TW200408694A - Oriented nanostructures and methods of preparing - Google Patents

Oriented nanostructures and methods of preparing Download PDF

Info

Publication number
TW200408694A
TW200408694A TW92124461A TW92124461A TW200408694A TW 200408694 A TW200408694 A TW 200408694A TW 92124461 A TW92124461 A TW 92124461A TW 92124461 A TW92124461 A TW 92124461A TW 200408694 A TW200408694 A TW 200408694A
Authority
TW
Taiwan
Prior art keywords
nanostructures
composition
nanostructure
matrix
patent application
Prior art date
Application number
TW92124461A
Other languages
Chinese (zh)
Inventor
Jeffery A Whiteford
Mihai A Buretea
Erik Scher
Steve Empedocles
Andreas Meisel
Original Assignee
Nanosys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanosys Inc filed Critical Nanosys Inc
Publication of TW200408694A publication Critical patent/TW200408694A/en

Links

Abstract

This invention provides compositions and devices having structurally ordered nanostructures, as well as methods for producing structurally ordered nanostructrues.

Description

玖、發明說明: 與相關之專利申請案交互為參考資料 本專利申請案主張:由Mihai Buretea et al於2002年9月 5曰提申的美國臨時申請案USSN 60/408,722,專利名稱: 奈米組成物”、由Erik Scher et al於2002年10月25日提申的 USSN 60/421,353,專利名稱:以奈米組成物為主之光學 揮發裝置”、由Erik Scher et al於2003年3月4日提申的USSN 60/452,038,專利名稱:“以奈米組成物為主之光生伏特 (photo-voltaic)裝置”、以及由 jeffery a· Whiteford et al於 2003年3月4日提申的USSN 60/452,232,專利名稱:“可增 進電荷移入/移出奈米結晶之有機物,,。本申請案提申這些前 行申請案個別之優先權及權益,其等全部之揭露内容在此 併入本案做為參考資料。 【發明所屬之技術領域】 發明領域 本發明係屬於奈米科技領域。特別地,本發明係針對 非隨機定向及/或安排奈米結構組成物,以及其相關製造方 法與相關裝置。 【先前技術 發明背景 奈米結構例如:奈米管、奈米結晶、以及奈米電路已 因為其令人感興趣及新穎性質,而於電子、化學、光學及 其他應用中受到龐大的關注。此等奈米材料具有多種預期 及實際用途,其用途包含:做為供用於半導體之奈米級電 200408694 子材料、於發射裝置(例如:雷射、LEDs等等)中做為光電 設備、以及感應器設備[參閱,例如:於2003年3月1日提申 之國際申請案PCT/US03 /09827、於2003年3月1日提申之國 際申請案PCT/US03/09991、以及與本案共同提申之律師審 5 查編號:40-001320PC、PCT 申請案 WO 03/005450、美國專 利案編號:USPN 5,230,957、USPN 5,537,000、USPN 5,990,479、USPN6,198,655、a&USPN 6,207,229]。 雖然這些材料所具有之分子、物理、化學及光學性質 的商業應用已被推測,但商業產品則尚未上市。於該等具 10 有積體奈米結構元件裝置領域中,某些製造商業產品的困 難是來自處理及加工此種微細級材料的困難。例如,現有 以奈米結晶為主之光生伏打(photo-voltaic)裝置技術就蒙受 自奈米結構轉移至該光生伏打裝置之電荷不足的困難。於 該電子/電洞轉移中的一項限制因子是該奈米結晶裝填及 15 規則程度。大體而言,呈大量自由-擺置元件製造之奈米結 構必須被配置及/或定向於光生伏打裝置内,這是一項產生 困難度的工作。雖然已有多種可供用以製造奈米結構的方 法,但現有的技術仍不足以製造具有選擇性定向或規劃排 列奈米結構之陣列。 2〇 因此,於該技藝中對於非-隨機-定向奈米結構及/或非- 隨機-排列奈米結構、及其等非-隨機-定向奈米結構及/或非 -隨機-排列奈米結構(例如:居於一基質内)的製備方法,係 存有一需求。本發明達成這些以及多項其他的需求。本發 明可以在全覽下文之下獲得一個完全的瞭解。 7 200408694 【發明内容】 發明概要 本發明係提供由結構規則奈米結構所構成之組成物, 以及可供用以製備結構規則奈米結構的方法。多種奈米結 5 構(或由奈米結構所構成之組合)中的任何一種皆可以被使 用於本發明組成物及方法,其包含(但不限制於):奈米結 晶、奈米球、奈米棒、奈米電路、奈米寬帶、奈米四腳體、 各種不同的分支結構(例如:樹狀高分子分支結構)、量子 點、奈米點、以及類似物。 10 於一方面而言,本發明係提供多種居於基質内之結構 規則奈米結構。於一個具體例中,該結構規則奈米結構是 實質地為非-隨機-定向奈米結構。任擇地,該非-隨機-定向 奈米結構是實質地彼此對齊,且實質地對齊一特定轴。對 於該等與一基材進行交互作用或靠近之組成物而言,可以 15 特定軸來定向,俾以實質地垂直該基材表面、平行該表面 或與該表面呈一所欲之角度。 於本發明另一方面而言,多種結構規則奈米結構係提 供一種由規則性規劃奈米結構所構成陣列。可選擇地,該 被提供之結構規則奈米結構是一種以不規則化規劃之結構 20 規則奈米結構。 可供用於本發明組成物之奈米結構可以呈多種可能的 形狀,例如:該結構規則奈米結構可以是:奈米結晶、奈 米點、奈米球、奈米棒、奈米電路、奈米四腳體、樹狀高 分子分支結構、量子點、或任何一種由其等所構成之組合。 8 200408694 較佳地,該奈米結構是無機奈米結構,例如:導電性奈米 結構或半導體奈米結構。 任擇地,該被使用於本發明組成物之基質是具有一種 或多種可交互反應形成多種接收結構之組份,藉此使本發 5 明奈米結構具有一種規則性及/或定向性。於某些具體例 中,自我組織分子,例如:諸等被使用來製備自我組合單 層者。再者,於某些具體例中,一種或多種該基質之組份 可以彼此化學交聯,或聚合(例如··於形成該包含奈米結構 基質期間或該期間之後)。 10 任擇地,一種或多種該基質組份亦可以交聯一個或數 個奈米結構,或交聯一個奈米結構表面配位基(例如:一種 介面組份(例如:界面活性劑))。於某些具體例中,這些基 質組份的多重官能基可供用以結合本發明奈米結構。 於某些本發明具體例中,該包含本發明奈米結構組份 15 具有兩個或數個基質層。較佳地,每一個成員層包含多種 結構規則奈米結構。該居於第一基質層之成員奈米結構可 以(或者可以不)對齊該居於鄰接基質層之成員奈米結構。 於另一方面,本發明係提供具有多種結構規則奈米結 構之組成物,其中成員奈米結構包含一種或多種能夠與該 20 奈米結構對齊之配位基。典型地,該結構規則奈米結構為 實質非隨機定向奈米結構。任擇地,該結構規則奈米結構 是實質對齊之奈米結構。 該多種奈米結構之結構規則化是藉由:令一個居於第 一種成員奈米結構之第一種對齊配位基,與一個居於鄰接 9 成員奈米結構之第二種對齊配位基進行交互作用。典型 地,該第一種與第二種對齊配位基是互補結合對組。任擇 地,該結合對組之兩個互補基是居於相同的分子上(即一個 多功旎为子)。於某些具體例中,一個單一的化學物質可以 被使用為第一種及第二種對齊配位基。可選擇地,該互補 結合對組之兩個對半部體是居於不同的組成物中,依此該 第一種及第二種對齊配位基是不同的分子。 於一個較佳具體例中,該第一種與第二種對齊配位基 是自我組織分子。例如:可以使用自餘合單層組份來產 生對齊配位基。 典型地該被使用於該對齊配位基之互補結合對組是具 有一個分子辨識官能基。例如:該對齊配位基可以包含一 種包含胺之化合物以及一種包含醇之化合物。可選擇地, 一種或多種生物分子對組可以被使用來做為對齊配位基。 生物分子對組之實例包含(但不限制於):一個抗體與一個可 結合該抗體之抗原、生物素與白蛋白(或鏈黴抗生物素蛋 白)、一個外源凝集素(Lectin)與一個碳水化合物配位基、互 補核酸、一個對半部體與一個對半部體配位基。再者,可 以使用由生物分子所構成之組合。於一個具體例中,該第 一種對齊配位基及/或第二種對齊配位基之每一個對齊配 位基可包含一種或多種特定分子辨識官能基。 該等對齊配位基可與多種奈米裝置形狀及尺寸(例 如··球形、橢圓形、延伸或分支結構)的任何一種,進行(直 接或間接)作用。例如:奈米結構可以是奈米結晶、奈米球、 200408694 奈米棒、奈米電路、奈米四腳體、樹狀高分子分支結構、 或任何一種其等之組合。較佳地,該奈米結構為無機奈米 結構,例如:導電性奈米結構或半導體奈米結構。該對齊 配位基可以直接與該具有一個奈米結構之表面,或間接地 5 經由一個居於該奈米結構之表面配位基來進行交互作用, 該交互作用可以是(例如):一種離子交互作用、一種共價交 互作用、一種氫鍵交互作用、一種靜電交互作用、一種庫 余力交互作用、一種凡得瓦耳力(van der Waals force)交互 作用、或者甚至是一種由其等所構成之組合。任擇地,該 10 具有第一種及/或第二種對齊配位基之化學組成物可以包 含一種或多種能夠結合一奈米結構表面或結合界面表面配 位基之官能基頭部基團。該等能夠被使用於本發明中做為 官能基頭部基團之化學官能基可以包含(但不限制於):一種 或多種膦酸、羧酸、胺、膦、氧化膦、胺基苯甲酸、尿素、 15 吼啶、異氰酸酯、醯胺、硝基、嘧啶、咪唑、乙二胺及柳 醛(salen)、二硫酮、鄰苯二酚、N,0配位之配位基(例如: 乙醇胺或苯胺膦酸酯)、P,N配位之配位基及/或硫醇基團。 於又一方面,本發明係提供多種可配置於一個基材上 且由結構規則奈米結構(例如:實質對齊奈米結構)所構成之 20 群組。該奈米結構可以被配置成(例如)與該基材平面實質平 行、與該基材實質平行、或呈另一個特定角度。再者,該 基材可以是平面、曲面、或者包含更多的複合二度或三度 空間幾何形狀。較佳地,該奈米結構的位置或定向是可以 選擇的,藉此調整該等由奈米結構所構成之群組;這可藉 11 200408694 由選擇一種適宜的原子幾何形狀來達成 形狀是四隅體、正方形、平面、八隅體 構型。 任擇地,該幾何 或另一種特定的 5 10 本發明亦提供諸等可供用以製備對齊、定向或其他結 構規則奈米結構的方法。於本發明方法之具體例中,多種 居於:基質内之非隨機定向或非隨機分佈奈米結構的製 備,係可藉由a)配置多種奈米結構與—種基質組成物,其 中該基質組成物包含··-種或多種可與多種能夠組合該奈 米結構之接收結構(“孔洞”)、以及…在該等多種奈米結構存 在之下,加熱然後冷卻該基質組成物,藉此來製備該等居 於该基質内之非隨機定向或非隨機分佈奈米結構。 15 於一個具體例中,該基質組成物被製成一種或多種呈 一不規則(未組裝)型態之基質組份或單體;該於該等多種奈 米結構存在之下,加熱然後冷卻該基質組成物,可容許該 包圍多種奈米結構之基質進行熱力學規則化,藉此來製備 ~種規則化包含奈米結構基質。 於一個可選擇之具體例中,該基質組成物被製成一種 20 予員製成基質,該預製成基質係具有多種能夠組合該奈米結 構之接收結構。該於該等多種奈米結構存在之下,加熱然 後冷卻該基質組成物,可產生該等將該居於基質之接收結 構插入該奈米結構所需之能量。 於本發明另一個具體例中,係提供該等可供用以製備 多種選擇性定向奈米結構的方法。該等方法包含步驟·· a) 配置多種奈米結構,該等奈米結構包含一種可與第一種對 12 200408694 齊配位基進行交互作用之第一組奈米結構、以及一種可與 第二種對齊配位基進行交互作用之第二組奈米結構;b)令 該居於一個第一種奈米結構之第一種對齊配位基與該居於 一個第二種鄰接奈米結構之第二種對齊配位基進行交互作 5 用,藉此來選擇性定向該等奈米結構。 較佳地,該等第一種及第二種對齊配位基與該奈米結 構表面(或者與該表面進行交互作用之分子)是物理性耦合 (例如:鍵結)。典型地,此交互作用是經由一個本發明具有 一個奈米結構結合基團或官能基頭部基團之對齊配位基的 10 部分。 於某些具體例中,使用奈米電路或奈米棒來做為奈米 結構。該等奈米棒或奈米電路可以藉由多種技術,例如: 氣相沉積法或溶液相沉積法,來予以製成於一基材上。其 後以該等對齊配位基來處理此等奈米棒或奈米電路。例 15 如:於製造數個奈米電路之後,將該第一種對齊配位基, 以氣相沉積於一個由第一部分之該等奈米電路或奈米棒所 構成的表面上;然後將該第二種對齊配位基,以氣相沉積 於一個由第二部分之該等奈米電路或奈米棒所構成的表面 上。其後,容許該奈米結構-對齊配位基共軛物進行交互作 20 用,藉此驅動該等奈米結構之定向。任擇地,該奈米結構-對齊配位基共輊物是於該第一種及第二種對齊配位基進行 交互作用之前,就已經自該基材被移除。 任擇地,該第一種及第二種對齊配位基是諸等被挑選 來供用於一種特定分子辨識官能基或基團之分子。一組較 13 200408694 佳之分子辨識官能基實例是該被稱為“自我組織分子”之化 合物群組。該等分子辨識官能基可提供一種簡單的化學交 互作用[例如:居於一個胺基團與一個醇基團之間的氫鍵 結]、或一個更複雜之交互作用[例如:生物分子對組所顯示 5 者]。 令該第一種與第二種對齊配位基進行交互作用,來達 成選擇性定向多種奈米結構,這是可以被施行的,例如: 藉由加熱然後冷卻該等多種奈米結構。於諸等具體例中, 其中該第一種與第二種對齊配位基可更進一步包含一種可 10 交聯或可聚合元件。該等對齊配位基進行交互作用可任擇 地包含令該第一種與第二種對齊配位基進行交聯或聚合之 步驟,例如:形成一種基質。 如一個更進一步之本發明具體例方法,該多種具選擇 性定向之奈米結構可以被固定至一個基材或表面。任擇 15 地,該第一種與第二種對齊配位基可以於被固定至該對齊 奈米結構之後被移除,藉此於一基材上產生多種具有選擇 性定向之奈米結構。 於該等方法中可使用該技藝中所已知之多種奈米結構 的任何一種,其包含(但不限制於):奈米結晶、奈米點、奈 20 米球、奈米棒、奈米電路、奈米寬帶、奈米四腳體、多種 分支結構或由其等所構成之組合。本發明亦提供多種以上 述方法製備之具選擇性定向、非隨機定向、或非隨機分佈 的奈米結構。 本發明對齊及/或組織奈米結構可以被使用於多種裝 14 200408694 置及設備之任何一種’其包含(但不限制於):多種光生伏打 裝置、光耦合電子裝置(LEDs、雷射、光學擴大器)、光收 集器、光偵測器及/或類似物。 定義 5 於詳細描述本發明之前,應瞭解本發明是不受限於特 殊的裝置或生物系統’本發明理應可以具有變化。亦應瞭 解本案所使用之術語是僅供用於描述特定具體例,而不意 欲加以限制。當被使用於此說明書及其檢附之申請專利範 圍時,除非内文另有指明,該等單數形式··“一個,,、“一種” 10 及“該”係包含複數指稱。因此,例如:“一個基材,,可任擇 地包含一種由兩個或更多個基材所構成之組合;於參述“奈 米電路”時’則任擇地包含奈米電路所構成之混合物及類似 物0 除非另予以定義,所有於本案使用之技術及科學術語 15皆具有同一般習知本發明涉及技藝人士所瞭解之定義。雖 然於施行測試本發明時,可使用任何一種類似或等效於本 案所述之方法及材料,但較佳之材料及方法是本案所述 者。於本發明說明書與申請專利範圍中,下列術語係依照 下述定義來予以引用。 20 當被使用於本案時,該術語“奈米結構”係意指具有至 -個區域或具有-維空間小於駕nm之特徵空間,例如: 小於200鐘、小於_⑽、小⑽細、或甚至小於2〇腹。 典型地,該區域或特徵空間包含多種球形、擴圓形、延伸 或分支結構’其等係包含(但不限制於):奈米電路、奈米棒、 15 :米&刀支奈米電路、奈米四腳體、奈米三腳體、奈米 ^、奈米結晶、奈米點、量子點、奈米顆粒、奈米寬 V及/或一似物。奈米結構可以是實質具有均質材料特 性,或者於某些具體例為非均質性(例如:非均質結構任 5擇地,—種奈米結構可包含_種或多種表面配位基⑽如: 界面活n劑)。本發明奈米結構可任擇地為實質之單晶結構 (-種“早晶奈米結構”或_種“單晶奈米結構”)。雖然於基本 上β等供用於本發明之奈米結構可使用任何一種常用材 料或材料,但較佳地本發明是以一種無機化合物、一種導 10電材料、及/或-種半導體材料製成。一種導電或半導體奈 米、、口構通¥可展現一維度量子井(quantum ,例 如:一個電子通常僅可通過穿越一維度之結構空間。 當被使用於本案來參述奈米結構時,該術語“結晶性,, 或“實質結晶性”係意指實際奈米結構於居於該結構之一維 15或更多維空間内可展現長程規則性。一熟習此項技藝人士 可瞭解:由於一個單晶之規則性不能夠超越該結晶之界 限,因此該術語“長程規則性,,可視該特定奈米結構之絕對 尺寸而定。於此個例中,該術語“長程規則性”係意指居於 至少大部分之本發明奈米結構空間内具有實質規則性。於 20 某些個例中,一個奈米結構可包含一個氧化物或其他覆層 物,或者可以包含一個核體及至少一個殼體。於此種個例 中,可以被瞭解的是:該等氧化物殼體或其他覆層並不需 要展現此種規則性(例如:其可以是無固定形狀、多晶形或 其他形狀)。於此等個例中’該等用語“結晶性”、“貫質結晶 16 200408694 性”、“實質單晶性”、“單晶性”係意指該奈米結構中心核體 (其不包含該覆層)。當該等術語“結晶性”、“實質結晶性” 被使用於本案時,係意欲涵概諸等包含各種不同的瑕疵、 疊差(stacking faults)、原子取代及類似之結構,以及諸等具 5 有展現實質長程規則性之奈米結構(例如:居於至少大約 80%長度之該奈米結構核體的至少一個軸是具有規則性 的)。此外,可以被瞭解的是:該居於一個核體與一奈米結 構外部之間的界面、或該居於一個核體與一個鄰接殼體之 間的界面、或該居於一個殼體與一第二個鄰接殼體之間的 10 界面皆可以包含非結晶區域,且甚至可以是無固定形狀。 這並不阻礙該奈米結構是本案所定義之具有結晶性或實質 結晶性。 當被使用來參述一奈米結構時,該術語"單晶性"係意指 該奈米結構是具有實質結晶性,且包含一個實質單晶。當 15 被使用來參述一個奈米結構非均質結構時,“單晶性”係包 含一種核體及一個或更多個殼體,“單晶性”係意指該核體 具有實質結晶性,且包含一個實質單晶。 一個“奈米結晶”是一種實質單晶奈米結構。奈米結晶 典型地會具有一個居於大約0.1至大約1.5之間的高深寬比 20 (例如:居於大約0.1至大約0.5之間、居於大約0.1至大約1 之間、或居於大約1至大約1.5之間)。因此,奈米結晶包含(例 如)實質具有居於大約0.8至大約1.2之間的球形奈米結晶以 及碟形奈米結晶。奈米結晶典型地會具有一個居於大約1.5 nm至大約15 nm之間的直徑(例如:居於大約2 nm至大約5 17 200408694 nm、居於大約5 nm至大觸nm、居於大_咖至大約i5 nm)。奈米結晶可以是具有實質非均質之材料性質,或者於 某些具體例中可以是異構性(例如:具有異結構)。該術語“奈 米結晶”係意欲涵概諸等包含各種不同的瑕疵、叠差 5 (Staddng如叫、原子取代及類似之實質單晶奈米㈣,以 及諸等不具有此等喊、疊差或取代之實日結 構。於諸等包含一個核體及一個或數個殼體之奈:::曰二 均質結構之個例中,該奈米結晶之核體是具有實質草晶 性,但其等殼體則非必要具有實質單晶性。本發明奈米結 1〇晶可以任何-種常用材料或材料來予以製成。本發明奈米 結晶可包含“純化,,材料,實質純化材料、援雜材料及類似 物,且可以包含絕緣體、導電體及半導體。 -個“奈米電路,,是-種奈米結構,其具有_較諸其他 兩主軸更長之主軸。因此,奈米電路典型地會具有一個大 15於1之高深1比·,本發明奈米電路係具有一個大於大約Μ 或大於大約2之高深寬比。短奈米電路,有時候被稱為“奈 米棒”則典型地會具有一個居於大約15至大約1〇之高深寬 比(例如·大於1.5、或大於5)。較長的奈米電路會具有一個 大於大約10、大於大約20、大於大約5〇、或大於大約1〇〇、 20或甚至於大於大約之高深寬比。一個奈米電路之直 徑會典型地小於大約500 nm、較佳是小於大約2〇〇 ηιη、更 佳是小於大約150 nm、且最佳是小大約1〇〇 nm、大約5〇 nm、或大約25 nm、或者甚至於小於大約nm或大約5 nm。一個奈米電路之長度可任擇地超過大約1〇〇 nm,例 18 200408694 如:超過細腿、超過500 nm、或甚至於超過麵謹。 本發明所使用之奈米電路可以具有實質非均質之材料 性質,或者於某些具體例中可以是異構性(例如:具有異結 構奈米電路)。基本上,本發明奈米電路可以任何一種常用 5材料或材料來予以製成,且本發明奈米電路可以具有(例如) 貫貝結日日性、貫質單晶性、多晶性或無故定形狀。本發明 奈米電路可包含“純化,,材料、實質純化材料、齡材料及 類似物,且可以包含絕緣體、導電體及半導體。奈米電路 之直徑疋可以變化的,或者具有一個均一之直徑,意即居 10於一個具有最大變異度之區域内,以及居於一個至少5 nm 之線性空間(例如:至少l〇nm、至少2〇nm、或至少5〇11111) 内,具有一個呈小於20%之變異度(例如:小於大約1〇%、 小於大約5%、小於大約1%)。典型地,該直徑評估是自該 奈米電路端部的退處(例如·居於該奈米電路中央2〇%、 15 40%、50%、8〇%或更大的區域)。本發明奈米電路可以居於 其長軸之全長或一部分是直條形,或者可以是例如:捲曲 或彎曲。於某些具體例中,一奈米電路或其一部分可展現 二維或三維量子井(quantum confinement)。奈米電路依照本 發明而言,可清楚排除奈米碳管,且於某些具體例中,可 20排除‘鬚”或“奈米鬚”’特別地諸鬚可具有一個大於100 nm 之直徑、或大於大約200 nm。奈米、奈米電路、奈米組成 物、及其他奈米結構被另加詳細描述於2002年9月5日提申 之USSN 60/408,722中,其等全部之揭露内容在此併入本案 做為參考資料。 19 200408694 當被使用於本案時,該用語“結構規則奈米結構”係意 指對應彼此或對應一特定軸或空間位置為實質組織化、規 則化、對齊化,或者對應彼此或對應一特定軸或空間位置 為“實質非隨機”。一個“由結構規則奈米結構所構成之群 5 體”係意欲包含:由非隨機奈米結構陣列所構成之群組(例 如:由對齊、定向或非隨機奈米結構所構成之群組、具有 圖案或其他空間組織排列)、以及由非隨機定向奈米結構所 構成之群組(其中大部分的個別奈米結構是實質依非隨 機,但可以呈規則性圖案陣列或不規則性(例如:分散)來予 10 以定位)。 該用語“實質非隨機”(當被使用於本案來描述奈米結 構之定向及/或空間安排時)係意指該奈米結構不佔據一個 對應彼等為純隨機分佈之方位或空間定位。一個由奈米結 構所構成之集合是“實質非隨機定向”,其係設若以一個居 15 於一三維直角唑標系之單位長度向量來代表每一個奈米結 構定位,則該奈米結構定向之至少一個平均向量的一個分 量不為零(當以一向量代表一個奈米結構時,居於該奈米結 構兩端的本質差異會典型地予以忽略)。例如:當該朝向一 個方向(或者朝向至少兩特定方向之一)而非朝向任何其他 20 方向之奈米結構是佔一個較高百分比時(例如:設若佔至少 10%、至少50%、至少75%、或至少90%、或更多的奈米結 構是朝向一個特定方向),該分佈於一基質内之奈米結構(例 如:諸等由數個結構規則之奈米結構所構成者)會實質為非 隨機定向。又例如:當該大部分奈米結構之長軸大多數皆 20 200408694 垂直而非平行一薄膜之表面時(反之亦然),多數之該分佈於 一基質内的奈米棒或奈米電路會實質為非隨機定向。本發 明奈米結構可以在非朝向至少一特定方向之下為實質非隨 機定向。前述實例僅供用於闡釋;一個由奈米結構所構成 5 之集合可以呈較諸這些實例規則度低,但仍為實質非隨機 定向。 當被使用於本案時,該術語“實質定向奈米結構”或“實 質非隨機定向奈米結構”係意指諸等由奈米結構所構成之 群組或群簇,其中至少10%、至少25%、至少50%、至少75%、 10 或至少90%、或更多之奈米結構成員是朝向或對應一個特 定軸、平面、表面或三維空間配置。該定向或配置可以是(例 如):實質平行、實質垂直、或呈一特定角度(例如:大約15°、 30°、45°、或60°)。實質定向奈米結構係包含(例如):由斜 角或呈角度聚集群組奈米結構所構成之群組(例如:星狀圖 15 案或六角形群組)、以及實質奈米結構對齊群體。 當被使用於本案時,該術語“實質對齊”係意指一個由 定向奈米結構所構成之次群組,其中至少10%、至少25%、 至少50%、至少75%、或至少90%、或更多之奈米結構成員 是朝向或呈一同軸或平行相關性配置,例如:對應彼此以 20 及朝向特定軸、平面或表面來定向。例如:數個或實質對 齊奈米結構群可呈一個類似彼此對應之方式來配置,藉此 使該等代表長軸奈米結構成員之向量會彼此相差不超過大 約30°(例如:諸等向量落在另一者之大約30°之内,或較佳 是落在大約15°之内,或更佳是落在大約10°之内或落在大 21 200408694 約5°之内)。 該術語“實質垂直”及“實質平行”係意指個別地與一個 垂直或平行向量之定向(或由定向所構成之向量代表群組) 差異小於25%、較佳是小於10%、且更佳是小於5%。 5 該術語“大約”係意指一個可接受之差異值是小於該參 述數值之25%、較佳是小於10%、且更佳是小於5%。 當被使用於本案時,該用語“規則性規劃”係意指一種 呈二維或三維空間實質非隨機排列、立體空間圖案或組織 化結構。一種不規則性規劃排列或陣列係缺乏一種呈二維 10 或三維空間實質非隨機排列、立體空間圖案或組織化結 構。例如:參閱第1B圖,其中該奈米結構是兩兩對齊(例如: Z軸)但在x-y平面上則為不規則排列。 該述語“基質”係意指一種材料,通常是一種聚合材 料,其孕含、包圍或包含一個第二種材料。一個基質典型 15 地是由一種或多種單體所組成,但其可包含其他基質組份/ 組成物。通常該基質組成物包含一種或多種“可配飾 (addressable)”組成物或互補對組,例如:諸等可促進該基 質組裝及/或交聯者。 “對齊配位基”是諸等與一種或多種奈米結構交互作用 20 之組份,且其等可被使用來規則化、定向及/或對齊該等與 之進行交互作用的奈米結構。除了具有一個對一奈米結構 的親和度之外,本發明對齊配位基亦典型地包含一個或數 個互補結合對組或嵌入其内之專一性或非專一性“分子辨 識官能基”。 22 5 蝴—個奈米結構“陣列”是一種奈米結構組合體。該組合 肢可以是具有空„案化或不規則的。任擇地,該陣列可 =成或包含—種❹射能基元件(例如··—個連結或由 、=構成之集合);任擇地,該陣列可叹非官能基化的。 使用於本案時,該用語“數個接收結構,,—般係意 基質内所產生的區域’該區域被結構化,俾以配 4結構(例如:諸等將奈米結構配置於其中之凹洞、 孔隙);該術語亦被使用來指稱該等可與該奈米結構发明 Description of the invention: Interaction with related patent applications as reference material This patent application claims: US provisional application USSN 60 / 408,722 filed by Mihai Buretea et al on September 5, 2002, patent name: Nano "Composition", USSN 60 / 421,353 filed by Erik Scher et al on October 25, 2002, Patent Name: Optical Volatilization Device Based on Nanocomposition ", Erik Scher et al, March 2003 USSN 60 / 452,038 filed on the 4th, patent name: "Photo-voltaic device based on nanometer composition", and filed by Jeffery A. Whiteford et al on March 4, 2003 USSN 60 / 452,232, patent name: "Organic substances that can promote the transfer of charge into / out of nanocrystals ,. This application claims the individual priority and rights of these previous applications, and all of its disclosures are incorporated herein. This case serves as a reference. [Technical Field to which the Invention belongs] Field of the Invention The present invention belongs to the field of nanotechnology. In particular, the present invention is directed to non-randomly oriented and / or arranged nanostructures, and related manufacturing. [Background of the Prior Art Invention] Nanostructures such as nanotubes, nanocrystals, and nanocircuits have been used in electronics, chemistry, optics, and other applications for their interesting and novel properties. Huge attention. These nanomaterials have a variety of intended and practical uses. Their uses include: as nanomaterials for semiconductors. 200408694 sub-materials, and in emission devices (such as lasers, LEDs, etc.) as Optoelectronic equipment, and sensor equipment [see, for example, International Application PCT / US03 / 09827 filed on March 1, 2003, International Application PCT / US03 / 09991 filed on March 1, 2003, And the lawyer's trial with the case together with the case 5 investigation number: 40-001320PC, PCT application WO 03/005450, US patent case number: USPN 5,230,957, USPN 5,537,000, USPN 5,990,479, USPN 6,198,655, a & USPN 6,207,229]. Although The commercial applications of the molecular, physical, chemical, and optical properties of these materials have been speculated, but commercial products have not yet been marketed. In these, there are integrated nanostructured components. In the field of equipment, some of the difficulties in manufacturing commercial products come from the difficulty of processing and processing such fine grade materials. For example, the existing photo-voltaic device technology mainly based on nanocrystals suffers from nanostructures. Difficulty with insufficient charge transferred to the photovoltaic device. A limiting factor in the electron / hole transfer is the nanocrystalline packing and 15 regular degrees. In general, nanostructures made with a large number of free-placement elements must be configured and / or oriented within a photovoltaic device, which is a difficult task. Although a variety of methods are available for fabricating nanostructures, the existing technology is still insufficient to fabricate arrays with selectively oriented or planned nanostructures. 2〇 Therefore, in this technique, for non-random-oriented nanostructures and / or non-random-aligned nanostructures and their non-random-oriented nanostructures and / or non-random-aligned nanostructures There is a need for a method for preparing a structure (for example, living in a matrix). The present invention fulfills these and many other needs. The invention can be fully understood below the overview. 7 200408694 [Summary of the Invention] Summary of the Invention The present invention provides a composition composed of a regular nanostructure and a method for preparing a regular nanostructure. Any of a variety of nanostructures (or combinations of nanostructures) can be used in the composition and method of the present invention, including (but not limited to): nanocrystals, nanospheres, nano Rice rods, nano-circuits, nano-broadbands, nano-tetrapods, various branch structures (such as dendrimer branches), quantum dots, nano-dots, and the like. 10 In one aspect, the invention provides a variety of regular nanostructures that reside within the matrix. In a specific example, the regular nanostructure of the structure is a substantially non-random-oriented nanostructure. Optionally, the non-random-oriented nanostructures are substantially aligned with each other and are substantially aligned with a particular axis. For those components that interact with or come close to a substrate, they can be oriented with a particular axis, so as to be substantially perpendicular to the surface of the substrate, parallel to the surface, or at a desired angle to the surface. In another aspect of the present invention, a plurality of regular nanostructures provides an array of regularly planned nanostructures. Alternatively, the provided structured regular nano structure is a structure planned in an irregular 20 regular nano structure. The nanostructures that can be used in the composition of the present invention can take a variety of possible shapes, for example: the structure of the regular nanostructures can be: nanocrystals, nanopoints, nanospheres, nanorods, nanocircuits, nano Rice tetrapods, dendrimer branches, quantum dots, or any combination of them. 8 200408694 Preferably, the nanostructure is an inorganic nanostructure, such as a conductive nanostructure or a semiconductor nanostructure. Optionally, the substrate used in the composition of the present invention is one or more components that can interact with each other to form a plurality of receiving structures, thereby giving the present invention nanostructures a regularity and / or orientation. In some specific examples, self-organizing molecules, such as: are used to prepare self-assembled monolayers. Furthermore, in some specific examples, one or more components of the matrix may be chemically cross-linked to each other, or polymerized (for example, during or after forming the nanostructure-containing matrix). 10 Optionally, one or more of the matrix components can also crosslink one or more nanostructures, or crosslink a nanostructure surface ligand (eg, an interface component (eg, a surfactant)). . In some embodiments, the multiple functional groups of these matrix components can be used to incorporate the nanostructures of the present invention. In some embodiments of the present invention, the nanostructure-containing component 15 of the present invention has two or more matrix layers. Preferably, each member layer includes a plurality of regular nanostructures. The member nanostructure resident in the first matrix layer may (or may not) be aligned with the member nanostructure resident in the adjacent matrix layer. In another aspect, the present invention provides a composition having a plurality of regular nanostructures, wherein a member nanostructure comprises one or more ligands capable of being aligned with the 20nm structure. Typically, the regular nanostructure of the structure is a substantially non-randomly oriented nanostructure. Optionally, the regular nanostructure of the structure is a substantially aligned nanostructure. The structural regularization of the multiple nanostructures is performed by having a first aligned ligand that resides in the first member nanostructure and a second aligned ligand that resides in the adjacent 9 member nanostructure. Interaction. Typically, the first and second aligned ligands are complementary binding pairs. Optionally, the two complementary groups of the binding pair reside on the same molecule (ie, a multifunctional dysprosium is a child). In some embodiments, a single chemical can be used as the first and second alignment ligand. Alternatively, two pairs of halves of the complementary binding pair reside in different compositions, and accordingly the first and second alignment ligands are different molecules. In a preferred embodiment, the first and second alignment ligands are self-organizing molecules. For example, a self-conforming monolayer component can be used to generate aligned ligands. The complementary binding pair typically used for the alignment ligand has a molecular recognition functional group. For example, the alignment ligand may include a compound containing an amine and a compound containing an alcohol. Alternatively, one or more biomolecule pairs can be used as alignment ligands. Examples of biomolecule pairs include (but are not limited to): an antibody and an antigen that can bind the antibody, biotin and albumin (or streptavidin), a lectin (Lectin) and a Carbohydrate ligands, complementary nucleic acids, a pair of halves and a pair of halves. Furthermore, a combination of biomolecules can be used. In a specific example, each of the first alignment ligand and / or the second alignment ligand may include one or more specific molecular recognition functional groups. These aligned ligands can interact (directly or indirectly) with any of a variety of nanodevice shapes and sizes (e.g., spherical, oval, extended or branched structures). For example, the nanostructure may be a nanocrystal, a nanosphere, a 200408694 nanorod, a nanocircuit, a nanotetrapod, a tree-like polymer branch structure, or any combination thereof. Preferably, the nanostructure is an inorganic nanostructure, such as a conductive nanostructure or a semiconductor nanostructure. The aligned ligand can interact directly with the surface with a nanostructure, or indirectly through a surface ligand that resides in the nanostructure. The interaction can be, for example, an ionic interaction Interaction, a covalent interaction, a hydrogen bond interaction, an electrostatic interaction, a reservoir residual force interaction, a van der Waals force interaction, or even a combination of them . Optionally, the 10 chemical composition having the first and / or second alignment ligand may include one or more functional group head groups capable of binding a nanostructure surface or an interface surface ligand. . The chemical functional groups that can be used as the functional group head group in the present invention may include (but not limited to): one or more phosphonic acid, carboxylic acid, amine, phosphine, phosphine oxide, aminobenzoic acid , Urea, 15-amidine, isocyanate, ammonium, nitro, pyrimidine, imidazole, ethylenediamine and salen, dithione, catechol, N, 0 coordination ligands (for example: Ethanolamine or aniline phosphonate), P, N coordination ligands and / or thiol groups. In yet another aspect, the present invention provides a plurality of 20 groups that can be arranged on a substrate and consist of regular nanostructures (eg, substantially aligned nanostructures). The nanostructure can be configured, for example, substantially parallel to the plane of the substrate, substantially parallel to the substrate, or at another specific angle. Furthermore, the substrate may be planar, curved, or include more complex second or third degree spatial geometries. Preferably, the position or orientation of the nanostructure can be selected, thereby adjusting the groups composed of the nanostructures; this can be achieved by selecting a suitable atomic geometry by 11 200408694. , Square, flat, octahedron configuration. Optionally, the geometry or another particular 5 10 invention also provides methods that can be used to prepare aligned, oriented, or other structurally regular nanostructures. In the specific example of the method of the present invention, the preparation of multiple non-randomly oriented or non-randomly distributed nanostructures living in a matrix can be accomplished by a) configuring multiple nanostructures and a matrix composition, wherein the matrix composition The objects include ... one or more receiving structures ("holes") that can be combined with the nanostructures, and ... in the presence of the plurality of nanostructures, heating and cooling the matrix composition to thereby The non-randomly oriented or non-randomly distributed nanostructures are prepared in the matrix. 15 In a specific example, the matrix composition is made of one or more matrix components or monomers in an irregular (unassembled) form; in the presence of the various nanostructures, heating and then cooling The matrix composition allows the matrix surrounding a plurality of nanostructures to be thermodynamically regularized, thereby preparing a kind of regular matrix containing nanostructures. In an alternative embodiment, the matrix composition is made into a 20-member matrix, and the pre-made matrix has a plurality of receiving structures capable of combining the nanostructure. In the presence of the various nanostructures, heating and then cooling the matrix composition can generate the energy required to insert the receiving structure that resides in the matrix into the nanostructures. In another embodiment of the present invention, methods are provided for preparing a plurality of selectively-oriented nanostructures. The methods include the steps of: a) configuring a plurality of nanostructures, the nanostructures including a first group of nanostructures that can interact with the first homologous ligand of 12 200408694, and a nanostructure that can interact with the first A second group of nanostructures interacting with two aligned ligands; b) making the first aligned ligands living in a first nanostructure and the second living structure in a second adjacent nanostructure Two aligned ligands interact with each other to selectively orient the nanostructures. Preferably, the first and second alignment ligands are physically coupled (eg, bonded) to the surface of the nanostructure (or a molecule that interacts with the surface). Typically, this interaction is via the 10-portion of an aligned ligand of the invention having a nanostructure binding group or a functional group head group. In some specific examples, nano-circuits or nano-rods are used as nano-structures. The nanorods or nanocircuits can be fabricated on a substrate by a variety of techniques, such as: vapor deposition or solution phase deposition. These nanorods or nanocircuits are then processed with the aligned ligands. Example 15 For example, after manufacturing several nano-circuits, the first alignment ligand is vapor-deposited on a surface composed of the nano-circuits or nano-rods of the first part; and then The second alignment ligand is vapor-deposited on a surface composed of the nanocircuits or nanorods of the second part. Thereafter, the nanostructure-aligned ligand conjugates are allowed to interact, thereby driving the orientation of the nanostructures. Optionally, the nanostructure-aligned ligand conjugate is removed from the substrate before the first and second aligned ligands interact. Optionally, the first and second alignment ligands are molecules that have been selected for use in a particular molecular recognition functional group or group. An example of a better molecular recognition functional group than 13 200408694 is the group of compounds called "self-organizing molecules". These molecular recognition functional groups can provide a simple chemical interaction [for example: a hydrogen bond between an amine group and an alcohol group], or a more complex interaction [for example: a biomolecule pair Show 5 of them]. The first and second alignment ligands are allowed to interact to achieve selective orientation of multiple nanostructures, which can be performed, for example: by heating and then cooling the multiple nanostructures. In various specific examples, the first and second alignment ligands may further include a crosslinkable or polymerizable element. The interaction of the aligned ligands may optionally include a step of cross-linking or polymerizing the first and second aligned ligands, for example, forming a matrix. As a further embodiment of the present invention, the plurality of selectively oriented nanostructures can be fixed to a substrate or surface. Optionally, the first and second alignment ligands can be removed after being fixed to the aligned nanostructures, thereby generating a plurality of selectively oriented nanostructures on a substrate. Any of a variety of nanostructures known in the art can be used in these methods, including (but not limited to): nanocrystals, nanopoints, nano20m spheres, nanorods, nanocircuits , Nano-broadband, nano-tetrapod, a variety of branch structures or a combination of them. The present invention also provides a plurality of nanostructures prepared by the methods described above with selective orientation, non-random orientation, or non-random distribution. The alignment and / or tissue nanostructures of the present invention can be used in any of a variety of devices. It includes (but is not limited to): a variety of photovoltaic devices, optically coupled electronic devices (LEDs, laser, Optical amplifier), light collector, light detector, and / or the like. Definition 5 Before describing the present invention in detail, it should be understood that the present invention is not limited to a particular device or biological system. The present invention should have variations. It should also be understood that the terminology used in this case is for the purpose of describing specific examples and is not intended to be limiting. When used in this specification and the scope of patent applications attached thereto, unless otherwise indicated in the text, the singular forms "a", "an" 10 and "the" include plural referents. Therefore, for example, : "A substrate may optionally include a combination of two or more substrates; when referring to" nanocircuits ", then a mixture of nanocircuits and Analogs 0 Unless otherwise defined, all technical and scientific terms 15 used in this case have the same definitions as those skilled in the art to which this invention relates. Although any method and materials similar or equivalent to those described in this application can be used in the testing of the present invention, the preferred materials and methods are those described in this application. In the scope of the present specification and patent application, the following terms are cited in accordance with the following definitions. 20 When used in this case, the term "nano structure" means a feature space with up to one region or with a one-dimensional space smaller than a nanometer, such as: less than 200 minutes, less than _⑽, small ⑽ thin, or Even less than 20 belly. Typically, this region or feature space contains a variety of spherical, rounded, extended, or branched structures. The system includes (but is not limited to): nanocircuits, nanorods, 15: meters & blade nanocircuits , Nano-tetrapod, nano-tripod, nano- ^, nano-crystal, nano-dot, quantum dot, nano-particle, nano-wide V and / or an analog. The nanostructure can be substantially homogeneous material properties, or in some specific cases is heterogeneous (for example: the heterogeneous structure is optional,-a nanostructure can contain _ species or multiple surface ligands, such as: Interfacial activity n agent). The nanostructure of the present invention may optionally be a substantially single crystal structure (-a "early crystal nanostructure" or a "single crystal nanostructure"). Although any common material or material can be used for the nanostructures such as β which are basically used in the present invention, the present invention is preferably made of an inorganic compound, a conductive material, and / or a semiconductor material. . A conductive or semi-conducting nanostructure can be used to display a one-dimensional quantum well (for example, an electron can usually only pass through one-dimensional structural space. When used in this case to refer to nanostructures, the The term "crystalline," or "substantially crystalline," means that the actual nanostructure exhibits long-range regularity in a space 15 or more dimensions that resides in one dimension of the structure. A person skilled in the art will understand that due to a The regularity of a single crystal cannot exceed the boundaries of the crystal, so the term "long-range regularity depends on the absolute size of the particular nanostructure. In this example, the term" long-range regularity "means There is substantial regularity in at least most of the nanostructure space of the present invention. In some cases, a nanostructure may include an oxide or other coating, or may include a core body and at least one shell In this case, it can be understood that the oxide shells or other coatings do not need to exhibit such regularity (for example: they may be without a fixed shape, Crystalline or other shapes). In these examples, the terms "crystalline", "permanent crystal 16 200408694", "substantially monocrystalline", and "monocrystalline" mean the center of the nanostructure Nuclei (which does not include this coating). When the terms "crystalline" and "substantially crystalline" are used in this case, they are intended to include various different flaws, stacking faults, Atomic substitution and similar structures, and nanostructures that exhibit substantial long-range regularity (eg, at least one axis of the nanostructure nucleus that is at least about 80% in length is regular). It can be understood that: the interface between a nucleus and the exterior of a nanostructure, or the interface between a nucleus and an adjacent shell, or the hull and a second shell The 10 interfaces between adjacent shells can all contain amorphous regions and can even be non-fixed. This does not prevent the nanostructure from being crystalline or substantially crystalline as defined in this case. When used to reference In the case of nanostructures, the term " single crystallinity " means that the nanostructure is substantially crystalline and contains a substantially single crystal. When 15 is used to refer to a nanostructure heterogeneous structure, "Single crystallinity" includes a core body and one or more shells. "Single crystallinity" means that the core body has substantial crystallinity and contains a substantially single crystal. A "nanocrystal" is a kind of Substantially single crystal nanostructures. Nanocrystals typically have a height-to-width ratio of 20 between about 0.1 to about 1.5 (eg, between about 0.1 to about 0.5, between about 0.1 to about 1, or (Between about 1 to about 1.5). Therefore, the nanocrystals include, for example, substantially spherical nanocrystals having between about 0.8 to about 1.2 and dish-shaped nanocrystals. Nanocrystals typically have a diameter between about 1.5 nm and about 15 nm (for example: between about 2 nm and about 5 17 200408694 nm, between about 5 nm and large touch nm, and between about 5 nm and about 5 μm). nm). Nanocrystals can be of substantially heterogeneous material properties, or in some specific cases can be heterogeneous (e.g., have a heterostructure). The term "nanocrystals" is intended to imply that various types of defects and stackings are included. Or replaced by a real-day structure. In the case of various nanostructures containing a nucleus and one or more shells ::: said two homogeneous structures, the nucleus of the nanocrystalline is substantially grass-crystalline, but Such shells do not need to be substantially monocrystalline. The nano-junction 10 crystals of the present invention may be made of any of a variety of commonly used materials or materials. The nano-crystals of the present invention may include "purification, materials, and substantially purified materials. , Miscellaneous materials, and the like, and may include insulators, conductors, and semiconductors. A "nano circuit," is a nanostructure that has a longer spindle than the other two spindles. Therefore, the nano Circuits typically have a height to depth 1 ratio greater than 15 to 1. The nano circuit of the present invention has a height to width ratio greater than about M or greater than about 2. Short nano circuits are sometimes referred to as "nano sticks" "Will typically have a large A height-to-aspect ratio of 15 to about 10 (for example, greater than 1.5, or greater than 5). Longer nanoscale circuits will have a ratio greater than about 10, greater than about 20, greater than about 50, or greater than about 100, 20 Or even an aspect ratio greater than about. The diameter of a nanocircuit will typically be less than about 500 nm, preferably less than about 200 nm, more preferably less than about 150 nm, and most preferably less than about 10 nm. 〇nm, about 50nm, or about 25 nm, or even less than about nm or about 5 nm. The length of a nano circuit can optionally exceed about 100 nm, eg 18 200408694 such as: More than 500 nm, or even more than enough. The nano circuit used in the present invention may have substantially heterogeneous material properties, or may be heterogeneous in some specific examples (for example, nano circuits with different structures) Basically, the nanocircuits of the present invention can be made of any of the commonly used materials or materials, and the nanocircuits of the present invention can have, for example, Japanese penetrating properties, monocrystalline properties, polycrystalline properties, or Shape without reason. Minnano circuits can include "purified, material, substantially purified materials, ageing materials, and the like, and can include insulators, conductors, and semiconductors. The diameter of nano circuits can vary, or have a uniform diameter, meaning 10 in a region with the largest degree of variation, and in a linear space of at least 5 nm (for example: at least 10 nm, at least 20 nm, or at least 5011111) with a variation of less than 20% Degrees (for example: less than about 10%, less than about 5%, less than about 1%). Typically, the diameter estimate is a retreat from the end of the nanocircuit (for example, 20% centered on the nanocircuit). , 15 40%, 50%, 80% or greater). The nano-circuit of the present invention may be a straight bar in the entire length or a part of its long axis, or may be, for example, curled or bent. In some specific examples, a nanometer circuit or a part thereof may exhibit a two-dimensional or three-dimensional quantum confinement. Nano-circuits according to the present invention can clearly exclude nano-carbon tubes, and in some specific examples, 20 can exclude 'whisker' or 'nano-whisker' '. In particular, the whiskers may have a diameter greater than 100 nm. , Or greater than about 200 nm. Nanometers, nanocircuits, nanocomposites, and other nanostructures are described in detail in USSN 60 / 408,722 filed on September 5, 2002, all of which are disclosed The content is incorporated herein as a reference. 19 200408694 When used in this case, the term "structural rule nanostructure" means that it corresponds to each other or to a particular axis or spatial location to be substantially organized, regularized, Alignment, or corresponding to each other or to a specific axis or spatial position, is "substantially non-random." A "group of 5 bodies composed of regular nanostructures" is intended to include: an array of non-random nanostructures Groups (for example: groups consisting of aligned, oriented, or non-random nanostructures, with patterns or other spatial organization arrangements), and groups consisting of non-randomly oriented nanostructures (most of which The individual nanostructures are non-random in nature, but can be positioned in an array of regular patterns or irregularities (for example: scatter) to locate 10). The term "substantially non-random" (when used in this case to describe Nai Orientation and / or spatial arrangement of a rice structure) means that the nanostructure does not occupy an azimuth or spatial location corresponding to a purely random distribution. A set composed of nanostructures is "substantially non-random orientation", It is assumed that if a unit length vector of 15 in a three-dimensional rectangular system is used to represent each nanostructure location, then a component of at least one average vector of the nanostructure orientation is not zero (when represented by a vector When a nanostructure is used, the essential differences between the two ends of the nanostructure are typically ignored. For example, when the nanostructure is oriented in one direction (or in at least two specific directions) rather than in any other 20 directions Is a higher percentage (for example, if at least 10%, at least 50%, at least 75%, or at least 90%, or more of the nanostructure is oriented toward a Specific direction), the nanostructures distributed in a matrix (for example, nanostructures composed of several structural rules) will be substantially non-randomly oriented. Another example is when the majority of nanostructures are Most of the long axes are 20 200408694. When the surface of a film is perpendicular rather than parallel to the surface of a film (and vice versa), most nanorods or nanocircuits distributed in a matrix will be substantially non-randomly oriented. Nanostructures of the invention It may be oriented substantially non-randomly under non-oriented at least one specific direction. The foregoing examples are for illustration only; a set of 5 consisting of nanostructures may have a lower degree of regularity than these examples, but still be substantially non-randomly oriented. When used in this case, the term "substantially oriented nanostructures" or "substantially non-randomly oriented nanostructures" means groups or clusters of nanostructures, of which at least 10%, at least 25 %, At least 50%, at least 75%, 10 or at least 90%, or more nanostructure members are oriented toward or correspond to a specific axis, plane, surface, or three-dimensional space configuration. The orientation or configuration can be, for example, substantially parallel, substantially vertical, or at a specific angle (e.g., approximately 15 °, 30 °, 45 °, or 60 °). Substantially oriented nanostructures include, for example: groups of nanostructures that are grouped by oblique or angular clusters (for example: star pattern 15 or hexagonal groups), and aligned groups of substantial nanostructures . When used in this case, the term "substantially aligned" means a subgroup of oriented nanostructures, of which at least 10%, at least 25%, at least 50%, at least 75%, or at least 90% , Or more nano-structure members are oriented or arranged in a coaxial or parallel correlation, for example, they are aligned with each other at 20 and towards a specific axis, plane or surface. For example, several or substantially aligned nano-structure groups can be arranged in a similar manner to each other, so that the vectors representing the members of the long-axis nano-structures can differ from each other by no more than about 30 ° (for example, the various vectors Fall within approximately 30 ° of the other, or preferably fall within approximately 15 °, or more preferably fall within approximately 10 ° or within approximately 5 ° of the largest 21 200408694). The terms "substantially vertical" and "substantially parallel" mean individually different from an orientation of a vertical or parallel vector (or a group of vectors represented by the orientation) with a difference of less than 25%, preferably less than 10%, and more Preferably it is less than 5%. 5 The term "about" means that an acceptable difference is less than 25% of the reference value, preferably less than 10%, and more preferably less than 5%. When used in this case, the term “regular planning” means a substantially non-random arrangement, three-dimensional spatial pattern, or organized structure in a two- or three-dimensional space. An irregular planning arrangement or array lacks a substantially non-random arrangement, three-dimensional spatial pattern, or organization structure in a two-dimensional or three-dimensional space. For example, refer to FIG. 1B, where the nanostructures are aligned in pairs (eg, Z axis) but are irregularly arranged on the x-y plane. The term "matrix" means a material, usually a polymeric material, which contains, surrounds, or contains a second material. A matrix is typically composed of one or more monomers, but it may contain other matrix components / compositions. Typically the matrix composition comprises one or more "addressable" compositions or complementary pairs, such as those that facilitate assembly and / or cross-linking of the matrix. "Aligned ligands" are components that interact with one or more nanostructures 20, and they can be used to regularize, orient, and / or align the nanostructures with which they interact. In addition to having an affinity for a nanostructure, the alignment ligands of the present invention typically also contain one or more complementary binding pairs or specific or non-specific "molecular recognition functional groups" embedded therein. 22 5 Butterfly—An "array" of nanostructures is a combination of nanostructures. The combined limb may be empty or irregular. Alternatively, the array may be formed or contain a kind of radioactive energy-based elements (for example, a link or a set consisting of, =); Alternatively, the array may be non-functional. As used in this case, the term "several receiving structures,-generally means a region generated within the matrix ', the region is structured to match the 4 structure ( For example: the recesses and pores in which the nanostructures are arranged); the term is also used to refer to those nanostructures that can interact with the nanostructures

10 學組成物 風 作用、結合或者“接收,,之居於凹洞内的官能基化 學組成物。 一該術語“互補結合對組,,係意指—個由該等對另一者具 、親寿吐之分子所構成的群組。該親和性可以是非專 性分子交互作用[例如:居於供應與接受分子之間的氯 鍵]’或者該親和性可以是一種更複雜或專一性分子辨識官 15能基[例如:所見於—受體與其互補配位基]。—個使用一專10 Chemical composition The functional composition of a functional group in a cavity that acts, binds or "receives." The term "complementary binding pair," means that a pair of A group of longevity molecules. The affinity may be a non-specific molecular interaction [for example: the chlorine bond between the supply and receiving molecules] 'or the affinity may be a more complex or specific molecular discriminator 15 energy group [eg: seen in — affected And its complementary ligands]. — One for one

ί·生生物/刀子觸官能基之互補結合對組亦被指稱為“生 物分子對組”或“生物共軛對組”。 杨浯自我組織分子,,係意指一種能夠自動與其他分 子組合成安定結構化分子聚集體或組合體。一種自我組織 20分子是諸等被使用來製備自我組合單層(saMs)組份。 麟., 該術語“奈米結構結合組份,,及“頭部基團”於本案中被 交替使用來意指多種化學組份或基團,其等可與一奈米結 構搞合(例如.呈結合形式)或具有輕合能力(例如:官能基 化)。_合可以是直_合該奈米結構表面,或者於某些 23 情形中,該輕合是該奈米結構的-個表面配位基(例如:該 表面配位基的功能為一種居於該奈米結構與該具有奈米結 構結合組份之組份間的連結基團)。 一個“高深寬比”是-個奈米結構之第_轴長度除_個 5 ^米結構之第二軸與第三軸長度平均值,其中該第二轴盘 第^軸是兩長度彼此最接近者。例如:對一個完全之棒體 而口 ,、長軸除一垂直該長軸之截面直徑為其高深寬比。 圖式簡單說明 第1A-1D圖提供一個居於一基質内具有多種結構規則 10奈米結構之多種具體例的代表圖。 ^第2圖提仏本發明所描述之諸等居於奈米結構與單官 &基或多早官能基之第_對齊配位基與第—對齊配位基之 間的交互作用示意圖。 第3圖係闡釋供用於本發明之對齊配位基的具體例。 15 【實施方式】 較佳實施例之詳細說明 本I明係提供結構規則奈米結構之組成物,以及可供 用以I備u亥示米結構及可將其等奈米結構使用於其中之奈 米裝置。雖然詳細說明及具體例係專注於一種或另一種奈 20米結構形態,但可被瞭解的是本發明提供之方法及組成物 可被施用於本技藝中所熟知奈米結構成員之任一者,其包 含(但不限制於)··奈米結晶、奈米點、奈米顆粒、奈米棒、 奈米寬帶、奈米四腳體、奈米級分支結構(例如··樹狀高分 子分支結構)、以及類似物。 24 200408694 居於一基質内之結構規則奈米結構 於一個方面,本發明係提供多種居於一基質内之結構 規則奈米結構。於一個具體例中,該結構規則奈米結構是 實質非-隨機-定向奈米結構。任擇地,該實質非-隨機-定向 5 奈米結構是實質地彼此對齊、及/或實質地對齊一特定軸。 例如:對於諸等與一個基材交互作用或者接近之組成物而 言,該特定軸可以實質地定向或垂直該基材表面、平行該 表面或與該表面呈一所欲之角度。 於一個具體例中,本發明係提供多種居於一基質内之 10 非隨機定向奈米結構。本發明提供之該定向奈米結構可以 是(例如)一種由規則性規劃奈米結構所構成之陣列。可選擇 地,本發明提供之該定向奈米結構可以是一種不規則化規 劃排列。該奈米結構典型地呈彼此相對應定向(例如:實質 地彼此平行、端部對其端部,等等)。該奈米結構之非隨機 15 定向是藉由在一種配置奈米結構之基質存在下來維持。 本發明示例性具體例之代表圖被提供於第1圖。於這些 具體例中,類似奈米棒結構被圖示於第1A及1B圖中是延一 個z軸(例如:端部),於第1C圖中是呈角度定向,而於第1D 圖中則是被安置居於一個x-y平面。然而,本發明化合物並 20 不限制於所顯示之具體例。本發明圖示多種實質非規則定 向奈米結構。於一特別的具體例中,非實質彼此對齊奈米 結構之定向是呈一特定角度(例如:45°)。 任擇地,本發明係提供諸等具有多種居於一基質内之 非隨機定向奈米結構。本發明提供之該定向奈米結構可以 25 200408694 是(例如)一種由規則性規劃奈米結構所構成之陣列。可選擇 地,本發明提供之該定向奈米結構是一種不規則性規劃排 歹J本發明奈米結構係對應彼此定向(例如:實質地彼此平 行、端部對其端部,等等);任擇地,其等定向亦可以被描 5述為對應一特定平面或表面(例如:平行、垂直、呈一特定 角度、等等)。該奈米結構之非隨機定向是藉由在一種配置 奈米結構之基質存在下來維持。 於另一方面,本發明係提供諸等組成物,其具有一種 由居於一基質内之奈米結構所構成之陣列,其中該陣列包 δ夕種非卩远機排列奈米結構成員。任擇地,該陣列之奈米 結構成員亦可以呈彼此對應為非隨機定向。因此,第i圖之 A圖亦圖示多種非隨機排列奈米結構成員,其中該奈米結構 成員亦呈彼此對應為非隨機定向。第i圖之(^圖丨則圖示一種 包含多種非隨機排列奈米結構陣列之組成物的另一個具體 15例。於此具體例中,該陣列之奈米結構成員是呈彼此對應 為隨機定向。一個由居於基質内非隨機排列奈米結構所構 成之陣列的更進一步具體例被顯示於第1圖之D圖,其中該 奈米結構成員亦是呈彼此對應為非隨機定向。於此具體例 中,該奈米結構彼此不平行,但被圖示為平行一個平面表 20面(例如:-基材)。本發明組成物不需要具有基本為2維之 本質。更進一步之具有3維排列之奈米結構具體例,例如: 四讀及六元體組態、或其他具有間雜平行奈米結構組份 群之安排,亦為一個本發明特徵。 於-個本發明較佳具體例中,該基質是由一種或多種 26 200408694 可交互作用來形成多種接收結構之組份所組成,該基質可 使該等奈米結構規則化及/或定向。該接收結構典型地係包 含一種居於基質内類似孔洞之凹洞,該凹洞可容納特定奈 米結構(例如:一個奈米棒)’該凹洞尺寸是糟由該被使用於 5 該組成物内之特定基質組份來決定。因此,該接收結構尺 寸可以視欲被使用於組成物内之奈米結構來做選擇及/或 調整,但其典型地會落在直徑居於大約1-2 nm至大約500 nm之範圍内(例如:居於大約1 nm至大約20 nm、或居於大 約10 nm至大約50 nm、或居於大約100 nm至大約250 nm、 10 或居於大約250 nm至大約500 nm)。 該接收結構可任擇地包含一個對該奈米結構具有親和 性之化學基團,例如:一種奈米結構結合基團。該存有一 種奈米結構結合基團可以被使用來協助組合該組成物,特 別是可供用於產生具有-種導引或“端部,,之奈米結構,例 如.產生自-種由奈米結晶組份所構成之不對稱組成物或 成物m#構與5罐1纟纟構及/或其奈米結構結合基 =進行交互作用時,可更進—步定向及/或對齊該居於組成 物内之奈米結構。 20 ^ ^ …土、疋模組於組成物及合成中, 視該魏κ該組祕内之奈綠構雜,來提供(例 接㈣構財及奈料構結合官㉔。典型地本 物係、包含:—個核體或組份實體(其可任擇地 ===性化學基團)、以及—個或數個連接組成物。該 。構可以部分地㈣包含奈米結糾成物之用途,而 27 200408694 為一種導電性或非導電性化學組成物。通常一種或多種“可 配飾(addressable)”化學組成物會被連接至該實體或嵌入該 基質組份内。該可修飾元件(例如:“側臂”)可以被使用來供 用於(例如):連接鄰接基質單體,例如:藉此提供諸等具體 5 例,其中一種或多種基質内組份彼此被化學交聯(或使該組 份具有化學交聯能力)。於某些具體例中,該等基質組份之 可修飾元件被設計成能夠自我組合形成該基質。 本發明基質組份可任擇地包含一種可供用於將該基質 組份耦合該奈米結構之奈米結構結合基團(例如:一種官能 10 “基頭部基團”)。於某些本發明組成物之具體例中,一種或 多種本發明基备組份被化學交聯(或使該組份具有化學交 聯能力)至本發明組成物之奈米結構。可以被使用於本發明 組成物及方法之示例性具體例被揭露於:律師備審號: 40-002710US、以及國際申請案律師備審編號: 15 40_002710pC,其係由Whiteford等人所提申,發明名稱為“協 助電荷轉移入/出奈米結晶之有機物”,在此連同本案共同提 中。 任擇地,本發明基質可包含一種或多種多牙配位基 (multidentate)奈米結構結合組份。例如,於某些本發明組 20成物中,本發明基質組份可包含一個耦合至一部分實體結 構之額外的“尾部基團”。該尾部基團可以被設計來提供額 外的單體耦合能力,或額外的奈米結構配位基結合能力。 於一個更進一步之具體例中,本發明組成物是由兩種 或多種基質層所組成,每一個成員基質層皆具有多種非隨 28 200408694 機定向奈米結構。居於一個第一種成員基質層内之成員奈 米結構的定向與居於一個鄰接基質層内之成員奈米結構定 向,可以或者可以不彼此對齊。例如,居於一個第一種成 員基質層内之成員奈米結構的定向,可以平行對齊該與居 5 於一個鄰接基質層内之成員奈米結構定向。可選擇地,該 等居於兩基質層之成員奈米結構可以彼此垂直,或呈二者 夾一特定角度(例如:15°、30°、45°、60°、等等)之不同定 向。任擇地,該居於諸基質層之成員奈米結構彼此之間並 無關連性(例如:諸等由奈米結構所構成之基質層可以被位 10 移(例如:位差一個特定的距離及/或調節性間距)而非疊層 於正上方)。可選擇地,該居於一個第一種成員基質層内之 成員奈米結構可以不對齊該居於一個鄰接基質層内之成員 奈米結構。該等供用以製備該基質之組份可以是相同的組 成物,或者是不同的基質組份。 15 再者,本發明組成物可以包含兩種或多種基質層,每 一個成員基質層皆包含多種居於該組成基質内之非隨機定 向奈米結構。 製備奈米結構-基質組成物之方法 於另一方面,本發明亦提供製備多種居於一基質内非 20 隨機定向或非隨機分佈奈米結構之方法。該等方法係包含 步驟:a)提供多種奈米結構及一種基質組成物,其中該基 質組成物係包含一種或多種基質組份,該等基質組份可交 互作用形成多種能夠容納該奈米結構之接收結構;b)於多 種奈米結構存在下,加熱然後冷卻該基質組成物,藉此來 29 200408694 製備多種居於基質内之非隨機定向或非隨機分佈奈米結 構。 於一個本發明較佳具體例中,該基質是以一種或多種 可交互作用形成多種接收結構(例如:凹洞、孔隙空間)之組 5份製成’藉此使該奈米結構產生一種規則及/或定向。該等 接收結構之組態被使用來決定該嵌入奈米結構之排列、規 則性及/或定向(例如r對齊)。於本發明方法中,該奈米結 構可以於基質形成期間(即同時)或於形成之後被嵌入該基 質内。例如,於一個該等方法之具體例中,提供該基質組 10成物係涉及提供一種或多種呈一種非隨機或非聚合形式之 基質組份(即單體)。繼之於多種奈米結構存在下,加熱然後 冷卻該基質組成物,藉此使該基質嵌入該奈米結構。雖然 該等被使用於本發明方法之溫度與反應時間會隨該特定基 質組份、奈米結構形態及其等而改變,但一熟習此項技藝 15 人士則可以容易地於無需進行不當試驗下予以決定。諸等 供用以製備基質之標準方法可參見(例如):Nalwa (2001) Advanced Functional Molecules and Polymers Volumes 1-4 ; Kroschwitz et al·,(1990) Concise Encyclopedia of Polymer Science and Engineering (Wiley-Inetrscience,New 20 York, NY) ; Chandrasekhar (1999) Conducting Polymers, Fundamentals and Applications: A Practical Approach (Academic Publishers, Boston,MA,1999) ; and Brandrup (1999) Polymer Handbook,4th Edition (John Wiley & Sons, Ltd,New York, NY),其等全部之揭露内容在此併入本案做 30 200408694 為參考資料。 於一選擇性具體例中,該基質(及多種包含其中之接收 結構)是於曝露多種奈米結構之前被組合。於多種奈米結構 存在下’加熱然後冷卻該預先形成之基質組成物,藉此使 5該基質嵌入該多種接收結構。典型地,該基質會提供諸等 範圍居於大1-2 nm至大約500 nm之空間。然而,該等範圍 可更進一步被加工來符合該所欲組份之需求,例如:依該 奈米結構之尺寸。再者,該奈米結構鄰接該基質提供空間 之表面可以被官能基化,俾以產任何一種具有多種化學官 10能基之接收結構(例如:供用以結合該奈米結構)。 任何一種本技藝中所已知之多種基質組成物皆可以被 使於本發明組成物及方法。例如:多種可與奈米結構相容 之聚合物皆為那些熟習此項技藝人士所已知,參閱(例如): Demus et al. (ed.) 1998 Handbook of Liquid Crystals 15 Volumes 1-4 (John Wiley and Sons,Inc” Hoboken,NJ); Bradrup (cd.) 1999 Polymer Handbook, (John Wiley and Sons, Inc.) ; Haper 2002 Handbook of Plastics, Elastomers and Composites,4th edition (McGraw-Hill,Columbus,OH); 以及Kraft et al· (1998) Angew· Chem· Int· Ed· 37:402-428 · 2〇 可供用於本發明之聚合物實例係包含(但不限制於)··熱 塑性聚合物(例如:聚烯烴、聚酯、聚矽氧烷、聚丙腈樹脂、 聚苯乙浠樹脂、聚氣乙浠、聚偏二氯乙浠、聚乙酸乙烯醋 及氣化塑膠),熱固性聚合物(例如·紛樹脂、尿素樹脂、二 聚氧胺樹脂、環氧樹脂、聚胺基甲酸乙S旨樹脂);工業用橡 31 200408694 膠(例如:聚醯胺、聚丙烯酸酯樹脂、聚酮樹脂、聚醯亞胺、 聚颯、聚碳酸酯、聚縮醛);以及液晶聚合物[其等包含主鏈 液晶聚合物(例如:聚[n-((4’-(4”-氰苯基)苯氧基)烷基)乙烯 基醚])。某些具體例包含導電性有機聚合物;參閱(例如): 5 T.A. Skatherin (ed.) 1986 Handbook of Conducting Polymers I· (Marcel Dekker,New Tork)。可供用於本發明之導電性聚 合物的實例包含(但不限制於)聚(3-己基塞吩)(P3HT)、聚[2-甲氧基-5-(2’-乙基-己基氧)_p-伸苯基-乙烯](MEH-PPV)、聚 (p-伸苯基乙烯)(PPV)以及聚苯胺。 10 於USSN 60/452,232及與本案共同提申之律師備審編 號:40-002710US中所提供之導電性組成物亦可被使用為本 發明基質組份。該等導電性組成物包含:一種共軛有機物、 以及至少一種能力與一奈米結構表面交互作用之結合基 團;於使用時,該等組成物可經由該結合基團耦合至該奈 15 米結構表面,藉此使該等組成物可實質地導電性連接諸等 藉由/經由該奈米結構傳輸之電子及/或電洞(例如:於擷取 或射入電子或電洞之過程中)。本發明組成物可任擇地被衍 生以額外的化學基團,藉此可以進行(例如):調整該核體有 機物之電子共軛、將額外的化學官能基提供給該等居於基 20質之接收結構、或者協助分散、混合及/或攙合諸等居於多 種基質内之奈米結構。例如,當諸等包含一種共軛有機物 之導電性组成物被耦合至一個奈米結構結合頭部基團、一 個包含炔之尾部基團、及可供用以交聯或耦合組成物之可 配飾(addressable)支鏈元件時,該有機組成物可被使用為本 32 200408694 發明基質組份。 任擇地,一種或多種基質組份係被化學交聯,或能夠 彼此化學交聯。該等化學交聯之產生可經由耦合一種或多 種官能基基團至該基質實體結構(例如:“側臂”)。例如,除 5 了習用之交聯試劑丙烯酸鹽之外,該基質組份可包含具光 不安定性基團,一旦曝光活化後’此等組份可被使用來交 聯鄰接之基質組份。多種具光不安定性基團及其相關交聯 化學皆為該技藝中所熟知。例如,該交聯基團是頂接一個 可於曝露所欲波長光下被切割或可被切割之保護基團。已 10 知之光不安定性基團的實例包含:6-硝基_3,4-二甲氧基-L 甲苯氧基羰基保護基團[例如:NPOC及MeNPOC]、以及類 似者[例如:PyMOC]。使用這些保護基團及其他(例如)表面 活化係被描述於美國專利案編號:5,489,678及6,147,205。 一個能夠被使用來連接鄰接基質組份之化學基團實例 15 為一個二乙醯基基團。然而,任一數目之共軛試劑(例如: 零長度交聯劑、同元雙官能基交聯劑、異元雙官能基交聯 劑及類似物)皆為為該技藝中所熟知,且可被攙合入本發明 基質組份中[參閱,例如:Hermanson (1996) Bioconjugate Techniques,Academic Press,New York ;及 Brandrup (1999) 20 The Polymer Handbook,4th Edition,John Wiley & Sons,Ltd, New York, NY]。 此外,一個或數個基質組份可任擇地經由一個或數個 官能基化之“頭部基團”(例如:奈米結構結合基團)來被化學 交聯或能夠被化學交聯至一個或數個奈米結構。可供用為 33 200408694 本發明官能基化“頭部基團”之化學基團實例係包含(但不限 制於):膦酸、羧酸、胺、膦、氧化膦、胺基苯甲酸、異氰 酸酯、硝基、乙二胺及柳醛(salen)、二硫酮、兒茶酚、N,0 配位之配位基、P,N配位之配位基或硫醇基團。 5 可選擇地,尿素或其他含氮芳族化合物或雜環(例如: 各種不同的醯胺、咪坐、苯并咪坐、咄啶、嘧啶、嘌呤或 喹啉)亦可被使用為本發明組成物及方法之奈米結構結合 頭部基團。化合物之實例係包含(但不限制於):2-胺基咄啶 衍生物、3-胺基咄啶、1,2-二胺基吡啶、及其他常用為無機 10 含氮配位基之化合物。 於可選擇之具體例中,該奈米結構結合頭部基團可以 呈一種可離子化形式,藉此於某些條件下(例如:低或高酸 鹼值),該官能基基團會對該奈米結構具有實質親和度(例 如:強的正負電荷),且於不同的環境條件下,該親和度會 15 實質地降低,或甚至為負的親和度。 於某些具體例中,該官能基(或結合)頭部基團是單牙結 構(例如:一種能夠結合奈米結晶之單一基團)。於一可選擇 之具體例中,該頭部基團則為一種能夠與該奈米結構表面 進行多種交互作用之多牙結構,或為一種與奈米結構表面 20 進行交互作用之配位基。 於本發明亦提供多種藉由一種本發明方法來予以製備 之居於一基質内的非隨機定向或非隨機分散奈米結構。 具有可交互作用對齊配位基之奈米結構 於另一方面,本發明係提供具有多種選擇性定向奈米 34 200408694 結構之組成物’其中㈣奈米結構是與—種或多種對激配 位基進行交互㈣。對齊配位基是具有1或多種罝 吸引性之化料生化线基。典魏,如於第—種The complementary pair of bio- / knife-contact functional groups is also referred to as a "biomolecule pair" or a "bioconjugate pair". Yang Wei's self-organizing molecule means a kind of stable structured molecular aggregate or combination that can be automatically combined with other molecules. A self-organizing molecule is used to prepare self-assembled monolayer (saMs) components. Lin., The term "nano structure binding component," and "head group" are used interchangeably in this case to mean multiple chemical components or groups, which can be combined with a nano structure (eg. In binding form) or have light-binding ability (for example: functionalization). The combination can be a straight surface of the nano-structure, or in some 23 cases, the light-binding is a surface of the nano-structure. Ligands (eg, the function of the surface ligand is a linking group that resides between the nanostructure and the component with a nanostructure-binding component). A "high aspect ratio" is-a nano Divide the _axis length of the structure by 5 ^ meters The average length of the second and third axes of the structure, where the ^ th axis of the second axis disk is the two lengths closest to each other. For example: for a complete rod In addition, the cross-section diameter of the long axis except the vertical axis is the height-to-width ratio. The drawings briefly illustrate Figures 1A-1D, which provide a representative of a variety of specific examples of structures with a regular 10 nm structure in a matrix. Fig. ^ Figure 2 mentions the isotropic nanostructures described in the present invention. Schematic diagram of the interaction between the _-aligned ligand and the _-aligned ligand of a mono- & functional group. Figure 3 illustrates a specific example of an aligning ligand for use in the present invention. 15 [Embodiment] A detailed description of the preferred embodiment The present invention is a composition that provides a regular nano structure, and a nano structure that can be used to prepare a nano structure and use the same nano structure in it. Device. Although the detailed description and specific examples are focused on one or another nano 20 meter structure, it can be understood that the method and composition provided by the present invention can be applied to any member of the nano structure member well known in the art. One, which includes (but is not limited to) ... nano crystals, nano dots, nano particles, nano rods, nano wide bands, nano tetrapods, nano-level branch structures (e.g., tree-like Macromolecular branch structure), and the like. 24 200408694 In one aspect, the structure of a regular nano structure in a matrix, the present invention provides a variety of structure of a regular nano structure in a matrix. In a specific example, the structure rule The metric structure is a substantially non-random-oriented nanostructure. Alternatively, the substantially non-random-oriented 5nm structures are substantially aligned with each other and / or substantially aligned with a particular axis. For example: For a substrate that interacts or is close to a composition, the specific axis can substantially orient or perpendicular to the surface of the substrate, parallel to the surface, or at a desired angle with the surface. In a specific example, the invention is A variety of non-randomly oriented nanostructures are provided within a matrix. The oriented nanostructures provided by the present invention can be, for example, an array of regularly planned nanostructures. Alternatively, the present invention provides The oriented nanostructures may be an irregularly planned arrangement. The nanostructures are typically oriented corresponding to each other (eg, substantially parallel to each other, end-to-end, etc.). The non-random 15 orientation of the nanostructure is maintained by the presence of a nanostructure-configured matrix. A representative diagram of an exemplary embodiment of the present invention is provided in FIG. 1. In these specific examples, a nano-rod-like structure is illustrated in Figures 1A and 1B, which extends along a z-axis (eg, the end), is oriented at an angle in Figure 1C, and is shown in Figure 1D. Is housed on an xy plane. However, the compounds of the present invention are not limited to the specific examples shown. The present invention illustrates a variety of substantially irregularly oriented nanostructures. In a particular embodiment, the orientation of the nanostructures that are not substantially aligned with each other is at a specific angle (for example: 45 °). Optionally, the present invention provides a variety of non-randomly oriented nanostructures that reside in a matrix. The directional nanostructure provided by the present invention may be, for example, an array of regularly planned nanostructures. Alternatively, the directional nanostructure provided by the present invention is an irregular planning arrangement. The nanostructures of the present invention are oriented corresponding to each other (eg, substantially parallel to each other, end to end, etc.); Optionally, their orientations can also be described as corresponding to a specific plane or surface (eg, parallel, vertical, at a specific angle, etc.). The non-random orientation of the nanostructure is maintained by the presence of a matrix in which the nanostructure is arranged. In another aspect, the present invention provides various compositions having an array of nanostructures residing within a matrix, wherein the array includes δ-type non-distinctively arranged nanostructure members. Optionally, the nanostructure members of the array can also be non-randomly oriented corresponding to each other. Therefore, Figure A of Figure i also illustrates a variety of non-randomly arranged nanostructure members, where the nanostructure members also correspond to each other in a non-random orientation. Figure i (^ Figure 丨) illustrates another specific 15 examples of a composition comprising a plurality of non-randomly arranged nano-structure arrays. In this specific example, the nano-structure members of the array are random corresponding to each other. Orientation. A further specific example of an array composed of non-randomly arranged nanostructures in the matrix is shown in Figure D of Figure 1, where the nanostructure members are also non-randomly oriented corresponding to each other. Here In a specific example, the nano-structures are not parallel to each other, but are illustrated as being parallel to a plane surface 20 surfaces (for example:-substrate). The composition of the present invention does not need to have a substantially two-dimensional nature. Furthermore, it has 3 Specific examples of the nano structure of the dimensional arrangement, such as: four-read and six-element configuration, or other arrangements of heterogeneous parallel nano-structure component groups, are also a feature of the present invention. The matrix is composed of one or more components that can interact to form a plurality of receiving structures. The matrix can regularize and / or orient the nanostructures. The receiving structure is typically a package Contains a cavity that resembles a hole in the matrix. The cavity can accommodate a specific nanostructure (for example, a nanorod). The size of the cavity is due to the specific matrix components used in the composition. Therefore, the size of the receiving structure can be selected and / or adjusted depending on the nanostructure used in the composition, but it will typically fall in the range of about 1-2 nm to about 500 nm in diameter. Within (eg, about 1 nm to about 20 nm, or about 10 nm to about 50 nm, or about 100 nm to about 250 nm, 10, or about 250 nm to about 500 nm). The receiving structure may be any Optionally contains a chemical group that has an affinity for the nanostructure, for example: a nanostructure binding group. The presence of a nanostructure binding group can be used to assist in combining the composition, especially It is used to produce nanostructures with a kind of leading or "end," for example, from a kind of asymmetric composition or product consisting of nanocrystalline components, m # structure and 5 tank 1 structure. And / or its nanostructure binding group When interacting, you can further advance-orient and / or align the nanostructures that reside in the composition. 20 ^ ^… The soil and tritium modules are in the composition and synthesis, depending on the Wei kappa group Green structure to provide (for example, the structure of the structure and the combination of materials and materials). Typically this system, including: a nuclear body or component entities (which can optionally === sex chemical groups), And—one or more linking components. The structure can partially include the use of nano-knots, and 27 200408694 is a conductive or non-conductive chemical composition. Usually one or more "accessories ( addressable) "chemical composition will be attached to the entity or embedded in the matrix component. The modifiable element (eg" side arm ") can be used for (for example): linking adjacent matrix monomers, such as: Five specific examples are provided here, in which one or more intra-matrix components are chemically cross-linked with each other (or the component has a chemical cross-linking ability). In some embodiments, the modifiable elements of the matrix components are designed to self-assemble to form the matrix. The matrix component of the present invention optionally includes a nanostructure binding group (e.g., a functional 10 "head group") that can be used to couple the matrix component to the nanostructure. In some specific examples of the composition of the present invention, one or more base components of the present invention are chemically cross-linked (or the component has a chemical cross-linking ability) to the nanostructure of the composition of the present invention. Exemplary specific examples that can be used in the composition and method of the present invention are disclosed in: Lawyer Filing Number: 40-002710US, and International Application Lawyer Filing Number: 15 40_002710pC, which were filed by Whiteford et al., The name of the invention is "organic matter that assists in the transfer of charge into / out of nanocrystals", and is hereby mentioned together with the present case. Optionally, the matrix of the invention may comprise one or more multidentate nanostructure binding components. For example, in certain 20 groups of the invention, the matrix component of the invention may include an additional "tail group" coupled to a portion of the solid structure. The tail group can be designed to provide additional monomer coupling capabilities or additional nanostructure ligand binding capabilities. In a further specific example, the composition of the present invention is composed of two or more substrate layers, and each member substrate layer has multiple non-random nanostructures. The orientation of the member nanostructures residing in a first member matrix layer and the member nanostructures residing in an adjacent matrix layer may or may not be aligned with each other. For example, the orientation of the member nanostructures in a first member matrix layer can be aligned in parallel with the orientation of the member nanostructures in an adjacent matrix layer. Alternatively, the member nanostructures resident in the two matrix layers may be perpendicular to each other, or may have different orientations at a specific angle (for example, 15 °, 30 °, 45 °, 60 °, etc.). Optionally, the nanostructures of the members of the matrix layers are not related to each other (for example, the matrix layers composed of nanostructures can be shifted by 10 (for example, a specific distance and / Or adjustable spacing) rather than stacked directly above). Alternatively, the member nanostructures resident in a first member matrix layer may be misaligned with the member nanostructures resident in an adjacent matrix layer. The components used to prepare the matrix can be the same composition or different matrix components. 15 Furthermore, the composition of the present invention may include two or more matrix layers, and each member matrix layer includes a plurality of non-randomly oriented nanostructures residing in the constituent matrix. Method for preparing nanostructure-matrix composition In another aspect, the present invention also provides a method for preparing a plurality of non-20 randomly oriented or non-randomly distributed nanostructures in a matrix. The methods include the steps of: a) providing a plurality of nanostructures and a matrix composition, wherein the matrix composition system comprises one or more matrix components, and the matrix components can interact to form a plurality of nanostructures capable of containing the nanostructures; Receiving structure; b) in the presence of multiple nanostructures, heating and then cooling the matrix composition, thereby preparing a plurality of non-randomly oriented or non-randomly distributed nanostructures that reside in the matrix. In a preferred embodiment of the present invention, the matrix is made of one or more groups of five parts that can interact to form a variety of receiving structures (eg, cavities, pore spaces), thereby generating a regularity for the nanostructure. And / or orientation. The configuration of the receiving structures is used to determine the arrangement, regularity, and / or orientation of the embedded nanostructures (e.g., r-alignment). In the method of the present invention, the nanostructure can be embedded in the matrix during (i.e., simultaneous) formation of the matrix or after formation. For example, in one specific example of such methods, providing the matrix component 10% involves providing one or more matrix components (ie, monomers) in a non-random or non-polymeric form. Following the presence of various nanostructures, the matrix composition is heated and then cooled, thereby embedding the matrix into the nanostructures. Although the temperature and reaction time used in the method of the present invention will vary depending on the specific matrix component, nanostructure and morphology, etc., a person skilled in the art can easily use the test without performing inappropriate tests. Decide. Various standard methods for preparing substrates can be found, for example, in Nalwa (2001) Advanced Functional Molecules and Polymers Volumes 1-4; Kroschwitz et al., (1990) Concise Encyclopedia of Polymer Science and Engineering (Wiley-Inetrscience, New 20 York, NY); Chandrasekhar (1999) Conducting Polymers, Fundamentals and Applications: A Practical Approach (Academic Publishers, Boston, MA, 1999); and Brandrup (1999) Polymer Handbook, 4th Edition (John Wiley & Sons, Ltd, New York, NY), the entire disclosure of which is incorporated herein as reference 30200408694. In an optional embodiment, the matrix (and a plurality of receiving structures contained therein) is combined before exposing a plurality of nanostructures. The pre-formed matrix composition is heated and cooled in the presence of a plurality of nanostructures, thereby embedding the matrix into the plurality of receiving structures. Typically, the matrix will provide spaces ranging from 1-2 nm to about 500 nm. However, these ranges can be further processed to meet the needs of the desired component, for example, depending on the size of the nanostructure. Moreover, the surface of the nanostructure adjacent to the space provided by the substrate can be functionalized to produce any kind of receiving structure with multiple chemical functional groups (for example, for binding the nanostructure). Any of a variety of matrix compositions known in the art can be used in the compositions and methods of the present invention. For example, many polymers compatible with nanostructures are known to those skilled in the art, see (for example): Demus et al. (Ed.) 1998 Handbook of Liquid Crystals 15 Volumes 1-4 (John Wiley and Sons, Inc ”Hoboken, NJ); Bradrup (cd.) 1999 Polymer Handbook, (John Wiley and Sons, Inc.); Haper 2002 Handbook of Plastics, Elastomers and Composites, 4th edition (McGraw-Hill, Columbus, OH ); And Kraft et al. (1998) Angew. Chem. Int. Ed. 37: 402-428. 20 Examples of polymers available for use in the present invention include, but are not limited to, thermoplastic polymers (e.g. : Polyolefins, polyesters, polysiloxanes, polyacrylonitrile resins, polystyrene resins, polyacetylene resins, polyvinylidene chloride, polyvinyl acetate, and gasification plastics), thermosetting polymers (such as · Resin, urea resin, dioxyamine resin, epoxy resin, polyurethane resin); industrial rubber 31 200408694 rubber (for example: polyamide, polyacrylate resin, polyketone resin, polyfluorene Imine, polyfluorene, polycarbonate, polyacetal) And a liquid crystal polymer [which includes a main chain liquid crystal polymer (e.g., poly [n-((4 '-(4 "-cyanophenyl) phenoxy) alkyl) vinyl ether]). Some specific examples include conductive organic polymers; see, for example: 5 T.A. Skatherin (ed.) 1986 Handbook of Conducting Polymers I (Marcel Dekker, New Tork). Examples of conductive polymers that can be used in the present invention include, but are not limited to, poly (3-hexylthiophene) (P3HT), poly [2-methoxy-5- (2'-ethyl-hexyloxy) ) -p-phenylene-ethylene] (MEH-PPV), poly (p-phenylene ethylene) (PPV), and polyaniline. 10 The conductive composition provided in USSN 60 / 452,232 and the lawyer's trial number co-filed with this case: 40-002710US can also be used as the matrix component of the present invention. The conductive compositions include: a conjugated organic substance, and at least one binding group capable of interacting with a nanostructure surface; when in use, the compositions can be coupled to the nanometer 15m via the binding group. Structural surface, thereby allowing these compositions to be substantially conductively connected to electrons and / or holes that are transmitted through / through the nanostructure (eg, in the process of capturing or injecting electrons or holes) ). The composition of the present invention can be optionally derivatized with additional chemical groups, whereby, for example, the electronic conjugation of the nuclear organic substance can be adjusted, and additional chemical functional groups can be provided to the base groups. Receiving structures, or assisting in dispersing, mixing, and / or incorporating nanostructures that reside in multiple matrices. For example, when conductive compositions containing a conjugated organic compound are coupled to a nanostructured binding head group, a tail group containing an alkyne, and optional accessories that can be used to crosslink or couple the composition ( In the case of addressable) branched chain elements, the organic composition can be used as a matrix component of the present invention. Optionally, one or more matrix components are chemically cross-linked, or are capable of being chemically cross-linked to each other. These chemical cross-links can be generated by coupling one or more functional group groups to the matrix solid structure (eg, "side arms"). For example, in addition to the conventional cross-linking reagent acrylate, the matrix component may contain light labile groups. Once activated by exposure, these components can be used to cross-link adjacent matrix components. A variety of photolabile groups and their related cross-linking chemistry are well known in the art. For example, the cross-linking group is attached to a protecting group that can be cut or can be cut by exposure to a desired wavelength of light. Examples of known photo-labile groups include: 6-nitro_3,4-dimethoxy-L tolyloxy protecting group [eg: NPOC and MeNPOC], and the like [eg: PyMOC] . The use of these protecting groups and other (for example) surface activating systems are described in U.S. Patent Nos. 5,489,678 and 6,147,205. An example of a chemical group that can be used to link adjacent matrix components is a diethylfluorenyl group. However, any number of conjugate reagents (eg, zero-length cross-linking agents, homobifunctional cross-linking agents, heterobifunctional cross-linking agents, and the like) are well known in the art and can be Incorporated into the matrix component of the present invention [see, eg, Hermanson (1996) Bioconjugate Techniques, Academic Press, New York; and Brandrup (1999) 20 The Polymer Handbook, 4th Edition, John Wiley & Sons, Ltd, New York, NY]. In addition, one or more matrix components can optionally be chemically crosslinked or capable of being chemically crosslinked via one or more functionalized "head groups" (eg, nanostructure binding groups). One or several nanostructures. Available as 33 200408694 Examples of chemical groups of functionalized "head groups" of the present invention include (but are not limited to): phosphonic acid, carboxylic acid, amine, phosphine, phosphine oxide, aminobenzoic acid, isocyanate, Nitro, ethylenediamine and salen, dithione, catechol, N, 0 coordination ligand, P, N coordination ligand or thiol group. 5 Alternatively, urea or other nitrogen-containing aromatic compounds or heterocyclic rings (for example, various amidines, benzimids, benzimids, pyrimidines, pyrimidines, purines, or quinolines) can also be used in the present invention. The nanostructure of the composition and method binds the head group. Examples of compounds include (but are not limited to): 2-aminopyridine derivatives, 3-aminopyridine, 1,2-diaminopyridine, and other compounds commonly used as inorganic 10 nitrogen-containing ligands . In optional specific examples, the nanostructure binding head group may be in an ionizable form, so that under certain conditions (for example, low or high pH), the functional group may The nanostructure has a substantial affinity (for example, strong positive and negative charges), and under different environmental conditions, the affinity may be substantially reduced, or even a negative affinity. In some specific examples, the functional (or binding) head group is a monodentate structure (for example, a single group capable of binding nanocrystals). In an alternative specific example, the head group is a multidentate structure capable of interacting with the surface of the nanostructure, or a ligand that interacts with the surface of the nanostructure 20. The present invention also provides a plurality of non-randomly oriented or non-randomly dispersed nanostructures in a matrix prepared by a method of the present invention. Nanostructures with interactively aligned ligands. In another aspect, the present invention provides a composition having a variety of selectively oriented nanostructures. 34 200408694 Structures in which the nanostructure is coordinated with one or more counter-excited ligands. Interaction. Aligned ligands are chemical or biochemical bases with 1 or more 罝 attractiveness. Dian Wei, such as the first

AA

結構之第-觀齊配位基的-個部分Μ居於—鄰接奈米 結構之第二種對齊配位基的互補部分進行交互作用。夕、 對齊配位基與每-種奈米結構進行交互作m2 能夠個別地與-居於鄰接奈米結構之互補對齊配位基進^ 交互作用;這些交互作用可以被使用來產生(及^_^ 擇性定向之奈米結構數量。 10 加熱然後冷卻該組成物可容許該熱力學方程式△ G=AH - TAS[描述焓(ΔΗ)與熵(Δ8)與Gibb,s自由能(△ G)之One part of the structure-homogeneous ligand is located adjacent to the complementary part of the second aligned ligand of the nanostructure to interact. Even if the aligned ligands interact with each of the nanostructures, m2 can individually interact with complementary aligned ligands that reside in adjacent nanostructures; these interactions can be used to generate (and ^ _ ^ Number of nanostructures with selective orientation. 10 Heating and then cooling the composition allows the thermodynamic equation △ G = AH-TAS [Describes the enthalpy (ΔΗ) and entropy (Δ8) and Gibb, s free energy (△ G)

關係]中之熵㈣可以被使絲克服該破壞互補對組隨機結 合之能量阻障(ΔΗ)。此時該等隨機結合互補對組可克服該 抑制熱力學規則陣列結合之能量阻障。再者,於加熱然後 15冷卻下,由於溶劑分子被逐出該居於基質之間的空間而增 加熵值升高,其亦會藉由形成一種主(基質)_客(奈米結晶或 電路)或具有奈米電路/結晶之包埋體分子而傾向該規則陣 列。此奈米電路/結晶-基質包埋體複合物亦會增加整個系統 之結晶度,藉此賦予安定度給該有利之規則陣列,並驅動 20 平衡朝向規則陣列。 典型地,第一種與第二種對齊配位基是具有選擇性分 子辨識官能基或基團之分子。於一實例中,該居於第一種 與第二種對齊配位基間之分子辨識可以是一個簡單的化學 交互作用,例如:發生於—個胺基基團與一個絲基團之 35 200408694 間的氫鍵交互作用。因此,多種包含胺之化合物與包絲 基之化合物的任何一種皆可以被使用為本發明第一種與第 二種對齊配位基。對齊配位基之設計可採納任何一種除氫 鍵鍵結以外之多種基本分子交互作用的優點。例如:庫倫 5交互作用、凡得瓦作用力、離子交互作用、形成共價鍵、 及/或各種不同的親水或厭水交互作用’皆可被使用為形成 於第一種與第二種對齊配位基間之複合物。該等交互作用 可以呈不同牙數(單牙或多牙)及呈不同強度(微弱、中度或 強)’但典型地该父互作用是可逆的’至少於起始形成該複 10 合物期間。 諸等於USSN 60/452,232及與本案共同提申之律師備 審編號:40-002710US中所提供之導電性組成物,可以被修 飾來供用為本發明對齊配位基。例如,當諸等包含以一種 共軛有機物為一實體結構的導電性組成物被耦合至一奈米 15 結構結合頭部基團、一個具有一第二種奈米結構結合基團 之炔尾部基團、以及兩側鏈(被耦合至該實體結構)嵌有互補 結合部分(例如:一個胺基基團與一個羥基基團)時,皆可被 使用於本發明方法、裝置及組成物中。組成物實例被顯示 於第3圖。 20 生物共軛/生物分子對組則提供另一種可被使用為本 發明互補分子辨識基團之實例。多種生物分子對組及交互 作用被詳述於(例如)BioconJugate Techniques by Hermanson (1996, Academic Press,New York)。多種技藝中所已知互補 生物分子之任一者皆可以被使用為第一種及第二種對齊配 36 200408694 位基。例如:居於一種抗體與一種結合該抗體之抗原間的 交互作用,可以被使用來定向鄰接奈米結構,其亦如居於 生物素(biotin)與印白素(avidin)或鏈黴抗生物素蛋白 (streptavidin)之間或者一種蛋白質(例如:一種受體)與其互 5 補配位基的交互作用。甚至於互補核酸、及/或一種半體與 一種半體配位基皆可以被使用為本發明對齊配位基。 任擇地,一種對齊配位基可以是一種被使用來使奈米 結構表面官能基化之基團(例如:經由矽甲烷耦合、氮化、 或一種例如授權給Empedocles之PCT/US03/09827所述之官 1〇 能基化電漿)。 於本發明某些具體例中,該第一種及第二種對齊配位 基具有每一個配位基超過一種分子辨識官能基(例如:一種 多功能或多牙配位基)。例如,一個多牙配位基可具有多重 胺官能基,或多套數生物素連接至一個核體結構。可選擇 15 地,該對齊配位基可以藉由具有該等特定共軛性具體例之 兩個對半部體(互補體)而具有多功能性;例如:一個生物素 基團與一個卵白素基團這兩者。於這些本發明組成物具體 例中,該第一種與第二種對齊配位基典型地是由同一個分 子所提供。一個此種理念之示例性具體例是自我組織分子。 20 为子自我組合是將諸等特定分子自發性組織成組織化 之二維(或三維)組態,其係依照(例如)本案所述那些分子間 交互作用。組織對齊配位基組成物會最佳化地導向一個熱 力極小值。諸等對齊配位基之互補性結合,以及該奈米結 構填補該基質孔隙空間的存在(並藉此逐出溶劑分子,俾以 37 200408694 增加該系統結晶度來彌補熵損失)及該奈米結構以頭部連 接基團結合’會導致整體Gibbs自由能降低及一個熱力學平 衡0 該等對齊配位基是直接與該奈米結構表面進行交互作 5用’或與其他已進行交互作用或結合該奈米結構表面進行 交互作用。於某些其奈米結構表面是能夠及/或可供用於結 合之本發明具體例中,該等對齊配位基可更進一步包含一 種或多種能夠結合至一個奈米結構表面或至一個與一奈米 結構表面進行交互作用之官能基化頭部基團。該特定可供 10 用於組成物之頭部基團官能基,係部分地視該被對齊之奈 米結構的型態而定。能夠被使用來耦合對齊配位基至奈米 結構之化學基團實例係包含(但不限制於):膦酸、羧酸、胺、 膦、氧化膦、胺基苯甲酸、異氰酸酯、硝基、乙二胺及柳 酸(salen)、二硫酮、兒茶酚、N,〇配位之配位基、P,N配位 15 之配位基或硫醇基團、或一個由此等基團所構成之組合。 一種P,N配位之配位基係包含:能夠經由一種未鍵結且 可形成一氫配位或共價鍵結之電子對來鍵結或結合之一個 雜原子磷與一個雜原子氮。一種P,N配位之配位基實例係包 含:2_三笨基-膦-吼啶、2-三乙基-膦-苯胺、二苯基膦乙基胺。 20 一種N,0配位之配位基係包含:能夠經由一種未鍵結且 可形成一氫配位或共價鍵結之電子對來鍵結或結合之一個 雜原子氮與一個雜原子氧。一種N,0配位之配位基實例係包 含:乙醇胺及次膦酸苯胺i旨以及2-經基苯胺-3,5-二胺基苯 甲酸、鳥嗓呤、胞嘴17定、及GAC雙環驗基。 38 200408694 可供用於製備選擇性定向奈米結構之方法 本發明亦提供諸等製備多種選擇性定向奈米結構之方 法,其中該奈米結構群係包含:可與第一種對齊配位基進 行交互作用之第一組奈米結構,以及可與第二種對齊配位 5 基進行交互作用之第二組奈米結構。 任一數量之對齊配位基皆可被使用來製備選擇性定向 奈米結構,例如那些被闡釋於第三圖者。於某些具體例中, 第一種與第二種對齊配位基是不同的化學物(第3圖,圖 A),雖然於其他具體例中,一個單一多官能基分子可扮演 10 第一種對齊配位基及第二種對齊配位基(第3圖,圖B)。例 如,該第一種對齊配位基可包含一個生物素基團,雖然該 互補第二種對齊配位基亦具有一個嵌入於該結構之生物素 基團。該生物素及卵白素可被嵌入兩個分別的配位基分 子;可選擇地,二者可以是一個多官能基配位基分子的兩 15 個部分(例如:一種具有兩種分子辨識官能基欲入其中之單 一對齊配位基)。 因此,於某些方法具體例中,該第一組奈米結構可更 進一步包含第二種對齊配位基,且該第二種對齊配位基亦 可包含第一種對齊配位基(第3圖,圖C)。然而,一奈米結 20 構之雙重對齊官能基亦可以被達成,例如:藉由沿一部分 之特定奈米結構配置一個或數個第一種對齊配位基,然後 沿該奈米結構之第二部分配置第二種對齊配位基(圖D)。 如上文所述,於一較佳具體例中,該對齊配位基被耦 合至該奈米結構,可經由直接耦合至該奈米結構表面,或 39 200408694 至一額外(例如:居於其中)可與該奈米結構進行交互作用之 配位基。該居於第一組奈米結構之第一種對齊配位基,可 於此時與該居於第二組鄰接奈米結構之第二種對齊配位基 進行交互作用,藉此可選擇性地定向該等多種奈米結構。 5 於某些具體例中,多種奈米電路可以藉由多種技藝中 所已知之任何一種(例如:氣相沉積法或溶液沉積法)來被製 造來供用為多種奈米結構。然而,可選擇之奈米結構具體 例(奈米結晶、奈米點、奈米棒、等等)可取代該等方法中之 奈米電路。其後處理該奈米結構,例如:藉由氣相沉積該 10 居於一個由多種奈米結構所構成第一部分之表面上的第一 種對齊配位基;然後氣相沉積該居於一個由多種奈米結構 所構成第二部分部分之表面上的第二種對齊配位基。任擇 地,該等方法可更進一步包含移除奈米電路-對齊配位基之 步驟,該奈米電路-對齊配位基是於該第一種與第二種對齊 15 配位基進行交互作用之前已與該基材共軛。 於某些具體例中,該奈米電路之第一部分與第二部分 是個別的奈米電路群。於諸等對齊配位基不是一種官能基 之具體例中(即僅具有互補分子辨識元件之一者),本發明方 法可產生兩群與奈米結構進行交互作用之配位基。於一可 20 選擇具體例[其中第一部分與第二部分包含由個別奈米電 路所構成之個別區域(例如:該等奈米結構之兩端)]中,會 產生一個單一(非對稱性)奈米結構群。 任擇地,該第一種與第二種對齊配位基係包含:諸等 能夠進行一種特定分子交互作用(例如:形成氫鍵)之分子、 40 200408694 一特定分子辨識官能基(例如:一生物分子對組)或其他自我 組織分子。該等可被設計來經由一氫鍵鍵結進行交互作用 之第一種與第二種對齊配位基的實例係包含(但不限制 於)· 一種包含胺之化合物與一個包含醇之化合物。 5 較佳地,本發明方法包含耦合對齊配位基至該與奈米 結構進行交互作用表面之步驟。於這些方法具體例中,具 有一種官能基頭部基團之對齊配位基或其他奈米結構結合 基團,被使用來將該對齊分子結合至該奈米結構表面。諸 等可與奈米結構表面(或諸等與其進行交互作用之配位基) 10進行交互作用之化學官能基實例係包含(但不限制於):膦 酸、羧酸、胺、膦、氧化膦、胺基苯甲酸、異氰酸酯、硝 基、乙二胺及柳醛(salen)、二硫酮、兒茶酚、N,〇配位之配 位基、P,N配位之配位基或硫醇基團(或由其等所構成之組 a )。任擇地,该第一種與第二種對齊配位基可更進一 +勹 15含一種交聯或可聚合元件,藉此與該第一種與第二種對卞 配位基進行交互作用,來導向交聯或聚合該第—種與第: 種對齊配位基。 、— 20 於某些方法具體例中,與該第一種與第二種對齊配4 基進行交互作用是藉由加熱然後冷卻多種奈米結構。口曰 擇地,與ό玄弟一種與第二種對齊配位基進行交互作用 藉由將該等配位基與溶劑混合來達成,其中該等配位義二 具有不同的溶解度(例如:由於溶解度)。溶劑實例係包八“ 不限制於):氯仿、甲苯及氯苯。 一 於一個更進一步之具體例中,本發明方法係更進 41 200408694 地々包含將多種選擇性定向奈米結構固定至—基材之步驟。 β亥第-種與第二種對齊配位基皆可任擇地被移除。 定向奈米結構群 於另一方面,本發明亦提供多種居於一基材上之選擇 5性定向奈米結構群。不同於前述本發明具體例,這些群體 · 不涉及包圍基質。該等選擇性定向奈米結構之定向可以垂 直-個與該奈米結構進行交互作用之表面(或其他定義之 xy平面),或者該定向可以與該表面或平面呈一種非一般定 向。遠等選擇性定向奈米結構群之產生可提供(例如)一種纟 φ ίο官能基元件所構成之聚集[例如:坐落於一基材上定義區域 内之連結],俾以供用於(例如)做為與額外的奈米級或微米 級電機之交界。 奈米結構組成物 任何一種數量之奈米結構(或奈米結構組合)皆可被使 15用於本發明組成物及方法,其等係包含(但不限制於):奈米 結晶、奈米點、奈米球、奈米電路、奈米寬帶、奈米四腳 體、各種不同的分支結構(例如:樹狀高分子分支結構)、量 · 子點、量子點、以及類似物。 多種可供用以製造諸等以一種半導體材料、鐵電材 2〇 料、一種金屬、寺專製成之奈米結構的方法是技藝中所已 知。例如,半導體奈米結晶已被詳加描述(參閱(例如):Huynh, et al· (2002) “Hybrid Nanorod-Polymer Solar Cells” Science ’ 295: 2426-2427、Huynh,et al· Adv. Materials 11 (11):923 (1990)、Greenham et al·,Phys. Rev. B 54(24):17628-17637 42 (19%)、及美國專利案編號:6,239,355)。於某些本發明具 體例中’奈米結構是以半導體材料製成。半導體奈米結構 包含一個涵概不同材料之寬廣範圍,其等是呈奈米尺寸顆 粒或結構’例如:具有至少一個小於大約5〇〇mn之橫截面, 5且較佳地小於100 nm。這些奈米結構可以由涵概寬廣範圍 之半導體材料所構成,其等包含(例如):第111-¥族、第π·νι 族、第IV族半導體或由這些材料所構成之合金。例如:鳃 化鎘、碲化鎘、磷化銦、砷化銦、硫化鎘、硫化辞、氧化 辞、銘化鋅、锶化鉛、硫化鋅及/或碲化鉛半導體(或其合金) 10可被使用來做為至少一部分之本發明奈米結構組份。 額外的奈米電路實例係包含:半導體電路[其係如授權 給Lieber等人之已公開國際專利申請案編號:w〇 02/17362(發明名稱:“攙雜延伸型半導體、生長此種半導 體、包含此種半導體之裝置及製造此種裝置之方法”)、授 15 權給Lieber等人之WO 02/48701(發明名稱:“奈米感應 器”)、授權給Lieber等人之WO 01/03208(發明名稱:“以奈 米級電路為主之裝置、陣列及其等之製造方法,,)中所述]、 奈米碳管、及其他具有類似尺寸之延伸型導體或半導體。 本發明企劃涵概的是諸等包含選自於下列半導體材料之奈 20 米結構,例如:石夕、錯、錫、叾西、蹄、侧、鑽石、磷、石朋_ 碳、硼-磷(BP6)、硼-矽、矽-碳、矽-鍺、矽-錫與矽-鍺、碳 化矽、氮化硼/磷化硼/砷化硼、氮化鋁/磷化鋁/砷化紹/錄化 鋁、氮化銦/磷化銦/砷化銦/銻化銦、氧化辞/硫化鋅/碼化辞 /碲化鋅、硫化編/碰化編/蹄化鑛、硫化汞/¾化果/碲化采、 43 200408694 石m化紕/碼化紕/蹄化紕/硫化鎂/硒化鎂、硫化鍺、硒化錯、 蹄化錯、硫化錫、石西化錫、碲化錫、氧化錯、硫化錯、石西 化釓、碲化鉛、氟化銅、氯化銅、溴化銅、碘化銅、氟化 銀、氯化銀、漠化銀、礙化銀、(氮)2化録錫、(氮)2化鈣碳、 5 (磷)2化辞鍺、(砷)2化鎘錫、(銻)2化鎘錫、(磷)3化銅鍺、(磷)3 化銅錯(銅,銀)(紹,叙,銦,|它)(硫,砸,碲)2、氮化石夕、氮化錯、 氧化鋁 '(鋁,鎵,銦)2(硫,硒,碲h、氧化(鋁)2碳、及/或由兩種 或多種此種半導體所構成之組合。於某些方面,該半導體 亦可包含一種選自於由下列所構成之群組:一種選自於元 10素週期表第111族之P-型攙雜物、一種選自於元素週期表第V 族之η-型攙雜物、一種選自於一個由硼、鋁及銦所構成群 組之Ρ-型攙雜物、一種選自於一個由磷、砷及銻所構成群 組之η-型攙雜物、一種選自於元素週期表第π族之ρ_型攙雜 物 種遙自於一個由鎮、辞、錦及汞所構成群組之ρ_型 15攙雜物、一種選自於元素週期表第IV族之Ρ-型攙雜物、一 種選自於一個由碳及矽所構成群組之卜型攙雜物、或一種 選自於一個由矽、鍺、錫、硫、硒及碲所構成群組之^型 攙雜物。 額外之製造奈米結構的方法(例如:藉由於一基材上形 20成奈米裝置結晶圖案、於一磁場中定向生長、使用流體組 合陣列、以及於一基材上徑向配置奈米結構)已被揭露於(例 如):授權給Empedocles之國際專利申請案編號: PCT/US03/09827 以及授權給 Duan 之 PCT/US03/09991。 常用以製造矽奈米結構之方法係包含氣相液相固相生 44 200408694The entropy ㈣ in the relation] can be used to overcome the energy barrier (ΔΗ) of the random combination of the destructive complementary pairs. At this time, the random binding complementary pairs can overcome the energy barrier that inhibits the thermodynamic regular array binding. In addition, under heating and 15 cooling, the entropy value increases as the solvent molecules are expelled from the space between the substrates, which will also form a host (matrix) _object (nanocrystals or circuits) Or embedded molecules with nano circuits / crystals tend to the regular array. This nanocircuit / crystal-matrix embedded body complex will also increase the crystallinity of the entire system, thereby giving stability to the favorable regular array and driving 20 equilibrium towards the regular array. Typically, the first and second alignment ligands are molecules with a selective molecular recognition functional group or group. In one example, the molecular identification between the first and second alignment ligands can be a simple chemical interaction, for example: occurs between 35 200408694 of an amine group and a silk group Hydrogen bonding interaction. Therefore, any of a plurality of amine-containing compounds and silk-covering compounds can be used as the first and second alignment ligands of the present invention. The design of aligned ligands can take advantage of any of a number of basic molecular interactions other than hydrogen bonding. For example: Coulomb 5 interactions, Van der Waals forces, ionic interactions, covalent bond formation, and / or various hydrophilic or hydrophobic interactions can be used to form the first and second alignments Complex between ligands. These interactions can be of different number of teeth (single or multiple teeth) and of different strengths (weak, moderate, or strong), but typically the parent interaction is reversible 'at least from the initial formation of the complex period. The conductive composition provided in USSN 60 / 452,232 and the lawyer's reference number co-filed with this case: 40-002710US can be modified to serve as an alignment ligand for the present invention. For example, when conductive compositions containing a conjugated organic substance as a solid structure are coupled to a nano15 structure-bonding head group and an alkyne tail group having a second nano-structure binding group Groups, as well as complementary chains (eg, an amine group and a hydroxyl group) embedded on both sides of the chain (coupled to the solid structure) can be used in the methods, devices, and compositions of the present invention. An example of the composition is shown in FIG. The 20 bioconjugate / biomolecule pair provides another example that can be used as a complementary molecular recognition group of the present invention. Various biomolecule pairs and interactions are detailed in, for example, BioconJugate Techniques by Hermanson (1996, Academic Press, New York). Any of the complementary biomolecules known in a variety of techniques can be used as the first and second alignment 36 200408694 bases. For example, the interaction between an antibody and an antigen that binds to the antibody can be used to target adjacent nanostructures, such as biotin and avidin or streptavidin (streptavidin) or between a protein (for example, a receptor) and its complementary complement. Even complementary nucleic acids, and / or a half body and a half body ligand can be used as alignment ligands of the present invention. Alternatively, an alignment ligand may be a group used to functionalize the surface of the nanostructure (eg, via silanyl coupling, nitridation, or a PCT / US03 / 09827 authorized by Empedocles) The described official 10 can be based on plasma). In some embodiments of the present invention, the first and second alignment ligands each have more than one molecular recognition functional group (for example, a multifunctional or multidentate ligand). For example, a multidentate ligand can have multiple amine functions, or multiple sets of biotin can be attached to a core structure. Alternatively, the alignment ligand can have versatility by having two pairs of halves (complements) with the specific examples of specific conjugation; for example: a biotin group and an avidin Groups both. In these specific examples of the composition of the invention, the first and second alignment ligands are typically provided by the same molecule. An exemplary embodiment of such a concept is a self-organizing molecule. 20 Self-assembling is the spontaneous organization of specific molecules into organized two-dimensional (or three-dimensional) configurations that follow, for example, those intermolecular interactions described in this case. The tissue alignment ligand composition is optimally directed to a thermal minima. The complementary binding of the aligned ligands, and the existence of the nanostructure to fill the pore space of the matrix (and thereby expel the solvent molecules, and increase the system crystallinity to compensate for the entropy loss by 37 200408694) and the nano The structure is bound by the head linking group, which will lead to a decrease in the overall Gibbs free energy and a thermodynamic equilibrium. The aligned ligands directly interact with the nanostructure surface for 5 functions, or interact with or combine with other The nanostructured surface interacts. In certain embodiments of the present invention where the nanostructure surface is capable and / or available for binding, the aligned ligands may further comprise one or more kinds capable of binding to a nanostructure surface or to one and one Functionalized head groups that interact on the nanostructure surface. The specific head group functional group available for the composition depends in part on the type of the aligned nanostructure. Examples of chemical groups that can be used to couple alignment ligands to nanostructures include (but are not limited to): phosphonic acid, carboxylic acid, amine, phosphine, phosphine oxide, aminobenzoic acid, isocyanate, nitro, Ethylenediamine and salen, dithione, catechol, N, 0 coordination ligand, P, N coordination 15 or thiol group, or one such group A combination of groups. A P, N coordination ligand system includes: a heteroatom phosphorus and a heteroatom nitrogen which can be bonded or combined via an unbonded electron pair that can form a hydrogen coordination or covalent bonding. Examples of a P, N coordination ligand include: 2-tribenzyl-phosphine-anhydropyridine, 2-triethyl-phosphine-aniline, diphenylphosphineethylamine. 20 A N, 0 coordination ligand system includes: a heteroatom nitrogen and a heteroatom oxygen that can be bonded or combined via an unbonded electron pair that can form a hydrogen coordination or covalent bonding . Examples of N, 0 coordination ligands include: ethanolamine and aniline phosphinic acid, and 2-mercaptoaniline-3,5-diaminobenzoic acid, guanine, cytosine, and GAC Double ring test basis. 38 200408694 Available methods for preparing selectively oriented nanostructures The present invention also provides various methods for preparing a variety of selectively oriented nanostructures, wherein the nanostructure group comprises: it can be performed with the first alignment ligand The first group of nanostructures interacting with each other, and the second group of nanostructures interacting with the second group of aligned ligands. Any number of aligned ligands can be used to prepare selectively oriented nanostructures, such as those illustrated in the third figure. In some specific examples, the first and second alignment ligands are different chemicals (Figure 3, Figure A), although in other specific examples, a single multifunctional molecule can play a One aligned ligand and the second aligned ligand (Figure 3, Figure B). For example, the first alignment ligand may include a biotin group, although the complementary second alignment ligand also has a biotin group embedded in the structure. The biotin and avidin can be embedded in two separate ligand molecules; alternatively, the two can be two 15 parts of a multifunctional ligand molecule (for example, one with two molecular recognition functional groups A single aligned ligand to be incorporated). Therefore, in some method specific examples, the first group of nanostructures may further include a second alignment ligand, and the second alignment ligand may also include the first alignment ligand (the Figure 3, Figure C). However, the dual alignment functional group of a nanostructure 20 can also be achieved, for example, by arranging one or several first alignment ligands along a part of a specific nanostructure, and then The second part configures the second alignment ligand (Figure D). As mentioned above, in a preferred embodiment, the alignment ligand is coupled to the nanostructure, which can be directly coupled to the surface of the nanostructure, or 39 200408694 to an additional (eg, resides therein) may be A ligand that interacts with the nanostructure. The first alignment ligand that resides in the first group of nanostructures can interact with the second alignment ligand that resides in the second group of adjacent nanostructures at this time, thereby enabling selective orientation. These various nanostructures. 5 In some specific examples, a variety of nano-circuits can be manufactured by any of a variety of techniques known in the art (eg, vapor deposition method or solution deposition method) for use in various nano-structures. However, specific examples of nanostructures (nanocrystals, nanopoints, nanorods, etc.) can be substituted for nanocircuits in these methods. After that, the nanostructure is processed, for example, by vapor-depositing the first alignment ligand on the surface of a first part composed of a plurality of nanostructures; A second alignment ligand on the surface of the second part of the meter structure. Optionally, the methods may further include the step of removing the nano-circuit-aligned ligand, the nano-circuit-aligned ligand interacts with the first 15-aligned ligand It has been conjugated to the substrate before acting. In some specific examples, the first part and the second part of the nano circuit are individual nano circuit groups. In specific examples where the isoalignment ligands are not a functional group (ie, those with only one of the complementary molecular recognition elements), the method of the present invention can generate two groups of ligands that interact with the nanostructure. In a specific example [where the first part and the second part contain individual areas composed of individual nano-circuits (eg, both ends of the nano-structures)], a single (asymmetric) Nanostructure group. Optionally, the first and second alignment ligand systems include: molecules capable of performing a specific molecular interaction (eg, forming a hydrogen bond), 40 200408694 a specific molecular recognition functional group (eg, a Biomolecule pairs) or other self-organizing molecules. Examples of the first and second alignment ligands that can be designed to interact via a hydrogen bond include, but are not limited to, a compound containing an amine and a compound containing an alcohol. 5 Preferably, the method of the present invention comprises the step of coupling the alignment ligand to the surface interacting with the nanostructure. In the specific examples of these methods, an alignment ligand having a functional head group or other nanostructure binding group is used to bind the alignment molecule to the surface of the nanostructure. Examples of chemical functional groups that can interact with the nanostructure surface (or ligands with which they interact) 10 Examples include (but are not limited to): phosphonic acid, carboxylic acid, amine, phosphine, oxidation Phosphine, aminobenzoic acid, isocyanate, nitro, ethylenediamine and salen, dithione, catechol, N, 0 coordination ligand, P, N coordination ligand, or A thiol group (or a group consisting of them). Optionally, the first and second alignment ligands can be further added. + 勹 15 contains a cross-linking or polymerizable element, thereby interacting with the first and second counter ligands. To guide the cross-linking or polymerization of the first-type and the first-aligned ligands. -20 In some specific examples of the method, the interaction with the first and second alignment groups is by heating and then cooling a variety of nanostructures. Ordinarily, the interaction with the first and second alignment ligands is achieved by mixing these ligands with a solvent, where the two meanings have different solubility (for example: Solubility). Examples of solvents include eight "not limited to": chloroform, toluene, and chlorobenzene. In a further specific example, the method of the present invention is further 41 200408694. The hydrazone includes fixing a plurality of selectively oriented nanostructures to— Steps of the substrate. Both βHyd- and second alignment ligands can be removed optionally. Oriented nanostructure groups On the other hand, the present invention also provides multiple options for living on a substrate 5 Groups of sexually oriented nanostructures. Unlike the foregoing specific examples of the present invention, these groups do not involve a surrounding matrix. The orientation of the selectively oriented nanostructures can be vertical-a surface that interacts with the nanostructure (or other The xy plane is defined), or the orientation may be in a non-ordinary orientation with the surface or plane. The generation of distant selective orientation nanostructures can provide, for example, a cluster of functional elements composed of 纟 φ ίο [eg : Links located in a defined area on a substrate], for example, for use as an interface with additional nano- or micro-scale motors. Any number of nano-structure components The nano structure (or combination of nano structures) can be used in the composition and method of the present invention, and the system includes (but is not limited to): nano crystals, nano dots, nano spheres, nano Circuits, nanometer broadband, nanotetrapods, various branch structures (such as dendrimer branch structures), quantum dots, quantum dots, and the like. Many kinds can be used to make various semiconductors. Materials, ferroelectric materials, 20 materials, a metal, and a method of making nanostructures are known in the art. For example, semiconductor nanocrystals have been described in detail (see (for example): Huynh, et al · (2002) "Hybrid Nanorod-Polymer Solar Cells" Science '295: 2426-2427, Huynh, et al. Adv. Materials 11 (11): 923 (1990), Greenham et al., Phys. Rev. B 54 (24 ): 17628-17637 42 (19%), and US patent case number: 6,239,355). In some embodiments of the present invention, the 'nano structure is made of semiconductor materials. The semiconductor nano structure contains a summary of different materials. Wide range, which are nano-sized particles or structures' Such as: having at least one cross section of less than about 5000m, 5 and preferably less than 100 nm. These nanostructures can be composed of a wide range of semiconductor materials, which include (for example): 111- ¥ family, π · νι, group IV semiconductors or alloys composed of these materials. For example: cadmium gallium, cadmium telluride, indium phosphide, indium arsenide, cadmium sulfide, sulfuration, oxidation, inscription Zinc strontium, lead strontium, zinc sulfide, and / or lead telluride semiconductors (or alloys thereof) 10 may be used as at least a portion of the nanostructural component of the present invention. Examples of additional nanocircuits include: semiconductor circuits [as disclosed in Lieber et al., Published international patent application number: wo02 / 17362 (invention name: "doped extended semiconductors, growing such semiconductors, including Such a semiconductor device and a method for manufacturing such a device "), WO 02/48701 (invention name:" Nano Sensor ") licensed to Lieber et al., And WO 01/03208 (Lieber et al.) Title of Invention: "Manufacturing methods for devices, arrays, and the like based on nanoscale circuits, as described in []], nanometer carbon tubes, and other extended conductors or semiconductors with similar dimensions. Roughly, they contain a 20-meter nanostructure selected from the following semiconductor materials, such as: Shi Xi, Cu, Tin, Luxi, Hoof, Side, Diamond, Phosphor, Carbon, Boron-Phosphorus (BP6), Boron-silicon, silicon-carbon, silicon-germanium, silicon-tin and silicon-germanium, silicon carbide, boron nitride / boron phosphide / boron arsenide, aluminum nitride / aluminum phosphide / arsenide / aluminum oxide , Indium Nitride / Indium Phosphide / Indium Arsenide / Indium Antimonide, Oxidation / Zinc Sulfide / Coded Word / Zinc Telluride, Sulfide / Polymerization / Hoofing ore, Mercury sulfide / Chemical fruit / Telluride mining, 43 200408694 petrochemical sulphur / code hydration / hoof chemistry / magnesium sulfide / magnesium selenide, germanium sulfide, selenide fault, hoof Chemical fault, tin sulfide, petrified tin, tin telluride, oxidized fault, sulfided fault, petrified hafnium, lead telluride, copper fluoride, copper chloride, copper bromide, copper iodide, silver fluoride, chloride Silver, silvery desert, silver oxide, (nitrogen) 2 calcium tin, (nitrogen) 2 calcium carbon, 5 (phosphorus) 2 germanium, (arsenic) 2 cadmium tin, (antimony) 2 cadmium tin (Phosphorus) 3CuGe, Cu (P) 3Cu (Cu, Ag) (Shao, Syria, In, | It) (sulfur, sulphur, tellurium) 2, Nitride, Nitride, Alumina '(Aluminum, gallium, indium) 2 (sulfur, selenium, tellurium h, oxide (aluminum) 2 carbon, and / or a combination of two or more such semiconductors. In some aspects, the semiconductor may also include One is selected from the group consisting of: a P-type dopant selected from Group 111 of the Periodic Table of the Elements, a n-type dopant selected from Group V of the Periodic Table, a From a P-type dopant of the group consisting of boron, aluminum and indium, one selected from An η-type dopant consisting of phosphorus, arsenic, and antimony, and a ρ_-type doped species selected from group π of the periodic table from a group consisting of towns, rhenium, brocade, and mercury Ρ_type 15 impurity, a P-type impurity selected from Group IV of the Periodic Table of the Elements, a p-type impurity selected from a group consisting of carbon and silicon, or a type selected from a A type ^ dopant consisting of silicon, germanium, tin, sulfur, selenium, and tellurium. An additional method for manufacturing a nanostructure (for example, by forming 20 nanometer device crystal patterns on a substrate, Oriented growth in a magnetic field, the use of a fluid combination array, and the radial arrangement of nanostructures on a substrate have been disclosed, for example, in: International patent application number granted to Empedocles: PCT / US03 / 09827 and to Duan PCT / US03 / 09991. Commonly used methods to make silicon nanostructures include gas phase liquid phase solid phase growth 44 200408694

長(VLS)、雷射条鑛(雷射催化生長)以及熱蒸鍵。參閱(例 如):Morales et al· (1998) “A laser Ablation Methods for the synthesis of Crystalline Semoconductor Nanowires” Science 279-208-211(1998)。於一個實施例方法中,使用一種可供 5 用以合成具有軸定向雜合結構(heterostructure)之半導體奈 米電路雜交脈衝雷射蒸鍍Af匕學氣相沉積(PLA-CVD)製程。 參閱(例如):Wu et al· (2002) “Block-bt-Block Growth of Single- Crystalline Si/SiGe Superlattice Nanowires,” Nano Letters 2:83-86 o 10 大致上,多種製造奈米結構方法,及其等產生奈米結Length (VLS), laser bar ore (laser-catalyzed growth), and thermal evaporation bonds. See, for example, Morales et al. (1998) "A laser Ablation Methods for the synthesis of Crystalline Semoconductor Nanowires" Science 279-208-211 (1998). In one embodiment method, a hybrid nano-circuit pulsed laser vapor deposition (ALA) vapor deposition (PLA-CVD) process that can be used to synthesize semiconductor nanocircuits with axially-oriented heterostructures is used. See (for example): Wu et al · (2002) "Block-bt-Block Growth of Single-Crystalline Si / SiGe Superlattice Nanowires," Nano Letters 2: 83-86 o 10 In general, there are several methods for manufacturing nanostructures, and Nanoknot

構方法,皆已内被描述,且可被施用於本發明方法、系統 及裝置中。除了 Morales et al·與Wu et al.之(上文)外,可參 閱(例如):Lieber et al· (2001) “Carbide Nanomaterials” 美國 專利案編號:USP 6,190,634 B1 ; Lieber et al· (2000) 15 “Nanometer Scale Microscopy Probes”美國專利案編號:USP 6,159,742 ; Lieber et al· (2000) “Method of Producing Metal Oxide Nanorods” 美國專利案編號:USP 6,036,774 ; Lieber et al· (1999) “Metal Oxide Nanorods,,美國專利案編號:USP 5,897,945 ; Lieber et al· (1999) “Preparation of Carbide 20 Nanorods” 美國專利案編號:USP 5,997,832 ; Lieber et al· (1998) “Covalent Carbon Nitride Material Comprising C2N and Formation Method” ; Thess,et al· (1996) “Crystalline Ropes of Metallic Carbon Nanotubes” Science 273, 483-486 ; Lieber et al· (1993) “Method of making 45 200408694The construction methods have been described in the art and can be applied to the methods, systems, and devices of the present invention. In addition to Morales et al. And Wu et al. (Above), see, for example: Lieber et al. (2001) "Carbide Nanomaterials" US Patent No .: USP 6,190,634 B1; Lieber et al. ( 2000) 15 "Nanometer Scale Microscopy Probes" US Patent No .: USP 6,159,742; Lieber et al. (2000) "Method of Producing Metal Oxide Nanorods" US Patent No .: USP 6,036,774; Lieber et al. (1999) " Metal Oxide Nanorods, US Patent No .: USP 5,897,945; Lieber et al. (1999) "Preparation of Carbide 20 Nanorods" US Patent No .: USP 5,997,832; Lieber et al. (1998) "Covalent Carbon Nitride Material Comprising C2N and Formation Method "; Thess, et al. (1996)" Crystalline Ropes of Metallic Carbon Nanotubes "Science 273, 483-486; Lieber et al. (1993)" Method of making 45 200408694

Superconducting Fullerene Composition By Reacting a Fullerene with an Alloy Containing Alkai Metal” 美國專利 案編號:USP 5,196,396;以及Lieber et al· (1993) “Machining Oxide Thin Films with an Atomic Force Microsxope: Pattern 5 and Object Formation on the Nanometer Scale’’ 美國專利案 編號:USP 5,252,835。近期,一維半導體雜合結構 (heterostructure)奈米結晶已被描述,其依據本發明而言, 係可被安排/定位/定向。參閱(例如):Bjork et al· (2002) “One-dimensional Steeplechase for Electrons Realized,,Nano 10 Letters 2:86-90。 於另一種方法中,供用以製造居於表面及大量之個別 奈米電路的合成步驟已被描述,例如:Kong,et aL (1998) ^Synthesis of Individual Single-Walled Carbon Nanotubes onSuperconducting Fullerene Composition By Reacting a Fullerene with an Alloy Containing Alkai Metal "US Patent No .: USP 5,196,396; and Lieber et al. (1993)" Machining Oxide Thin Films with an Atomic Force Microsxope: Pattern 5 and Object Formation on the Nanometer Scale '' US Patent No. USP 5,252,835. Recently, one-dimensional semiconductor heterostructure nanocrystals have been described, which can be arranged / positioned / oriented according to the present invention. See (for example): Bjork et al. (2002) "One-dimensional Steeplechase for Electrons Realized, Nano 10 Letters 2: 86-90. In another method, it is used to make surface and large numbers of individual nano circuits. Synthesis steps have been described, for example: Kong, et aL (1998) ^ Synthesis of Individual Single-Walled Carbon Nanotubes on

Patterned Silicon Wafers,” Nature 395. 878-881、以及Kong, 15 et al· (1998) “Chemical Vapor Deposition of Methane for Single- Walled Carbon Nanotube” Chem. Phys· Lett· 292 : 567-574。 於尚有另一種方法中,可使用基材及自我組合單層 (SAM)形成材料,例如:同時使用微接觸印刷技術來製備奈 20 米結構,例如那些被描述於:Schon,Meng and Bao (2001) “Self- assembled monolayer organic field-effect transistors,,,Patterned Silicon Wafers, "Nature 395. 878-881, and Kong, 15 et al · (1998)" Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotube "Chem. Phys · Let · 292: 567-574. Yu Shangyou In another method, a substrate and a self-assembled monolayer (SAM) -forming material can be used. For example, micro-contact printing technology can be used to prepare nanometer 20-meter structures, such as those described in Schon, Meng and Bao (2001) " Self- assembled monolayer organic field-effect transistors ,,,

Nature 413:713 ; Zhou et al· (1997) “NanoscaleNature 413: 713; Zhou et al. (1997) "Nanoscale

Metal/Self-Assembled Monolayer/Metal Heterostructures,”(於 1996年6月26日發表)。一種可被使用來製備一種自我組合單 46 層之組成物的較佳具體例係包含:一種可被連接至一個基材 (例如:金)之硫醇組份、以及一種或多種可進行交互作用然 後組合形成一種組織化單層之脂肪鏈。 由各種不同組成物構成之奈米結晶的合成已被描述於 5 (例如):peng et al· (2000) “Shape control of CdSe nanocrystals,,Nature 404:59-61、Puntes et al· (2001)Metal / Self-Assembled Monolayer / Metal Heterostructures, "(published June 26, 1996). A preferred embodiment of a composition that can be used to make a self-assembled monolayer of 46 layers includes: The composition of a thiol component of a substrate (eg, gold) and one or more fatty chains that can interact and then combine to form a structured monolayer. The synthesis of nanocrystals composed of various compositions has been described in 5 (Example): peng et al · (2000) "Shape control of CdSe nanocrystals, Nature 404: 59-61, Puntes et al · (2001)

Colloidal nanocrystal shape and size control: The case of cobalt” Science 291: 2115-2117、USPN 6,306,736 [於2001 年 10月 23 日授權給Alivisatos et al.,發明名稱:“Process for 10 forming shaped group III-V semiconductor nanocrystals, and product formed using process,,]、USPN 6,225,198 [於2001 年 5 月 21 日授權給 Alivisatos et al·,發明名稱:“Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process”]、USPN 5,505,928 [於 1996年 15 4 月 9 日授權給 Alivisatos et al·,發明名稱:“Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process’’]、USPN 5,751,018 [於 1998年 5 月 12 日授權給Alivisatos et al·,發明名稱:“Semiconductor nanocrystals covalently bound to so lid inorganic surface 20 using self- assembled monolayers”]、USPN 6,048,616 [於 2000年4月11日授權給Gallagher et al·,發明名稱: "Encapsulated quantum sized doped semiconductor particles and method of manufacturing same”]、USPN 5,990,479 [於 1999年11月23日授權給Weisset al·,發明名稱:“〇rgano 47 200408694 luminescent semiconductor nanocrystals probes for biological applications and process for making and using such probes’’] o 生長奈米結構(例如:具有各種不同高深寬比之奈米電 5 路)係包含具有控制直徑奈米電路,已被描述於(例如):Colloidal nanocrystal shape and size control: The case of cobalt ”Science 291: 2115-2117, USPN 6,306,736 [licensed to Alivisatos et al. On October 23, 2001, invention name:“ Process for 10 forming shaped group III-V semiconductor nanocrystals, and product formed using process,], USPN 6,225,198 [authorized to Alivisatos et al · on May 21, 2001, invention name: "Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process "], USPN 5,505,928 [authorized to Alivisatos et al · on April 15, 1996, the invention name:" Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process "], USPN 5,751,018 [ Authorized to Alivisatos et al · on May 12, 1998, the invention name: "Semiconductor nanocrystals covalently bound to so lid inorganic surface 20 using self-assembled monolayers"], USPN 6,048,616 [authorized to Gallagher et on April 11, 2000 al ·, Invention Name: " Encapsulated quantum sized doped semiconductor particles and method of manufacturing same "], USPN 5,990,479 [authorized to Weisset al · on November 23, 1999, invention name:" 〇rgano 47 200408694 luminescent semiconductor nanocrystals probes for biological applications and process for making and using such probes ''] o Growing nano-structures (for example: 5-way nano-circuits with various height-to-width ratios) include nano-circuits with controlled diameters, which have been described in (for example):

Gudiksen et al (2000) "Diameter-selective synthesis of semiconductor nanowire” J· Am. Chem· Soc. 122:8801-8802; Cui et al. (2001) "Diameter-controlled synthesis of single-crystal silicon nanowires" Appl. Phys. Lett. 78:2214-2216 ; 10 Gudiksen et al (2001) “Synthesis control of the diameter and length of single crystal semiconductor nanowire s” J· Phys· Chem.B 105:4062- 4064 ; Morales et al· (1998) “A laser ablation methods for the synthesis of crystalline semiconductor nanowires?? Science 279: 208-211 ; Duan et al. 15 (2000) “General synthesis of compound semiconductor nanowires” Adv. Mater. 12:298-302 ; Cui et al· (2000) “Doping and electrical tranport in silicon nanowires’’ J. Phys. Chem.B 104:5213-5216 ; Peng et al· (2000)(同上文所述); Puntes et al· (2001)[同上文所述];USPN 6,225,198 [於2001 20 年5月21日授權給Alivisatos et al·,同上文所述];USPN 6,036,774 [於2000年3月14日授權給Lieber et al·,發明名 稱·· “Method of producing metal oxide nanorods ”] ; USPN 5,997,832 [於1999年12月7日授權給Lieber et al·,發明名 稱:“Preparation of carbide nanorods”] ; Urbau et al· (2002) 48 200408694 “Synthesis of single-crystalline perovskite nanowire composed of barium titanate and strontium tit anate" J. Am. Chem. Soc·,124:1186 ; Yun et al· (2002) “Ferroelectric Properties of Individual Barium Titanate Nanowires 5 Investigated by Scanned Probe Microscopy ’’ Nano Letters 2:447 ;以及已公開PCT申請案編號:WO 02/17362及WO 02/080280 。Gudiksen et al (2000) " Diameter-selective synthesis of semiconductor nanowire "J. Am. Chem · Soc. 122: 8801-8802; Cui et al. (2001) " Diameter-controlled synthesis of single-crystal silicon nanowires " Appl. Phys. Lett. 78: 2214-2216; 10 Gudiksen et al (2001) "Synthesis control of the diameter and length of single crystal semiconductor nanowire s" J. Phys. Chem. B 105: 4062- 4064; Morales et al · (1998) "A laser ablation methods for the synthesis of crystalline semiconductor nanowires ?? Science 279: 208-211; Duan et al. 15 (2000)" General synthesis of compound semiconductor nanowires "Adv. Mater. 12: 298-302 ; Cui et al · (2000) "Doping and electrical tranport in silicon nanowires" J. Phys. Chem.B 104: 5213-5216; Peng et al · (2000) (same as above); Puntes et al · ( 2001) [same as above]; USPN 6,225,198 [authorized to Alivisatos et al · on May 21, 2001, same as above]; USPN 6,036,774 [authorized to Lieber et al on March 14, 2000 ·, Invention name "· Method of producing metal oxide nanorods"]; USPN 5,997,832 [authorized to Lieber et al · on December 7, 1999, invention name: "Preparation of carbide nanorods"]; Urbau et al · (2002) 48 200408694 "Synthesis of single-crystalline perovskite nanowire composed of barium titanate and strontium tit anate " J. Am. Chem. Soc ·, 124: 1186; Yun et al · (2002)" Ferroelectric Properties of Individual Barium Titanate Nanowires 5 Investigated by Scanned Probe Microscopy '' Nano Letters 2: 447; and published PCT application numbers: WO 02/17362 and WO 02/080280.

生長支鏈奈米結構(例如:奈米四腳體、三腳體、二腳 體及支鏈四腳體係被描述於(例如):Jun et al. (2001) 10 “Controlled synthesis of multi -armed CdS nanorod architectures using monosurfactant system ” J. Am. Chem· Soc. 123:5150-5151 ; Manna et al. (2000) “Synthesis of Soluble and Processable Rod-,Arrow-,Teardrop- and Tetrapod-Shaped CdSe Nanocrystals” J. Am Chem· Soc. 122: 15 12700-12706。合成奈米顆粒則被描述於(例如)·· USPNGrowing branched nanostructures (eg nanotetrapods, tripods, dipods, and branched tetrapod systems are described in (eg): Jun et al. (2001) 10 "Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system ”J. Am. Chem · Soc. 123: 5150-5151; Manna et al. (2000)“ Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop- and Tetrapod-Shaped CdSe Nanocrystals ”J Am Chem · Soc. 122: 15 12700-12706. Synthetic nano particles are described in, for example, USPN

5,690,807 [於 1997年 11 月 25 日授權給Clark Jr· et al·,發明名 稱:“Method for producing semiconductor particles ”] ; USPN 6,136,156 [於2000年 10月 24 日授權給El-Shall,et al·,發明名 稱:“Nanoparticles of silicon oxide alloys ”]; USPN 6,413,489 20 [於2002年7月2日授權給Ying et al·,發明名稱:“Synthesis of nanometer-sized particles by reverse micelle mediated techniques”];以及Liu et al· (2001) “Sol-Gel Synthesis of Free-Standing Ferroelectric Lead Zirconate Titanate Nanoparticles” J· Am. Chem· Soc· 123:43441。合成奈米顆粒 49 200408694 亦被描述於上述生長奈米結晶、奈米電路及支鏈奈米電路 之參考文獻中。 合成具有核體-套殼之奈米結構已被描述於(例如): Peng et al. (1997) "Expitaxial growth of highly luminescent 5 CdSe/CdS core-shell nanocrystals with photostability and electronic accessibility” J· Am Chem. Soc· 119:7019-7029、 Dabbousi et al. (1997) "(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites’’ J. Phys. Chem.B 101: 10 9463-9475、Manna et al· (2002) “Expitaxial growth and photochemical annealing of graded CdSe/CdS shell on colloidal CdSe nanorods” J· Am Chem· Soc. 124: 7136-7145、以及Cao et al· (2000) “Growth and properties of semiconductor core/shell mamocrystals with InAs cores ’’ J· 15 Am Chem. Soc. 122: 9692-9702。類似的方法亦可被應用來 生長其他具有核體-套殼之奈米結構。參閱(例如):USPN 6,207,229 及 USPN 6,322,901 [於 2002 年 11 月 27 日授權給 Bawendi et al·,發明名稱:“Highly luminescent color-selective materials’’] 〇 20 生長均質奈米電路群(其包含奈米電路雜合結構 (heterostructure),該奈米電路雜合結構中不同的材料被分 佈於沿該奈米電路長轴之不同位置)已被描述於已公開之 PCT申請案編號WO 02/17362及WO 02/080280 ; Gudiksen et al· (2002) “Growth of nanowire superlattice for nanosacle 50 200408694 photonics and electronics” Nature 415:617-620 ; Bjork et al· (2002) “One- dimensional steeplechase for electrons realized” Nano Letters 2:86-90 ; Wu et al. (2002) “Block-by-block growth of single-crystalline Si/SiGe5,690,807 [authorized to Clark Jr. et al · on November 25, 1997, invention name: "Method for producing semiconductor particles"]; USPN 6,136,156 [authorized to El-Shall on October 24, 2000, et al ·, invention name: "Nanoparticles of silicon oxide alloys"]; USPN 6,413,489 20 [authorized to Ying et al ·, July 2, 2002, invention name: "Synthesis of nanometer-sized particles by reverse micelle mediated techniques" ]; And Liu et al. (2001) "Sol-Gel Synthesis of Free-Standing Ferroelectric Lead Zirconate Titanate Nanoparticles" J. Am. Chem. Soc. 123: 43441. Synthetic Nanoparticles 49 200408694 are also described in the references above for growing nanocrystals, nanocircuits, and branched nanocircuits. Synthesis of nanostructures with core-shells has been described in (for example): Peng et al. (1997) " Expitaxial growth of highly luminescent 5 CdSe / CdS core-shell nanocrystals with photostability and electronic accessibility "J · Am Chem. Soc. 119: 7019-7029, Dabbousi et al. (1997) " (CdSe) ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites '' J. Phys. Chem.B 101 : 10 9463-9475, Manna et al. (2002) "Expitaxial growth and photochemical annealing of graded CdSe / CdS shell on colloidal CdSe nanorods" J. Am Chem. Soc. 124: 7136-7145, and Cao et al. (2000 ) "Growth and properties of semiconductor core / shell mamocrystals with InAs cores '' J. 15 Am Chem. Soc. 122: 9692-9702. A similar method can be applied to grow other nanostructures with core-shell. See (for example): USPN 6,207,229 and USPN 6,322,901 [authorized to Bawendi et al · on November 27, 2002, invention name: "Highly luminescent color-selective materials"] 〇20 Growing homogeneous nano-circuit group (which contains nano The hybrid structure of the nanometer circuit (different materials in the nanocircuit hybrid structure is distributed at different positions along the long axis of the nanometer circuit) has been described in published PCT application number WO 02/17362 and WO 02/080280; Gudiksen et al · (2002) "Growth of nanowire superlattice for nanosacle 50 200408694 photonics and electronics" Nature 415: 617-620; Bjork et al · (2002) "One-dimensional steeplechase for electrons realized" Nano Letters 2: 86-90; Wu et al. (2002) "Block-by-block growth of single-crystalline Si / SiGe

5 superlattice nanowires’’ Nano Letters 2:83-86 ;以及美國專利 申請案編號:60/370,095 [於2002年4月2曰授權給 Empedocles et al· ’ 發明名稱:“Nanowire heterostructures for encoding information ”]。類似的方法亦可被應用來生長其他 雜合結構,並予以應用至多種本發明方法及系統。 10 裝置 本發明對齊及/或定向奈米結構可以被使用或予以組 合入多種功能性元件或裝置之任何一種。多種製造該等可 供用於微細級裝置(裝置元件)之一維結構的方法,以及諸等 可供用以製造此種裝置之連接件(junction)及電路之方法皆 15已被描述。例如,諸如奈米電路及奈米管之奈米結構是能 夠傳輸電子及電洞’藉此產生可供用於奈米級電子裝置之 構築區塊。此種元件攜帶電荷特性之研究已導引創造出場 效應電晶體、單電子電晶體、調控型連接件、以及甚至完 整之電路。 20 例如,多種諸如記憶體、電路邏輯、開關及類似物之 -人組伤皆可使用上文所述之奈米結構或其他微細級結構, 且可以被本發明採用,例如:藉由使用由本發明奈米結構、 規則奈米結構所構成之奈米結構組份及陣列,來組成類似 裝置。參閱(例如):Huang et al· (2001) “Logic Gates and 51 2004086945 superlattice nanowires ’’ Nano Letters 2: 83-86; and U.S. patent application number: 60 / 370,095 [issued to Empedocles et al., “April 2, 2002” Invention Name: “Nanowire heterostructures for encoding information”]. Similar methods can also be applied to grow other heterostructures and can be applied to a variety of methods and systems of the present invention. 10 Devices The aligned and / or oriented nanostructures of the present invention can be used or combined into any of a variety of functional elements or devices. Various methods of manufacturing such one-dimensional structures that can be used for micro-level devices (device elements), and various methods and junctions and circuits that can be used to make such devices have been described. For example, nano-structures such as nano-circuits and nano-tubes are capable of transmitting electrons and holes', thereby generating building blocks that can be used for nano-level electronic devices. Research on the charge-carrying characteristics of such components has led to the creation of field-effect transistors, single-electron transistors, regulating connections, and even complete circuits. 20 For example, a variety of human-like injuries such as memory, circuit logic, switches, and the like can use the nano-structure or other micro-level structures described above, and can be adopted by the present invention, for example: Nano-structures, nano-structure components and arrays composed of regular nano-structures constitute similar devices. See (for example): Huang et al · (2001) "Logic Gates and 51 200408694

Computation from Assembled Nanowire Building Blocks,’’ Science 294:1313 ; Huang et al. (2001) “Directed Assembled of One- Dimensional Nanostructure Into Functional Networks,” Science 291:630 ; Chung et al· (2000) “Si 5 Nanowire Devices,” Appl· Phys. Lett· 76:2068 ; Bachtold et al· (2001) “Logic Circuits with Carbon Nanotube Transistors,’’ Science 294:1317 ; Schon et al· (2001) “Field-Effect Modulation of the Conductance of Single Molecules,’’ Science 294:2138 ; Derycke et al· (August 2001) “Carbon 10 Nanotube Inter and Intramolecular Logic Gates, ”、線上公開 於Nano Lerrters ; USP 6,128,214 [授權給 Kuekes et al· (2001),發明名稱:“Molecular Wire Crossbar Memory”]; Collier et al. (1999) "Electronically Configurable Molecular-Based Logic Gates” Science 285:391-394 ; Chen et al· (1999) 15 “Observation of a Large On-Off Ratio and Negative Differential Resistance in an Electronic Molecular Switch,” Science 286: 1550 ; USP 5,274,602 [授權給Gallagher et al· (1997),發明名稱:“Large Capacity Solid State Memory”]; Service (2001) “Assembling Nanocircuits From the Bottom 20 Up,” Science 293:782 ;以及Tseng and Ellenbogen (2001) “Toward Nanocomputers,” Science 294:1293。參造本發明製 造之奈米結構或奈米結構陣列可任擇地被類似地組態為記 憶體、電路邏輯、計算元件或類似物。 本發明方法、裝置及組成物之用途 52 200408694 在不偏離本發明精義及申請專利範圍所涵概之範疇 下,可修改上文所述方法及材料,然後本發明可被使用多 種不同的用途,其包含: 利用本發明方法來製備一種奈米結構··基質組成物, 5 其中該奈米結構具有結構規則性。 於該等製造一種以奈米結構為主之裝置中使用由結構 規則奈米結構所構成之組成物。 一種利用任何一種結構規則奈米結構、奈米結構:對 齊配位基組成物、或上文所述方法之套組或系統。套組可 10任擇額外地包含:製備該等結構規則奈米結構、奈米結構: 基質組成物、或本發明奈米結構:對齊配位基組成物之說 明書;將本發明組成物嵌入包含奈米結構裝置之說明書; 或其他施行本發明提供方法、組合材料、一種或多種包含 奈米結構、基質組份或對齊配位基及/或類似物之容器的說 15 明書。 於一個額外的方面,本發明係提供呈現本發明方法及 裝置之套組。本發明套組可任擇地包含下列之一種或多 種·(1)一種或多種對齊配位基或可供用以合成該等對齊配 位基之組份;(2)—種或多種奈米結構製備法;(3)可供用以 2〇製備居於基質内之結構規則奈米結構組份及/或說明書;⑷ 可供用以製備奈米結構:對齊配位基組成物之組份及/或說 明書;(5)可供用以製備由規則奈米結構群所構成之組份及/ 或說明書;(6)可供用以施行本發明所述方法之說明書;及/ 或(7)組合材料。 53 200408694 於另一方面’本發明係提供本發明任何-種組份或套 組之用途,俾以供用以施行任何一種本發明方法或分析 法,及/或使用任何-種裝置或套組來施行任何—種本發明 分析法或方法。 5 於雖然本發明已於前文描述某些細節來供用於澄清及 瞭解,一熟習此項技藝人士可藉由研讀此揭露内容而知 悉:在不偏離本發明真確涵概之範疇下,可修改各種不同 的型式及細節變化。例如,上文所述之所有的技術及裝置 皆可呈各種不同組合來被使用。該等被引述於本申請案之 ίο所有的發表文獻、專师及專射請案及/或其他文獻皆在 此以其等全部之揭露内容在此併入本案做為參考資料,其 對所有標的皆等同如每一個個別發表文獻、專利案及專利 申明案及/或其他文獻皆是個別地指出其所有標的來併入 本案做為參考資料。 15 【圖式簡單說明】 第1A-1D圖提供一個居於一基質内具有多種結構規則 奈米結構之多種具體例的代表圖。 第2圖提供本發明所描述之諸等居於奈米結構與單官 月匕基或多單官能基之第一對齊配位基與第一對齊配位基之 20 間的交互作用示意圖。 第3圖係闡釋供用於本發明之對齊配位基的具體例。 【囷式之主要元件代表符號表】 (無) 54Computation from Assembled Nanowire Building Blocks, '' Science 294: 1313; Huang et al. (2001) "Directed Assembled of One-Dimensional Nanostructure Into Functional Networks," Science 291: 630; Chung et al. (2000) "Si 5 Nanowire Devices, "Appl. Phys. Lett. 76: 2068; Bachtold et al. (2001)" Logic Circuits with Carbon Nanotube Transistors, "Science 294: 1317; Schon et al. (2001)" Field-Effect Modulation of the Conductance of Single Molecules, '' Science 294: 2138; Derycke et al. (August 2001) "Carbon 10 Nanotube Inter and Intramolecular Logic Gates," published online at Nano Lerrters; USP 6, 128,214 [authorized to Kuukes et al. (2001 ), Invention name: "Molecular Wire Crossbar Memory"]; Collier et al. (1999) " Electronically Configurable Molecular-Based Logic Gates "Science 285: 391-394; Chen et al · (1999) 15" Observation of a Large On-Off Ratio and Negative Differential Resistance in an Electronic Molecular Switch, "Science 286: 1 550; USP 5,274,602 [licensed to Gallagher et al. (1997), invention name: "Large Capacity Solid State Memory"]; Service (2001) "Assembling Nanocircuits From the Bottom 20 Up," Science 293: 782; and Tseng and Ellenbogen (2001) "Toward Nanocomputers," Science 294: 1293. Nanostructures or arrays of nanostructures fabricated in accordance with the present invention may optionally be similarly configured as a memory, a circuit logic, a computing element, or the like. The use of the method, device and composition of the present invention 52 200408694 Without departing from the spirit of the present invention and the scope of the patent application, the methods and materials described above can be modified, and then the present invention can be used for many different purposes The method comprises: using the method of the present invention to prepare a nano-structure · matrix composition, 5 wherein the nano-structure has a regular structure. In these devices, a nanostructure-based device is used to form a composition composed of a regular nanostructure. A set or system using any kind of regular nanostructure, nanostructure: homogeneous ligand composition, or the method described above. The kit may optionally include additionally: preparing such regular nanostructures, nanostructures: matrix composition, or the nanostructures of the present invention: instructions for aligned ligand compositions; embedding the compositions of the present invention Instructions for nanostructure devices; or other instructions for carrying out the present invention, methods, composite materials, one or more containers containing nanostructures, matrix components, or alignment ligands and / or the like. In an additional aspect, the present invention provides a set of presenting methods and devices of the present invention. The kit of the present invention may optionally include one or more of the following: (1) one or more aligned ligands or components for synthesizing the aligned ligands; (2) one or more nanostructures Preparation method; (3) can be used to prepare 20 nano-structure components and / or instructions for regular structure in the matrix; ⑷ can be used to prepare nano-structures: components and / or instructions for aligned ligand composition (5) can be used to prepare components and / or instructions consisting of regular nanostructure groups; (6) instructions can be used to perform the methods described in the present invention; and / or (7) combined materials. 53 200408694 In another aspect, the present invention provides the use of any of the components or sets of the present invention for use in performing any of the methods or analyses of the present invention, and / or the use of any of the devices or sets to Perform any—an analysis or method of the invention. 5 Although some details have been described in the present invention for clarification and understanding, a person skilled in the art can know by reading this disclosure: various modifications can be made without departing from the scope of the true scope of the present invention. Different types and details change. For example, all the techniques and devices described above can be used in various combinations. All published documents, specialists, and special shooting applications and / or other documents cited in this application are hereby incorporated into this case with reference to all their disclosures. The subject matter is the same as each individual published document, patent case and patent declaration case and / or other documents are individually pointed out that all the subject matter is incorporated into this case as reference material. 15 [Brief description of the drawings] Figures 1A-1D provide a representative diagram of various specific examples of nanostructures with multiple structural rules in a matrix. Figure 2 provides a schematic illustration of the interactions between the first aligned ligand and the first aligned ligand of the monolithic nanostructure or polymonofunctional group described in the present invention. Fig. 3 illustrates a specific example of an aligned ligand for use in the present invention. [List of Symbols for the Main Components of the Formula] (None) 54

Claims (1)

200408694 拾、申請專利範圍: 1. 一種組成物,其包含多種居於一基質内之結構規則的奈 米結構。 2. 如申請專利範圍第1項之組成物,其中該結構規則奈米 5 結構包含實質非隨機定向奈米結構。 3. 如申請專利範圍第2項之組成物,其中該非隨機定向奈 米結構包含彼此實質對齊之奈米結構。 4. 如申請專利範圍第2項之組成物,其中該非隨機定向奈 米結構包含實質對齊一特定軸之奈米結構。 10 5.如申請專利範圍第4項之組成物,其中該組成物被置放 靠近一基材,且該特定軸是實質垂直該基材之一表面。 6.如申請專利範圍第1項之組成物,其中該多種結構規則 奈米結構包含一由實質規則性規劃奈米結構所構成之 陣列。 15 7.如申請專利範圍第1項之組成物,其中該多種結構規則 奈米結構包含一種由非規則性規劃奈米結構所構成之 陣列。 8.如申請專利範圍第1項之組成物,其中該奈米結構包 含:球體、卵形體、伸長或分枝結構。 20 9.如申請專利範圍第8項之組成物,其中該奈米結構包 含:奈米結晶、奈米點、奈米球、奈米棒、奈米電路、 奈米四腳體、樹狀高分子分支結構或由其尊所構成之組 合。 10.如申請專利範圍第8項之組成物,其中該奈米結構包含 55 200408694 無機奈米結構。 11.如申請專利範圍第1項之組成物,其中該基質包含一或 多種可交互作用形成多種接收結構之組份,藉此使該奈 米結構產生規則性及/或定向。 5 12.如申請專利範圍第11項之組成物,其中該基質組份是自 我組合形成該基質。 13. 如申請專利範圍第11項之組成物,其中一種或多種該基 質組份是彼此化學交聯或具有彼此化學交聯能力。 14. 如申請專利範圍第11項之組成物,其中一種或多種該基 10 質組份可化學交聯數一種或多種奈米結構或具有與數 一種或多種奈米結構進行化學交聯之能力。 15. 如申請專利範圍第14項之組成物,其中一種該基質組份 包含多重奈米結構結合組份。 16. 如申請專利範圍第1項之組成物,其中該組份包含兩種 15 或多種基質層,每一個成員層包含多種結構規則奈米結 構。 17. 如申請專利範圍第16項之組成物,其中該等居於第一基 質層之成員奈米結構是實質對齊該等居於鄰接基質層 之成員奈米結構。 20 18.如申請專利範圍第16項之組成物,其中該等居於第一基 質層之成員奈米結構是非實質對齊該等居於鄰接基質 層之成員奈米結構。 19. 一種包含多種具有結構規則性奈米結構之組成物,其中 該等成員奈米結構包含一種或多種可與該等奈米結構 56 200408694 進行交互作用之對齊配位基,且其中一種居於第一種成 員奈米結構之第一種對齊配位基可與一種居於一鄰接 成員奈米結構之第二種對齊配位基進行交互作用,藉此 令該多種奈米結構具有結構規則性。 5 20.如申請專利範圍第19項之組成物,其中該等具有結構規 則性奈米結構包含實質非隨機定向之奈米結構。 2L如申請專利範圍第20項之組成物,其中該等具有結構規 則性奈米結構包含實質對齊之配位基。 22. 如申請專利範圍第19項之組成物,其中該等第一種與第 10 二種對齊配位基包含相同的分子。 23. 如申請專利範圍第19項之組成物,其中該等第一種與第 二種對齊配位基包含不同的分子。 24. 如申請專利範圍第19項之組成物,其中該等第一種與第 二種對齊配位基包含自我組織分子。 15 25.如申請專利範圍第19項之組成物,其中該等第一種與第 二種對齊配位基包含互補結合對組。 26. 如申請專利範圍第25項之組成物,其中該等互補結合對 組包含兩種或多種具有一特定分子辨識官能基之分子。 27. 如申請專利範圍第26項之組成物,其中該等第一種與第 20 二種對齊配位基包含一種含胺基團或一種含醇基團,或 此二者。 28. 如申請專利範圍第26項之組成物,其中該等第一種與第 二種對齊配位基包含一種或多種生物分子對組。 29. 如申請專利範圍第28項之組成物,其中該等生物分子對 57 200408694 組包含:一個抗體及一個可結合該抗體之抗原、生物素 與白蛋白、一個外源凝集素與一個碳水化合物配位基、 互補核酸、一個蛋白質與一個配位基、一個受體與一個 配位基、一個半體與一個半體配位基、或一個由其等所 5 構成之組合。 30. 如申請專利範圍第19項之組成物,其中每一個該等第一 種及/或第二種對齊配位基包含兩種或多種特定分子辨 識官能基。 31. 如申請專利範圍第19項之組成物,其中該等奈米結構包 10 含:球體、卵形體、伸長或分枝結構。 32. 如申請專利範圍第31項之組成物,其中包含:奈米結 晶、奈米球、奈米棒、奈米電路、奈米四腳體、樹狀高 分子分支結構或一種由其等所構成之組合。 33. 如申請專利範圍第19項之組成物,其中該居於第一種與 15 第二種對齊配位基之間的交互作用包含:一種離子交互 作用、一種共價交互作用、一種氫鍵交互作用、一種靜 電交互作用、一種庫侖力交互作用、一種凡得瓦力交互 作用、或者甚至是一種由其等所構成之組合。 34. 如申請專利範圍第19項之組成物,其中該等第一種與第 20 二種對齊配位基包含一種或多種官能基頭部基團,該等 官能基頭部基團能夠結合至一奈米結構表面,或結合至 一個能夠與該奈米結構表面進行交互作用之配位基。 35. 如申請專利範圍第34項之組成物,其中該等官能基頭部 基團包含一種或多種膦酸、羧酸、胺、膦、氧化膦、胺 58 200408694 基苯甲酸、尿素、12比咬、異氰酸s旨、醯胺、琐基、。密σ定、 咪唑、乙二胺及柳醛(salen)、二硫酮、鄰苯二酚、Ν,0 配位之配位基、Ρ,Ν配位之配位基、或硫醇基團。 36. 如申請專利範圍第34項之組成物,其中該Ν,0配位之配 5 位基包含乙醇胺或苯胺膦酸酯。 37. 多種居於一基材上之結構規則奈米結構群。 38. 如申請專利範圍第37項之多種奈米結構群,其中該等結 構規則奈米結構包含選擇性定向奈米結構。 39. 如申請專利範圍第37項之多種奈米結構群,其中該等選 10 擇性定向奈米結構是實質對齊一特定轴。 40. 如申請專利範圍第39項之多種奈米結構群,其中該特定 軸是實質垂直一個該基材之表面。 41. 如申請專利範圍第39項之多種奈米結構群,其中該特定 軸是實質平行一個該基材之表面。 15 42.如申請專利範圍第37項之多種奈米結構群,其中該等奈 米結構包含奈米棒或奈米電路。 43. —種令居於一基質内之奈米結構進行結構規則化之方 法,該方法包含: 配置多種奈米結構與一種基質組成物,其中該基質 20 組成物包含一種或多種可進行交互作用形成一多種能 夠收納該等奈米結構之接收結構;以及 在該等多種奈米結構存在之下,加熱然後冷卻該基 質組成物,藉此來規則化該等居於該基質之奈米結構。 44. 如申請專利範圍第43項之方法,其中該規則化可配置多 59 200408694 種居於該基質内之非隨機定向及/或非隨機分散奈米結 構。 45. 如申請專利範圍第43項之方法,其中配置該基質組成物 包含配置一種或多種呈一種非規則形式之基質組份,且 5 其中在該等多種奈米結構存在之下,加熱然後冷卻該基 質組成物包含熱力學規則化該包圍多種奈米結構之基 質。 46. 如申請專利範圍第43項之方法,其中配置該基質組成物 包含配置一種預先形成基質,該預先形成基質具有該等 10 多種能夠收納該等奈米結構之接收結構,且其中在該等 多種奈米結構存在之下,加熱然後冷卻該基質組成物包 含將該等奈米結構插入一種或多種接收結構。 47. 如申請專利範圍第43項之方法,又包含交聯該一種或多 種基質組份。 15 48. —種居於一基質内之結構規則奈米結構,其係以申請專 利範圍第43項之方法所製備。 49. 一種製備多種結構規則奈米結構之方法,該方法包含: 配置多種奈米結構,該等奈米結構包含一種可與第 一種對齊配位基進行交互作用之第一組奈米結構、以及 20 一種可與第二種對齊配位基進行交互作用之第二組奈 米結構;以及 令該居於一個第一種奈米結構之第一種對齊配位基 與該居於一個第二種鄰接奈米結構之第二種對齊配位基 進行交互作用,藉此來結構規則化該等多種奈米結構。 60 200408694 50. 如申請專利範圍第49項之方法,其中該等多種結構規則 奈米結構包含多種選擇性定向奈米結構。 51. 如申請專利範圍第49項之方法,其中該等奈米結構包 含:球體、卵形體、伸長或分枝結構。 5 52.如申請專利範圍第51項之方法,其中該等奈米結構包 含:奈米結晶、奈米球、奈米棒、奈米電路、奈米四腳 體、樹狀高分子分支結構或由其等所構成之組合。 53·如申請專利範圍第49項之方法,其中配置該等多種奈米 結構包含: 10 製備多種奈米結構; 氣相沉積該居於一個該等多種奈米結構之第一部 分表面上的第一種對齊配位基;以及 氣相沉積該居於一個該等多種奈米結構之第二部 分表面上的第二種對齊配位基,藉此產生奈米結構對齊 15 配位基共軛體。 54. 如申請專利範圍第53項之方法,其中該等多種奈米結構 是藉由氣相沉積來予以製備至一基材上。 55. 如申請專利範圍第53項之方法,其中該等多種奈米結構 是藉由水溶液相沉積來予以製備至一基材上。 20 56.如申請專利範圍第54項之方法,又包含: 於該等第一種與第二種對齊配位基進行交互作用 之前,自該基材移除該等奈米結構對齊配位基共扼體。 57.如申請專利範圍第53項之方法,其中該等多種奈米結構 之第一部分與第二部分包含個別的奈米結構族群。 61 200408694 58. 如申請專利範圍第53項之方法,其中該等多種夺米 之第一部分與第二部分包含由個別奈米結構所構L 個別的區域。 59. 如申請專利範圍第49項之方法,其中該等第一種與第二 5 種對齊配位基包含一種或多種互補結合對組。 60·如申請專利範圍第59項之方法,其中該_種或多種互補 結合對紐包含具有-種歡分子_官能基或自我组 織分子。 61. 如申請專利範圍第59項之方法’其中該互補結合對組包 10 含一種含胺化合物或一種含醇化合物。 62. 如申請專利範圍第59項之方法’其中該互補結合對組包 含一種生物分子對組。 63·如申請專利範圍第49項之方法,又包含: 耦合該第一種對齊配位基至一個由該第一種奈米 15 結構所構成之表面5然後耦合該第二種對齊配位其空兮 第二種繼米結構,其中該第-種與第 基又包含一種可供用以將該對齊分子結合至該奈卡择 構表面之官能基化頭部基團。 64. 如申請專利範圍第63項之方法,其中該官能基化頭部基 2〇 團包含一種或多種膦酸、羧酸、胺、膦、氧化鱗、胺基 苯甲酸、尿素、吡啶、異氰酸酯、醯胺、硝基、嘧啶、 咪唑、6二胺及柳醛(salen)、二硫酮、鄰苯二酚、N 〇 配位之配位基、P,N配位之配位基、或硫醇基團。 65. 如申請專利範圍第49項之方法,其中該等第一種與第二 62 200408694 種對齊配位基進行交亙作用係包含加熱然後冷卻該等 多種奈米結構。 5 66. 如申請專利範圍第49項之方法,其中該等第一種與第二 種對齊配位基又包含一種可交聯或可聚合元件,且其中 該等第一種與第二種對齊配位基進行交互作用又包含 交聯或聚合該等第一種偶第二種對齊配位基。 67. 如申請專利範圍第49項之方法,又包含: 該等多種結構規則奈米結構將固定至一個基材;然 後,移除該等第一種偶第二種對齊配位基。 63200408694 Scope of patent application: 1. A composition comprising a plurality of regularly-structured nanostructures residing in a matrix. 2. The composition according to item 1 of the patent application scope, wherein the regular structure of the nano structure 5 includes a substantially non-randomly oriented nano structure. 3. The composition according to item 2 of the patent application, wherein the non-randomly oriented nanostructures include nanostructures substantially aligned with each other. 4. The composition of item 2 of the patent application, wherein the non-randomly oriented nanostructure includes a nanostructure substantially aligned with a specific axis. 10 5. The composition according to item 4 of the scope of patent application, wherein the composition is placed close to a substrate, and the specific axis is substantially perpendicular to a surface of the substrate. 6. The composition according to item 1 of the scope of patent application, wherein the plurality of structural rules The nanostructure includes an array composed of substantially regular planning nanostructures. 15 7. The composition according to item 1 of the patent application scope, wherein the plurality of structural regular nanostructures include an array of irregularly planned nanostructures. 8. The composition according to item 1 of the patent application scope, wherein the nanostructure includes: a sphere, an oval, an elongated or branched structure. 20 9. The composition according to item 8 of the patent application scope, wherein the nanostructure includes: nanocrystals, nanopoints, nanospheres, nanorods, nanocircuits, tetrapods, tree height A molecular branch structure or a combination of its branches. 10. The composition according to item 8 of the patent application scope, wherein the nanostructure includes 55 200408694 inorganic nanostructure. 11. The composition of claim 1, wherein the matrix comprises one or more components that can interact to form a plurality of receiving structures, thereby generating regularity and / or orientation of the nanostructure. 5 12. The composition of claim 11 in which the matrix component is self-assembled to form the matrix. 13. If the composition of the scope of application for item 11 is applied, one or more of the matrix components are chemically cross-linked to each other or have the ability to chemically cross-link each other. 14. If the composition of the scope of application for item 11 is applied, one or more of the base 10 components can be chemically crosslinked with one or more nanostructures or have chemical crosslinks with one or more nanostructures. Ability. 15. The composition of claim 14 in which one of the matrix components comprises a multiple nanostructure binding component. 16. The composition according to item 1 of the patent application scope, wherein the component includes two kinds of 15 or more matrix layers, and each member layer includes multiple regular nanostructures. 17. The composition of claim 16 in which the member nanostructures residing in the first matrix layer are substantially aligned with the member nanostructures residing in the adjacent matrix layer. 20 18. The composition of claim 16 in which the member nanostructures residing in the first matrix layer are non-substantially aligned with the member nanostructures residing in the adjacent matrix layer. 19. A composition comprising a plurality of nanostructures with regular structure, wherein the member nanostructures include one or more alignment ligands which can interact with the nanostructures 56 200408694, and one of them A first aligned ligand of a member nanostructure can interact with a second aligned ligand that resides in an adjacent member nanostructure, thereby making the multiple nanostructures structurally regular. 5 20. The composition according to item 19 of the scope of patent application, wherein the nanostructures with structural regularity include substantially non-randomly oriented nanostructures. 2L The composition according to item 20 of the scope of patent application, wherein these nanostructures with structural regularity include substantially aligned ligands. 22. The composition of claim 19 in which the first and second alignment ligands comprise the same molecule. 23. The composition of claim 19 in which the first and second alignment ligands comprise different molecules. 24. The composition of claim 19, wherein the first and second alignment ligands include self-organizing molecules. 15 25. The composition of claim 19, wherein the first and second alignment ligands include complementary binding pairs. 26. The composition of claim 25, wherein the complementary binding pairs include two or more molecules having a specific molecular recognition functional group. 27. The composition of claim 26, wherein the first and second alignment ligands include an amine-containing group, an alcohol-containing group, or both. 28. The composition of claim 26, wherein the first and second alignment ligands include one or more biomolecule pairs. 29. If the composition of the scope of patent application No. 28, the biomolecule pair 57 200408694 group contains: an antibody and an antigen that can bind the antibody, biotin and albumin, an exogenous lectin and a carbohydrate A ligand, a complementary nucleic acid, a protein and a ligand, a receptor and a ligand, a half body and a half body ligand, or a combination thereof. 30. The composition of claim 19, wherein each of the first and / or second alignment ligands contains two or more specific molecular recognition functional groups. 31. The composition of item 19 in the scope of patent application, wherein the nanostructures 10 include: spheres, ovoids, elongated or branched structures. 32. The composition according to item 31 of the scope of patent application, which includes: nanocrystals, nanospheres, nanorods, nanocircuits, nanotetrapods, dendrimer branches, or one of them. Composition of the composition. 33. If the composition of the scope of application for item 19, wherein the interaction between the first and 15 second alignment ligands includes: an ionic interaction, a covalent interaction, a hydrogen bonding interaction Effect, an electrostatic interaction, a Coulomb force interaction, a Van der Waals force interaction, or even a combination of them. 34. If the composition of the scope of application for item 19 is applied, wherein the first and second alignment ligands contain one or more functional head groups, these functional head groups can be bound to A nanostructured surface, or bonded to a ligand capable of interacting with the nanostructured surface. 35. The composition of claim 34, wherein the functional group head group contains one or more phosphonic acid, carboxylic acid, amine, phosphine, phosphine oxide, amine 58 200408694 benzoic acid, urea, 12 ratio Bite, isocyanate s purpose, amidine, zirconyl. Dense stilbene, imidazole, ethylenediamine and salen, dithione, catechol, N, 0 coordination ligand, P, N coordination ligand, or thiol group . 36. The composition according to item 34 of the patent application, wherein the N-, 0-coordinating 5-position group comprises ethanolamine or aniline phosphonate. 37. A variety of structurally regular nanostructure groups that reside on a substrate. 38. For example, a plurality of nano-structure groups in the scope of patent application 37, wherein the regular nano-structures include selectively-oriented nano-structures. 39. For example, a plurality of nanostructure groups in the scope of patent application 37, wherein the selectively oriented nanostructures are substantially aligned with a specific axis. 40. The plurality of nano-structure groups as claimed in claim 39, wherein the specific axis is substantially perpendicular to a surface of the substrate. 41. For example, a plurality of nano-structure groups in the scope of patent application 39, wherein the specific axis is substantially parallel to a surface of the substrate. 15 42. A plurality of nanostructure groups according to item 37 of the patent application scope, wherein the nanostructures include nanorods or nanocircuits. 43. A method for regularizing the structure of nanostructures residing in a matrix, the method comprising: configuring a plurality of nanostructures and a matrix composition, wherein the matrix 20 composition comprises one or more types that can be interacted with to form A plurality of receiving structures capable of accommodating the nanostructures; and in the presence of the plurality of nanostructures, heating and then cooling the matrix composition, thereby regularizing the nanostructures inhabiting the matrix. 44. If the method according to item 43 of the scope of patent application, the regularization can be configured with more than 59 200408694 non-randomly oriented and / or non-randomly dispersed nanostructures residing in the matrix. 45. The method of claim 43, wherein disposing the matrix composition comprises disposing one or more matrix components in an irregular form, and 5 wherein heating and cooling are performed in the presence of the plurality of nanostructures. The matrix composition includes a matrix that thermodynamically regularizes the plurality of nanostructures. 46. The method according to item 43 of the patent application, wherein disposing the matrix composition includes disposing a pre-formed matrix having the more than 10 kinds of receiving structures capable of accommodating the nano-structures, and wherein In the presence of multiple nanostructures, heating and then cooling the matrix composition includes inserting the nanostructures into one or more receiving structures. 47. The method according to item 43 of the patent application further comprises cross-linking the one or more matrix components. 15 48. — A regular nanostructure with a structure inhabiting a matrix, which is prepared by the method of the 43rd patent application. 49. A method for preparing multiple nanostructures with regular structures, the method comprising: configuring a plurality of nanostructures, the nanostructures including a first group of nanostructures that can interact with a first alignment ligand, And 20 a second group of nanostructures that can interact with a second alignment ligand; and a first alignment ligand that resides in a first nanostructure adjacent to a second alignment structure The second aligned ligands of the nanostructures interact to thereby regularize the various nanostructures. 60 200408694 50. The method according to item 49 of the patent application, wherein the plurality of structural rules The nanostructure includes a plurality of selectively oriented nanostructures. 51. The method of claim 49, wherein the nanostructures include: spheres, ovoids, elongated or branched structures. 5 52. The method of claim 51 in the scope of patent application, wherein the nanostructures include: nanocrystals, nanospheres, nanorods, nanocircuits, nanotetrapods, dendrimer branches, or A combination of them. 53. The method according to item 49 of the patent application scope, wherein disposing the plurality of nanostructures comprises: 10 preparing a plurality of nanostructures; vapor-depositing the first one on the surface of the first part of one of the plurality of nanostructures Aligned ligands; and vapor-deposit a second aligned ligand that resides on the surface of the second portion of one of the plurality of nanostructures, thereby generating a nanostructure-aligned 15 ligand conjugate. 54. The method of claim 53 in which the various nanostructures are prepared on a substrate by vapor deposition. 55. The method according to item 53 of the patent application, wherein the plurality of nanostructures are prepared on a substrate by aqueous solution phase deposition. 20 56. The method of claim 54 further comprising: removing the nanostructure alignment ligands from the substrate before the first and second alignment ligands interact. Conjugate. 57. The method of claim 53, wherein the first part and the second part of the plurality of nanostructures include individual nanostructure groups. 61 200408694 58. The method of claim 53 in the scope of patent application, in which the first part and the second part of the various types of rice-receiving include individual regions of L formed by individual nanostructures. 59. The method of claim 49, wherein the first and second alignment ligands comprise one or more complementary binding pairs. 60. The method of claim 59, wherein the one or more complementary binding pairs comprise a functional molecule or a self-organizing molecule. 61. The method of claim 59, wherein the complementary binding pair comprises 10 an amine-containing compound or an alcohol-containing compound. 62. The method of claim 59, wherein the complementary binding pair comprises a biomolecule pair. 63. The method of claim 49 in the scope of patent application, further comprising: coupling the first alignment ligand to a surface 5 composed of the first nano15 structure and then coupling the second alignment ligand The second type of hollow structure is empty, wherein the first and second groups further comprise a functionalized head group that can be used to bind the alignment molecule to the neka selective surface. 64. The method of claim 63, wherein the functionalized head group 20 comprises one or more phosphonic acid, carboxylic acid, amine, phosphine, oxidized scale, aminobenzoic acid, urea, pyridine, isocyanate , Amine, nitro, pyrimidine, imidazole, 6 diamine and salen, dithione, catechol, N 0 coordination ligand, P, N coordination ligand, or Thiol group. 65. The method of claim 49, wherein the first one interacts with the second 62 200408694 aligned ligands by heating and then cooling the various nanostructures. 5 66. The method according to item 49 of the patent application, wherein the first and second alignment ligands further comprise a crosslinkable or polymerizable element, and wherein the first and second alignments The interaction of the ligands includes cross-linking or polymerizing the first and second alignment ligands. 67. The method of claim 49 in the scope of patent application, further comprising: the multiple structure regular nanostructures will be fixed to a substrate; then, removing the first and second alignment ligands. 63
TW92124461A 2002-09-05 2003-09-04 Oriented nanostructures and methods of preparing TW200408694A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US40872202P 2002-09-05 2002-09-05
US42103802P 2002-10-25 2002-10-25
US45203803P 2003-03-04 2003-03-04
US45223203P 2003-03-04 2003-03-04

Publications (1)

Publication Number Publication Date
TW200408694A true TW200408694A (en) 2004-06-01

Family

ID=52340171

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92124461A TW200408694A (en) 2002-09-05 2003-09-04 Oriented nanostructures and methods of preparing

Country Status (1)

Country Link
TW (1) TW200408694A (en)

Similar Documents

Publication Publication Date Title
US7662313B2 (en) Oriented nanostructures and methods of preparing
US7585564B2 (en) Post-deposition encapsulation of nanostructures: compositions, devices and systems incorporating same
US8093494B2 (en) Methods of making functionalized nanorods
Yuan et al. One-dimensional organic–inorganic hybrid nanomaterials
US7731932B2 (en) Methods of processing nanocrystals, and compositions, devices and systems including same
US9214590B2 (en) High fidelity nano-structures and arrays for photovoltaics and methods of making the same
US20040005258A1 (en) Chemical reactor templates: sacrificial layer fabrication and template use
KR101424966B1 (en) Post-deposition encapsulation of nanostructures: compositions, devices and systems incorporating same
TW200906718A (en) Method for dispersion, alignment and deposition of nanotubes
TW201503447A (en) Encapsulation barrier stack
JP2007523028A (en) Nanostructure in which nanowhiskers with expanded branches are formed and manufacturing method thereof
KR20060079209A (en) Methods of processing nanocrystals, and compositions, devices and systems including same
WO2010036857A1 (en) Nanoscale solar cell configuration
Hsu et al. Nanowires properties and applications: a review study
Huai et al. Recent progress in developing polymer nanocomposite membranes with ingenious structures for energy storage capacitors
TW200408694A (en) Oriented nanostructures and methods of preparing
Pandey Preparation and characterization of polymer nanocomposites
Yu et al. Fabrication of quantum dot-based photonic materials from small to large via interfacial self-assembly
KR101714342B1 (en) Organic-non organic hybrid nanowire applicable as photoelectric device and manufacturing method thereof
Chidambaram et al. Self-assembling of nanostructures
Xia et al. Oriented gold nanoparticle-polyaniline nanorods with nanofibers of controlled density on their surface
Buzaneva et al. Nanotechnology of DNA/nano-Si and DNA/Carbon Nanotubes/nano-Si Chips
Sasaki et al. SYMPOSIUM AA
AFZALI et al. NANOELEMENT MANUFACTURING: QUANTUMMECHANICS AND THERMODYNAMIC PRINCIPLES
Xu et al. Survey of Low-Dimensional Nanomaterials