TW200411708A - Cathode ray tube and picture display device - Google Patents

Cathode ray tube and picture display device Download PDF

Info

Publication number
TW200411708A
TW200411708A TW91137691A TW91137691A TW200411708A TW 200411708 A TW200411708 A TW 200411708A TW 91137691 A TW91137691 A TW 91137691A TW 91137691 A TW91137691 A TW 91137691A TW 200411708 A TW200411708 A TW 200411708A
Authority
TW
Taiwan
Prior art keywords
lens
electron
electron beam
deflection
ebr
Prior art date
Application number
TW91137691A
Other languages
Chinese (zh)
Inventor
Marcellinus Petrus Carolus Michael Krun
Willem Lubertus Ijzerman
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200411708A publication Critical patent/TW200411708A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/62Electrostatic lenses
    • H01J29/622Electrostatic lenses producing fields exhibiting symmetry of revolution
    • H01J29/624Electrostatic lenses producing fields exhibiting symmetry of revolution co-operating with or closely associated to an electron gun
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4834Electrical arrangements coupled to electrodes, e.g. potentials
    • H01J2229/4837Electrical arrangements coupled to electrodes, e.g. potentials characterised by the potentials applied
    • H01J2229/4841Dynamic potentials

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

The invention relates to a cathode ray tube (CRT) having an electron gun (1), which is provided with a beam-forming part (20) for forming an electron beam (EBR, EBG, EBB). The electron beam is imaged onto a display screen (3) by means of the electron gun (1) and deflection means (2). In operation, the deflection means (2) deflect the electron beam (EBR, EBG, EBB) towards any position on the display screen (3), thereby constituting a deflection lens (2'), the lens strength of which varies with the deflection angle. The electron gun (1) is further provided with an electron lens (30) near the beam-forming part (20), for forming the electron beam (EBR, EBG, EBB) into a crossover (10R, 10G, 10B) in the vertical direction. Said crossover is shiftable along the gun axis (MA) so as to compensate for the varying power of the deflection lens (2'). The crossover (10R, 10G, 10B) may be located anywhere between the electron lens (30) and the deflection means (2). This is particularly advantageous for large deflection angles, such as angles of 120 degrees or more.

Description

(i) 200411708 玖、發明說明; (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 技術領域 本發明係關於一種陰極射線管,其包括.· 一顯示螢幕’其可在著陸位置處接收一電子束; 一電子搶,其可產生該電子束,該電子搶具有: 一電子束形成部分; ,一電子透鏡,其透鏡強度可根據電子束著陸位置的不同而 變=,從而可在與電子搶中央軸成適當角度處以第一方向為 =電子東提供—交又處’該交又處可沿著該中央轴偏移,以 主透鏡,其係位於電子透鏡與電子搶 端之間,該 子搶係面對顯示螢幕; 亚包括偏轉構件,其係配置於電子搶與顯示 偏轉構件可_货_ > , *养之間’ 方向及爷φ a击丄β^ ^與該弟 μ中央軸k向,且該偏轉構件藉由使該丄 過一預宏认μ &々 兒卞禾偏轉 ..、疋的偏輅角度,即可調整該電子束在該~ 著陸位詈,★扣— 項不螢恭上 二^ 以在頭示螢幕上獲得電子光學影像, Λ偏τ〒構件可形成一偏轉透鏡,以作用於雷+ 先係關於具有此種陰極射線管的影像_示裝置。 的十* 月案中亦可稱為光斑」)在整個作-狄 勺垂直方向會變化 淹頁不赏 模糊。 尤其在顯示螢幕的角落内,該光斑比. (2) (2)200411708(i) 200411708 发明, description of the invention; (the description of the invention should state: the technical field to which the invention belongs, the prior art, the content, the embodiments and the simple description of the drawings) TECHNICAL FIELD The present invention relates to a cathode ray tube, which includes ... A display screen 'which can receive an electron beam at the landing position; an electron beam which can generate the electron beam, the electron beam having: an electron beam forming part; and an electron lens whose lens intensity can be landed according to the electron beam The position varies with =, so that the first direction can be provided at an appropriate angle with the central axis of the electronic grabber. The intersection of electrons and intersections can be offset along the central axis. It is located between the electronic lens and the electronic grabber, and the sub grabber is facing the display screen. It includes a deflection member, which is arranged in the electronic grabber and display deflection member. _ 货 _ > φ a hits ^ β ^ ^ with the central axis of the brother μ, and the deflection member can adjust the deviation angle of the 丄 by a pre-macro recognition μ & 々 々 卞, 卞, can be adjusted The electron beam is in the ~ landing詈 , ★ 扣 — Xiang Buying Gongyi ^ to obtain an electro-optical image on the head display screen, the Λ-biasing τ〒 member can form a deflection lens to act on the thunder + first about the image with such a cathode-ray tube _ 示 装置。 Display device. In the case of the month of October, it can also be referred to as "light spot".) The vertical direction of the entire work-Dickel will change. Especially in the corner of the display screen, the flare ratio. (2) (2) 200411708

縈萌說稱繽買I 在已知的陰極射線管中,線狀交又處A , 、忒侷移至主透鏡内 或起出主透鏡之外的位置,使偏轉透鏡強度㈣加得不到充 分的補償。在已知的陰極射線管中,對於各偏轉角度值而兮 :主迗鏡可對交叉處的成像起實質性的作用,且光斑比較模 糊’尤其在顯示螢幕的角落内,更是如此。 發明内容 此種陰極射線管的一項具體實施例揭露於專利申請案 US-A-5,262,702 中。 ' 在該陰極射線管中,會有-三極管,其包括用以發射電子 的一陰極,該三極管係用作一電子束形成部分。一般而言, 電子束可在該三極管内#聚於一點狀交又4,亦可稱為物鏡 點。 在此項申請案中,交叉處係意謂著一位置,在該位置處電 子束在至少一個方向上的直徑,可使該位置適合於電子束至 少在該方向上電子光學地顯示於該顯示螢幕上,且影像顯示 達到所需的清晰度。 電子透鏡藉由以垂直方向聚焦電子束,可為電子束提供一 線狀交又處。該交叉處可沿著中央軸偏移,且係位於該電子 搶内,即該電子透鏡與該主透鏡之間。在垂直方向上,該可 偏移、線狀的交叉處係顯示於該顯示螢幕上,而在水平方向 上’該三極管中的物鏡點係顯示於顯示螢幕上。 在偏轉電子束時’該偏轉構件係作為一電子透鏡作用於電 子束上,該電子透鏡在下文中將稱為偏轉透鏡。該主透鏡及 該偏轉透鏡主要係負責將電子束顯示於該顯示螢幕上。 200411708 發明繽買 該偏轉透鏡的透鏡強度可隨偏轉角度的不同而變化。該偏 轉角度係定義為對應於某一著陸位置的角度,該角度定義為 電子束在顯示螢幕上著陸位置附近所圍成角度的兩^疋且有 一虛擬的電子束著陸於該顯示螢幕的中央。 該偏轉構件可在水平方向上自動會聚,結果偏轉透鏡在水 平方向上的散焦效應,使物鏡點在水平方向上的顯示實質上 可在整個顯示螢幕上聚焦。 Η 、 對於偏轉透鏡而言,通常係由四極透鏡製成,可使偏轉透 鏡在水平方向上具有聚焦作用。因為可偏移該線狀交又:; 故該偏轉透鏡在垂直方向上透鏡強度的變化可部分得 償。 陰極射線管最好係不太魔大。具體而言,具有該陰極顯示 管的影像顯示裝置最好係包括一顯示螢幕,其具有比較大的 螢幕表面積,而影像顯示裝置的深度尺寸則比較小。 既定深度尺寸時,陰極射線管顯示螢幕的表面積越大,或 既定顯示螢幕表面積時’陰極射線管的深度尺寸越小,則運 作中偏轉角度必須越高,以確保電子束可覆蓋整個顯示營幕 。最大偏轉角度(即顯示螢幕的角落内電子束著陸點處的偏 轉角度)係比較大。 最大偏轉角度為120度的陰極射線管不久即可獲得其具 有新穎的設計,通過努力可獲得—種陰極射線管,以公分表 下的冰度等於以英寸表示的顯示螢幕對角線。在此種情況下 ,最大偏轉角度大約為1 3 5度。 本發明的-個目的是提供一種序言段中所提及之類型的 200411708 親繽頁 陰極射線管,其可使交叉處在整個顯示螢幕產生比較清晰的 顯示。 在根據本發明之陰極射線管中,即可達到該目的’因為可 配置電子搶,以將該交叉處偏移至主透鏡與偏轉構件之間的 一位置,其在該偏轉透鏡的物鏡平面附近。 在有限值的偏轉角度(例如60度或更小)處,偏轉透鏡較弱 ,故交叉處主要係藉由主透鏡成像於顯示螢幕上。在此種情 況下,交又處係位於電子透鏡與主透鏡之間、主透鏡之物鏡 平面附近。 當偏轉角度增i加時,該交叉處可藉由偏轉透鏡更大程度地 成像於顯示螢幕上。交叉處與主透鏡之間的距離變為較小, 結果主透鏡對該交叉處成像的作用降低。 本發明係基於一項認知,即在比較大的偏轉角度(一般而言 大約為120度或更大)處,偏轉透鏡的透鏡強度可使得,若偏 轉远鏡的影像平面與顯示螢幕一致’則偏轉透鏡的物鏡平面 在第一方向上係位於主透鏡與偏轉構件之間。 為改善光斑的清晰度,尤其是在顯示螢幕角落内的清晰度 ,根據本發明,交叉處必須位於偏轉透鏡之物鏡平面附近。 以此方式,即可在任何偏轉角度處獲得比較清晰的光斑。 在大約為120度的偏轉角度處,根據本發明之陰極射線管 内的父又處係位於主透鏡之内,或超出主透鏡之外,使主透 鏡對交又處成像不起作用,即交叉處僅藉由偏轉透鏡在顯示 螢养上成像。 根據本僉明之fe極射線管還具有一項優點,即顯示螢幕上 200411708 ——~~— "王的尺寸在第方向比較小,且在整個顯示螢幕上特別一 致。在交又處,電子束的尺寸在第一方向比較小,且交又處 在顯示螢幕上的顯示比較清晰,結果光斑亦比較小。 隨#偏轉角度增加,在顯示螢幕附近,電子束在第一方向 上的開口角度變小。一般而纟,這會使光斑增長,因為顯示 螢幕附近存在空間電荷效應。 然而,因為偏轉角度增長的同時,伴隨著在主透鏡的位置 把%子束在第方向上直徑的減小,故主透鏡内的球面像差 曰減y藉此,空間電荷效應所引起的光斑增長即可得到補 償。i 在根據本發明之陰極射線管中,實質上可達到完全的補償 ,使得在第一方向上,整個顯示螢幕的光斑直徑非常一致。 在另一权佳具體實施例中,會配置電子搶的電子束形成部 /刀,以產生二電子束,其在第二方向(例如水平方向)上並列 位方、相同的平面内’而對各電子束而言,電子透鏡的透鏡強 度是不同的。電子束所在的平面通常稱為「共線」平面。 該電子搶可用於彩色陰極射線管中,且三電子束通常係對 應於紅色、綠色及藍色。 因為該「共線」平面上的三電子束在該偏轉構件的位置處 隔開一定距離(如6毫米),故該等電子束係沿著不同的路徑, 通過該偏轉構件的自動會聚磁場。然而,在顯示螢幕上,電 子束實質上係會聚於同:一著陸點,使各電子束的偏轉角度= 同。 因此’偏轉透鏡的透鏡強度對三電子束各不相同,尤其是 -K)- 200411708 發鱗說BJ績夏 電子束的偏轉角度比条5 和 知大吩’例如120度。顯示螢幕上光斑 的清晰度對三電子束而士 θ 不向5疋不同的。此效應在下文中將稱為 「彩色相關散焦」。 在此種情況下,對於r帝2 土 丁%_包子束而言,電子透鏡的透鏡強度Meng Meng said that in the known cathode ray tube, the linear intersection A and A were moved to the position inside the main lens or lifted out of the main lens, so that the intensity of the deflection lens could not be increased. Full compensation. In the known cathode ray tube, for each deflection angle value: the main mirror can play a substantial role in the imaging at the intersection, and the spot is more blurred, especially in the corner of the display screen, especially. SUMMARY OF THE INVENTION A specific embodiment of such a cathode ray tube is disclosed in the patent application US-A-5,262,702. 'In this cathode ray tube, there will be a -triode including a cathode for emitting electrons, and the triode is used as an electron beam forming section. Generally speaking, the electron beam can be gathered at a point in the triode, which is also called the objective lens point. In this application, the intersection means a position at which the diameter of the electron beam in at least one direction makes the position suitable for the electron beam to be displayed optically on the display at least in that direction On the screen and the image is displayed to the required sharpness. The electron lens provides a linear intersection for the electron beam by focusing the electron beam in a vertical direction. The intersection can be offset along the central axis and is located in the electronic grab, that is, between the electronic lens and the main lens. In the vertical direction, the offset, linear intersections are displayed on the display screen, and in the horizontal direction, the objective lens points in the triode are displayed on the display screen. When the electron beam is deflected ', the deflection member acts on the electron beam as an electron lens, which will be hereinafter referred to as a deflection lens. The main lens and the deflection lens are mainly responsible for displaying an electron beam on the display screen. 200411708 Invented Binmai The lens strength of this deflection lens can vary with different deflection angles. The deflection angle is defined as the angle corresponding to a certain landing position, and the angle is defined as the two angles formed by the electron beam near the landing position on the display screen and a virtual electron beam is landed in the center of the display screen. The deflection member can automatically converge in the horizontal direction. As a result, the defocus effect of the deflection lens in the horizontal direction makes the display of the objective lens point in the horizontal direction substantially focusable on the entire display screen.对于 For the deflection lens, it is usually made of quadrupole lens, which can make the deflection lens focus in the horizontal direction. Because the linear intersection can be offset :; the change in the lens intensity in the vertical direction of the deflection lens can be partially compensated. The cathode ray tube is preferably not too magical. Specifically, the image display device having the cathode display tube preferably includes a display screen having a relatively large screen surface area, and the depth dimension of the image display device is relatively small. The larger the surface area of the cathode ray tube display screen when the depth is set, or the smaller the depth of the cathode ray tube when the surface area of the screen is set, the higher the deflection angle during operation to ensure that the electron beam can cover the entire display screen. . The maximum deflection angle (that is, the deflection angle at the beam landing point in the corner of the display screen) is relatively large. A cathode ray tube with a maximum deflection angle of 120 degrees will soon be available with its novel design. Through efforts to obtain a type of cathode ray tube, the ice degree in the centimeter table is equal to the diagonal of the display screen in inches. In this case, the maximum deflection angle is approximately 135 degrees. One object of the present invention is to provide a 200411708 family-friendly cathode-ray tube of the type mentioned in the preamble, which can produce a clearer display across the entire display screen. In the cathode ray tube according to the present invention, the object can be achieved 'because an electronic grab can be configured to shift the intersection to a position between the main lens and the deflection member, which is near the objective lens plane of the deflection lens . At a limited deflection angle (such as 60 degrees or less), the deflection lens is weak, so the intersection is mainly imaged on the display screen by the main lens. In this case, the intersection is between the electron lens and the main lens, and near the plane of the objective lens of the main lens. When the deflection angle increases i, the intersection can be more imaged on the display screen by the deflection lens. The distance between the intersection and the main lens becomes smaller, and as a result, the effect of the main lens on the imaging of the intersection is reduced. The invention is based on the recognition that at relatively large deflection angles (generally about 120 degrees or more), the lens strength of the deflection lens can be such that if the image plane of the deflection telescope is consistent with the display screen, then The objective lens plane of the deflection lens is located between the main lens and the deflection member in the first direction. In order to improve the sharpness of the light spot, especially in the corners of the display screen, according to the present invention, the intersection must be located near the objective lens plane of the deflection lens. In this way, a clearer spot can be obtained at any deflection angle. At a deflection angle of about 120 degrees, the parent in the cathode ray tube according to the present invention is located inside the main lens, or beyond the main lens, so that the main lens has no effect on the intersection and the imaging, that is, the intersection Imaging on display fluorescence was performed only by the deflection lens. According to the present invention, the fe polar tube also has an advantage, that is, the display screen 200411708 —— ~~ — The size of the king is relatively small in the first direction, and it is particularly consistent on the entire display screen. At the intersection, the size of the electron beam is smaller in the first direction, and the display at the intersection is clearer on the display screen, and the light spot is smaller as a result. As the #deflection angle increases, the opening angle of the electron beam in the first direction becomes smaller near the display screen. Generally, this will increase the flare because of the space charge effect near the display screen. However, as the deflection angle increases, along with the reduction in the diameter of the% sub-beam in the first direction at the position of the main lens, the spherical aberration in the main lens is reduced by y. As a result, the light spot caused by the space charge effect Growth is compensated. i In the cathode ray tube according to the present invention, substantially complete compensation can be achieved, so that in the first direction, the spot diameter of the entire display screen is very uniform. In another specific embodiment, an electron beam forming part / knife of an electronic grab is configured to generate two electron beams, which are juxtaposed in a second direction (such as a horizontal direction) in the same plane. The lens intensity of the electron lens is different for each electron beam. The plane in which the electron beams are located is often referred to as the "collinear" plane. This electron pick-up can be used in color cathode ray tubes, and the three electron beams usually correspond to red, green and blue. Because the three electron beams on the "collinear" plane are separated by a certain distance (such as 6 mm) at the position of the deflection member, the electron beams follow different paths and automatically converge magnetic fields through the deflection member. However, on the display screen, the electron beams are essentially converged: a landing point, so that the deflection angle of each electron beam = the same. Therefore, the lens intensity of the deflecting lens is different for the three electron beams, especially -K)-200411708, said BJ Jixia. The deflection angle of the electron beam is higher than that of Article 5 and Chih-da-phene, for example, 120 degrees. The sharpness of the light spot on the display screen differs from the three-electron beam θ to 5 °. This effect will hereinafter be referred to as "color-dependent defocus". In this case, the lens strength of the electron lens for r di 2% _ bunzi beam

最好係各不相同。可將I 7 1 I +母電子果的交叉處偏移至各自的位 置/、在对應方;包子束之偏轉透鏡的物鏡平面。以此方式, 凇色相關政焦至)可得到部分補償,且彩色陰極射線管運作 得特別好。 在L極射、、泉g的一項較佳具體實施例中,以面對顯示螢幕 的I子^之方向觀察’可見電子束形成部分的電子搶連 繽地包括1 一聚焦電極、形成電子透鏡的一動態聚焦電極 、一第二聚焦電極及-陽極。在運作中,主透鏡通常係形成 於5亥第一聚焦電極與陽極之間。 该€十搶包括(例如)一三極體,以作為該電子束形成部分 。在此種情況下,該電子搶具有六個電極。已發現電子搶在 此種情況下運作良好。 S €子杈的製作方式較已知陰極射線管中的電子搶(其包 括十個電極)更經濟且更容易。 或者,€子搶具有(例如)一二極體,作為電子束形成部分。 該動態聚焦電極可能具有數個端面,其橫向延伸至中央軸 ,該等端面在第二方向具有一拉長的開口,可讓電子束通過 。:第-聚焦電極及該第二聚焦電極亦具有端面,其面對該 動,¾、聚焦電極,該等端面具有一相似的開口。 以此方式,該動態聚焦電極即可形成該電子透鏡,其具有 -11 - 200411708 一圓柱透鏡部分,位元於該動態聚焦電極的任何一側。由於 該動怨聚焦電極可接收一動態電壓,且該動態電壓係取決於 4 該偏轉角度’故該電子透鏡的強度在運作中可變。 - 因此,該電子束可以第一方向聚焦,而該電子透鏡並未在 第二方向作用於該電子束上。這是有利的,因為偏轉構件可 自動會聚,結果電子束實質上可以第二方向會聚於整個顯示 螢幕上。 藉由增加動態電壓,以增加運作時的偏轉角度,電子透鏡 參 可根據偏轉角度變弱’且交又處可沿著中央軸偏移至顯示營 幕。以此方式,交叉處可實質上位於偏轉透鏡的物鏡平面内 ,或在偏轉角度比較小的情況下,可位於該偏轉透鏡及該主 透鏡所組成的物鏡平面内,且交叉處在顯示螢幕上的顯示可 聚焦於整個顯示螢幕上。 當使用此種電子透鏡時,所發生的像差比較少。 射、、泉g的一項具體實施例包括一電子透鏡,其對各電 子束而5具有不同的電子透鏡強度,該陰極射線管包括一動 馨 悲:焦^ ^,其對各電子束而言均具有一子電極,該等子電 極仏皮此f性絕緣。該電子透鏡的透鏡強度在運作時對各電 子束可獨立地變化’這是因為各子電極可接收取決於偏轉角 , 度的個別動態電壓。該陰極射線管使彩色相關散焦可得到部 分補償。 — 4動恶電壓可在35〇與25〇〇伏特之間變化。在該陰極射線 管的-項具體實施例#,若該電子束著陸於該顯示螢幕的中 央則動怨電壓為(例如)_伏特,而當偏轉角度為120度時 -12 - (8) 200411708 發__:_繽夏 ’該動態電壓為1650度。 與已知陰極射線管中的動態電壓(介於3〇〇〇與4〇〇〇伏特之 間)相比,尤其是與傳統的DAF搶(其中動態電壓置於一固定 的聚焦電壓,如6000伏特)相比,此類電壓較低。 在另一具體實施例中,有一散光修正元件位於面對該電子 束形成部分之主透鏡側附近。一般而言,該主透鏡的設計方It's better to be different. The intersection of I 7 1 I + mother electron fruit can be shifted to the respective position /, on the corresponding side; the objective lens plane of the deflection lens of the bun bundle. In this way, the black-color-related political focus can be partially compensated, and the color cathode-ray tube operates particularly well. In a preferred embodiment of the L polarizer and the spring g, the electrons of the visible electron beam forming portion are viewed in the direction of the electron beams facing the display screen, including a focusing electrode and forming electrons. A dynamic focusing electrode, a second focusing electrode and an anode of the lens. In operation, the main lens is usually formed between the first focusing electrode and the anode. The € 10 grab includes (for example) a triode as the electron beam forming part. In this case, the electron grab has six electrodes. Electronic grabbing has been found to work well in such cases. S € branches are more economical and easier to manufacture than electron grabbers (which include ten electrodes) in known cathode ray tubes. Alternatively, the diode has, for example, a diode as an electron beam forming part. The dynamic focusing electrode may have several end faces, which extend laterally to the central axis, and the end faces have an elongated opening in the second direction to allow the electron beam to pass through. : The first-focusing electrode and the second focusing electrode also have end faces, which face the movement. The end faces have similar openings. In this way, the dynamic focusing electrode can form the electronic lens, which has a cylindrical lens portion of -11-200411708, and is located on any side of the dynamic focusing electrode. Since the dynamic focusing electrode can receive a dynamic voltage, and the dynamic voltage depends on the deflection angle ', the intensity of the electronic lens is variable during operation. -Therefore, the electron beam can be focused in the first direction, and the electron lens does not act on the electron beam in the second direction. This is advantageous because the deflection member can be automatically condensed, and as a result, the electron beam can be converged substantially in the second direction over the entire display screen. By increasing the dynamic voltage to increase the deflection angle during operation, the electronic lens parameter can be weakened according to the deflection angle 'and the intersection can be shifted to the display screen along the central axis. In this way, the intersection can be located substantially in the objective lens plane of the deflection lens, or in the case of a relatively small deflection angle, it can be located in the objective lens plane composed of the deflection lens and the main lens, and the intersection is on the display screen. The display can be focused on the entire display screen. When such an electronic lens is used, aberrations that occur are relatively small. A specific embodiment of the radio and magnetic g includes an electron lens, which has different electron lens intensities for each electron beam, and the cathode ray tube includes a moving beam: focus ^ ^, which for each electron beam Each has a sub-electrode, and the sub-electrodes are insulated in this way. The lens strength of the electron lens can be changed independently for each electron beam during operation 'because each sub-electrode can receive an individual dynamic voltage depending on the deflection angle and degree. The cathode ray tube partially compensates for color-related defocus. — 4 The moving and evil voltage can be changed between 350,000 and 2500 volts. In the specific embodiment # of the cathode ray tube, if the electron beam lands on the center of the display screen, the dynamic voltage is (for example) _ volt, and when the deflection angle is 120 degrees -12-(8) 200411708 Send __: _ Binxia 'The dynamic voltage is 1650 degrees. Compared with the known dynamic voltage in cathode ray tubes (between 3,000 and 4,000 volts), especially with traditional DAF grabbing (where the dynamic voltage is placed at a fixed focus voltage, such as 6000 Volts). In another embodiment, an astigmatism correction element is located near the main lens side facing the electron beam forming portion. Generally speaking, the design method of the main lens

式可使電子束在第二方向正確填充該主透鏡。結果,電子束 形成部分的物鏡點可顯示在顯示螢幕上,且品質比較好。 若交叉處接近於電子透鏡,即若電子束著陸於顯示螢幕中 央的附近,則主透鏡的強度不足以將光斑聚丨焦於顯示螢幕 上。 藉由為主透鏡提供散光修正元件(如圓柱透鏡),可減少此 效應。如此電子束便可以垂直方向預先聚焦於主透鏡的前方 ,使光斑亦可以較小的偏轉角度聚焦於顯示螢幕上。 已證明在根據本發明的一陰極射線管中,交叉處在顯示螢 幕上以第-方向所顯示的直徑,對各電子束的各偏轉角度(即 整個顯示螢幕)而言均小於300微米。在此種情況下,電子束 電流最大大約為0.5毫安培。 在根據本發明之陰極射線管中’電子束可在整個顯示螢幕 上聚焦。藉此,具有根據本發明之陰極射線管的顯示裝置呈 有比較良好的影像品質。 〃 貫施方式 下文將參考各項具體實施職明根據本㈣之陰極射線 管及顯示裝置的該等及其他方面。 -13 - 200411708 (9) 發明說朝繽頁 如圖1所示之根據本發明的彩色陰極射線管具有第一具體 貫施例之電子搶1。該電子搶可產生三電子束:最外面的第 电子束E B R其係對應於紅色;一中央電子束£ β G ,其係 對應於綠色;以及最外面的第二電子束ΕβΒ,其係、對應於藍 色。電子束EBR' EBG、咖在圖式的平面内是共線的在 此項專利中請案中’亦可稱為「共線平面(m-llneplane)」。 在第-具體實施例之電子搶】中,電子束形成部分2〇即為 一三極體’其包括電子源⑴❿⑶…第—電極⑴及一 第二電㈣2。電子搶1還包括—第—聚焦電極G3A、-動態 聚焦電極G3B、—第二聚焦電極G4及-陽極G5。 該等電子源⑽、1QG、_可發射電子,其在電子束形成 部分20可形成對應的電子束㈣、咖、膽。在電子束形 P刀_0内包子束ebr、ebg、ebb在物鏡點m2iG、 2 1 B處具有最小的直徑。 /十果EBR、EBG、刚可藉由電子透鏡、主透鏡及 偏轉透鏡2’向陰極射線管之顯示螢幕3導引。 :亥弟一聚焦電極G3A及第二聚焦電極G4係接收固定聚焦 ^ 4爪焦€壓大約為(例如)5.7千伏特。電子搶陽極 接收陽極電壓Va,如大約3()千伏特。運作時,主透鏡 可七成於该第二聚焦電極G4與電子搶陽極Μ之間。 «聚焦電極G3B接收-動態聚焦電壓⑽。運作時,該 動恶來焦電壓會根攄雷+圭 ” 祀據尾千束EBR、EBG、EBB之偏轉角度的 變化而增加。 圖2更詳細地說明瞭該第一聚焦電極〇3α、一項具體實施例 -14- 200411708The formula allows the electron beam to properly fill the main lens in the second direction. As a result, the objective lens point of the electron beam forming portion can be displayed on the display screen with good quality. If the intersection is close to the electron lens, that is, if the electron beam lands near the center of the display screen, the intensity of the main lens is not enough to focus the light spot on the display screen. This effect can be reduced by providing an astigmatism correction element such as a cylindrical lens for the main lens. In this way, the electron beam can be focused in front of the main lens in the vertical direction in advance, so that the light spot can also be focused on the display screen with a small deflection angle. It has been proved that in a cathode ray tube according to the present invention, the diameter shown in the first direction at the intersection on the display screen is smaller than 300 m for each deflection angle of each electron beam (i.e., the entire display screen). In this case, the maximum electron beam current is about 0.5 milliamps. In the cathode ray tube according to the present invention, the 'electron beam can be focused on the entire display screen. Thereby, a display device having a cathode ray tube according to the present invention exhibits relatively good image quality.施 Implementation methods The following will refer to these and other aspects of the cathode ray tubes and display devices according to the specific implementation instructions. -13-200411708 (9) Disclosure of the invention Chaobin page The color cathode ray tube according to the present invention as shown in Fig. 1 has the first specific embodiment of electronic grabbing. The electron beam can generate three electron beams: the outermost electron beam EBR, which corresponds to red; a central electron beam £ βG, which corresponds to green; and the outermost second electron beam, EβB, which corresponds to In blue. The electron beam EBR 'EBG and coffee are collinear in the plane of the drawing. In this patent application', it can also be referred to as "m-llneplane". In the electron grabbing of the first embodiment], the electron beam forming portion 20 is a triode ', which includes an electron source ⑴❿ ... the first electrode ⑴ and a second electrode ㈣2. The electronic grabber 1 also includes a first focusing electrode G3A, a dynamic focusing electrode G3B, a second focusing electrode G4, and an anode G5. These electron sources ⑽, 1QG, _ can emit electrons, which can form corresponding electron beams 咖, 咖, and gall in the electron beam forming portion 20. Bundle beams ebr, ebg, and ebb in the electron beam shape P-knife_0 have the smallest diameters at the objective lens points m2iG, 2 1 B. / Fruit EBR, EBG, can be guided to the display screen 3 of the cathode ray tube through the electronic lens, the main lens and the deflection lens 2 '. : The first focus electrode G3A and the second focus electrode G4 of the helium receive fixed focus ^ The pressure of a 4-claw coke is approximately (for example) 5.7 kV. The electron grab anode receives an anode voltage Va, such as about 3 (kV). In operation, the main lens may be 70% between the second focusing electrode G4 and the electron grabbing anode M. «Focus electrode G3B receives-dynamic focus voltage⑽. During operation, the voltage of the moving focus will increase according to the changes in the deflection angles of Echi, EBR, EBG, and EBB. Figure 2 illustrates the first focusing electrode θ3α in more detail. Specific Example-14- 200411708

(10) 之4動聚焦電極G3 B及該第二聚焦電極G4。 電子透鏡30包括二圓柱透鏡3丨、32。第一圓柱透鏡31形成 於第一聚焦電極G3 A之端面36内的開口 33 A與該動態聚焦電 極G3B之端面35的開口 33B之間,且該動態聚焦電極G3B係面 對第一聚焦電極G3A。第二圓柱透鏡32形成於第二聚焦電極 G4之端面36内的開口 33D與該動態聚焦電極G3B之端面”内(10) of 4 focus electrode G3 B and the second focus electrode G4. The electronic lens 30 includes two cylindrical lenses 31 and 32. The first cylindrical lens 31 is formed between the opening 33 A in the end surface 36 of the first focusing electrode G3 A and the opening 33B in the end surface 35 of the dynamic focusing electrode G3B, and the dynamic focusing electrode G3B faces the first focusing electrode G3A . The second cylindrical lens 32 is formed in the opening 33D in the end surface 36 of the second focusing electrode G4 and the end surface of the dynamic focusing electrode G3B "

的開口 33C之間,且該動態聚焦電極G3B係面對第二聚焦電 極G4 〇 並列的電極G3A與G3B ; G3B與G4之間的間隔為〇.8毫米, 沿著中央軸MA的方向,該動態聚焦電極G3B的長度大約為 3.6毫米 °Between the openings 33C and the dynamic focusing electrode G3B faces the second focusing electrode G4 〇 the parallel electrodes G3A and G3B; the interval between G3B and G4 is 0.8 mm, along the direction of the central axis MA, the The length of the dynamic focusing electrode G3B is about 3.6 mm °

開口 33為矩形’其在水平方向上拉長。水平方向並列的 子束EBR、EBG、EBB可通過開口 33。為便.於說明,此點 在圖中的開口 33D處用點37R、37G、37B表示,其中各電 東EBR、EBG、EBB可通過開 n33D。電子束ebr、EBGa、Ef 可以類似方式通過其他的開口 3 3 A至3 3 C。 開口 33在水平方向上的長度,使圓柱透鏡31、以法在水 平方向上作用於電子束EBR、EBG、EBB。例如,該長度可 為18.6毫米。開口 33在垂直方向的直徑為(例如)3 6毫米因 此’圓柱透鏡31、32可使電+去 %私于果EBR、EBG、EBB以一定方 式在垂直方向上聚焦,從而形成可偏移的交又處跳、ι〇〇 、10B。 因此, 定聚焦 在此項具體實施例中’所有開σ33的形狀都相同。 第-及第二圓柱透鏡的強度相同。透鏡強度取決於固 -15 -The opening 33 is rectangular 'and is elongated in the horizontal direction. The beams EBR, EBG, and EBB that are juxtaposed in the horizontal direction can pass through the opening 33. For the convenience of explanation, this point is indicated by the points 37R, 37G, and 37B at the opening 33D in the figure, where the EBR, EBG, and EBB of each power station can be opened by n33D. The electron beams ebr, EBGa, Ef can pass through the other openings 3 3 A to 3 3 C in a similar manner. The length of the opening 33 in the horizontal direction causes the cylindrical lens 31 to act on the electron beams EBR, EBG, and EBB in a horizontal direction. For example, the length may be 18.6 mm. The diameter of the opening 33 in the vertical direction is (for example) 36 mm. Therefore, the 'cylinder lenses 31, 32 can make electricity + %% private. EBR, EBG, EBB can focus in a vertical direction in a certain way, thereby forming an offset. Intersection jump, ι〇〇, 10B. Therefore, in the specific embodiment, the shape of all the openings σ33 is the same. The first and second cylindrical lenses have the same intensity. Lens strength depends on solid -15-

I I200411708 I發明.說钥i繽頁 電壓"^與動態聚焦電壓Vdyn之間的電壓差。 當動態聚焦電壓Vdyn增加時’電壓差vf·vdyn降低’因此 電子透鏡30的強度降低。交又處1〇R' 1〇(}、ι〇β及電子透鏡 3〇之間的距離會增加。 電子透鏡30的運作在下文中將利用等效的透鏡系統說明 ,如圖3所示的透鏡系統係針對水平方向,而圖4所示的透鏡 乐統係針對垂直方向。在該等圖式中,僅顯示其中一個電子 東,即中央電子束EBG。對於其他電子束ebr、ebb而言, 等效的透鏡系統在動態聚焦電極g3B的此項具體實施例中 是相同的。 若電子束EBR、EBG、£ββ會聚於顯示螢幕3中央c:附近的 著陸點處’則交又處l〇R、10G、ι〇β係位於第二聚焦電極G4 内、端面36附近,該端面36係面對動態聚焦電極G3B。動態 電壓Vdyn大約為800 V。 編轉透鏡2’不起作用。如圖3A所示,主透鏡50可在顯示螢 幕3上以水平方向顯示物鏡點21R、21G、21B,如圖4A所示 ’主透鏡可在顯示螢幕3上垂直顯示交叉處i〇r、i〇G、10B 。交又處1 0 R、1 0G、1 0B與相關的物鏡點2 1 R、2 1 G、2 1 B在 電子移動方向上的距離最好係盡可能小。I I200411708 I invented the voltage difference between the voltage " ^ and the dynamic focus voltage Vdyn. When the dynamic focus voltage Vdyn increases, 'the voltage difference vf · vdyn decreases' and therefore the intensity of the electron lens 30 decreases. The distance between the intersections 10R ′ 10 (), ι〇β, and the electronic lens 30 will increase. The operation of the electronic lens 30 will be explained below using an equivalent lens system, such as the lens shown in FIG. 3 The system is for the horizontal direction, and the lens music system shown in Figure 4 is for the vertical direction. In these drawings, only one of the electron easts, that is, the central electron beam EBG is displayed. For the other electron beams ebr, ebb, The equivalent lens system is the same in this specific embodiment of the dynamic focusing electrode g3B. If the electron beams EBR, EBG, £ ββ are converged at the center c of the display screen 3: at a nearby landing point, then the intersection l0. R, 10G, and ιβ are located inside the second focusing electrode G4 and near the end face 36, which faces the dynamic focusing electrode G3B. The dynamic voltage Vdyn is about 800 V. The editing lens 2 'does not work. As shown in the figure As shown in 3A, the main lens 50 can display the objective lens points 21R, 21G, and 21B in the horizontal direction on the display screen 3. As shown in FIG. 4A, the 'main lens can display the intersections i0r and iOG vertically on the display screen 3. , 10B. Intersections are 1 0 R, 1 0G, 1 0B and related objective lens points 2 1 R, The distance between 2 1 G and 2 1 B in the direction of electronic movement is preferably as small as possible.

當電子束EBR、EBG、EBB的著陸處與顯示螢幕3的中央C 之間的距離變大時,偏轉角度會增加,且偏轉透鏡2,的強度 變大。在垂直方向上,偏轉透鏡2·具有正的透鏡效應,而在 水平方向上,偏轉透鏡2’具有負的透鏡效應。此外,主透鏡 50及其在顯示螢幕3上的著陸點之間電子束EBR、EBG、EBB 200411708 (12) 發說嚼繽頁 所涵蓋的距離會增加。 在圖jB與4Β中,偏轉角度大約為9〇度。交又處i〇R、1〇〇 、10B可沿著中央軸ΜΑ偏移一距離l i。交叉處1〇R、丨〇G、 1 0B現在位於主透鏡50及偏轉透鏡2,在垂直方向上所組成的 物鏡平面OP’上。 在水平方向上,偏轉構件2可自動會聚。主透鏡5〇與電子 束EBR、EBG、EBB在顯示螢幕3上所會聚的位置之間的距離 i曰加以及偏轉透鏡2的負透鏡效應’可藉由偏移交叉處1 〇 R 、10G、10B在各偏轉角度值得到補償。 在水平方向上,由於偏轉構件2可自動會聚,故電子束EBR 、EBG、ΕβΒ實質上可在整個顯示螢幕3上聚焦。在垂直方向 上根板兒子移動方向的偏轉角度,可偏移交叉處丨〇R、丨〇G 、⑺β’藉此電子束EBR、EBG、EBB實質上可會聚。交叉處 、10G、10B與物鏡平面op,之間的距離比較小,因此可 在顯示螢幕3上比較清晰地顯示交叉處1〇R、1〇(}、ι〇β ^ 在偏轉角度進一步增加的情況下,可藉由偏轉透鏡2,以增 加的程度在顯示螢幕3上顯示電子束EBR、ebg、ΕβΒ,且當 交叉處離主透鏡50越來越近時,主透鏡5〇的作用可逐漸減小 至零。 在圖4C中,偏轉角度大約為12〇度。現在交叉處、丨〇g 、10B已偏移一距離L2,結果交又處會位於主透鏡與偏轉 4鏡-〜間、偏轉透鏡2’的物鏡平面〇?上。交叉處 、1 0B可專門藉由偏轉透鏡2,顯示於顯示螢幕3上。 饱加於動態聚焦電極G3B的動態電壓vd刈現在大約為 -17 -When the distance between the land of the electron beams EBR, EBG, and EBB and the center C of the display screen 3 becomes larger, the deflection angle increases, and the intensity of the deflection lens 2 becomes larger. In the vertical direction, the deflection lens 2 · has a positive lens effect, and in the horizontal direction, the deflection lens 2 'has a negative lens effect. In addition, the distance between the main lens 50 and its landing point on the display screen 3 is increased by the electron beam EBR, EBG, EBB 200411708 (12). In Figures jB and 4B, the deflection angle is approximately 90 degrees. The intersections IOR, 100, and 10B may be offset a distance l i along the central axis MA. The intersections 10R, 10G, and 10B are now located on the objective lens plane OP 'formed by the main lens 50 and the deflection lens 2 in the vertical direction. In the horizontal direction, the deflection member 2 can automatically converge. The distance between the main lens 50 and the positions where the electron beams EBR, EBG, and EBB are converged on the display screen 3, and the negative lens effect of the deflection lens 2 can be shifted by the offset 10R, 10G, 10B is compensated at each deflection angle value. In the horizontal direction, since the deflection member 2 can automatically converge, the electron beams EBR, EBG, and EβB can be focused on substantially the entire display screen 3. In the vertical direction, the deflection angle of the direction of movement of the root plate son can be shifted at the intersection 丨 〇R, 丨 〇G, ⑺β ′, thereby substantially converging the electron beams EBR, EBG, and EBB. The distance between the intersection, 10G, 10B, and the objective lens plane op is relatively small, so the intersection 10R, 1〇 (}, ι〇β can be more clearly displayed on the display screen 3 at the deflection angle. In the case, the deflection lens 2 can be used to display the electron beams EBR, ebg, and EβB on the display screen 3 to an increased degree, and when the intersection is getting closer and closer to the main lens 50, the role of the main lens 50 can gradually be Reduce it to zero. In Figure 4C, the deflection angle is about 120 degrees. Now the intersection, 丨 〇g, 10B has been shifted by a distance L2, and the intersection will be located between the main lens and the deflection lens-~, The objective lens plane of the deflection lens 2 'is on the 0 °. At the intersection, 10B can be displayed on the display screen 3 exclusively by the deflection lens 2. The dynamic voltage vd 刈, which is fed to the dynamic focusing electrode G3B, is now approximately -17-

< I < I200411708 發明說明續買 ———- 1650伏特。 偏轉角度較小時’主透鏡50可能太弱,以致無法將電子束 EBR、EBG、EBB聚焦於顯示螢幕3上。電子束EBR、Εβ(}、 EBB中最外面的射線與中央軸μα所圍成的角度太大。結果 ,電子束EBR、EBG、EBB在顯示螢幕3上的顯示品質會受到 不利影響,即光斑無法聚焦於顯示螢幕3上。 此點可在圖5 A中看到,其中虛線所表示的電子束£ b 〇1為中 央電子束。 為限制此種效應,可在主透鏡50的一侧附近,配置一預先 聚焦的圓柱透鏡40,該側係面對一電子束形成部分2〇。該圓 柱透鏡40較電子透鏡30弱甚多,故只對較小的偏轉角度起作 用。 實線所代表的電子束EBG在進入主透鏡50之前,可藉由圓 柱透鏡40預先聚焦,結杲電子束EBG最外面的射線與主透鏡 50位置處的中央軸MA所圍成的角度將減小。現在電子束 EBG便可藉由主透鏡50聚焦於顯示螢幕3上的一光斑sg,a 具有比較高的品質。 例如’由於弟·一聚焦電極G4係分成二子電極A、G4 B (子電極G4 A、G4B的端面在圖5 B中表示為電極4 1),故可平 成圓柱透鏡40。在此種情況下,具體而言,該圓柱透鏡係形 成於二電極4 1之間。 電極4 1具有水平方向拉長的一開口 42,可讓電子束EBR、 E B G、E B B通過。在水平方向上,開口 4 2的直徑大約與開口 33相同,修正元件40實質上對電子束EBR、EBG、EBB沒有 200411708 褰明說朝繽頁 影響。在垂直方向上,開口42的直徑遠大於開口 %,以致圓 柱透鏡40的透鏡效應係弱於電子透鏡3〇的透鏡效應。例如, 在垂直方向上,開口 42的直徑為8.4毫米。 圖6為「共線」平面内電子搶的斷面圖,其係說明電子搶 101的第二項具體實施例。第二項具體實施例實質上與第一 項具體實施例相同,其中動態聚焦電極係分成水平方向的三 子€極Gr、Gc、G1。各子電極Gr、Gc、G1係對應於電子束 EBR、EBG、EBJB 的其中之 一 〇 第二項具體實施例尤其適用於彩色陰極射線管。 在運作中’各子電極Gr、Gc、G1係形成可區分的電子透鏡 130R、130G、130B。藉由將有關的、獨立的電壓Vdynl、Vdyn2 、Vdyn3分別施加於各電極Gr、Gc、G1,可使電子透鏡n〇R 、130G、130B的透鏡強度各不相同。如圖7所示,這可使三 電子束EBR、EBG、EBB的交叉處1 i〇r、! 10G、丨10B各形成 於一個別的位置内。 具體而言,藍色電子束EBB的交叉處1 10B係位於電子透鏡 130B與主透鏡150之間,綠色電子束EBG之交又處u〇(}係位 於主透鏡150内,而紅色電子束的交又處n〇Il係位於主透鏡 1 :>0與偏轉透鏡I 02R之間。在圖式中’彩色相關散焦效廣看 起來比實際情況要強。在實務上,交叉處110r、n〇G、11()β 沿著中央軸ΜΑ,彼此間距較小。 在偏轉透鏡2處,電子束EBR、£BG、EBB之間的間隔為(例 如)6毫米若電子束E B R、£ B G、E B B (例如)朝著顯示營暮^ 的東北角偏轉’則藍色電子束EBB的偏轉角係小於綠色雷子 -19 - 200411708 (15) 發明說嗔繽頁 束E B G的偏轉角,而綠色電子束EBG的偏轉角則係小於紅色 電子束E B R的偏轉角。 因此,藍色電子束EBB之偏轉透鏡102B的透鏡強度係小於 綠色電子束EBG之偏轉透鏡102G的透鏡強度,且綠色電子束 EBG之偏轉透鏡i〇2G的透鏡強度係小於紅色電子束EBR之 偏轉透鏡1. 0 2 R的透鏡強度。 因為各交又處110R、110G、110B可偏移不同的距離,故 藉由適當選擇對應的動態聚焦電壓Vdynl、Vdyn2、Vdyn;5 ’各交又處110R、1 l〇G、110B實質上可固定於相關偏轉透 鏡丨02R、102G、102B之物鏡平面〇PR、〇PG、〇PB内。因此 ,在電子搶101的此項具體實施例中,實質上可制止彩色相關 散焦的發生’即使偏轉角度比較大(如12〇度)時,亦可排除。 舉例而言’對各電子束EBR、EBG、EBB而言,適當的相 關動態電壓Vdynl、Vdyn2、Vdyn3會列在一表中,其針對顯 示螢幕3中央的著陸點,相關的偏轉角度為〇度;並針對顯示 螢养3東北角的著陸點,相關的偏轉角度為12〇度。< I < I200411708 Description of the invention Continue to buy --——- 1650 Volts. When the deflection angle is small, the main lens 50 may be too weak to focus the electron beams EBR, EBG, and EBB on the display screen 3. The angle between the outermost rays of the electron beams EBR, Eβ (}, EBB and the central axis μα is too large. As a result, the display quality of the electron beams EBR, EBG, and EBB on the display screen 3 will be adversely affected, that is, light spots Cannot focus on display screen 3. This point can be seen in Figure 5A, where the electron beam £ b 〇1 indicated by the dashed line is the central electron beam. To limit this effect, it can be near the side of the main lens 50 A pre-focused cylindrical lens 40 is arranged, and the side faces an electron beam forming portion 20. The cylindrical lens 40 is much weaker than the electron lens 30, and therefore only works for a small deflection angle. Represented by the solid line The electron beam EBG can be focused in advance by the cylindrical lens 40 before entering the main lens 50. The angle formed by the outermost rays of the electron beam EBG and the central axis MA at the position of the main lens 50 will be reduced. Now the electron The beam EBG can be focused on a spot sg on the display screen 3 by the main lens 50, and a has a relatively high quality. For example, 'because the focusing electrode G4 is divided into two sub-electrodes A, G4 B (sub-electrode G4 A, The end face of G4B is shown as electrical in Figure 5B 4 1), so it can be flattened into a cylindrical lens 40. In this case, specifically, the cylindrical lens is formed between the two electrodes 41. The electrode 41 has an opening 42 elongated in the horizontal direction to allow electrons The beams EBR, EBG, and EBB pass. In the horizontal direction, the diameter of the opening 42 is about the same as that of the opening 33. The correction element 40 has substantially no influence on the electron beams EBR, EBG, and EBB. 200411708 The diameter of the opening 42 is much larger than the opening%, so that the lens effect of the cylindrical lens 40 is weaker than that of the electron lens 30. For example, in the vertical direction, the diameter of the opening 42 is 8.4 mm. Figure 6 is "collinear" A cross-sectional view of the electronic grab in the plane, which illustrates the second specific embodiment of the electronic grab 101. The second specific embodiment is substantially the same as the first specific embodiment, in which the dynamic focusing electrode system is divided into three in the horizontal direction. Sub-electrodes Gr, Gc, G1. Each sub-electrode Gr, Gc, G1 corresponds to one of the electron beams EBR, EBG, EBJB. The second embodiment is particularly applicable to color cathode-ray tubes. In operation Each of the sub-electrodes Gr, Gc, G1 forms a distinguishable electron lens 130R, 130G, 130B. By applying relevant and independent voltages Vdynl, Vdyn2, and Vdyn3 to the electrodes Gr, Gc, G1, respectively, the electron lens can be made The lens intensities of n〇R, 130G, and 130B are different. As shown in Fig. 7, this allows the three electron beams EBR, EBG, and EBB to intersect 1 i0r,! 10G, and 10B each in a different one. Specifically, the intersection 1 10B of the blue electron beam EBB is located between the electron lens 130B and the main lens 150, and the intersection of the green electron beam EBG is again located within the main lens 150, and the red The intersection of the electron beams is located between the main lens 1:> 0 and the deflection lens I02R. In the scheme, the 'color-dependent defocusing effect' looks wider than the actual situation. In practice, the intersections 110r, 〇G, 11 () β are along the central axis MA, and the distance between them is small. At the deflection lens 2, the interval between the electron beams EBR, £ BG, and EBB is, for example, 6 mm. If the electron beams EBR, £ BG, and EBB (for example) are deflected toward the northeast corner showing the camp twilight ^, blue The deflection angle of the electron beam EBB is smaller than that of the green thunder-19-200411708 (15) The invention states that the deflection angle of the EBG beam EBG is smaller than that of the red electron beam EBR. Therefore, the lens intensity of the deflection lens 102B of the blue electron beam EBB is smaller than that of the deflection lens 102G of the green electron beam EBG, and the lens intensity of the deflection lens 102B of the green electron beam EBG is less than the deflection of the red electron beam EBR. Lens intensity of 1.0 2 R. Because the intersections 110R, 110G, and 110B can be offset by different distances, by appropriately selecting the corresponding dynamic focus voltages Vdynl, Vdyn2, and Vdyn; 5 'intersections 110R, 110G, and 110B can be substantially adjusted. Fixed in the objective lens planes oPR, oPG, oPB of the related deflection lenses 02R, 102G, 102B. Therefore, in this specific embodiment of the electronic grab 101, the occurrence of color-related defocus can be substantially prevented ', even if the deflection angle is relatively large (such as 120 degrees), it can be excluded. For example, 'For each electron beam EBR, EBG, EBB, the appropriate relevant dynamic voltages Vdynl, Vdyn2, Vdyn3 will be listed in a table, which is related to the landing point in the center of display screen 3, and the relevant deflection angle is 0 degrees. ; And for the landing point showing the northeast corner of Yingyang 3, the relevant deflection angle is 120 degrees.

該表亦顯示電子束EBR、£BG、Εββ之光斑SR、SG、SB 的直徑x、y,其中水平方向為(>〇,垂直方向為(y),且在此 種情況下該光斑係形成於顯示螢幕3上。 對表中列出的所有值,施加於第_聚焦電極G3a及第二聚 焦電極G4的固定聚焦電壓為5 66千伏特,且電子束ebr、ΕΒ〇 、EBB的電子束電流為〇 5毫安培。 表Μ動態電壓Vdyn !、Vdyn2、Vdyn3之示範值及三電子東ΕβR 、EBG EBB所形成之光斑SR、SG、化的相關直徑χ,y。 200411708 (|6) 發魄說朝繽賣 中央 EBR Vdyn 1 : =829伏特 x(SR) = 783 微米 y(SR) = 269 微米 EBG Vdyn2 : =829伏特 x(SG)=1.25 毫米 y(SG) = 277 微米 EBB Vdyn3 : =829伏特 x(SB) = 783 微米 y(SB) = 269 微米 東北角 EBR V d y η 1 = 1736伏特 x(SR)=4.05 毫米 y(SR) = 275 微米 EBG Vdyn2= 1639伏特 x(SG) = 5. 10 毫米 y(SG) = 262 微米 EBB Vdy n3 = 1 557伏特 x(SB) = 3.69 毫米 y(SB) = 286 微米 當偏轉角度為12 0度時 ,動態電壓Vdyn 1 、Vdyn2、Vdyn3 遠小於2千伏特’且與傳統上所謂的「daf 」電子搶之動態 聚焦電壓不同的是’其不必為一固定的聚焦電壓。 光斑SR、SG、SB在垂直方向上的直徑y於整個顯示螢幕3 都小於300微米。因此,第二項具體實施例之電子搶1〇1非常 適用於所謂FIT型的陰極射線管,其在ερ-α] 058 942已知。 在此種陰極射線管(FIT-CRT)中沒有用於彩色選擇的陰影 遮罩。顯示螢幕3上三電子束EBR、EBG、EBB的著陸點可分 別根據對應於電子束的磷彩色(即紅、綠、藍)修正。磷(例如) 可以水平路徑配置於顯示螢幕3上。在磷路徑的任何一側, r、引元件可產生第一及第二修正信號。對應碼路徑上電子 束的著陸點可根據第一與第二修正信號之差判定。 寫入影像時,電子束通常不在磷路徑上直線移動;而是, 會發生干擾,其主要係由(例如)偏轉構件中磁場的變動所引 起,因此,以垂直於磷路徑之方向移動的電子束可能會不合 需要地偏轉’並著陸在與電子束不對應之彩色的磷路徑上, -21 - 200411708 1 } I發:_驟繽^ 從而光影像發生彩色錯誤。 若運作中電子束不完全著陸於磷路徑上’而是部分著陸於 其中-個索引元件上,則修正信號之差會比較大。在此種情 況下,可啟動一磁性修正線圈使電子束以垂直於磷路徑的 方向發生頜外的偏轉,從而修正電子束著陸點上磁性變動的 效應。 因為可癌去影陰遮罩,故FIT陰極射線管比較便宜,且可 使用電子束電流比較低的電子束。例如,電子束電流最大大 約為0.5愛安培。 FIT陰極射線管對顯示螢幕上光斑的尺寸要求甚高。若電 子束正確著陸於碟路徑上’則電子束便不會著陸於索引元件 上,如此則二修正信號都為零。為此目的,垂直於顯示螢幕 上碟路枚之方向(即通常的垂直方向)的光斑尺寸,不應大於 該方向上磷路徑的直徑。在具有線(PAL格式)的32 时寬螢幕真平面(WSRF) FIT陰極射線管中,該直徑大約為 325微米。 表1顯示,在第二項具體實施例之電子搶1〇1中,在FIT陰 極射線管中通常最大的電子束電流0.5毫安培下,垂直方向 (y)的光斑尺寸於整個顯示螢幕3上皆滿足該要求。 圖8之正視圖係更詳細地說明瞭動態聚焦電極的一項範例 ’其具有三子電極Gr、Gc、G1,且適用於電子搶ιοί的第二 項具體實施例。 以垂直於「共線」平面的方向觀察,該等電極Gr、Gc、G1 各包括二區段 I 42r、143r ; 142c、143c ; 1421、1431,彼此間 200411708 (18) 隔一定的距離,例如0.2毫米。因此’在相關的子電極Gr、 Gc、G1之二區段 i42r、143r ; 142c、143 ; 142卜 1431之間, 所形成的開口具有(例如)3.6毫米的直徑,運作時,電子束 EBR、EBG、EBB係在位置141R、141G、141B處通過該等開 α 〇 區·^又1 4 2丨、c、1 ; 14 3 r、c、1以彼此相鄰的方式位元於該 「共線」平面的相同側,且在此項範例中係分別附於一共同 的玻璃板144Α、144Β,以彼此電性絕緣。動態聚焦電極G3B 可藉由多種形式145Α、145Β固定於電子搶ίο!。 圖9為包括陰極射線管之影像顯示裝置,該陰極射線管具 有第二項具體實施例令的電子搶101。 運作時’影像顯示裝置中的控制單元A係配置以接收一影 像化號V丨D ’並從該影像信號v I d產生調變信號μ R、M G、 MB及位置信號?乂與巧。 调璧k號MR、MG、MB可供應予各自的電子源cr、CG、 CB,以調變電子束EBR、EB(}、Εββ的電流密度,從而分別 改變紅、綠、藍磷在顯示螢幕1〇3上電子束EBR、EBG、ΕΒβ 著陸點處發光的強度。 位置信號Ρχ及Py可供應予偏轉電路D,其可根據該等位置 L唬形成一線頻率偏轉電流L及一框架頻率偏轉電流“。偏 轉構件丨02可與偏轉電路D耦合,以接收偏轉電流卜、^。具 體而言,偏轉構件102包括一線偏轉線圈Li,其可接收該線 頻率偏轉電流丨!,以在運作時按水平方向偏轉電子束上8{1、 EBG、EBB。此外,偏轉構件1〇2包括一框架偏轉線圈^,其 -23 - (19) (19)200411708 發嘴說 屬繽蓖 可接收該框架頻率偏轉電流卜,以在運作時按垂直方向偏轉 電子束 EBR、EBG、EBB。 位置信號Ρχ及Py亦可供應於聚焦電路F ,以同步產生動態 聚焦電壓 Vdynl、Vdyn2、Vf1\/ni /、審从· +The table also shows the diameters x, y of the beam spots SR, SG, SB of the electron beams EBR, £ BG, Εββ, where the horizontal direction is (> 〇, the vertical direction is (y), and in this case the light spot system It is formed on the display screen 3. For all the values listed in the table, the fixed focus voltage applied to the _th focus electrode G3a and the second focus electrode G4 is 5.66 kV, and the electrons of the electron beams ebr, EB0, EBB The beam current is 0 5 milliamperes. Table M Demonstration values of dynamic voltages Vdyn !, Vdyn2, Vdyn3, and the relative diameters of the spots SR, SG, and 化 formed by the three-electron east ΕβR and EBG EBB. 200411708 (| 6) Farewell said that Chaobin sells central EBR Vdyn 1: = 829 Volts x (SR) = 783 microns y (SR) = 269 microns EBG Vdyn2: = 829 Volts x (SG) = 1.25 mm y (SG) = 277 microns EBB Vdyn3 : = 829 Volts x (SB) = 783 microns y (SB) = 269 microns Northeast corner EBR V dy η 1 = 1736 Volts x (SR) = 4.05 mm y (SR) = 275 microns EBG Vdyn2 = 1639 Volts x (SG ) = 5.10 mm y (SG) = 262 microns EBB Vdy n3 = 1 557 volts x (SB) = 3.69 mm y (SB) = 286 microns when the deflection angle is 120 degrees The dynamic voltages Vdyn 1, Vdyn2, Vdyn3 are much smaller than 2 kV 'and are different from the traditional so-called "daf" electronic grabbing dynamic focus voltage, which is' It does not have to be a fixed focus voltage. The spots SR, SG, SB are in The diameter y in the vertical direction is less than 300 micrometers across the entire display screen 3. Therefore, the electronic grabber 101 of the second embodiment is very suitable for the so-called FIT-type cathode ray tube, which has ερ-α] 058 942. There is no shadow mask for color selection in this type of cathode ray tube (FIT-CRT). The landing points of the three electron beams EBR, EBG, and EBB on the display screen 3 can be respectively based on the phosphor color corresponding to the electron beam ( That is, red, green, and blue) correction. Phosphor (for example) can be arranged on the display screen 3 in a horizontal path. On either side of the phosphor path, r and lead elements can generate first and second correction signals. The electrons on the corresponding code path The landing point of the beam can be determined based on the difference between the first and second correction signals. When writing an image, the electron beam usually does not move linearly on the phosphorus path; instead, interference occurs, which is mainly caused by, for example, the magnetic field in the deflection member The electron beams moving in a direction perpendicular to the phosphorus path may be deflected undesirably 'and land on a colored phosphorus path that does not correspond to the electron beam, -21-200411708 1} I issued: _ Su Bin ^ There is a color error in the light image. If the electron beam is not completely landed on the phosphorus path 'in operation but is partially landed on one of the index elements, the difference between the correction signals will be relatively large. In this case, a magnetic correction coil can be activated to cause the electron beam to deflect outside the jaw in a direction perpendicular to the phosphorus path, thereby correcting the effect of magnetic fluctuations at the landing point of the electron beam. FIT cathode ray tubes are cheaper because they can remove the shadow mask from cancer, and can use electron beams with a lower electron beam current. For example, the maximum electron beam current is about 0.5 amperes. FIT cathode ray tubes place high demands on the size of the light spot on the display screen. If the electron beam is correctly landed on the dish path, the electron beam will not land on the index element, and then both correction signals will be zero. For this purpose, the spot size perpendicular to the direction of the disk path on the display screen (ie the normal vertical direction) should not be larger than the diameter of the phosphor path in that direction. In a 32-hour wide screen true plane (WSRF) FIT cathode ray tube with a line (PAL format), the diameter is approximately 325 microns. Table 1 shows that in the electronic grabbing 101 of the second embodiment, the spot size in the vertical direction (y) is on the entire display screen 3 at the maximum electron beam current of 0.5 milliamps normally in a FIT cathode ray tube. All meet this requirement. The front view of FIG. 8 illustrates an example of the dynamic focusing electrode in more detail, which has three sub-electrodes Gr, Gc, G1, and is applicable to the second specific embodiment of the electronic grabber. Viewed in a direction perpendicular to the "collinear" plane, the electrodes Gr, Gc, G1 each include two sections I 42r, 143r; 142c, 143c; 1421, 1431, 200411708 (18) separated by a certain distance from each other, for example 0.2 mm. Therefore, between the relevant sub-electrodes Gr, Gc, G1 bis sections i42r, 143r; 142c, 143; 142b 1431, the opening formed has a diameter of, for example, 3.6 mm. During operation, the electron beam EBR, EBG and EBB are located at positions 141R, 141G, and 141B through the open α 〇 area ^ and 1 4 2 丨, c, 1; 14 3 r, c, 1 are located adjacent to each other in the "common The "line" plane is on the same side, and in this example is attached to a common glass plate 144A, 144B, respectively, to be electrically insulated from each other. The dynamic focusing electrode G3B can be fixed to the electronic grab by various forms of 145A and 145B. Fig. 9 is an image display device including a cathode ray tube having the electron pick-up 101 of the second embodiment. During operation, the control unit A in the image display device is configured to receive an image number V 丨 D ′ and generate modulation signals μ R, M G, MB and position signals from the image signal v I d? Ingenious and clever. The k-number MR, MG, and MB can be supplied to the respective electron sources cr, CG, and CB to modulate the current density of the electron beams EBR, EB (}, and Eββ, thereby respectively changing the red, green, and blue phosphorus on the display screen. The intensity of light emission at the landing points of the electron beams EBR, EBG, and EBβ on 103. The position signals Px and Py can be supplied to the deflection circuit D, which can form a line frequency deflection current L and a frame frequency deflection current according to the positions Lbl. ". The deflection member 02 can be coupled to the deflection circuit D to receive the deflection current B1. Specifically, the deflection member 102 includes a line deflection coil Li that can receive the line frequency deflection current Li! 8 {1, EBG, EBB on the deflection electron beam in the horizontal direction. In addition, the deflection member 102 includes a frame deflection coil ^, which -23-(19) (19) 200411708 said that the frame frequency can receive the frame frequency The deflection current b is used to deflect the electron beams EBR, EBG, and EBB in the vertical direction during operation. Position signals Px and Py can also be supplied to the focusing circuit F to generate dynamic focusing voltages Vdynl, Vdyn2, Vf1 \ / ni /, and From

Vdynj。在運作時,動態聚焦電極 G3B左邊的子電極⑺可接收第一動態聚焦電壓vdyni、中央 子電極Gc可接收第二動態聚焦電壓Vdm,而右邊的子電極 Gr可接收第三動態聚焦電壓Vdyn3。 動態聚焦電壓通常為第四級信號,其係取決於顯示營幕3 上電子束EBR、EBG、EBB的著陸點。 ,圖式中顯$ 了具有三子電㈣丨、Gc、Gr的動態聚焦電極 。€十搶101中的其他電極係等同於電子搶!的第一項具 體貫施例中所示的電極,為法每4目 Jr ^ 马,月疋起見,未將其他電極顯示於 圖式中。 各圖式都是概略性的,並未按比例緣製。藉由圖式及相關 具體實施例的說明可瞭解本法明’該等圖式及具體實施例不 應視為限制本發明的範嘴。本發明特別包括本文所述之各項 具體實施例的修改’熟悉技藝人士可實施該等修改,而:致 脱離隨附的申請專利範圍之受保護的範s壽。 圖式簡單說明 圖丨係概略性說明根據本發明之陰極射線管其具有第一 具體實施例中的電子搶; 圖2係說明電子搶的第一項具體實施例之細節; 圖3為陰極射線管中電子透鏡的等效透鏡系統,其係針對 水平方向; ’ -24 · (20)200411708 ㉚觸繽裒 其係針對 圖4為陰極射線管中電子遂鏡的等效透鏡系統, 垂直方向; 圖5 A為第一項具體實施例之電子搶的等效透鏡系 — 外具有散光修正元件; ^、、' ,其額 圖3 Β為該修正元件之電極的正視圖; 圖6係概略性說明電子搶的第二項具體實施例;Vdynj. In operation, the left sub-electrode 动态 of the dynamic focus electrode G3B can receive a first dynamic focus voltage vdyni, the central sub-electrode Gc can receive a second dynamic focus voltage Vdm, and the right sub-electrode Gr can receive a third dynamic focus voltage Vdyn3. The dynamic focus voltage is usually a fourth-level signal, which depends on the landing points of the electron beams EBR, EBG, and EBB on the display screen 3. The figure shows a dynamic focusing electrode with three sub-electrodes, Gc, Gr. The other electrodes in € 10 Grab 101 are equivalent to electronic Grab! The electrode shown in the first specific embodiment of the example is shown in Figure 4. For the sake of convenience, every 4 mesh Jr ^ horses, the other electrodes are not shown in the drawing. The drawings are schematic and not scaled. Through the description of the drawings and related specific embodiments, it can be understood that the drawings and specific embodiments of this method are not to be considered as limiting the scope of the present invention. The present invention particularly includes modifications of the specific embodiments described herein, and those skilled in the art can implement such modifications without departing from the scope of protection of the appended patent application. Brief description of the figure: It is a schematic illustration of a cathode-ray tube according to the present invention, which has an electronic grab in the first specific embodiment; FIG. 2 is a detail illustrating the first specific embodiment of the electronic grab; FIG. 3 is a cathode ray The equivalent lens system of the electron lens in the tube is aimed at the horizontal direction; '-24 · (20) 200411708 ㉚Touch Bin 裒 is the equivalent lens system of the electron tunneling lens in the cathode ray tube shown in Fig. 4 in the vertical direction; Fig. 5A is an equivalent lens system of the first embodiment of the electronic embodiment-an astigmatism correction element is provided outside; ^ ,, ', its figure 3B is a front view of the electrode of the correction element; Fig. 6 is a schematic view Describe the second specific embodiment of electronic grabbing;

圖7為陰極射線管的等效透鏡系統,其具有第二項具體者 施例中的電子搶; 肢R 圖8係更詳細說明第二項具體實施例之電子搶中的動態聚 焦電極,以及 圖9為根據本發明之影像顯示裝置。 圖式代表符號說明FIG. 7 is an equivalent lens system of a cathode ray tube, which has the electron grab in the second embodiment; FIG. 8 is a more detailed description of the dynamic focusing electrode in the electron grab in the second embodiment, and FIG. 9 is an image display device according to the present invention. Schematic representation of symbols

EBREBR

EBGEBG

EBB 20EBB 20

10R、10G、10B G1 G210R, 10G, 10B G1 G2

G3AG3A

G3B G4 G5 21R、21G、21B 3 0 50 電子搶 電子束 電子束 電子束 電子束形成部分 交叉處 第一電極 第二電極 第一聚焦電極 動態聚焦電極 第二聚;r電極 陽極 物鏡點 電子透鏡 主透鏡 -25, 200411708G3B G4 G5 21R, 21G, 21B 3 0 50 Electron grab electron beam electron beam electron beam electron beam forming part crossing first electrode second electrode first focusing electrode dynamic focusing electrode second focusing; r electrode anode objective lens point electron lens main Lens-25, 200411708

發獎說明繽頁 2 2, j 31、32 35 36Prize Presentation Page 2 2, j 31, 32 35 36

jjA ' jjd N jjL ' j j L) MA 37R、37G、37B VfjjA 'jjd N jjL' j j L) MA 37R, 37G, 37B Vf

VdynVdyn

40 BL OP1 LI L2 OP CR、CG、CB EBG'40 BL OP1 LI L2 OP CR, CG, CB EBG '

SR、SG、SB 41 42 G4A、G4B 101SR, SG, SB 41 42 G4A, G4B 101

Gr、Gc、G1 130R、130G、130B Vdynl、Vdyn2、Vdyn3 MOR、I 10G、1 10B 150 102R、102G、102B OPR、〇PG、OPB 142r 、 143r 偏轉構件 偏轉透鏡 顯示螢幕 圓柱透鏡 端面 端面 開口 中央軸 點 聚焦電壓 動態聚焦電壓 預先聚焦的圓柱透鏡 著_位置 物鏡平面 距離 距離 物鏡平面 電子源 電子束 光斑 電極 開口 子電極 電子搶 子電極 電子透鏡 電壓 交又處 主透鏡 偏轉透鏡 物鏡平面 區段 200411708 (22) 發明·萌繽頁 142c 、 143c 區段 142卜 1431 141R、141G、141B 區段 位置 144A 、 144B 玻璃板 145A > 145B 多種形式 M R λ MG λ MB 調變信號 Ρχ、Py 位置信號 A 控制單元 VID 影像信號 D lr l| 偏轉電路 框架頻率偏轉電流 線頻率偏轉電流 102 偏轉構件 L, Lt· 線偏轉線圈 框架偏轉線圈 F 聚焦電路Gr, Gc, G1 130R, 130G, 130B Vdynl, Vdyn2, Vdyn3 MOR, I 10G, 1 10B 150 102R, 102G, 102B OPR, 〇PG, OPB 142r, 143r Deflection member deflection lens display screen cylindrical lens end surface end opening central axis Point focusing voltage, dynamic focusing voltage, pre-focused cylindrical lens, _position objective plane, distance from objective plane, electron source, beam spot electrode, opening electrode, electron grab electrode, electronic lens voltage, and main lens deflection lens, objective section 200411708 (22) Invention · Mengbin page 142c, 143c section 142, 1431 141R, 141G, 141B section position 144A, 144B glass plate 145A > 145B various forms MR λ MG λ MB modulation signal Pχ, Py position signal A control unit VID image Signal D lr l | deflection circuit frame frequency deflection current line frequency deflection current 102 deflection member L, Lt · line deflection coil frame deflection coil F focusing circuit

Claims (1)

200411708 拾、申請專利範爵 1. 一種陰極射線管(CRT),其包括: 一顯示螢幕(3),其可在一著陸位置(BL)處接收一電子 束(EBR、EBG、EBB) ; ^ 一電子搶(1),其可產生該電子束(EBR、Εβσ、ΕΒβ), 該電子搶具有: 一電子束形成部分(20) ; φ 一電子透鏡(30),其透鏡強度可根據該電子束(ebr、 EBG、EBB)著陸點的不同而變化,以在與該電子搶(1)的 一中央軸(MA)成適當角度處,按一第一方向為電子娘 (EBR、EBG、EBB)提供一交又處(10R、1〇(}、1〇B),該 交又處可沿著該中央軸(ΜA)偏移,及 一主透鏡(5 0),其係位於該電子透鏡(3〇)與該電子搶(1) 的一端之間,該電子搶係面對該顯示螢幕(3); 並包括偏轉構件(2),其係配置於該電子搶(1)與該顯示 螢幕(3)之間,該偏轉構件可按一第二方向自動會聚,該 儀 第二方向係與該第一方向及該中央軸(MA)橫向,該偏轉 構件亦可用以藉由使該電子束(EBr、EBG、£BB)偏轉通 過一預定的偏轉角度,而調整該電子束(EBR、EBG、EBB) 在該顯示螢幕(3)上的著陸位置,以在顯示螢幕(3)上獲得 電子光學影像, 該偏轉構件(2)可形成一偏轉透鏡(2,),以作用於該電子 束(EBR、EBG、EBB), 該陰極射線管的特徵在於該電子搶(丨)係配置以將交叉 200411708 _ί_Si 申籮專刺範圍鑛舅 處(10R、l〇G、10B)偏移至該主透鏡(50)與該偏轉構件(2) 之間的一位置處,該位置係位於偏轉透鏡(2,)的一物鏡平 面(OP)附近。 2, 如申請專利範圍第1項之陰極射線管,其特徵在於該電子 搶(1)的電子束形成部分(20)係配置以產生三電子束(£BR 、£BG、EBB),其按該第二方向並列位於該相同的平面 上,且其特徵還在於該電子透鏡(30)的透鏡強度對於該等 電子束(EBR、EBG、EBB)而言各不相同。 3. 如申請專利範圍第1項之陰極射線管,其特徵在於從該顯 示螢幕(3)的方向觀察,該電子束形成部分(2〇)所在的電子 搶(1),其係連續具有一第一聚焦電極(G3A)、用以形成該 電子透鏡(30)的一動態聚焦電極(G3B)、一第二聚焦電極 (G4)及一陽極(G5)。 4.200411708 Fan patent application 1. A cathode ray tube (CRT) comprising: a display screen (3) which can receive an electron beam (EBR, EBG, EBB) at a landing position (BL); ^ An electron grab (1), which can generate the electron beam (EBR, Εβσ, eb β), the electron grab has: an electron beam forming part (20); φ an electron lens (30), the lens intensity of which can be determined according to the electron Beam (ebr, EBG, EBB) landing point changes, so that at an appropriate angle with a central axis (MA) of the electronic grab (1), the electron mother (EBR, EBG, EBB) in a first direction ) Provides an intersection (10R, 10 (}, 10B), which can be offset along the central axis (MA), and a main lens (50), which is located at the electron lens (3〇) and one end of the electronic grab (1), the electronic grab is facing the display screen (3); and includes a deflection member (2), which is arranged between the electronic grab (1) and the display Between the screens (3), the deflection member can automatically converge in a second direction, the second direction of the instrument is transverse to the first direction and the central axis (MA) The deflection member can also be used to adjust the electron beam (EBR, EBG, EBB) on the display screen (3) by deflecting the electron beam (EBr, EBG, £ BB) through a predetermined deflection angle. Landing position to obtain an electro-optical image on the display screen (3), the deflection member (2) can form a deflection lens (2,) to act on the electron beam (EBR, EBG, EBB), the cathode ray tube It is characterized in that the electronic grab (丨) system is configured to shift the intersection 200411708 _ί_Si application area (10R, 10G, 10B) to the main lens (50) and the deflection member (2). This position is located near an objective lens plane (OP) of the deflection lens (2,). 2, such as the cathode ray tube of the first patent application scope, characterized in that the electron grabs (1) 's electrons The beam forming portion (20) is configured to generate three electron beams (£ BR, £ BG, EBB), which are juxtaposed on the same plane in the second direction, and are also characterized by a lens of the electron lens (30) Intensity varies for these electron beams (EBR, EBG, EBB) 3. The cathode ray tube of item 1 in the scope of the patent application is characterized in that when viewed from the direction of the display screen (3), the electron beam (1) in which the electron beam forming portion (20) is located is continuously provided with A first focusing electrode (G3A), a dynamic focusing electrode (G3B), a second focusing electrode (G4), and an anode (G5) for forming the electronic lens (30). 如申請專利範圍第3項之陰極射線管,其特徵在於該動 聚焦電極(G3B)具有端面(35),其係位於該中央軸(ma) 橫向,處,言亥等端面在該第^方向具有一拉長的開口(3: 、33C) ’可讓該電子束(_、咖、ΕΒβ)通過,且該 一聚焦電極(G3A)及該第二聚焦電極㈣都具有—端面 其面對該動態聚焦電極(G3B),該等端面在該第二方向 具有一拉長的開口(33A、33D)。 t!二t利祀圍第2及3項之陰極射線管’其特徵在於該 心二…U極(G3 B)包括針對該等電子束(ebr、_ ' Εβ 之^電子束的__子電極,該等子電㈣ Gc、G1)係彼此電性絕緣。 200411708 申镛奪聯範圜繽買 6如申請專利範圍第3、4或5項之陰極射線管’其特徵在於 该動態聚焦電極(G3B)可在運作時接收一動態電壓(Vdyn) ,其係取決於該偏轉角度。 7如申請專利範圍第6項之陰極射線管,其特徵在於該動態 €壓(\^乂11)可在350伏特與2500伏特之間變化。 8. 如申請專利範圍第2項之陰極射線管,其特徵在於有一散 光G正元件(4 0)位於该主透鏡($ q )的一側附近,該側係面 對電子束形成部分(20)。 9. 如珂述申請專利範圍中任一項之陰極射線管,其特徵在於 在該電子束(EBR、EBG、EBB)的一電子束電流最高大約 為0.5毫安培時,該交叉處(1〇R、1〇G、1〇B)在該顯示螢幕 (J)上按該第一方向顯示的一直徑,至少實質上在整個顯 不螢幕(3)上都小於3〇〇微米。 1 〇. —種裝置,其包括如申請專利範圍第〗至9項中至少一項之 陰極射線管。For example, the cathode ray tube of the third scope of the patent application is characterized in that the dynamic focusing electrode (G3B) has an end face (35), which is located transversely to the central axis (ma), and the end faces such as Yanhai are in the ^ direction It has an elongated opening (3 :, 33C) 'to allow the electron beam (_, coffee, eb β) to pass through, and the focusing electrode (G3A) and the second focusing electrode ㈣ both have an end surface facing the The dynamic focusing electrode (G3B), the end faces have an elongated opening (33A, 33D) in the second direction. t! The two cathode cathode ray tubes of the second and third items are characterized in that the heart two ... The U pole (G3 B) includes __child for these electron beams (ebr, _ 'Εβ of the electron beam) The electrodes, these electrons (Gc, G1) are electrically insulated from each other. 200411708 Shenyang won the bid to buy Fan Fanbin 6. If the cathode ray tube of the patent application No. 3, 4 or 5 is used, it is characterized in that the dynamic focusing electrode (G3B) can receive a dynamic voltage (Vdyn) during operation. Depends on the deflection angle. 7. The cathode ray tube according to item 6 of the patent application, characterized in that the dynamic pressure (\ ^ 乂 11) can be changed between 350 volts and 2500 volts. 8. The cathode ray tube of item 2 of the patent application is characterized in that an astigmatic G positive element (40) is located near the side of the main lens ($ q), which side faces the electron beam forming portion (20 ). 9. The cathode ray tube according to any one of Keshu's patent applications, characterized in that when an electron beam current of the electron beam (EBR, EBG, EBB) is at most about 0.5 milliamps, the intersection (1〇 R, 10G, 10B) A diameter displayed in the first direction on the display screen (J) is less than 300 microns at least substantially on the entire display screen (3). 1 〇. A device comprising a cathode ray tube as in at least one of the items in the scope of the patent application.
TW91137691A 2001-12-17 2002-12-27 Cathode ray tube and picture display device TW200411708A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01204937 2001-12-17

Publications (1)

Publication Number Publication Date
TW200411708A true TW200411708A (en) 2004-07-01

Family

ID=8181456

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91137691A TW200411708A (en) 2001-12-17 2002-12-27 Cathode ray tube and picture display device

Country Status (3)

Country Link
AU (1) AU2002366421A1 (en)
TW (1) TW200411708A (en)
WO (1) WO2003052787A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262702A (en) * 1989-03-23 1993-11-16 Kabushiki Kaisha Toshiba Color cathode-ray tube apparatus
JP2825287B2 (en) * 1989-03-23 1998-11-18 株式会社東芝 Color picture tube equipment
JPH0721936A (en) * 1993-06-30 1995-01-24 Hitachi Ltd Cathode-ray tube
KR100377399B1 (en) * 1995-11-24 2003-06-19 삼성에스디아이 주식회사 Electron gun for color cathode ray tube

Also Published As

Publication number Publication date
WO2003052787A2 (en) 2003-06-26
WO2003052787A3 (en) 2004-06-17
AU2002366421A8 (en) 2003-06-30
AU2002366421A1 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
EP0996140A1 (en) Cathode-ray tube
WO2000039833A1 (en) Color cathode-ray tube device
TW200411708A (en) Cathode ray tube and picture display device
US3678329A (en) Cathode ray tube
JP2000251757A (en) Cathode ray tube
JPH0160894B2 (en)
JP3315173B2 (en) Color picture tube equipment
JPH0432138A (en) Color image receiving tube device
JP2000082417A (en) Cathode-ray tube
JP3053850B2 (en) Color picture tube equipment
JP2692837B2 (en) Color picture tube equipment
JP2804051B2 (en) Color picture tube equipment
JP2002083557A (en) Cathode-ray tube device
JPH0748354B2 (en) Color cathode ray tube
JP3735378B2 (en) Cathode ray tube
JP3640694B2 (en) Color picture tube
JP2692858B2 (en) Color picture tube equipment
JPH02135650A (en) Color cathode-ray tube
JP2002042680A (en) Cathode-ray tube device
JPH0246633A (en) Color picture tube device
WO2002099834A2 (en) Spot optimization in a color display tube system
JP2001307655A (en) Color cathode-ray tube device
JP2001155658A (en) Cathode ray tube
JPH0554821A (en) Cathode-ray tube
JPH11195387A (en) Color picture tube