200409613 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種製造一電致動透鏡的有效方法。 【先前技術】 1998年,僅在美國就進行了約92〇〇萬例眼睛檢查。其中大 夕數秘查涉及一内外眼病理學、眼肌平衡及雙眼協調分析 …角膜和(在许多情形下)瞳孔量測及最終一客觀/主觀屈 光(refractive)檢查的全面檢查。 2施屈光檢查係瞭解/診斷眼晴屈光偏差的量值及麵型。 目f可診斷及量測之屈光偏差類型係近視、遠視、散光及 老化。目I的折射儀(驗光儀)試圖將視力矯正至麓〇遠視 、、力及近視視力。在某些情形下,可達到勘$遠視視力; 然而,此僅係例外之狀況。 應指出’人眼睛視網膜可步屯、 认、上 胰『處理及界疋視力的理論極限值 、、、勺為20/08。這遠遠好於當前 一 ^ ] j猎由現有折射儀(驗光儀)及 叙眼鏡透鏡所獲得的視力水 ,,^ , 八卞此寺一般裝置(device)所 缺 < 者係矯正非一般屈光偏差( 讳與麻γ, 像至、不規則散光或 μτ m 0lt ^ ^ ^ , 寺像是、不規則散光及/或視覺 層不規則可源於個人視覺系 者< 。 飞瓜眼釦引起的像差或兩 【發明内容】 在本發明的一示範實施例中 运製造一電致動透鏡的方法。 背表面、一厚度及一折射率。 ,本發明揭示一種由一透鏡 該透鏡坯包含一正表面、一 可將—電致動元件放置於該 87595 200409613 透知一的正表面或背表面上。該方法進—步包含在該透鏡 述含該電致動元件的表面上形成一覆蓋層。 示範貞知例中,本發明揭示另一種製造一電致動 透叙的方法。这方法包含圍繞一電致動元件模製一具有一 正表面 3表面、一厚度及一折射率的透鏡坯。 下文將參照附圖中所示本發明示範實施例更詳細闡釋本 發明之各種態樣。 【實施方式】 根據本發明的示範實施例,本發明揭示一製造一電致動 透鏡之方法。該電致動透鏡可用於提供一或多焦距視力橋 正,且可進-步墙正非一般屈光偏差,包括高階像差。 為幫助理解本發明的某些實施例’兹提供各種術語之解 釋。“附裝,’(Attaching)可包括黏合、沈積、黏著及其他習知 〈附裝方法。一“控制器,,可包括或包括於一處理器、一微 處理器、-積體電路 '一電腦晶片及/或一晶片中。一“導 :匯流排,,用㈣數據以—電信號形式自—個地方傳導至另 —地方。“近距離屈光偏差,,可包括老花及任一其他需要橋 正以使人們獲得近距離清晰視力的屈光 :差,,可包括需要橋正的中距離老花及任何其他需要= 、,人們獲得中距離清晰視力的屈光偏差。“遠距離屈光偏 可包括任-需㈣正以使人們獲得遠距離清晰視力的屈 ,偏差。“-般屈光偏差,,可包括近視、散光及/或老花, 非-般屈光偏差,,可包括不規則散光、視覺系統的像差(包 括慧星形像差)、色差及球面像L及任何其他高 87595 200409613 未包括於一般屈光偏差中的屈 包括任何盥一q光偏差。‘光學屈光偏差,,可 ^ 鏡片相關之像差。 在某些實施例中,一‘‘眼鏡,,可包括一、夫 — 例中,一 u 0¾ ^ 55 -r 也叙。在其他實施 11 Ψ ^可包括多個透鏡…” 雙隹點、-隹釙 多焦點,,透鏡可包括 l':t丨 四焦點及/或漸進式多焦點透鏡(卿蕭 ad-on lens)。一“加工,,透鏡坯 ^(P〇gresS1ve 學表面的透鏡岛。—“半加—兩倒皆具有一加工光 -加工光-矣…鏡^可包括-其-側具有 ,核诱f、佳丰# 非先予加工表面的透鏡坯 透“進一步修飾(例如,研磨及/或拋光)以製成可 用透鏡。一“未加工,,诱〶t尤)以版成一可 “基透鏡,,指一經過加工透f 、 表面 “ 、77丄遊釦坯的非電致動部分。 :表面處理”可包括研磨及/或拋光去除多餘材料以加工一 :二或:加工透鏡这的—未加工表面。亦可使用目前眼 用透叙工業已採用的自由成形機器切削技術來加工透鏡坏 。自由成形技術允許將—完全任意之形狀置於透鏡#上, 喊鏡趣可用於橋正一般偏差,但亦可用於矯正高階像差 以&供一可使視力橋正好於〇的非一般偏差矯正。此外 ’、:藉由將兩或多個透鏡圓片黏合在—起形成一加工透鏡 或一半加工透鏡坯來製造透鏡坯。應瞭解,無論透鏡坯係 力::、未加工或半加工,其最初皆可使用自由成形技術來 氣k以矯正一般屈光偏差與非一般屈光偏差中之一或同時 矯正兩者。 、本發明揭示一種圖1中所示製造一電致動透鏡之方法。該 方法包含k供一如步驟1〇所示之透鏡坯。該透鏡坯可為任 87595 200409613 一類型且具有一正表面和背表面、一厚度及一折射率。在 步驟20中,將一電致動元件放置於透鏡坯的正表面或背表 面上。在步驟30中,在包含該電致動元件的透鏡坯表面上 形成一覆盍層。該覆蓋層保護該電致動元件並將該電致動 元件固足於透鏡链上的一位置|。用於形成覆蓋層之材料 與透鏡坯之組合亦可為透鏡配戴者提供一固定距離視力矯 正0 電致動兀件可包含一或多層電致動材料,例如一聚合物 凝膠及/或液晶;當被一施加的電壓激活時,該等電致動材 料可產生-隨施加至該等電致動材料上之電壓大小而變化 1折射率°當—配戴者透過—含有電致動Tt件的電致動透 鏡區域觀看(view)時,除透鏡之非電致動部分所提供的視力 鱗正外’其尚可獲得基於電致動元件之折射率的視力培正 ^n 適宜之電致動㈣包括各類液晶及聚合物 t此等4型包括絲狀液晶、蝶狀液晶及膽固醇型液晶 電=:晶、聚合物分散型液晶和聚合物穩定型液晶及 =^夜晶(例如絲狀液晶)作為電致動材料,則可能需 射又、I ’此乃因絲狀液晶及許多其他液晶均具有雙折 下時2 ’當在未施加電壓之狀況下暴露於未偏振光線 造1二晶顯示兩種不同焦距。該雙折射在視網膜上 ;二雙:或模糊影像。為減輕該雙折射,可使用一垂直對 ,兩個:致t材料層的第二電致動材料層。藉由此-方式 Θ问樣地聚焦兩種光偏振,且所有光線皆聚焦在相 87595 200409613 同焦距上。 另一選擇為,可使用具有— . 大手形組件的膽固醇型滷曰 作為一較佳電致動材料。不同於 口于土,夜日, ,膽固醇型液晶不具有絲狀液 見,夜叩 用多個電致動材料層。 而要使 多種可於本發明實施例之雷 n _ 兒致動7L件中使用的電致動層 闡釋於2003年4月25日描Ψ由、生1 々、 日軚出申請的標題為“電致動多隹%眼 鏡及透鏡,,的R.〇.a專利申嗜安μ nQ,1An 、‘...占眼 、 号」甲明木罘092109720號中,該案之令 又以引用方式併入本文中。 透鏡述可係任-類型且可包括,舉例而言,—半加工这 、一未加工透鏡②、—透鏡圓片、-預成形鏡片或-加工 透鏡。覆蓋層可藉由保形密封(例如模製或表面 由用一透鏡圓片覆蓋透鏡这而形成。 在本發明的一示範實施例中,一電致動透鏡由一半加工 坯製造,纟中藉由保形密封形成一覆蓋層。一電致動元件 了置杰半加工起之正表面或背表面上。保形密封可在放置 私致動元件的透鏡坯表面上形成一保護性覆蓋層,以將電 致動兀件埋入透鏡中。圖2係一流程圖,其闡釋一種根據本 發明一貫施例使用已保形密封的半加工坯製造該電致動透 鏡的方法。圖2A-E闡釋處於圖2中所示方法之不同階段的透 鏡。如圖2A所示,在步驟1⑻,可選擇一具有一凹形背表面 202及一凸形正表面204的半加工坯230。如圖2B中所示,在 步勝110 ’可在半加工运230之凸形正表面2〇4中切割出一凹 槽205。在步驟12〇,可將一電致動元件2〇〇置於凹槽205中。 87595 -10 - 200409613 另外,可將一連接電致動元件200的導電匯流排21〇置於凹 槽205中。導電匯流排210較佳由-光學透明撓性材料構造 而成,例如一塗敷有一透明導電材料(例如氧化銦錫)及/或 導電聚合物的眼用級材料擠壓(extmde)或澆鑄(cast)而成的聚 合物薄膜。導電匯流排210可具有複數個孔,其可有助於將 導電匯流排更好地黏合於透鏡述230上。 如圖2D中所示,在步驟130,可使用一含有一密封劑(例 如一透明樹脂)的模件220將電致動元件2〇〇及導電匯流排21〇 保形密封於半加工透鏡坯230中,其中密封劑之折射率較佳 接近或相等於透鏡述之折射率。 電致動元件200及導電匯流排21〇被置於模件22〇中並被透 釦坯230覆盍。茲樹脂可藉由,舉例而言,熱能、光能或兩 者之組合固化。光源可包括可見光源、紫外線光源或紅外 線光源之任一種或其一組合。 在步驟140,如圖2E中所示,半加工坯230可脫模形成一 半加工電致動透鏡坯235。該已固化樹脂在凸形正表面2〇4 上形成一覆蓋層215,其具有可將電致動元件2〇〇及導電匯 流排210埋入電致動透鏡中之作用。電致動透鏡坯具有 一覆盍面208,該覆蓋面具有一與模件22〇相等之曲率半徑 。覆盖面208之曲率半徑與凹形背表面2〇2之曲率半徑組合 形成固定的光焦度。 如步驟150所tf,視情況可在透鏡上塗敷一耐劃硬塗層。 可於加工半加工電致動透鏡坯235之前藉由浸潰或旋塗該透 鏡7G成π亥硬$敷。應瞭解,可在向模件内填充樹脂並將 87595 200409613 树刀曰固化土透鏡坧之凸形正表面2〇4上之前將硬塗層塗敷於 模件的-内表面上,以便當樹脂已固化且形成覆蓋層時該 硬塗層已位於覆蓋面208上。 淦圖2F中所示,在步驟,可藉由已知技術處理電致動 透釦坯235表面至製成一電致動透鏡24〇而將半加工電致動 处叙坯235加工成一所需的驗光規格。隨後,可修整電致動 透鏡240之邊緣以裝配於一眼鏡架中。 應瞭解,透鏡坯23〇的凸形正表面2〇4與凹形背表面可 具有f一曲度或無曲纟,其曲度隨後可藉由各種表面處理 技術施加 旦已將透鏡坯230保形密封並埋設了電致動元 件2〇0及導電匯流排210,則係加工後賦予凹形背表面202盘 覆蓋面雇的最終曲度’而非凸形正表面204的曲度,決定 電致動透鏡240的光學特性。 在本發明的一示範實施例中,舉例而言,電致動透鏡使 用一預成形鏡片製成,例如(但不限加工透鏡或單光 ㈣"isi〇n)透鏡》圖6閣釋一種使用一類似於上文結合圖2 所述形成-覆蓋層以將電致動元件包含於該透鏡内之保形 &、封步驟'自一單光透鏡运製造—電致動透鏡之方法。然 而’不同於結合圖2方法所閣釋之半加工述,一單光透 具有一驗光規格且無需進一步 * 乂表面處理來給透鏡配戴者提 供ΐ確的固定光焦度。因此,在該實施例中,該保形密封 之貫施方式較佳不改,蠻备i Λ罕乂1 Ο又又瑕初的加工透鏡的光焦度。此一目 ,由(舉例而言)使用-模件在覆蓋層之覆蓋面上形成 铃卓光透鏡之凸形正表面如: 、 衣面相寺的曲率半徑來達成。然而 87595 -12 - 200409613 ’應瞭解,即使使用一加工單光透鏡’若需要,亦可藉由 使用-模件形成一其覆蓋面之所需曲度不同於單光透^凸 开y正表面之曲度的覆蓋層來改變該光焦度。 ’ 如:6中所示且如圖6A中進一步所示,在步驟7〇〇,可選 擇一單光基透鏡800。在步驟710,可在圖6β中所示單光基 透鏡800的凸形正表面δ〇4中切割一凹槽81〇。或者,單光= ,鏡_可已具有一凹槽δ10,該凹槽可於單光基透鏡_: 最初製造期間形成於其中。如圖6C中所示,在步驟,可 將-電致動元件200及導電匯流排21〇放置於凹槽81〇中。如 圖6D中所示,在步驟73〇,可使用一含樹脂模件82〇保形密 封電致動兀件2G0與匯流排21〇。在步驟,將模件82〇移除 且視情況可塗敷-硬塗層。在某些實施例中,該硬塗層係 於保形密封期間轉移自該模件。在此種狀況下,用於:成 覆蓋層之凸形覆蓋面808的模件之凹形内表面應已預塗敷一 欲在保形密封過程中固化並轉移的硬塗層樹脂。由於本實 例中所述單光基透鏡可在保形密封I已加工為具有一所需 固定光焦度,故模件820之内表面較佳為凹形且具有一與單 光基透鏡800之凸形正表面8〇4之曲率半徑相等的曲率^徑 。如圖6E中所示,當在保形密封後自模件82〇取出單光基透 鏡800時,可獲得一其曲度與凸形正表面8〇4之曲度實質相 同的凸形覆蓋面808,使單光基透鏡8〇〇之固定光焦度僅略 微或完全不發生變化。應瞭解’可藉由隨意改變覆蓋面8〇8 之曲度來改變單光基透鏡_之固定光焦度。此—目的可藉 由使用一具有一曲度的模件82〇來達成,該模件之曲度可形 87595 -13 - 200409613 成一與所需固定光焦度相對應的覆蓋面808且不同於凸形正 表面804之曲度。 在製造一電致動透鏡時使用保形密封可使庫存維持種類 (stock-keeping-unit,SKU)數量降低至539,其與一般透鏡通常所 需SKU數量相比明顯降低。 為瞭解該改良之意義,必須瞭解滿足大多數驗光規格所 需的傳統透鏡坯之數量。約95%的矯正驗光規格包括一介 於以0.25屈光度遞增的-6.00屈光度至+6.00屈光度範圍之間的 球面焦度矯正。基於該範圍,通常有約49種驗光規定的球 面焦度。在彼等包括一散光矯正驗光規格中,約9〇%介於 以0.25屈光度遞增的-4.00屈光度至+4.00屈光度範圍之間。基 於該範圍,通常約有33種驗光散光(或柱面)焦度。然而, 由於散光具有一軸分量,故約有18〇度散光軸取向,其驗光 規格增量通常為1度。因此,有180種不同的散光軸驗光規 格。 况且’許多驗光規格包括一用於矯正老花的雙焦點分量 。在彼等具有一老花矯正的驗光規格中,約有95%介於以 0-25屈光度遞增的+1.⑻至+3.⑻屈光度範圍之間,從而形成約 9種常見的驗光老花焦度。 此狀况可產生2,619,540 (49X33 X 180X9)種不同的透鏡驗 光規格’從而要求透鏡製造商存有極大數量的SKU。由於 可用於制;iL、i A、 、&也鏡的原料的多樣性及其他可包含於透鏡中之 特殊丨生貝(例如光致變色著色),該極大的SKU數量會進一步 增加。以泰私& 、、200409613 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to an effective method for manufacturing an electrically actuated lens. [Previous technique] In 1998, about 9.2 million eye examinations were performed in the United States alone. Among them, the secret number examination involves an internal and external eye pathology, eye muscle balance, and binocular coordination analysis ... corneal and (in many cases) pupil measurements and a comprehensive examination of objective / refractive examinations. 2Refractive examination is to understand / diagnose the magnitude and shape of eye-clear refractive error. The types of refractive errors that can be diagnosed and measured in head f are myopia, hyperopia, astigmatism, and aging. The refractometer (optometry) of Eye I attempts to correct vision to distant vision, hyperopia, and near vision. In some cases, farsightedness can be achieved; however, this is only an exceptional situation. It should be pointed out that the theoretical limit of visual acuity of the human eye, retina, pancreas, and pancreas is 20/08. This is far better than the current ^] j hunting the visual acuity obtained by the existing refractometer (optometry) and spectacle lenses, ^, missing from the general device of Hachimanji Temple < the correction is not ordinary Refractive error (taboo and hemp γ, like to, irregular astigmatism or μτ m 0lt ^ ^ ^, temple like, irregular astigmatism, and / or irregularities in the visual layer can be derived from the personal vision department < Aberrations or two caused by the buckle [Summary of the Invention] In an exemplary embodiment of the present invention, a method for manufacturing an electrically actuated lens is provided. The back surface, a thickness, and a refractive index. The present invention discloses a lens made of a lens. The blank includes a front surface, and an electro-actuating element can be placed on the front or back surface of the 87995 200409613 transparent element. The method further includes forming on the surface of the lens containing the electro-actuating element A cover layer. In the demonstration example, the present invention discloses another method for manufacturing an electro-actuated transmission line. This method includes molding an electro-actuated element with a front surface 3 surface, a thickness, and a refractive index. Lens blank. The exemplary embodiment of the present invention shown in the figure illustrates various aspects of the present invention in more detail. [Embodiment] According to the exemplary embodiment of the present invention, the present invention discloses a method for manufacturing an electro-actuated lens. The electro-actuated lens can be used for Provides one or more focal lengths of vision bridge, and the step-by-step wall is not a general refractive error, including higher order aberrations. To help understand some embodiments of the present invention, 'the various terms are provided. (Attaching) may include adhesion, deposition, adhesion, and other conventional methods of attachment. A "controller" may include or include a processor, a microprocessor, an integrated circuit, a computer chip, and / or In a chip. A "conductor: a bus, which uses ㈣ data to conduct from one place to another in the form of an electrical signal." Near-distance refractive error, which can include presbyopia and any other bridge that requires Refractive power that enables people to obtain near-distance clear vision: Poor, can include mid-distance presbyopia that requires a bridge and any other needs =, and people get refractive error of clear vision at intermediate distances. -Refractive deviations that require clear vision at long distances. "-Normal refractive errors, which can include myopia, astigmatism and / or presbyopia, non-normal refractive errors, can include irregular astigmatism, Aberrations of the visual system (including coma aberrations), chromatic aberrations, and spherical images L and any other heights 95795 200409613 Refraction not included in general refractive error includes any q-ray deviation. 'Optical refractive error ,, May be related to lens-related aberrations. In some embodiments, a "glasses" may include a couple, for example, a u 0¾ ^ 55 -r is also described. In other implementations 11 Ψ ^ may include multiple Lens ... "Double-point,-隹 钋 multifocal, the lens may include l ': t 丨 four-focus and / or progressive multi-focus lens (Qing Xiao ad-on lens). A "machined, lens blank ^ (Pogres1veve surface of the lens island.-" Half plus-both inverted have a processing light-processing light-矣 ... mirror ^ may include-its-side has, nuclear attract f,佳 丰 # Lens blanks with non-pre-machined surfaces are "furnished further (eg, ground and / or polished) to make usable lenses. A" raw, seduced, especially "plated into a" base lens, " Refers to a non-electrically actuated portion of a 77 'free-flowing billet that has been machined through the surface f. "Surface treatment" may include grinding and / or polishing to remove excess material for processing one: two or: processing the lens-an unprocessed surface. The lens can also be processed using the free-form machine cutting technology currently used by the ophthalmic industry Bad. Free-form technology allows-completely arbitrary shapes to be placed on the lens #. Mirror fun can be used to bridge general deviations, but can also be used to correct high-order aberrations. General deviation correction. In addition, ',: lens blanks are manufactured by gluing two or more lens wafers together to form a processed lens or half processed lens blank. It should be understood that whether the lens blank is: Semi-machined, which can initially use free-form technology to correct one or both of normal and non-normal refractive errors. The present invention discloses a manufacturing-electric actuation as shown in FIG. 1 Lens method. The method includes k for a lens blank as shown in step 10. The lens blank can be any type of 87595 200409613 and has a front surface and a back surface, a thickness and a refraction. In step 20, an electric actuating element is placed on the front or back surface of the lens blank. In step 30, a coating is formed on the surface of the lens blank containing the electric actuating element. The covering layer Protect the electric actuating element and secure the electric actuating element to a position on the lens chain. The combination of the material used to form the cover layer and the lens blank can also provide a fixed distance vision correction for the lens wearer. Electrically-actuated elements may include one or more layers of electrically-actuated material, such as a polymer gel and / or liquid crystal; when activated by an applied voltage, the electrically-actuated materials may be generated-as applied to the electricity The magnitude of the voltage on the actuating material varies by 1 index of refraction ° When the wearer views through an electrically actuated lens area containing an electrically actuated Tt piece, except for the vision provided by the non-electrically actuated portion of the lens Outside the scale, it can still obtain vision based on the refractive index of the electro-actuated element. Suitable electro-actuated. Including various types of liquid crystals and polymers. These 4 types include filamentous liquid crystals, butterfly liquid crystals and cholesterol. Type liquid crystal electricity =: crystal, polymer dispersed liquid crystal and Compound-stabilized liquid crystals and ^ night crystals (such as filamentous liquid crystals) as electrically actuated materials may require radiation, I 'This is because filamentary liquid crystals and many other liquid crystals have double folds 2' 当 在Exposure to unpolarized light to create two crystals with no voltage applied shows two different focal lengths. The birefringence is on the retina; two birefringences: or blurred images. To reduce the birefringence, a vertical pair can be used, two: The second electrically actuated material layer of the t material layer. In this way, the two kinds of light polarization are focused in the same manner, and all light rays are focused on the same focal length of phase 87595 200409613. Another option is to use- Cholesterol-type halogens with large hand-shaped components are regarded as a preferred electro-actuating material. Unlike mouth soil, at night, cholesteric liquid crystals do not have a filamentous liquid, and there are multiple electro-actuating material layers at night. And to make a variety of electric actuation layers that can be used in the 7_L actuated 7L pieces of the embodiment of the present invention is explained on April 25, 2003, the title of the application is ", Electrically actuated multi-percent glasses and lenses, R.〇.a patent application for μ nQ, 1An, '... occupy eye, No. ”Jia Mingmu 罘 092109720, the order of the case is again cited Ways are incorporated herein. The lens description may be of any type and may include, for example, -semi-processed, a raw lens, ②, a lens wafer, -preformed lens, or -machined lens. The cover layer may be formed by a conformal seal (such as molding or the surface is formed by covering the lens with a lens wafer). In an exemplary embodiment of the present invention, an electro-actuated lens is manufactured from a half of the blank, borrowed from A conformal seal is formed by a conformal seal. An electrically actuated element is placed on the front or back surface of the semi-machined part. The conformal seal can form a protective overlay on the surface of the lens blank where the actuated element is placed. The electro-actuated element is embedded in the lens. FIG. 2 is a flowchart illustrating a method of manufacturing the electro-actuated lens using a conformally sealed semi-processed blank according to a conventional embodiment of the present invention. FIGS. 2A-E The lens at different stages of the method shown in Fig. 2 is explained. As shown in Fig. 2A, in step 1 可选择, a semi-machined blank 230 having a concave back surface 202 and a convex front surface 204 can be selected. As shown in Fig. 2B As shown in FIG. 110, a groove 205 can be cut in the convex front surface 204 of the semi-processed wafer 230 at the step 110. At step 120, an electric actuating element 200 can be placed in the groove 205. 87595 -10-200409613 In addition, an electric actuating element 200 can be connected The conductive bus bar 21 is placed in the groove 205. The conductive bus bar 210 is preferably made of an optically transparent flexible material, such as a transparent conductive material (such as indium tin oxide) and / or a conductive polymer. A polymer film made by extruding or casting an ophthalmic grade material. The conductive bus bar 210 may have a plurality of holes, which can help better adhere the conductive bus bar to the lens 230. As shown in FIG. 2D, in step 130, a module 220 containing a sealant (such as a transparent resin) can be used to formally seal the electrically actuated element 2000 and the conductive bus bar 20 to the semi-finished lens. In the blank 230, the refractive index of the sealant is preferably close to or equal to the refractive index described by the lens. The electrically actuated element 200 and the conductive bus bar 21 are placed in the module 22 and covered with the through-hole blank 230. The resin may be cured by, for example, thermal energy, light energy, or a combination of the two. The light source may include any one or a combination of a visible light source, an ultraviolet light source, or an infrared light source. At step 140, as shown in FIG. 2E , Semi-processed billet 230 can be demolded to form half An electro-actuated lens blank 235 is processed. The cured resin forms a cover layer 215 on the convex front surface 204, which has a structure capable of embedding the electro-actuated element 200 and the conductive bus bar 210 in the electro-actuated lens. Function. The electrically actuated lens blank has a cover surface 208, the cover mask has a curvature radius equal to that of the module 22. The curvature radius of the cover surface 208 and the curvature radius of the concave back surface 202 are combined to form a fixed focal length. As shown in step 150, a scratch-resistant hard coating can be applied to the lens as appropriate. The lens can be immersed or spin-coated with a 7G hard coating before processing the semi-processed electro-actuated lens blank 235. It should be understood that the hard coating may be applied to the -inside surface of the module before filling the module with resin and applying the 95795 200409613 tree-cured cured soil lens to the convex front surface 204. The hard coat layer is already on the cover surface 208 when the resin is cured and the cover layer is formed.所示 As shown in FIG. 2F, in a step, the semi-processed electro-actuated blank 235 can be processed into a Optometry specifications. Subsequently, the edges of the electro-actuated lens 240 can be trimmed to fit in a spectacle frame. It should be understood that the convex front surface 204 and the concave back surface of the lens blank 23 may have a curvature of f or no curvature, and the curvature may be subsequently applied by various surface treatment techniques. The electric actuating element 2000 and the conductive bus bar 210 are hermetically sealed and embedded, and then the final curvature of the concave back surface 202 disk covering surface is given after the processing, rather than the curvature of the convex positive surface 204, which determines the electric Optical characteristics of moving lens 240. In an exemplary embodiment of the present invention, for example, the electro-actuated lens is made of a pre-formed lens, such as (but not limited to a processed lens or a single light lens " isi〇n) lens. A conformation & sealing step similar to that described above in conjunction with FIG. 2 to form the cover layer to include the electro-actuated element in the lens is a method of manufacturing an electro-actuated lens from a single optical lens. However, unlike the semi-processing description explained in conjunction with the method of FIG. 2, a single light transmission has an optometry specification and does not require further surface treatment to provide the lens wearer with a fixed fixed power. Therefore, in this embodiment, the method of applying the conformal seal is preferably not changed, and the optical power of the processed lens is sufficiently prepared. This is achieved, for example, by using a module to form a convex positive surface of a Bell Zhuoguang lens on the covering surface of the covering layer, such as:, the radius of curvature of the upper temple. However, 95695 -12-200409613 'It should be understood that, even if a single lens is used for processing', if necessary, the curvature required to form a covering surface by using a-module is different from that of a single light transmission ^ convex y positive surface The curvature of the overlay changes the power. As shown in FIG. 6 and further shown in FIG. 6A, in step 700, a single light-based lens 800 may be selected. At step 710, a groove 81 may be cut in the convex front surface δ 04 of the single-light-based lens 800 shown in FIG. 6β. Alternatively, single light =, the lens _ may already have a groove δ10 which may be formed in the single light-based lens _: during the initial manufacturing. As shown in FIG. 6C, in a step, the -electrically actuated element 200 and the conductive bus bar 21 can be placed in the groove 81. As shown in FIG. 6D, at step 73, a resin-containing module 820 can be used to conformally seal the electrically actuated element 2G0 and the bus bar 210. In step, the module 820 is removed and optionally coated with a hard coating. In some embodiments, the hard coating is transferred from the module during a conformal seal. In this case, the concave inner surface of the module used to form the convex covering surface 808 of the covering layer should be pre-coated with a hard coat resin to be cured and transferred during the conformal sealing process. Since the single-light-based lens described in this example can be processed in the conformal seal I to have a desired fixed optical power, the inner surface of the module 820 is preferably concave and has a shape similar to that of the single-light-based lens 800. The convex positive surface 804 has an equal radius of curvature. As shown in FIG. 6E, when the single-light-based lens 800 is taken out of the module 820 after conformal sealing, a convex covering surface 808 having a curvature substantially the same as that of the convex positive surface 804 can be obtained. , So that the fixed power of the single light-based lens 800 is only slightly or completely unchanged. It should be understood that the fixed power of a single optical lens can be changed by randomly changing the curvature of the coverage surface 808. This—the purpose can be achieved by using a module 8200 with a curvature, the curvature of which can be shaped as 95795 -13-200409613 into a covering surface 808 corresponding to the required fixed power and different from convex The curvature of the positive surface 804 is shaped. The use of a conformal seal when manufacturing an electrically actuated lens can reduce the number of stock-keeping-units (SKUs) to 539, which is significantly reduced compared to the number of SKUs typically required for general lenses. To understand the significance of this improvement, one must understand the number of conventional lens blanks required to meet most optometry specifications. Approximately 95% of corrective refraction specifications include a spherical power correction in the range of -6.00 diopters to +6.00 diopters in increments of 0.25 diopters. Based on this range, there are usually about 49 types of spherical powers prescribed by optometry. In their specifications that include an astigmatism-corrected refraction, about 90% is in the range of -4.00 diopters to +4.00 diopters in increments of 0.25 diopters. Based on this range, there are usually about 33 types of refraction (or cylindrical) power. However, since the astigmatism has an axis component, the astigmatism axis is oriented at about 180 degrees, and the refraction specification increment is usually 1 degree. Therefore, there are 180 different astigmatic axis refraction specifications. Moreover, many of the optometry specifications include a bifocal component for correcting presbyopia. Among their optometry specifications with a presbyopia correction, about 95% ranged from + 1.⑻ to + 3.⑻ diopters in increments of 0-25 diopters, forming about 9 common optometry presbyopias. Power. This condition can produce 2,619,540 (49X33 X 180X9) different lens refraction specifications ’, which requires lens manufacturers to have a very large number of SKUs. Due to the variety of raw materials that can be used to make iL, i A,, & and other special raw shellfish that can be included in the lens (such as photochromic coloring), the number of this extremely large SKU will further increase. Thai Thai &,,
兒文動方式提供大多數視力橋正可大大降低SKU 87595 -14 - 200409613 數量。 在本發明的另-示範實施例中,藉由將兩個透鏡圓片附 裝在-起並於其中夾持一電致動元件來製造該電致動透鏡。 如圖7中所示,在步驟議,可選擇具有固定距離屈光度 所需光學特性的一正表面及背表面透鏡圓片來匹配一配戴 :的視力驗光規格。如圖7A中所示,選擇一凹形背表面透 鏡圓片900及一凸形正表面透鏡圓片93〇。正表面透鏡圓片 930可具有一曲率半徑R1 ’而背表面透鏡圓片9⑽可且有一 曲率半徑R2。該等透鏡圓片之固定光焦度等於㈣摩幻_ 1/R2)’其中“n”等於製造透鏡圓片所用材料之折射率。若 R1與R2相互平行,藉由附裝透鏡圓片所形成之基透鏡之固 定光焦度為0。 A如同本文中所述的其他電致動透鏡,將目S光焦度(其通 吊提供用於提供遠距離視力矯正的光焦度)與藉由透過一含 有该電致動元件的電致動透鏡區域觀看所提供的光焦度相 加可產生用於近距離及中距離視力矯正的光焦度。然而, 應瞭解,任一透鏡皆可製造為固定光焦度等於〇,以使所有 視力矯正皆藉由透過含有該電致動元件的電致動透鏡區域 觀看而達成。類似地,透過含有該電致動元件的透鏡區域 觀看可為所有焦距提供非一般屈光偏差矯正,包括矯正高 階像差。 Π ^ 應進一步瞭解,藉由使用定型澆鑄、自由成形製作、或 光致折射率變化或光致屈光變化可僅使用基透鏡或將其與 兒致動元件組合使用來矯正非一般屈光偏差。在此等實施 87595 200409613 例中’基透鏡可不依賴電致動元件獨自矯正非一般屈光偏 差而電致動元件可矯正球面焦度調整及與一般屈光偏差 相關的偏差(例如老花)。 再參照圖7A,可在正表面透鏡圓片93〇之凸形表面的對置 面與背表面透鏡圓片9〇〇之凹形表面的對置面之一或兩者中 切割凹槽。或者,一凹槽可業已存在於透鏡圓片9〇〇、 9州中,例如早先已於製造時形成。圖7A闡釋在其凸形表面 之對置面上具有一單一凹槽94〇的正表面透鏡圓片93〇。一 電致動兀件910及一撓性導電匯流排92〇可置於背表面透鏡 圓片900與正表面透鏡圓片930之間,且電致動元件91〇及撓 性導電匯流排920皆位於可裝入凹槽94〇内的位置。如步驟 1030中所述,可使用一折射率匹配的黏合劑將正表面透鏡 圓片930及背表面透鏡圓片9〇〇黏合在一起來形成一電致動 透鏡。 在某些實施例中,電致動透鏡可由疊層透鏡圓片製成, 其中背表面透鏡圓片提供柱面焦度,而背表面及正表面透 鏡圓片之組合提供透鏡的球面焦度。 應瞭解,在某些實施例中,在製造一電致動透鏡時,圖7 中所示步驟1010可選擇性採用,且導電匯流排及電致動元 件可不需要凹槽。舉例而言,在某些實施例中,一電致動 元件及導電匯流排可夹於兩個透鏡圓片之間,且同時維持 兩個透鏡圓片之正確關係,以不產生一棱鏡焦度,除非希 王具有棱鏡焦度來滿足配戴者的特定視力需要。可在各層 之間塗敷一折射率相匹配的眼用級樹脂並(僅舉例而言)藉 87595 -16 - 200409613 屆時可移除該襯墊形成 由一圓周襯墊固定就位直至固化 一電致動透鏡。 在本發明另一示範實施例中,可藉由圍繞一電致動元件 挺製整個透鏡來製造_電致動透鏡,其中電致動元件位於 取終電致動透鏡製品體内。圖3闡釋一夾持一電致動元件 2〇〇及匯流排410-413的半力σ工翼狀模件襯墊_的俯視圖。 電致動元件200可電連接至4條導電匯流排4ι〇、4ιι、4ΐ2、4ΐ3 。導電匯流排410、4U、412及413自電致動元件朝外徑向 延伸至-模件襯塾環。圖4闡釋圖3所示半加工翼狀模件 襯墊的剖面圖’其中包括電致動元件2〇〇及匯流排41〇_413。 圖5闡釋一種根據本發明一實施例使用一全模製半加工坯 製造電致動透鏡的方法。如圖5Α中所示,在步驟5〇〇,可選 擇一包括一頂部模件600及一底部模件62〇的模件組合、一 具有一襯墊頂部空腔640、一襯墊底部空腔65〇、一電致動 元件及一導電匯流排的翼狀襯墊61〇。如圖5Β中所示,在步 驟510,可將襯墊610置於底部模件62〇上。在步驟52〇,可將 一樹脂660加入該模件組合中,當固化時該樹脂將形成透鏡 。该樹脂透過導電匯流排間的空隙或其中的開孔進入襯墊 底邵空腔650中。亦應瞭解’可通過襯墊61〇側面的—可密 封開孔向圖5D所示模件組合内填充一樹脂。 可使用眼用級樹脂,例如彼等用於保形密封之樹脂。此 等樹脂包括二乙一醇雙晞丙基碳酸酯(例如可自PittsbWghProviding most vision bridges in children's movement mode can greatly reduce the number of SKU 87595 -14-200409613. In another exemplary embodiment of the present invention, the electro-actuated lens is manufactured by attaching two lens discs thereon and holding an electro-actuating element therein. As shown in FIG. 7, in the step, a front surface and a back surface lens wafer having optical characteristics required for a fixed distance diopter can be selected to match a wearing: vision refraction specification. As shown in FIG. 7A, a concave back surface lens disc 900 and a convex front surface lens disc 93 are selected. The front surface lens disc 930 may have a radius of curvature R1 'and the back surface lens disc 9 may have a radius of curvature R2. The fixed optical power of these lens wafers is equal to ㈣ 摩 幻 _ 1 / R2) ’where“ n ”is equal to the refractive index of the material used to make the lens wafers. If R1 and R2 are parallel to each other, the fixed power of the base lens formed by attaching a lens disc is 0. A, like other electrically-actuated lenses described herein, combines the optical power of S (which provides the power used to provide long-distance vision correction) and by passing an electro- The addition of the powers provided by the moving lens area viewing produces powers for near and middle distance vision correction. However, it should be understood that any lens can be manufactured with a fixed power equal to 0, so that all vision correction is achieved by viewing through the area of the electrically actuated lens containing the electrically actuated element. Similarly, viewing through a lens area containing the electro-actuated element can provide extraordinary correction of refractive error for all focal lengths, including correction of higher-order aberrations. Π ^ It should be further understood that by using stereocasting, free-form fabrication, or photoinduced refractive index or photorefractive changes, non-general refractive errors can be corrected using only the base lens or in combination with a child actuating element . In these implementations of 87595 200409613, the 'base lens' can independently correct unusual refractive errors without relying on an electrically actuated element, while the electrically actuated element can correct spherical power adjustments and deviations related to ordinary refractive errors (such as presbyopia). Referring again to FIG. 7A, grooves can be cut in one or both of the opposing surface of the convex surface of the front lens wafer 930 and the opposing surface of the concave surface of the back lens lens 900. Alternatively, a groove may already exist in the lens wafer 900, 9 states, for example, it has been previously formed at the time of manufacture. Fig. 7A illustrates a front-surface lens disc 93 having a single groove 94o on the opposite side of its convex surface. An electrically actuated element 910 and a flexible conductive bus bar 92 can be placed between the back surface lens wafer 900 and the front surface lens wafer 930, and both the electrically actuated element 91 and the flexible conductive bus 920 are It is located at the position which can fit in the groove 94o. As described in step 1030, an index-matching adhesive can be used to bond the front surface lens wafer 930 and the back surface lens wafer 900 together to form an electrically actuated lens. In some embodiments, the electro-actuated lens may be made of a laminated lens wafer, wherein the back surface lens wafer provides cylindrical power and the combination of the back surface and front surface lens wafer provides spherical power of the lens. It should be understood that, in some embodiments, when manufacturing an electrically actuated lens, step 1010 shown in FIG. 7 may be selectively adopted, and the conductive bus bar and the electrically actuated element may not need a groove. For example, in some embodiments, an electric actuating element and a conductive bus bar may be sandwiched between two lens wafers, and the correct relationship between the two lens wafers is maintained at the same time so as not to generate a prism power. , Unless King Greek has prism power to meet the specific vision needs of the wearer. An ophthalmic-grade resin with a matching refractive index can be applied between the layers and (for example only) borrowed from 95695 -16-200409613. The pad can then be removed and formed into a circular pad that is held in place until cured. Actuate the lens. In another exemplary embodiment of the present invention, an electro-actuated lens can be manufactured by lifting the entire lens around an electro-actuated element, wherein the electro-actuated element is located in the body of the final electro-actuated lens product. FIG. 3 illustrates a top view of a half-force sigma-shaped wing-shaped module gasket _ that holds an electric actuating element 2000 and bus bars 410-413. The electric actuating element 200 may be electrically connected to the four conductive bus bars 4ι, 4ι, 4ΐ2, 4ΐ3. The conductive busbars 410, 4U, 412, and 413 extend radially outward from the electric actuating element to the-module bushing ring. Fig. 4 illustrates a sectional view of the semi-machined wing-shaped module gasket shown in Fig. 3 ', which includes an electric actuating element 200 and a bus bar 41-413. FIG. 5 illustrates a method for manufacturing an electro-actuated lens using a fully molded semi-machined blank according to an embodiment of the present invention. As shown in FIG. 5A, in step 500, a module combination including a top module 600 and a bottom module 62 can be selected, a cushion top cavity 640, and a cushion bottom cavity can be selected. 650, an electric actuating element and a winged pad 61 of a conductive bus bar. As shown in FIG. 5B, in step 510, a pad 610 may be placed on the bottom module 62o. At step 52, a resin 660 can be added to the module assembly, and the resin will form a lens when cured. The resin enters the cavity 650 of the bottom of the gasket through the space between the conductive bus bars or the opening therein. It should also be understood that a resin can be filled into the module assembly shown in FIG. 5D through the sealable openings on the side of the gasket 61. Ophthalmic grade resins such as those used for conformal sealing can be used. These resins include diethylene glycol bisphosphonium carbonate (for example, available from PittsbWgh
Pennsylvania的PPG Industries公司獲得之CR39™)、高折射率聚 合物及其他熟知的眼用樹脂材料。如圖5D中所示,在步驟 87595 17- 200409613 530 ’頂邵模件6⑻可位於襯塾頂部空腔_上方。如圖犯中 :::ΓΓ_與底部模件620之間的樹脂在步謂中 一八55〇 ’可將頂部模件_及底部模件咖連同外 邵视整環一起移除’以製成_半加工電致動透鏡… 後可使用各種加工技術處理該透鏡述以製成加工電 鏡0 應瞭解’雖然本實施例錢鑄模製方式闡釋模製方法, 但::使用注射模製法製造一電致動透鏡。舉例而言,在 此等貫施例中,可將一材料(例如聚碳酸酯)注射模製至— 壓杈中且圍繞壓模内所包含的—電致動元件及導電匯流排 固化來製造一電致動透鏡。 可使用各種導電匯流排配置製造本發明示範實施例的電 致動透鏡。通常,相任—方式放置—匯流排或匯流排組 以便徑向自泫電致動元件向外導電。如圖8Α中所示,電致 動兀件200可電連接至一單導電匯流排11〇〇。匯流排11〇〇徑 向自電致動元件200向外延伸。當匯流排自電致動元件向外 延伸時,其亦可用作一電引線來將一電源直接或間接連接 至電致動元件200。 在另一實施例中,如圖8Β中所示,電致動元件2〇〇可電連 接至複數個導電匯流排,例如導電匯流排丨丨1〇、丨丨丨丨、丨! U 。如同圖7A之單導電匯流排,匯流排in〇、ml、1112皆可 在一端電連接至電致動元件200且可徑向自電致動元件200 向外延伸。匯流排1110、1 111、1112較佳以均勻地間隔圍繞 電致動元件200。應瞭解,可將任一數量的匯流排配置為以 87595 -18 - 200409613 一完整或部分車輪結構自電致動元件200向外延伸。增加匯 流排數量蘊含一下列優點:可提供大量位置放置電子組件 (例如一測距儀、控制器及電源)以激活電致動元件並提供 電致動視力橋正。 在另一實施例中,如圖8C中所示,電致動元件200可電連 接至一至少部分環繞電致動光學元件200的碟形導電匯流排 1120。導電匯流排1120可包含複數個穿孔或開孔1125。在電 致動透鏡製造期間,此等穿孔1125有利於允許樹脂流過並· 圍繞著導電匯流排1120流動以將電致動元件200鎖定在該透 鏡坯中,且若使用透鏡圓片製造電致動透鏡,可增強導電 匯流排1120與透鏡圓片之間的黏合。導電匯流排1120在碟之 内周邊電連接至電致動光學元件200。 圖9A闡釋一電致動透鏡1200,其具有一連接至一測距儀 及控制器的導電匯流排配置。該導電匯流排配置包含一電 致動元件1205、一電致動基板圓片1210、一積體控制器/測 距儀1220、一基透鏡1230及驅動信號匯流排1240。 φ 測距儀可包含一耦合至一控制器的發送器及偵測器。在 另一實施例中,可製作一單一裝置以在雙模式中既作為連 接至該控制器的一發送器亦作為連接至該控制器的偵測器 運作。 該控制器可為一處理器、微處理器、積體電路或含有至 少一記憶體組件的晶片。該控制器可儲存資訊,例如一可 包括配戴者若干不同視距(viewing distance)驗光結果的驗光單 。該控制器可係測距儀的一組件或與其整合在一起。然而 87595 19 位2解,該控制器及測距儀可係個別不同 位於相同位置,控制器與 、^ /'·、 並# m惶而電連接。邓應瞭解, ,、也視力(view)偵測器(例如一用於 微傾斜開關或一用於測定一配戴者視:戴者w傾斜的 ,aiI ^ ^ 」心配戴者視線的眼跟蹤器)可代替 “、 儀或與測距儀一起使用來測定阶碑土 何激活-致m 戴者所視目標及應如 .. 牛來挺供-與所視目標相對應的焦距,從 而為配戴者提供正確的視力矯正。 鱼ϋ義精由導電匯流排中分佈的信號直接或藉由控制器 :讀動7°件保持電子通訊。當測距儀偵測到應轉換電致 二疋件產生的焦距來提供—不同焦距時,測距儀可向控制 ’發迗电子“虎。響應該信號,該控制器調節施予該電致 力兀件的%壓來產生一折射率變化,冑變化本身或組合其 他折射率變化(例如由基透鏡之固定光焦度提供的折射率變 化)可提供所需的視力墙正。當該折射率變化係使用一像素 化電致動元件以—規定模式產生時,其可用於矯正—般屈 光偏差#-般屈光偏差或一般與非一般偏差墙正之—組 合,其中一般屈光偏差矯正與非一般屈光偏差矯正中的一 種或兩者皆與—儲存於控制器之記憶體中的視力驗光規格 -致。該新折射率在電致動透鏡中產生適宜的光焦度以適 應焦距變化。 倘使非一般屈光偏差僅由電致動元件而非藉由使用自由 成形透鏡技術來墙正,可使用一像素化電致動元件。將一 電壓施加至電致動元件可矯正非一般屈光偏差,其在電致 動元件内所包含的複數個像素中產生一折射率變化,由此 87595 -20- 200409613 3::有多種折射率的柵格或圖案’此等折射率之組合 可矯正非一般屈光偏差。 口 :距儀可使用各種光源(例如雷射、發光二極體、射頻波 、械波或超晋波脈衝丨來& ^ )不疋位目如並測足其距離。該光發送 ”可係-垂直腔表面發射雷射(VCSEL)。此等裝置之 及爲平外型使其在該應用中具有吸引力。在另一實施例中 ’使用-有機發光二極體(或〇LED)作為測距儀的光源。該 裝置之優點在於0LED通常可以-使其幾乎透明的方式製造 。因此’由於OLED可納入透鏡或透鏡架且不被人察覺,故 OLED可係一保持透鏡外表美觀的較佳測距儀。 參照作為圖9A所示透鏡之俯視剖面圖的圖9B ’控制器/測 距儀Π20可包含於—電致動基板⑽中,該電致動基板可進 :步處理製成一電致動透鏡。通孔129〇可用於提供與基透 鏡㈣中所埋設電路的電連接。然後,可用基透鏡123〇之外 表面上塗敷透明導體1293、1296,該等透明導體可用於電性 接觸外部電源的正極及負極接線端,以便可藉由在透鏡兩 個外表面上施加一電壓(potential)來將電施予電致動元件丨2〇5 及控制器/測距儀1220。 、控制器/測距儀mo可藉由一系列導電匯流排(例如,以本 文中所述之任一構造)連接至電致動元件丨2〇5。匯流排較佳 可為一車輪結構,其中匯流排形成車輪之輪輻,而電致動 π件作為輪轂。該車輪結構允許將控制器/測距儀1220選擇 女裝於透鏡1200上的許多不同位置上。控制器/測距儀122〇 可連接在任一導電匯流排124〇上的任—點上且較佳連接在 87595 -21 - 200409613 靠近框架的透鏡周邊上,或者控制器/測距儀1220可另外附 裝至框架上並透過引線連接至導電匯流排1240。該車輪導 電匯流排構造亦可提供多個自一電源將一電壓施予電致動 元件1205上之位置。 或者,如圖9C中所示,在某些實施例中可使用一導電表 面。在此等實施例中,可使用一導電穿透機制,例如一具 有一第一夾爪1282及一第二夾爪1284的夾板(clamp),每一爽 爪皆附裝至一電源的對置接線端上。可緊固夾爪1282、1284 以便一部分夾爪可穿透透鏡1200之表面或以其他方式接觸 透明導體1293、1296之表面並藉此自電源傳導電能。在圖9C 中,連接夾爪1282、1284展示於透鏡的對置側上。然而,應 瞭解,只要採用正確的絕緣隔離正引線與負引線,則夾爪 1282、1284皆可穿透透鏡之同一側。 在本發明另一實施例中,電源(例如一電池)的觸點可安 裝於一眼鏡透鏡的框架鉸鏈1305上或其附近,其中該眼鏡 透鏡可包含一根據本文所述方法製造的電致動透鏡1200。 圖10A闡釋根據本發明一示範實施例將電源的觸點安裝於框 架鉸鏈上或其附近的一眼鏡架後視圖。圖10B闡釋根據本發 明一示範實施例將電池的觸點安裝於框架鉸鏈上或其附近 的一眼鏡架俯視圖。在某些實施例中,電源(例如一電池 1320)可藉由通往透鏡中電源接線端1380、1385的鑽孔1330穿 過透鏡正表面連接至透鏡。 在某些實施例中,控制器/測距儀1220安裝於透鏡1200中 且控制器/測距儀1220及電致動元件1205由一附裝在框架1300 87595 22 200409613 上的電池1320供電。圖10A及10B闡釋一實施例,其中電池 1320的觸點1310安裝於框架鉸鏈1305上或其附近,舉例而言 ,安裝於該框架的眼鏡腿區域。或者,如圖11A及11B中所 示,電池1320的觸點1310亦可穿過透鏡1200的背面。觸點 1310可由透明導電材料(例如ITO或其他導電氧化物)製成或 帶有一透明導電聚合物。 圖12A及12B闡釋電池1320的觸點1310安裝於框架絞鏈1305 上或其附近的一替代實施例。觸點1310可穿過框架1300之側 面伸入透鏡1200之側面。在此等狀況下,較佳在透鏡1200之 外邊緣上塗覆兩個彼此電絕緣的導電條以阻止電流供至該 裝置。此等導電條可提供更佳之表面接觸並降低施予電致 動元件1205的電壓阻抗。 亦可使用一螺釘及框架絞鏈將一外部電源安裝至框架上 。在某些實施例中,控制器亦可以此方法安裝至框架上, 圖13A-13D闡釋一安裝於框架絞鏈上的電池附件。該電池附 件包含一具有一附裝支撐環1420、一框架螺釘1410及框架絞 鏈1305的電池1320。電池支撐環1420可嵌入框架絞鏈1305中 來收納螺釘1410。螺釘1410可插入框架絞鏈1305,而框架絞 鏈1305可刻上螺紋以固定螺釘1410。圖13D顯示一替代實施 例,其中該電池附件可進一步包含一電池架1322,電池1320 可自該電池架上移除或更換而無需將螺釘1410自電池支撐 環1420上拆下。 該電致動透鏡的控制器、測距儀及電源皆可係放置於透 鏡或眼鏡架上的單獨組件或可整合成一單一模組。圖14闡 87595 -23 - 200409613 釋形成-用於本發明示範實施例的單一控制模組的經整合 的電池、控制器及測距儀。僅舉例而言’該控制模組可包 °半圓开/光电偵測器1700及-半圓形發光二極體1710,兩 者共同構成測距儀作為該模組的一第一組件。一控制器 1720可ix mj距儀之後形成—第二組件,且—碟形電池 ㈤可位於控制器之後。如圖15中所示,此等組件形成 單控制模組1810,該單一控制模組可經由一導電匯流 排測附裝在電致動元件1830上來為電致動元件供電並° 轉換透鏡麵之焦距來為透鏡配戴者提供所需視力墙正。 圖16闡釋-種加工—整合控制模組並將其安裝在透鏡中 的万法。在步驟19()() ’可考慮透鏡趣尺寸及配戴者之瞳孔 位置及瞳孔間距為一所需眼鏡架選擇一配置(kyout)。在步 I* 1910 ’可根據透鏡驻I尺寸及配戴者之瞳孔校準偏轴一 通常為-預成形鏡片或半加工链的透鏡驻節。在某些狀 況下,吾人亦期望偏軸產1一分光效果。若透鏡之非電致 動邵分提供一散光矯正,則亦可旋轉該透鏡坯。在步驟 觸,可表面繞鑄或研磨透鏡則975來為配戴者提供一需要 的距離驗光規格。在步驟㈣,可在表面中切割或模製一 凹槽’以收納電致動元件1977及導電匯流排1979。應瞭解, 步驟1930可任選,且一凹槽可早已形&。在步驟194〇,將電 致動元件和導電匯流排及一控制器/測距儀·嵌入凹槽内 並以保形密封方法將此等組件埋入透鏡内。匯流排可較佳 足位於一可㈣距儀及控制器靠力眼鏡架邊緣且較佳靠近 配戴者之太陽穴的位置。 87595 -24 - 200409613 然而,應瞭解,如同其他實施例,該控制器及測距儀皆 播需埋入透鏡内,而其中之一或兩者皆可於後來附加,例 如放置於一眼鏡架或透鏡表面上並隨後電連接至包含於嗜 透鏡内的導電匯流排。在步驟1950,將透鏡邊緣修整為一 可放入一眼鏡架之形狀並隨後將其安裝於該眼鏡架内。當 修整透鏡邊緣以配合眼鏡架時,應僅修整磨除透鏡中不= 電致動元件的部分。最後,在步驟196〇,將電池連接至導 電匯流排。若控制器於安裝前未預先程式化,則可將其程 式化為包含配戴者特有的資訊,例如配戴者不同焦距的視 力驗光規格。 或者,測距儀、控制器及電池中之任一種或其全部皆可 安裝於眼鏡架上並藉由通至電致動元件之引線連接至電致 動透鏡。圖π闡釋一加工及配製一眼鏡架中具有一測距儀 包池及控制器的透鏡之方法。在步驟2〇⑻,可選擇一配 置口、在步”iiA 2Q1Q ’如圖17b中所示,偏軸並旋轉-預成形鏡 片或一半加工坯。若透鏡具有一複曲面(t〇ric)焦度且電致動 兀:被放置於透鏡之光心上,則匯流排必須相對於複曲面 ^疋向。如圖17C中所示,在步驟2020,可將透鏡研磨成一 ¥面及球面形狀。如步驟2_ ’可修整透鏡邊緣以將其放 置万、圖17D中所示眼鏡架中。如圖17E中所示,在步驟 、可將圖中顯示為一整合控制模組2〇6〇的測距儀、電池 幻工=②*裝於眼鏡架上以完成該製程。或者,應瞭解, "^兄木製迨期間將該整合控制模組安裝於眼鏡架上。 若配戴者視力需要,可在製造一電致動透鏡的不同實施 87595 -25 - 200409613 例中附加棱鏡。舉例而t ’若使用一半加工坯,則可按照 視力驗光規格要求將棱鏡附加至透鏡中並進行表面處理',、 或者在某些狀況下,可藉由相對於配戴者之瞳孔間距的透 鏡偏軸來形成棱鏡。 類似地,可於製造期間達成其他修飾電致動透鏡的方法 ,例如藉由在表面處理後(但較佳在硬塗敷前)給透鏡著色 。、亦可藉由在透鏡上保形塗敷一光致變色(ph〇t〇_chr〇mic)層 或一易於滲入一光致變色染料之材料來賦予透鏡光致變色 性。或者,可藉由一電致動元件產生的電致變色著色或藉 由將額外電致動材料層加至該電致動元件上而形成該著色。 ,可於修邊前或後將一可選擇抗反射塗層塗敷至透鏡上。 為避免塗敷該抗反射塗層期間可能發生的漏氣,應將電致 動元件完全密封於透鏡内。 本發明之範圍並不限於本文所闡釋的特定實施例。實際 上,除本文所述實施例外,熟諳此項技術者可根據上述闡 釋及相關附圖構想出本發明的各種修改方案。因此,本發 明欲將此等修改方案皆包括於隨附的申請專利範圍内。此 外,儘管本文借助於一特定環境下為一特定目的的一特定 實施例來闡釋本發明,但彼等熟諳此項技術者應瞭解,本 發明 < 可用性並不限於此且人們可在任何數量之環境下為 任何數量之目的有益地實施本發明。因此,應根據本文中 所揭示的本發明完整精神和要旨解釋下述申請專利範圍。 【圖式簡單說明】 圖1係一種根據本發明一示範實施例製造一電致動透鏡之 87595 -26- 200409613 方法的流程圖。 圖2係一種根據本發明一示範實施例製造一電致動透鏡之 方法的流程圖。 圖2A-2F闡釋一處於圖2中所示方法之不同階段的透鏡。 圖3闡釋一根據本發明一示範實施例的半加工翼狀模製襯 墊的俯視圖。 圖4闡釋圖3之半加工翼狀模製襯墊的橫截面。 圖5係一種根據本發明另一示範實施例製造一電致動透鏡 之方法的流程圖。 圖5A-5F闡釋一處於圖5中所示方法之不同階段的透鏡。 圖ό係一種根據本發明又一示範實施例製造一電致動透鏡 之方法的流程圖。 圖6Α-6Ε闡釋一處於圖6中所示方法之不同階段的透鏡。 圖7係一種根據本發明一示範實施例製造一電致動透鏡之 方法的流程圖。 圖7Α闡釋一藉由圖7中所述方法製造的電致動透鏡。 圖8A-8C闡釋根據本發明替代實施例的各種導電匯流排配 置(conductive bus arrangement)。 圖9A-9C闡釋一具有導電匯流排配置的電致動透鏡的一示 範實施例。 圖10A闡釋一眼鏡架的後視圖,該眼鏡架具有一根據本發 明一示範實施例製造的電致動透鏡。 圖10B闡釋一眼鏡架的俯視圖,該眼鏡架具有一根據本發 明一示範實施例製造的電致動透鏡。 87595 -27- 200409613 圖11A與11B闡釋圖1〇A與1〇B所示眼鏡架的替代實施例, 該眼鏡架具有一根據本發明一示範實施例製造的電致動透 鏡。 圖ΠΑ與12B闡釋圖1〇A與1〇B所示眼鏡架的替代實施例, 該眼鏡架具有一根據本發明一示範實施例製造的電致動透 鏡。 圖13A-13D闡釋一根據本發明一示範實施例安裝於一框架 鉸鏈上或其附近的電池附件。 圖14闡釋根據本發明一示範實施例在製造一電致動透鏡 中使用的整合電組件。 圖15闡釋根據本發明一示範實施例在製造一電致動透鏡 中使用的整合電組件的另—實施例。 圖16係根據本發明再一示範實施例在製造一電致動透鏡 中力(丘niSh)並士衣(m〇unt)整合電子組件之方法的流程圖。 圖16A-16E闡釋一處於圖16中所示方法之不同階段的透鏡。 、圖17係一根據本發明另一示範實施例在製造一電致動透 鏡中加工-具有電子組件之透鏡的方法流程圖。 圖17A-17E闡釋-處於圖17中所示方法之不同階段的透鏡。 【圖式代表符號說明】 R1 曲率半經 R2 曲率半徑 4 (說明書中未提及) 10 提供透鏡这 一0 將私致動元件放置於透鏡坯表面上 87595 -28 - 200409613 30 在包含電致動元件的透鏡埋表面上形成覆蓋層 100 選擇半加工透鏡埋 110 在坯中切割凹槽 120 將電致動元件及撓性匯流排放置於凹槽中 130 將電致動元件及匯流排保形密封於透鏡坯中 140 將透鏡远脫模 150 硬塗敷透鏡坯(可選擇) 160 將透鏡坯表面處理至最終驗光規格 200 電致動元件 202 凹形背表面 204 凸形正表面 205 凹槽 208 覆蓋面 210 導電匯流排 215 覆蓋層 220 模件 230 半加工透鏡坦 235 電致動透鏡埋 240 電致動透鏡 410 導電匯流排 411 導電匯流排 412 導電匯流排 413 導電匯流排 420 模製襯墊環 87595 -29- 200409613 500 選擇透鏡模件及襯墊 510 將襯墊與電致動元件及導電匯流排一起放置於底部 模件上 520 將樹脂加至模件組合中 530 將頂部模件定位於襯墊上 540 固化樹脂 550 脫模已固化樹脂並修整襯墊環 600 頂部模件 610 翼狀襯墊 620 底部模件 630 (說明書中未提及) 640 襯墊頂部空腔 650 襯墊底部空腔 700 選擇單光透鏡 710 在透鏡中切割凹槽 720 將電致動元件及撓性匯流排放置於凹槽中 730 將電致動元件及匯流排保形密封於透鏡坯中 740 脫模透鏡坯 750 硬塗覆透鏡坯(可選擇) 800 單光基透鏡 802 (說明書中未提及) 804 凸形正表面 808 覆蓋面 810 凹槽 87595 -30- 200409613 815 (說明書中未提及) 820 模件 840 (說明書中未提及) 900 背表面透鏡圓片 902 (說明書中未提及) 904 (說明書中未提及) 910 電致動元件 920 撓性導電匯流排 930 正表面透鏡圓片 940 凹槽 1000 選擇正表面及背表面透鏡圓片 1010 在一個或兩個透鏡圓片表面上切割凹槽 1020 將電致動元件及撓性匯流排放置於正表面透鏡圓片 與背表面透鏡圓片之間 1030 將透鏡圓片黏合在一起 1100 單一導電匯流排 1110 導電匯流排 1111 導電匯流排 1112 導電匯流排 1120 碟形導電匯流排 1125 穿孔 1200 電致動透鏡 1205 電致動元件 1210 電致動基板圓片 87595 -31 - 200409613 1220 整合控制器/測距儀 1230 基透鏡 1240 信號匯流排 1250 電致動基板 1280 (說明書中未提及) 1282 第一夾爪 1284 第二爽爪 1285 (說明書中未提及) 1290 通孑L 1293 透明導體 1296 透明導體 1300 框架 1305 框架絞鏈 1310 觸點 1320 電池 1322 電池架 1330 鑽孔 1380 電接線端 1385 電接線端 1410 螺釘 1420 電池支撐壤 1710 半圓形發光二極體 1720 控制器 1730 碟形電池 87595 -32- 200409613 1800 透鏡 1810 單一控制模組 1820 導電匯流排 1830 電致動元件 1900 選擇透鏡配置 1910 偏軸並旋轉透鏡坯 1920 將透鏡表面澆鑄或表面處理成環面及/或球面形狀 1930 在透鏡中形成凹槽 1940 將電致動構件安裝於透鏡凹槽中 1950 修整透鏡邊緣並將其安裝於眼鏡架中 1960 將電源連接至電子組件 1975 透鏡坯 1977 電致動元件 1979 導電匯流排 1981 控制器/測距儀 2000 選擇透鏡配置 2010 偏軸並旋轉透鏡坯 2020 將透鏡坯表面澆鑄或加工成環面/或球面形狀 2030 修整透鏡邊緣以匹配眼鏡架 2040 將電子組件安裝在眼鏡架上 2060 整合控制模組 87595CR39 ™ from PPG Industries, Pennsylvania), high refractive index polymers, and other well-known ophthalmic resin materials. As shown in FIG. 5D, in step 87595 17-200409613 530 ', the top module 6⑻ may be located above the top cavity _ of the liner. As shown in the figure: The resin between :: ΓΓ_ and the bottom module 620 can be removed from the top module _ and the bottom module coffee together with the outer view ring in one step. _Semi-processed electro-actuated lens ... This lens can be processed using various processing techniques to make processed electron mirrors. 0 It should be understood that 'Although the molding method is explained in this example, the injection molding method is used: Electro-actuated lens. For example, in these embodiments, a material (such as polycarbonate) can be injection molded into—and around—the electrical actuated elements and conductive bus bars that are contained within the die to be solidified to produce the material. An electrically actuated lens. Various conductive bus configurations can be used to make the electro-active lens of the exemplary embodiment of the present invention. Generally, the busbars or busbar groups are placed in a random manner in such a way as to conduct electricity outwardly from the electrically actuated elements. As shown in FIG. 8A, the electric actuating element 200 may be electrically connected to a single conductive bus 110. The bus 1100 extends outwardly from the electrically actuated element 200. When the bus bar extends outward from the electric actuation element, it can also be used as an electrical lead to directly or indirectly connect a power source to the electric actuation element 200. In another embodiment, as shown in FIG. 8B, the electric actuating element 2000 may be electrically connected to a plurality of conductive bus bars, such as conductive bus bars 丨 丨 10, 丨 丨 丨 丨, 丨! U. Like the single conductive busbar of FIG. 7A, the bus bars in0, ml, and 1112 may be electrically connected to the electric actuating element 200 at one end and may extend radially outward from the electric actuating element 200. The bus bars 1110, 1 111, 1112 preferably surround the electric actuating element 200 at even intervals. It should be understood that any number of buses may be configured to extend outwardly from the electrically actuated element 200 with a complete or partial wheel structure of 87595 -18-200409613. Increasing the number of busbars has the following advantages: it can provide a large number of positions for electronic components (such as a rangefinder, controller, and power supply) to activate electrically actuated components and provide electrically actuated vision bridges. In another embodiment, as shown in FIG. 8C, the electrically actuable element 200 may be electrically connected to a dish-shaped conductive bus 1120 that at least partially surrounds the electrically actuated optical element 200. The conductive busbar 1120 may include a plurality of perforations or openings 1125. During the manufacture of the electro-actuated lens, these perforations 1125 are beneficial to allow resin to flow through and around the conductive bus 1120 to lock the electro-actuated element 200 in the lens blank, and if the electro-actuated lens is manufactured using a lens wafer Moving the lens can enhance the adhesion between the conductive bus bar 1120 and the lens wafer. The conductive busbar 1120 is electrically connected to the electrically actuated optical element 200 within the periphery of the dish. FIG. 9A illustrates an electrically actuated lens 1200 having a conductive bus configuration connected to a rangefinder and a controller. The conductive busbar configuration includes an electrically actuated element 1205, an electrically actuated substrate wafer 1210, an integrated controller / distance meter 1220, a base lens 1230, and a drive signal busbar 1240. The φ rangefinder may include a transmitter and a detector coupled to a controller. In another embodiment, a single device can be made to function as both a transmitter connected to the controller and a detector connected to the controller in dual mode. The controller may be a processor, a microprocessor, an integrated circuit, or a chip containing at least one memory component. The controller can store information, such as an optometry list that can include the wearer's results of different viewing distances. The controller can be a component of the rangefinder or integrated with it. However, the 87595 19-bit 2 solution, the controller and the range finder can be located at the same location individually, the controller is electrically connected to, ^ / '·, and # m 惶. Deng Ying understands that, and also view detectors (for example, one for micro-tilt switch or one for measuring a wearer's vision: wearer w tilted, aiI ^ ^ "eye tracking of the heart wearer's sight Device) can be used instead of ", meter or with a rangefinder to determine how the stele is activated-to the target that the wearer sees and should be like .. Niu Lai Ting Confession-the focal length corresponding to the target you see, so The wearer provides correct vision correction. The fish capsule is maintained by electronic signals directly or through the controller: read the 7 ° piece to maintain electronic communication. When the rangefinder detects that it should be switched to electric two The focal length generated by the component is provided-at different focal lengths, the rangefinder can be used to control the electronic device. In response to the signal, the controller adjusts the% pressure applied to the electric force element to generate a refractive index change, the change itself or other refractive index changes (such as the refractive index change provided by the fixed power of the base lens) Can provide the required vision wall. When the refractive index change is generated using a pixelated electric actuating element in a prescribed mode, it can be used to correct the general refractive error #-general refractive error or a combination of ordinary and non-normal deviations, where the general refractive One or both of optical deviation correction and non-normal refractive deviation correction-the vision refraction specifications stored in the memory of the controller are the same. This new index of refraction produces a suitable power in the electro-actuated lens to accommodate the change in focal length. A pixelated electrically actuated element may be used if the extraordinary refractive error is wall-corrected solely by the electrically actuated element and not by using free-form lens technology. Applying a voltage to the electro-actuated element can correct unusual refractive errors, which produces a refractive index change in a plurality of pixels contained in the electro-actuated element, so that there are many types of refraction 87095 -20- 200409613 3: A grid or pattern of these rates' combination of these refractive indices can correct unusual refractive errors. Mouth: The distance meter can use a variety of light sources (such as lasers, light-emitting diodes, radio frequency waves, mechanical waves, or ultra-pulse pulses) to measure and measure the distance. The "light transmission" can be-a vertical cavity surface emitting laser (VCSEL). The sum of these devices is flat and makes them attractive in this application. In another embodiment, 'use-organic light emitting diodes' (Or 0LED) as the light source of the rangefinder. The advantage of this device is that 0LEDs can usually be made-making it almost transparent. Therefore, 'OLEDs can be integrated because they can be incorporated into lenses or lens holders and are not detectable. A better rangefinder to maintain the aesthetic appearance of the lens. Referring to FIG. 9B, which is a top sectional view of the lens shown in FIG. 9A, 'controller / rangefinder Π20 may be included in-an electrically actuated substrate ⑽, which may be Further processing: an electrically actuated lens is formed. The through hole 129 ° can be used to provide electrical connection with the circuit embedded in the base lens ㈣. Then, transparent conductors 1293, 1296 can be coated on the outer surface of the base lens 123 °. Such transparent conductors can be used to electrically contact the positive and negative terminals of an external power source, so that electricity can be applied to the electric actuating element by applying a potential on both outer surfaces of the lens. / Rangefinder 1220. 、 Control The device / rangefinder mo can be connected to the electrically actuated element via a series of conductive bus bars (for example, in any of the configurations described herein). The bus bar may preferably be a wheel structure, of which the bus The rows form the spokes of the wheel, and the electro-actuated π piece acts as the hub. This wheel structure allows the controller / rangefinder 1220 to choose women's clothing at many different positions on the lens 1200. The controller / rangefinder 122 can be connected At any point on any conductive bus 1240 and preferably connected to the periphery of the lens close to the frame of 95795 -21-200409613, or the controller / rangefinder 1220 can be additionally attached to the frame and connected to it with leads Conductive busbar 1240. The wheel conductive busbar structure can also provide multiple locations from a power source to apply a voltage to the electric actuating element 1205. Alternatively, as shown in FIG. 9C, it can be used in some embodiments A conductive surface. In these embodiments, a conductive penetration mechanism may be used, such as a clamp with a first clamping jaw 1282 and a second clamping jaw 1284, each of which is attached to a On the opposite terminal of the power supply. Fix the clamping jaws 1282 and 1284 so that a part of the clamping jaws can penetrate the surface of the lens 1200 or otherwise contact the surfaces of the transparent conductors 1293 and 1296 and thereby conduct electrical energy from the power source. In FIG. 9C, the connection clamping jaws 1282 and 1284 are shown in On the opposite side of the lens. However, it should be understood that as long as the positive and negative leads are properly isolated, the clamping jaws 1282 and 1284 can penetrate the same side of the lens. In another embodiment of the present invention, the power supply ( Contacts (eg, a battery) may be mounted on or near a frame hinge 1305 of a spectacle lens, where the spectacle lens may include an electrically actuated lens 1200 manufactured according to the methods described herein. 10A illustrates a rear view of an eyeglass frame with contacts of a power source mounted on or near a frame hinge according to an exemplary embodiment of the present invention. 10B illustrates a top view of an eyeglass frame with contacts of a battery mounted on or near a frame hinge according to an exemplary embodiment of the present invention. In some embodiments, a power source (e.g., a battery 1320) may be connected to the lens through the front surface of the lens through a bore 1330 leading to the power terminals 1380, 1385 in the lens. In some embodiments, the controller / rangefinder 1220 is mounted in the lens 1200 and the controller / rangefinder 1220 and the electric actuation element 1205 are powered by a battery 1320 attached to the frame 1300 87595 22 200409613. 10A and 10B illustrate an embodiment in which the contacts 1310 of the battery 1320 are mounted on or near the frame hinge 1305, for example, in the temple area of the frame. Alternatively, as shown in FIGS. 11A and 11B, the contacts 1310 of the battery 1320 may pass through the back of the lens 1200. The contact 1310 may be made of a transparent conductive material (such as ITO or other conductive oxide) or with a transparent conductive polymer. 12A and 12B illustrate an alternative embodiment in which the contacts 1310 of the battery 1320 are mounted on or near the frame hinge 1305. The contacts 1310 may extend through the sides of the frame 1300 into the sides of the lens 1200. Under these conditions, it is preferable to coat the outer edge of the lens 1200 with two conductive strips that are electrically insulated from each other to prevent current from being supplied to the device. These conductive strips can provide better surface contact and reduce the voltage impedance applied to the electric actuation element 1205. An external power source can also be mounted to the frame using a screw and a frame hinge. In some embodiments, the controller can also be mounted on the frame in this way. Figures 13A-13D illustrate a battery accessory mounted on a frame hinge. The battery attachment includes a battery 1320 having an attachment support ring 1420, a frame screw 1410, and a frame hinge 1305. The battery support ring 1420 can be embedded in the frame hinge 1305 to receive the screw 1410. The screws 1410 may be inserted into the frame hinges 1305, and the frame hinges 1305 may be threaded to fix the screws 1410. FIG. 13D shows an alternative embodiment in which the battery accessory may further include a battery holder 1322 from which the battery 1320 can be removed or replaced without removing the screws 1410 from the battery support ring 1420. The controller, rangefinder and power supply of the electrically actuated lens can be separate components placed on the lens or spectacle frame or can be integrated into a single module. Figure 14 illustrates 87595-23-200409613 Interpretation-Integrated Battery, Controller and Rangefinder for a single control module for an exemplary embodiment of the present invention. For example only, the control module may include a semi-circular open / photodetector 1700 and a semi-circular light-emitting diode 1710. The two together constitute a rangefinder as a first component of the module. A controller 1720 can be formed behind the ix mj distance meter—a second component, and—a dish battery 电池 can be located behind the controller. As shown in FIG. 15, these components form a single control module 1810. The single control module can be attached to the electric actuation element 1830 through a conductive bus test to power the electric actuation element and convert the lens surface. The focal length provides the required vision for the lens wearer. Figure 16 illustrates a method for processing-integrating a control module and mounting it in a lens. In step 19 () () ', it is possible to select a configuration (kyout) for a desired spectacle frame in consideration of the lens size and the pupil position and pupil distance of the wearer. In step I * 1910 ′, the off-axis can be calibrated according to the size of the lens I and the pupil of the wearer—usually a pre-formed lens or a semi-processed lens lens. In some cases, we also expect the off-axis to produce a spectroscopic effect. If a non-electrically actuated lens of the lens provides astigmatism correction, the lens blank can also be rotated. At the touch, a surface-wrapped or ground lens 975 provides the wearer with the required distance prescription. In step ㈣, a groove ' may be cut or molded in the surface to receive the electrically actuated element 1977 and the conductive bus bar 1979. It should be understood that step 1930 is optional, and a groove may already be formed &. In step 1940, the electric actuating element and the conductive bus bar and a controller / rangefinder are embedded in the groove, and the components are embedded in the lens by a conformal sealing method. The busbar may preferably be located at the edge of a distance measuring instrument and controller against the edge of the spectacle frame and preferably near the temple of the wearer. 87595 -24-200409613 However, it should be understood that like other embodiments, the controller and rangefinder need to be embedded in the lens, and one or both of them can be added later, such as being placed in a spectacle frame or On the lens surface and then electrically connected to a conductive bus bar contained within the lens. At step 1950, the edge of the lens is trimmed into a shape that fits into a spectacle frame and is then mounted in the spectacle frame. When trimming the edge of the lens to fit the spectacle frame, only the part of the lens that is not = electrically actuated should be trimmed away. Finally, in step 1960, the battery is connected to the conductive bus. If the controller is not pre-programmed before installation, it can be programmed to include information unique to the wearer, such as the wearer's vision refraction specifications at different focal lengths. Alternatively, any or all of the rangefinder, the controller, and the battery may be mounted on the spectacle frame and connected to the electrically-actuated lens through a lead to the electrically-actuated element. Figure π illustrates a method for processing and preparing a lens with a rangefinder bag and controller in a spectacle frame. In step 20, a configuration port can be selected. In step "iiA 2Q1Q ', as shown in Fig. 17b, the lens is off-axis and rotated-a pre-formed lens or half of the preform. If the lens has a toric focus Degree and electrical actuation: When placed on the optical center of the lens, the bus must be oriented relative to the toric surface. As shown in FIG. 17C, in step 2020, the lens can be ground into a ¥ and spherical shape. As shown in step 2_ ', the lens edge can be trimmed to place it in the eyeglass frame shown in Fig. 17D. As shown in Fig. 17E, in the step, the figure can be displayed as a test of an integrated control module 2606. Distance meter, battery magic = ② * Installed on the glasses frame to complete the process. Or, it should be understood that "integrated control module" is installed on the glasses frame. If the wearer needs vision, Prisms can be added to the different implementations of making an electro-actuated lens 87595 -25-200409613. For example, t 'If half of the blank is used, the prism can be added to the lens and surface treated according to the requirements of the optometry specification', , Or in some cases, The off-axis of the lens between the pupils of the wearer forms the prism. Similarly, other methods of modifying the electro-actuated lens can be achieved during manufacturing, such as by giving the lens after surface treatment (but preferably before hard coating) Coloring. It is also possible to impart photochromic properties to a lens by conformally coating a lens with a photochromic layer or a material that easily infiltrates a photochromic dye. Or, The coloration can be formed by an electrochromic coloring produced by an electro-actuated element or by adding an additional layer of electro-actuated material to the electro-actuated element. A selective resistance can be applied before or after trimming. A reflective coating is applied to the lens. In order to avoid air leaks that may occur during the application of this anti-reflective coating, the electrically actuated element should be completely sealed within the lens. The scope of the invention is not limited to the specific implementations explained herein In fact, with the exception of the embodiments described herein, those skilled in the art can conceive various modifications of the present invention based on the above explanations and related drawings. Therefore, the present invention intends to include these modifications in the accompanying apply for patent In addition, although the present invention is explained herein with the help of a specific embodiment for a specific purpose in a specific environment, those skilled in the art should understand that the invention is not limited to this and one can The invention is beneficially implemented for any number of purposes in any number of environments. Therefore, the scope of the following patent applications should be explained in accordance with the full spirit and gist of the invention disclosed herein. [Simplified description of the drawings] Figure 1 is a Flowchart of a method of manufacturing an electrically actuated lens according to an exemplary embodiment of the present invention 95795 -26- 200409613. Figure 2 is a flow chart of a method of manufacturing an electrically actuated lens according to an exemplary embodiment of the present invention. Figures 2A-2F A lens is illustrated at different stages of the method shown in FIG. 2. Fig. 3 illustrates a top view of a semi-machined wing-shaped molded gasket according to an exemplary embodiment of the present invention. FIG. 4 illustrates a cross-section of the semi-machined wing-shaped molded gasket of FIG. 3. FIG. 5 is a flowchart of a method of manufacturing an electrically actuated lens according to another exemplary embodiment of the present invention. 5A-5F illustrate a lens at different stages of the method shown in FIG. 5. FIG. 6 is a flowchart of a method of manufacturing an electrically actuated lens according to another exemplary embodiment of the present invention. 6A-6E illustrate a lens at different stages of the method shown in FIG. FIG. 7 is a flowchart of a method of manufacturing an electrically actuated lens according to an exemplary embodiment of the present invention. FIG. 7A illustrates an electrically-actuated lens manufactured by the method described in FIG. 7. 8A-8C illustrate various conductive bus arrangements according to alternative embodiments of the present invention. 9A-9C illustrate an exemplary embodiment of an electrically actuated lens having a conductive bus bar configuration. Fig. 10A illustrates a rear view of a spectacle frame having an electrically actuated lens manufactured according to an exemplary embodiment of the present invention. Fig. 10B illustrates a top view of a spectacle frame having an electro-actuated lens manufactured according to an exemplary embodiment of the present invention. 87595 -27- 200409613 FIGS. 11A and 11B illustrate an alternative embodiment of the spectacle frame shown in FIGS. 10A and 10B, which has an electro-actuated lens manufactured according to an exemplary embodiment of the present invention. FIGS. 11A and 12B illustrate an alternative embodiment of the spectacle frame shown in FIGS. 10A and 10B, which has an electrically actuated lens manufactured according to an exemplary embodiment of the present invention. 13A-13D illustrate a battery accessory mounted on or near a frame hinge according to an exemplary embodiment of the present invention. FIG. 14 illustrates an integrated electrical component used in manufacturing an electrically actuated lens according to an exemplary embodiment of the present invention. Fig. 15 illustrates another embodiment of an integrated electrical component used in the manufacture of an electrically actuated lens according to an exemplary embodiment of the present invention. FIG. 16 is a flowchart of a method for integrating electronic components in manufacturing an electrically actuated lens according to yet another exemplary embodiment of the present invention. 16A-16E illustrate a lens at different stages of the method shown in FIG. Fig. 17 is a flowchart of a method of processing a lens with electronic components in the manufacture of an electrically actuated lens according to another exemplary embodiment of the present invention. 17A-17E illustrate lenses at different stages of the method shown in FIG. [Schematic representation of symbol] R1 Curvature R2 Curvature radius 4 Curvature radius 4 (not mentioned in the description) 10 Provide lens as 0 Place the private actuating element on the surface of the lens blank 95695 -28-200409613 30 Including electric actuation A cover layer is formed on the buried surface of the element 100. A semi-processed lens is buried 110. A groove is cut in the blank 120. The electrically actuated element and the flexible bus are discharged into the groove 130. The electrically actuated element and the bus are conformally sealed. In the lens blank 140 Release the lens far away 150 Hard-coated lens blank (optional) 160 Surface treatment of the lens blank to the final refraction specification 200 Electro-actuated element 202 Concave back surface 204 Convex front surface 205 Groove 208 Covering surface 210 Conductive busbar 215 Cover layer 220 Module 230 Semi-finished lens tank 235 Electrically actuated lens 240 Electrically actuated lens 410 Conductive busbar 411 Conductive busbar 412 Conductive busbar 413 Conductive busbar 420 Molded gasket ring 87995- 29- 200409613 500 Select lens module and gasket 510 Place gasket with electric actuator and conductive bus bar on the bottom module 520 Resin Add to the module combination 530 Position the top module on the gasket 540 Cured resin 550 Release the cured resin and trim the gasket ring 600 Top module 610 Wing gasket 620 Bottom module 630 (not mentioned in the description ) 640 Liner top cavity 650 Liner bottom cavity 700 Select single light lens 710 Cut groove in lens 720 Place electro-actuated elements and flexible busbars in grooves 730 Place electro-actuated elements and busbars Conformally sealed in the lens blank 740 Mold release lens blank 750 Hard-coated lens blank (optional) 800 Single light-based lens 802 (not mentioned in the manual) 804 Convex positive surface 808 Cover surface 810 Groove 87995 -30- 200409613 815 (not mentioned in the manual) 820 module 840 (not mentioned in the manual) 900 back surface lens wafer 902 (not mentioned in the manual) 904 (not mentioned in the manual) 910 electric actuating element 920 flexible conductive Bus 930 Front surface lens disc 940 Groove 1000 Select front and back surface lens disc 1010 Cut groove 1020 on one or two lens disc surfaces Place electrical actuating element and flexible bus discharge on front surface through Between the wafer and the lens lens on the back surface 1030 Bonding the lens wafer together 1100 Single conductive bus 1110 Conductive bus 1111 Conductive bus 1112 Conductive bus 1120 Dish-shaped conductive bus 1125 Perforated 1200 Electro-actuated lens 1205 Electric Actuating element 1210 Electrically actuated substrate wafer 87595 -31-200409613 1220 Integrated controller / rangefinder 1230 Base lens 1240 Signal bus 1250 Electrically actuated substrate 1280 (not mentioned in the manual) 1282 First gripper 1284 No. Two cool claws 1285 (not mentioned in the manual) 1290 Tong L 1293 transparent conductor 1296 transparent conductor 1300 frame 1305 frame hinge 1310 contact 1320 battery 1322 battery holder 1330 drilling 1380 electrical terminal 1385 electrical terminal 1410 screw 1420 battery Supporting soil 1710 Semi-circular light-emitting diode 1720 Controller 1730 Disk battery 87995 -32- 200409613 1800 Lens 1810 Single control module 1820 Conductive bus 1830 Electric actuating element 1900 Select lens configuration 1910 Off-axis and rotate lens blank 1920 The lens surface is cast or surface treated into a torus and / or spherical shape 1930 in Grooves in the mirror 1940 Mounting the electro-actuating member in the lens groove 1950 Trimming the edge of the lens and mounting it in the eyeglass frame 1960 Connecting the power supply to the electronic component 1975 Lens blank 1977 Electrically actuated element 1979 Conductive bus 1981 Control / Rangefinder 2000 Select lens configuration 2010 Off-axis and rotate lens blank 2020 Cast or process the lens blank surface into a torus / or spherical shape 2030 Trim the lens edges to match the spectacle frame 2040 Mount the electronic components on the spectacle frame 2060 Integration Control module 87595