975B/en

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The present invention relates to a method for imprinting a micro-/nano-structure on a substrate, the method comprising (a) providing a mold containing a desired pattern or relief for a microstructure; (b) applying a polymer coating to the mold; and (c) transferring the polymer coating from the mold to a substrate under suitable temperature and pressure conditions to form an imprinted substrate having a desired micro-/nano-structure thereon.

Description

200411732 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於微米/奈米級結構以及藉逆轉印刻而形 成這種結構的方法。 【先前技術】 需要快速且經濟的製造出奈米級結構是發展奈米科學 與奈米技術時的主要驅動力。也稱作熱浮凸微影蝕刻的奈 米印刻微影蝕刻(NIL),是經由圖案硬質模具的浮凸處理, 藉讓聚合物光阻變形而產生厚度減小,該技術提供許多決 定性的技術優點,尤其是定義出奈米級圖案的低成本方法 (S. Y. Chou? R R. Krauss and P. J. Renstrom, Science, 272, 85(1996), S.Y· Chou,美國專利編號第5772905案)。已經證實NIL能定 義出具有橫向解析度小於6 nm的圖案特點(8.丫.〇1〇11,?· R. Krauss, W〇 Zhang, L. J. Guo and L. Zhuang, J. Vac. Sci. Technol. B,15, 2897(1997); S. Y. Chou P· R· Krauss,Microelectron· Eng” 35, 237(1997); B。Heidarl,I. Maximov and L. Montelius,J· Vac。Sci. Technol. B,18,3557(2000); A. Lebib,Y. Chen,J. Boumeix,F。 Carcenac,E. Cambrill, L. Couraud and H. Launois,Microelectron, Eng.,46,319(1999))。在傳統的NIL中,基板在能用硬質模具 進行浮凸處理之前,便先需要用聚合物層做旋轉塗佈。 Borzenko等人提出一種結合方法,其中基板與模具是用聚 合物進行旋轉塗佈處理(T· Borzenko, M· Tormen,G· Schmidt, L· W· Molenkamp and Η· Janssen,Appl. Phys. Lett·,79, 2246(2001)) 〇 雖然目前有一些奈米印刻技術可用,但是這些技術都 85347.doc 200411732 :或多個缺點。現在,對於能夠使用的基板種類有很 嚴^的限制’常常只有平板型硬質基板表面可以進行印 、處里此外,常常需要過度的高溫及/或壓力,會限制 由許多有潛力之基板上所產生的奈米結構種類。 *已、、工哎只,nil是具有高解析度,高產量以及低成本的 iU刻技術。然而’為了延伸該技術的應用範圍,能 在非平面表面上進行三維結構的奈米印刻處理是很吸引 人的,因為複雜的顯微裝置以及新的應用常常需要如 此之㈤已經使用許多技術來研究非平面表面的印刻處 理,該等技術都是憑藉用厚聚合物層對非平面表面進行 平一化以及多層光阻方法(x· Sun,L. Zhuang and S. Y. Chou,J. Vac。Sci.Techn〇1· B 16,(溯))。這些技術不只、需要許多處理 步騾,而且還牽涉到深蝕刻,以去除掉在形成期間所產 生的厚平坦化聚合物層,常常讓所形成之最終圖案或結 構的解析度以及精確度變差。 本發月人等已經開發出一種一新式的印刻技術,適合 汴夕不同的基板以及基板組合物。本發明可以在比目前 NIL中所使用還低的溫度與低的壓力下進行。比起傳統的 NIL,依據本發明的逆轉印刻方法提供許多獨特的優點, 讓非平面基板以及不容易用聚合物薄膜進行旋轉塗佈的 基板都能進行印刻處理,比如撓性聚合物基板。此外, 都能藉控制製程條件,使用逆轉印刻而製造出模具的正 向或負向複製物。 【發明内容】 85347.doc 200411732 在第一特點中,本發明提供一種在基板上印刻出微米/ 奈米結構的方法,該方法包括: (a) 提供一種包含顯微結構所需的圖案或離隙的模具; (b) 將聚合物塗佈層塗佈到該模具上;以及 (c) 在適當溫度與壓力條件下,從該模具上將聚合物塗 佈層轉移到基板上,以形成具有所需微米/奈米結構的印 刻基板。 取好,該模具是硬質模具,該硬質模具是由半導體, A黾貝,金屬以及其組合物所構成的群組來形成。通常, 該模具是在矽(Si)晶圓上的Si〇2或Si中形成,並用光學微 影钮刻技術或電子束微影蝕刻技術以及後續的乾蝕刻來 足義出圖案。將會了解到,其它模具種類也可以給本發 明用。 與包括熱塑性聚合物,熱/輻射可熟化預聚合物以及玻 璃或陶瓷前驅質的模具比較起來,適合在本發明中使用 的聚合物是由非常軟的材料來構成。已經發現到分子量 至少15000的聚甲基丙烯酸甲酯(PMMA)特別適合本發 明。然而將會了解到,其它材料也可以使用。 為了幫助聚合物從模具上脫離開到基板上,該模具在 將聚合物塗佈上去之前,便可以先用一個或多個表面活 性劑來處理。已經發現到111,111,211,211_全氟癸基_三氯石夕 甲垸的表面活性劑特別適合本發明。然而將會了解到, 與所使用之聚合物相容的其它表面活性劑也可以使用。 該聚合物最好是用旋轉塗怖而塗怖到模具上。這種旋 85347.doc 200411732 轉塗佈的塗佈技術是眾所周知的,而且可以在不同的傳 統微影蝕刻技術中發現到適當的實例。要達到在表面活 性劑所塗佈的模具上有本質均句的聚合物塗怖,溶劑的 選擇將會很重要。在極性溶劑中的聚合物溶液通常不會 在表面活性却】處理模具上形成連續性薄膜。已經發現到 甲苯/谷劑特別適合本發明。然而,與所使用之聚合物相 各的其^非極性溶劑也適用。實例包括二甲苯與四氫 喃,但不受限於此。 已經發現到拋光的Si晶圓以及撓性聚乙醯胺薄膜 (Kapton®)是本發明很適合的基板。然而將了解到,其它 基板也可適合。實例包括聚合物,半導體,介電質,金 屬以及其組合體,但不受限於此。 本發明的方法可應用於平面與非平面基板,包括已經 包含有一些圖案或離隙的基板。該方法能應用到已經包 含有一層或多層聚合物塗佈的基板上。例如,該方法可 以用來產生晶格結構,其中多層聚合物(比如聚合物格狀 物)是在基板上形成。 步驟(c)最好是在所需壓力與溫度下的預熱壓機中進 行。所使用的壓力與溫度將取決於所選取的模具,基板 以及聚合物。通常,使用比約丨〇 MPa還小的壓力。已經 發現到約5 MPa或更小的壓力很適合逆轉印刻PMMA聚 合物。本發明中可以使用從低到約3〇°C至聚合物玻璃轉 移温度(Tg)以上約90°C的溫度。 視溫度與聚合物塗佈層的平坦化程度,可以達到不同 85347.doc 200411732 的印刻效應。 Q此本發明的較佳實施例包括一種用於印刻出微米/ 冓到基板上的方法(如上所述),其中所塗体上去的 水口物塗体層在本質上是非平面型,而且該溫度在本質 上是比聚合物的破璃轉移溫度(Tg)還高。在這些條件下、, 逆轉印刻的行為是類似於傳統的肌,因為有相當多的聚 合物流體會依據模具的形狀,隨著聚合物的移動而發 生而且;t終的模具聚合物塗佈層是該模具的負向複 製物。 依據本發明的另一實施例,所塗佈上去的聚合物塗佈 層在本貝上疋非平面型,而且溫度在本質上是等於或低 於聚合物的玻璃轉移溫度(Tg)。在本實施例中,通常只有 在β模具凸出區域上的薄膜部分會被轉移到基板上。以 沒種万式,本實施例的方法是類似於甩液體墨水的的蓋 印万法。本實施例的方法造成具有正向模具複製品的模 具聚合物塗佈層。 依據本發明的另一實施例,所塗佈上去的聚合物塗佈 ^在本質上是平面型,而且溫度在本質上是等於或低於 聚合物的玻璃轉移溫度(Tg)。在本實施例中,會發生印刻 而不會有任何本質上橫向聚合物的移動,而且整個塗佈 聚合物層被轉移到基板上。在本發明的實施例下,最終 模具聚合物塗佈層是負向模具複製品。在該實施例中, 整個聚合物塗佈層被轉移到基板上,進一步的優點是達 到較低的殘餘厚度。 85347.doc -10- 200411732 二=!方法也可以使用相同的基板進行許多次,使 :二”合物層的層狀結構能夠形成。例如,每個聚 =匕=包含—些平行條紋(亦即形成格狀圖案),橫貫 =如,角)相鄰聚合物層的平行條蚊。藉此最終結構 會具有晶袼形態。 :::特點中’本發明提供一種基板,包含有藉依據 月"點之方法所產生的印刻微米/奈米結構。該 微未/奈米結構可以是由單—印刻聚合物層所形成。另— 方式是’可以由—些造成三維結構的聚合物層來形成, 比如晶格結構。 該微米/奈米結構適合使用於微影触刻,積體電路s量 子磁性儲存裝置,雷射,生物感測器,光感測器,顯微 電子機械系統(MEMS),生物MEMS以及分子電子裝置。 在第三特點中,本發明提供使用依據本發明第一特點 、方会X便在非平面或撓性基板上形成微米/奈米結構。 、在整個說明書中,除非文中有需要,否則,,包括”的用 字或比如“包含,,或“含有,,的變化都將被解讀成隱含所提 及的單元、數字或步驟,或是單元、數字或步騾的群組5 但是並不排除任何單元、數字或步驟,或是單元、數字 或步驟的群組。 已經包含在本說明書内的任何文件,行動,材料,裝 置,文獻或類似物件的討論,都只是為了提供本發明的 說明又件而已。任何或所有這些形成先前技術基礎或是 與本發明相關領域中的一般知識都不應被視為可允許 85347.doc -11 - 200411732 的’如同在本說明書中每個主張之優先權曰期之前便已 存在。 為了更清楚了解本發明,將會說明較佳的形式,並參 閱以下圖式以及實例。 【實施方式】 用以進行本發明的模式 實驗 本研究中使用二種圖案模具。該等模具是在矽(Si)晶圓 上的Si〇2做成,並用光學微影蝕刻且接著進行乾蝕刻處 理而定義出圖案。模具的特點是從2至50 μηι變動,且公稱 深度為190 nm。其它模具都具有7〇〇 nm週期且180至650 nm深度範圍的均勻格狀物。所有模具都用1Η,1Η,2ίί,2Η-全氟癸基-二氯石夕甲燒的表面活性劑進行處理,以提升聚 合物的脫離。所使用的基板是拋光的(1()〇)si晶圓並且是 撓性的,50 μηι厚的聚乙醯胺薄膜(Kapton⑧)。分子量 15000的聚甲基丙晞酸甲酯(pmma)使用於印刻處理。在 典型的逆轉印刻實驗中,用PMMA甲苯溶液,在旋轉速率 3000rpm下持續30秒對模具進行旋轉塗佈,並接著在ι〇5 C下加熱5分鐘以去除掉殘餘的溶劑。在預熱壓機中讓塗 佈的模具在基板上以5 MPa的壓力持續5分鐘進行擠壓。 該壓力一直持續,直到溫度下降到5〇艽以下為止。最後 讓該模具與基板脫離並隔離開。 結果與討論 在傳統的NIL中,聚合物薄膜在用硬質模具進行印刻處 85347.doc -12- 200411732 理之前,便先需要塗钸到基板上。然而,旋轉塗饰很難 在换性基板上進行,比如聚合物薄膜’限制傳統nil對這 種基板定義出圖案的處理能力。此外,傳統的nil視黏滯 聚合物流體來讓聚合物薄膜變形並產生厚度對比,而且 都需要上升的溫度與壓力(L· J· Heyderman,H· Schift,C. David,J. Gobrecht and T. Schweizer,Microelectron· Eng., 54,229(2000); H. C. Scheer,H. Schulz,T. Hoffmann and C· M. S. Torres, J. Vac. Sci. Technol. B5 16? 3917(1998); S. Zankovych, T. Hoffmann, J. Seekamp, J. U. Bruch and C. M. S. Torres,Nanotechnology,12,91(2001))。為了 達到可 靠的圖案轉移,通常是在Tg(玻璃轉移溫度)以上的70至90 °(:溫度下且在高達1〇 MPa的壓力下進行印刻處理(L. J· Heyderman,H. Schift, C. David, J. Gobrecht and T. Schweizer,Microelectron· Eng·,54,229(2000); H. C. Scheer,H. Schulz,丁· Hoffmann and C. M. S. Torres,J. Vac。 Sci. Technol. B, 16, 3917(1998);F. Gottschalch, T.200411732 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a micro / nano-scale structure and a method for forming such a structure by reverse transfer engraving. [Previous technology] The need to quickly and economically manufacture nanoscale structures is the main driving force in the development of nanoscience and nanotechnology. Nano-imprint lithography (NIL), also known as thermal embossing lithography, is embossed through a patterned hard mold to reduce the thickness of the polymer by deforming the photoresist of the polymer. This technology provides many decisive techniques Advantages, especially low-cost methods for defining nanoscale patterns (SY Chou? R R. Krauss and PJ Renstrom, Science, 272, 85 (1996), SY · Chou, US Patent No. 5772905). It has been confirmed that NIL can define patterns with a lateral resolution of less than 6 nm (8. ya.〇101〇, R. Krauss, W〇Zhang, LJ Guo and L. Zhuang, J. Vac. Sci. Technol B, 15, 2897 (1997); SY Chou P. Krauss, Microelectron. Eng "35, 237 (1997); B. Heidarl, I. Maximov and L. Montelius, J. Vac. Sci. Technol. B , 18, 3557 (2000); A. Lebib, Y. Chen, J. Boumeix, F. Carcenac, E. Cambrill, L. Couraud and H. Launois, Microelectron, Eng., 46,319 (1999)). In the traditional In NIL, before the substrate can be embossed with a hard mold, the polymer layer needs to be spin-coated. Borzenko et al. Proposed a combination method in which the substrate and the mold are spin-coated with a polymer (T Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp and Η Janssen, Appl. Phys. Lett., 79, 2246 (2001)) 〇 Although some nano-imprinting technologies are currently available, these technologies are all 85347.doc 200411732: One or more disadvantages. Currently, there are strict restrictions on the types of substrates that can be used. Only flat-type hard substrates can be printed and placed on the surface. In addition, excessive high temperature and / or pressure are often required, which will limit the types of nanostructures that can be produced on many potential substrates. It is a high-resolution, high-yield, and low-cost iU engraving technology. However, in order to extend the application range of this technology, it is very attractive to be able to perform nano-imprinting of three-dimensional structures on non-planar surfaces because of the complex display Microdevices and new applications often require this. Many technologies have been used to study the imprinting of non-planar surfaces. These technologies rely on flattening non-planar surfaces with thick polymer layers and multilayer photoresist methods (x ·· Sun, L. Zhuang and SY Chou, J. Vac. Sci. Technolo. B 16, (Retrospection). These technologies not only require many processing steps, but also involve deep etching to remove during the formation The resulting thick planarized polymer layer often deteriorates the resolution and accuracy of the final pattern or structure formed. Ben Fayue and others have developed a new type of engraving technology that is suitable for different substrates and substrate compositions. The present invention can be carried out at a lower temperature and lower pressure than those currently used in NIL. Compared with the conventional NIL, the reverse transfer engraving method according to the present invention provides many unique advantages, such that non-planar substrates and substrates that are not easily spin-coated with polymer films can be imprinted, such as flexible polymer substrates. In addition, by controlling the process conditions, the reverse transfer engraving can be used to produce positive or negative replicas of the mold. [Summary of the Invention] 85347.doc 200411732 In a first feature, the present invention provides a method for imprinting a micro / nano structure on a substrate, the method comprising: (a) providing a pattern or separation required by a microstructure Gap mold; (b) applying a polymer coating layer to the mold; and (c) transferring the polymer coating layer from the mold to a substrate under appropriate temperature and pressure conditions to form The required micro / nano structured imprint substrate. Taken well, the mold is a hard mold, and the hard mold is formed by a group consisting of a semiconductor, A shellfish, metal, and a combination thereof. Generally, the mold is formed in SiO 2 or Si on a silicon (Si) wafer, and an optical lithography button etching technique or an electron beam lithography etching technique and subsequent dry etching are used to fully define the pattern. It will be appreciated that other types of molds may be used for the present invention. Compared to molds including thermoplastic polymers, heat / radiation-curable prepolymers, and glass or ceramic precursors, polymers suitable for use in the present invention are composed of very soft materials. Polymethyl methacrylate (PMMA) having a molecular weight of at least 15,000 has been found to be particularly suitable for the present invention. It will be appreciated, however, that other materials may be used. To help release the polymer from the mold to the substrate, the mold can be treated with one or more surfactants before the polymer is applied. It has been found that the surfactants of 111,111,211,211_perfluorodecyl_trichlorosparite are particularly suitable for the present invention. It will be appreciated, however, that other surfactants compatible with the polymers used may also be used. The polymer is preferably applied to the mold by spin coating. This spin coating technique is well known, and suitable examples can be found in different traditional lithographic etching techniques. In order to achieve a uniform polymer coating on a surfactant-coated mold, the choice of solvent will be important. Polymer solutions in polar solvents usually do not form a continuous film on the surface active but processing mold. Toluene / cereals have been found to be particularly suitable for the present invention. However, other non-polar solvents corresponding to the polymer used are also applicable. Examples include, but are not limited to, xylene and tetrahydro. It has been found that polished Si wafers and flexible polyethylenimine films (Kapton®) are very suitable substrates for the present invention. It will be appreciated, however, that other substrates may be suitable. Examples include, but are not limited to, polymers, semiconductors, dielectrics, metals, and combinations thereof. The method of the invention can be applied to both planar and non-planar substrates, including substrates that already contain some patterns or gaps. This method can be applied to substrates that already contain one or more polymer coatings. For example, this method can be used to produce a lattice structure in which multilayer polymers (such as polymer lattices) are formed on a substrate. Step (c) is preferably performed in a preheating press at the required pressure and temperature. The pressure and temperature used will depend on the mold, substrate and polymer chosen. Generally, a pressure lower than about MPa is used. Pressures of about 5 MPa or less have been found to be suitable for reverse transfer engraved PMMA polymers. In the present invention, temperatures from as low as about 30 ° C to about 90 ° C above the polymer glass transition temperature (Tg) can be used. Depending on the temperature and the degree of planarization of the polymer coating layer, different imprinting effects can be achieved. This preferred embodiment of the present invention includes a method for imprinting micrometers / meters onto a substrate (as described above), wherein the nozzle coating layer on the coated body is non-planar in nature, and the temperature It is essentially higher than the glass transition temperature (Tg) of the polymer. Under these conditions, the behavior of reverse transfer engraving is similar to that of traditional muscles, because there are quite a lot of polymer fluids that will occur with the movement of the polymer depending on the shape of the mold; and the final polymer coating layer of the mold is A negative replica of the mold. According to another embodiment of the present invention, the applied polymer coating layer is non-planar on the substrate, and the temperature is substantially equal to or lower than the glass transition temperature (Tg) of the polymer. In this embodiment, generally, only a portion of the thin film on the projection area of the β mold is transferred to the substrate. In various ways, the method of this embodiment is similar to the stamping method of throwing liquid ink. The method of this example results in a mold polymer coating layer with a forward mold replica. According to another embodiment of the present invention, the applied polymer coating is planar in nature, and the temperature is substantially equal to or lower than the glass transition temperature (Tg) of the polymer. In this embodiment, the engraving occurs without any substantial lateral polymer movement, and the entire coated polymer layer is transferred to the substrate. Under embodiments of the present invention, the final mold polymer coating is a negative mold replica. In this embodiment, the entire polymer coating layer is transferred to the substrate, a further advantage is that a lower residual thickness is achieved. 85347.doc -10- 200411732 The two =! Method can also be performed many times using the same substrate, so that: the layer structure of the two-layer composite layer can be formed. For example, each poly = d = = contains some parallel stripes (also That is, a grid-like pattern is formed), transverse = eg, corner) parallel strip mosquitoes of adjacent polymer layers. The final structure will have the form of crystal pupa. ::: Features' The present invention provides a substrate including a borrowing month " Imprinted micro / nano structure produced by the dot method. The micro / nano structure can be formed by a single-imprinted polymer layer. In addition, the method can be a polymer layer that can create a three-dimensional structure The micro / nano structure is suitable for lithography, integrated circuits, quantum magnetic storage devices, lasers, biosensors, light sensors, microelectromechanical systems ( MEMS), bio-MEMS, and molecular electronic devices. In a third feature, the present invention provides the use of the first feature of the present invention, Fang X, to form a micro / nano structure on a non-planar or flexible substrate. Throughout the specification Unless the text There is a need, otherwise, the word "including" or variations such as "including," or "including," will be interpreted as implicitly referring to the unit, number, or step, or the unit, number, or step. Group 5 but does not exclude any unit, number or step, or a group of units, numbers or steps. Any discussion of documents, actions, materials, devices, literature, or the like that has been included in this specification is only for the purpose of providing an illustration and description of the present invention. Any or all of these that form the basis of prior art or general knowledge in the fields relevant to the present invention should not be considered as permitting 85347.doc -11-200411732 as' before the priority date of each claim in this specification It already exists. For a clearer understanding of the present invention, the preferred form will be explained, and refer to the following drawings and examples. [Embodiment] Mode experiment for carrying out the present invention In this study, two kinds of pattern molds were used. These molds are made of SiO2 on a silicon (Si) wafer, and are etched by optical lithography and then dry-etched to define a pattern. The mold is characterized by a variation from 2 to 50 μηι and a nominal depth of 190 nm. Other molds have a uniform lattice with a period of 700 nm and a depth range of 180 to 650 nm. All molds were treated with a 1Η, 1Η, 2ίί, 2Η-perfluorodecyl-dichlorite syrup surfactant to enhance the release of the polymer. The substrate used was a polished (1 () 〇) si wafer and was flexible, a 50 μm thick polyethylene film (Kapton (R)). Polymethylpropionate (pmma) with a molecular weight of 15,000 was used for imprinting. In a typical reverse transfer engraving experiment, the mold is spin-coated with a PMMA toluene solution at a rotation rate of 3000 rpm for 30 seconds, and then heated at 05 C for 5 minutes to remove the residual solvent. The coated mold was pressed on the substrate at a pressure of 5 MPa for 5 minutes in a preheating press. This pressure continues until the temperature drops below 50 ° F. Finally, the mold is separated from the substrate and isolated. Results and Discussion In traditional NIL, polymer films need to be applied to substrates before they are stamped with a hard mold 85347.doc -12- 200411732. However, spin coating is difficult to perform on transmutable substrates. For example, polymer films' limit the traditional nil's ability to define patterns on such substrates. In addition, conventional nil sees viscous polymer fluids to deform polymer films and produce thickness contrast, and both require elevated temperature and pressure (L.J. Heyderman, H. Schift, C. David, J. Gobrecht and T Schweizer, Microelectron. Eng., 54, 229 (2000); HC Scheer, H. Schulz, T. Hoffmann and C. MS Torres, J. Vac. Sci. Technol. B5 16? 3917 (1998); S. Zankovych , T. Hoffmann, J. Seekamp, JU Bruch and CMS Torres, Nanotechnology, 12, 91 (2001)). In order to achieve a reliable pattern transfer, it is usually 70 to 90 ° above the Tg (glass transition temperature) (: temperature and pressure at a pressure of up to 10 MPa (L. J. Heyderman, H. Schift, C David, J. Gobrecht and T. Schweizer, Microelectron · En ·, 54, 229 (2000); HC Scheer, H. Schulz, Ding · Hoffmann and CMS Torres, J. Vac. Sci. Technol. B, 16, 3917 (1998); F. Gottschalch, T.

Hoffmann,C. M. S. Torres,H. Schulz and H. Scheer, Solid-State Electron·,43, 1079(1999))。對傳統NIL技術的 某些改變,比如由Borzenko等人所開發的聚合物鍵結方 法(T· Bornzeko, M. Tormen,G. Schmidt,L. W. Molenkamp and H. Jassen,Appl· Phys. Lett·,79,2246 (2001)),會大 幅的降低溫度與壓力的需求。然而,Borzenko等人的聚 合物鍵結方法會有額外的缺點,即印刻處理後較厚的殘 餘層,讓後續的圖案轉移變得很複雜。 85347.doc -13- 200411732 與傳統的NIL不同’依據本發明的逆轉印刻技術是一種 對撓性基板定義出圖案的方便且可靠的方法。此外,視 聚合物塗佈模具的平坦化程度以及印刻的溫度而定,可 以觀祭到三種獨立的圖案移模式。可以在Tg以下低到約 3 0 °C的溫度下,且在壓力低到約1 MPa下,達到成功且可 靠的圖案轉移。 圖1是以示意圖的方式顯示出與傳統NIL做比較的三種 逆轉印刻模式。在傳統的NIL(圖1(a))中,是在遠高於Tg 的/jut度下將模具壓在平面聚合物薄膜上。在印刻期間, 隨著材料依據模具形狀而變形,會發生相當多的聚合物 流體。在遠高於Tg的溫度下,類似的聚合物流體也會在 逆轉印刻中發生。即使聚合物薄膜並不是平坦化,如圖 1 (b)所示,在模具凸出區域上的材料可以在印刻處理時被 播壓到周圍的凹洞中。在這種條件下,逆轉印刻的行為 是非常類似於傳統的NIL。因為在此情形下的用於印刻處 理的襯底機構是聚合物黏滯性流體,所以我們稱這種印 刻模式為”浮凸印刻,’。 逆轉印刻比起傳統印刻的獨特優點是,也可以在丁§附 近或甚至稍微低於Tg的溫度下將圖案轉移到基板上。在 此溫度範圍中,印刻結果是大幅的取決於對模具進行旋 轉塗佈處理後的平坦化程度。對於具有非平坦化塗佈的 模具’只有模具凸出區域上的薄膜會被轉移到基板上, 如圖1 (c)所示。因為該方法類似於用液體墨水的蓋印方 法,所以這種印刻模式稱作“塗墨印刻,,。與浮凸印刻不 85347.doc -14- 200411732 同的是,塗墨印刻會產生正向圖案。 然而,如果塗佈聚合物薄膜在旋轉塗佈後是稍微的平 面時,則整個塗佈聚合物薄膜都可以在Tg附近下進行印 刻處理時轉移到基板上,而不需要大尺寸的橫向聚合物 移動(圖1 (d))。我們稱這種印刻模式為“整層轉移,,。類似 於浮凸印刻模式,整層轉移模式也會造成模具的負向複 製物。 夂 從以上討論中,很清楚的,塗佈聚合物薄膜的表面平 坦化程度以及印刻溫度是決定最後印刻結果的很重要因 素。在底下的段落中,會討論印刻條件與最後結果之間 的定量相關性。 旋轉塗怖後的表面平坦化 在傳統NIL中一般是採用抗黏著劑對模具進行處理,以 提升聚合物的脫離。最好是在逆轉印刻中改變模具的表 面能量,以便改善聚合物層轉移到基板上。在本研究中 使用一種在傳統印刻(丁· Nishino, M. Megur。,K. Nakamae, Μ· Matsushita and Υ· Ueda,Langmuir,15, 4321 (1999))中 當作脫模劑的1H,1 H,2H,2H-全氟癸基·三氯矽甲烷來當作 脫模劑用。然而,需要開發出一種用於將pMMA旋轉塗佈 到抗黏著劑處理模具上的技術。因為處理模具的低表面 能量,讓極性溶劑中的PMMA溶液,比如氯苯,在旋轉塗 佈後將不會开> 成連續性薄膜。對照上來說,甲苯中的 PMMA溶液可以成功的旋轉塗佈到經表面活性劑處理過 的模具上。對於未經處理的表面來說,將pMMA甲苯溶液 85347.doc -15 - 200411732 會有相類似 万疋轉塗佈到經表面活性劑處理過的表面上 的薄膜品質與厚度。 由於:般模具的㈣,必須檢視旋轉塗㈣合物層的 坦化私度。對於具有較大尺寸的模具,很難得到平坦 匕的聚合物層。在通常的條打,對19G nm深具微米尺 寸特點的模具進行旋轉塗佈處理,通常會造成模具上的 一致性塗佈層。如果是次微米格狀模具,則平坦化程度 是旋轉塗佈中所使用之溶液濃度㈣烈函數,決定塗体 薄膜的厚度。塗佈薄膜的__般原子力顯微複製⑽m)斷面 分析顯示於圖2中。在旋轉塗佈之後,塗佈模具的步階高 度是取決於模具深度以及薄膜厚度。如圖2所示,我們用 塗佈模具的平均尖辛至凹谷高度,R_,來描述平坦化程 度。圖3摘要出Rmax變化是當作不同深度之格狀模具中溶 液濃度的函數。對於給定的特定深度,較高溶液濃度會 有較厚的薄膜,並造成較低的尺邮^戈較高的平坦化程度。 圖3中不同的平坦化程度已經是與最後的印刻結果有 相關性。在105°C的印刻溫度下,與卩乂乂八的Tg溫度相 同,當Rmax低到〜155 nm時,會發生整層轉移模式,而塗 墨印刻模式則疋在Rmax為〜168 nm以上時發生。對於155 至16S nm之間的Rmax,會發生這二種模式的結合。i〇5〇c 下不同印刻模式的區域是標示於圖3中。 不同的逆轉印刻模式 當考慮到二重要的印刻參數時,亦即平坦化程度與印 刻溫度’建構出印刻模式的圖式,如圖4所示。這些符號 85347.doc -16- 200411732 是表示不同模式與不同薄膜厚度的實驗資料。三個主要 區域定義出每個印刻模式發生時所必要的條件。在過渡 區域中,會發生二個或多個模式的組合。雖然傳統的NIL 通常只有在遠高於Tg的溫度下才會成功,但是依據本發 明的逆轉印刻可以用使用於比Tg還低且比Tg還高的較寬 溫度範圍中。我們已展示出在低到75。〇下發生塗墨印刻 與整層轉移,該溫度是比PMMA的Tg還低30°C。 圖4顯不出在i〇5°c下,當Rmax比約155 nm還低時會發整 層轉移。這種印刻圖案的實例是顯示於圖5中。可以達到 具非常少缺陷的可靠圖案轉移。整層轉移模式的重要特 點是一殘餘厚度(在圖5中遠低於1〇〇 nm)。當使用具相同 濃度的溶液時,Tg附近溫度下逆轉印刻後的殘餘厚度是Hoffmann, C. M. S. Torres, H. Schulz and H. Scheer, Solid-State Electron., 43, 1079 (1999)). Some changes to traditional NIL technology, such as the polymer bonding method developed by Borzenko et al. (T. Bornzeko, M. Tormen, G. Schmidt, LW Molenkamp and H. Jassen, Appl. Phys. Lett., 79 , 2246 (2001)), will greatly reduce the temperature and pressure requirements. However, the polymer bonding method of Borzenko et al. Has the additional disadvantage that the thicker residual layer after the imprinting process complicates the subsequent pattern transfer. 85347.doc -13- 200411732 Different from conventional NIL ', the reverse transfer engraving technique according to the present invention is a convenient and reliable method for defining a pattern on a flexible substrate. In addition, depending on the flatness of the polymer coating mold and the temperature of the engraving, three independent pattern shift modes can be observed. Successful and reliable pattern transfer can be achieved at temperatures as low as about 30 ° C below Tg and as low as about 1 MPa. Fig. 1 is a schematic diagram showing three reverse transfer engraving modes compared with the conventional NIL. In the conventional NIL (Fig. 1 (a)), the mold is pressed onto a flat polymer film at a degree of / jut much higher than Tg. During engraving, as the material deforms according to the shape of the mold, a considerable amount of polymer fluid occurs. At temperatures well above Tg, similar polymer fluids can also occur during reverse transfer engraving. Even if the polymer film is not flattened, as shown in Figure 1 (b), the material on the protruding area of the mold can be pushed into the surrounding recesses during the imprinting process. Under these conditions, the behavior of reverse transfer engraving is very similar to traditional NIL. Because the substrate mechanism used for imprinting in this case is a polymer viscous fluid, we call this imprinting mode "embossed imprinting,". The unique advantage of reverse transfer engraving over traditional imprinting is that it can also The pattern is transferred to the substrate near Ding § or even a temperature slightly lower than Tg. In this temperature range, the engraving result is greatly dependent on the degree of planarization after the spin coating process is performed on the mold. Only the film on the protruding area of the mold will be transferred to the substrate, as shown in Figure 1 (c). Because this method is similar to the overprinting method with liquid ink, this imprinting mode is called "Ink and engraved ,,. The same as embossing 85347.doc -14- 200411732, the ink engraving will produce a forward pattern. However, if the coated polymer film is slightly flat after spin coating, the entire coated polymer film can be transferred to the substrate during the imprinting process near Tg, without the need for large-sized lateral polymers. Move (Figure 1 (d)). We call this engraving mode "full-layer transfer." Similar to the embossed engraving mode, the full-layer transfer mode also causes negative copies of the mold. 夂 From the discussion above, it is clear that the polymer film is coated The degree of surface flatness and the temperature of the printing are important factors that determine the final printing result. In the following paragraphs, the quantitative correlation between the printing conditions and the final result will be discussed. The surface flattening after spin coating is traditional NIL Generally, the mold is treated with an anti-adhesive agent to improve the detachment of the polymer. It is best to change the surface energy of the mold in the reverse transfer engraving in order to improve the transfer of the polymer layer to the substrate. In this study, a traditional printing method was used. (D. Nishino, M. Megur., K. Nakamae, M. Matsushita and T. Ueda, Langmuir, 15, 4321 (1999)) as 1H, 1 H, 2H, 2H-perfluorodecane as release agent Trichlorosilane as a release agent. However, a technology for spin-coating pMMA onto an anti-adhesive treatment mold needs to be developed. Because of the low surface energy of the treatment mold Let the PMMA solution in a polar solvent, such as chlorobenzene, not turn into a continuous film after spin coating. In contrast, the PMMA solution in toluene can be successfully spin-coated onto a surface treated with a surfactant. For the untreated surface, pMMA toluene solution 85347.doc -15-200411732 will have similar quality and thickness to the film coated and transferred to the surface treated by surfactant. Since : For the general mold, it is necessary to check the frankness of the spin-coated compound layer. For molds with larger sizes, it is difficult to obtain a flat polymer layer. In ordinary strips, it has a micron depth of 19G nm The spin coating process of the dimensional characteristics of the mold usually results in a uniform coating layer on the mold. If it is a sub-micron grid mold, the degree of flatness is a strong function of the concentration of the solution used in spin coating, which determines the coating. The thickness of the bulk film. The general atomic force microcopy of the coating film (m) Sectional analysis is shown in Figure 2. After spin coating, the step height of the coating mold is determined by the mold depth and Film thickness. As shown in Figure 2, we use the average tip to valley height of the coating mold, R_ to describe the degree of flattening. Figure 3 summarizes the change in Rmax as the concentration of the solution in a grid-like mold with different depths. Function. For a given specific depth, a higher solution concentration will result in a thicker film, and will result in a lower ruler and a higher degree of planarization. The different degree of planarization in Figure 3 is already the same as the final imprint. The results are relevant. At the marking temperature of 105 ° C, it is the same as the Tg temperature of Yakuba. When Rmax is as low as ~ 155 nm, the whole-layer transfer mode occurs, while the ink-etching mode is at Rmax as Occurs above ~ 168 nm. For Rmax between 155 and 16S nm, a combination of these two modes occurs. The areas of the different imprinting modes under i50c are marked in Figure 3. Different reverse transfer engraving modes When two important engraving parameters are considered, that is, the degree of planarization and the engraving temperature, a pattern of the engraving mode is constructed, as shown in FIG. 4. These symbols 85347.doc -16- 200411732 are experimental data representing different modes and different film thicknesses. Three main areas define the conditions necessary for each engraving pattern to occur. In the transition area, a combination of two or more modes can occur. Although conventional NIL is usually successful only at temperatures much higher than Tg, the reverse transfer engraving according to the present invention can be used in a wider temperature range lower than Tg and higher than Tg. We have shown as low as 75. Ink engraving and full-layer transfer occur at 0 °, and the temperature is 30 ° C lower than the Tg of PMMA. Figure 4 does not show that at 105 ° C, a full-layer transfer occurs when the Rmax is lower than about 155 nm. An example of such an engraved pattern is shown in FIG. 5. Reliable pattern transfer with very few defects can be achieved. An important feature of the full-layer transfer mode is a residual thickness (well below 100 nm in Figure 5). When using a solution with the same concentration, the residual thickness after reverse transfer engraving at a temperature near Tg is

雖然整層轉移模式需要足夠的塗佈模具的表面平坦 化,但是在塗佈後較大的步階高度對於成功的塗墨模式Although the entire layer transfer mode requires sufficient surface flattening of the coating mold, a large step height after coating is necessary for a successful ink coating mode

時斷裂開。結果,能 膜會非常薄,而且很容易在印刻處理 能得到具相當平滑邊緣的可靠圖案轉 85347.doc -17- 200411732 移。 將PMMA逆轉印刻至撓性基板上 在逆轉印刻處理中,不需要將聚合物層旋轉塗佈到基 板上。這種獨特的特性讓某些不容易進行旋轉塗佈的基 板上可能可以產生圖案,例如撓性聚合物基板。我們很 成功的使用薇逆轉奈米印刻技術來將PMMA圖案轉移到 5〇 μΠ1厚的聚乙醯胺薄膜(KaPt〇n®)上,該薄膜被廣泛的 當作撓性電路中的基板。圖7顯示出用7%溶液對35〇 深格狀模具進行旋轉塗佈後在175t下進行逆轉印刻處 理所產生的PMMA圖案。撓性基板上的印刻顯示出在整個 印刻區域(〜2.5 cm2)上有很少缺陷的高度均勻性。圖7所 示的特足結果是在浮凸模式下進行印刻處理。塗墨模式 與整層轉移模式也會在撓性基板上發生,而且印刻結果 類似於在Si基板上所得到的。 將PMMA逆轉印刻至塗案基板上 本發明可以用來便於在非平^面上進行&米印刻, 而不需要平坦化。之前料非平面表面上奈米印刻微影 蝕刻的技術一般是憑靠厚聚合物層之非平面表面的平坦 化以及多層光阻方法。這些技術都需要許多步驟,並牵 涉到深蝕刻,以去除掉厚的平坦化聚合物層(這會讓印刻 微影蝕刻技術中的解析度與可信度變差)。本發明能用來 便於在非平面表面上進行奈米印刻,而不需任合平坦化 處理。 圖8顯示出使用本發明在有明顯結構之表面上進行印 85347.doc -18- 200411732 刻處理的示意圖。圖8(a)顯示出塗佈到圖案表面之前便先 旋轉塗佈到模具上的PMMA。然後在適當溫度與壓力條件 下將塗佈模具塗佈到圖案結構上(圖8(b))。當釋放開模具 時,基板便具有貼附到已存在之圖案基板上的聚合物圖 案。 圖9顯示出轉移到非平面基板上的聚合物圖案。該基板 是700 nm週期的Si02格狀物,具有1.5 μπι深度。該模具也 具有相同週期以及350 nm深度的格狀圖案,而且被塗佈 上表面活性劑。PMMA被旋轉塗佈到模具上,並且在圖案 基板上用5 MPa壓力在90°C下進行擠壓。具有模具格狀圖 案的整個PMMA層會被轉移到基板上,因為PMMA到基板 上的黏接性由於界面上表面能量的較大差異,所以是比 到模具上的黏接力還要更強。可以觀察到良好的圖案轉 移,而且殘餘的PMMA很薄,如從二不同角度所拍攝的 SEM顯微鏡圖所示(圖9)。用02RIE方法,如同一般奈米印 刻微影蝕刻技術中所使用到的,直接去除掉任何的薄殘 餘PMMA層。 圖9所顯示的方法可以重複許多次,藉以造成多層結 構。聚合物的每個連續層(包含有模具格狀圖案)都能以直 角塗佈到先前的薄層上。這會形成多層晶格結構。 由於圖9顯示出塗佈上圖案聚合物層而使得格狀物與 基板的格狀物是成直角,所以也可能讓聚合物格狀物塗 佈到基板的格狀物上,並且與基板的格狀物對齊。這會 讓格狀物的深度依所需要的做變化(比如增加)。 -19- 85347.doc 200411732 如果將PMMA塗佈模具印刻到格狀基板上的溫度上升 到時,殘餘層便會消失。収由於聚合物在表面活 性劑塗佈表面上的去除溼潤行為。 該聚合物印刻技術解決了非平面表面上奈米印刻微影 蝕刻所遭遇到的問題。該技術可以延伸到到產生不同的 三維結構。 摘要 我們已經成功的展示出一種逆轉印刻方法,將旋轉塗 佈聚合物層從硬質模具上轉移到基板上。三種不同的圖 案轉移杈式,亦即浮凸轉移,塗墨轉移與整層轉移,都 可以藉控制印刻溫度以及旋轉塗佈模具的表面平坦化程 度來達成。正向或複向的模具複製物可以在印刻處理後 得到。藉適當程度的平坦化,可以在低到Tg以下的3〇它 以及1 MPa壓力下,分別在塗墨與整層轉移模式中成功的 達成圖案轉移。這是比起傳統NIL很重要的優點,該傳統 NIL需要遠高於Tg的印刻溫度。此外,因為在這二種圖案 轉移模式中需要微小的聚合物移動,所以逆轉印刻對於 與聚合物流體有關的問題比較不敏感。 本發明人等已經開發出一種新的印刻技術,避免對基 板上旋轉塗佈聚合物層的需要。聚合物層是直接被旋轉 塗佈到模具上,而且藉在適當溫度與壓力下的印刻處理 而被轉移基板上。依據本發明的逆轉印刻方法比起傳統 的NIL,提供一項獨特的優點,讓無法輕易的用聚合物薄 膜進行旋轉塗佈處理的基板能被印刻上,比如撓性聚合 85347.doc -20- 200411732 物基板。 將NIL塗佈到非平面表面上的先前努力常常*馮去严 聚=物層之非平面表面的平坦化。這些技術牵㈣= 技術步風。此外’去除掉厚平坦化層的深#刻步驟會讓 解析度與可信度變差。目前的發明提供簡單的技術,對 非平面表面進行圖案處理,而不需要平坦化步·驟。在適 田的處理條件下,能很方便的製造出三維結構。 熟知該技術的人士將會了解到,可以在不偏離本發明 的精神與範圍下,對特定實施例中所示的本發明進行許 多的變動及/或改變,如同以廣範圍的方式所說明的一 般。因此該等實施例在所有方面上都被視為解說性而非 限定性。 【圖式簡單說明】 圖1顯示出在(a)傳統奈米印刻;(b)高出Tg溫度以上的 逆轉印刻;(c)在玻璃轉移溫度(Tg)附近之溫度下用非平 面模具的“塗墨”處理;(幻在Tg附近用平坦性模具的“整層 轉移”中圖案轉移處理的示意圖表示。 圖2顯示出在3〇〇〇 rpm下被塗佈上6%PmmA溶液的300 nm深格狀模具的原子力顯微複製斷面分析。 圖3頭示出在不同溶液3 〇〇〇 rpm下的旋轉塗佈處理後, 具不同深度之格狀模具中平均尖峰對凹谷的步階高度。 標定出105°C下的不同圖案轉移模式區域,虛線是表示二 模式之間的過渡區域。 圖4顯示出逆轉印刻模式對於印刻溫度以及塗佈模具 85347.doc -21 - 200411732 之步階高度的關係。符號是實驗資料,實線是不同模式 的外插邊界。 圖5顯示出105°C下使用具7%PMMA塗佈之350 nm深格 狀模具的逆轉印刻的掃描電子顯微鏡圖。印刻前的Rmax 是7 5 nm,而且會發生整層轉移模式。 圖6顯示出,105°C下具6%塗佈以及Rmax=305 nm之650 nm深格狀模具的塗墨處理結果的掃描電子顯微鏡圖。 圖7顯示出175°C下在50 μιη厚Kapton薄膜上進行逆轉 印刻所產生之PMMA圖案的掃描電子顯微鏡圖。用7%溶 液對350 nm深的模具進行旋轉塗佈處理。 圖8顯示出在結構表面上使用本發明的印刻處理示意 圖:(a)在塗佈到圖案基板上之前旋轉塗佈到模具上的 PMMA ; (b)低於Tg之溫度下對圖案結構進行印刻處理; (c)轉移到基板上的PMMA圖案。 圖9顯示出垂直於圖案1.5 μιη深通道Si02基板表面的印 刻PMMA格狀物的掃描電子顯微鏡圖(SEM): (a)沿著轉移 PMMA格狀物來看;(b)沿著基板上底下Si02格狀圖案來 看。 圖10顯示出在175 °C下轉移到圖案基板上的PMMA格狀 物的SEM圖,其中去除水分的處理已經去除掉殘餘的 PMMA層0 85347.doc -22-Breaks apart. As a result, the film can be very thin, and it is easy to obtain a reliable pattern with fairly smooth edges in the imprinting process. 85347.doc -17- 200411732. PMMA reverse transfer engraving on flexible substrates In the reverse transfer engraving process, it is not necessary to spin-coat a polymer layer onto a substrate. This unique feature makes it possible to create patterns on some substrates that are not easily spin-coated, such as flexible polymer substrates. We have successfully used the Wei reverse nanoimprinting technique to transfer PMMA patterns to 50 μΠ1 thick polyethylene film (KaPton®), which is widely used as a substrate in flexible circuits. Figure 7 shows the PMMA pattern produced by reverse transfer engraving at 175t after spin coating a 35 ° deep grid mold with a 7% solution. The imprint on the flexible substrate shows a high uniformity with few defects over the entire imprinted area (~ 2.5 cm2). The special result shown in FIG. 7 is that the engraving process is performed in the embossing mode. Ink mode and full-layer transfer mode also occur on flexible substrates, and the results are similar to those obtained on Si substrates. PMMA reverse transfer engraving onto a coated substrate The present invention can be used to facilitate & imprinting on non-planar surfaces without planarization. Nanolithography and lithography on non-planar surfaces of previous materials generally rely on the planarization of non-planar surfaces with thick polymer layers and multilayer photoresist methods. These techniques require many steps and involve deep etching to remove a thick, planarized polymer layer (this can degrade the resolution and reliability of the lithography technique). The invention can be used to facilitate nano-imprinting on non-planar surfaces without any planarization. Fig. 8 is a schematic diagram showing the use of the present invention to perform the engraving process on a surface having a distinct structure. Figure 8 (a) shows the PMMA spin-coated onto the mold before being applied to the pattern surface. The coating mold is then applied to the pattern structure under appropriate temperature and pressure conditions (Fig. 8 (b)). When the mold is released, the substrate has a polymer pattern attached to an existing pattern substrate. Figure 9 shows a polymer pattern transferred onto a non-planar substrate. The substrate is a Si02 lattice with a period of 700 nm and has a depth of 1.5 μm. The mold also has a grid pattern with the same period and a depth of 350 nm, and is coated with a surfactant. PMMA was spin-coated onto a mold, and extruded on a pattern substrate at a pressure of 5 MPa at 90 ° C. The entire PMMA layer with the mold grid pattern will be transferred to the substrate, because the adhesion of PMMA to the substrate is stronger than the adhesion force to the mold due to the large difference in surface energy on the interface. A good pattern shift can be observed, and the residual PMMA is very thin, as shown in the SEM micrographs taken from two different angles (Figure 9). Using the 02RIE method, as is commonly used in nanolithographic lithography, any thin residual PMMA layers are directly removed. The method shown in Fig. 9 can be repeated many times, thereby creating a multilayer structure. Each continuous layer of the polymer (containing the grid pattern) can be applied at right angles to the previous thin layer. This results in a multilayer lattice structure. Since FIG. 9 shows that the patterned polymer layer is applied so that the grids are at right angles to the grids of the substrate, it is also possible for the polymer grids to be coated on the grids of the substrate and The grid is aligned. This will allow the depth of the grid to be changed (eg increased) as needed. -19- 85347.doc 200411732 If the temperature at which the PMMA coating mold is imprinted on the grid substrate is raised, the residual layer will disappear. This is due to the dewetting behavior of the polymer on the surfactant-coated surface. The polymer imprinting technology solves the problems encountered in nanolithographic lithography on non-planar surfaces. The technique can be extended to produce different three-dimensional structures. Abstract We have successfully demonstrated a reverse transfer engraving method that transfers a spin-coated polymer layer from a hard mold to a substrate. Three different pattern transfer branches, namely embossed transfer, ink transfer and whole layer transfer, can be achieved by controlling the engraving temperature and the surface flatness of the spin coating mold. A forward or reverse mold copy can be obtained after the imprinting process. With the appropriate level of planarization, pattern transfer can be successfully achieved in ink application and full-layer transfer modes at pressures as low as 30% below Tg and 1 MPa. This is an important advantage over traditional NIL, which requires a marking temperature much higher than Tg. In addition, because minute polymer movement is required in these two pattern transfer modes, reverse transfer engraving is less sensitive to problems related to polymer fluids. The present inventors have developed a new imprinting technique that avoids the need for spin coating a polymer layer on a substrate. The polymer layer is spin-coated directly onto the mold, and is transferred to the substrate by imprinting at the appropriate temperature and pressure. Compared with conventional NIL, the reverse transfer engraving method according to the present invention provides a unique advantage, so that a substrate that cannot be easily spin-coated with a polymer film can be imprinted, such as flexible polymerization 85347.doc -20- 200411732 Object substrate. Previous efforts to apply NIL to non-planar surfaces often * Feng Quyanju = flattening of the non-planar surface of the layer. These technological frustrations = technological footsteps. In addition, the deep #etching step of removing the thick flattening layer will deteriorate the resolution and reliability. The present invention provides a simple technique for patterning a non-planar surface without the need for a planarization step. Under suitable processing conditions, three-dimensional structures can be easily manufactured. Those skilled in the art will appreciate that many variations and / or changes can be made to the invention shown in the specific embodiments without departing from the spirit and scope of the invention, as illustrated in a wide range of ways. general. These embodiments are therefore to be considered in all respects illustrative and not restrictive. [Schematic description] Figure 1 shows (a) traditional nano-engraving; (b) reverse transfer engraving above Tg temperature; (c) using a non-planar mold at a temperature near the glass transition temperature (Tg) "Ink coating" treatment; (Schematic representation of pattern transfer treatment in "full layer transfer" of a flat mold near Tg. Figure 2 shows 300 coated with a 6% PmmA solution at 3000 rpm. Atomic force microscopy cross-section analysis of the deep-lattice mold with nm. Figure 3 shows the steps of the average peak to concave valley in the grid-shaped mold with different depths after spin coating at different speeds of 3,000 rpm. Step height. The different pattern transfer mode regions at 105 ° C are calibrated, and the dotted line is the transition region between the two modes. Figure 4 shows the reverse transfer engraving mode for the printing temperature and the steps of the coating mold 85347.doc -21-200411732 The relationship between the step height. The symbol is experimental data, and the solid line is the extrapolated boundary of different modes. Figure 5 shows a scanning electron microscope image of the reverse transfer engraving at 105 ° C using a 350 nm deep grid mold with 7% PMMA coating. .Rmax before imprinting is 7 5 n m, and a full-layer transfer mode will occur. Figure 6 shows a scanning electron microscope image of the results of 6% coating at 105 ° C and the inking process of a 650 nm deep grid mold with Rmax = 305 nm. Figure 7 shows Scanning electron microscopy image of PMMA pattern produced by reverse transfer engraving on a 50 μm thick Kapton film at 175 ° C. Spin-coating process was performed on a 350 nm deep mold with 7% solution. Figure 8 shows the structure surface Schematic diagram of the imprinting process using the present invention: (a) PMMA spin-coated on a mold before coating on a pattern substrate; (b) imprinting the pattern structure at a temperature below Tg; (c) transfer to a substrate Figure 9 shows a scanning electron microscope (SEM) image of a PMMA grid imprinted on the surface of the Si02 substrate with a 1.5 μm deep channel perpendicular to the pattern. (A) View along the transferred PMMA grid; (b) View along the Si02 grid pattern on the substrate. Figure 10 shows the SEM image of the PMMA lattice transferred to the pattern substrate at 175 ° C, in which the moisture removal process has removed the remaining PMMA layer 0 85347. doc -22-

Claims (1)

200411732 拾1. 2。 3。 4。 5。 6· 7· 、申請專利範圍: 一種印刻出微米/奈米結構到基板上的方法,該方法包 括: (a) 提供一模具,該模具包含微米/奈米結構所需的圖案 或離隙(relief); (b) 將聚合物塗佈層塗佈到模具上;以及 (c) 從模具上將聚合物塗佈層轉移到基板上,在適當的溫 度與壓力條件下,以便形成具有所需顯微結構的的印 刻基板。 如申请專利範園第1項之方法,其中該模具是從包含有半 導體,介電質,金屬以及該等材料之結合物的群組中來 形成。 如申請專利範圍第2項之方法,其中該模具是藉光學微影 蝕刻技術或電子束微影蝕刻技術以及後續的乾蝕刻而被 定義出圖案。 如申請專利範圍第1項之方法,其中該聚合物是選取自由 熱塑性聚合物,熱/輻射熟化預聚合物以及玻璃或陶瓷前 驅質所構成的群組。 如申印專利範圍第4項之方法,其中該聚合物是聚甲基丙 缔酸甲酯(PMMA)。 如申請專利範圍第i項至第5項中任一項之方法,其中該 聚合物是在非極性溶劑的溶液中,以便達成在該模具上 本質上均勻的聚合物塗佈層。 如申請專利範圍第6項之方法,其中該溶劑是選取自由甲 85347.doc 200411732 私’ 一^甲麥以及四氫喃所構成的群組。 8 ·如申請專利範圍第7項之方法,其中該溶劑是甲苯。 9·如申請專利範圍第1項至第8項中任一項之方法,其中該 聚合物是用旋轉塗佈被塗佈到該模具上。 10·如申請專利範圍第1項至第9項中任一項之方法,其中該 模具疋在么佈聚合物之前’便先用一個或多個表面活性 劑進行處理。 11.如申請專利範圍第10項之方法,其中該表面活性劑是 111,111,211,211-全氟癸基-三氯矽甲烷。 12·如申請專利範圍第i項至第U項中任一項之方法,其中該 基板是選取自由聚合物,半導體,介電質,矽組件,金 屬以及該等材料的結合物所構成的群組。 13·如申請專利範圍第12項之方法,其中該基板是矽晶圓。 14·如申請專利範圍第12項之方法,其中該基板在該基板上 具有一個或多個圖案結構。 15·如申請專利範圍第12項之方法,其中該基板是撓性聚合 物薄膜,比如聚乙醯胺薄膜或聚酯。 16·如申請專利範圍第丨項至第丨5項中任一項之方法,其中該 步驟(c)是在加熱壓機上,在所需壓力與溫度下進行。 17·如申請專利範圍第丨6項之方法,其中該壓力是小於 5MPa。 ' 18·如申請專利範圍第16項之方法,其中該壓力是從約工…以 至約5MPa。 19·如申請專利範圍第1項至第18項中任一項之方法,其中該 85347.doc 200411732 溫度是從低於該聚合物之玻璃轉移溫度(Tg)上的約30°C 至Tg以上的約90°c。 20.如申請專利範圍第19項之方法,其中該塗佈的聚合物塗 佈層在本質上是非平面,而且該溫度在本質上是高於該 聚合物的玻璃轉移溫度(Tg)。 2 h如申請專利範圍第20項之方法,其中該溫度是比該聚合 物之玻璃轉移溫度(Tg)還高的約90°C。 22。 如申請專利範圍第19項之方法,其中該塗佈的聚合物塗 佈層在本質上是非平面,而且該溫度在本質上是等於或 低於該聚合物的玻璃轉移溫度(Tg)。 23。 如申請專利範圍第19項之方法,其中該塗佈的聚合物塗 怖層在本質上是平面,而且該溫度在本質上是等於或低 於該聚合物的玻璃轉移溫度(Tg)。 24。 如申請專利範圍第19項之方法,其中該溫度是約該聚合 物的玻璃轉移溫度(Tg)。 25β如申請專利範圍第19項之方法,其中該溫度是低於該聚 合物玻璃轉移溫度(Tg)的30°C。 26. 如申請專利範圍第1項之方法,其中該塗佈的聚合物塗佈 層在本質上是非平面,而且該溫度是低於該聚合物的玻 璃轉移溫度(Tg)。 27. 如申請專利範圍第26項之方法,其中該非平面基板在其 上包括格狀圖案。 28. 如申請專利範圍第27項之方法,其中該模具的所需圖案 或離隙是格狀圖案。 85347.doc 200411732 29. 30. 31. 32. 33. 34. 35. 36. 37. 如申請專利範圍第28項之方法,其中該格狀圖案在基板 上具有約70nm的週期以及約1·5μηι的深度,而且在該模 具上的格狀圖案具有約70 nm的週期以及約350 nm的深 度。 如申請專利範圍第29項之方法,其中該聚合物塗佈層是 在約90°C的溫度以及約5 MPa的壓力下,從模具上轉移到 基板上。 如申請專利範圍第28項至第30項中任一項之方法,其中 孩聚合物塗佈層被轉移到該基板上,使得該基板的格狀 圖案橫過該聚合物塗佈層的格狀圖案。 如申請專利範圍第28項至第30項中任一項之方法,其中 孩聚合物塗佈層被轉移到該基板上,使得該基板的格狀 圖案與該聚合物塗佈層的格狀圖案相互對齊。 如申請專利範圍第3丨項之方法,其中該步驟…與都被 重複一次至多次,以便形成晶格結構。 一種包含有藉依據申請專利範圍第1至第33項中任一項 又万法所產生之印刻微米/奈米結構的基板。 :種包含有藉申請專利範圍第20項之方法所產生之印刻 铽米/奈米結構的基板,其中該印刻結構是該模具的負向 複製物。 :種包含有藉申請專利範圍第22項之方法所產生之印刻 微米/奈米結構的基板,其中該印刻結構是 複製物。 ,、旧止同 種包含有藉申請專利範圍第23項之方法所產生之印刻 85347.doc 200411732 微米/奈米結構的基板,其中該印刻結構是該模具的正向 複製物。 3 8.使用依據申請專利範圍第1至第33項中任一項之方法,形 成在表面上的微米/奈米結構。 85347.doc200411732 Pick up 1.2. 3. 4. 5. 6. · 7 、 Scope of patent application: A method of imprinting a micro / nano structure onto a substrate, the method includes: (a) providing a mold containing a pattern or a gap required by the micro / nano structure ( relief); (b) applying the polymer coating layer to the mold; and (c) transferring the polymer coating layer from the mold to the substrate under appropriate temperature and pressure conditions to form Microstructured imprinted substrate. For example, the method of applying for the first item of the patent park, wherein the mold is formed from the group consisting of a semiconductor, a dielectric, a metal, and a combination of these materials. For example, the method of claim 2 in which the mold is patterned by optical lithography or electron beam lithography and subsequent dry etching. For example, the method of claim 1 in which the polymer is a group consisting of a free thermoplastic polymer, a heat / radiation curing prepolymer, and a glass or ceramic precursor. The method as claimed in claim 4 of the scope of patent application, wherein the polymer is polymethyl methacrylate (PMMA). A method as claimed in any one of claims i to 5, in which the polymer is in a solution of a non-polar solvent in order to achieve a substantially uniform polymer coating on the mold. For example, the method in the sixth scope of the patent application, wherein the solvent is selected from the group consisting of methyl formaldehyde and tetrahydrofuran. 8. The method of claim 7 in which the solvent is toluene. 9. The method according to any one of claims 1 to 8 in the scope of patent application, wherein the polymer is applied to the mold by spin coating. 10. The method according to any one of claims 1 to 9 in the scope of the patent application, wherein the mold is treated with one or more surfactants before the polymer. 11. The method of claim 10, wherein the surfactant is 111,111,211,211-perfluorodecyl-trichlorosilylmethane. 12. The method according to any one of the items i to U in the scope of the patent application, wherein the substrate is a group consisting of free polymers, semiconductors, dielectrics, silicon components, metals, and combinations of these materials group. 13. The method of claim 12 in which the substrate is a silicon wafer. 14. The method of claim 12 in which the substrate has one or more pattern structures on the substrate. 15. The method of claim 12 in which the substrate is a flexible polymer film, such as a polyethylene film or a polyester. 16. The method according to any one of claims 1-5 to 1-5, wherein step (c) is performed on a heating press at a desired pressure and temperature. 17. The method according to item 6 of the patent application range, wherein the pressure is less than 5 MPa. '18. The method according to item 16 of the patent application range, wherein the pressure is from about… to about 5 MPa. 19. The method according to any one of claims 1 to 18 in the scope of patent application, wherein the temperature of 85347.doc 200411732 is from about 30 ° C below the glass transition temperature (Tg) of the polymer to above Tg About 90 ° c. 20. The method of claim 19, wherein the coated polymer coating layer is non-planar in nature, and the temperature is substantially higher than the glass transition temperature (Tg) of the polymer. 2 h The method according to item 20 of the patent application range, wherein the temperature is about 90 ° C higher than the glass transition temperature (Tg) of the polymer. twenty two. For example, the method of claim 19, wherein the coated polymer coating layer is non-planar in nature, and the temperature is substantially equal to or lower than the glass transition temperature (Tg) of the polymer. twenty three. For example, the method of claim 19, wherein the coated polymer coating layer is planar in nature, and the temperature is substantially equal to or lower than the glass transition temperature (Tg) of the polymer. twenty four. The method of claim 19, wherein the temperature is about the glass transition temperature (Tg) of the polymer. 25β The method according to item 19 of the patent application range, wherein the temperature is 30 ° C lower than the glass transition temperature (Tg) of the polymer. 26. The method of claim 1, wherein the applied polymer coating is non-planar in nature and the temperature is below the glass transition temperature (Tg) of the polymer. 27. The method of claim 26, wherein the non-planar substrate includes a grid pattern thereon. 28. The method of claim 27, wherein the desired pattern or clearance of the mold is a grid pattern. 85347.doc 200411732 29. 30. 31. 32. 33. 34. 35. 36. 37. The method according to item 28 of the patent application, wherein the grid pattern has a period of about 70 nm on the substrate and about 1.5 μm The lattice pattern on the mold has a period of about 70 nm and a depth of about 350 nm. The method of claim 29, wherein the polymer coating layer is transferred from the mold to the substrate at a temperature of about 90 ° C and a pressure of about 5 MPa. The method of claim 28, wherein the polymer coating layer is transferred to the substrate so that the grid pattern of the substrate crosses the grid pattern of the polymer coating layer pattern. For example, the method according to any one of claims 28 to 30, wherein the polymer coating layer is transferred to the substrate so that the grid pattern of the substrate and the grid pattern of the polymer coating layer are transferred. Align with each other. For example, the method in the scope of patent application No. 3 丨, wherein the steps ... and are repeated one or more times to form a lattice structure. A substrate comprising an imprinted micro / nano structure produced according to any one of claims 1 to 33 of the scope of patent application. : A substrate containing an imprinted nanometer / nano structure produced by the method of claim 20 of the patent application, wherein the imprinted structure is a negative replica of the mold. : A substrate comprising an imprinted micro / nano structure produced by a method according to item 22 of the patent application, wherein the imprinted structure is a replica. The old and the same kind of substrates include the imprint 85347.doc 200411732 micrometer / nano structure substrate produced by the method of applying for the scope of patent application No. 23, wherein the imprint structure is a forward copy of the mold. 3 8. Use the method according to any one of claims 1 to 33 to form a micro / nano structure on the surface. 85347.doc
TW092112744A 2002-05-08 2003-05-08 Reversal imprint technique TWI230975B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2002/000084 WO2003096123A1 (en) 2002-05-08 2002-05-08 Reversal imprint technique

Publications (2)

Publication Number Publication Date
TW200411732A true TW200411732A (en) 2004-07-01
TWI230975B TWI230975B (en) 2005-04-11

Family

ID=36086333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092112744A TWI230975B (en) 2002-05-08 2003-05-08 Reversal imprint technique

Country Status (1)

Country Link
TW (1) TWI230975B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570430B (en) * 2015-01-23 2017-02-11 國立虎尾科技大學 Producing method of anti-reflection sub-wavelength optic film and dye-sensitized solar cell thereof
CN110303625A (en) * 2018-03-20 2019-10-08 善洁科技有限公司 Mold, its production method and the product made by it of production veining product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570430B (en) * 2015-01-23 2017-02-11 國立虎尾科技大學 Producing method of anti-reflection sub-wavelength optic film and dye-sensitized solar cell thereof
CN110303625A (en) * 2018-03-20 2019-10-08 善洁科技有限公司 Mold, its production method and the product made by it of production veining product

Also Published As

Publication number Publication date
TWI230975B (en) 2005-04-11

Similar Documents

Publication Publication Date Title
JP4719464B2 (en) Method for imprinting micro / nano structures on a substrate
US6309580B1 (en) Release surfaces, particularly for use in nanoimprint lithography
Bao et al. Nanoimprinting over topography and multilayer three-dimensional printing
Sun et al. Multilayer resist methods for nanoimprint lithography on nonflat surfaces
Huang et al. Reversal imprinting by transferring polymer from mold to substrate
US7041228B2 (en) Substrate for and a process in connection with the product of structures
US20030080471A1 (en) Lithographic method for molding pattern with nanoscale features
US8298467B2 (en) Method of low temperature imprinting process with high pattern transfer yield
EP1533657B1 (en) Multilayer nano imprint lithography
US8728380B2 (en) Lithographic method for forming a pattern
WO2005021156A2 (en) Capillary imprinting technique
KR101107474B1 (en) soft mold and patterning method thereof
US20080217813A1 (en) Release surfaces, particularly for use in nanoimprint lithography
JP3892457B2 (en) Nanoimprint lithography method and substrate
Bao et al. Polymer inking as a micro-and nanopatterning technique
TWI230975B (en) Reversal imprint technique
Nakamatsu et al. Nanoimprinting using liquid-phase hydrogen silsesquioxane
Nakamatsu et al. Room-temperature nanoimprint and nanocontact technologies
Yamamoto et al. Transfer Printing by use of Delayed UV Cure Resin for Fabricating Multilayer Structures
Mikalsen et al. Chemical solution processing and patterning with additive deposition of functional ceramics on planar and nonplanar surfaces
Chan et al. Thin-film patterns directly fabricated using a transfer stamping technique
Furlan et al. Second-generation stamps for nanoscale soft lithography fabricated by micromolding in capillaries
Lee et al. Nano-imprint Lithography of 100nm sized patterns using water soluble PVA, poly (vinyl alcohol), template
Jo et al. Nanocontact printing of nonplanar substrate by using flexible h-PDMS stamp
TW200914362A (en) Fabrication method for microstructure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees