TW200411242A - Arrayed waveguide gratings for WDM - Google Patents

Arrayed waveguide gratings for WDM Download PDF

Info

Publication number
TW200411242A
TW200411242A TW91137990A TW91137990A TW200411242A TW 200411242 A TW200411242 A TW 200411242A TW 91137990 A TW91137990 A TW 91137990A TW 91137990 A TW91137990 A TW 91137990A TW 200411242 A TW200411242 A TW 200411242A
Authority
TW
Taiwan
Prior art keywords
waveguide
awg
free
patent application
scope
Prior art date
Application number
TW91137990A
Other languages
Chinese (zh)
Inventor
Shi-Mu Lin
Zhao-Ren Xu
Original Assignee
Lin Ruey Ju
Zhao-Ren Xu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lin Ruey Ju, Zhao-Ren Xu filed Critical Lin Ruey Ju
Priority to TW91137990A priority Critical patent/TW200411242A/en
Publication of TW200411242A publication Critical patent/TW200411242A/en

Links

Abstract

The arrayed waveguide grating (AWG) is the most potential and developmental devices in wavelength division multiplexing (WDM) of optical communication system. This petition is focus on designing AWG that has specially structure. First, using a taper structure in AWG input and output waveguide of free propagation range (FPR), the spectrum response becomes flat and the error of wavelength shift which is influenced by temperature and polarization is tolerated, the crosstalk and insertion loss have be reduced about 2~4dB. In addition, the performance of AWG will be better than classical one by using both multimode interference (MMI) and taper structure of AWG.

Description

200411242 [發日月戶斤屬之技術領 本發明乃是M认 1 ^ 多工器,在此一夕;光纖通訊中陣列波導光柵型的一種分波 化,二以變化5 ί 2器中光波導結構的部分給予特殊的變 於穩定外在環境:ΐ可使AWG的皮性能λ幅的提昇,有利 心胃以及降低封裝的成本。 【先前技術】 由於、’、罔路貝源的迅速發展,使得人們在資料的傳輸需求 上(^Α目此,光纖網路也越來越朝向大容量、多變 化、杈定以及經濟有效方面發展。此外,光纖網路架構的逐 漸成形使彳于光纖通訊元件的研究與製造日益重要,並且配合 不同的多工技術來傳送光訊號,提供更快更寬頻的服務。 1 9 87年,美國海軍研究所的D〇nald等人首先提出平面波導 結合平面光柵的概念,並申請可以分開多波長光束的之美國 專利US 4 6 9 6 5 3 6。1 9 9 0年,美國朗訊公司Dragon et al·提 出以NxN的波導做為分光功率的元件。丨9 9 2年,朗訊公司再 度提出了美國專利案US 5136671,使用不同長度的波導,其 光程差使波導出口端的相位差固定,並且成功地建立現今廣 為採用的陣列波導光栅型式的分波多工系統光纖元件,其後 陸續有相關AWG改良的專利申請。1 9 9 9年,我國的專利案 428113中提出在AWG陣列波導部分加工成特殊的設計,可以 降低光譜上多餘的雜訊,並且提高訊號的隔絕度,進一步經 由調變可以控制溫度與偏振態對於波長漂移的^響。 光纖通訊分波多工系統中,以陣列波‘光:iArrayed200411242 [Technology of the Sun, Moon, and Households] The present invention is a 1 multiplexer, and here it is; a type of demultiplexing of the array waveguide grating type in optical fiber communication, and 2 changes in 5 Part of the waveguide structure gives a special change to stabilize the external environment: ΐ can improve the AWG's skin performance λ amplitude, which is beneficial to the heart and stomach and reduces packaging costs. [Previous technology] Due to the rapid development of ', Kushiro Bayou, people's needs for data transmission (^ A) At this point, optical fiber networks are also increasingly moving towards large-capacity, changeable, fixed, and cost-effective aspects. In addition, the gradual formation of the optical fiber network architecture makes research and manufacturing of optical fiber communication components increasingly important, and cooperates with different multiplexing technologies to transmit optical signals and provide faster and wider services. 1987, United States Donald et al. Of the Naval Institute first proposed the concept of a planar waveguide combined with a planar grating, and applied for a US patent US 4 6 9 6 5 3 6. 1950, Lucent Corporation Dragon et al. al · Proposed the use of NxN waveguides as components of spectral power. 丨 In 1992, Lucent filed a US patent case US 5136671 again. Using different lengths of waveguides, the optical path difference fixed the phase difference at the exit end of the waveguide and was successful. Nowadays, the widely used fiber-optic components of the split-wave multiplexing system of the arrayed waveguide grating type are used today, and subsequent related patent applications for AWG improvement have been successively issued. China's patent case 428113 proposes that the AWG array waveguide is processed into a special design, which can reduce unwanted noise in the spectrum and improve the isolation of the signal. Further, the temperature and polarization state can be controlled by modulation to the wavelength drift. . Array Wave 'Optical: iArrayed

第5頁Page 5

200411242 五、發明說明(2)200411242 V. Description of Invention (2)

Waveguide Gratings; AWG)型式的被動元件最具潛力與發展 空間。習知技術中,陣列波導光柵(Arrayed WaveguideWaveguide Gratings (AWG) type passive components have the most potential and development space. 2. Arrayed Waveguide

GratingS : AWG)是利用半導體製程技術在波導上蝕刻出特GratingS: AWG) is a process that uses semiconductor process technology to etch features on waveguides.

殊的幾何結構,一個六吋晶圓約可蝕刻出六個AWG的結構,· 之後再經過切割、封裝、測試等步驟最後應用與生產,而利r 用此一波導結構可以用在光纖通訊被動元件中達成分波長訊-號的目的。AWG原理利用每一個相鄰陣列波導的光程有固定 的差值,利用光柵式的繞射與干涉達到分波功能。AWG可以 對不同波長的訊號同時解多工,使得其單位頻道的成本比起 其它種WDM元件來的低,並且AWG元件的分波性能表現也相較 其它元件來的優良。一般AWG分波元件的串音干擾約為 -2 5dB〜-3 0dB,而插入損失約為—5dB左右,而在越高頻道輸 出’越小頻道間距其性能會越加劣化。 【發明内容】 《所欲解決之技術問題》The special geometric structure, a six-inch wafer can etch about six AWG structures, and then after cutting, packaging, testing and other steps and finally application and production, the use of this waveguide structure can be used in optical fiber communication passive The component achieves the purpose of component wavelength signal-signal. The AWG principle uses a fixed difference in the optical path of each adjacent array waveguide, and uses grating diffraction and interference to achieve the demultiplexing function. The AWG can demultiplex multiple signals at different wavelengths at the same time, making the cost per channel lower than that of other WDM components, and the performance of the AWG component is better than that of other components. Generally, the crosstalk interference of AWG demultiplexing components is about -2 5dB ~ -30 dB, and the insertion loss is about -5dB. The higher the channel output ’, the smaller the channel spacing will degrade its performance. [Summary] "Technical Problems to Be Solved"

AWG技術雖然分波能力強、頻道數多、成本低,但在 程與封裝上卻有一定的困難度和精度要求,製程上因為1 需蝕刻出的結構相當複雜,製程精度的難度頗高。另外:旧 度與偏振態的影響下,往往會造成不可預期的波長漂移,:: 成系統無法達到分辨出正確波長訊號,甚至無法塞取訊= 工,以100 GHz、32頻道的規格為例,溫度容忍範圍約在~夕 65°C,波長漂移約0.001nm / t,在頻道間距只有〇 ^ 情況下,些微的波長漂移都會使得接收的檢光器無法辨別、,Although AWG technology has strong demultiplexing capability, many channels, and low cost, it has certain difficulties and accuracy requirements in the process and packaging. In the process, the structure to be etched is very complicated, and the accuracy of the process is very difficult. In addition: under the influence of oldness and polarization state, it will often cause unpredictable wavelength drift. :: The system cannot reach the correct wavelength signal, or even the signal can not be blocked. Take the specifications of 100 GHz and 32 channels as an example. The temperature tolerance range is ~ 65 ° C and the wavelength drift is about 0.001nm / t. With a channel spacing of only 0 ^, a slight wavelength drift will make the receiving photodetector unable to distinguish,

200411242 五、發明說明(3) 一 $對的也使得AWG在精度上的成本相對的增加,所以在輸出 道Λ號的平I化上是有一定的必要。另外,高密度高頻道 的AWG也有產生過大的串音干擾以及插入損失等等問題。 《解決問題之技術手段》 # 本發明係利用AWG元件光訊號在波導中傳播時,給予原· 鈇$波導一種特殊的變化結構,可由錐形口結構與其MMI型 I丄使具多模干涉的特性,達到分波性能良好的AWG分波 至,丨=态,其中MM 1結構的目的在於製造lx N分光的特性,達 J頒似於多光栅加強的效果。 《搿於先前技術之效果》 輪六力發,f於利用特殊結構的錐形口區域分配對系統的傳 2率的提昇’並且提出利用多模態干涉技術加上錐形口的 、纟σ構的陣列波導光柵,比起一般結構的可以得到更 二波特性的AWG系統,包含了損失與串音干擾的改善以及 $逼輸出訊號的平坦化要求。 【實施方式】 叔^圖一為一個簡單的AWG分波元件的結構圖,在一波導基 接上 ^ Ϊ度不同的陣列波導2 ’輸入與輸出光訊號端都是 構勺t合為直接連結光纖傳輸線’ MG分波元件的主要的結 έ中間^又的陣列波導2 ( Ar r ay Wavegu i de又名Phasar rr ay )、兩端連結輸入與輸出光纖訊號的輸入波導5與輸出200411242 V. Description of the invention (3) A $ pair also makes the cost of the AWG relatively increase, so it is necessary to flatten the output channel Λ number. In addition, high-density and high-channel AWGs also have problems such as excessive crosstalk interference and insertion loss. "Technical means to solve the problem" # This invention uses the AWG element optical signal to propagate through the waveguide, giving the original 鈇 $ waveguide a special modified structure, which can be multi-mode interfered by the cone-shaped structure and its MMI type I 丄. Characteristics, to achieve the AWG split-wave to, good state of the split-wave performance, in which the purpose of the MM 1 structure is to manufacture the characteristics of lx N splitting, to achieve the effect of J-like multi-grating enhancement. "Effects of the previous technology" Six rounds of force, f is used to improve the transmission rate of the system by using the special structure of the cone mouth area distribution ', and proposed the use of multi-modal interference technology plus the cone mouth, 纟 σ The structured arrayed waveguide grating, compared with the general structure of the AWG system that can obtain more two-wave characteristics, includes the improvement of loss and crosstalk interference and the flattening requirements of the forced output signal. [Embodiment] Figure 1 is the structure diagram of a simple AWG sub-wavelength component. An array waveguide 2 'with different degrees is connected to a waveguide base. The input and output optical signal ends are both connected directly. Optical fiber transmission line 'The main structure of the MG demultiplexing element is an array waveguide 2 (Ar r ay Wavegu i de aka Pharsar rr ay), an input waveguide 5 and an output that connect input and output fiber signals at both ends

200411242 五、發明說明(4) 波導6(1/0 Waveguide),以及光柵繞射、干涉與耦合作用的 自由搞合區 3、7(Free Propagation Range; FPR),AWG最主 要的構成即是這三大部份。 圖二中,AWG的分波原理是,當光波訊號由光纖入射柄; 合到輸入波導端4後,光訊號會沿著輸入波導到達輸入端自· 由耦合區的射出端’之後光波會在輸入端自由耦合區發 射端8均勻發散至輸入端自由耦合區的接收端9,並且均句輕 合進入陣列波導2,在陣列波導2之中,光波會沿各別的陣列 波導2傳播至輸出端自由耦合區7的發射端1 〇,因為陣列波導 _ 一波導光路行進的長度不同,而造成各別波導光波所走 的光程不同,使得在輸出端自由耦合區7的發射端丨〇處產生 了光程差與相角差’最後光在輸出端自由耦合區7内產生干 涉與繞射現象’不同波長的光因為相位差而產生的建設性 涉位置也因此不同,而建設性的加強點就在輸出端自由 區7的接收端11,控制輸出波導6位置,可接收不同波長的; 設性加強光場’進而將光訊號耦合至先纖取出。 首先以一個頻道間距為200GHz、8骟洁如咕认,l 波被動元件為例,料的主要材質為二氧化丫 ;;耽分 且希望元件的光場傳遞基本上可以以單 V )亚 此,設定AWG波導核心13(core )與波導披==方式傳播,因 的等效折射率如圖三所示,_ns分;:乂/2⑹咖g) 率的差比為0 _ 6 8 %,在一個約3 c m x 2 c m的访併* 庄、 am的矽質基板上製作200411242 V. Description of the invention (4) Waveguide 6 (1/0 Waveguide), and Free Propagation Range 3, 7 (Free Propagation Range; FPR) of grating diffraction, interference, and coupling. The main component of the AWG is this Three major sections. In Figure 2, the principle of AWG's demultiplexing is that when the light wave signal enters the shank from the optical fiber; after it is combined with the input waveguide end 4, the optical signal will follow the input waveguide to reach the input end of the free end of the free end coupling region. The input 8 in the free coupling area of the input end is evenly diverged to the receiver 9 in the free coupling area of the input end, and the uniform input light enters the array waveguide 2. In the array waveguide 2, the light waves propagate along the respective array waveguide 2 to the output. The transmitting end 10 of the free coupling region 7 at the end, because the array waveguide _ a waveguide optical path travels different lengths, resulting in different optical paths of the respective waveguide light waves, so that the output end of the free coupling region 7 at the transmitting end Generated optical path difference and phase angle difference 'Finally the light has interference and diffraction phenomena in the free-coupling region 7 at the output end' The different positions of the light with different wavelengths due to the phase difference are also constructively strengthened The point is at the receiving end 11 of the free area 7 of the output end, which controls the position of the output waveguide 6 and can receive different wavelengths; by design, the optical field is enhanced to couple the optical signal to the fiber. First, take a channel spacing of 200GHz, 8 channels as clean, as an example, l-wave passive components, the main material of the material is dioxide; delay and hope that the light field transmission of the components can basically be a single V) Set the AWG waveguide core 13 (core) and the waveguide to propagate in the same way, because the equivalent refractive index is shown in Figure 3, _ns points: 乂 / 2⑹cg) The difference ratio of the ratio is 0 _ 6 8%, Fabricated on a silicon substrate of about 3 cm x 2 cm

第8頁Page 8

200411242 五、發明說明(5) 基本寬度為4// m的波導結構,實際以中心波長為一般通訊 用C Band的1· 55 β m,而分析設定的工作波長範園則為 1·54〜1.56 μ m,透過分析後,其輸出光譜的分析如圖四所 示,插入損失約為4· 93dB,非均勻性約〇· 5(1β,而輸出訊號一 的平坦化程度在—1 〇 d B處大約為1. 1 n m。 一 本發明是在AWG輸出端自由耦合區7與輪入端自由揭合區 3的射出端8、1 0與接收端9、1 1部分加此_錐形""口結構1 4, 錐形口的結構1 4在A W G如圖五所示,錐形口的長度1 &設定為 1 0 0 0// m是避免多餘的波導損失,而錐形口結構^的功用依 照AWG光場的入射方向有可以接收更多的光場,使得每一個 :m以接收到更多的其他波長訊號’或是放:、光場的 作用,,、主要目的可使頻迢訊號平坦化,並且控成 (Shi ft)與精度之間的成本,並且接收更多光場減少^示夕 逸失。 尤功罕 —為了比較習知技術的一般型陣列波導光栅,本菸 貫施例同樣採用2 0 0GHZ、8頻道訊號輸出的AW X取 nc#ns^^ 輸入與輸出自由耦合區3、7的射出端8、1 0與接收端q ’ 1 6為1 0/z m的A WG給Ψ止4 m 隹开/ 口寬度 化大約為uj比起Λ 中出光譜的訊號平坦 0.5nm,而插結構的AWG提昇7大約 入知失比起習知技術也減少了約3dB左右,另200411242 V. Description of the invention (5) The waveguide structure with a basic width of 4 // m, the actual center wavelength is 1.55 β m for the C band for general communication, and the operating wavelength range set for analysis is 1.54 ~ 1.56 μm, after the analysis, the analysis of the output spectrum is shown in Figure 4. The insertion loss is about 4.93dB, the non-uniformity is about 0.5 (1β, and the flatness of the output signal 1 is -1 〇d. B is about 1.1 nm. One aspect of the present invention is to add this part in the free-coupling region 7 of the AWG output end and the free-combination region 3 of the wheel-in end. " " The mouth structure 1 4 and the tapered mouth structure 14 are shown in Figure 5 in the AWG. The length 1 of the tapered mouth 1 is set to 1 0 0 0 // m to avoid excess waveguide loss, and the tapered The function of the notch structure ^ can receive more light fields according to the incident direction of the AWG light field, so that each: m can receive more signals of other wavelengths' or put :, the role of the light field, and, The purpose is to flatten the frequency signal and control the cost between (Shi ft) and accuracy, and to receive more light fields and reduce You Gonghan-In order to compare the conventional arrayed waveguide gratings of the conventional technology, the present embodiment also uses AW X of 2 0GHZ, 8-channel signal output to take nc # ns ^^ input and output free coupling zone 3, The A WG with the emission ends 8, 10 and 7 at the receiving end of Q 7 at 1 0 / zm gives a stop of 4 m. The opening / mouth width is approximately uj, which is 0.5 nm flatter than the signal in the Λ out-spectrum spectrum, and The AWG of the plug structure is increased by about 7 and the lost-to-know ratio is reduced by about 3dB compared with the conventional technology.

第9頁 200411242 五、發明說明(6) 外,頻譜反應中多餘的波包干擾也因錐形口的特殊結構而降 低了約1 OdB左右。 錐形口的寬度1 6大小與分佈的區域多寡與平坦化的程度. 和元件插入損失、波包干擾等特性有直接的關係,圖七與圖-八中分析顯示錐形口的寬度1 6大小與分佈區域多寡對於AWG · 元件分波特性的影響,當錐形口的寬度1 6越寬時,平坦化的 程度越好,插入損失亦相對減少,而分佈的區域越多對於平 坦化程度與插入損失亦有正比的關係。 、 另一方面,習知技術中,提高AWG分波多工器的陣列波 導2數與輸入波導5、輸出波導6的數目,就可以降低插入損 失與減少串音干擾,然而一般AWG的幾何結構並不能隨意^ 增加陣列波導2數目,且過多的陣列波導數會造成製程^的 困難以及陣列波導2彼此之間的波導耦合損失以及$曲損 失。有鑑於此,本發明將錐形口結構加以變形成多模態干涉 特性(Multimode Interference ; MM I) 1 7的結構,如圖九 所示’多模恶干涉波導結構1 7—樣有錐形口的基本作用,但 因為其開口呈現劇烈變化,因而光波傳遞時將弓丨進多模態的 產生,而多模態之間在MMI空腔區17會彼此的交互干涉、Γ使 此一 MM I波導1 7的結構產生分光特性,並且可以適當控制MM j ^導1 7的長度達到特定1χ N的分光效果,本發明以$此^形口 變形成MM I特殊的結構1 7模擬AWG有如多光柵的繞射加強,藉 此提昇AWG的分波性能並且一樣含有對輸出光譜平坦化的效Page 9 200411242 V. Description of the invention (6) In addition, the excess wave packet interference in the spectrum response is also reduced by about 1 OdB due to the special structure of the tapered port. The width of the tapered opening is 16 and the size of the distribution area and the degree of flattening. It has a direct relationship with the characteristics of component insertion loss and wave packet interference. The analysis in Figures 7 and 8 shows that the width of the tapered opening is 16 The effect of the size and distribution area on the demultiplexing characteristics of the AWG · element. When the width of the tapered port is 16 wider, the degree of planarization is better, and the insertion loss is relatively reduced. The more the distribution area is, the more the planarization is. The degree is also proportional to the insertion loss. On the other hand, in the conventional technology, increasing the number of array waveguides 2 and the number of input waveguides 5 and output waveguides 6 of the AWG demultiplexer can reduce the insertion loss and crosstalk interference. However, the general geometric structure of AWG The number of arrayed waveguides 2 cannot be increased arbitrarily, and an excessive number of arrayed waveguides will cause difficulties in the manufacturing process and the waveguide coupling loss and bending loss between the arrayed waveguides 2. In view of this, the present invention transforms the tapered port structure into a multimode interference (MMI) 1 7 structure, as shown in FIG. 9 'multimode evil interference waveguide structure 17-like a cone The basic role of the mouth, but because its opening shows a drastic change, it will bow into the generation of multi-modes when light waves are transmitted, and the multi-modes will interfere with each other in the MMI cavity region 17 and Γ makes this MM The structure of the I-waveguide 17 produces spectroscopic characteristics, and the length of the MM j ^ guide 17 can be appropriately controlled to achieve a specific 1 × N beam-splitting effect. The present invention deforms the MM I special structure 1 7 to simulate AWG as Multi-diffraction diffraction enhancement, which improves the AWG's demultiplexing performance and also contains the effect of flattening the output spectrum

200411242 五、發明說明(7) 果存在。 最佳實施例中的MMI結構17為寬度10/z m、長度為475# m,如圖十分析為一個lx 2的分波結構,而運用在AWG分波多^ 工器上的最佳實施例是在AWG自由耦合區的射出端波導8、1 (T 上給予此一 MM I的特殊結構1 7,而在接收端波導9、11上給予· 錐形口的結構1 4,該錐形口的結構1 4包含一波導寬度窄的波 導與一波導寬度寬的波導,其波導的寬度係隨長度遞增或遞 減而變化。此一新式結構不但可以取錐形口的收集光場特性 降低損失,也可以利用MM I結構的分光特性達到提昇串音干 擾以及光譜平坦化的功能。經過分析後,其光譜輸出圖如圖 十一所示,此一新式結構AWG的插入損失約為1. 5dB,而相鄰 頻道輸出串音干擾約為-35dB,比起習知技術中的串音干擾 約提昇了 5dB左右。所述之MMI結構裝置可以包含一波導寬度 窄的波導與一波導寬度寬的波導,其之間寬度不隨長度變 化,產生多模效果,並且控制其長度,進一步調整多模態的 干涉加強位置的特殊裝置。 本發明的另有一種的變形的新式結構,也就是如圖十二 所示,可以使用傳統 Y型波導18(Y-branch)或lx N branch 的分光結構來代替lx 2或lx N的MM I分光結構1 7,可以預期 的是在製程上比起矩形的MM I結構1 7來的容易,並且光波在 波導的傳播損失下也會比MM I波導結構1 7來的小。 另外,依照MM I結構1 7或錐形口結構1 4的分光特性,可以200411242 V. Description of the invention (7) Fruits exist. The MMI structure 17 in the preferred embodiment has a width of 10 / zm and a length of 475 # m. As shown in Fig. 10, it is analyzed as a lx 2 sub-wave structure, and the best embodiment applied to the AWG sub-wave multiplexer is A special structure 17 of this MMI is given on the exit-side waveguides 8, 1 (T in the free coupling region of the AWG, and a tapered-port structure 14 is given on the receiving-end waveguides 9, 11. Structure 14 includes a waveguide with a narrow waveguide width and a waveguide with a wide waveguide width. The width of the waveguide varies with the length increasing or decreasing. This new structure can not only reduce the loss by collecting light field characteristics of the tapered mouth, but also 5dB , 而 , The spectral characteristics of the MM I structure can be used to achieve the function of improving crosstalk interference and spectral flattening. After analysis, its spectral output is shown in Figure XI, the insertion loss of this new structure AWG is about 1. 5dB, and The adjacent channel output crosstalk interference is about -35dB, which is about 5dB higher than the crosstalk interference in the conventional technology. The MMI structure device may include a waveguide with a narrow waveguide width and a waveguide with a wide waveguide width. The width does not change with the length A special device that produces a multi-mode effect and controls its length to further adjust the multi-modal interference-enhancing position. Another modified new structure of the present invention, that is, as shown in FIG. 12, a traditional Y-waveguide can be used 18 (Y-branch) or lx N branch spectroscopic structure instead of lx 2 or lx N MM I spectroscopic structure 17 can be expected to be easier in manufacturing process than rectangular MMI structure 17 and light wave The propagation loss of the waveguide is also smaller than that of the MM I waveguide structure 17. In addition, according to the spectral characteristics of the MM I structure 17 or the tapered opening structure 14, it is possible to

200411242 五、發明說明(8) 利用電光等調變技術控制區域的折射率變化,於輸入端自由 耦合區與輸出端自由耦合區的發射端與接收端的任一部份, 利用摻雜不同載子濃度或電光調變等光學調變的方式控制其 光學特性與折射率變化,進一步調整MM I或錐形口效果的特_ 殊結構,藉以改善其光學特性與中心波長的效果,進而控制M 其光學特性或分光效果,達到調變AWG的目的,使此系統更_ 增添可調彈性。200411242 V. Description of the invention (8) The use of modulation technology such as electro-optic to control the refractive index change of the area, using different carriers in any part of the transmitting and receiving ends of the free coupling area of the input end and the free coupling area of the output end Optical modulation such as concentration or electro-optic modulation controls its optical characteristics and refractive index changes, and further adjusts the special structure of the MMI or tapered port effect to improve its optical characteristics and the effect of the center wavelength, thereby controlling M Optical properties or spectral effects, to achieve the purpose of modulating AWG, make this system more _ add adjustable flexibility.

第12頁 200411242 圖式簡單說明 圖一為一個光纖通訊用常見的AWG分波多工器的簡單裝 置說明。 圖二顯示AWG分波多工器細部的結構裝置及其效果。 圖三為一個3D波導結構的示意圖,包含了核心(Core)與 披覆層(Cladding)的通道結構。 圖四是2 0 0GHz、8頻道輸出的一個AWG分波多工器的輸出 頻譜圖。 圖五為AWG分波多工器在自由耦合區加裝錐形口輸出裝 置的結構圖。 圖六是錐形口裝置細部的結構示意圖。 圖七顯示2 0 0GHz、8頻道輸出,並且加裝錐形口結構後 的一個AWG輸出頻譜圖。 圖八是分析不同的錐形口寬度對於頻譜響應平坦化寬度 的效果,並且針對不同極化方向的比較。 圖九是分析錐形口結構存在於AWG不同區域數時對時整 的系統的平坦化寬度效果與插入損失評估。 圖十是一個MM I裝置細部的結構示意圖。 圖十一為MM I裝置於光波導中產生的lx 2的一個分光效 果。 圖十二顯示2 0 0 GHz、8頻道輸出,並且同時利用MMI結構 與錐形口結構後的一個AWG輸出頻譜圖。 圖十三為一個Y型branch的分光波導,可以用這類型的分波 波導取代Μ Μ I的一個效果。Page 12 200411242 Brief description of the diagram Figure 1 is a simple device description of a common AWG demultiplexer for optical fiber communication. Figure 2 shows the detailed structure of the AWG demultiplexer and its effect. Figure 3 is a schematic diagram of a 3D waveguide structure, including the core and cladding channel structures. Figure 4 is the output spectrum of an AWG demultiplexer with 8 GHz output at 200 GHz. Figure 5 is a structural diagram of the AWG sub-wave multiplexer with a tapered port output device installed in the free coupling area. Fig. 6 is a detailed structural diagram of a tapered port device. Figure 7 shows an AWG output spectrum chart with 200 GHz, 8-channel output and a tapered port structure. Figure 8 is the analysis of the effect of different tapered mouth widths on the flattening width of the spectral response, and comparisons for different polarization directions. Figure 9 is an analysis of the flattening width effect and insertion loss evaluation of the time-aligned system when the tapered port structure exists in different numbers of AWG regions. Figure 10 is a detailed structural diagram of an MMI device. Figure 11 shows a spectral effect of lx 2 generated by the MMI device in the optical waveguide. Figure 12 shows an AWG output spectrum chart at 2000 GHz, 8-channel output, and using both the MMI structure and the tapered port structure. Figure 13 shows a Y-branch spectral waveguide. An effect of this type of spectral waveguide can be used instead of MEMS.

第13頁Page 13

Claims (1)

200411242 六、申請專利範圍 1. 一種陣列波導光栅分波多工器,其結構包含: 一或多個以上的輸入波導; 一輸入端自由耦合區,係連接於該輸入波導,使光波在該輸 入端自由耦合區内均句擴散; 一相鄰波導不等長的陣列波導,係連接於所述的輸入端自由 库馬合區, 一輸出端自由耦合區,係連接於該陣列波導,使光波在該輸 出端自由耦合區内產生分波作用; 二或多個以上的輸出波導,係連接於該輸出端自由耦合區, 以將光波導引出波導並且輸出訊號。 2 .依據申請專利範圍第1項之陣列波導光柵分波多工器,其 中更進一步包含了在所述輸入端自由耦合區與輸出端自由耦 合區的發射端與接收端的任一部份給予一錐形口的特殊結 構。 3. 依據申請專利範圍第2項所述之陣列波導光柵分波多工 器,其中,該錐形口特殊結構包含一波導寬度窄的波導與一 波導寬度寬的波導,其波導的寬度係隨長度遞增或遞減而變 4. 依據申請專利範圍第1項所述之陣列波導光栅分波多工 器,其中更包含了在輸入端自由耦合區與輸出端自由耦合區 的發射端與接收端的任一部份給予多模干涉的一有MM I效果200411242 6. Scope of patent application 1. An arrayed waveguide grating demultiplexer having a structure including: one or more input waveguides; a free coupling region at an input end connected to the input waveguide so that light waves are at the input end Uniform diffusion in the free coupling region; an array waveguide of unequal length of adjacent waveguides is connected to the free Kuma junction region of the input end, and a free coupling region of the output end is connected to the array waveguide so that the light waves A splitting effect is generated in the free-coupling region of the output end; two or more output waveguides are connected to the free-coupling region of the output end to guide light waves out of the waveguide and output signals. 2. The arrayed waveguide grating wavelength division multiplexer according to item 1 of the scope of patent application, which further includes giving a cone to any part of the transmitting end and the receiving end of the free coupling region of the input end and the free coupling region of the output end. Shaped special structure. 3. The arrayed waveguide grating demultiplexer according to item 2 of the scope of patent application, wherein the special structure of the tapered opening includes a waveguide with a narrow waveguide width and a waveguide with a wide waveguide width, and the width of the waveguide varies with the length Increment or decrement and change 4. According to the arrayed waveguide grating demultiplexer described in item 1 of the scope of the patent application, it further includes any part of the transmitting end and the receiving end in the free coupling area of the input end and the free coupling area of the output end. MM I effect 第14頁 200411242 六、申請專利範圍 的特殊結構裝置。 5. 依據申請專利範圍第4項所述之陣列波導光柵分波多工 器,其中之MM I結構裝置包含一波導寬度窄的波導與一波導~ 寬度寬的波導,其之間寬度不隨長度變化,產生多模效果," 並且控制其長度,進一步調整多模態的干涉加強位置的特殊# 裝置。Page 14 200411242 VI. Special structure device with patent application scope. 5. According to the array waveguide grating demultiplexer described in item 4 of the scope of the patent application, the MM I structure device includes a waveguide with a narrow waveguide width and a waveguide ~ a wide waveguide, and the width does not change with the length. , A special device that generates multi-mode effects, and controls its length to further adjust the position of multi-modal interference enhancement. 6. 依據申請專利範圍第1項所述之陣列波導光柵分波多工 器,其中更進一步包含了在輸入端自由耦合區與輸出端自由 耦合區的發射端與接收端的任一部份給予一分叉波導的裝 置,達到分波的目的。 7. 依據申請專利範圍第6項所述之陣列波導光栅分波多工 器,該分叉波導的裝置包含了各式之Y、X-分波等等分波裝 置與利用相關光學調變方法改變其分光特性的效果。6. The arrayed waveguide grating demultiplexer according to item 1 of the scope of the patent application, which further includes a point at any one of the transmitting end and the receiving end in the free coupling area of the input end and the free coupling area of the output end. The device of the cross-waveguide achieves the purpose of demultiplexing. 7. According to the arrayed waveguide grating demultiplexer described in item 6 of the scope of the patent application, the device of the bifurcated waveguide includes various Y, X-division, etc. demultiplexing devices and changes using related optical modulation methods The effect of its spectral characteristics. 8. 依據申請專利範圍第2至7項其中一項所述之陣列波導光柵 分波多工器’其可在輸入端自由柄合區與輸出端自由輛合區 的發射端與接收端的任一部份,利用摻雜不同載子濃度或電 光調變等光學調變的方式控制其光學特性與折射率變化。8. According to the array waveguide grating demultiplexer according to one of the items 2 to 7 of the scope of the patent application, it can be any part of the transmitting end and the receiving end of the free coupling region at the input end and the free coupling region at the output end. The optical properties and refractive index changes are controlled by using optical modulation methods such as doping different carrier concentrations or electro-optic modulation. 第15頁 680Page 680
TW91137990A 2002-12-31 2002-12-31 Arrayed waveguide gratings for WDM TW200411242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91137990A TW200411242A (en) 2002-12-31 2002-12-31 Arrayed waveguide gratings for WDM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91137990A TW200411242A (en) 2002-12-31 2002-12-31 Arrayed waveguide gratings for WDM

Publications (1)

Publication Number Publication Date
TW200411242A true TW200411242A (en) 2004-07-01

Family

ID=52340379

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91137990A TW200411242A (en) 2002-12-31 2002-12-31 Arrayed waveguide gratings for WDM

Country Status (1)

Country Link
TW (1) TW200411242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736184A (en) * 2012-07-05 2012-10-17 浙江大学 Polarization-insensitive array waveguide grating wavelength division multiplexing device
TWI719870B (en) * 2020-03-31 2021-02-21 國立高雄科技大學 Wave division multiplexing device for large-capacity optical transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736184A (en) * 2012-07-05 2012-10-17 浙江大学 Polarization-insensitive array waveguide grating wavelength division multiplexing device
CN102736184B (en) * 2012-07-05 2015-05-20 浙江大学 Polarization-insensitive array waveguide grating wavelength division multiplexing device
TWI719870B (en) * 2020-03-31 2021-02-21 國立高雄科技大學 Wave division multiplexing device for large-capacity optical transmission

Similar Documents

Publication Publication Date Title
CN102565932B (en) Dispersion-corrected arrayed waveguide grating
CN107422421B (en) Sparse wavelength division multiplexer based on bending directional coupler
CN108508539B (en) Silicon fundamental wave division multiplexer based on conical asymmetric directional coupler
JP2002236227A (en) Bidirectional multiplexer and demultiplexer based on single echelle waveguide reflection grating
CN114641720A (en) Polarization system and method
JP2005196211A (en) Dual-band wavelength dividing multiplexer
US6836591B2 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer and optical waveguide circuit
JPH05313029A (en) Light wave combining/splitting instrument
US6741772B2 (en) Optical multiplexer/demultiplexer and waveguide type optical coupler
JPH11160556A (en) Optical wavelength multiplexer/demultiplexer
JP2003172830A (en) Optical multiplexer/demultiplexer
CN113325515B (en) Array waveguide grating adopting slit array waveguide
CN116094647A (en) Wavelength division multiplexer
TW200411242A (en) Arrayed waveguide gratings for WDM
KR100446524B1 (en) Wavelength division multiplexer / demultiplexer
KR100722250B1 (en) Array waveguide lattice type optical multiplexer/demultiplexer circuit
US20020164116A1 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer and optical waveguide circuit
JP2003315570A (en) Optical wavelength multiplexer/demultiplexer
WO2003005086A1 (en) Asymmetric arrayed waveguide grating device
Bogaerts et al. A compact polarization-independent wavelength duplexer using a polarization-diversity SOI photonic wire circuit
JP5798096B2 (en) Arrayed waveguide grating router
KR20020079577A (en) Optical multiplexer/demultiplexer
CN112859246B (en) Echelle grating flat-top type demultiplexer
KR100988910B1 (en) Photonics device
CN113985523B (en) Wide-bandwidth array waveguide grating