TW200408708A - Internal ribosome entry sites for recombinant protein expression - Google Patents

Internal ribosome entry sites for recombinant protein expression Download PDF

Info

Publication number
TW200408708A
TW200408708A TW92118785A TW92118785A TW200408708A TW 200408708 A TW200408708 A TW 200408708A TW 92118785 A TW92118785 A TW 92118785A TW 92118785 A TW92118785 A TW 92118785A TW 200408708 A TW200408708 A TW 200408708A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
virus
baculovirus
cistrons
ires
Prior art date
Application number
TW92118785A
Other languages
Chinese (zh)
Inventor
Tsu-An Hsu
Jin-Ching Lee
Tzong-Yuan Wu
Original Assignee
Nat Health Research Institutes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Health Research Institutes filed Critical Nat Health Research Institutes
Publication of TW200408708A publication Critical patent/TW200408708A/en

Links

Abstract

The invention describes compositions and methods for recombinant protein expression in a wide range of cell types, including mammalian, insect, and bacterial cells. The compositions comprise a viral IRES sequence selected from enterovirus 71 (EV71), hepatitis C virus (HCV), or encephalomyocarditis virus (EMCV), or a variant or fragment thereof, or alternatively, a homolog of a viral IRES selected from EV71, HCV, or EMCV, or a variant or fragment thereof. Methods of using the compositions are also described.

Description

200408708 玖、發明說明: 【發明所屬之技術領域】 糖體結合位置 。特定言之,本 本發明係關於病毒基因的5,未轉譯區( regions 〔 5’UTRs〕),其係可作為内部核 (internal ribosome entry sites〔 IRES〕)〇 發明係關於腦心肌炎病毒(EMCV )、 C型肝炎病毒200408708 发明, Description of the invention: [Technical field to which the invention belongs] Glycosome binding site. In particular, the present invention relates to the 5, untranslated regions of the viral gene (regions [5'UTRs]), which can serve as internal ribosome entry sites (IRES). The invention relates to the encephalomyocarditis virus (EMCV). Hepatitis C virus

IRES於重組蛋白表現系統的方法;包含各式丨RES之組合 物;及使用本發明IRES來篩選出抗病毒化合物的方法。 【先前技術】 真核生物的mRN A在其5,端有一獨特的結構特徵,稱為 5 ’帽(5 c a p ),是一個7 -甲基鳥嘌吟苷殘基經由5,_三石粦 酸連接到mRNA的5’末端殘基。帽依賴型轉譯(cap_ dependent translation )最先開始於帽結合蛋白複合體e丨卜,_4 F 結合到5 ’帽上,此舉可加速核糠體三元次單位43 s結合於5 · 帽區域上或結合於鄰近5 ’帽區域上,此核糖體複合體會自5, 帽處開始掃描mRNA,一直到遇到起始密碼子AUG為止,並 自此開始mRNA的轉譯(參閱1<:〇2&1<,?^,(1989)〇£1144:283-292; Kozak, Μ ( 1 989) J. Cell. Biol. 1 08:229-241 )。 已有人提出帽獨立型轉譯 (cap-independent translation )機制來解釋某些極具效率的病毒mRN A轉譯作 用,儘管在其mRN A的5 ’端未轉譯區被預測有一會干擾核糖 200408708 體在mRNA上掃描之高度次元結構。小核糖核酸病毒 (Picornavirus >的mRNA是第一個被確認會表現帽獨立型機 制的 mRNA (參閱 jacks〇n,R J·,( 1 988)心以“ 3 3 4 292_ 293 ) ’小核糖核酸病毒的mRNA具有包括缺少5,帽,一段 特殊結構的5未轉譯區’且多個上游aug起始密碼子等構造 特徵。此段特殊結構的5,未轉譯區被發現可當作内部核糖體 、、σ -位置(IR E S ) ’或稱核糖體起降場(r i b 〇 s 〇 m e 1 a n d i n g pad),其可不需要5 ‘帽的結構而與核糖體三元次單位43 $結 合以開始轉譯作用。 包含IRES的5‘未轉譯區通常具有三個特徵:一段長的 未轉淳區,穩疋的一級結構,及有潛力的上游起始密碼子 AUG,其中穩定的二級結構被認為是決定丨以以功能最重要 的因素。少部分的脊椎動物有長的、高度結構化且 包含多個起始密碼子AUG的5,未轉譯區,在這些mRNA中, 果蠅的Antp基因有一段1 73 5個鹼基長度的5,未轉譯區和15 個上游AUG起始密碼子,及Ubx基因有一段968個鹼基長度 的5 ’未轉譯區和2個上游AUG起始密碼子。到目前為止,已 在不同物種間的細胞内mRNA找到更多的iRES,這些不同物A method for expressing IRES in a recombinant protein system; a composition comprising various RES; and a method for screening antiviral compounds using the IRES of the present invention. [Prior art] The eukaryotic mRN A has a unique structural feature at its 5 'end, called the 5' cap (5 cap), and is a 7-methylguanosine residue via 5, _triscarnic acid Linked to the 5 'terminal residue of the mRNA. Cap_dependent translation first started with the cap-binding protein complex e 丨 b, _4 F bound to the 5 'cap, which can accelerate the binding of the nuclear bran ternary unit 43 s to the 5 · cap region On or in the vicinity of the 5 'cap region, this ribosome complex will scan the mRNA from the 5 cap, until it encounters the start codon AUG, and from then on the mRNA translation (see 1 <: 〇2 & amp 1 <, ^, (1989) £ 1144: 283-292; Kozak, M (1 989) J. Cell. Biol. 1 08: 229-241). A cap-independent translation mechanism has been proposed to explain some highly efficient viral mRN A translations, although a 5 'untranslated region of its mRN A has been predicted to interfere with ribose 200408708 body in mRNA. Scanned height dimension structure. Picornavirus (Picornavirus > mRNA is the first mRNA confirmed to show a cap-independent mechanism (see jacksOn, RJ, (1 988) with "3 3 4 292_ 293)" Small RNA The viral mRNA has structural features including a 5 untranslated region lacking a 5, cap, a special structure, and multiple upstream aug start codons. The 5 untranslated region of this special structure was found to be used as an internal ribosome , Σ-position (IR ES) ', or ribosome take-off and landing field (rib 〇s 〇me 1 anding pad), which can be combined with the ribosome ternary unit 43 $ without the 5' cap structure to start translation The 5 'untranslated region containing IRES usually has three characteristics: a long untranslated region, a stable primary structure, and a potential upstream start codon AUG, where the stable secondary structure is considered to be Deciding on the most important factor in function. A small number of vertebrates have long, highly structured 5, untranslated regions containing multiple start codons AUG. Among these mRNAs, the Drosophila Antp gene has a segment 1 73 5 bases in length 5 The translation region and 15 upstream AUG start codons, and the Ubx gene has a 968 base 5 'untranslated region and 2 upstream AUG start codons. So far, it has been in cells between different species. mRNA finds more iRES, these different

種包括人類(參閱 Macajak,D.G· and P. Sarnow,(1991) Nature 3 53:65 3-656; Sarnow, P? ( 1 989) PNAS 86:5795-5799; Vagner, S. et al., ( 1 995) Mol. Cell. Biol. 15:35-44 ) ’ 及酵母菌(參閱 Zhou,W. et al.,(2001 ;) PNAS 98:1 53 1 - 1 536; Paz,I. et al·,( 1 999) J. Biol. Chem. 274:2 174卜21 745 ) 。IRES最早於病毒的mRNA中被辨識 200408708 到,例如脊髓灰白質炎病毒(poliovirus )(參閱P e 11 e t i e r, J. and N. Sonenberg· (1988) Nature 334:320-325 )、腦心肌 炎病毒( encephalomyocarditis virus〔 EMCV〕)(參閱 Jang, S.K., and E. Wimmer, ( 1 990) Genes Dev. 4:1560-1572),和人類鼻病毒(human rhinovirus〔HRV〕)(參 閱 Borman,A. et al”(1993) J. Gen. Virol· 74:1 775-1788 )。 果蠅的 Antp 與 Ubx 同位基因也係藉由它們的長^未轉 譯區中的IRES而被轉譯(參閱Ye X. et al.,(1997) Mol. Cell. Biol. 17:1714-1721; Ho, S.-K. et al., (1992) Genes Dev. 6:1643-1653 )。 【發明内容】 本發明提供從腸病毒71型(enterovirus 71 I EV71 I ) 基因的5 ’未轉譯區獲得之内部核糖體結合位置(i R ε s ), 腸病毒屬於小核糖核酸病毒科(Picornaviridae ),而腸病 毒71型為腸病毒屬的一員(參閱Fields,b.n.,et ai.,eds., (3rd ed. 1 996) Fundamental Virology, L i p p i n c o 11 - R a v e n. Philadelphia,PA,p. 477-522),腸病毒7}型的 1{1£8活性被 拿來跟腦心肌炎病毒及c型肝炎病毒的IREs比較。所有這些 病毒的IRES均可引導包括人類、.蟲和細菌細胞等不同細 胞類型之mRNA的帽獨立型轉譯作用。因此,病毒的iRKS用 於核酸載體是很有助益的,因其可由單一轉錄單位來引導 兩個或多個不相干蛋白質的表現。 依照傳統做法,在細胞内表現重組蛋白是將此蛋白質 5 200408708 基因置於啟動子的控制下,啟動子提供了 mRN A合成所需的 RN A聚合酶結合位置。當欲於一細胞内表現兩個或多個重 組蛋白時,可在單一核酸載體中,將各個蛋白質基因置於 其個別的啟動子之控制下;此外,各個蛋白質也可由個別 的核酸載體表現。不論用上述哪種方法,各個蛋白質均會 產生個別的mRNA轉錄產物,不同的mRNA轉錄產物之轉譯 常會導致不同的蛋白質間之非協力表現。將多個蛋白質置 於同一個啟動子的控制下,最靠近5 ’帽的第一個基因會被最 有效率地轉譯,推測是因帽依賴型作用機制所致,而位於 下游的基因,其轉譯程度可能極低或根本沒被轉譯。然 而,當一 IRES被嵌入至核酸載體,並位於最靠近5 ’帽的基 因與其下游基因間時,則在單個轉錄產物裡,可能會有兩 個或多個蛋白質可被有效的轉譯。 多順反子載體(polycistronic vector)係以單一載體來表 現多於一個蛋白質的核酸載體。在多順反子載體内,一段 包含至少兩個順反子(c i s t r ο n i c )或基因的核苷酸序列,係 置於單一啟動子之控制下以合成mRN A,且於二順反子間嵌 入一個IRES ;產生包括第一個順反子、IRES及另一個下游 順反子序列的單一 mRNA轉錄產物,而非如同傳統方法產生 個別的mRNA轉錄產物。於轉譯作用期間,第一個順反子因 其最靠近5 ’帽,藉由核糖體掃描機制被轉譯,而第二個順反 子和其他較下游的順反子,則藉由内部的核糖體結合至 IRES而被轉譯。結果顯示,供多個順反子表現之mRNA可維 持恆定比率;這項技術的最主要優點為單一 mRNA可同時表 6 200408708 現兩個或多個蛋白質,可避免使用導致蛋白質間非協力表 現之個別的表現構築質體及多個啟動子。 本發明揭露之病毒IRES,能夠引導前述之帽獨立型轉 譯作用,並應用於包括哺乳動物、昆蟲和細菌細胞等廣泛 範圍之細胞類型中。這是相當有利的,因為桿狀病毒表現 系統被廣泛應用於大量生產重組蛋白,許多具生物活性的 蛋白質已使用桿狀病毒表現系統大量生產(相關綜論請參 閱以下:Miller,L.K·,(1988) Annu. Rev. Microbiol. 42: 177-199; Lucko w V. A. and M.D. Summers, (19 8 8)Species include humans (see Macajak, DG · and P. Sarnow, (1991) Nature 3 53:65 3-656; Sarnow, P? (1 989) PNAS 86: 5795-5799; Vagner, S. et al., ( 1 995) Mol. Cell. Biol. 15: 35-44) and yeast (see Zhou, W. et al., (2001;) PNAS 98: 1 53 1-1 536; Paz, I. et al. (1,999) J. Biol. Chem. 274: 2 174b 21 745). IRES was first identified in the virus's mRNA in 200408708, such as poliovirus (see Pe 11 etier, J. and N. Sonenberg · (1988) Nature 334: 320-325), encephalomyocarditis virus ( encephalomyocarditis virus [EMCV]) (see Jang, SK, and E. Wimmer, (1 990) Genes Dev. 4: 1560-1572), and human rhinovirus (HRV)) (see Borman, A. et al "(1993) J. Gen. Virol. 74: 1 775-1788). The Antp and Ubx alleles of Drosophila are also translated by their IRES in their long untranslated regions (see Ye X. et al (1997) Mol. Cell. Biol. 17: 1714-1721; Ho, S.-K. et al., (1992) Genes Dev. 6: 1643-1653. [Summary of the Invention] The present invention provides The internal ribosome binding site (i R ε s) obtained from the 5 'untranslated region of the enterovirus 71 (EV71 I) gene. Enterovirus belongs to the family Picoraviridae and enterovirus 71 is an intestine A member of the genus Virus (see Fields, bn, et ai., Eds., (3rd ed. 1 996) Fundamental Virology, Lippin co 11-Rave n. Philadelphia, PA, p. 477-522), enterovirus 7} type 1 {1 £ 8 activity was compared to IREs of encephalomyocarditis virus and hepatitis c virus. All of these viruses IRES can guide cap-independent translation of mRNA from different cell types, including human, worm, and bacterial cells. Therefore, viral iRKS is useful for nucleic acid vectors because it can guide two The expression of one or more irrelevant proteins. According to the traditional method, to express a recombinant protein in a cell, this protein 5 200408708 gene is placed under the control of a promoter, which provides the RN A polymerase binding required for mRN A synthesis. Position. When two or more recombinant proteins are to be expressed in a cell, each protein gene can be placed under the control of its own promoter in a single nucleic acid vector; in addition, each protein can also be controlled by a separate nucleic acid vector. which performed. Regardless of which method is used, each protein will produce an individual mRNA transcript, and translation of different mRNA transcripts will often lead to non-cooperative performance between different proteins. Putting multiple proteins under the control of the same promoter, the first gene closest to the 5 'cap will be most efficiently translated, presumably due to the cap-dependent mechanism, and the downstream gene, which The level of translation may be extremely low or not translated at all. However, when an IRES is embedded in a nucleic acid vector and is located between the gene closest to the 5 'cap and its downstream genes, there may be two or more proteins that can be efficiently translated in a single transcript. Polycistronic vectors are nucleic acid vectors in which more than one protein is represented by a single vector. In a polycistronic vector, a nucleotide sequence containing at least two cistrons or genes is placed under the control of a single promoter to synthesize mRN A and is between the dicistronics Embed an IRES; produce a single mRNA transcript that includes the first cistron, IRES, and another downstream cistron sequence, rather than individual mRNA transcripts as traditional methods do. During translation, the first cistron is translated by the ribosome scanning mechanism because it is closest to the 5 'cap, while the second cistron and other downstream cistrons are internal ribose The body is translated into IRES. The results show that the mRNA for multiple cistron expression can maintain a constant ratio; the main advantage of this technology is that a single mRNA can simultaneously show two or more proteins, which can avoid the use of proteins that cause non-cooperative expression between proteins. Individual expression constructs plastids and multiple promoters. The virus IRES disclosed in the present invention can guide the aforementioned cap-independent translation and can be applied to a wide range of cell types including mammalian, insect, and bacterial cells. This is quite advantageous, because the baculovirus expression system is widely used to mass-produce recombinant proteins, and many biologically active proteins have been mass-produced using the baculovirus expression system (for a comprehensive review, see the following: Miller, LK ,, ( (1988) Annu. Rev. Microbiol. 42: 177-199; Lucko w VA and MD Summers, (19 8 8)

Bio/T echnology 6:47-5 5; Luckow V. A ., ( 1 990) In:Bio / T echnology 6: 47-5 5; Luckow V. A., (1 990) In:

Recombinant DNA Technology and Applications. McGraw-Hill, New York, pp. 97- 1 52; O^eilly, D.R., et al., (1992) Baculovirus Nucleic Acid Vectors: A Laboratory Manual. W.H. Freedman,New York )。在桿狀病毒表現系統中,稈 狀病毒的多角體蛋白基因(polyhedrin gene)通常被置換為感 興趣蛋白之編碼基因,該多角體蛋白基因在被感染的昆蟲 體内會高度表現,但非為病毒繁殖所必需,因此是放置感 興趣基因的理想所在位置。這個桿狀病毒基因會被放置在 分別的載體内,且置於強的多角體蛋白啟動子或其他桿狀 病毒啟動子控制下,此載體會與桿狀病毒基因組共同轉染 到桿狀病毒的宿主細胞内,經由載體和桿狀病毒基因組間 發生同源重組,而產生攜帶感興趣蛋白的重組桿狀病毒’ 這些重組桿狀病毒將被用來感染宿主細胞,以大量生產我 們想要的蛋白質。 7 200408708 儘管桿狀病毒表現糸統有如此大的吸引力,然而,其 他病毒的IRES尚未被證實能在桿狀病毒的宿主細胞裡活 化。因此,雖然已證明腦心肌炎病毒的IRES分子於哺乳動 物系統内極有效率,然已發表文獻卻報導其並未能於桿狀 病毒的宿主細胞促進有效的内部轉譯作用,推測可能是因 為昆蟲細胞裡,並沒有能啟動哺乳動物細胞内部轉譯作用 所需的細胞轉譯起始因子所致(參閱F i n k e 1 s t e i η Y .,e t a 1., ( 1 999) J. Biotech. 75:3 3-44 )。 與上述發表相反的是,本發明人發現腦心肌炎病毒之 IRES分子在桿狀病毒的宿主細胞裡能夠作用,本發明人亦 發現其他能在桿狀病毒的宿主細胞裡作用的IR E S,也能在 包括哺乳動物細胞和細菌細胞等其他類型細胞裡作用◦因 此,本發明提供一套組,其係可供在細菌、昆蟲和或哺乳 動物細胞内表現重組蛋白,該套組包含··至少一個核酸載 體,其包含至少一個能在細菌細胞裡作用的IRES序列;至 少一個核酸載體,其包含至少一個能在昆蟲細胞裡作用的 IRES序列:以及至少一個核酸載體,其包含至少一個能在 哺乳動物細胞裡作用的IRES序列。 本發明亦提供腦心肌炎病毒、C型肝炎病毒及腸病毒7 1 型之IRES的同源序列、變異序列與片段,以及腦心肌炎病 毒、C型肝炎病毒及腸病毒7 1型之IRES的同源序列之變異序 列與同源序列之片段。本發明更進一步提供多順反子核酸 載體,其包含本發明揭露之具有IRES活性的病毒IRES或上 述的病毒IRES之同源序列、變異序列與片段,可從單一 200408708 mRNA轉錄產物製造多個重組蛋白。這些多順反子核酸載體 可能係包含於能在宿主細胞裡表現多個基因之生物性載體 内,這些核酸載體與生物性載體可用於患者之基因療法 中,和/或由此生產的重組蛋白可作為一有用的治療藥劑。 本發明亦提供桿狀病毒載體及可在桿狀病毒宿主細胞 内表現至少兩個基因的重組桿狀病毒,其包含本發明揭露 之具有IRES活性的病毒IRES,或上述的病毒IRES之同源序 列、變異序列與片段。能夠從單一桿狀病毒載體和重組桿 狀病毒表現兩個或多個基因,簡化了分離表現出感興趣基 因之溶菌斑(plaque)的過程;而且,同時表現感興趣基因與 報導基因,將允許在同一時間評估重組蛋白生產程度,與 偵測/分離生產重組蛋白的細胞。 本發明更提供一種方法,其係用於篩選出會擾亂病毒 IRES的帽獨立型轉譯作用之抗病毒化合物。此方法包含轉 染核酸載體進入細胞,其載體會引導重組蛋白之帽獨立型 轉譯作用,再將測試化合物接觸此轉染細胞,並與無測試 化合物的轉染細胞相比較,可偵測到重組蛋白量之變化。 【實施方式】 本發明提供一腸病毒71型(EV71 ) 5’未轉譯區之内部 核糖體結合位置(IR E S )之一分離的核苷酸序列或c D N A。 腸病毒71型的5,未轉譯區(5’UTR )約有700個核苷酸。以 取自腸病毒71型(病毒株TW/2086/98 )之5’未轉譯區為 例,其序列命名為SEQ ID : 1 ’參見第1圖。本發明之分離 200408708 的核γ酸序列或cDNa可藉由任何習知技術分離得到,舉例 來說:可藉由使用合適的探針複製;藉由聚合酶連鎖反應 (PCR );抑或藉由化學合成得到。如下文所示,腸病毒7 1 型基因的5’未轉譯區可表現IRES活性。其他病毒的IRES係 為此技術領域所熟知的,例如腦心肌炎病毒(E M C V )的 IRES 已揭露在 jarig,s.K.,and E. Wimmer, (1990) Genes Dev. 4:1560-1572 ; c 型肝炎病毒(hepatitis C virus ( HCV〕)的 IRES約有3 32或34i個核苷酸,視特定病毒株而定(參閱 Tsukiyama-Kohara K., et al., ( 1 992) J. Virol. 6 6:1476-148 3; Buratti E., et al.? (1 997) FEES Lett. 41 1:275-280 )。 本文所使用之「IRES活性(IRES activity )」係指核糖 體以IRES序列進行轉譯作用之效率。「帽依賴型轉譯作 用」係指啟動轉譯作用所必需的核糖體單元,會結合在 mRN A上的5,帽區域或靠近5,帽區域之轉譯機制,帽依賴型 轉譯作用藉由「核糖體掃描」機制繼續往下進行,核糖體 複合體自5’帽處起掃描mRNA,直到遭遇起始密碼子AUG為 止。「—獨立型轉譯作用」係指啟動轉譯作用所必需的核 糖體單元會結合在mRN A上的某個位置,並不需要5,帽區域 之轉譯機制。本文所使用之「IRES」是一段核苷酸序列, 其係能提供核糖體結合位置以進行帽獨立型轉譯作用。 本發明亦係有關於包括腦心肌炎病毒、C型肝炎病毒及 腸病毋7 1型的IR e S之同源序列(h 〇 m ο 1 〇 g )、變異序列 (variant )或片段(fragment )。 本文所使用之「同源」係指在不同生物體内的構造或 10 200408708 作用上展現出基本的相似性。腦心肌炎病毒、c变肝炎病毒 及腸病毒7 1型的IRES之同源序列可能個別具有與腦心肌炎 病毒、C型肝炎病毒及腸病毒7 1型的IRE S相似的一級或二級 結構,和/或有IRES活性。二級結構可經由電腦程式預測得 到,例如Zuker氏RNA摺疊程式(參閱Zuker,M·,(1 989) Methods Enzymol. 1 08 :262-2 8 8 )。本發明亦包括腦心肌炎 病毒、C型肝炎病毒及腸病毒7 1型之IRES的同源序列之變異 序列或同源序列之片段。 本文所使用之腦心肌炎病毒、C型肝炎病毒及腸病毒7 1 型之IRES的「變異序列」係指一段自然發生或化學合成產 生之核苷酸,其個別的序列大致上與腦心肌炎病毒、C沒肝 炎病毒及腸病毒71型之IRES相同,但因有一個或多個核甘 酸的刪除、置換或插入,而使得其中有段核苷酸序列不同 於腦心肌炎病毒、C型肝炎病毒及腸病毒7 1型的I R E S。腦心 肌炎病毒、C型肝炎病毒及腸病毒7 1型之IR E S的變異序列仍 保有IRES活性,或者相較於腦心肌炎病毒、C型肝炎病毒及 腸病毒71型之IRES有更強的IRES活性。 本文所使用之腦心肌炎病毒、C型肝炎病毒及腸病毒7 1 型之IRES的「片段」,係指一部分的IRES核苷酸序列,其 包含數目少於完整IRES序列的核苷酸序列,且保有與完整 IRES核苷酸序列本質上相等或是更強的IRES活性。 序列「相似性(similarity )」及/或「一致性 (identity )」係指兩段多核苷酸或多胜肽間相關的程度。 一般來說,「一致性」表示兩段或多段核苷酸序列或是兩 11 200408708 段或多段胺基酸序列係精確相符,其中被比較的是相同的 核甘酸或胺基酸。而「相似性」也表示兩段或多段核苷酸 序列,或是兩段或多段胺基酸序列間係精確相符,其中被 比較的是相同的核芽酸或胺基酸,或是擁有相似化學及/或 物理性質之核苷酸或胺基酸。一致性或相似性之百分比率 可以如下程式來決定例如’使用G A P電腦程式第6版來比較 序列間資訊(參閱 Devereux et al. A^c/. dc/心 7?&ν· 12:387, 1 984,可在 University of Wisconsin Genetics Computer Group〔 UWGCG〕取得);GAP電腦程式係應用Needleman 和 Wunsch 的定位方法(參閱 J. 5/0/. 48:443, 1 970 ),再經由 Smith和 Waterman修改而得(參閱/Uv. AppL Math 2:482, 1 98 1 )。計算兩序列間的一致性與相似性 之其他程式已為習知技術。 為了付合發明目的’腸病毒7 1型、C型肝炎病毒、腦〜 肌炎病毒的IRES之同源序列、變異序列或片段分別與腸病 毒7 1型、C型肝炎病毒、腦心肌炎病毒的ire S比對,須表現 至少20%的核苷酸一致性,至少3 〇%的核苷酸一致性,或爻 少4 0 °/〇的核苷酸一致性;雖然本發明無疑地包含與腸病毒7 1 型、C型肝炎病毒、腦心肌炎病毒的丨R e s,表現至少5 〇 °〆。、 60%、70%、8 0%及9 0%的核甘酸一致性之序列。不權如 此,腸病毒7 1型、C型肝炎病毒、腦心肌炎病毒的IR E s之Θ 源序列、變異序列或片段分別與腸病毒7 1型、C型肝炎濟 毒、腦心肌炎病毒的IRES,表現核苷酸序列相似性範_ 自至少50%、60%、70%、80%到至少90%的核苷酸序列柞倬 12 200408708 性。同樣地,腸病毒7 1型、c型肝炎病毒、腦心肌炎病毒 I:ES的同源序列之變異序列或同源序列之片κ分別與腸病 毒71型、C型肝炎病毒、腦心肌炎病毒IREs的同源序列相 比,至少20%之核苷酸一致性,並逐次增加丨〇%之一致性, 直到最高到至少90%之核苷酸一致性為止;或是與腸病毒7 1 型、C型肝炎病毒、腦心肌炎病毒iRes的同源序列相比,至 少50%之核苷酸相似性,並逐次增加10%之相似性,直到最 高到至少90。/。之核苷酸相似性為止。自然發生的同源序列、 變異序列和片段均包含於本發明内容。 腦心肌炎病毒、C型肝炎病毒及腸病毒7 1型之I r £ s的同 源序列、變異序列或片段可由突變腦心肌炎病毒、C型肝炎 病毒及腸病毒71型之IRES核γ酸序列獲得。以下技術為該 領域例行工作:藉由合成包含突變基因之募核苷酸將突變 引進於特定位置,其兩側接有限制酶切割處,以便能夠接 合該基因片段到原來的序列上,待接合後,產生的再建構 序列即包含想要的插入、置換或刪除之核葺酸;參閱 Sambrook等人所著的分子複製—實驗室操作手冊第一至三冊 (Molecular Cloning ·· A Laboratory Manual (第二版, 1 9 8 9 )),冷泉港出版社,紐約冷泉港。 此外,寡核苷酸指引特定位置之突變(oligonucleotide -directed site-specific mutagenesis )程序,可運用來提供一 更改的核苷酸序列,其可藉由置換、刪除或插入核苷酸等 方法更改成預定的序列。以上提及製造更改所舉例的方法 已屬習知技術(參閱 Walder R.Y. et al·,( 1 986) Gew 13 200408708 42:1 3 3 - 1 3 9; Bauer C.E., et al., ( 1 985) Gene 37:73 -81 ; Craik C.S., (Jan· 1 985) BioTechniques, 12-19 ; Smith et al., (1981) Genetic Engineering: Principles and Methods, Plenum Press ; Kunkel T.A., ( 1 9 8 5 ) Proc. Nail. A cad. Sci. USA 82:488-492 ; Kunkel T.A., et al., ( 1 987) Methods in /7 之少 mo/. 154:367-382 ;美國第 4,518,584 號及第 4,737,462 號 專利;以上全部納為參考之用)。亦可使用其他習知方 法。 IRES活性可由其與mRNA之5,巾冒區域無關之獨立轉譯 mRNA的能力來決定。數篇報告支持IRES活性是因細胞類型 而有所不同之假說(參閱〇。11^以八.,61&1.,(2000);\^/· Cell. Biol. 20:275 5-2759 ; Stoneley M., et al., (1998) Oncogene 16:423-428 ; Pozner A.? et al., (2000) Mol. Cell· 5h/· 20:2297-23 07 ),這些報告提出IRES活性係因不同細 胞内與特定蛋白因子反應而有所不同。 本發明之腦心肌炎病毒、C型肝炎病毒及腸病毒7 1型的 IRES或其同源序列、變異序列或片段能夠引導包括哺乳動 物細胞、細菌及昆蟲細胞專不同細胞類型之帽獨立轉譯作 用。本發明之腦心肌炎病毒、C型肝炎病毒及腸病毒7 1型的 IRES或其同源序列、變異序列或片段於其他如酵母菌和植 物細胞等真核細胞,亦有IRES活性。 本發明更包括了包含腦心肌炎病毒、C型肝炎病毒及腸 病毒71型之IRES,或其同源序列、變異序列或片段之DNA 構築體,例如質體和重組表現載體。於重組表現載體中, 14 200408708 腦心肌炎病毒、C型肝炎病毒及腸病毒7 1型的IR E S,或其同 源序列、變異序列或片段可引導至少一個重組蛋白的表 現。傳統的重組核酸載體之建構與表現係為習知技術,可 參閱Sambro ok等人所著的分子複製-實驗室操作手冊第一至 三冊(Molecular Cloning : A Laboratory Manual {第二版, 1 9 8 9 )),冷泉港出版社,紐約冷泉港。這樣的核酸載體 可被包含於諸如病毒和細菌之類的生物性載體内,較佳是 在非致病的或毒性減弱的微生物體内,包括毒性減弱的病 毒、細菌、寄生蟲及類病毒顆粒。 在本發明内容中,腦心肌炎病毒、C型肝炎病毒及腸病 毒7 1型的IRES,或其同源序列、變異序列或片段之核苷酸 序列在核酸載體中被置於感興趣基因或順反子的上游,藉 以引導表現產物之帽獨立轉譯作用。腦心肌炎病毒、C型肝 炎病毒及腸病毒71型之IRES的同源序列之變異序列或同源 序列之片段亦可被使用。此核酸載體可以是單順反芊形式 (monocistronic,於供mRNA生成之啟動子控制下,表現單 一感興趣的基因)’或多順反子形式(multicistronic,於 供mRN A生成之同一個啟動子控制下,表現至少兩個感興趣 的基因)。這樣的核酸載體可包含數個串聯排列(in tandem )的「IRES-順反子」分子,其中至少一個IRES位置 包含腦心肌炎病毒、C型肝炎病毒及腸病毒71型之IRES或其 同源序列、變異序列或片段,抑或是腦心肌炎病毒、C型肝 炎病毒及腸病毒7 1型之IR E S的同源序列之變異序列或同源 序列之片段的核苷酸序列。 15 200408708 本發明核酸載體包含一段與啟動子相連且與其作用的 核贫酸序列,其包含一個與至少一個順反子相連且與其作 用的腦心肌炎病毒、C型肝炎病毒及腸病毒71型之IRES,或 其同源序列、變異序列或片段,或是腦心肌炎病毒、c型肝 炎病毒及腸病毒7 1型之IRES的同源序列之變異序列或同源 序列之片段的核苷酸序列。啟動子是DN A序列合成mRN A所 必需的,且通常真核生物的mRN A有5 ’帽。本文使用之「順 反子(cistron )」,是指感興趣的蛋白、多胜肽或胜肽之 多核V酸序列或基因。「相連且與其作用(operably linked )」是指所述元件係處於一種可允許它們以預定方式 作用的空間關係下。舉例來說,一順反子與一啟動子「相 連且與其作用」,是指二者間接合方式使得須在啟動子相 容的環境裡才能達成順反子的轉譯。同樣地,一段I R E S的 核苷酸序列與一順反子相連且與其作用,是指二者間接合 方式使得須在IRES相容的環境裡,才能達成順反子的轉 譯。此核酸載體玎再包含一個或多個串聯排列的附加的 「IRES-順反子」分子 。 順反子可以是編碼為受體、離子通道、蛋白次單位、 酵素、抗體、蛋白配位子、授與細胞具抗生素抗藥性之蛋 白、生長因子、激素、或其他任何感興趣的蛋白、多胜肽 或胜肽之基因。於本發明的一項實施例中,本發明之核酸 載體内至少一個順反子包含一治療基因,其係能夠防止或 延緩先天或後天病病的建立及/或發展,像是纖維囊腫 (cystic fibrosis ) 八型或 B型血友病(hemophilia A or 16 200408708 B)、杜顯氏或貝克氏肌肉病變(Duchenne or Becker type myopathy )、癌症、AIDS及其他因致病微生物造成的細菌 或感染疾病。這些治療劑的例子包括,但不偈限於以下: 細胞激素(cytokine);介白素(interleukin);干擾素 (interferon );參與凝血作用的因子或輔助因子,例如第 八凝血因子(factor VIII)、第九凝血因子(factor IX)、 溫韋伯氏因子(von Willebrand factor)、第三型抗凝血酵 素(antithrombin III) 、C蛋白、凝血酶(thrombin)及吸 血4至抗凝企酶(hirudin );酵素抑制劑,如病毒蛋白酶抑 制劑;離子通道的活化劑或抑制劑;能夠防止癌症的開始 或演變之蛋白,例如腫瘤抑制基因的表現產物(p 5 3基因, Rb基因等)、毒物、抗體或免疫毒物(immu notoxin);或 者是能夠抑制病毒感染或繁殖的蛋白,舉例來說,問題病 毒之抗原決定基或一更改過而能夠與原本的病毒蛋白競爭 的變種蛋白。 於本發明之另一實施例中,本發明之核酸載體内至少 一個順反子包含一報導基因,例如一基因,其編碼為卜半乳 糖 r 酶(β-galactosidase ),螢火蟲螢光素(firefl luciferase) ’ 綠螢光蛋白(green fluorescent protein),未 姑珊蝴的 DsRed紅榮光蛋白(recj fluorescent protein fr〇m Discosoma sp. C DsRed ]),或分泌型鹼性磷酸水解酶 (secreted alkaline phosphatase ( SEAP ])。亦可使用其他 習知的報導基因。報導基因可加速偵測到自核酸載體中表 現功能性蛋白的細胞。報導蛋白的偵測可藉由提供一酵素 17 200408708 反應所需的受質(substrate ),此反應會產生可容易地用肉 眼、冷光、螢光或顯微鏡觀察到的產物。其他報導基因的 產物,如綠螢光蛋白,可直接在適當的螢光或發光環境下 以顯微鏡觀察到。 本發明使用的啟動子包括病毒啟動子和細胞啟動子, 且均為習知技術。病毒啟動子包括巨細胞病毒啟動子 (cytomegalovirus〔 CMV〕promoter)、桿狀病毒多角體蛋 白啟動子(baculovirus polyhedrin promoter )、腺病毒第 2 型的主要晚期啟動子,以及SV40病毒啟動子。細胞啟動子 的例子包括果蠅的肌動蛋白5C遠端啟動子(actin 5C distal promoter )與老鼠的鎘結合物質啟動子(metallothionein 1 promoter )。其他可使用在本發明之核酸載體的啟動子可由 熟知此技術領域之人士決定。 同時包含在核酸載體内的是位於最後一個感興趣的順 反子下游之一段聚腺苷訊號(polyadenylation signal)。聚 腺茌訊號包括早期或晚期的聚腺苷訊號,其取自SV40病 毒、腺病毒第5型E 1 B株,以及人類生長激素基因。此核酸 載體亦可包括增強子(e n h a n c e r )序列,例如S V 4 0病毒和巨 細胞病毒的增強子。 為了要辨別已獲得核酸載體的細胞,通常會將選擇性 標記(selectable marker )與感興趣的基因一起引進到細胞 裡。選擇性標記包括授與細胞抗藥性的基因,例如抗安比 西林(ampicillin)、高黴素(hygromycin)和曱氨σ票日令 (methotrexate )的基因。關於選擇性標記的整理,參閱 18 200408708Recombinant DNA Technology and Applications. McGraw-Hill, New York, pp. 97- 1 52; Oeilly, D.R., et al., (1992) Baculovirus Nucleic Acid Vectors: A Laboratory Manual. W.H. Freedman, New York). In the baculovirus expression system, the polyhedrin gene of a baculovirus is usually replaced with a gene encoding a protein of interest. The polyhedrin gene will be highly expressed in infected insects, but it is not It is necessary for the virus to reproduce, so it is an ideal location for the gene of interest. This baculovirus gene will be placed in a separate vector and under the control of a strong polyhedrin promoter or other baculovirus promoter. This vector will be co-transfected with the baculovirus genome into the baculovirus In the host cell, homologous recombination occurs between the vector and the baculovirus genome to produce recombinant baculoviruses that carry the protein of interest. These recombinant baculoviruses will be used to infect host cells to mass produce the protein we want . 7 200408708 Despite the attractiveness of the baculovirus expression system, the IRES of other viruses have not been shown to activate in baculovirus host cells. Therefore, although the IRES molecule of encephalomyocarditis virus has been shown to be highly effective in mammalian systems, published literature has reported that it has failed to promote effective internal translation in baculovirus host cells, presumably because of insect cells There are no cell translation initiation factors required to initiate internal translation in mammalian cells (see Finke 1 stei η Y., Eta 1., (1 999) J. Biotech. 75: 3 3-44 ). Contrary to the above publication, the inventors found that the IRES molecule of encephalomyocarditis virus can function in baculovirus host cells, and the inventors also found that other IR ES that can function in baculovirus host cells can also Acts on other types of cells including mammalian cells and bacterial cells. Therefore, the present invention provides a set that can express recombinant proteins in bacterial, insect and or mammalian cells. The set contains at least one A nucleic acid vector comprising at least one IRES sequence capable of acting in a bacterial cell; at least one nucleic acid vector comprising at least one IRES sequence capable of acting in an insect cell; and at least one nucleic acid vector comprising at least one capable of acting in a mammal The IRES sequence acting in the cell. The invention also provides homology sequences, variant sequences and fragments of IRES of encephalomyocarditis virus, hepatitis C virus and enterovirus type 71, and homology of IRES of encephalomyocarditis virus, hepatitis C virus and enterovirus type 71 Variant sequences and fragments of homologous sequences. The present invention further provides a polycistronic nucleic acid vector, which contains the virus IRES disclosed in the present invention or the homologous sequences, variant sequences and fragments of the virus IRES described above, and can produce multiple recombinations from a single 200408708 mRNA transcript. protein. These polycistronic nucleic acid vectors may be contained in biological vectors capable of expressing multiple genes in host cells. These nucleic acid vectors and biological vectors can be used in gene therapy of patients, and / or recombinant proteins produced thereby. Can be used as a useful therapeutic agent. The present invention also provides a baculovirus vector and a recombinant baculovirus capable of expressing at least two genes in a baculovirus host cell, comprising the virus IRES with IRES activity disclosed in the present invention, or the homologous sequence of the aforementioned virus IRES , Variant sequences and fragments. The ability to express two or more genes from a single baculovirus vector and a recombinant baculovirus simplifies the process of isolating plaques that show genes of interest; moreover, the simultaneous expression of genes of interest and reporter genes will allow Assess the extent of recombinant protein production at the same time as detect / isolate cells producing recombinant protein. The present invention further provides a method for screening antiviral compounds that can disrupt cap-independent translation of viral IRES. This method involves transfecting a nucleic acid vector into a cell, which vector will guide the cap-independent translation of the recombinant protein, and then contacting the test compound with the transfected cell and comparing the transfected cell without the test compound to detect recombination. Changes in protein content. [Embodiment] The present invention provides a nucleotide sequence or c D N A isolated from one of the internal ribosome binding sites (IR E S) of an enterovirus type 71 (EV71) 5 'untranslated region. Enterovirus 71 type 5, untranslated region (5'UTR) has approximately 700 nucleotides. Taking the 5 'untranslated region of enterovirus 71 type (virus strain TW / 2086/98) as an example, the sequence is named SEQ ID: 1'. See FIG. The nucleotide gamma acid sequence or cDNa of the isolation 200408708 of the present invention can be isolated by any conventional technique, for example: it can be replicated by using appropriate probes; by polymerase chain reaction (PCR); or by chemistry Synthesized. As shown below, the 5 'untranslated region of the enterovirus type 71 gene can exhibit IRES activity. IRES of other viruses are well known in this technical field, for example, IRES of encephalomyocarditis virus (EMCV) has been disclosed in jarig, sK, and E. Wimmer, (1990) Genes Dev. 4: 1560-1572; hepatitis C virus (Hepatitis C virus (HCV)) has an IRES of about 3 32 or 34i nucleotides, depending on the specific virus strain (see Tsukiyama-Kohara K., et al., (1 992) J. Virol. 6 6: 1476-148 3; Buratti E., et al.? (1 997) FEES Lett. 41 1: 275-280). As used herein, "IRES activity" refers to the ribosome's translation function using the IRES sequence "Cap-dependent translation effect" refers to the ribosome unit necessary for initiating the translation effect, which will be combined with the 5, or cap region near mRN A, the translation mechanism of the cap region. The "ribosomal scanning" mechanism continues, and the ribosome complex scans the mRNA from the 5 'cap until it encounters the start codon AUG. "--Independent translation" refers to the ribosome necessary to initiate translation The unit will be combined at a certain position on the mRN A and does not require 5, cap Translation mechanism of domains. "IRES" as used herein is a nucleotide sequence that can provide ribosome binding sites for cap-independent translation. The present invention also relates to including encephalomyocarditis virus and hepatitis C virus. And intestinal diseases, type 1 IR e S homology sequence (h 0 m ο 1 0 g), variant sequence (variant) or fragment. "Homologous" as used herein refers to different organisms The internal structure or 10 200408708 showed basic similarities in action. Encephalomyocarditis virus, c-hepatitis virus and enterovirus type 7 IRES homologous sequences may individually have encephalomyocarditis virus, hepatitis C virus and enterovirus 7 Type 1 IRES has similar primary or secondary structures and / or IRES activity. Secondary structures can be predicted by computer programs, such as the Zuker's RNA folding program (see Zuker, M., (1 989) Methods Enzymol 08: 262-2 8 8). The present invention also includes variant sequences of homologous sequences of IRES of encephalomyocarditis virus, hepatitis C virus, and enterovirus type 71 or fragments of homologous sequences. Brain used herein Myocarditis The "variant sequence" of IRES of viruses, hepatitis C virus, and enterovirus type 7 1 refers to a naturally occurring or chemically synthesized nucleotide, and the individual sequences are roughly the same as those of encephalomyocarditis virus, hepatitis C virus, and intestine. Virus 71 has the same IRES, but because of deletion, substitution or insertion of one or more nucleotides, there is a nucleotide sequence different from that of encephalomyocarditis virus, hepatitis C virus and enterovirus 71 type IRES. . Variant sequences of IR ES of encephalomyocarditis virus, hepatitis C virus, and enterovirus 71 type 1 still retain IRES activity, or have stronger IRES activity than encephalomyocarditis virus, hepatitis C virus, and enterovirus 71 type IRES . As used herein, a "fragment" of an IRES of encephalomyocarditis virus, hepatitis C virus, and enterovirus type 7 1 refers to a portion of an IRES nucleotide sequence that contains fewer nucleotide sequences than the entire IRES sequence, and IRES activity that is substantially equal to or greater than the entire IRES nucleotide sequence is maintained. The sequence "similarity" and / or "identity" refers to the degree of correlation between two polynucleotides or peptides. Generally speaking, "identity" means that two or more nucleotide sequences or two or more 200408708 paragraphs or multiple amino acid sequences exactly match, in which the same nucleotide or amino acid is compared. "Similarity" also means that two or more nucleotide sequences or two or more amino acid sequences exactly match, in which the same nucleotides or amino acids are compared, or they have similarities. Chemical and / or physical nucleotides or amino acids. The percentage ratio of identity or similarity can be determined by a program such as' using GAP computer program version 6 to compare information between sequences (see Devereux et al. A ^ c /. Dc / Heart 7? &Amp; v · 12: 387 , 1 984, available at the University of Wisconsin Genetics Computer Group [UWGCG]); the GAP computer program uses the positioning method of Needleman and Wunsch (see J. 5/0 /. 48: 443, 1 970), and then through Smith and Modified by Waterman (see / Uv. AppL Math 2: 482, 1 98 1). Other programs for calculating the consistency and similarity between two sequences are known techniques. For the purpose of the invention, the homologous sequence, variant sequence or fragment of IRES of enterovirus type 71, hepatitis C virus, and brain to myositis virus is different from that of enterovirus type 71, hepatitis C virus, and encephalomyocarditis virus, respectively. The ire S alignment must show at least 20% nucleotide identity, at least 30% nucleotide identity, or at least 40 ° / 〇 nucleotide identity; although the present invention undoubtedly includes Res of enterovirus type 71, hepatitis C virus, and encephalomyocarditis virus showed at least 50 °. , 60%, 70%, 80%, and 90% of the nucleotide sequence identity. No, the Θ source sequence, variant sequence or fragment of the IR E s of enterovirus 71, hepatitis C virus, and encephalomyocarditis virus are respectively the same as those of enterovirus 71, hepatitis C relief, and encephalomyocarditis virus. , Showing the nucleotide sequence similarity range_ from at least 50%, 60%, 70%, 80% to at least 90% of the nucleotide sequence 柞 倬 12 200408708. Similarly, enterovirus type 71, hepatitis c virus, and encephalomyocarditis virus I: ES variant sequence or homologous sequence of κ and enterovirus 71, hepatitis C virus, and encephalomyocarditis virus IREs, respectively Compared with the homologous sequence, the nucleotide identity is at least 20%, and the identity is increased by 0% successively, until the nucleotide identity is at least 90%; Compared with the homologous sequences of hepatitis C virus and encephalomyocarditis virus iRes, the nucleotide similarity is at least 50%, and the similarity is increased by 10% successively, up to at least 90. /. Nucleotide similarity so far. Naturally occurring homologous sequences, variant sequences and fragments are included in the present invention. Homologous myocarditis virus, hepatitis C virus and enterovirus 71 type 1 r £ s homologous sequences, variant sequences or fragments can be obtained from mutant encephalomyocarditis virus, hepatitis C virus and enterovirus 71 IRES nuclear gamma sequences . The following techniques are routine work in this field: mutations are introduced into specific positions by synthesizing nucleotides containing mutant genes, which are flanked by restriction enzyme cuts in order to be able to join the gene fragment to the original sequence. After conjugation, the resulting reconstructed sequence contains the nucleotides of the desired insertion, substitution, or deletion; see Molecular Cloning-Laboratory Manuals, Volumes 1 to 3 by Sambrook et al. (Molecular Cloning · A Laboratory Manual (Second Edition, 1989)), Cold Spring Harbor Press, Cold Spring Harbor, New York. In addition, oligonucleotide-directed site-specific mutagenesis (oligonucleotide-directed site-specific mutagenesis) programs can be used to provide a modified nucleotide sequence that can be changed to Predetermined sequence. The methods mentioned above as examples of manufacturing changes are conventional techniques (see Walder RY et al., (1 986) Gew 13 200408708 42: 1 3 3-1 3 9; Bauer CE, et al., (1 985) Gene 37:73 -81; Craik CS, (Jan · 1 985) BioTechniques, 12-19; Smith et al., (1981) Genetic Engineering: Principles and Methods, Plenum Press; Kunkel TA, (19 8 5) Proc Nail. A cad. Sci. USA 82: 488-492; Kunkel TA, et al., (1 987) Methods in / 7 mo /. 154: 367-382; US Patent Nos. 4,518,584 and 4,737,462 ; All of the above are incorporated for reference). Other known methods can also be used. IRES activity can be determined by its ability to independently translate mRNA, which is not related to the mRNA and the vesicular region. Several reports support the hypothesis that IRES activity is different depending on the cell type (see 0.11 to 8., 61 & 1., (2000); \ ^ / · Cell. Biol. 20: 275 5-2759; Stoneley M., et al., (1998) Oncogene 16: 423-428; Pozner A.? Et al., (2000) Mol. Cell · 5h / · 20: 2297-23 07), these reports propose IRES active lines It is different due to the reaction with specific protein factors in different cells. The IRES of the encephalomyocarditis virus, hepatitis C virus and enterovirus type 71 of the present invention or a homologous sequence, variant sequence or fragment thereof can guide the independent translation of caps of different cell types including mammalian cells, bacteria and insect cells. The IRES of the encephalomyocarditis virus, hepatitis C virus, and enterovirus type 71 of the present invention or a homologous sequence, variant sequence or fragment thereof also has IRES activity in other eukaryotic cells such as yeasts and plant cells. The invention further includes DNA constructs, such as plastids and recombinant expression vectors, comprising IRES of encephalomyocarditis virus, hepatitis C virus and enterovirus 71, or homologous sequences, variant sequences or fragments thereof. In a recombinant expression vector, 14 200408708 IRES of encephalomyocarditis virus, hepatitis C virus and enterovirus type 71, or a homologous sequence, variant sequence or fragment thereof, can guide the expression of at least one recombinant protein. The construction and expression of traditional recombinant nucleic acid vectors are conventional techniques. For details, please refer to Molecular Cloning: A Laboratory Manual (Second Edition, 1 9) by Sambro Ok et al. 8 9)), Cold Spring Harbor Press, Cold Spring Harbor, New York. Such nucleic acid vectors can be contained in biological vectors such as viruses and bacteria, preferably in non-pathogenic or less toxic microorganisms, including attenuated viruses, bacteria, parasites and virus-like particles . In the context of the present invention, the IRES of encephalomyocarditis virus, hepatitis C virus, and enterovirus type 71, or the nucleotide sequence of a homologous sequence, variant sequence or fragment thereof, is placed in a nucleic acid vector in a gene of interest or cis The upstream of the aposton is used to guide the independent translation of the performance product. Variant sequences of homologous sequences of IRES of encephalomyocarditis virus, hepatitis C virus and enterovirus 71 or fragments of homologous sequences can also be used. This nucleic acid vector can be in the form of a monocistronic (monocistronic, under the control of a promoter for mRNA production, showing a single gene of interest) or a multicistronic form (multicistronic, for the same promoter for mRN A generation) Under control, showing at least two genes of interest). Such a nucleic acid vector may include several "IRES-cistronic" molecules arranged in tandem, and at least one of the IRES positions contains the IRES of the encephalomyocarditis virus, hepatitis C virus, and enterovirus type 71 or a homologous sequence thereof. , A variant sequence or fragment, or a nucleotide sequence of a variant sequence or a fragment of a homologous sequence of a homologous sequence of IR ES of encephalomyocarditis virus, hepatitis C virus and enterovirus type 71. 15 200408708 The nucleic acid vector of the present invention comprises a nucleotide depleted acid sequence linked to and acting on a promoter, which comprises an encephalomyocarditis virus, hepatitis C virus and enterovirus 71 type IRES linked to at least one cistron Or a homologous sequence, a variant sequence or a fragment thereof, or a nucleotide sequence of a variant sequence or a fragment of a homologous sequence of an IRES homologous sequence of encephalomyocarditis virus, hepatitis c virus, and enterovirus type 71 type I. The promoter is necessary for the synthesis of mRN A by the DNA sequence, and usually eukaryotic mRN A has a 5 'cap. As used herein, "cistron" refers to the polynucleic acid sequence or gene of the protein, peptide or peptide of interest. "Operably linked" means that the elements are in a spatial relationship that allows them to function in a predetermined manner. For example, a cistron and a promoter are “connected to and function with” a promoter, meaning that the junction between the two is such that translation of the cistron must be achieved in a promoter-compatible environment. Similarly, a nucleotide sequence of IR ES is connected to and interacts with a cistron, which means that the junction between the two must be performed in an IRES-compatible environment in order to achieve cistronic translation. This nucleic acid vector also contains one or more additional "IRES-cistronic" molecules arranged in tandem. A cistron can be encoded as a receptor, an ion channel, a protein subunit, an enzyme, an antibody, a protein ligand, a protein that imparts antibiotic resistance to a cell, a growth factor, a hormone, or any other protein of interest. Peptide or peptide gene. In one embodiment of the present invention, at least one of the cistrons in the nucleic acid vector of the present invention contains a therapeutic gene that can prevent or delay the establishment and / or development of congenital or acquired diseases, such as cystic fibrous cysts (cystic fibrosis) Hemophilia A or 16 200408708 B, Duchenne or Becker type myopathy, cancer, AIDS and other bacterial or infectious diseases caused by pathogenic microorganisms . Examples of these therapeutic agents include, but are not limited to the following: cytokine; interleukin; interferon; factors or cofactors involved in coagulation, such as factor VIII Factor nine, factor IX, von Willebrand factor, antithrombin III, protein C, thrombin, and blood-sucking 4 to anticoagulant enzymes (hirudin ); Enzyme inhibitors, such as viral protease inhibitors; ion channel activators or inhibitors; proteins that prevent the onset or evolution of cancer, such as the expression products of tumor suppressor genes (p 5 3 genes, Rb genes, etc.), poisons , Antibodies, or immunotoxins (immu notoxin); or proteins capable of inhibiting viral infection or reproduction, for example, the epitope of a problem virus or a variant protein that has been altered to compete with the original viral protein. In another embodiment of the present invention, at least one cistron in the nucleic acid vector of the present invention includes a reporter gene, such as a gene, which encodes a galactose r enzyme (β-galactosidase), firefly luciferin (firefl luciferase) 'green fluorescent protein, recj fluorescent protein fromm Discosoma sp. C DsRed], or secreted alkaline phosphatase ( SEAP]). Other known reporter genes can also be used. Reporter genes can accelerate the detection of cells expressing functional proteins from nucleic acid vectors. Detection of reporter proteins can be achieved by providing an enzyme 17 200408708 response Substrate, this reaction will produce products that can be easily observed with the naked eye, cold light, fluorescence or microscope. The products of other reported genes, such as green fluorescent protein, can be directly used in a suitable fluorescent or luminescent environment. Observed by a microscope. The promoters used in the present invention include viral promoters and cellular promoters, and are all known techniques. Viral promoters include Cytomegalovirus (CMV) promoter, baculovirus polyhedrin promoter, adenovirus type 2 major late promoter, and SV40 virus promoter. Examples of cell promoters include Drosophila actin 5C distal promoter and mouse cadmium binding substance promoter (metallothionein 1 promoter). Other promoters that can be used in the nucleic acid vector of the present invention can be used by those skilled in the art Also included in the nucleic acid vector is a polyadenylation signal downstream of the last cistron of interest. The polyadenylation signal includes early or late polyadenylation signals, which are taken from the SV40 virus , Adenovirus type 5 E 1 B strain, and human growth hormone gene. This nucleic acid vector may also include enhancer sequences, such as enhancers of SV 40 virus and cytomegalovirus. To identify the nucleic acid vectors that have been obtained Cells, usually the selectable marker (selectable marker) and the gene of interest Was introduced into cells. Selectable markers include genes confer drug resistance genes such as anti-cell Appi resistant (ampicillin), spectin (to hygromycin and) and Yue ammonia σ day old ticket (methotrexate) a. For the organization of selectable markers, see 18 200408708

Thilly 所著之 Mammalian Cell Technology· Publishers,Stoneham, Mass。如何挑選選擇性標 術。 選擇性標記可置於另一個質體上與核酸載 間引進細胞内,或它們可以位於同一個核酸載 位於同一個核酸載體内,選擇性標記與感興趣 受不同的啟動子或IRES控制,或者受同一個啟 控制。 假使想要讓感興趣的基因產物分泌到細胞 段分泌訊號序列,以正確的讀取架構置於核酸 趣的基因之鄰近上游。有許多分泌訊號序列為 如人類血清白蛋白 (human serum albumin)、 子、□因子訊號序列,以及免疫球蛋白鏈的訊號 僅指出其中一些。此外,分泌訊號序列可根據 則合成,例如由von Heinje建立的規則(\ Biochem. ( 1 983) 13: 1 7-2 1; J. Mol. Biol. ( 1 9 8 5 ) Nuc. Acids Res. (1 986) 14:4683-4690 )。 本發明亦包含藉由帽獨立型作用表現至少 的順反子之方法,其包含引進一核酸載體到細 體包含一段與啟動子相連且與其作用的核苷酸 含一個與至少一個順反子相連且與其作用的 毒、C型肝炎病毒及腸病毒71型之IRES,或其同 異序列或片段,或是腦心肌炎病毒、C型肝炎病 7 1型之IRES的同源序列之變異序列或同源序列 B U11 e r w 〇 r t h :記為習知技 體在同一時 體内。假使 基因可分別 動子或IRES 外,可將一 載體内感興 習知的,例 人類生長因 序列’在此 已建立的規 ^閱£7/厂 J · 184:99-105; 一個感興趣 胞裡,此載 序列,其包 腦心肌炎病 源序列、變 毒及腸病毒 之片段的核 19 200408708 ϊ酸序列。此核酸載體可再包含一個或多個串聯排列的附 加「IRES-順反子」分子,由帽獨立型作用表現至少兩個順 反子。 核酸載體可引進培養的宿主細胞裡,如藉由磷酸鈣媒 介轉染法(calcium phosphate-mediated transfection,參閱 Wigler et al.5 ( 1 97 8 ) Cell 14:725; Corsaro and Pearson (1981) Somatic Cell Genetics 7:603; Graham and Van der Eb. (1 97 3) FzWog;; 52:456 )。其他引進核酸載體到宿主細胞的 技術’例如電牙孔法(e 1 e c t r ο ρ 〇 r a t i ο η,參閱 N e u m a η n e t a 1., (1982) J· 1:84 1 -845 ),亦可被使用。 被轉染細胞將容許生長一段時間以表現感興趣的基 因’可施加藥物挑選出表現選擇性標記的細胞以使之繼續 成長’含有本發明核酸載體的宿主細胞將在適當的生長培 養基裡生長。本文所使用之「適當的生長培養基 (appropriate growth medium )」,表示含有細胞生長所需 之營養物質的培養基。細胞生長所需之營養物質包括碳 源、氮源、必須胺基酸、維他命、礦物質及生長因子。生 長培養基包括筛選自核酸載體表現出選擇性標記細胞的藥 物。 做殖入宿主基因組裡 當挑選到墩興趣 …— 一〜、-一 | 一 、卿 ncj 時’即可建立穩定的細胞株。诵參 通㊉’穩定的細胞株係建立 於歷經三天到三個禮拜期間的藥物篩選過程之後。 如上所述,本發明提供包括么+ 已枯細囷、昆蟲及/或哺乳動物 細胞等廣泛細胞類型均有活性的tp cc产 1 1RES序列。因此,本發明 20 200408708 係關於一套組,其係可供在細菌、昆蟲及/或哺乳動物細胞 表現重組蛋白,該套組包含:至少一個核酸載體,其包含 至少一個能在細菌細胞作用的IRES序列;至少一個核酸載 體,其包含至少一個能在昆蟲細胞作用的IRES序列;以及 至少一個核酸載體,其包含至少一個能在哺乳動物細胞作 用的IRES序列。在本發明的實施例中,此套工具包含:至 少一個核酸載體,其包含至少一個腸病毒71型的IRES序 列;至少一個核酸載體,其包含至少一個C型肝炎病毒的 IRES序列;以及至少一個核酸載體,其包含至少一個腦心 肌炎病毒的IRES序列。在另一項實施例中,此套工具包含 單一核酸載體,其包含至少一個能在細菌、昆蟲及/或哺乳 動物細胞作用之IRES序列。在本發明之再一項實施例中, 此套工具包含兩個核酸載體,且前述之二核酸載體個別包 含了至少一個能在細菌、昆蟲及/或哺乳動物細胞作用之 IRES序歹丨J。 如上所述,本發明之核酸載體可被包含於生物性載體 内,如病毒和細菌,較佳是在非致病或毒性減弱的微生物 體内,包括毒性減弱的病毒、細菌、寄生蟲及類病毒顆 粒。這樣的例子包括痘病毒(poxvirus ),例如天花病毒 (vaccinia virus );腺病毒;桿狀病毒;龜療病毒 (herpesvirus ) •,腺相關病毒,以及反轉錄病毒 (retrovirus )。這樣的載體在文獻裡有詳細的敘述。在本 發明的一項實施例中,本發明之核酸載體可包含於能夠感 染桿狀病毒宿主細胞,且表現出感興趣基因之重組桿狀病 21 200408708Thamma, Mammalian Cell Technology · Publishers, Stoneham, Mass. How to choose selective targets. The selectable markers can be placed on another plastid and introduced into the cell between the nucleic acid carriers, or they can be located on the same nucleic acid carrier in the same nucleic acid vector, the selective markers and the interest are controlled by different promoters or IRES, or Under the same Kai control. If you want to secrete the gene product of interest into the cell segment's secretion signal sequence, place it near the upstream of the nucleic acid interesting gene with the correct reading structure. There are many secretory signal sequences such as human serum albumin, daughter, factor signal sequences, and signals from immunoglobulin chains, but only some of them are indicated. In addition, the secretion signal sequence can be synthesized according to rules, such as the rules established by von Heinje (\ Biochem. (1 983) 13: 1 7-2 1; J. Mol. Biol. (1 9 8 5) Nuc. Acids Res. (1 986) 14: 4683-4690). The present invention also includes a method of expressing at least a cistron by cap-independent action, which comprises introducing a nucleic acid vector into a body including a segment connected to a promoter and interacting with the nucleotide including one connected to at least one cistron And its acting virus, hepatitis C virus and enterovirus type 71 IRES, or its homologous sequence or fragment, or a variant sequence or homologous sequence of the homologous sequence of encephalomyocarditis virus, hepatitis C disease type 71 IRES Source sequence B U11 erw 〇rth: Recorded as a skilled artisan at the same time in vivo. If the gene can be moved separately or outside the IRES, a vector can be used for internal learning. For example, the human growth factor sequence 'established here.' See £ 7 / Plant J. 184: 99-105; a cell of interest Here, this sequence contains the sequence of the encephalomyocarditis etiology, the mutated and enterovirus fragments, and the nuclear 19 200408708 gallic acid sequence. This nucleic acid vector may further contain one or more additional "IRES-cistronic" molecules arranged in tandem, and at least two cistrons are expressed by cap-independent action. Nucleic acid vectors can be introduced into cultured host cells. For example, by calcium phosphate-mediated transfection, see Wigler et al. 5 (1 97 8) Cell 14: 725; Corsaro and Pearson (1981) Somatic Cell Genetics 7: 603; Graham and Van der Eb. (1 97 3) FzWog ;; 52: 456). Other techniques for introducing nucleic acid vectors into host cells, such as the electric perforation method (e 1 ectr ο ρ 〇 〇rati ο η, see N euma η neta 1., (1982) J 1:84 1 -845) can also be used use. Transfected cells will be allowed to grow for a period of time to express the gene of interest. Drugs can be applied to select cells that exhibit a selectable marker for continued growth. Host cells containing a nucleic acid vector of the invention will be grown in a suitable growth medium. As used herein, "appropriate growth medium" refers to a medium containing nutrients necessary for cell growth. Nutrients required for cell growth include carbon sources, nitrogen sources, essential amino acids, vitamins, minerals, and growth factors. The growth medium includes drugs that have been screened from nucleic acid vectors for selective labeling of cells. Doing colonization into the host genome When you choose the interest… — ~~,-一 | 一, Qing ncj ’, you can establish a stable cell line. Chan Sen Tong's stable cell line was established after a drug screening process over a period of three days to three weeks. As described above, the present invention provides tp cc-producing 1 1RES sequences that are active in a wide range of cell types including mucoid cells, insects and / or mammalian cells. Therefore, the present invention 20 200408708 relates to a set for expressing recombinant proteins in bacterial, insect and / or mammalian cells, the set comprising: at least one nucleic acid vector comprising at least one IRES sequence; at least one nucleic acid vector comprising at least one IRES sequence capable of acting in insect cells; and at least one nucleic acid vector comprising at least one IRES sequence capable of acting in mammalian cells. In an embodiment of the present invention, the kit includes: at least one nucleic acid vector containing at least one IRES sequence of enterovirus type 71; at least one nucleic acid vector containing at least one IRES sequence of hepatitis C virus; and at least one A nucleic acid vector comprising at least one IRES sequence of an encephalomyocarditis virus. In another embodiment, the kit comprises a single nucleic acid vector comprising at least one IRES sequence capable of acting on bacteria, insects and / or mammalian cells. In yet another embodiment of the present invention, the kit includes two nucleic acid vectors, and the aforementioned two nucleic acid vectors each include at least one IRES sequence capable of acting on bacteria, insects and / or mammalian cells. As mentioned above, the nucleic acid vectors of the present invention can be contained in biological vectors, such as viruses and bacteria, preferably in non-pathogenic or attenuated microorganisms, including attenuated viruses, bacteria, parasites and the like Virus particles. Examples include poxviruses such as vaccinia virus; adenoviruses; baculoviruses; herpesviruses; adeno-associated viruses; and retroviruses. Such carriers are described in detail in the literature. In one embodiment of the present invention, the nucleic acid vector of the present invention may be included in a recombinant baculovirus capable of infecting a baculovirus host cell and expressing a gene of interest 21 200408708

毒。桿狀病毒表現系統已揭示於美國第4,745·05 1號、第 4,879,236 號和第 5,147,788號專利,以及參閱 Miller,L.K., (1 988) Annu. Rev. Microbiol. 42:1 77- 1 99; Luckow, V.A., ( 1 990) In : Recombinant DNA Technology and Applications. McGraw-Hill,New York, pp. 97- 1 52; and O’Reilly, D.R., et al·, (19 92) Baculo virus Nucleic acid vectors: Apoison. The baculovirus expression system has been disclosed in U.S. Patent Nos. 4,745,05 1, 4,879,236, and 5,147,788, and see Miller, LK, (1 988) Annu. Rev. Microbiol. 42: 1 77- 1 99; Luckow , VA, (1 990) In: Recombinant DNA Technology and Applications. McGraw-Hill, New York, pp. 97- 1 52; and O'Reilly, DR, et al., (19 92) Baculo virus Nucleic acid vectors: A

Laboratory Manual. W.H. Freedman, New York,以上全部列 為參考之用。 通常,產生能夠感染桿狀病毒宿主細胞且表現感興趣 基因之重組桿狀病毒,牽涉到重組載體與桿狀病毒基因組 DN A共同轉染到桿狀病毒的宿主細胞裡。重組桿狀病毒載 體通常來自於包含多角體蛋白啟動子與多角體蛋白基因的 桿狀病毒基因組DNA片段。於重組桿狀病毒載體内,感興 趣的基因係置於多角體蛋白啟動子或其他桿狀病毒啟動子 控制下’以替換掉多角體蛋白基因的某些或全部序列。本 發明的重組桿狀病毒載體,包含一段與多角體蛋白啟動子 或其他桿狀病毒啟動子相連且與作用之核苷酸序列,其包 含一個與至少一個順反子相連且與其作用的腦心肌炎病 毒、C型肝炎病毒及腸病毒7 1型之IRES,或其同源序列、變 異序列或片段,或是腦心肌炎病毒、C型肝炎病毒及腸病毒 7 1型之IRES的同源序列之變異序列或同源序列之片段的核 ΐ酸序列。本發明之重組桿狀病毒載體更包含一個或多個 附加的「IRES-順反子」分子。當轉染重組載體與桿狀病毒 基因組DN A進入宿主細胞内,此重組載體會和桿狀病毒基 22 200408708 因組DN A發生同源重組現象,亦即,感興趣的基因會併入 到桿狀病毒基因組裡,能夠表現感興趣的基因之重組桿狀 病毒將被釋放到細胞外介質中。然而,無論是轉染或是同 源重組都不能達到百分之百的效率,結果將會是一群可生 產重組桿狀病毒及一群不生產重組桿狀病毒的混合細胞。 能夠於桿狀病毒宿主細胞裡表現感興趣的基因之重組桿狀 病毒,隨後將經由適當的篩選方法或基因挑選技術選出。 挑選重組桿狀病毒的一個方法係利用溶菌斑測定法。 溶菌斑測定法的設計是於其中每一個溶菌斑均為一個被單 一病毒感染的細胞生成的條件下,在單層宿主細胞上產生 明顯的溶菌斑。溶菌斑是藉由取自轉染重組載體及桿狀病 毒基因組DN A之稀釋的細胞培養基來感染桿狀病毒宿主細 胞而產生,欲看到受感染細胞產生的溶菌斑,可將受感染 細胞塗佈在洋菜培養基上或使用顯微鏡。病毒的溶菌斑可 被分離且可用來評估能表現感興趣的基因之重組桿狀病 毒。 在此技術領域有很多篩檢方法可用來確認從共同轉染 分離得到的溶菌斑含有重組桿狀病毒,較佳的方法為偵測 目標蛋白的合成,例如西方墨點法(Western blotting )、 免疫酶標分析法(ELISA )或表現蛋白的生物化學試驗方 法。南方墨點分析法(S 〇 u t h e r n b 1 〇 t a n a 1 y s i s )和聚合酶連 鎖反應(PCR ),亦可確認目標基因存在於重組桿狀病毒基 因組裡。 本發明也係關於一種核酸疫苗,其係包含一本發明的 23 200408708 核酸載體或生物性載體,可引導患者體内一需求基因之表 現,該需求基因多為患者體内缺乏或失去功能之基因。本 發明核酸疫苗可藉由靜脈注射或肌肉注射,或藉由氣沫化 吸入肺部;並可合併前揭之活體電穿孔技術來施用本發明 之核酸疫苗,以提高疫苗於活體内的轉染率。該活體電穿 孔技術已揭示於以下文獻中,包括N e u m a η n e t a 1., “Electroporation” ( 1 982) 1: 8 4 1 - 8 4 5 及 Widera et al., “Increased DN A vaccine delivery and immiinogenicity by electroporation z·/7 v/v<9” c/ /mm<9/ (2000) 164:4635-4640 〇 簡言 之,此活體電穿孔技術係在每次核酸疫苗注射位置處(腫瘤或 軋肉)執行一次電穿孔步驟,來幫助核酸疫苗的傳送。習知技 藝人士應可瞭解,此活體電穿孔疫苗傳送程序的參數可視動物 種類、傳送的疫苗劑量、宿主疾病細胞體積等等,而有不同變 化;並可於無須過度實驗的情況下,獲致最佳或最有用的操作 條件。 本發明也係關於一患者之治療方法,或對患者有所助 益的方法,其係藉由施予一足夠數量的核酸載體或生物性 載體’以誘導患者體内一需求基因(essential gene )的表 現。所施予的核酸載體或生物性載體可以提供想要的基因 表現’其為患者體内缺乏或失去功能之基因。此核酸栽體 或生物性載體可直接施用至患者體内,例如,藉由靜脈注 射或肌肉注射,或藉由氣沫化吸入肺部。此外,可採用一 套體外基因療法實施步驟,其包含從患者身上取下細胞或 組織,導入此核酸載體或生物性載體於取下的細胞或組織 24 200408708 内,然後將此細胞或組織植回病體内(參閱Knoell D.L。,et al·,(1 9 9 8) Am. J. Health Syst. Pharm. 55:899-904; Raymon H.K., et al·,(1997) Exp. Neurol。144:82-91; Culver K.W., et al., ( 1 990) Hum. Gene Ther. 1:3 99-4 1 0; Kasid A., et al., (1990) Proc· Natl. Acad. Sci. U.S.A. 87:473 -477)。此核酸 載體或生物性載體,可藉由轉染或感染而被引入所取下的 細胞或組織内,如藉由前敘方法。 這裡定義患者為需要特定蛋白質、多胜肽或胜肽的任 何人或非人類之動物,或為任何治療對其有益之實驗材 料,包括人類及非人類之動物。這裡被治療的非人類之動 物包括所有飼養或野生動物。理所當然地,任何熟知此技 術領域人士,均可認知到將視特定系統内被治療疾病或情 況來選擇蛋白質、多胜肽或胜肽。 本發明係關於一種方法,其係可用來篩選能夠干擾病 毒I RE S的帽獨立型轉譯作用之抗病毒化合物。病毒的I R K S 可作用於支持病毒在感染宿主細胞時的感染、複製及繁殖 活動,其係藉由帽獨立型轉譯作用生成重要的病毒蛋白。 因此,本發明之方法利用一多順反子核酸載體,其包含一 段與啟動子相連且與其作用的核苷酸序列,其包含一個與 至少一個順反子相連且與其作用的腦心肌炎病毒、C型肝炎 病毒及腸病毒71型之IRES或其同源序列、變異序列或片 段,或是腦心肌炎病毒、C型肝炎病毒及腸病毒7 1型之IR E S 的同源序列之變異序列或同源序列之片段的核苷酸序列。 此核酸載體可再包含一個或多個串聯排列的附加「IRES-順 25 200408708 二子」分子以供至少兩個順反子表現。此方法包含轉染一 夕順反子核酸載體到細胞裡,此載體會引導至少一個來自 月曲肌人病t、C型肝炎病毒及腸病毒71型之IRES或其同源 序列、變異序列或片段’或是腦心肌炎病毒、c型肝炎病毒 及腸病毒7丨型之iRES的同源序列之變異序列或同源序列之 片段的重組蛋白之帽獨立型轉譯作用;再將測試化合物接 觸此轉染細胞;且與無測試化合物的轉染細胞相比較以偵 :重組蛋白生產之減少量。測試化合物可為任何化學物 貝蛋白、胜肽、多胜肽,或核酸(DNA或RNA ) ◦測試 化合物可為自然發生的或可由習知方法合成得到。在本發 月的個R苑例中,本發明之方法將被用來篩選出針對腸 病毒71型、C型肝炎病毒及腦心肌炎之抗病毒化合物。 本么明將以下列實施例說明,其不得以任何方式限制 之。 實施例1 於昆蟲細胞内表現具有IRES活性的腦心肌炎病毒 先刖已報告過腦心肌炎病毒的IRES於哺乳動物系統内 很有效率’但在昆蟲細胞内並無活性(參閱Finkelstein γ . et al·,(1999) J. Biotech· 75:3 3-44 ),本發明人意外地發現 腦心肌炎病毒的IRES於昆蟲細胞内確實能夠作用。 重組桿狀病毒表現系統被用來在昆蟲細胞内測試腦心 肌炎病毒的IRES活性。桿狀病毒載體係使用載體 pBlueBac4.5 ( Invitrogen )建造,將綠螢光蛋白 26 200408708 (enhanced green fluorescent protein〔 EGFP〕)嵌入載 pBlueBac4.5的多嫁接區(multiple cloning site ),且置於 桿狀病毒之多角體蛋白啟動子(P p H )控制下,最終產生的 控制組載體命名為pBac-EGFP (見第2A、2B圖)。另一個 命名為pBac-IR-EGFP之載體,其係放置一腦心肌炎病毒 IRES序列(參閱 Jang,S.K.,and E. Wimmer,( 1 990) GenesLaboratory Manual. W.H. Freedman, New York, all of which are listed for reference. Generally, the production of a recombinant baculovirus capable of infecting a baculovirus host cell and expressing a gene of interest involves transfection of the recombinant vector and the baculovirus genome DNA into the baculovirus host cell. Recombinant baculovirus vectors are usually derived from baculovirus genomic DNA fragments containing a polyhedrin promoter and a polyhedrin gene. In the recombinant baculovirus vector, the gene of interest is placed under the control of a polyhedrin promoter or other baculovirus promoter 'to replace some or all of the sequence of the polyhedrin gene. The recombinant baculovirus vector of the present invention comprises a nucleotide sequence connected to and acting on a polyhedrin promoter or other baculovirus promoters, and comprises a encephalomyocarditis connected to and acting on at least one cistron. Variations of IRES of viruses, hepatitis C virus and enterovirus type 71, or homologous sequences, variant sequences or fragments thereof, or variations of homologous sequences of IRES of encephalomyocarditis virus, hepatitis C virus, and enterovirus type 71 A nucleotide sequence of a sequence or a fragment of a homologous sequence. The recombinant baculovirus vector of the present invention further comprises one or more additional "IRES-cistronic" molecules. When the recombinant vector and the baculovirus genome DNA enter the host cell, the recombination vector and the baculovirus group 22 200408708 due to the homologous recombination phenomenon of the group DNA, that is, the gene of interest will be incorporated into the rod In the rhabdovirus genome, recombinant baculoviruses capable of expressing genes of interest will be released into extracellular media. However, neither transfection nor homologous recombination can achieve 100% efficiency. The result will be a group of mixed cells that can produce recombinant baculovirus and a group that does not produce recombinant baculovirus. Recombinant baculoviruses capable of expressing genes of interest in baculovirus host cells will be subsequently selected by appropriate screening methods or gene selection techniques. One method for selecting recombinant baculoviruses is the use of a plaque assay. The plaque assay was designed to produce distinct plaques on monolayer host cells under conditions in which each plaque was produced by a single virus-infected cell. Phytolytic plaques are produced by infecting baculovirus host cells with a diluted cell culture medium obtained from a transfected recombinant vector and a baculovirus genome DNA. To see lytic plaques produced by infected cells, the infected cells can be coated with Place on agar substrate or use a microscope. Viral plaques can be isolated and used to evaluate recombinant baculoviruses that can express genes of interest. In this technical field, there are many screening methods that can be used to confirm that lysobacteria isolated from co-transfection contain recombinant baculovirus. The preferred method is to detect the synthesis of target proteins, such as Western blotting, immunization, etc. Enzyme labeling assay (ELISA) or biochemical test method for expressed proteins. Southern blot analysis (S0 u t h e r n b 1 0 t a n a 1 y s s s) and polymerase chain reaction (PCR) also confirmed that the target gene exists in the recombinant baculovirus genome. The present invention also relates to a nucleic acid vaccine, which contains a 23 200408708 nucleic acid vector or biological vector of the present invention, which can guide the expression of a demand gene in a patient, and the demand gene is mostly a gene lacking or losing function in the patient. . The nucleic acid vaccine of the present invention can be inhaled into the lungs by intravenous injection or intramuscular injection, or by aerosolization; and the nucleic acid vaccine of the present invention can be applied in combination with the previously-disclosed electroporation technique of the living body to improve the transfection of the vaccine in vivo rate. This in vivo electroporation technique has been disclosed in the following literature, including Neuma η neta 1., “Electroporation” (1 982) 1: 8 4 1-8 4 5 and Widera et al., “Increased DN A vaccine delivery and immiinogenicity by electroporation z · / 7 v / v < 9 ”c / / mm < 9 / (2000) 164: 4635-4640 〇 In short, this live electroporation technique is based on the location of each nucleic acid vaccine injection (tumor or rolling). Meat) to perform an electroporation step to help deliver the nucleic acid vaccine. Those skilled in the art should understand that the parameters of this live electroporation vaccine delivery procedure may vary depending on the animal species, vaccine dose delivered, host disease cell volume, etc .; and can be obtained without undue experimentation. Best or most useful operating conditions. The present invention also relates to a method for treating a patient, or a method that is beneficial to the patient, by administering a sufficient number of nucleic acid vectors or biological vectors' to induce an essential gene in the patient. Performance. The administered nucleic acid vector or biological vector can provide the desired gene expression ' which is a gene lacking or losing function in a patient. The nucleic acid plant or biological carrier can be administered directly into a patient, for example, by intravenous or intramuscular injection, or by inhalation into the lungs by aerosolization. In addition, a set of in vitro gene therapy implementation steps can be used, which includes removing cells or tissues from a patient, introducing the nucleic acid vector or biological vector into the removed cells or tissues 24 200408708, and then transplanting the cells or tissues back Within the disease (see Knoell DL., Et al., (19 9 8) Am. J. Health Syst. Pharm. 55: 899-904; Raymon HK, et al., (1997) Exp. Neurol. 144: 82 -91; Culver KW, et al., (1 990) Hum. Gene Ther. 1: 3 99-4 1 0; Kasid A., et al., (1990) Proc. Natl. Acad. Sci. USA 87: 473 -477). The nucleic acid vector or biological vector can be introduced into the removed cells or tissues by transfection or infection, for example, by the method described above. A patient is defined here as any human or non-human animal that requires a specific protein, peptide or peptide, or any experimental material that is beneficial to its treatment, including human and non-human animals. The non-human animals being treated here include all domestic or wild animals. It goes without saying that anyone skilled in the art will recognize that the choice of protein, peptide, or peptide will depend on the disease or condition being treated in a particular system. The present invention relates to a method for screening antiviral compounds capable of interfering with cap-independent translation of the virus I RE S. Virus I R K S can support the infection, replication, and reproduction of the virus when it infects host cells. It generates important viral proteins through cap-independent translation. Therefore, the method of the present invention utilizes a polycistronic nucleic acid vector, which contains a nucleotide sequence connected to and interacts with a promoter, and includes a encephalomyocarditis virus, C, which is connected to and interacts with at least one cistron. Hepatitis virus and enterovirus 71 type IRES or homologous sequences, variant sequences or fragments thereof, or encephalomyocarditis virus, hepatitis C virus and enterovirus type 1 IR ES homologous sequences of variant sequences or homology A nucleotide sequence of a fragment of a sequence. This nucleic acid vector may further contain one or more additional "IRES-cis 25 200408708 second daughter" molecules arranged in tandem for at least two cistron expressions. This method includes transfection of a cistron nucleic acid vector into a cell, which vector will guide at least one IRES or its homologous sequence, variant sequence or Fragment 'or the mutated sequence of the homologous sequence of iRES of encephalomyocarditis virus, hepatitis C virus and enterovirus type 7 丨, or the cap-independent translation of the recombinant protein of the fragment of the homologous sequence; the test compound is then exposed to this Stained cells; and compared with transfected cells without test compounds to detect: reduced production of recombinant protein. The test compound can be any chemical protein, peptide, peptide, or nucleic acid (DNA or RNA) ◦ The test compound can be naturally occurring or synthesized by conventional methods. In this R example, the method of the present invention will be used to screen antiviral compounds against enterovirus 71, hepatitis C virus and encephalomyocarditis. This meme will be illustrated by the following examples, which should not be limited in any way. Example 1 Encephalomyocarditis virus with IRES activity in insect cells has been reported. IRES of encephalomyocarditis virus has been reported to be very efficient in mammalian systems' but not active in insect cells (see Finkelstein γ. Et al. (1999) J. Biotech. 75: 3 3-44), the inventors have unexpectedly found that the IRES of encephalomyocarditis virus indeed works in insect cells. A recombinant baculovirus expression system was used to test the IRES activity of cerebrocardiac myositis virus in insect cells. The baculovirus vector was constructed using the vector pBlueBac4.5 (Invitrogen), and the green fluorescent protein 26 200408708 (enhanced green fluorescent protein [EGFP]) was inserted into the multiple cloning site containing pBlueBac4.5 and placed on the rod. Under the control of the polyhedrin promoter (P p H) of the parvovirus, the resulting control group vector was named pBac-EGFP (see Figures 2A and 2B). Another vector, named pBac-IR-EGFP, contains an encephalomyocarditis virus IRES sequence (see Jang, S.K., and E. Wimmer, (1 990) Genes

Dev· 4:1 560-1 572 )緊鄰在綠螢光蛋白編碼序列之前(見第 3A、3B圖)。一個雙順反子載體攜帶從香菇珊瑚取得之 DsRed紅螢光蛋白(DsRed )及綠螢光蛋白的順反子被建 造’在載體pBacDS-IRE-EGFP中,桿狀病毒的多角體蛋白啟 動子推動含有DsRed紅螢光蛋白和綠螢光蛋白基因之核雈酸 序列的mRNA合成,腦心肌炎病毒的丨RES被嵌在DsRed紅螢 光蛋白基因與綠螢光蛋白基因間(見第4圖)。將可以預測 到,DsRed紅螢光蛋白基因會經由帽依賴型機制表現,而綠 榮光蛋白基因會經由腦心肌炎病毒的IRES推動之帽獨立喫 機制表現。 重組桿狀病毒係使用Invhr〇gei^ MaxBac 2.0重組样狀 病毒表現系統產生,桿狀病毒的宿主細胞,sf9細胞,被鴉 帶載體 pBac-EGFP、pBac-IR-EGF]^ pBacDs-IR-EGFP 之重 組病毒感染兩天之後,以螢光顯微鏡分析細胞的綠螢光蛋 白(最大激發波長488 nm ;最大放射波長5〇7 nm )和/戒 Ds紅螢光蛋白(最大激發波長5 5 8 _ ;最大放射波長 )如第2C圖,感染攜帶載體pBac-EGFP之重組桿狀病 毒的細胞係經由帽依賴型機制表現綠螢光蛋白;第3C _展 27 200408708 不感染攜帶載體pBac-lR-EGFP之重組桿狀病毒的細胞表現 綠螢光蛋白的效率稍差,推測町能是因為腦心肌炎病毒的 IRES靠近多角體蛋白啟動子而千擾到綠螢光蛋白之帽依賴 型轉譯作用;感染攜帶雙順反子載體pBacDs-IR-EGFP之重 組桿狀病毒的細胞,於相同的細胞内同時表現DsRed紅螢光 蛋白(見第5圖的左邊)和綠螢光蛋白(見第5圖的右 邊)。因此,相反於之前的發表,腦心肌炎病毒的丨RES能 夠在把蟲細胞裡引導重組蛋白的IR E S依賴型轉譯作用。 實施例2 腦心肌炎病毒、C型肝炎病毒及腸病毒71型的ires在廣 泛範圍之細胞類型均有活性 腦心肌炎病毒、C型肝炎病毒及腸病毒7 1型的I R E S在不 同的細胞類型中分析其活性,包括昆蟲細胞(S f 9細胞)、 哺乳動物細胞(COS-7細胞和 Huh7細胞),以及細_細 胞(BL21細胞)。載體pTriEX-4 ( Novagen)被用來產生在 此三種類型細胞内表現重組蛋白之雙順反子載體,載體 pTriEX-4含有巨細胞病毒的即時早期啟動子 (cytomegalovirus immediate early promoter ),其在哺乳 細胞内具有活性;桿狀病毒AcMNPV的pi 0啟動子,其在昆 蟲細胞内具有活性;及噬菌體的T7啟動子,其在細菌細胞 内具有活性。如第6圖所述,β-半乳糖苷酶(β_ galactosidase )基因與分泌型鹼性磷酸水解酶(secreted alkaline phosphatase〔 SEAP〕)基因被置於載體 pTriEX-4 28 200408708 三個啟動子的其中一個控制下以合成mRNA。腸病毒7i型的 IRES (見第1圖)、C型肝炎病毒的IRES (參閱丁3111^江〇^-Dev · 4: 1 560-1 572) immediately before the green fluorescent protein coding sequence (see Figures 3A and 3B). A bicistronic vector carrying DsRed red fluorescent protein (DsRed) and green fluorescent protein obtained from Lentinula edodes was constructed. In the vector pBacDS-IRE-EGFP, the baculovirus polyhedrin promoter Promote mRNA synthesis containing the nucleotide sequences of the DsRed red fluorescent protein and the green fluorescent protein gene, and the RES of encephalomyocarditis virus is embedded between the DsRed red fluorescent protein gene and the green fluorescent protein gene (see Figure 4) . It can be predicted that the DsRed red fluorescent protein gene will be expressed through a cap-dependent mechanism, and the green glory protein gene will be expressed through an IRES-driven cap of the encephalomyocarditis virus. Recombinant baculoviruses were generated using the Invhrgei ^ MaxBac 2.0 Recombinant Virus Expression System. The host cells of baculovirus, sf9 cells, were carried by papac-EGFP, pBac-IR-EGF] ^ pBacDs-IR-EGFP Two days after the recombinant virus infection, the green fluorescent protein (maximum excitation wavelength 488 nm; maximum emission wavelength 507 nm) and / or Ds red fluorescent protein (maximum excitation wavelength 5 5 8 _) were analyzed by fluorescence microscopy. (Maximum emission wavelength) As shown in Figure 2C, a cell line infected with a recombinant baculovirus carrying the vector pBac-EGFP expresses green fluorescent protein via a cap-dependent mechanism; Section 3C_Exhibit 27 200408708 does not infect the carrier vector pBac-lR-EGFP Recombinant baculovirus cells are slightly less efficient at expressing green fluorescent protein. It is speculated that the IRES of encephalomyocarditis virus is close to the polyhedrin promoter and interferes with the cap-dependent translation of green fluorescent protein; infection carries Recombinant baculovirus cells of the bicistronic vector pBacDs-IR-EGFP show both DsRed red fluorescent protein (see left of Figure 5) and green fluorescent protein (see right of Figure 5) in the same cell ). Therefore, contrary to previous publications, RES of encephalomyocarditis virus can guide the IRES-dependent translation of recombinant proteins in worm cells. Example 2 Eniremyositis virus, hepatitis C virus, and enterovirus type 71 ires are active in a wide range of cell types. Encephalomyocarditis virus, hepatitis C virus, and enterovirus type 71 IRES are analyzed in different cell types. Its activities include insect cells (S f 9 cells), mammalian cells (COS-7 cells and Huh7 cells), and fine cells (BL21 cells). The vector pTriEX-4 (Novagen) was used to generate a bicistronic vector expressing recombinant proteins in these three types of cells. The vector pTriEX-4 contains a cytomegalovirus immediate early promoter, which is used in Active in mammalian cells; pi 0 promoter of baculovirus AcMNPV, which is active in insect cells; and T7 promoter of phage, which is active in bacterial cells. As shown in Figure 6, the β-galactosidase (β_galactosidase) gene and the secreted alkaline phosphatase (SEAP) gene are placed in three promoters of the vector pTriEX-4 28 200408708 One under control to synthesize mRNA. Enterovirus type 7i IRES (see Figure 1), Hepatitis C virus IRES (see Ding 3111 ^ 江 〇 ^-

Kohara K·,et al·,(1 992) J· Virol. 66:1 476 1 483 )或腦心肌 炎病毒的 IRES (參閱 Jang,S.K·,and E. Wimmer*,(1990) Genes Dev· 4:1 560- 1 572 )被嵌在β-半乳糖苷酶基因*SEAP 基因間,以推動SEAP基因之IRES依賴型蛋白質表現作用, 且這些雙順反子核酸載體分別被命名為載體pC}S-EV71、 pGS-HCV和 pGS-EMCV。 為了在S f 9昆蟲細胞裡偵測IR E S活性,根據載體p r j n 系統操作手冊(Novagen )分別產生攜帶有載體pGS_EV7 1、 p G S - H C V或p G S - E M C V之重組桿狀病毒。首先s f 9細胞被這 些重組桿狀病毒感染,於感染7 2小時後收集細胞培養基, 並分析其S E A P活性。作為正控制組之重組桿狀病毒,其係 藉由結合桿狀病毒基因組DNA與攜帶SEap基因但無任何前 導IRES序列的重組載體pTriEX-4產生;作為負控制組之未 改造過的桿狀病毒AcMNPV,被用來感染Sf9細胞。如第7圖 所示,腸病毒7 1型、C型肝炎病毒及腦心肌炎病毒的丨R R s 在Sf9細胞裡均有比負控制組更強的活性,其中腸病毒7丨型 的IRES表現出最強的活性。 為了在哺乳細胞裡偵測IRES活性,根據載體pTriEX系 統操作手冊(Novagen )中所列大綱,將載體pGS_EMCV、 pGS-HCV或pGS-EV71分別轉染到c〇S-7細胞(猴子腎臟細 胞株)和Huh7細胞(人類肝癌細胞株)裡。在哺乳動物細 胞内,核酸載體之mRNA是自巨細胞病毒啟動子產生。轉染 200408708 48小時後,測試被轉染細胞培養基的SEAP蛋白活性。於兩 組哺乳動物細胞株裡,腸病毒7 1型、C型肝炎病毒及腦心肌 炎病毒的IRES相較於負向控制組(命名為pC Μ V-gal之單順 反子核酸載體,其表現β -半乳糖苷酶基因,並將之置於巨細 胞病毒啟動子控制下,參見第8圖)均表現出活性,其中腸 病毒7 1型的ireS再次於兩組哺乳動物細胞株裡均表現出最 強的活性。 為了在細菌細胞裡偵測IRES活性,根據載體pTriEX系 統操作手冊(Novagen )中所列大綱,將載體PGS-EMC V、 pGS-HCV或 pGS-EV71分別轉染到BL2 1細胞裡。在細菌動 物細胞内,核酸載體之mRNA是自T7啟動子產生,其可被 IPTG誘導而產生大量mRNA。使用0.4 mM IPTG誘導3小時 後,收集細胞並測試其S ΕΑΡ蛋白活性。如第9圖所示,在細 菌細胞内,相較於未經轉殖之BL2 1細胞(第一行)及轉殖 未攜帶報導基因之載體pTriEX-4的BL21細胞(第二行), 腦心肌炎病毒之IRES在未添加IPTG和添加IPTG誘導的情況 下均有高度活性(分別為第三、四行),這是腦心肌炎病 毒之IRES首次被展現於細菌細胞内具有活性。C型肝炎病 毒及腸病毒7 1型的IRES於細菌細胞内亦具有活性(分別為 第五、六行)。 f施例 3 α干擾素(IFN-a )擾亂腸病毒71型及C型肝炎病毒的 IRES 之帽獨立型轉譯作用 (cap-independent 30 200408708 translation ) 一含有腸病毒71型與C型肝炎病毒的IRES 之雙順反子 核酸載體被利用來篩選抗病毒化合物,其能夠擾亂病毒的 IRES之帽獨立型轉譯作用。抗病毒化合物被預期會結合在 IRES上,進而干擾SEAP蛋白之表現,如第10圖所述。其他 人已經展示出第一個(帽依賴型)順反子會平行於mRNA之 穩定態程度,並不受mRNA上編碼的蛋白影響(參閱 Hennecke, M., et al.? (200 1 ) Nucleic Acids Res. 29:3 3 27-3 3 3 4 )。因此,帽依賴型順反子之轉譯可以用來當做檢查 mRNA程度差異之内部標準。 實施例2中所敘述的雙順反子核酸載體pGS-EV71與 pGS-HCV 被轉染到Huh7細胞裡,且以不同數量之α 干擾 素培養。轉染4 8小時後,收集被轉染細胞培養基並測試其 SΕΑΡ蛋白活性。作為控制組的細胞分別被轉染上述雙順反 子核酸載體,但未添加〇c干擾素培養。如第1 1、1 2圖所 示,5 00單位的α 干擾素分別抑制了腸病毒7 1型與C型肝炎 病毒的IRES活性。 經由本發明說明書内列舉文獻之啟發,能使本發明說 明書徹底地被理解,其中列舉之所有文獻茲以其全部内容 列入參考。本發明說明書内之實施例係提供本發明具體實 施之例證,不應被用來限制本發明之範疇。熟知該技術人 士可認知到許多其他實施例亦包含於本發明請求範圍内, 本發明說明書以及實施例僅供舉例說明之用,本發明真正 的範疇與精神將藉由附隨之申請專利範圍表明。 31 200408708 【圖式簡單說明】 第1圖:顯示腸病毒71型(EV 7 1 )的5 ’未轉譯區核苷酸序 列,其係來自於腸病毒71型之TW/2 08 6/98病毒 株基因。 第 2圖:第 2A、2B 圖示出重組桿狀病毒載體 pBac-EGFP ,其係用來產生重組桿狀病毒。第2C圖為 於螢光顯微鏡下觀察 EGFP蛋白在經由重組桿狀 病毒感染之S f 9昆蟲細胞裡的表現情形。 第3圖:第3A與3B圖示出重組桿狀病毒載體pBac- IR-EGFP ,其中腦心肌炎病毒的IRES緊鄰在編碼為 EGFP蛋白的序列之前。第3C圖為於螢光顯微鏡 下觀察EGFP蛋白在經由重組桿狀病毒感染之Sf'9 昆蟲細胞裡的表現情形。 第 4圖:所示為重組桿狀病毒載體 pBac-DR-IR-EGFP,其 中編碼為 DsRed 和 EGFP 蛋白之序列置於供 mRNA合成的多角體蛋白啟動子控制之下,且將 腦心肌炎病毒 (E M C V ) 之 IR E S 置於編碼為 DsRed和 EGFP蛋白的序列間,以驅使EGFP基 因之帽獨立型轉譯作用。 第5圖:於螢光顯微鏡下觀察經由攜帶載體pBac- DR-IR-EGFP之重組桿狀病毒感染的Sf9昆蟲細胞,左邊 為表現Ds紅蛋白的細胞,右邊為表現EGFP螢光 蛋白的細胞。 32 200408708 第6圖:所示為雙順反子核酸載體,其係用來於哺乳 物、昆蟲與細菌細胞内表現 β -半乳糖苷酶( galactosidase〔 β-gal〕)與分泌型驗性鱗酸水 酶(secreted alkaline phosphatase〔 SEAP〕) 因。腦心肌炎病毒(EMCV )、(:型肝炎病 (HCV)及腸病毒71型(EV71)的IRES序列 嵌入β-gal基因與SEAP基因間,以驅使SEAP 因之帽獨立型轉譯作用。其相對應的雙順反子 酸載體分別命名為載體pGS-EMCV、pGS-HCV pGS-EV71。 第7圖:於Sf9昆蟲細胞展示腦心肌炎病毒(EMC V )、 型肝炎病毒(HCV )及腸病毒71型(EV71) IRES活性。此Sf9昆蟲細胞被載體pGS-EMCV pGS-HCV及PGS-EV71重組之桿狀病毒感染。 第8圖:於 C〇S - 7與 H u h 7細胞展示腦心肌炎病 (EMCV ) 、C型肝炎病毒(HCV )及腸病毒 型(EV71 )的IRES活性。 第9圖··於BL21細胞表現IRES活性。被分析的細胞為 經轉殖之B L 2 1細胞(第一攔);已轉殖入不含 導基因的載體 pTriEX-4之 BL21細胞(第 攔);已轉殖載體pGS-EMCV且未經IPTG誘 之細胞(第三攔);已轉殖載體pGS-EMCV且 0.4 mM IPTG誘導之細胞(第四襴);已轉殖 體pGS-HCV且經〇·4 mM IPTG誘導之細胞(第 動 β, 解 基 毒 被 基 核 及 C 的 Λ 毒 7 1 未 報 導 經 載 五 33 200408708 欄);已轉殖載體PGS-EV71且經0.4 誘導之細胞(第六爛)。 第1 0圖:圖解篩選抗病毒化合物的過程,其化合 多順反子核酸載體時,擾亂病毒的IRES 型轉譯作用。 第1 1圖··於C型肝炎病毒之IRES顯示α干擾素 之抗病毒活性。 第12圖:於腸病毒71型之IRES顯示α干擾素 的抗病毒活性。 m Μ 1 P T G 物於使用 之帽獨立 (I F N - α ) (I F Ν - α ) 34Kohara K., et al., (1 992) J. Virol. 66: 1 476 1 483) or IRES of encephalomyocarditis virus (see Jang, SK, and E. Wimmer *, (1990) Genes Dev. 4: 1 560- 1 572) were embedded between β-galactosidase gene * SEAP genes to promote the expression of IRES-dependent proteins of SEAP genes, and these bicistronic nucleic acid vectors were named vectors pC} S- EV71, pGS-HCV and pGS-EMCV. In order to detect IR ES activity in S f 9 insect cells, recombinant baculoviruses carrying vectors pGS_EV7 1, p G S-H C V or p G S-E M C V were generated according to the vector pr j n system operating manual (Novagen). SF9 cells were first infected with these recombinant baculoviruses, and the cell culture medium was collected 72 hours after infection, and their S E A P activity was analyzed. Recombinant baculovirus as a positive control group is produced by combining baculovirus genomic DNA with a recombinant vector pTriEX-4 carrying the SEap gene but without any leading IRES sequence; unmodified baculovirus as a negative control group AcMNPV is used to infect Sf9 cells. As shown in Figure 7, the RRs of enterovirus 71, hepatitis C virus, and encephalomyocarditis virus were stronger in Sf9 cells than the negative control group, and enteric virus 7 IRES showed The strongest activity. In order to detect IRES activity in mammalian cells, the vectors pGS_EMCV, pGS-HCV or pGS-EV71 were transfected into coS-7 cells (monkey kidney cell line) according to the outline outlined in the vector pTriEX system operating manual (Novagen). ) And Huh7 cells (a human liver cancer cell line). In mammalian cells, the mRNA of a nucleic acid vector is produced from a cytomegalovirus promoter. After 48 hours of transfection 200408708, the SEAP protein activity of the transfected cell culture medium was tested. In two groups of mammalian cell lines, the IRES of enterovirus 71, hepatitis C virus, and encephalomyocarditis virus compared to the negative control group (named pC MV V-gal monocistronic nucleic acid vector, its performance β-galactosidase gene and put it under the control of cytomegalovirus promoter (see Figure 8) all showed activity, of which ireS of enterovirus 71 type 1 was again expressed in two groups of mammalian cell lines Out of the strongest activity. In order to detect IRES activity in bacterial cells, the vectors PGS-EMC V, pGS-HCV or pGS-EV71 were transfected into BL21 cells, respectively, according to the outline outlined in the vector pTriEX system operating manual (Novagen). In bacterial animal cells, the mRNA of the nucleic acid vector is produced from the T7 promoter, which can be induced by IPTG to produce a large amount of mRNA. After induction with 0.4 mM IPTG for 3 hours, cells were collected and tested for their sera protein activity. As shown in Fig. 9, in the bacterial cells, compared with BL21 cells (first row) which were not transfected and BL21 cells (second row) which were transfected without the reporter gene vector pTriEX-4, the brain The IRES of myocarditis virus are highly active without the addition of IPTG and induced by the addition of IPTG (third and fourth lines, respectively). This is the first time that IRES of encephalomyocarditis virus has been shown to be active in bacterial cells. Hepatitis C virus and enterovirus 71 type 1 IRES are also active in bacterial cells (fifth and sixth lines, respectively). f Example 3 Interferon alpha (IFN-a) disrupts IRES cap-independent translation of enterovirus 71 and hepatitis C virus (cap-independent 30 200408708 translation) The bicistronic nucleic acid vector of IRES is used to screen for antiviral compounds that can disrupt the IRES cap-independent translation of the virus. Antiviral compounds are expected to bind to IRES and thus interfere with the performance of the SEAP protein, as shown in Figure 10. Others have shown that the first (cap-dependent) cistron is parallel to the level of steady state of the mRNA and is not affected by proteins encoded on the mRNA (see Hennecke, M., et al.? (200 1) Nucleic Acids Res. 29: 3 3 27-3 3 3 4). Therefore, cap-dependent cistron translation can be used as an internal standard for examining differences in mRNA levels. The bicistronic nucleic acid vectors pGS-EV71 and pGS-HCV described in Example 2 were transfected into Huh7 cells and cultured with different amounts of interferon alpha. 48 hours after transfection, the culture medium of the transfected cells was collected and tested for SEAP protein activity. The cells as the control group were each transfected with the above bicistronic nucleic acid vector, but were cultured without the addition of oc interferon. As shown in Figures 11 and 12, the unit of interferon alpha of 500 units inhibited the IRES activity of enterovirus type 71 and hepatitis C virus, respectively. The description of the present invention can be thoroughly understood through inspiration from the enumerated documents in the description of the present invention, and all the documents listed therein are incorporated by reference in their entirety. The examples in the description of the present invention are provided to illustrate specific implementations of the present invention and should not be used to limit the scope of the present invention. Those skilled in the art can recognize that many other embodiments are also included in the scope of the present invention. The description and the embodiments of the present invention are for illustration only. The true scope and spirit of the present invention will be indicated by the scope of the accompanying patent application. . 31 200408708 [Schematic description] Figure 1: Nucleotide sequence of 5 'untranslated region of enterovirus 71 (EV 7 1), which is derived from enterovirus 71 TW / 2 08 6/98 virus Strain genes. Figure 2: Figures 2A, 2B show the recombinant baculovirus vector pBac-EGFP, which is used to generate recombinant baculovirus. Figure 2C shows the expression of EGFP protein in S f 9 insect cells infected with recombinant baculovirus under a fluorescent microscope. Figure 3: Figures 3A and 3B show the recombinant baculovirus vector pBac-IR-EGFP, where the IRES of encephalomyocarditis virus is immediately before the sequence encoding the EGFP protein. Figure 3C shows the expression of EGFP protein in Sf'9 insect cells infected with recombinant baculovirus under a fluorescent microscope. Figure 4: Recombinant baculovirus vector pBac-DR-IR-EGFP is shown, in which the sequences encoding the DsRed and EGFP proteins are placed under the control of a polyhedrin promoter for mRNA synthesis, and the encephalomyocarditis virus ( EMCV) IR ES is placed between sequences encoding DsRed and EGFP proteins to drive the cap-independent translation of the EGFP gene. Figure 5: Sf9 insect cells infected with the recombinant baculovirus carrying the vector pBac-DR-IR-EGFP were observed under a fluorescent microscope. The left side is a cell expressing Ds albumin and the right side is a cell expressing EGFP fluorescent protein. 32 200408708 Figure 6: Shown is a bicistronic nucleic acid vector, which is used to express β-galactosidase (β-gal) and secretory test scales in mammalian, insect and bacterial cells. Acidic water enzyme (secreted alkaline phosphatase [SEAP]). The IRES sequences of encephalomyocarditis virus (EMCV), (: hepatitis virus (HCV), and enterovirus 71 (EV71) are embedded between the β-gal gene and the SEAP gene to drive SEAP's cap-independent translation effect. It corresponds to The bicistronic vectors were named vectors pGS-EMCV and pGS-HCV pGS-EV71. Figure 7: Sf9 insect cells display encephalomyocarditis virus (EMC V), hepatitis virus (HCV), and enterovirus 71 (EV71) IRES activity. This Sf9 insect cell was infected by vectors pGS-EMCV pGS-HCV and PGS-EV71 recombinant baculovirus. Figure 8: Encephalomyocarditis (EMCV) displayed on COS-7 and Huh 7 cells ), IHC activity of hepatitis C virus (HCV) and enterovirus type (EV71). Figure 9 ... IRES activity was shown on BL21 cells. The cells analyzed were transfected BL 2 1 cells (first block) ; BL21 cells (transplant) that have been transfected into the vector pTriEX-4 that does not contain the leader gene; cells that have been transfected with the vector pGS-EMCV and have not been induced by IPTG (third transport); 0.4 mM IPTG-induced cells (fourth 襕); cells that have been transformed with pGS-HCV and induced by 0.4 mM IPTG ( Activating β, detoxification by basal nucleus and Λ poison of C 7 1 Unreported column 5 33 200408708); cells that have been transfected with PGS-EV71 and induced by 0.4 (sixth rot). Figure 10: Illustrate the process of screening antiviral compounds, which, when combined with polycistronic nucleic acid vectors, disrupt the virus' IRES-type translation. Figure 11 ·· IRES of hepatitis C virus shows the antiviral activity of interferon alpha. Section 12 Figure: IRES in enterovirus 71 shows antiviral activity of interferon alpha. M Μ 1 PTG is independent of the cap used (IFN-α) (IF Ν-α) 34

Claims (1)

200408708 拾、申請專利範圍: 1. 一種可供至少兩個順反子表現之核酸載體,其包含: a. —段與啟動子相連且與其作用之包含至少兩個順反子 的核苷酸序列;以及 b. 至少一段與上述至少兩個順反子中至少一者相連且與 其作用之核苷酸序列,其包含一個選自腸病毒7 1型 (EV71)、C型肝炎病毒(HCV)、腦心肌炎病毒(EMCV) 的IRES,或其變異序列或片段;其中該核苷酸序 歹、其變異序列或片段,係可提供I R E S活性。 2. 如申請專利範圍第1項所述之一種核酸載體,其中該 至少兩個順反子中至少一者係包括報導基因。 3. 如申請專利範圍第1項所述之一種核酸載體,其中該 至少兩個順反子中至少一者係包括一治療基因。 4. 一種能夠表現至少兩個順反子之生物性載體,其包含 如申請專利範圍第1項所述之一種核酸載體。 5. 如申請專利範圍第4項所述之一種生物性載體,其中 該生物性載體係選自痘病毒(poxvirus)、腺病毒 (adenovirus)、鹿療病毒(herpesvirus)、腺相關病毒 (adeno-associated virus)、反轉錄病毒(retrovirus)和桿 狀病毒(baculovirus)中。 35 200408708 6. 一種可供至少兩個順反子表現之核酸載體,其包含: a. —段與啟動子相連且與其作用之包含至少兩個順反子 的核苷酸序列;以及200408708 Scope of patent application: 1. A nucleic acid vector capable of expressing at least two cistrons, comprising: a. — A nucleotide sequence comprising at least two cistrons connected to the promoter and acting on it And b. At least one nucleotide sequence connected to and interacting with at least one of the at least two cistrons, comprising a member selected from the group consisting of enterovirus type 71 (EV71), hepatitis C virus (HCV), IRES of encephalomyocarditis virus (EMCV), or a variant sequence or fragment thereof; wherein the nucleotide sequence, its variant sequence or fragment, can provide IRES activity. 2. A nucleic acid vector according to item 1 of the scope of patent application, wherein at least one of the at least two cistrons includes a reporter gene. 3. A nucleic acid vector according to item 1 of the patent application, wherein at least one of the at least two cistrons comprises a therapeutic gene. 4. A biological vector capable of expressing at least two cistrons, comprising a nucleic acid vector as described in item 1 of the scope of patent application. 5. A biological vector as described in item 4 of the scope of patent application, wherein the biological vector is selected from the group consisting of poxvirus, adenovirus, herpesvirus, and adeno-associated virus (adeno- associated virus), retrovirus and baculovirus. 35 200408708 6. A nucleic acid vector for the expression of at least two cistrons, comprising: a. A nucleotide sequence comprising at least two cistrons connected to and acting on the promoter; and b, 至少一段與上述至少兩個順反子中至少一個相連且與 其作用之核苷酸序列,其包含一個選自腸病毒7 1型 (EV71)、C型肝炎病毒(HCV)、腦心肌炎病毒(EMCV) 的IRES之同源序列,或其變異序列或片段;其中該 同源序列、其變異序列或片段,係可提供IRES活 性0 7. 如申請專利範圍第6項所述之一種核酸載體,其中該 至少兩個順反子中至少一者係包括一報導基因。 8. 如申請專利範圍第6項所述之一種核酸載體,其中該 至少兩個順反子中至少一者係包括一治療基因。b, at least one nucleotide sequence connected to and interacting with at least one of the at least two cistrons, which comprises one selected from the group consisting of enterovirus 71 (EV71), hepatitis C virus (HCV), and encephalomyocarditis virus (EMCV) IRES homologous sequence, or a variant sequence or fragment thereof; wherein the homologous sequence, its variant sequence or fragment, can provide IRES activity 0 7. A nucleic acid vector as described in item 6 of the scope of patent application Wherein at least one of the at least two cistrons includes a reporter gene. 8. A nucleic acid vector according to item 6 of the patent application, wherein at least one of the at least two cistrons comprises a therapeutic gene. 9. 一種可供至少兩個順反子表現之生物性載體,其包含 如申請專利範圍第6項所述之一種核酸載體。 10. 如申請專利範圍第9項所述之一種生物性載體,其中 之生物性載體係選自痘病毒(poxvirus)、腺病毒 (adenovirus)、泡療病毒(herpesvirus)、腺相關病毒 (adeno-associated virus)、反轉錄病毒(retrovirus)和桿 36 200408708 狀病毒(baculovirus)。 11. 一種宿主細胞,其包含如申請專利範圍第1項所述之 一種核酸載體。 12. 如申請專利範圍第1 1項所述之一種宿主細胞,其中之 宿主細胞為一種昆蟲細胞。 13. 如申請專利範圍第1 1項所述之一種宿主細胞,其中之 宿主細胞為一種哺乳動物細胞。 14. 如申請專利範圍第1 1項所述之一種宿主細胞,其中之 宿主細胞為一種細菌細胞。 15. —種宿主細胞,其包含如申請專利範圍第6項所述之 一種核酸載體。 16. 如申請專利範圍第1 5項所述之一種宿主細胞,其中之 宿主細胞為一種昆蟲細胞。 17. 如申請專利範圍第1 5項所述之一種宿主細胞,其中之 宿主細胞為一種哺乳動物細胞。 18. 如申請專利範圍第1 5項所述之一種宿主細胞,其中之 37 200408708 宿主細胞為一種細菌細胞。 19. 一種可供至少兩個順反子表現之方法,其包含引進一 種核酸載體至宿主細胞内,上述核酸載體包含: a. —段與啟動子相連且與其作用之包含至少兩個順反子 的核苷酸序列;以及 b. 至少一段與上述至少兩個順反子中至少一者相連且與 其作用之核苷酸序列,其包含一個選自腸病毒7 1型 (EV71)、C型肝炎病毒(HCV)、,腦心肌炎病毒(EMC V) 的IRES,或其變異序列或片段;其中該核苷酸序 列、其變異序列或片段,係可提供IRES活性。 20. 一種可供至少兩個順反子表現之方法,其包含引進一 種核酸載體至宿主細胞内,上述核酸載體包含: a. —段與啟動子相連且與其作用之包含至少兩個順反子 的核苷酸序列;以及 b. 至少一段與上述至少兩個順反子中至少一者相連且與 其作用之核苷酸序列,其包含一個選自腸病毒7 1型 (EV71)、C型肝炎病毒(HCV)、月㈣心肌炎病毒(EMCV) 的IRES之同源序列,或其變異序列或片段;其中該 同源序列、其變異序列或片段,係可提供IRES活 21. 一種可供至少兩個順反子表現之桿狀病毒傳送載體, 38 200408708 其包含: a. —段與桿狀病毒啟動子相連且與其作用之包 個順反子的核苷酸序列;以及 b. 至少一段與上述至少兩個順反子中至少一者 其作用之核苷酸序列,其包含一個選自腸病 (EV71)、C型肝炎病毒(HCV)、腦心肌炎病 的IRES,或其變異序列或片段;其中該 列、其變異序列或片段,係可提供IRES活 22. 如申請專利範圍第21項所述之一種桿狀病 體,其中該至少兩個順反子中至少一者係包 基因。 23. 如申請專利範圍第2 1項所述之一種桿狀病 體,其中該至少兩個順反子中至少一者係包 基因。 含至少兩 相連且與 丨毒7 1型 毒(E M C V ) 核苷酸序 性。 毒傳送載 括一報導 毒傳送載 括一治療9. A biological vector for at least two cistron expressions, comprising a nucleic acid vector as described in item 6 of the scope of patent application. 10. A biological vector according to item 9 of the scope of the patent application, wherein the biological vector is selected from the group consisting of poxvirus, adenovirus, herpesvirus, and adeno-associated virus (adeno- associated virus), retrovirus, and baculovirus 36 200408708. 11. A host cell comprising a nucleic acid vector as described in item 1 of the scope of patent application. 12. A host cell according to item 11 of the application, wherein the host cell is an insect cell. 13. A host cell according to item 11 of the application, wherein the host cell is a mammalian cell. 14. A host cell according to item 11 of the application, wherein the host cell is a bacterial cell. 15. A host cell comprising a nucleic acid vector as described in item 6 of the patent application. 16. A host cell according to item 15 of the application, wherein the host cell is an insect cell. 17. A host cell according to item 15 of the application, wherein the host cell is a mammalian cell. 18. A host cell as described in item 15 of the application, wherein 37 200408708 the host cell is a bacterial cell. 19. A method for expression of at least two cistrons, comprising introducing a nucleic acid vector into a host cell, said nucleic acid vector comprising: a.-A segment that is connected to a promoter and interacts with at least two cistrons Nucleotide sequence; and b. At least one nucleotide sequence connected to and interacting with at least one of the at least two cistrons, which comprises one selected from the group consisting of enterovirus 71 type 1 (EV71), hepatitis C Virus (HCV), encephalomyocarditis virus (EMC V) IRES, or a variant sequence or fragment thereof; wherein the nucleotide sequence, its variant sequence or fragment, can provide IRES activity. 20. A method by which at least two cistrons can be expressed, comprising introducing a nucleic acid vector into a host cell, said nucleic acid vector comprising: a. A segment that is connected to a promoter and interacts with it comprising at least two cistrons Nucleotide sequence; and b. At least one nucleotide sequence connected to and interacting with at least one of the at least two cistrons, which comprises one selected from the group consisting of enterovirus 71 type 1 (EV71), hepatitis C Homology sequence of IRES of virus (HCV) and moon diarrhea myocarditis virus (EMCV), or a variant sequence or fragment thereof; wherein the homology sequence, the variant sequence or fragment thereof, can provide IRES activity 21. One type is available for at least two A cistronic expression baculovirus delivery vector, 38 200408708, comprising: a. A cistronic nucleotide sequence connected to the baculovirus promoter and interacting with it; and b. At least one segment from the above At least one of at least two cistrons has a functioning nucleotide sequence that includes an IRES selected from the group consisting of enteropathy (EV71), hepatitis C virus (HCV), encephalomyocarditis, or a variant sequence or fragment thereof; Where the , Variant sequences or fragments thereof, may be provided based IRES living 22. Application of one of the item 21 patentable scope baculovirus, wherein the at least two cistron at least one packet-based gene. 23. A rod-shaped disease as described in item 21 of the patent application scope, wherein at least one of the at least two cistrons is a gene. Contains at least two nucleotide sequences that are linked to and are not toxic to Type 71 virus (EM CV). Poisonous transmission includes a report Poisonous transmission includes a treatment 24; 一種重組桿狀病毒,其包含桿狀病毒基因組 宿主細胞内表現至少兩個順反子,該重組桿 含·· a. —段與桿狀病毒啟動子相連且與其作用之包 個順反子的核苷酸序列;以及 b. 至少一段與上述至少兩個順反子中至少一者 其作用之核苷酸序列,其包含一個選自腸赤 並能夠於 狀病毒包 含至少兩 相連且與 毒71型24; A recombinant baculovirus comprising a baculovirus genome host cell expressing at least two cistrons, the recombination rod contains ... a. A segment that is connected to the baculovirus promoter and includes a cis-transformer The nucleotide sequence of the daughter; and b. At least one nucleotide sequence which functions with at least one of the at least two cistrons, which comprises one selected from the group consisting of enteroviruses and is Poison 71 39 200408708 (EV71)、C型肝炎病毒(HCV)、腦心肌炎病毒(EMCV) 的IRES,或其變異序列或片段;其中該核苷酸序 列、其變異序列或片段,提供IRES活性。 25. 一種可產生能夠表現至少兩個順反子之桿狀病毒的方 法,其包含: a. 引進如專利申請範圍第2 1項所述之一種桿狀病毒傳 送載體與一種桿狀病毒基因組DNA至一種桿狀病毒 宿主細胞内,以導致發生同源重組;以及 b. 分離一重組之桿狀病毒。 26. 一種表現至少兩個順反子之桿狀病毒宿主細胞,其包 含如專利申請範圍第24項所述之一種桿狀病毒。 27. 一種可供至少兩個順反子表現之桿狀病毒傳送載體, 其包含: a. —段與桿狀病毒啟動子相連且與其作用之包含至少兩 個順反子的核苷酸序列;以及 b. 至少一段與上述至少兩個順反子中至少一者相連且與 其作用之核’苷酸序列,其包含一個選自腸病毒7 1型 (EV71)、C型肝炎病毒(HCV)、腦心肌炎病毒(EMCV) 的IRES之同源序列,或其變異序列或片段;其中該 同源序列、其變異序列或片段,係可提供IRES活 性。 40 200408708 28. 如申請專利範圍第2 7項所述之一種桿狀病毒傳送載 體,其中該至少兩個順反子中至少一者係包括一報導 基因。 29. 如申請專利範圍第2 7項所述之一種桿狀病毒傳送載 體,其中該至少兩個順反子中至少一者係包括一治療 基因。 30. 一種重組桿狀病毒,其包含桿狀病毒基因組並能夠於 宿主細胞内表現至少兩個順反子,該重組桿狀病毒包 含: a. —段與桿狀病毒啟動子相連且與其作用之包含至少兩 個順反子的核苷酸序列;以及 b. 至少一段與上述至少兩個順反子中至少一者相連且與 其作用之核苷酸序列,其包含一個選自腸病毒7 1型 (EV71)、C型肝炎病毒(HCV)、腦心肌炎病毒(EMC V) 的IRES之同源序列,或其變異序列或片段;其中該 同源序列、其變異序列或片段,提供IR E S活性。 31. 一種可產生能夠表現至少兩個順反子之桿狀病毒的方 法,其包含: a.引進如專利申請範圍第27項所述之一種桿狀病毒傳 送載體與桿狀病毒基因組DNA至桿狀病毒宿主細胞 41 200408708 内,以導致發生同源重組;以及 b.分離重組之桿狀病毒。 32. 一種表現至少兩個順反子之桿狀病毒宿主細胞,其包 含如專利申請範圍3 0所述之一種桿狀病毒。 33. 一種可在細菌、昆蟲及/或哺乳動物細胞中表現重組蛋 白之套組,其包含至少一個核酸載體,該核酸載體包 含至少一個能在細菌細胞作用的IRES序列;至少一個 核酸載體,該核酸載體包含至少一個能在昆蟲細胞作 用的IRES序列;以及至少一個核酸載體,該核酸載體 包含至少一個能在哺乳動物細胞作用的IR E S序列。 34. 如專利申請範圍3 3所述之套組,其中該至少一個核酸 載體包含至少一個選自腸病毒71型(EV71)、C型肝炎 病毒(HCV)、腦心肌炎病毒(EMCV)的IRES序列。 35. 如專利申請範圍3 3所述之套組,其令該套組包含單一 核酸載體,其包含至少一個能在細菌、昆蟲及/或哺乳 動物細胞作用的IR E S序列。 36. 如專利申請範圍3 3所述之套組,其中該套組包含兩個 核酸載體,上述之兩個核酸載體個別包含至少一個能 在細菌、昆蟲及/或哺乳動物細胞作用的IR E S序列。 42 200408708 37. 一種治療患者之方法,其包含施予如專利申請範圍第1 或6項任一項所述之一種核酸載體。 38. 一種治療患者之方法,其包含施予如專利申請範圍第4 或9項任一項所述之一種生物性載體。 39. 一種治療患者之方法,其包含: a. 從患者身上取下細胞或組織; b. 導入如專利申請範圍第1或6項所述之一種核酸載體 於上述所取下的細胞或組織内;以及 c. 將此細胞或組織植回患者體内。 40. 一種治療患者之方法,其包含: a. 從患者身上取下細胞或組織; b. 導入如專利申請範圍第4或9項任一項所述之一種生 物性載體於上述取下的細胞或組織内;以及 c. 將此細胞或組織植回患者體内。 41. 一種可篩選出能擾亂選自腸病毒71型(EV71)、C型肝 炎病毒(HCV)、腦心肌炎病毒(EMC V) IRES的帽獨立型 轉譯作用之抗病毒化合物的方法,其包含: a.轉染如專利申請範圍第1或6項任一項所述之一種核 酸載體到細胞裡; 43 200408708 b. 將測試化合物接觸上述之轉染細胞;以及 c. 偵測重組蛋白生產之減少量,其係與無測試化合物的 轉染細胞相比較。 42. —種核酸疫苗,其至少包含如專利申請範圍第1或6 項任一項所述之一種核酸載體。 43. 一種核酸疫苗,其至少包含如專利申請範圍第4或9 項任一項所述之一種生物性載體。 44. 如申請專利範圍第 42或 43項任一項所述之核酸疫 苗,其係以活體電穿孔方式被引入至一患者的細胞或 組織内。 45. 一種核酸載體或核酸疫苗的傳送系統,其至少包含: a. 從一患者身上取下一細胞或一組織;39 200408708 (EV71), IRES of hepatitis C virus (HCV), encephalomyocarditis virus (EMCV), or a variant sequence or fragment thereof; wherein the nucleotide sequence, its variant sequence or fragment, provides IRES activity. 25. A method for generating a baculovirus capable of expressing at least two cistrons, comprising: a. Introducing a baculovirus delivery vector and a baculovirus genomic DNA as described in item 21 of the patent application scope Into a baculovirus host cell to cause homologous recombination; and b. Isolate a recombinant baculovirus. 26. A baculovirus host cell expressing at least two cistrons, comprising a baculovirus as described in item 24 of the scope of patent application. 27. A baculovirus delivery vector for the expression of at least two cistrons, comprising: a. A nucleotide sequence comprising at least two cistrons connected to and acting on a baculovirus promoter; And b. At least one nucleotide sequence that is connected to and interacts with at least one of the at least two cistrons, and comprises a nucleotide selected from the group consisting of enterovirus type 71 (EV71), hepatitis C virus (HCV), The homologous sequence of IRES of encephalomyocarditis virus (EMCV), or a variant sequence or fragment thereof; wherein the homologous sequence, the variant sequence or fragment thereof, can provide IRES activity. 40 200408708 28. A baculovirus delivery vector as described in item 27 of the scope of patent application, wherein at least one of the at least two cistrons includes a reporter gene. 29. The baculovirus delivery vector according to item 27 in the scope of the patent application, wherein at least one of the at least two cistrons comprises a therapeutic gene. 30. A recombinant baculovirus comprising a baculovirus genome and capable of expressing at least two cistrons in a host cell, the recombinant baculovirus comprising: a. A segment connected to and acting on a baculovirus promoter A nucleotide sequence comprising at least two cistrons; and b. At least one nucleotide sequence connected to and interacting with at least one of the at least two cistrons, comprising one selected from enterovirus type 71 (EV71), the homologous sequence of IRES of hepatitis C virus (HCV), encephalomyocarditis virus (EMC V), or a variant sequence or fragment thereof; wherein the homologous sequence, the variant sequence or fragment thereof, provides IR ES activity. 31. A method for generating a baculovirus capable of expressing at least two cistrons, comprising: a. Introducing a baculovirus delivery vector and baculovirus genomic DNA to a baculovirus as described in item 27 of the scope of patent application 40 200408708 to cause homologous recombination; and b. Isolation of recombinant baculovirus. 32. A baculovirus host cell expressing at least two cistrons, comprising a baculovirus as described in patent application scope 30. 33. A kit capable of expressing recombinant proteins in bacterial, insect and / or mammalian cells, comprising at least one nucleic acid vector comprising at least one IRES sequence capable of acting in a bacterial cell; at least one nucleic acid vector, the The nucleic acid vector comprises at least one IRES sequence capable of acting in insect cells; and at least one nucleic acid vector comprising at least one IR ES sequence capable of acting in mammalian cells. 34. The set of patent application scope 33, wherein the at least one nucleic acid vector comprises at least one IRES sequence selected from the group consisting of enterovirus 71 (EV71), hepatitis C virus (HCV), and encephalomyocarditis virus (EMCV) . 35. The set according to the scope of patent application 33, wherein the set comprises a single nucleic acid vector comprising at least one IR ES sequence capable of acting on bacteria, insects and / or mammalian cells. 36. The set according to the scope of patent application 33, wherein the set comprises two nucleic acid vectors, each of which contains at least one IR ES sequence capable of acting on bacteria, insects and / or mammalian cells . 42 200408708 37. A method of treating a patient, comprising administering a nucleic acid vector as described in any one of the scope of patent application 1 or 6. 38. A method of treating a patient, comprising administering a biological carrier as described in any one of claims 4 or 9 of the scope of patent application. 39. A method for treating a patient, comprising: a. Removing cells or tissues from the patient; b. Introducing a nucleic acid vector as described in the scope of patent application item 1 or 6 into the cells or tissues removed above ; And c. Implant the cell or tissue back into the patient. 40. A method for treating a patient, comprising: a. Removing cells or tissues from the patient; b. Introducing a biological carrier according to any one of the claims 4 or 9 of the scope of the patent application to the removed cells Or tissue; and c. Implant the cell or tissue back into the patient. 41. A method for screening an antiviral compound capable of disrupting cap-independent translation of a member selected from the group consisting of enterovirus 71 (EV71), hepatitis C virus (HCV), and encephalomyocarditis virus (EMC V) IRES, comprising: a. Transfection of a nucleic acid vector into a cell as described in any one of the scope of patent applications 1 or 6; 43 200408708 b. contacting a test compound with the above-mentioned transfected cells; and c. detecting a decrease in recombinant protein production Amount compared to transfected cells without test compound. 42. A nucleic acid vaccine comprising at least one nucleic acid vector as described in any one of the scope of patent application 1 or 6. 43. A nucleic acid vaccine comprising at least one biological carrier as described in any one of claims 4 or 9 of the scope of patent application. 44. The nucleic acid vaccine according to any one of claims 42 or 43 of the scope of patent application, which is introduced into a patient's cell or tissue by electroporation in vivo. 45. A nucleic acid vector or nucleic acid vaccine delivery system, comprising at least: a. Removing a cell or a tissue from a patient; b. 將如專利申請範圍第1或6項任一項所述之一種核酸 載體導入至上述所取下的細胞或組織内;以及 c. 將此細胞或組織植回患者體内。 46. 一種核酸載體或核酸疫苗的傳送系統,其至少包含: a. 從一患者身上取下一細胞或一組織; b. 將如專利申請範圍第4或9項任一項所述之一種生物 性載體導入至上述所取下的細胞或組織内;以及 44 200408708 C.將此細胞或組織植回患者體内。 47. 一種重組蛋白質,其係以如申請專利範圍第1或6項 任一項所述之一種核酸載體所製備而成的。 48. —種重組蛋白質,其係以如申請專利範圍第4或9項 任一項所述之一種核酸載體所製備而成的。b. introducing a nucleic acid vector as described in any one of the scope of patent applications 1 or 6 into the cells or tissues removed above; and c. implanting the cells or tissues back into the patient. 46. A nucleic acid vector or nucleic acid vaccine delivery system, comprising at least: a. Removing a cell or a tissue from a patient; b. A biological agent according to any one of the 4 or 9 scope of the patent application Sexual vectors are introduced into the cells or tissues removed as described above; and 44 200408708 C. The cells or tissues are implanted back into the patient. 47. A recombinant protein, which is prepared with a nucleic acid vector according to any one of claims 1 or 6 of the scope of patent application. 48. A recombinant protein prepared from a nucleic acid vector according to any one of claims 4 or 9 of the scope of patent application. 49. 一種治療藥劑傳送系統,其至少包含: a. 從一患者身上取下一細胞或一組織; b. 將如專利申請範圍第4 7或4 8項任一項所述之一種重 組蛋白質導入至上述所取下的細胞或組織内;以及 c. 將此細胞或組織植回患者體内。49. A therapeutic agent delivery system, comprising at least: a. Removing a cell or a tissue from a patient; b. Introducing a recombinant protein according to any one of claims 47 or 48 in the scope of patent application Into the cells or tissues removed above; and c. Implant the cells or tissues back into the patient. 4545
TW92118785A 2002-07-09 2003-07-09 Internal ribosome entry sites for recombinant protein expression TW200408708A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39426902P 2002-07-09 2002-07-09

Publications (1)

Publication Number Publication Date
TW200408708A true TW200408708A (en) 2004-06-01

Family

ID=52340175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92118785A TW200408708A (en) 2002-07-09 2003-07-09 Internal ribosome entry sites for recombinant protein expression

Country Status (1)

Country Link
TW (1) TW200408708A (en)

Similar Documents

Publication Publication Date Title
AU738156B2 (en) Viral vectors and their uses
EP0506945B1 (en) Method of gene transfer using retrotransposons
JP5377806B2 (en) Expression of endogenous genes by non-homologous recombination of vector constructs with cellular DNA
JP4597188B2 (en) New expression tools for multiprotein applications
US20050112095A1 (en) Internal ribosome entry sites for recombinant protein expression
WO1998012339A9 (en) Viral vectors and their uses
JP2013059331A (en) Lentiviral vector and its use
CN113748124A (en) Immunostimulatory bacteria engineered to colonize tumors, tumor resident immune cells, and tumor microenvironment
KR20220030205A (en) Transposon-Based Modification of Immune Cells
CN1387576A (en) Sequence-specific DNA recombination in ekaryotic cells
E Tolmachov Building mosaics of therapeutic plasmid gene vectors
US20060222630A1 (en) Internal ribosome entry site of the labial gene for protein expression
JP2019505209A (en) Gene modification assay
Lee et al. High‐efficiency protein expression mediated by enterovirus 71 internal ribosome entry site
Krause et al. Efficient co-expression of bicistronic proteins in mesenchymal stem cells by development and optimization of a multifunctional plasmid
TW200408708A (en) Internal ribosome entry sites for recombinant protein expression
EP4133089A1 (en) Methods for targeted integration
JP4491808B1 (en) Drug selection marker gene expression cassette useful for efficient selection of high-expressing cells
EP1478750A2 (en) Gene expression by positive feedback activation of a cell type-specific promoter
AU2003239120B2 (en) Regulated vectors for controlling DNA hypermutability in eukariotic cells
JPH06508745A (en) Increased expression by targeting genes into endogenous retrovirus-like sequences
WO2023060589A1 (en) Multi-transposon system
AU773277B2 (en) Viral vectors and their uses
US20100190160A1 (en) Indicator cell lines and methods for making same
Mehta et al. Gene Regulation