TW200406456A - Heteromorphic polymer compositions and a process for preparing the same and the hot melt adhesive formulation comprising the same II - Google Patents

Heteromorphic polymer compositions and a process for preparing the same and the hot melt adhesive formulation comprising the same II Download PDF

Info

Publication number
TW200406456A
TW200406456A TW092130810A TW92130810A TW200406456A TW 200406456 A TW200406456 A TW 200406456A TW 092130810 A TW092130810 A TW 092130810A TW 92130810 A TW92130810 A TW 92130810A TW 200406456 A TW200406456 A TW 200406456A
Authority
TW
Taiwan
Prior art keywords
polymer
ethylene
polymorphic
main chain
polymer composition
Prior art date
Application number
TW092130810A
Other languages
Chinese (zh)
Other versions
TWI278482B (en
Inventor
Johnston T Robert
Morrison J Evelyn
Mangold J Debra
Ho H Thoi
Original Assignee
Dow Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc filed Critical Dow Global Technologies Inc
Publication of TW200406456A publication Critical patent/TW200406456A/en
Application granted granted Critical
Publication of TWI278482B publication Critical patent/TWI278482B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The subject invention pertains to heteromorphic polymer compositions characterized as comprising comprising: (a) a homogeneous linear or substantially linear ethylene/α -olefin interpolymer backbone; and (b) a branch appending from the backbone, which branch comprises an ethylene homopolymer or ethylene/α-olefin interpolymer having a density which is at least 0.004 g/cm3 greater than that of the backbone. At least one of the backbone polymer or the branch polymer may be optionally functionalized to promote adhesion to polar surfaces. The heteromorphic polymer compositions of the invention exhibit enhanced upper service temperature. Also disclosed is a process for preparing the heteromorphic polymer compositions of the invention.

Description

200406456 玖、發明說明 L發明所屬之技術領域3 本發明有關於多晶型烯烴聚合物,特定來說,本發明 有關於包含一均質分支直鏈或實質上線性乙烯/α -烯烴 5 間聚物主鏈,及一高密度乙烯共聚物或乙婦/α-烯烴間聚 物長鏈分支附自該間聚物主鏈的稀烴聚合物。 L iltr 均質乙烯/ α -烯烴間聚物特徵係狹窄的分子量分布 及狹窄的短鏈分支分布。此外,包含長鏈分支的均質乙烯 10 間聚物,被稱為“均質地線性”乙烯聚合物,係指示及宣 告於U.S.5,272,236及於U.S.5,278,272。 失去低分子量,臘成分及平均分布共聚合單體的能力 使得製造商品質彈性物,如乙烯/丙烯,乙烯/丁烯,及 乙婦/辛婦彈性物等,成為可能。然而,如缺乏高線性比 15 率特徵的異質分支聚乙烯(及由此的高結晶熔化峯)的均質 線性及實質上線性的乙烯聚合物,均質線性及實質線性乙 烯聚合物傾於有一較差的高溫抗性,特別當該聚合物密度 少於0.920g/cm3,少於相同密度的異質分支聚合物。例如, 均質線性及實質線性彈性物會在60°C或更少失去其力量。 20 此係歸因於該低密度聚合物有一以出現加邊的微團為特徵 的分子結構,及典型上缺乏高炫點層合結構的事實。當此 不同係較不明顯的,甚至有結合結構的較高密度均質線性 及實質上線性乙煉聚合物,通常熔化於較其異質地分支的 200406456 玖、發明說明 對應低的溫度。無論其聚合反應催化劑,聚乙烯面對一實 際的使用限制超過其結晶熔點,其不超過約140°C。 經由混合高結晶度聚乙烯與低結晶彈性度,升高彈性 度的使用溫度為可能的。然而,在高過抗性的較大改善係 5 被需求的。此外,一般而言,然而,當高密度分率量增加 ,高溫抗性增加,當此率增加(以此,該彈性性質,在與有 一密度少次〇.900g/cm3的異質線性或實質上線性乙烯聚合 物的例子中,不良地減少)。在與有一密度大於0.900g/cm3 的均質線性及實質線性乙烯聚合物混合的例3中,當高密度 10 分率量增加,高溫抗性增加,而撕裂抗性及衝擊抗性不良 地減少。 U.S. Patent No. 5,350,072指示了展示形成以使用一自 由基起始物之自身接合一線性聚乙烯的長鏈分支之聚合物 。當該自身接合作為增加聚乙晞的分子量及改善熔化力, 15 其不影響該聚乙烯的結晶度,且因此不影響該聚乙烯的高 溫抗性。 U.S· Patent No· 5,346,936指示了接合改質之實質線性 之乙烯聚合物,其不一定需和熱塑性化合物的混合,如高 密度聚乙烯,線性低密度聚乙烯,及低密度聚乙烯。 20 工業界將發現彈性物的優點,其具增強的高溫效能而 不犧牲係數及/或撕裂抗性及衝擊抗性。該增強的高溫效 能顯示之優點,例如,於鞋底其在忍受衣物烘乾機之熱為 較佳的。在另一具體實施例中,在對壓力感應之黏合劑其 7 200406456 玖、發明說明 展示了降低的蔓延抗性。 當用於此,該辭“聚合物”意指製以聚合單體,無論 係相同或不同型,的一化合物。該類辭聚合物因此包含該 辭“單質聚合物”,通常用於指僅從一種共聚單體製備之 5 聚合物,及該辭“間聚物”定義如後。 該辭“間聚物”意指製備以至少兩種不同型的共聚單 體之聚合反應的聚合物。該類辭“間聚物”因此包含該辭 “共聚物”,其通常用以指製備自兩種共聚單體的聚合物 ,及製備自多於兩不同型之共聚單體的聚合物。 10 【發明内容】 本發明於一獨特之聚合物組成物包含:(A)—均質線性 或實質線性的乙烯/α-烯烴間聚物主鏈;及(B)—乙烯單質 聚合物或一乙烯/ α -烯烴間聚物,其係附自該間聚物主鏈 且其有一密度係至少〇.〇〇4g/cm3大於該第一間聚物主鏈。該 15 聚合物組成物將較該第一及第二間聚物的一比較物理性混 合或於反應器之混合在高溫下對抗變形為較佳的。該改良 的高溫效能反應在較高的於負載下之處理溫度(ULST)值, 此即,多晶型聚合物組成物之個性歸因於軟化/溶化而失 去,如測量以使用一 Rheometrics Solids Analyzer使用設定 20 於下之方法。 當不想受理論率制時,一般相信用於改良均質或實質 線性彈性物之高溫抗性的材料和科學定律係示範於第1圖 。如示,於第1圖,該彈性物件為一柔軟部分以提供多晶型聚 8 200406456 玖、發明說明 合物組成物於室溫的彈性。接合一堅硬部份,如高密度聚 乙烯,其有一較高的結晶體熔點,改善了 ULST,因該堅硬 部分共結晶至它們擁有的小散布領域及作為結合該彈性物 鏈至一三度空間網絡。 5 依據該分支聚合物的組成及分支喪入的方法,該分支 會有許多型,而其一些基本型係示於第2圖,第2-1圖顯示 一實質線性共聚物主鏈與三不同型的聚合物分支型。第 2-l(a)圖示範了由一 “H-連結”與該主鏈聚合物造成分支 。此可能,例如,可引入以任意地交鏈該主鏈聚合物及該 10 先驅聚合物至該多晶型長鏈分支。第21-(b)圖示範一長鏈分 支連結至該主鏈聚合物於(二或更多)位置。若該長鏈分支仍 可共結晶或形成一“堅硬”相使得該聚合物的抗溫性及/ 或物質性質改善,此長鏈分支引入的方法係可接受的且在 我們長鏈分支的定義範圍内。第2-l(c)圖示範了一 “T”及 15 主鏈聚合物的形成。此可,例如,由接合一多晶型長鏈分 支前驅聚合物的反應終端族與該主鏈聚合物而造成,或可 由一反應性終端族如乙烯基及共聚單體在主鏈聚合物之聚 合反應之共聚合反應所形成(在此例,該“主鏈聚合物”僅 係一觀念而實質上不出現以純的形式)。 20 第2-2圖示範變化的例子其中一線性共聚物(2-2)主鏈 聚合物有“T”型式多晶型長鏈分支如由共聚合反應或接 合終端族所造成。 該乙烯/α-烯烴間聚物(A),其包含該發明之多晶型 9 200406456 玖、發明說明 烯烴聚合物的主鏈,將為一均質線性或實質線性乙烯/α-烯烴間聚物,兩者皆更詳細地描述於下。 該主鏈聚合物的密度乃依該型及使用之共聚單體的量 。密度可控制依那些熟習於此技術者熟已的方法,以控制 5 該聚合物的軟度在該範圍自高度無定型,彈性度至高度結 晶,無彈性程度。主鏈聚合物密度的選擇將依每一根據那 些熟習於此技術者熟知的效能要求的應用之要求。典型上 ,然而,該主鏈聚合物的密度將少於0.920g/cm3,較佳地少 於0.900g/cm3,更佳地少於0.880g/cm3。在應用上最佳的彈 10 性性質被要求,該主鏈聚合物的密度將少於0.870g/cm3,更 佳地少於0.865g/cm3,以密度低至0.850g/cm3可達到。 該主鏈聚合物的分子量可同樣地依每一系統改變。當 分支聚合物附至該主鏈聚合物以交鏈或接合,降低該主鏈 聚合物的分子量以降低凝結係較佳的,特別地若該分支聚 15 合物係高分子量或在反應位置為多官能基的。卓佳的物理 性質可甚至得以相當低分子量主鏈聚合物歸因於由該發明 之組成的多晶型特質而最佳化的連接性是此發明的一方面 。因此,同時得到良好的物理性質及良好的處理性係可能 的 20 典型上,然而,該主鏈聚合物將有一熔化指數(12)從 0.01 至 10,000g/min,且較佳地從0.01 至 l,000g/10min。特佳 的溶化指數大於l〇g/l〇min,更佳地大於20g/10min。注意對 低分子量聚合物,即有一溶化指數大於l,〇〇〇g/l〇min的聚合 10 200406456 玖、發明說明 物,分子量可指示以測量該聚合物在350°F的熔化黏度。有 炫化指數l,000g/10min及10,000g/min的聚合物之溶化黏度 於350°F,測量以下段之Test Procedures設定的技術,係每 自大約8,200及600厘泊。 5 該分支聚合物(B),其附自聚合物主鏈(A),可為任何 聚合物其可在製造主鏈聚合物期間與共聚單體共聚合,或 其可與該主鏈聚合物接合或交鏈,且其有一密度至少 0.004g/cm3,較佳地至少 0.0068g/cm3,更佳地至少 0.01g/cm3 大於該主鏈緊合物的密度。較佳地,該分支聚合物(B),在 10 其純狀態,會具一玻璃轉換過度(Tg)或結晶熔點(Tm)至少 l〇°C,較佳地20°C,且最佳地至少50°C高於該主鏈聚合物 在純狀態的Tg或Tm(即較其高)。注意為此發明的目的,該 解“接合”意指連接該分支聚合物的一終端族至該主鏈聚 合物,而該辭“交鏈”意指,在一限制的形式,經一或更 15 多延該長鏈分支前驅物的連接而連結以形成該多晶型長鏈 分支組成而非一交鍵網絡。 多晶型長鏈分支物質不限的實例包含異質及同質地分 支線性乙烯單質聚合物及乙烯/α-烯烴間聚物,和實質線 性乙烯單質聚合物及乙婦/ α -烯烴間聚物,每一會更詳細 20 地描述於下。該分支聚合物,非一定地,可更功能化。 對一主鏈聚合物的一適宜的分支聚合物可能不適於另 一主鏈聚合物。例如,對一具一密度0.865g/cm3之一均質線 性或實質線性乙烯/辛間聚物的一適合的分支聚合物將為 11 33: 200406456 玖、發明說明 具一密度〇.900g/cm3的一乙烯/辛烯間聚物。然而,相同的 分支聚合物,不適於用於與具有一密度0.920g/cm3之一均質 線性或實質線性乙烯/辛烯間聚物的一聚合物主鏈結合, 在前者的Tm不至少10°C大於後者的Tm下(事實上係明顯地 5 較低)。 該多晶型長鏈分支將更為充分之分子量以能共結晶或 與其他分支聚合物或額外附加之聚合物形成一相。較佳地 ,該多晶型長鏈分支將有一平均分子量重量(Mw)至少1,000 ,間佳地至少3,000,如依下段定設定的Test Methods的方 10 法。 主鏈聚合物的量應足以使其在主鏈聚合物及異質長鏈 分支聚合物的混合中為連續或共連續相。特定而言,主鏈 聚合物對分支聚合物以重量之比例通常會大於1 : 3,較佳 地至少1 : 2,且最佳地大於1 : 1。那些熟習此技術者將承 15 認最佳比例將依應用而變化且依彈性物性質,高過性質。 每聚合物主鏈分之之多晶型長鏈分支的平均數將足以 提供最終聚合物組成物一抗溫性的改善如以RSA所測及在 張力的一改善其係大於可比較聚合物的一簡單物理性混合 而與共聚合,接合,交鏈而所提供的。較佳地,該發明的 20 組成將展示一溫度抗性如以RSA所測至少10°C,較佳地至 少15°C大於可比較聚合物的一物理性混合。較佳地說,該 發明的組成展示一終極張力其係至少為可比較聚合物之物 理性混合的百分之70,更佳地至少百分之85,最佳地其相 12 200406456 玖、發明說明 等或超過可比較聚合物之物理性混合,以終極張力係可比 較聚合物之物理性混合可容易地得到。 每聚合物主鏈分子之多晶型長鏈分支的平均數,然而 ,將不大到能降低該聚合物主鏈的彈性性質至一不可接受 5的程度,例如,當該主鏈聚合物有一密度少於〇.9〇〇g/cm3 ,該發明的組成將較佳地展示一延伸百分比其係至少百分 之40,更佳地至少百分之50 ,而更佳地其係至少為可比較 聚合物之混合的百分之60,以組成物展示延伸百分比相等 或超越比較性混合的可容易地達到。 10 該乙烯聚合物有用作聚合物主鏈(A)及該多晶型長鏈 分支(B)可獨立地為乙婦及至少一 α _稀烴的間聚物。適宜的 α -烯烴表示以以下的結構式: ch2 = chr 其中R係一烴基自由基。形成主鏈聚合物(A)的一部分之該 15共聚單體可為相同或不同於形成多晶型長鏈分支的共 聚單體。 R通常有從一至二十個碳原子。雖用作在一溶液,氣相 或流體聚合反應之共聚單體的適宜之α -稀烴或其混合包 含CrC^oa-烯烴、苯乙烯、四氟乙烯、乙豨基、苯環丁燒 2〇 、1,4_己二烤、I,7-辛二稀,及環稀類,如,環戊稀、環己 烯、環辛烯、雙環庚烯(NB)、及亞乙基雙環庚烯(ENB)。較 佳的CVCm a-婦烴包含1-丙烯、1-丁烯、丨_異丁稀、丨_戍 .」婦、Λ-己烯Λ4·甲基-1·戊烯、1-庚烯及1-辛烯,及其他此型 13 333· 200406456 玖、發明說明 的單體。較佳地說,該烯烴會是κ丁烯、卜戊烯、4•甲 基、1-戊烯、1-己烯、1-庚烯、辛烯、NB*ENB,或其混 合。更佳地,該α-烯烴會是1-己烯、庚烯、卜辛烯,或 其混合。最佳地,該α -烯烴會是1 _辛婦。 乙烯/ α -烯fe /三烯三元聚合物亦可用作在此發明 的彈性聚合物。適宜的α -烯烴包含描述於上的該α _烯烴以 適宜製作乙烯α-烯烴共聚物。適於製備該三元聚合物之單 體的二烯典型上為非共軛二烯,具從2至15個碳原子。可用 於‘備该二元聚合物之適宜的非共輛二婦的代表性實例包 10 含了: a) 直鏈非環狀二烯如Μ_己二烯、i,5_庚二烯,及丨,6_辛二 烯; b) 分支鏈形非環狀二烯如5_甲基4,‘己二烯、3,%二甲基 -1-6·辛二烯,及3,7_二甲基q,7·辛二烯,及19-癸二烯。 15 C)單環脂肪環狀二烯如4-乙烯基環己烯、1-烯丙基異亞 丙基環己烷、3-烯丙基環戊烯、‘烯丙基環己烯,及卜 異丙烯基-4-丁烯基環己烷。 d)多環脂肪封環及橋環二烯如二環戊二烯、烯基、亞烯烴 基、環烯烴基及環亞烯烴基雙環庚烯如亞甲基雙環 〇 庚烯、5-亞甲基甲基-2-雙環庚烯、5-亞甲基-6,6-二甲 基-2-雙環庚烯、5-丙烯基_2_雙環庚烯、5_(3_環戊烯基)_2_ 雙環庚烯、5-亞乙基-2-雙環庚烯、5-環亞己基-2-雙環庚 烯,等。 14 ^u〇456 玖、發明說明 較佳的二烯係選自由! 4 〜目由认己二稀、二環戊二埽、5-亞乙 基-2-雙ί衣二稀、5_甲基_2·镳: τ 土 2又%二烯、7_甲基-辛二烯、 4-乙稀基環己婦,等所纟虑 寻听、或之族。一適宜的共軛二烯係1,3- 戊二稀。 對錢明之實用的較佳的三元聚合物係乙稀、丙稀, 及一非共軛二烯(贿)的三元聚合物。該三元聚合物係商 業上可得到。 可用作此發明成分(A)及⑻的均質聚乙烯溶於兩個大 類別’線性均質聚乙烯及實質線性均質聚乙烯。兩者皆已 1〇 知。 均質|合物係乙稀’在其任何共聚單體係任意分 布在-給定的間聚物分子中實質上下所有的間聚物分子有 相同的乙烯/共聚單體比例於該間聚物中。均質聚合物通 常以有一熔化峯在-30t:及150t之間為特徵,係決定以微 15刀掃描熱度計(DSC)。該單一熔化峯係以使用一微分掃描熱 度计以銦及去離子水標準化,而決定的。該方法包含弘7mg 樣品大小,一 “第一熱量,,至約18(TC其係保持4分鐘,一 冷卻以l〇C/min.至-30°C其係保持3分鐘,並加熱以1〇。〇 /min·至14〇°C供該“第二熱量”。該單一熔化峯係取自該“ 20第二熱量”熱流對溫度曲線。聚合物融合的總熱量係計算 自在曲線下的面積。 對有一密度0.875g/cm3的聚合物,該單一熔化峯可顯示 一…,依儀器靈敏度,„ 一“突起”或一“峯,,在該低熔化側其 15 200406456 玖、發明說明 組成了少於百分之12,典型上,少於百分之9,且更典型地 少於該聚合物融合之總熱量之百分之6。該一人工製品亦可 見於均質線性聚合物如Exact TM樹脂(可得自Exxon Chemical Company),且可辨別以單一溶化輋由該人工製品 5 之熔化區域之單調變化之斜率的基礎。該一人工製器發生 在34°C内,典型上在27°C之内,且更典型地在該單一熔化 峯之熔點的20°C之内。由於一人工製品的融合熱可分別決 定以特別的在熱流對温度曲線其所緊之面積的積分。 此外或在另一項,該聚合物的均質性典型上描述以 10 CDBI(組成分布分支指數)且係定義以有一共聚單體含量在 中間總莫耳共聚單體含量的百分之50之聚合物分子的重量 百分比。一聚合物的CDBI係合宜地計算自得自已知於此技 藝的技術的數據,如,舉例而言,溫度上升釋出分率(在此 縮寫為“TREF”)描述於,舉例而言,於Wild et al,Journal 15 of Polymer Science, Poly. Phys. Ed.? Vol. 20, p. 441 (1982) ,於U.S. Patent 5,089,321 (Chum et al.)。對均質線性及對 實質線性乙烯,α -烯烴聚合物用於該發明之CDBI係較佳地 大於百分之50,更佳地大於百分之70。 均質聚合物亦會有一分子量分布,Mw/Mn,少於或等 20 於3(當該間聚物的密度係少於約0.960g/cm3),較佳地少於 或等於2.5。分子量之決定係演繹以使用狹窄分子量分布聚 乙稀標準(自Polymer Laboratories)與其釋出體積。該SLEP 係分析以凝膠滲透色層分析(GPC)在一 Waters 150C高溫色 16 200406456 玖、發明說明 層分析單位裝置以微分折射儀及混合孔之三管柱。該管柱 由Polymer Laboratories提供且通常填充以孔隙大小ι〇3、ι〇4 、105及106。溶劑係1,2,4-三氯化苯,從其重量百分比〇 3的 樣品溶液製備以供注入。流速係1 .Oml/min,單位操作溫度 5 係140C,且注入大小係100微升。 相等之聚乙烯分子量係決定以使用適宜的 Mark-Houwink係數供聚乙婦及聚苯乙稀(如描述於 Williams 及 Ward 在 Jorunal of Polymer Science. Polymer Letters, Vol. 6, ρ· 621 1968)以導出方程式M聚乙稀=a· (^4聚笨 10 u)b。在此方程式,a=0.4316且b= 1.0,平均分子量重量 ,Mw,係計算以一般方式以該方程式:200406456 发明, Description of invention L Technical field to which the invention belongs 3 The present invention relates to a polymorphic olefin polymer, and in particular, the present invention relates to a homogeneously branched linear or substantially linear ethylene / α-olefin 5 interpolymer The main chain, and a high-density ethylene copolymer or a long chain branch of an ethene / α-olefin interpolymer, is a dilute hydrocarbon polymer attached to the interpolymer main chain. L iltr Homogeneous ethylene / α-olefin interpolymer is characterized by a narrow molecular weight distribution and a narrow short-chain branch distribution. In addition, homogeneous ethylene 10 interpolymers containing long chain branches, referred to as "homogeneous linear" ethylene polymers, are indicated and declared in U.S. 5,272,236 and U.S. 5,278,272. The loss of low molecular weight, wax content and the ability to evenly distribute the comonomers makes it possible for manufacturers to make elastomers such as ethylene / propylene, ethylene / butene, and acetoin / sintein elastomers. However, if the homogeneous linear and substantially linear ethylene polymers lack heterogeneous branched polyethylene (and hence high crystalline melting peaks) with high linearity ratio characteristics, homogeneous linear and substantially linear ethylene polymers tend to have a poorer High temperature resistance, especially when the polymer density is less than 0.920 g / cm3, less than the heterogeneous branched polymer of the same density. For example, homogeneous linear and substantially linear elastomers lose their strength at 60 ° C or less. 20 This is due to the fact that the low-density polymer has a molecular structure characterized by the appearance of edged micelles and typically lacks a high-dazzling point laminated structure. When this different system is less obvious, there is even a higher density homogeneous linear and substantially linear acetal polymer with a bonded structure, which is usually melted at a temperature lower than that of its heterogeneous branch 200406456. Regardless of its polymerization catalyst, polyethylene faces a practical limit of use beyond its crystalline melting point, which does not exceed about 140 ° C. By mixing high crystallinity polyethylene with low crystal elasticity, it is possible to increase the operating temperature of the elasticity. However, larger improvements in high-resistance lines are needed. In addition, in general, however, as the amount of high-density fraction increases, the high-temperature resistance increases, and as this rate increases (therefore, the elastic properties, in a linear or substantially linear line with a density less than 0.9900 g / cm3 In the case of vinyl polymers, the number of defects is reduced). In Example 3 mixed with a homogeneous linear and substantially linear ethylene polymer having a density greater than 0.900 g / cm3, when the high-density 10 fraction was increased, the high-temperature resistance was increased, and the tear resistance and impact resistance were poorly reduced. . U.S. Patent No. 5,350,072 indicates polymers exhibiting formation to join a long chain branch of a linear polyethylene with a free radical starter by itself. When the self-bonding is used to increase the molecular weight of polyethylene and improve the melting power, it does not affect the crystallinity of the polyethylene, and therefore does not affect the high temperature resistance of the polyethylene. U.S. Patent No. 5,346,936 indicates a substantially linear ethylene polymer for joint modification, which does not necessarily need to be mixed with thermoplastic compounds, such as high density polyethylene, linear low density polyethylene, and low density polyethylene. 20 The industry will find the advantages of elastomers with enhanced high temperature performance without sacrificing coefficient and / or tear resistance and impact resistance. The enhanced high temperature performance shows advantages, for example, it is better for the sole to endure the heat of the clothes dryer. In another specific embodiment, the pressure sensitive adhesive 7 200406456 发明, description of the invention exhibits reduced spread resistance. As used herein, the term "polymer" means a compound made from polymerized monomers, whether of the same or different type. This class of polymers therefore includes the term "simple polymer" and is generally used to refer to polymers prepared from only one comonomer, and the term "interpolymer" is defined below. The term "interpolymer" means a polymer prepared by the polymerization of at least two different types of comonomers. The term "interpolymer" thus includes the term "copolymer", which is generally used to refer to polymers prepared from two comonomers and polymers prepared from more than two different types of comonomers. [Summary of the Invention] A unique polymer composition of the present invention includes: (A) —a homogeneous linear or substantially linear ethylene / α-olefin interpolymer main chain; and (B) —ethylene simple polymer or ethylene / α-olefin interpolymer attached to the main chain of the interpolymer and having a density of at least 0.0004 g / cm3 larger than the first interpolymer main chain. The 15 polymer composition is more resistant to deformation at a higher temperature than a relatively physical mixing of the first and second interpolymers or a mixing in the reactor. The improved high-temperature performance is reflected in higher processing temperature (ULST) values under load, that is, the identity of the polymorphic polymer composition is lost due to softening / melting, as measured using a Rheometrics Solids Analyzer Use the setting of 20 or lower. When you do not want to be subject to the theoretical rate, it is generally believed that the materials and scientific laws used to improve the high temperature resistance of homogeneous or substantially linear elastomers are illustrated in Figure 1. As shown in Fig. 1, the elastic object is a soft part to provide polymorphic polymorphic polymer. 200406456 玖, description of the invention The elasticity of the composition at room temperature. Joining a hard part, such as high-density polyethylene, which has a higher crystalline melting point, improves the ULST because the hard parts co-crystallize to the small scattering areas they have and as a combination of the elastomeric chain to a three-degree spatial network . 5 According to the composition of the branched polymer and the method of branching, the branch will have many types, and some basic types are shown in Figure 2, and Figure 2-1 shows a substantially linear copolymer main chain different from three Type polymer branch type. Figure 2-l (a) illustrates the branching caused by an "H-link" with the main chain polymer. This may, for example, be introduced to arbitrarily cross-link the backbone polymer and the 10 precursor polymer to the polymorphic long chain branch. Figure 21- (b) shows a long chain branch attached to the main chain polymer at (two or more) positions. If the long-chain branch can still co-crystallize or form a "hard" phase that improves the polymer's temperature resistance and / or physical properties, the method introduced by this long-chain branch is acceptable and within our definition of long-chain branch Within range. Figure 2-l (c) illustrates the formation of a "T" and 15 backbone polymer. This can be caused, for example, by joining a reactive terminal group of a polymorphic long-chain branched precursor polymer with the main chain polymer, or can be a reactive terminal group such as vinyl and comonomers in the main chain polymer. Formed by copolymerization of the polymerization reaction (in this example, the "backbone polymer" is only an idea and does not appear to be substantially pure). 20 Figure 2-2 shows an example of an exemplary variation. One of the linear copolymers (2-2) has a main chain polymer with a "T" type polymorphic long-chain branch such as caused by a copolymerization reaction or joining a terminal family. The ethylene / α-olefin interpolymer (A), which contains the polymorphic form 9 200406456 of the invention, the main chain of the olefin polymer described in the invention, will be a homogeneous linear or substantially linear ethylene / α-olefin interpolymer Both are described in more detail below. The density of the backbone polymer depends on the type and amount of comonomer used. Density can be controlled according to methods familiar to those skilled in the art to control the softness of the polymer in this range from highly amorphous, highly elastic, highly crystalline, and inelastic. The choice of backbone polymer density will be based on the requirements of each application based on performance requirements familiar to those skilled in the art. Typically, however, the density of the backbone polymer will be less than 0.920 g / cm3, preferably less than 0.900 g / cm3, and more preferably less than 0.880 g / cm3. The best elastic properties in application are required. The density of the main chain polymer will be less than 0.870 g / cm3, more preferably less than 0.865 g / cm3, and it can be achieved with a density as low as 0.850 g / cm3. The molecular weight of the main chain polymer can be similarly changed for each system. When a branched polymer is attached to the main chain polymer for cross-linking or joining, it is preferable to reduce the molecular weight of the main chain polymer to reduce the coagulation system, especially if the branched poly 15 compound is of high molecular weight or at a reaction position of Multifunctional. Tricor's physical properties can even enable rather low-molecular-weight backbone polymers to have optimized connectivity due to the polymorphic nature of the composition of this invention, which is one aspect of this invention. Therefore, it is possible to obtain good physical properties and good handling properties at the same time. Typically, however, the main chain polymer will have a melt index (12) from 0.01 to 10,000 g / min, and preferably from 0.01 to l 10,000g / 10min. A particularly good dissolution index is greater than 10 g / 10 min, and more preferably greater than 20 g / 10 min. Note that for low-molecular-weight polymers, that is, a polymer with a melt index greater than 1,000 g / lOmin 10 200406456 玖, invention description, the molecular weight can be indicated to measure the polymer's melt viscosity at 350 ° F. Polymers with dazzling indices of 1,000 g / 10 min and 10,000 g / min have a melt viscosity of 350 ° F. The techniques set by the Test Procedures in the following paragraphs are measured at approximately 8,200 and 600 centipoise. 5 The branch polymer (B), which is attached to the polymer backbone (A), can be any polymer that can be copolymerized with a comonomer during the manufacture of the backbone polymer, or it can be copolymerized with the backbone polymer Join or cross-link, and it has a density of at least 0.004 g / cm3, preferably at least 0.0068 g / cm3, and more preferably at least 0.01 g / cm3, which is greater than the density of the main chain compact. Preferably, the branched polymer (B), in its pure state, will have a glass transition (Tg) or crystalline melting point (Tm) of at least 10 ° C, preferably 20 ° C, and most preferably At least 50 ° C is higher than the Tg or Tm of the backbone polymer in the pure state (ie higher than it). Note that for the purposes of this invention, the solution "joining" means connecting a terminal family of the branched polymer to the main chain polymer, and the term "cross-linking" means, in a limited form, via one or more 15 Extend the connection of the long-chain branch precursors to form a polymorphic long-chain branch composition rather than a cross-bond network. Non-limiting examples of polymorphic long-chain branched materials include heterogeneous and homogeneous branched linear ethylene monomers and ethylene / α-olefin interpolymers, and substantially linear ethylene monomers and ethylene / α-olefin interpolymers, Each will be described in more detail below. This branched polymer may be more functional, not necessarily. A suitable branched polymer for one backbone polymer may not be suitable for another backbone polymer. For example, a suitable branched polymer with a homogeneous linear or substantially linear ethylene / octane interpolymer with a density of 0.865 g / cm3 would be 11 33: 200406456. The invention description has a density of 0.900 g / cm3. An ethylene / octene interpolymer. However, the same branched polymer is not suitable for use in combination with a polymer backbone having a homogeneous linear or substantially linear ethylene / octene interpolymer with a density of 0.920 g / cm3, where the Tm of the former is not less than 10 ° C is greater than the latter at Tm (in fact, it is significantly lower than 5). The polymorphic long chain branch will have a more sufficient molecular weight to co-crystallize or form a phase with other branched polymers or additional polymers. Preferably, the polymorphic long-chain branch will have an average molecular weight (Mw) of at least 1,000, and preferably at least 3,000, such as the method of Test Methods set according to the following paragraph. The amount of backbone polymer should be sufficient to make it a continuous or co-continuous phase in the mix of the backbone polymer and the heterolong-chain branched polymer. In particular, the weight ratio of the main chain polymer to the branched polymer is usually greater than 1: 3, preferably at least 1: 2, and most preferably greater than 1: 1. Those skilled in the art will recognize that the optimal ratio will vary depending on the application and will depend on the properties of the elastomer, above the properties. The average number of polymorphic long chain branches per polymer backbone will be sufficient to provide an improved temperature resistance of the final polymer composition as measured by RSA and an improvement in tension which is greater than that of comparable polymers A simple physical blend is provided with copolymerization, bonding, and cross-linking. Preferably, the 20 composition of the invention will exhibit a temperature resistance as measured by RSA of at least 10 ° C, and preferably at least 15 ° C, which is greater than a physical blend of comparable polymers. Preferably, the composition of the invention exhibits an ultimate tension of at least 70 percent, more preferably at least 85 percent, and more preferably at least 85 percent of the physical mixing of comparable polymers. Description The physical mixing of comparable polymers, etc., or more, can be easily obtained with the ultimate physical mixing of comparable polymers. The average number of polymorphic long chain branches per polymer backbone molecule, however, will not be so great as to reduce the elastic properties of the polymer backbone to an unacceptable level. For example, when the backbone polymer has a With a density of less than 0.900 g / cm3, the composition of the invention will preferably exhibit an elongation percentage of at least 40 percent, more preferably at least 50 percent, and more preferably at least 50 percent. Comparing polymer blends of 60 percent, it is easily achievable to show that the composition has an elongation percentage equal to or beyond that of the comparative blend. 10 The ethylene polymer is used as a polymer main chain (A) and the polymorphic long-chain branch (B) may be an interpolymer of independently ethene and at least one α_dilute hydrocarbon. Suitable α-olefins are represented by the following structural formula: ch2 = chr where R is a hydrocarbon radical. The 15 comonomers forming part of the main chain polymer (A) may be the same or different comonomers forming a polymorphic long chain branch. R usually has from one to twenty carbon atoms. Although suitable as a comonomer for a solution, gas phase or fluid polymerization reaction, suitable alpha-dilute hydrocarbons or mixtures thereof include CrC ^ oa-olefins, styrene, tetrafluoroethylene, ethylfluorenyl, benzene butane 〇, 1,4-dioxane, 1,7-octane, and cyclodilution, such as cyclopentene, cyclohexene, cyclooctene, dicycloheptene (NB), and ethylene bicycloheptene Olefin (ENB). The preferred CVCm a-woene contains 1-propylene, 1-butene, _isobutene, 丨 _ 戍. `` F, Λ-hexene Λ 4 · methyl-1 · pentene, 1-heptene and 1-octene, and other monomers of this type 13 333 · 200406456 发明, invention description. Preferably, the olefin will be kappa butene, pentene, 4 • methyl, 1-pentene, 1-hexene, 1-heptene, octene, NB * ENB, or a mixture thereof. More preferably, the alpha-olefin will be 1-hexene, heptene, bustene, or a mixture thereof. Optimally, the alpha-olefin will be 1-Xinfu. An ethylene / α-enefe / triene terpolymer can also be used as the elastic polymer of the invention. Suitable alpha-olefins include the alpha-olefins described above to suitably make ethylene alpha-olefin copolymers. Diene suitable for the preparation of the monomer of the terpolymer is typically a non-conjugated diene, having from 2 to 15 carbon atoms. Representative examples of suitable non-co-dienes that can be used to prepare the binary polymer include: a) linear non-cyclic diene such as M_hexadiene, i, 5-heptadiene, And 丨, 6-octadiene; b) branched acyclic diene such as 5-methyl 4, 'hexadiene, 3,% dimethyl-1-6 · octadiene, and 3,7 -Dimethyl q, octadiene, and 19-decadiene. 15 C) monocyclic aliphatic cyclic diene such as 4-vinylcyclohexene, 1-allyl isopropylene cyclohexane, 3-allyl cyclopentene, 'allyl cyclohexene, and Isopropenyl-4-butenylcyclohexane. d) Polycyclic aliphatic ring-blocking and bridging diene such as dicyclopentadiene, alkenyl, alkenylene, cycloolefin, and cycloalkylene based bicycloheptene such as methylene bicyclo 0 heptene, 5-methylene Methyl-2-bicycloheptene, 5-methylene-6,6-dimethyl-2-bicycloheptene, 5-propenyl_2_bicycloheptene, 5- (3-cyclopentenyl) _2_ Bicycloheptene, 5-ethylene-2-bicycloheptene, 5-cyclohexylene-2-bicycloheptene, etc. 14 ^ u〇456 发明, description of the invention The preferred diene is selected from the group consisting of! 4 ~ mesh hexamethylene dioxane, dicyclopentafluorene, 5-ethylidene-2-bisthionium diene, 5_methyl_2 · 镳: τ 2 %% diene, 7_methyl -Octadiene, 4-Ethylcyclohexanone, and others who are worried about hearing, or family. A suitable conjugated diene is 1,3-pentadiene. The preferred terpolymers useful for Qian Ming are ethylene, acrylic, and a non-conjugated diene (briber) terpolymer. This terpolymer is commercially available. The homogeneous polyethylene which can be used as the component (A) and rhenium of the present invention is soluble in two broad categories of 'linear homogeneous polyethylene' and substantially linear homogeneous polyethylene. Both are known. Homogeneous | composite ethylene 'is randomly distributed in any of its copolymerized mono-systems-a given interpolymer molecule has substantially all interpolymer molecules having the same ethylene / comonomer ratio in the interpolymer . Homogeneous polymers are usually characterized by a melting peak between -30t: and 150t, which was decided to use a micro 15-scan scanning calorimeter (DSC). The single melting peak was determined by normalizing indium and deionized water using a differential scanning calorimeter. The method includes a sample size of 7mg, a "first heat," to about 18 ° C, which is kept for 4 minutes, a cooling at 10C / min. To -30 ° C, which is kept for 3 minutes, and heated to 1 〇 / 〇 · to 14 ° C for the "second heat". The single melting peak is taken from the "20 second heat" heat flow versus temperature curve. The total heat of polymer fusion is calculated under the curve Area. For a polymer with a density of 0.875g / cm3, the single melting peak can show a…, depending on the sensitivity of the instrument, a “protrusion” or a “peak,” on the low melting side, 15 200406456. Less than 12 percent, typically less than 9 percent, and more typically less than 6 percent of the total heat of the polymer fusion. The artefact can also be found in homogeneous linear polymers such as Exact TM resin (available from Exxon Chemical Company) and the basis for discerning the monotonic change in slope from the melting region of the artifact 5 with a single melt. The artificial device occurs at 34 ° C, typically at 27 ° C, and more typically 20 ° of the melting point of this single melting peak C. Because the fusion heat of an artefact can be determined separately by the integral of the area that is tight in the heat flow versus temperature curve. In addition or in another term, the homogeneity of the polymer is typically described as 10 CDBI ( Composition Distribution Branch Index) and is defined as the weight percentage of a polymer molecule with a comonomer content in the middle of the total mole comonomer content of 50%. The CDBI of a polymer is conveniently calculated from what is known here Technological data such as, for example, the temperature rise release fraction (herein abbreviated as "TREF") are described in, for example, Wild et al, Journal 15 of Polymer Science, Poly. Phys. Ed Vol. 20, p. 441 (1982), in US Patent 5,089,321 (Chum et al.). For homogeneous linear and substantially linear ethylene, the α-olefin polymer used in the invention is preferably greater than one hundred CDBI. 50%, more preferably more than 70%. Homogeneous polymers also have a molecular weight distribution, Mw / Mn, less than or equal to 20 to 3 (when the density of the interpolymer is less than about 0.960g / cm3) , Preferably less than or equal to 2.5. Determination of molecular weight The deduction uses a narrow molecular weight distribution polyethylene standard (from Polymer Laboratories) and its release volume. The SLEP system analysis uses gel permeation chromatography (GPC) in a Waters 150C high temperature color 16 200406456 发明, invention description layer analysis unit device A three-column column with a differential refractometer and mixed holes. This column is provided by Polymer Laboratories and is usually filled with pore sizes ι03, ι04, 105, and 106. Solvent-based 1,2,4-trichlorobenzene was prepared from a sample solution of 0.3% by weight for injection. The flow rate is 1.0 ml / min, the unit operating temperature is 140C, and the injection size is 100 microliters. The equivalent polyethylene molecular weight was determined to use suitable Mark-Houwink coefficients for polyethylene and polystyrene (as described in Williams and Ward in Jorunal of Polymer Science. Polymer Letters, Vol. 6, ρ · 621 1968) to Derive the equation M polyethylene = a · (^ 4 聚 笨 10 u) b. In this equation, a = 0.4316 and b = 1.0, the average molecular weight, Mw, is calculated in a general way by this equation:

Mw= Σ (wiX Mi) 其中⑼及^/^係分別為釋出自GPC管柱第i分項之重量分率及 分子量。 15 均質線性乙烯聚合物長久來已為商業上可得。如舉例 於U.S. Patent No· 4,937,299 to Elston,均質線性乙烯聚合 物可製備以一般聚合反應程序使用Ziegler-type催化劑如, 舉例而言,锆釩催化系統,U.S· Patent No. 4,937,299 to Ewen et al.及U.S· Patent No. 5,218,071 to Tsutsui et al.揭示 20 了金屬雙環戊二烯化合物催化劑的使用,如基於锆及鋁的 催化劑系統,供製備均質線性乙烯聚合物。均質線性乙烯 聚合物典型上以有一分子量分布,Mw/Mn,約2為特徵。均 質線性乙烯聚合物商業上可得的例子包含那些Mitsui 17 200406456 玖、發明說明Mw = Σ (wiX Mi) where ⑼ and ^ / ^ are respectively the weight fraction and molecular weight released from the i-th item of the GPC column. 15 Homogeneous linear ethylene polymers have been commercially available for a long time. For example, in US Patent No. 4,937,299 to Elston, a homogeneous linear ethylene polymer can be prepared using a general polymerization procedure using a Ziegler-type catalyst such as, for example, a zirconium-vanadium catalyst system, US Patent No. 4,937,299 to Ewen et al. And US · Patent No. 5,218,071 to Tsutsui et al. Discloses the use of metal dicyclopentadiene compound catalysts, such as zirconium and aluminum-based catalyst systems, for the preparation of homogeneous linear ethylene polymers. Homogeneous linear ethylene polymers are typically characterized by a molecular weight distribution, Mw / Mn, about 2. Commercially available examples of homogeneous linear ethylene polymers include those of Mitsui 17 200406456.

Petrochemical Industries 所售之 Tafmer™ 樹脂及由 Exxon Chemical Company的 Exact™樹月旨。 實質線性乙烯聚合物(SLEP)係有長鏈分支的均質聚合 物。它們揭示於U.S· Patent No. 5,272,236 及 5,278,272。 5 SLEPs 由 Insite™ Process及 Catalyst Technology 製造,且可 得自 The Dow Chemical Company 以 Affinity™ 聚稀烴彈性物 (POPs)及自 DuPont Dow Elastomers,LLC 以 Engage™ 聚稀 烴彈性物(POEs)。SLEP可經溶液、流質,或氣相製備,較 佳地係溶液相,乙烯的聚合反應及一或更多非必定要的α-10 烯烴共聚單體出現於有幾何限制的催化劑,如揭示於 European Patent Application 416,815-Α 〇 該辭“實質線性”意指,除了因併入之均質共聚單體 的短鏈分支,乙烯聚合物更以有長鏈分支為特徵,使聚合 物主鏈取代以一平均0.01至3長鏈分支/1000個碳。較佳的 15 用於該發明的實質線性聚合物係取代以從〇.〇1長鏈分支/ 1000個碳至1長鏈分支/1000個碳,且更佳地從〇·〇5長鏈分 支/1000個碳至1長鏈分支/1000個碳。 “長鏈分支”(LCB)意指至少6個碳之鏈長,多於此該 長度無法使用13C核磁共振光譜儀辨別。每一長鏈分支有相 20 同的共聚單體分布如該聚合物主鏈且可長至其所附之聚合 物主鏈。 長鏈分支的出現可決定於乙烯聚合物以使用13c核磁 共振(NMR)光譜儀且定量以使用由Randall (Rev· Macromol. 18 44· 200406456 玖、發明說明Tafmer ™ resins sold by Petrochemical Industries and Exact ™ tree moons by Exxon Chemical Company. A substantially linear ethylene polymer (SLEP) is a homogeneous polymer with long chain branches. They are disclosed in U.S. Patent No. 5,272,236 and 5,278,272. 5 SLEPs are manufactured by Insite ™ Process and Catalyst Technology and are available from The Dow Chemical Company as Affinity ™ Polyolefin Elastomers (POPs) and from DuPont Dow Elastomers, LLC as Engage ™ Polyolefin Elastomers (POEs). SLEP can be prepared in solution, liquid, or gas phase, preferably in the solution phase. The polymerization of ethylene and one or more non-essential alpha-10 olefin comonomers occur on geometrically restricted catalysts, as disclosed in European Patent Application 416,815-Α 〇 The term "substantially linear" means that, in addition to the short-chain branches of the homogeneous comonomer incorporated, ethylene polymers are also characterized by long-chain branches, so that the polymer main chain is replaced by a On average 0.01 to 3 long chain branches / 1000 carbons. Preferred 15 is a substantially linear polymer system used in the invention to substitute from 0.001 long chain branch / 1000 carbons to 1 long chain branch / 1000 carbons, and more preferably branch from 0.05 long chain / 1000 carbons to 1 long chain branch / 1000 carbons. "Long chain branch" (LCB) means a chain length of at least 6 carbons, more than this length cannot be discerned using a 13C nuclear magnetic resonance spectrometer. Each long chain branch has the same comonomer distribution as the polymer backbone and can grow up to the polymer backbone attached to it. The appearance of long chain branches can be determined by ethylene polymers using a 13c nuclear magnetic resonance (NMR) spectrometer and quantification using Randall (Rev · Macromol. 18 44 · 200406456 玖, description of the invention

Chem. Phys·,C.29, V· 2&3, ρ· 285-297)所述的方法。 以一實用物,目前之13C核磁共振光譜儀不可決定一長 鏈分支的長度超過6個碳原子。然而,其他已知用於決定在 乙烯聚合物之長鏈分支出現的技術,包含乙烯/ 1 -辛烯間 5 聚物。二該方法係凝膠滲透色層分析配合一低角雷射光散 射偵測器(GPC-LALLS)及凝膠滲透色層分析配合微分黏度 儀偵測器(GPC-DV)。使用這些技術於長鏈分支偵測及其依 的理論亦已累積於文獻中。見,如,Zimm,G.H.及 Stockmayer,W.H·,J. Chem· Phys·,17,1301 (1949)及Rudin, 10 A.,Modern Methods of Polymer Characterization, JohnChem. Phys., C. 29, V. 2 & 3, p. 285-297). As a practical matter, current 13C NMR spectrometers cannot determine the length of a long chain branch exceeding 6 carbon atoms. However, other techniques known to determine the appearance of long chain branches in ethylene polymers include ethylene / 1-octene interpolymers. The second method is gel permeation chromatography with a low-angle laser light scattering detector (GPC-LALLS) and gel permeation chromatography with a differential viscosity meter detector (GPC-DV). Theories of using these techniques for long-chain branch detection and their dependencies have also been accumulated in the literature. See, for example, Zimm, G.H. and Stockmayer, W.H., J. Chem. Phys., 17, 1301 (1949) and Rudin, 10 A., Modern Methods of Polymer Characterization, John

Wiley & Sons,New York (1991) pp· 103-112,此二者皆併於 參考資料。 A. Willem deGroot及 P. Steve Chum,兩者皆是 The Dow Chemical Company,於 1994 年 10 月 4 日 Federation of 15 Analytical Chemistry and Spectroscopy Society (FACSS)於 St. Louis,Missouri的會議中,報導了資料示範GPC-DV為長 鏈分支於SLEPs中定量的一有用的技術。特定來說,deGroot 及Chum發現在均質SLEP樣品之長鏈分支的程度測量以用 Zimm-Stockmayer方程式良好地對應測量以13C NMR的長 20 鏈分支程度。 此外,deGroot及Chum發現辛烯的出現不改變聚乙烯 樣品在水中的流體力學體積,即,我們可把分子量增加歸 因於辛婦短鏈分支以了解辛烯在樣品中的莫耳百分比。由 19 200406456 玖、發明說明 去掉因1-辛婦短鏈分支而造成的分子量增加之旋繞, deGroot及Chum示出GPC-DV可用於在實質線性乙烯/辛 婦共聚物之長鏈分支程度的定量。 deGroot及Chum亦表示(12,熔化指數)之對數為(GPC平 5 均分子量之重量)之對數-函數的圖如決定以GPC-DC顯示 了 SLEP的長鍵分支部分(並非長鍵分支的程度)係類比於高 壓,高分支低密度聚乙烯(LDPE)的而明顯不同於以使用 Ziegler型催化劑製造的乙烯聚合物如鈦錯化合物及供製造 均質聚合物的一般催化劑如給及飢錯化合物。 10 對乙烯/ α -烯烴間聚物,長鏈分支係長於由α -稀烴 併入聚合物主鏈所成的短鏈分支。出現在使用之α-烯烴的 實質線性乙烯/ α -烯烴間聚物的長鏈分支之經驗上的影 響擴如增強的流體力學性質其係定量及表示於此以氣體擠 出流體測定(GER)結果及/或熔化流,110/12,的增加。 15 相對於該辭“實質上線性”,此辭“線性”意指聚合 物缺乏可測得或可示出的長鏈分支,即,該聚合物係取代 以平均少於0.01長鏈分支/1000個碳。 SLEPs更顯明以有: (a) —熔化流比,Ι1()/Ι225·63, 20 (b) —分子量分布,MW/Mn決定以凝膠滲透色層分析且 定義以方程式: (Mw/Mn)S(I10/I2M.63, (c) 一氣體擠出流體力學使得對SLEP之於表面熔化破 20 200406456 玖、發明說明 裂起始的臨界剪切速率至少百分之50大於對一線 性乙晞聚合物表面熔化斷裂之起始的臨界剪切速 率’其中SLEP及該線性乙烯聚合物包含相同的共 聚單體,該線性乙烯聚合物有一 l2、Mw/Mn及密度 5 在队即的百分之十内且其中SLEP及該線性乙烯 聚合物各自的臨界剪切速率係測量於相同的熔化 溫度使用一氣體擠出流體測量計,及 ⑷一單一微分掃描熱度計,DSC,熔化峯在-30及150C 之間。 10 臨界剪切速率及臨界剪切壓力相對於熔化斷裂及其他 流體力學性質如流體處理指數(PI)的決定,係進行以使用一 氣體擠出流體測量計(GER)。該氣體擠出流體測量計描述由 M. Shida,R.N·及 L.V· Cancio 於 Polymer Engineering .Science, Vol. 17,No· 11,page 770 (1977),及於“ 15 Rheometers for Molten Plastics^ by John Dealy, published by Van Nostrand Reinhold Co. (1982) on page 97-99。GER 實驗進行於溫度190°C。以氮氣壓在250至5500psig(1.7至 38MPa)之間使用一直徑0.0754mm,長度對直徑20:1終結以 一進入角度180。。對描述於此的該實質線性乙烯聚合物, 20 PI係一物質表面之黏度(以泊)測量以GER以一表面剪切壓 力2.15x 106dyne/cm2(0.215MPa)。供用於該發明的實質線性 乙烯聚合物包含乙烯間聚物且有一 PI在範圍〇·〇1泊至50泊 (0.01 至 50 kg/cm.sec),較佳地 15 泊(15kg/cm.sec)或更少。使 21 200406456 玖、發明說明 用於此的該實質線性乙烯聚合物有一pi少於或等於一線性 乙嫦聚合物之PI的百分之70(— Ziegler聚合之聚合物或一 線性均等分支聚合物如描述由Elston於U.S· Patent 3,645,992)具有一 I2、Mw/Mn及密度,每一係在實質線性乙 5 烯聚合物的百分之十内。 實質線性乙烯聚合物的流體力學性質亦可以Dow Rheology Index (DRI)為特徵,其表示一聚合物的“標準化 鬆弛時間”為長鏈分支的結果。(見,S· Lai及G.W· Knight ANTEC 993 Proceedings, INSITE™ Technology Polyolefins 10 (SLEP)-New Rules in the Structure/Rheology Relationship of a -Oefin Copolymers,New Orleans,La.,May (1993)。DRI 值範圍從0對不具可測得之長鏈分支的聚合物(即,Tafmer TM 產品可得自 Mitsui Petrochemical Industries及Exact™產 品可得自Exxon Chemical Company)至約15且係獨立於溶化 15 指數。通常,對低或中壓乙烯聚合物(特別在低密度)DRI 提供對熔化彈性及高剪切可流性的改良關係,相對於相同 達成以熔化流比例的關係。對有用於該發明的實質線性乙 烯聚合物,DRI較佳地至少0.1,且特別地至少0.5,且最佳 地至少0.8。DRI可計算自該方程式: 20 DRI=(3652879 * τ〇 1 00649/η〇-1)/10 其中τ係該物質的特徵鬆弛時間而η 〇係該物質的零剪切黏 度。τ〇及ηο二者皆是對該Cross方程式的“最適”值,如下 22 200406456 玖、發明說明 η/η〇=1/(1+(7 *τ〇)1*η) 其中η係該物質的冪律指數,而η及7分別係測得的黏度 及剪切速率。黏度及剪切速率數據的基底線決定使 取得以使用一 Rheometric Mechanical Spectrometer 5 (RMS-800)在動態掃描模式從0.1至100弧度/秒於 160c且一 Gas Extrusion Rheometer (GER)在擠出廢 從 l,000psi至 5,000psi(6.89至 34.5MPa),其對應剪切 壓力從0.086至0.43 MPa,使用一直徑〇.〇754mm,長 度對直徑2 0 :1鑄模於1 9 0 C。特別的物質決定可進行 1〇 從140至190C如需接受熔化指數的變化。 一表面的剪切壓力對表面的剪切速率圖係用於指出熔 化斷裂現象及定量乙婦聚合物的臨界剪切速率及臨界剪切 壓力。依據Ramanurthy 於 Journal of Rheology,30(2), 337-357,1986 ,在一相當流速之上,發現的突出不規則體 15可大略分類成兩種主要型··表面熔化斷裂及整體熔化斷裂 表面炫化斷裂發生於表面持續流動條件之下且詳細範圍從 失去光片膜光澤至更嚴重的“餐:魚表面,、形成。在此, 、疋X用之岫描述的GER,表面溶化斷裂的開始(OSMF) 2〇係以開始失去突出光澤為特徵,在其中突出的表面粗縫可 制以4〇倍的放大。對該實質線性乙稀聚合物在表面熔化 :裂起始的臨界剪切速率係至少百分之5〇大於基本上有相 5 . w/Mm之—線性2烯聚合物之表面熔化斷裂起始的 23 200406456 玖、發明說明 臨界剪切速率。 整體熔化斷裂發生在不穩定的突出流動條件下且範圍 詳細地從規則的(例如,粗糙及光滑式螺旋的)至不規則的扭 曲。對商業上的可接受性以最大化膜,塗布及鑄膜的表現 5 性質,若有表面損害出現的話,也應為最少。對該實質線 性乙烯聚合物在整體熔化斷裂起始的臨界剪切壓力,特別 那些有一密度大於0.910g/cm3,用於該發明係大於4x 106dynes/cm3(0.4MPa) 〇 已知實質線性乙烯聚合物有卓越的處理性,除了有一 10 相對狹窄的分子量分有(即,Mw/Mm&例典型上少於2.5)。 此外,不像均質或異質分支線性乙烯聚合物,實質線性乙 烯聚合物的熔化流比(I1G/I2)可獨立於分子量分布,Mw/Mn 而改變。依此,該發明的多晶型聚合物組成物的聚合物主 鏈(A)可為一實質線性乙烯聚合物。 15 異質聚乙嫦,其可用作此發明之使用之多晶型長鏈分 支(B)落於兩大範圍,那些製備以一自由基起始物於高溫及 高壓下,及那些製備以一條件催化劑在高溫及相對底壓下 。前者被通常知為低密度聚乙烯(LDPE)且以附自該聚合物 主鏈之聚合單體單元的支鏈為特徵。LDPE聚合物通常有一 20 密度在0.910及0.935g/cm3之間。製備以使用一條件催化劑 ,如Ziegler或Phillips催化劑,的乙稀聚合物及共聚物,通 常知為線性聚合物因為實質上缺乏附近該主鏈的聚合單體 單元的支鏈。高密度聚乙締(HDPE),通常有一密度約0.941 24 200406456 玖、發明說明 至約0.965g/cm2,係典型一乙烯的單質聚合物或一乙烯及低 程度的一共聚單體的共聚物,且其包含相對少的支鏈相對 於各種乙烯及一 α -烯烴的線性共聚物。HDPE亦被熟知, 高業上可得以各種等級,且可使用於此發明。 5 乙烯及3至12碳原子,較佳地4至8個碳原子的至少一 α -烯烴的線性間聚物,亦被熟知且高業上可得的。如該技術 中所熟知者,一線性乙嫦/ α -稀烴間聚物的密度係α -烯烴 長度及該單體在物之量相對於乙烯之量的函數,α-烯烴的 長度越長α-烯烴烯烴呈現的量越多,共聚物的密度越低。 10 這些線性聚合物的密度範圍通常從0.87至0.91 g/cm3。 兩物質皆由自由基催化劑及輔助催化劑製造,被熟知 於此技術,如它們的裝備方法。異質線性乙烯聚合物可得 自 The Dow Chemical Company 以 Dowlex™ LLDPE及以 Attane TM ULDPE樹脂。異質線性乙烯聚合物可在 15 Ziegler-Natta催化劑的出現下經由乙烯及一或更多非一定 要的α -烯烴共聚單體的溶液,流體或氣相聚合反應製備, 以方法如揭示於U.S· Patent No. 4,076,698 to Anderson et al· 。異質線性乙烯聚合物典型上以有分子量分布Mw/Mn,在 範圍從3.5至4.1為特徵。這兩物質種類的相關討論,及它們 20 的製備方法,可發現於U. S· Patent No. 4,950,541及其相關 的專利。 異質聚合物係以有一線性主鏈及歸因於高密度部分而 有一明顯熔化峰大於115°C的微分掃描熱度計(DSC)熔化典 25 200406456 玖、發明說明 線為特徵的乙烯/ α -烯烴間聚物。異質間聚物典型上將有一 Mw/Mn大於3(當該間聚物的密度小於0.960g/cm3),且典型上 將有一 CDBI少於或等於50,指該間聚物係有不同共聚單體 含量及不同量短鏈分支的分子之一混合物。 5 參考於一乙烯聚合物的結晶質被熟知為乙烯聚合物的 性質,各種技術已被發展以測量乙烯聚合物結晶度。 當該乙烯聚合物係絕對地衍生自碳氫化合物單體(即 ,當該乙烯聚合物係一無官能基之乙烯α-烯烴間聚物,該 結晶度可決定自該聚合物的密度以使用如下之方程式: 10 %C=(P-Pa)/P(Pc-Pa)x 100 其中%<:係該乙烯聚合物的結晶度百分比,Pa係一乙烯聚合 物的密度,其有〇%結晶度(即,其係百分之100無定型,於 室溫(0,852g/cm3),Pc表示一乙烯聚合物在百分之100結晶度 於室溫的密度(l,000g/cm3)且P表示對結晶度百分比被決定 15 之聚合物的密度。 該辭“在負、載使用溫度下’’(ULST)亦稱為“在負載下之 軟化點”或“SPUL”,悉指於探針插入該聚合物lnrni的溫度被 達到以使用能將一 1N的持續力用呈一有直徑1 mm的平坦尖 探針當加熱該聚合物之溫度從25°C在一速率5/分鐘在一氮 20 大氣中的裝置。一該裝置係一 Therme Mechanical Analyter(TMA)如 Model TMA-7 由 Perkin-Elmer Instrument Company製送。運作該測試的方法更詳細的描述於以下的 實例小節。 26 200406456 玖、發明說明 更高密度之形成分支聚合物(B)為廣闊的分子量範圍 。在該低分子量側,該分支聚合物會有一Mn至少2000,較 佳地至少3000。在高分子量側,該分支聚合物會有一 12至少 0.05g/cm3。對該分支聚合物的典型熔化指數範圍從0.05至 5 40g/10min 〇 當使用一較高分子量的分支聚合物係被需要的,即, 一分支聚合物具一 12少於5g/10m3,分支聚合物鏈的減少數 將需要高濃度分支聚合物的出現,即,量大於重量百分比 20(或使用較高程度的自由基起始劑,即;量大於重量百分 10 比0.5)以產生一給定增加在負載使用溫度之下。相對的,當 一較低分子量的分支聚合物被使用,出之短鏈分支(其較佳 地係乙烯基終結)的一增加量將選在負載使用溫度之下的 增加,除了使用相對小量的分支聚合物,即,量小至重量 百分比5。 15 當不希望受理論之束缚。一般相信在較低分子量分支 聚合物的例子中,低濃度的可被使用,如該多晶型聚合物 組成物貪傾於有多於一小支鍵附自每一聚合物主鍵。如第1 圖所示,一般相信出現每主鏈分子,其會提供結構上之整 合性對該系統而不管於較高使用溫度較結晶性聚合物主鏈 20 物質。 對製造該發明的多晶型組成的許多方法可見於那些熟 習於聚合物科學之技術者。 在一具體實施例中,該較高結晶度分支聚合物及該較 27 200406456 玖、發明說明 低結晶度高集聚合物可製備以反應之前製備的及單離的聚 合物反應物。在此例子中,該較而結晶度分支聚合物會反 應以形成一 T連結(以接合)或一 Η連結(以光交鏈)與該較低 結晶度主鏈聚合物。此反應有完成以知於那者熟習於此技 5 術者的方法。 在一具體實施例中,氫將抽取自該聚合物主鏈,且會 與分支聚合物反應。供自聚合物主鏈抽取氫的方法包含但 不限於反應產生於均勻分解分子之自由基(例如,包含過氧 化物之化合物,或包含偶氮的化合物,或以輻射。 10 出現烯烴的未飽和在該主鏈聚合物或分支聚合物上可 幫助控制接合/交鏈處的所在。例如,過氧化物分解在一飽 主鏈聚合物的一大部分及乙烯終結的分支聚合物的一小部 分的出現下會傾於接合該分支聚合物至該主鏈聚合物,其 中一無乙烯基分支聚合物可達到氫抽離以製造一自由基其 15 將與該主鏈聚合物的反應以形成Η-連結。乙烯基終結的分 支聚合物製備以調整反應器條件使得聚合鏈終結以其他氫 化物消除,而不為氫終結的。此外,辅助劑如單、雙或三 烯而基官能分子(如:三烯丙基氰尿酸酯可用於更加控制該 自由基處理。通常來說,接合係較好以光接合,因更多多 20 晶型長鏈分支可併入)而無疑結。 在形成該較高分支形成之聚合物或在該主鏈形成之聚 合物使α-,Ω二烯作為一共聚單體將增加該聚合物成分的 反應性。適宜的α-,Ω烯烴包含1,7-辛二烯及1,9癸二烯 28 200406456 玖、發明說明 。當併入時,該二烯典型上會出現以一量少於2與聚合物鏈 〇 交鏈或接合反應可進行於兩聚合物的一溶液中在一適 當的溶劑或該聚合物成分的一熔化混合。後者係較佳的方 5 法。溶化混合可進行於一批次混合器如一 Brabender混合器 ,Banbury混合器,滾動礅磨,或在一連續的混合器如一 Farrell Continuous Mixer,或在一單一或成對的螺旋擠出劑 。形成聚合物亦是可能的,接著輻射或吸取反應溶液(如過 氧化物)並加熱。然而,熔化及溶液混合係在這些方法為較 10 佳的。 在另一具體實施例,該發明的組成物可製備以共聚合 該分支聚合物與製造該主鏈聚合物的單體。以一雙催化劑 系統,可見該主鏈聚合物及該主體組成(即,該多晶型聚合 物組成物,可同時共聚合。此方法有縮小在一相對冷反應 15 器中高Tg/Tm聚合物之相脫離的優點。 在另一具體實施例中,該發明之組成可以一系列雙反 應器的配置製造,藉此該分支聚合物在第一反應器中製造 ,並接著放入一第二反應器中,與形成該主鏈聚合物的單 體行共聚合,以製造該主體組成。該第二反應器應保持在 20 一溫度下,該溫度係大於該較高結晶性分支聚合物會自該 較低結晶度之主鏈聚合物發生相分離的溫度。該反應器於 其中共聚合反應發生在一反應器與一高聚合物(“固體”)濃 度,如一圈反應器,以最大化在反應器中可聚合較高結晶 29 200406456 、 "^ * .., .. . * ...... - J 一 T - .... , .. 玖、發明說明 度分支聚合物的溫度係較佳的。 在一具體實施例中,一單一位置催化劑可被用來共聚 合有乙婦及辛嫦的較高結晶度分支聚合物以製造有HDPE 側鏈分支的乙烯/辛烯彈性物。單一位置催化劑,特別是幾 5何限制之催化劑,是較好的,在其他們有一較高的高分子 量單體接受較傳統的Ziegler催化劑或無幾何限制的單一位 置催化劑。不像交鏈,共聚合避免凝結甚至在相對高的多 晶型長鏈分支含量,因只有一位置在該長鏈分支具反應性 〇 10 較佳地高Tm* Τ§多晶型長鏈分支前驅物單體係為相 對低为子里且有至少一烯煙終端旋每鏈以藉助共聚合及在 處理溶劑及/或擴散至該催化位置之單體的溶解。 非一定地,一二烯或多烯烴可用作在一或二聚合物的 一共聚單體以改良在共聚合反應期間的併入/連結速率。 15例如,一乙烯-二烯或丙烯-二烯共聚物可製造於一反應器中 #著置A第一反應器在其中其共聚合2婦及辛稀或乙烯 &丙烯。若乙稀程度為相對低的,凝結可避免當增加多晶 型分支前驅物聚合物及該主鏈聚合物的等體之共聚合反應 it率。車乂仫地’當一二烯或丙烯作為一共聚單體,其會組 20成少於重量百分之2〇,更佳地少於該發明之組成的重量之 百分之10。 在另一具體實施例中,該多晶型聚合物組成物可混合 與-或更夕為相似結構附加的聚合物至該分支聚合物或可 30 200406456 玖、發明說明 與其形成一高Tm或Tg相經由固相溶液或共結晶化。該混合 成分的一實例係高密度聚乙烯。當分支聚合物的濃度在多 晶型聚合物組成物中為低的,提供附加聚合物對該分支以 共聚合成因化於一熱中以得到所需的物理性質及/或抗溫 5 性係較佳的。一過多之較高結晶度聚合物將有用地共結晶 與多晶型聚合物組成物的較高結晶定分支,用以增加層合 的厚度,其會傾於增加該聚合物組成物的結晶熔化溫度。 此外,此過多的較高結晶度聚合物將用以連結兩分開的較 高結晶度分支,其會升高該多晶型聚合物組成物的整體結 10 晶度,其會增加在負載下之使用溫度。導入該附加聚合物 的一較好方法係僅加一過量的分支聚合物至該反應器或熔 化混合器以使共聚合反應或接合或交鏈發生時,過量的未 反應分支聚合物維持不反應且對該多晶型長鏈分支的共結 晶化或相形成是可得的。 15 在另一具體實施例中,該發明的組成可於和其他聚合 物的混合物。例如,該發明的組成可混合與其他聚烯烴, 如異質分支線性乙烯/α-烯烴間聚物、實質線性乙烯/α-烯 烴間聚物、乙烯/乙酸乙烯酯共聚物、苯乙烯嵌段共聚物、 及無定形聚烯烴L如聚丙稀及聚丁婦。 20 在一較佳的具體實施例中,該多晶型聚合物組成物將 包含至少一成分其包含極性分子部分。即,該主鏈聚合物 或該分支聚合物較佳地將係官能基化以接合一極性分子部 分至其本身。 31 200406456 玖、發明說明 任何未飽和有機化合物包含至少一位置之乙烯的未飽 和(例如,至少一雙鍵),至少一羧基族(-COOH),及其將含 至一乙烯聚合物如上所述者將用於此發明的用途。如於此 使用,“羧基族”包含羧基族本身及羧基族的衍生物如酐、 5 酯、鹽(金屬和非金屬的皆是)。較佳地,該有機化合物包含 乙烯的未飽和結合一羧基族的一位置。代表性的化合物包 含順一丁烯二酸、丙烯酸、甲基丙烯酸、分解烏頭酸、巴 豆酸、α甲基巴豆酸,及内桂酸及它們的酐、酯及鹽衍生 物,及反-丁烯二酸及其及鹽衍生物。順-丁烯二酸酐二酸酐 10 係較佳的包含至少一乙烯的未飽和及至少一羧基族的未飽 和有機化合物。 該接合的主鏈聚合物或分支聚合物的未飽和有機化合 物係較佳地至少O.Olwt%,且更佳地至少0.05wt%,基於聚 合物及有機化合物之重量的結合。未飽和有機化合物含量 15 則最大量可依便利而改變,但典型上不超過10wt%,較佳 地其大超過5wt%,且更佳地其不超過2wt%的接合的聚合物 〇 該未飽和有機化合物可接合至該所需的或分支聚合物 以任何已知的技術,如那些教示於USP 3,236,97及USP 20 5,194,509。例如,在該’917專利該聚合物被引入一二旋混 合器且混合於溫度60°C。該未飽和有機化合物接著與一自 由基起始物一起加入,如舉例來說,苯甲酸過氧化物,且 該成分混合於30°C至接合完成。在該509專利,該方法係相Wiley & Sons, New York (1991) pp. 103-112, both of which are incorporated by reference. A. Willem deGroot and P. Steve Chum, both of The Dow Chemical Company, reported the material at a conference of the Federation of 15 Analytical Chemistry and Spectroscopy Society (FACSS) on October 4, 1994 in St. Louis, Missouri Demonstrating GPC-DV is a useful technique for quantifying long chain branches in SLEPs. In particular, deGroot and Chum found that the degree of long-chain branching in a homogeneous SLEP sample was measured to correspond well with the Zimm-Stockmayer equation to measure the degree of long-chain branching at 13C NMR. In addition, deGroot and Chum found that the presence of octene does not change the hydrodynamic volume of the polyethylene sample in water, that is, we can attribute the increase in molecular weight to the short-chain branching of octene to understand the percentage of moire in octene in the sample. From 19 200406456, the description of the invention removes the spiral of molecular weight increase caused by the short chain branch of 1-Xinfu, deGroot and Chum show that GPC-DV can be used to quantify the degree of long-chain branching of a substantially linear ethylene / Xinfu copolymer . deGroot and Chum also indicated that the logarithm of (12, melting index) is the logarithmic- (weight of GPC average 5 molecular weight) graph of the function. ) Is analogous to high-pressure, high-branched low-density polyethylene (LDPE), which is significantly different from ethylene polymers such as titanium compounds produced using Ziegler-type catalysts and general catalysts such as donor and starvation compounds used to make homogeneous polymers. 10 For ethylene / α-olefin interpolymers, the long-chain branches are longer than the short-chain branches formed by the incorporation of α-dilute hydrocarbons into the polymer backbone. The empirical effects that appear in the long linear branching of the substantially linear ethylene / α-olefin interpolymers of the α-olefins used have been augmented by enhanced hydrodynamic properties, which are quantitative and expressed as measured by Gas Extrusion Fluid (GER) The result and / or melt flow, 110/12, increases. 15 Contrary to the term "substantially linear", the term "linear" means that the polymer lacks measurable or showable long chain branches, that is, the polymer is substituted with an average of less than 0.01 long chain branches / 1000 Carbon. SLEPs are more obvious with: (a) — melt flow ratio, Ι (1) / Ι225 · 63, 20 (b) — molecular weight distribution, MW / Mn is determined by gel permeation chromatography and is defined by the equation: (Mw / Mn ) S (I10 / I2M.63, (c) A gas extrusion fluid mechanics makes the surface melt of SLEP 20 200406456 玖, the invention shows that the critical shear rate of crack initiation is at least 50% greater than that of a linear B起始 Initial critical shear rate of melt fracture of polymer surface ', where SLEP and the linear ethylene polymer contain the same comonomer, the linear ethylene polymer has a l2, Mw / Mn and a density of 5% Within ten and where the critical shear rate of each of SLEP and the linear ethylene polymer is measured at the same melting temperature using a gas extrusion fluid meter and a single differential scanning calorimeter, DSC, with a melting peak at -30 And 150C. 10 Critical shear rate and critical shear pressure versus melt fracture and other hydrodynamic properties such as fluid handling index (PI) are determined using a gas extrusion fluid gauge (GER). The Gas extrusion fluid measuring instrument By M. Shida, RN · and LV · Cancio in Polymer Engineering. Science, Vol. 17, No. 11, page 770 (1977), and in "15 Rheometers for Molten Plastics ^ by John Dealy, published by Van Nostrand Reinhold Co (1982) on page 97-99. The GER experiment was performed at a temperature of 190 ° C. A nitrogen pressure of between 250 and 5500 psig (1.7 to 38 MPa) was used with a diameter of 0.0754 mm and a length to diameter of 20: 1 ending at an entry angle. 180 ... For the substantially linear ethylene polymer described herein, 20 PI is the viscosity (in poise) of the surface of a substance as measured by GER at a surface shear pressure of 2.15 x 106 dyne / cm2 (0.215 MPa) for use in the invention. Of substantially linear ethylene polymers containing ethylene interpolymers and having a PI in the range of 0.001 poise to 50 poises (0.01 to 50 kg / cm.sec), preferably 15 poises (15 kg / cm.sec) or less Make the 20042004456, the description of the invention, the substantially linear ethylene polymer has a pi less than or equal to 70% of the PI of a linear ethyl polymer (— Ziegler polymerized polymer or a linear equal branch polymer (As described by Elston in US Patent 3,645,992) I2, Mw / Mn and density, each within ten percent based on 5-ene substantial linear ethylene polymer. The hydrodynamic properties of a substantially linear ethylene polymer can also be characterized by the Dow Rheology Index (DRI), which represents the "standardized relaxation time" of a polymer as a result of long chain branching. (See, S. Lai and GW. Knight ANTEC 993 Proceedings, INSITE ™ Technology Polyolefins 10 (SLEP) -New Rules in the Structure / Rheology Relationship of a -Oefin Copolymers, New Orleans, La., May (1993). DRI value Ranges from 0 pairs of polymers with no measurable long-chain branching (ie, Tafmer ™ products are available from Mitsui Petrochemical Industries and Exact ™ products are available from Exxon Chemical Company) to about 15 and are independent of the melt 15 index. Usually For low or medium pressure ethylene polymers (especially at low density), DRI provides an improved relationship to melt elasticity and high shear flowability, relative to the same relationship achieved in terms of melt flow ratio. It is substantially linear for the invention For ethylene polymers, DRI is preferably at least 0.1, and in particular at least 0.5, and most preferably at least 0.8. DRI can be calculated from the equation: 20 DRI = (3652879 * τ〇1 00649 / η〇-1) / 10 where τ is the characteristic relaxation time of the substance and η 〇 is the zero shear viscosity of the substance. Both τ〇 and ηο are "optimum" values for the Cross equation, as follows 22 200406456 发明, invention description η / η 〇 = 1 / (1+ (7 * τ〇) 1 * η) where η is the power law index of the substance, and η and 7 are the measured viscosity and shear rate respectively. The basis of the viscosity and shear rate data The line was determined to be obtained using a Rheometric Mechanical Spectrometer 5 (RMS-800) in dynamic scan mode from 0.1 to 100 radians per second at 160c and a Gas Extrusion Rheometer (GER) in extrusion waste from 1,000 psi to 5,000 psi (6.89 To 34.5 MPa), which corresponds to a shear pressure from 0.086 to 0.43 MPa, using a diameter of 0.0754 mm and a length-to-diameter 20: 1 mold at 19 0 C. Special material decisions can be made from 10 to 140 to 190 C It is necessary to accept the change of the melting index. A surface shear pressure versus surface shear rate diagram is used to indicate the melt fracture phenomenon and to quantify the critical shear rate and critical shear pressure of the polymer. According to Ramanurthy in the Journal of Rheology, 30 (2), 337-357, 1986. Above a considerable flow rate, the prominent irregularities 15 found can be roughly classified into two main types: surface melting fracture and overall melting fracture. Detailed and continuous surface conditions Loss of light from the surrounding sheet film gloss to the more severe "meal: fish forming surface ,,. Here, the “GER” described by “X” is characterized by the beginning of surface melt fracture (OSMF) 20, which is characterized by the beginning to lose outstanding gloss, and the rough surface of the protruding surface can be enlarged by 40 times. The substantially linear ethylene polymer melts on the surface: the critical shear rate for crack initiation is at least 50 percent greater than the substantially phase-independent phase of 5. w / Mm—the surface melting crack initiation of linear 2ene polymers 23 200406456 发明, Invention Description Critical Shear Rate. Bulk melting fractures occur under unstable, prominent flow conditions and range in detail from regular (eg, rough and smooth spirals) to irregular twists. For commercial acceptability to maximize film, coating and cast film performance 5 properties should also be minimized if surface damage occurs. The critical shear pressure at the onset of the melt fracture of the substantially linear ethylene polymer, especially those with a density greater than 0.910 g / cm3, used in this invention is greater than 4x 106 dynes / cm3 (0.4 MPa). Known substantially linear ethylene polymerization The material has excellent handleability, except that it has a relatively narrow molecular weight of 10 (ie, Mw / Mm & typically less than 2.5). In addition, unlike homogeneous or heterogeneously branched linear ethylene polymers, the melt flow ratio (I1G / I2) of a substantially linear ethylene polymer can be changed independently of the molecular weight distribution, Mw / Mn. Accordingly, the polymer main chain (A) of the polymorphic polymer composition of the present invention may be a substantially linear ethylene polymer. 15 Heteropolyethene, which can be used as the polymorphic long-chain branch (B) of this invention falls into two broad ranges, those prepared with a radical starter at high temperature and pressure, and those prepared with a Condition catalyst under high temperature and relative bottom pressure. The former is generally known as low density polyethylene (LDPE) and is characterized by branched chains of polymerized monomer units attached to the polymer's main chain. LDPE polymers usually have a density between 0.910 and 0.935 g / cm3. Ethylene polymers and copolymers prepared using a conditional catalyst, such as Ziegler or Phillips catalysts, are generally known as linear polymers because they substantially lack the branching of polymerized monomer units in the vicinity of the main chain. High density polyethylene (HDPE), usually has a density of about 0.941 24 200406456 玖, the invention description to about 0.965 g / cm2, is a typical monopolymer of ethylene or a copolymer of ethylene and a low degree of comonomer. And it contains relatively few branched linear copolymers relative to various ethylene and an alpha-olefin. HDPE is also well known, is available in a variety of grades, and can be used in this invention. Linear interpolymers of 5 ethylene and at least one alpha-olefin of 3 to 12 carbon atoms, preferably 4 to 8 carbon atoms, are also well known and highly commercially available. As is well known in the art, the density of a linear acetamidine / α-dilute hydrocarbon interpolymer is a function of the length of the α-olefin and the amount of the monomer relative to the amount of ethylene. The longer the length of the α-olefin The greater the amount of alpha-olefin olefin present, the lower the density of the copolymer. 10 The density of these linear polymers typically ranges from 0.87 to 0.91 g / cm3. Both substances are made from free-radical catalysts and auxiliary catalysts and are well known in this technology, such as their equipment methods. Heterogeneous linear ethylene polymers are available from The Dow Chemical Company as Dowlex ™ LLDPE and as Attane ™ ULDPE resin. Heterogeneous linear ethylene polymers can be prepared by the solution, fluid or gas phase polymerization of ethylene and one or more non-essential α-olefin comonomers in the presence of 15 Ziegler-Natta catalysts, as described in US · Patent No. 4,076,698 to Anderson et al. Heterogeneous linear ethylene polymers are typically characterized by a molecular weight distribution Mw / Mn, ranging from 3.5 to 4.1. A discussion of these two types of substances, and their preparation methods, can be found in U.S. Patent No. 4,950,541 and related patents. Heterogeneous polymers are differential scanning calorimeters (DSCs) with a linear main chain and a distinct melting peak due to high-density fractions greater than 115 ° C. Melting Code 25 200406456 发明, ethylene / α-olefins that are characteristic of the invention description line Interpolymer. Heterogeneous interpolymers will typically have a Mw / Mn greater than 3 (when the density of the interpolymer is less than 0.960 g / cm3), and will typically have a CDBI of less than or equal to 50, meaning that the interpolymer has different copolymerization monomers One of a mixture of molecules with different body contents and different amounts of short chain branches. 5 With reference to the properties of an ethylene polymer, which is well known as an ethylene polymer, various techniques have been developed to measure the crystallinity of ethylene polymers. When the ethylene polymer is absolutely derived from a hydrocarbon monomer (ie, when the ethylene polymer is a non-functional ethylene alpha-olefin interpolymer, the crystallinity can be determined from the density of the polymer to be used. The following equation: 10% C = (P-Pa) / P (Pc-Pa) x 100 where% < is the crystallinity percentage of the ethylene polymer, and Pa is the density of an ethylene polymer, which is 0% Crystallinity (ie, it is 100% amorphous, at room temperature (0,852g / cm3), Pc represents the density of an ethylene polymer at 100% crystallinity at room temperature (1,000g / cm3), and P is the density of a polymer whose percentage of crystallinity is determined to 15. The term "under negative and loaded service temperature" (ULST) is also referred to as "softening point under load" or "SPUL" and refers to the The temperature at which the needle was inserted into the polymer lnrni was reached to use a continuous force of 1N with a flat tip probe with a diameter of 1 mm when the polymer was heated from 25 ° C at a rate of 5 / min at a A device in the atmosphere of nitrogen 20. A device is a Thermo Mechanical Analyter (TMA) such as Model TMA-7 by Perkin-Elmer Instrume Supplied by nt Company. The method for operating this test is described in more detail in the following example section. 26 200406456 发明, invention description Higher density branched polymer (B) has a broad molecular weight range. On the low molecular weight side, the The branched polymer will have a Mn of at least 2000, preferably at least 3000. On the high molecular weight side, the branched polymer will have a 12 of at least 0.05 g / cm3. A typical melt index for the branched polymer ranges from 0.05 to 5 40 g / 10 min. 〇 When using a higher molecular weight branched polymer system, that is, a branched polymer with 12 less than 5g / 10m3, the number of branched polymer chains will require the presence of a high concentration of branched polymer, that is, The amount is greater than 20 weight percent (or a higher degree of free radical initiator is used, ie; the amount is greater than 10 weight percent to 0.5) to produce a given increase below the load use temperature. In contrast, when a lower molecular weight A branched polymer is used, and an increase in the short-chain branch (which is preferably a vinyl termination) will be selected to increase below the load use temperature, except that a relatively small amount of branch is used. Polymers, ie, amounts as small as 5 weight percent. 15 When not wishing to be bound by theory. It is generally believed that in the case of lower molecular weight branched polymers, low concentrations can be used, such as the polymorphic polymer composition Attached to more than one small branch attached to each polymer primary bond. As shown in Figure 1, it is generally believed that the presence of each main chain molecule will provide structural integration to the system regardless of higher usage Temperature is higher than 20 substances in the crystalline polymer backbone. Many methods for making the polymorphic composition of the invention can be found by those skilled in polymer science. In a specific embodiment, the higher crystallinity branched polymer and the lower 2004-20456 玖, invention description low crystallinity high aggregate polymer can be prepared to react the previously prepared and isolated polymer reactants. In this example, the more crystalline branched polymer will react to form a T-junction (to join) or a tandem (to light cross-link) with the lower-crystallinity backbone polymer. There are ways to complete this reaction to know who is familiar with the technique. In a specific embodiment, hydrogen will be extracted from the polymer backbone and will react with the branched polymer. Methods for extracting hydrogen from the polymer backbone include, but are not limited to, reactions that generate free radicals that decompose molecules uniformly (eg, compounds containing peroxides, or compounds containing azos, or radiation. 10 Unsaturation of olefins occurs On the main chain polymer or branched polymer can help control where the junction / cross-linking is located. For example, the peroxide breaks down in a large part of the main chain polymer and a small part of the ethylene terminated branch polymer The appearance of the polymer will be inclined to join the branched polymer to the main chain polymer, in which a vinyl-free branched polymer can reach hydrogen extraction to produce a radical which 15 will react with the main chain polymer to form Η -Linking. Vinyl-terminated branched polymer is prepared to adjust the reactor conditions so that the polymerization chain termination is eliminated with other hydrides, rather than hydrogen-terminated. In addition, adjuvants such as mono-, di- or triene-based functional molecules (such as : Triallyl cyanurate can be used to control the radical treatment more. Generally speaking, the bonding system is better to photo-bond, because more than 20 crystalline long chain branches can be incorporated) without The use of α-, Ω diene as a comonomer in the polymer formed in the higher branch or the polymer formed in the main chain will increase the reactivity of the polymer component. Suitable α-, Ω olefins Contains 1,7-octadiene and 1,9 decadiene 28 200406456 玖, description of the invention. When incorporated, the diene typically appears to crosslink or join with the polymer chain 0 in an amount less than 2. It can be performed in a solution of two polymers in an appropriate solvent or a melt mixing of the polymer ingredients. The latter is the preferred method 5. Melt mixing can be performed in a batch mixer such as a Brabender mixer, Banbury Mixer, roll honing, or in a continuous mixer such as a Farrell Continuous Mixer, or in a single or paired spiral extruder. Polymer formation is also possible, followed by irradiation or extraction of the reaction solution (such as peroxidation) And heating. However, melting and solution mixing are better in these methods than 10. In another embodiment, the composition of the invention can be prepared to copolymerize the branched polymer with the main chain polymer. monomer With a double catalyst system, it can be seen that the main chain polymer and the host composition (that is, the polymorphic polymer composition can be copolymerized at the same time. This method has reduced the high Tg / Tm polymer in a relatively cold reactor 15 Advantages of phase separation. In another embodiment, the composition of the invention can be manufactured in a series of dual reactor configurations, whereby the branched polymer is manufactured in the first reactor and then placed in a second reaction In the reactor, copolymerize with the monomers forming the main chain polymer to manufacture the main composition. The second reactor should be maintained at a temperature of 20 ° C, which is greater than the higher crystalline branch polymer will The temperature at which the lower crystallinity backbone polymer undergoes phase separation. The reactor in which the copolymerization reaction occurs in a reactor with a high polymer ("solid") concentration, such as a loop reactor, to maximize Polymerizable high crystallization in the reactor 29 200406456, " ^ * .., ... * ...-J-T-...., .. 玖, temperature of the branched polymer of the invention Department is better. In a specific embodiment, a single-site catalyst can be used to copolymerize higher crystallinity branched polymers of ethene and octane to make HDPE side chain branched ethylene / octene elastomers. Single-site catalysts, especially catalysts with a few restrictions, are better, where they have a higher molecular weight monomer and accept more traditional Ziegler catalysts or single-site catalysts without geometric restrictions. Unlike cross-linking, copolymerization avoids coagulation even at relatively high polymorphic long-chain branching content, as only one position is reactive at that long-chain branch. 0 10 preferably high Tm * T§ polymorphic long-chain branching The precursor monomer system is relatively low in diameter and has at least one diene terminal to spin each chain by means of copolymerization and dissolution of monomers in the processing solvent and / or diffused to the catalytic site. Not necessarily, a diene or polyolefin may be used as a comonomer of the one or two polymers to improve the incorporation / linking rate during the copolymerization reaction. 15 For example, an ethylene-diene or propylene-diene copolymer can be manufactured in one reactor. # A is placed in a first reactor in which it is copolymerized with ethylene or ethylene & propylene. If the degree of ethene is relatively low, coagulation can avoid increasing the rate of copolymerization reaction when the polymorphic branched precursor polymer and the polymer of the backbone polymer are increased. Chedi 'When a diene or propylene is used as a comonomer, it will constitute 20% by weight to less than 20% by weight, and more preferably less than 10% by weight of the composition of the invention. In another specific embodiment, the polymorphic polymer composition may be mixed with-or more similarly, additional polymers to the branched polymer or may be 200404456, the invention description and a high Tm or Tg formed therewith. The phases are crystallized via a solid phase solution or co-crystallisation. An example of the mixed component is high-density polyethylene. When the concentration of the branched polymer is low in the polymorphic polymer composition, the additional polymer is provided to cause the branch to copolymerize in one heat to obtain the desired physical properties and / or temperature resistance. Good. An excessively high crystallinity polymer will usefully co-crystallize with the higher crystalline branching of the polymorphic polymer composition to increase the thickness of the laminate, which will tend to increase the crystalline melting of the polymer composition temperature. In addition, this excessive amount of higher crystallinity polymer will be used to connect two separate higher crystallinity branches, which will increase the overall crystallinity of the polymorphic polymer composition, which will increase the crystallinity under load. Operating temperature. A preferred method of introducing the additional polymer is to add only an excess of branched polymer to the reactor or melt mixer so that when copolymerization or bonding or cross-linking occurs, the excess unreacted branched polymer remains unreacted. And co-crystallization or phase formation of this polymorphic long chain branch is available. 15 In another embodiment, the composition of the invention can be mixed with other polymers. For example, the composition of the invention can be mixed with other polyolefins, such as hetero-branched linear ethylene / α-olefin interpolymers, substantially linear ethylene / α-olefin interpolymers, ethylene / vinyl acetate copolymers, and styrene block copolymers. And amorphous polyolefins such as polypropylene and polybutene. 20 In a preferred embodiment, the polymorphic polymer composition will include at least one component that includes a polar molecular moiety. That is, the main chain polymer or the branched polymer is preferably functionalized to join a polar molecular moiety to itself. 31 200406456 发明, description of the invention Any unsaturated organic compound contains at least one position of the unsaturation of ethylene (for example, at least one double bond), at least one carboxyl group (-COOH), and it will contain up to one ethylene polymer It will be used for the purpose of this invention. As used herein, "carboxyl group" includes the carboxyl group itself and derivatives of the carboxyl group such as anhydrides, esters, and salts (both metallic and non-metallic). Preferably, the organic compound contains a position of an unsaturated bond of a carboxyl group of ethylene. Representative compounds include maleic acid, acrylic acid, methacrylic acid, decomposed aconitic acid, crotonic acid, alpha methyl crotonic acid, and lauric acid and their anhydride, ester, and salt derivatives, and trans-butene Diacids and their derivatives. The maleic anhydride dianhydride 10 is preferably an unsaturated organic compound containing at least one ethylenic unsaturated group and at least one carboxyl group. The unsaturated organic polymer system of the joined main chain polymer or branched polymer is preferably at least 0.01 wt%, and more preferably at least 0.05 wt%, based on the combination of the weight of the polymer and the organic compound. The maximum amount of unsaturated organic compound 15 can be changed as convenient, but typically does not exceed 10 wt%, preferably it exceeds 5 wt%, and more preferably it does not exceed 2 wt% of the joined polymer. Organic compounds can be joined to the desired or branched polymer by any known technique, such as those taught in USP 3,236,97 and USP 20 5,194,509. For example, in the '917 patent, the polymer was introduced into a two-screw mixer and mixed at a temperature of 60 ° C. The unsaturated organic compound is then added with a free radical starter, such as, for example, benzoic acid peroxide, and the ingredients are mixed at 30 ° C until the bonding is complete. In the 509 patent, the method is related

32 200406456 玖、發明說明 似的除了反應溫度係更高,例如,21〇至3〇。〇,且一自由基 起始劑不用或用在一降低的濃度。 另一且較佳的接合方法被教示於usp 4,95〇,541,以使 用一成對螺絲之去揮發播出物作為混合裝置。該乙稀聚合 5物及未飽和有機化合物混合且反應在該擠出物中在該反應 物熔化且一自由基起始物的出現下的溫度。較佳地,該未 飽和有機化合物注入一區域保持在該擠出物中的壓力之下 〇 接合貫質線性乙烯聚合物與,如順_ 丁烯二酸酐,係指 10示於U.S· 5,346,963,在此併入參考資料中。 在該多晶型聚合物組成物的製備中,承認出現自由基 起始物會導致附加置架聚合物有限的交鏈,直接地至另一 個或經依附分支。若該連結程度不足以使該聚合物組成物 在熱塑裝配或擠出程序中為不可處理的,其在此發明的範 15圍之中。較佳地,該多晶型聚合物組成物會有少於百分之 30的凝膠,更佳地少於百分之1〇的凝膠,更佳地少於百分 之5的凝膠,且最佳地少於百分之2的凝膠。最佳地,該多 晶型聚合物組成物將係實質上無凝膠。 孩發明的多晶型聚合物非必定地包含抗氧化劑、填充 20劑、擴張油、紫外光穩定劑、潤滑及抗嵌段劑、色素、染 料、或吹劑,根據那些熟習於聚合物形成之技術者之操作 。當使用時,抗氧化劑典型地出現以一量少於重量百分之 0.5 ’較佳地少於重量百分之0·2,基於該組成的總重量。 ' ' ν· ' ^ - * ;.. .... "ν r a 33 200406456 玖、發明說明 該發明的組成可有用地使用於熱熔黏著及對壓力感應 的黏分組成。以此觀點’該發明的組成可與適當量的一咬 更多的結合劑。一或更多的臘,及/或一或更多的塑化劑混 — 合。 · 5 當用於此,此解“結合劑”意指任何許多碳氫化合物為 · 主的組成有用於傳予結合至該熱熔黏著組成。例如,許多 種的結合劑包含脂肪族A樹脂、聚萜烯樹脂、氫化樹脂, 混合的脂肪族一芳香族樹脂、松脂酯、及氫化的松脂酯。 · 使用的結合劑典型上會有一黏度350°F(177°C),當測量以 10 Brook field黏度計,不大於300厘泊(300g/cm.sec),較佳地 不多於150厘泊(150g/cm.sec),且最佳地不多於5〇厘泊 (50g/crrrsec)。使用之結合劑典型上有一玻璃轉化溫度大於 50〇C。 基本的脂肪族樹脂包含那些可得以商標標示Escorez 15 TM、Piccotac™、Mercures™、Wingtack™、Hi-Rez™、 ·32 200406456 发明, description of the invention Except that the reaction temperature is higher, for example, 21 to 30. 〇, and a free radical initiator is not used or used at a reduced concentration. Another and preferred method of joining is taught in USP 4,95,541, using a devolatized broadcast of a pair of screws as a mixing device. The ethylene polymer and the unsaturated organic compound are mixed and reacted in the extrudate at a temperature at which the reactant melts and a radical starter appears. Preferably, the unsaturated organic compound is injected into a region maintained under pressure in the extrudate. A linear ethylene polymer is bonded with, for example, cis-butadiene anhydride, as shown in US 5,346,963. Incorporated here for reference. In the preparation of this polymorphic polymer composition, it was acknowledged that the presence of free radical initiators would lead to limited cross-linking of additional scaffolding polymers, directly to another or via dependent branches. If the degree of attachment is not sufficient to render the polymer composition unmanageable in a thermoplastic assembly or extrusion process, it is within the scope of this invention. Preferably, the polymorphic polymer composition will have less than 30 percent gel, more preferably less than 10 percent gel, and more preferably less than 5 percent gel. And optimally less than 2 percent gel. Optimally, the polymorphic polymer composition will be substantially gel-free. The polymorphic polymers of the invention do not necessarily contain antioxidants, fillers, extenders, UV stabilizers, lubricants and antiblocking agents, pigments, dyes, or blowing agents, based on those familiar with polymer formation Technician operation. When used, antioxidants typically appear in an amount of less than 0.5% by weight, preferably less than 0.2% by weight, based on the total weight of the composition. '' ν · '^-*; .. .... " ν r a 33 200406456 玖, description of the invention The composition of the invention can be usefully used for hot melt adhesion and pressure-sensitive adhesive composition. From this point of view, the composition of the present invention can be combined with an appropriate amount of more binder. Mix one or more waxes and / or one or more plasticizers. · 5 When used herein, this solution "binding agent" means that any of the many hydrocarbons is · The main composition is used to impart binding to the hot melt adhesive composition. For example, many types of binders include aliphatic A resins, polyterpene resins, hydrogenated resins, mixed aliphatic-aromatic resins, turpentyl esters, and hydrogenated turpentyl esters. · The binder used will typically have a viscosity of 350 ° F (177 ° C). When measured in terms of 10 Brook field viscosity, it is not greater than 300 centipoise (300g / cm.sec), preferably not more than 150 centipoise. (150 g / cm.sec), and preferably not more than 50 centipoise (50 g / crrrsec). The binder used typically has a glass transition temperature greater than 50 ° C. Basic aliphatic resins include those that are trademarked as Escorez 15 TM, Piccotac ™, Mercures ™, Wingtack ™, Hi-Rez ™, ·

Quintone™、Tackirol™等。基本的聚萜稀樹脂包含那些可 得到以商標標示 Nivez™、Riccolyte™、Wingtack™、Zonarez 頂等。基本的氫化樹脂包含那些可得到以商標標示Escorez TM、Arkon™、Clearom™等。基本的混合之脂肪族一芳香 20 族樹脂包含那些可得以商標標示Escorez™、Regalite™、Quintone ™, Tackirol ™ and more. Basic polyterpene resins include those available under the trademark Nivez ™, Riccolyte ™, Wingtack ™, Zonarez®, and others. Basic hydrogenated resins include those available under the trademark Escorez ™, Arkon ™, Clearom ™, and the like. Basic blended aliphatic-aromatic Group 20 resins include those that can be trademarked Escorez ™, Regalite ™,

Hercures™、AR™、Imprez™、NorsoleneTMM、Marukarez ™、Arkon™M、Quintone™等。其他結合劑可使用,若它 們與該均質線性或實質線性乙烯,α -烯烴間聚物及非一定 34 200406456 玖、發明說明 要的臘可互適。 該結合劑典型上會出現於該發明的熱熔黏著劑以一量 少於重量百分之70,較佳地少於重量百分之5〇。該結合劑 典型上出現於該發明的熱溶黏著劑以一量至少重量百分之 · 5 5,較佳地至少重量百分之10。 此字“蠟”係用於指石蠟或結晶乙烯單質聚合物或間聚 物或物質乙烯聚合物,其有一平均分子量少於6000。溶在 此項的基本聚合物包含乙烯單質聚合物可得自Petrolite, #Hercures ™, AR ™, Imprez ™, NorsoleneTMM, Marukarez ™, Arkon ™ M, Quintone ™ and more. Other binding agents can be used, and if they are compatible with the homogeneous linear or substantially linear ethylene, α-olefin interpolymer and non-certain 34 200406456, the wax of the invention description. The bonding agent typically appears in the hot melt adhesive of the present invention in an amount of less than 70% by weight, preferably less than 50% by weight. The bonding agent typically appears in the hot melt adhesive of the present invention in an amount of at least 55% by weight, preferably at least 10% by weight. The term "wax" is used to refer to a paraffin or crystalline ethylene simple polymer or interpolymer or material ethylene polymer, which has an average molecular weight of less than 6000. The basic polymer dissolved in this item contains an ethylene simple polymer available from Petrolite, #

Inc,(Tulsa,OK)以 Polywax™ 500、Polywax™ 1500 及 10 PolywaxTM2000 ;及石蠟可得自CP Hall以產品標示1230、 1236 、 1240 、 1245 、 1246 、 1255 、 1260及1262 〇Inc. (Tulsa, OK) with Polywax ™ 500, Polywax ™ 1500, and 10 PolywaxTM 2000; and paraffin are available from CP Hall under product designations 1230, 1236, 1240, 1245, 1246, 1255, 1260, and 1262.

PolywaxTM2000有一分子量約 2000,一 Mw/Mn約 1.0, 一密度於16°C約〇.97g/cm3,及一熔點約126°C。 CP Halll246 石蠟可得自 CP Hall(Stow,OH)。CP Hall 15 1246 石蠟有一熔點 143°F(62°C),一黏度於210°F(99t)為 · 4.2厘泊(4.2g/cm.sec),及一特定之重力於73°F(23°C )為 0.915。 較佳的蠟係使用一有幾何限制自催化劑來製備。該聚 合物可為乙烯單質聚合物或乙烯及一共聚單體的間聚物如 20 之前所設的相對於聚合物一,例如,C3-C2() α-烯烴,苯乙 烯,烷基取代的苯乙烯,四氟乙烯,乙烯基苯環丁烯,非 共軛二烯,及環烷酸。該聚合物,相對於傳統的蠟,會有 一““乂11從1.5至2.5。較佳地從1.8至2.2。該聚合物揭示及 * •‘ · ... ..... ........ 35 200406456 玖、發明說明 申請於U.S Potent Application Serial No. 784,683樓案於 1997年 1 月 22 日(WO 97/01181)。 該蠟有一平均分子量較少於6000,較佳地少於5000。 該蠟典型上會有一平均分子量數係至少800,較佳地至少 5 1300 。 該有用於該發明之熱熔黏合劑之蠟,當其係一乙烯單 質聚合物(一傳統乙烯單質聚合物蠟戊或一製備自一有幾 何限製之催化劑的乙烯單質聚合物)或乙烯及一選從由 C3-C2G α-烯烴,非共軛二烯,及環烷酸所組成之組的共聚 10 單體的一間聚物,將有一密度至少0.910g/cm3。該第二聚合 物有一密度不多於0.970g/cm3,較佳地不多於0.965g/cm3。 該發明的多晶型聚合物組成物有用地使用於對壓感應 之黏著劑組成,在其較高結晶度的分支聚合物係為改善該 黏著劑的封合時間。當該黏著劑冷卻,分支聚合物結晶化 15 而該聚合物主鏈保持柔軟且/或自流動的。此賦予該黏著劑 力量在設定過程期間且降低了開啟/封合時間。 該熱熔黏合劑(特別是對壓感應的黏合劑可更包含一 油或其他塑化劑,如一無定型聚嫦烴。油係典型地用於降 低該熱熔黏合劑的黏度。當使用時,油會出現以一量少於 20 百分之25,較佳地少於百分之15,且最佳地少於重量百分 之10,基於該熱熔黏合劑的重量。油之基本種類包含白礦 物油(如Kaydol™(可得自Witco),及Shellflex™ 371環烷酸 油(可得自Shell Oil Company)。至油降低該熱溶黏合劑的黏 36 200406456 玖、發明說明 合特性至對期待之使用有害之程度的範圍,它們不應被使 用。 該發明的熱熔黏合劑可製備以標準熔化混合法。特定 來說,多晶型聚合物組成物,任選擇的結合劑,任選擇的 5蠟,及任選擇的塑化劑,可熔化混合一升溫(自15〇至20(rc )在一惰性氣體環境下至得到一均質的混合。製造一均質混 合而不破壞該熱熔成分的任何混合方法係可行的,如經由 使用一加熱官裝置一攪拌子。此外,該多晶型聚合物組成 物,任選擇的壤,任選擇的結合劑,及任選擇的塑化劑可 1〇 提供該受質之應用以一播出塗佈者。 適當的對應感應黏合劑會顯示至少2〇〇克的探針結合 ,更佳地至少300克,且最佳地至少3〇〇克。適宜的對壓感 應黏合劑會更顯示一抗熱性其至少1(rc,較佳地至少irc ,且更佳地至少20°C大於在其中該分支聚合物及主鏈聚合 15物係用作一混合而非以該發明的多晶型聚合物組成物的模 式之對壓敏感黏合劑的。 適宜的黏合劑會為夠低的黏度以使在所要的受質上靈 巧的使用為可行的。典型上,熱熔黏合劑會有一熔化黏度 於350°F(177°C)係由於50,000厘泊(50,000g/cm · sec),以較 20 低的黏度係典型上更偏好的。 該發明的多晶型聚合物組成物的使用(特別是那些其 中至少一主鏈聚合物或分支聚合物係以一極性分子部分作 官能基)會更包含,但不限於,墊圈如那些在汽車窗戶的,PolywaxTM 2000 has a molecular weight of about 2000, a Mw / Mn of about 1.0, a density of about 0.97 g / cm3 at 16 ° C, and a melting point of about 126 ° C. CP Halll246 paraffin is available from CP Hall (Stow, OH). CP Hall 15 1246 paraffin has a melting point of 143 ° F (62 ° C), a viscosity at 210 ° F (99t) of 4.2 centipoise (4.2g / cm.sec), and a specific gravity at 73 ° F (23 ° C) was 0.915. The preferred waxes are prepared using a geometrically restricted self-catalyst. The polymer may be a simple substance of ethylene or an interpolymer of ethylene and a comonomer, such as C-C2 () α-olefin, styrene, alkyl-substituted Styrene, tetrafluoroethylene, vinylbenzenecyclobutene, non-conjugated diene, and naphthenic acid. The polymer, compared to traditional waxes, will have a "" 相对 11 from 1.5 to 2.5. Preferably from 1.8 to 2.2. The polymer was disclosed and * • '· ... ..... .. 35 200406456 玖, the invention description application was filed in US Potent Application Serial No. 784,683 on January 22, 1997 ( WO 97/01181). The wax has an average molecular weight of less than 6000, preferably less than 5000. The wax will typically have an average molecular weight of at least 800, and preferably at least 5 1300. The wax having the hot-melt adhesive used in the invention, when it is an ethylene simple polymer (a traditional ethylene simple polymer wax or an ethylene simple polymer prepared from a geometrically restricted catalyst) or ethylene and a An interpolymer selected from a group of 10 monomers consisting of C3-C2G α-olefin, non-conjugated diene, and naphthenic acid will have a density of at least 0.910 g / cm3. The second polymer has a density of not more than 0.970 g / cm3, preferably not more than 0.965 g / cm3. The polymorphic polymer composition of the present invention is usefully used for pressure-sensitive adhesive composition, and the branched polymer at its higher crystallinity is to improve the sealing time of the adhesive. As the adhesive cools, the branched polymer crystallizes 15 while the polymer backbone remains soft and / or self-flowing. This gives the adhesive strength during the setting process and reduces the opening / sealing time. The hot-melt adhesive (especially the pressure-sensitive adhesive may further include an oil or other plasticizer, such as an amorphous polyalkylene hydrocarbon. The oil is typically used to reduce the viscosity of the hot-melt adhesive. When used Oil will appear in an amount of less than 20 percent, preferably less than 15 percent, and most preferably less than 10 percent by weight, based on the weight of the hot melt adhesive. Basic types of oil Contains white mineral oils such as Kaydol ™ (available from Witco), and Shellflex ™ 371 naphthenic oil (available from Shell Oil Company). Oil reduces the viscosity of the hot melt adhesive 36 200406456 They should not be used to the extent that they are detrimental to the intended use. The hot-melt adhesives of this invention can be prepared by standard melt-blending methods. In particular, polymorphic polymer compositions, optional binders, The optional 5 wax, and optional plasticizer, can be melt mixed and heated (from 15 to 20 (rc) under an inert gas environment to obtain a homogeneous mixture. Make a homogeneous mixture without destroying the heat Any method of mixing the melt components is possible, Through the use of a heating device and a stirrer, in addition, the polymorphic polymer composition, any soil, any binder, and any plasticizer can provide the application of the substrate to one. The applicator is broadcast. A suitable corresponding inductive adhesive will show a probe binding of at least 200 grams, more preferably at least 300 grams, and most preferably at least 300 grams. A suitable pressure sensitive adhesive will be more Shows a heat resistance which is at least 1 (rc, preferably at least irc, and more preferably at least 20 ° C greater than 15 systems in which the branched polymer and main chain polymer are used as a mixture instead of the polycrystal of the invention The type of polymer composition is for pressure-sensitive adhesives. Suitable adhesives will have a viscosity low enough to allow smart use in the desired texture. Typically, hot-melt adhesives will melt. Viscosity at 350 ° F (177 ° C) is typically preferred because viscosity is lower than 20 due to 50,000 centipoise (50,000g / cm · sec). Use of the polymorphic polymer composition of the present invention ( Especially those in which at least one main chain polymer or branched polymer is The polar molecular part is used as a functional group) will further include, but not limited to, gaskets such as those in automotive windows,

37 200406456 玖、發明說明 密封的’黏合劑,彈性鑄型物品如鞋底,電線及電纜的絕 緣及包封’蓋屋頂之膜,地板覆蓋物,橡皮水管,長靴, 汽車的部分’及其他知於工業界需要有黏合至彈性受質之 彈性物質的部分。 5 【實施冷式】 下列實例,其提出了該發明之代表性的多晶型聚合物 組成物,係提出供示範的目的,而不限於此。 m.備該纟毛成之聚合物的實例 聚合物A1-依教示於U.S. 5,278,236製備的實質線性乙 10 烯辛烯共聚物,其有測量得之12 0.94 g/10min、及密度0.869 g/cm3。 聚合物A2--依U.S· 5,278,236所教示製備之一實質線性 乙烯辛烯共聚物,其有測量得之I2 3.86 g/i〇min、及密度 0.867 g/cm3 〇 15 聚合物A3—依U.S· 5,278,236所教示製備之一實質線性 乙烯辛烯共聚物,其有測量得之I2 23.79 g/10min、及密度 0.867 g/cm3 〇 聚合物A4—依U.S. 5,278,236教示製備之一實質線性乙 烯/辛細共聚物’其有一 I2 30 g/10min、及密度〇 wo g /cm3 20 〇 聚合物Α5--依U.S· 5,278,236教示製備之一實質線性乙 稀/辛稀共聚物’其有一密度0.870g/cm3及—igg/i〇min。 聚合物A5 —依U.S· 5,278,236教示製備之一實質線性乙 38 200406456 玖、發明說明 烯/辛烯共聚物,其有一密度0.870g/cm3及一I2 18g/10min。 聚合物A6—依U.S· 5,278,236教示製備之一實質線性乙 烯/辛烯共聚物,其有測量得之I2 lg/10min、及密度 0.855g/cm3 〇 5 聚合物A7—依U.S. 5,278,236教示製備之一實質線性乙 稀/1-辛稀共聚物,其有一密度〇.855g/cm3及一炼化指數 30g/10min。 聚合物 A8--依 U.S. Patent Application serial No. 784,683, filed Jamary 22,1997 (WO 97/01181)教示製備之 10 —極低分子量乙烯/1-辛烯共聚物,有一密度〇.855g/cm3及 一熔化黏度於350°F(177°C)為 350厘泊(350g/cm · sec)。 聚合物A9—係依U.S. 5,278,236之教示製備之一實質線 性乙烯/1-辛烯共聚物,其有一密度〇.855g/cm3及一熔化指 數0.5g/10min 〇 15 聚合物A10—係依U.S. 5,278,236教示製備之一實質線 性乙烯/1-辛烯,其有一密度0.870g/cm3及一熔化指數 30g/10min 〇 聚合物 Bl—HDPE 55500--由 Phillips Petroleum 提供之 一乙烯/丁烯共聚物,其有測量得之I2 49g/100min及密度 20 0.955g/cm3。 聚合物B2--Marlex—50-100高密度聚乙烯有一密度 0.952g/cm3及一密度0.08g/10 min,可得自 Phillips。 ?么合物B3—Dowlex™ 25355高密度聚乙烯有一密度 39 200406456 玖、發明說明 0.955g/cm3 及一 I2 25g/10min。 聚合物B4—Dowlex™ 25455高密度聚乙烯有一密度 0.955g/cm3及一 I2 25g/10min。 聚合物B5 —依U.S. 5,278,236之教示製備之一實質線性 5 乙烯/1-辛烯共聚物,其有一密度0.902g/cm3及一熔化指數 30g/10min 〇 聚合物B6—依U.S. 5,278,236之教示製備之一實質線性 乙烯/1-辛烯共聚物,其有一密度0.913g/cm3及一熔化指數 30g/10min 〇 10 聚合物B7--Attane™ 6152極低密度聚乙烯,一異質線 性乙烯/1-辛烯共聚物有一密度0.904g/cm3及一熔化指數 0.5g/10min 〇 聚合物 B8—依 U.S. Patent Application Serial No. 784,683, filed January 22, 1997 (WO 87/01181)教示製備的 15 極低分子量乙婦/1-辛稀共聚物有一密度0.9 55 g/cm3及一炫 化黏度於 350°F(177°C)為 500 厘泊(5000g/cm · sec)。 聚合物B9—Dow高密度聚乙烯HDPE 12165,有一密度 0.955@/〇113及一熔化指數1.〇8/(:1]13。 聚合物BlO—Dow高密度聚乙烯HDPE 25355,具一密度 20 〇.955&/〇113及一溶化指數1(^/1〇11^11。 聚合物C :低WO 94/17112方法製備之一反應器内的聚 合物混合物,其具作其標的組成:68.5wt%的一實質線性乙 烯/辛烯共聚物具有一密度〇.861g/cm3及一 I2 0.29g/10min及 40 200406456 玖、發明說明 3 1.5wt%的一高密度聚乙嫦具一密度0.946 g/cm3及一 I2 370g/10 min 〇 聚合物D——順丁烯二酸酐接合的高密度聚乙烯具一 密度0.953g/cm3,一溶化指數9g/10min,及重量百分比1·2 5 之順丁烯二酸酐製備自有密度0.953g/cm3之高密度聚乙烯 及順丁烯二酸酐的反應性擠出。37 200406456 发明, Description of the invention Sealed 'Adhesive, Insulation and Encapsulation of Elastic Molded Articles such as Shoe Sole, Wires and Cables' Roofing Film, Floor Coverings, Rubber Water Pipes, Boots, Car Parts' and Other The industry needs a portion of an elastic substance that adheres to an elastic substrate. 5 [Implementation of the cold type] The following examples, which present a representative polymorphic polymer composition of the invention, are proposed for demonstration purposes, and are not limited thereto. m. An example of a polymer made from the bristles Polymer A1- A substantially linear ethylene 10-octene copolymer prepared according to the teachings of US 5,278,236, which has a measured 12 0.94 g / 10min and a density of 0.869 g / cm3 . Polymer A2-—A substantially linear ethylene octene copolymer prepared according to the teachings of US · 5,278,236, which has a measured I2 of 3.86 g / iomin and a density of 0.867 g / cm3 〇15 Polymer A3—according to US · 5,278,236 teaches a substantially linear ethylene octene copolymer prepared with a measured I2 of 23.79 g / 10min and a density of 0.867 g / cm3. Polymer A4-a substantially linear ethylene / octane copolymer prepared according to the teachings of US 5,278,236 The object 'It has a I2 30 g / 10min, and a density of 0 gw / cm3 20 〇 Polymer A5-- a substantially linear ethylene / octane copolymer prepared according to the teaching of US 5,278,236' It has a density of 0.870 g / cm3 and —Igg / iomin. Polymer A5—A substantially linear ethylene prepared according to U.S. 5,278,236 teaching 38 200406456 玖, description of the invention ene / octene copolymer, which has a density of 0.870g / cm3 and an I2 18g / 10min. Polymer A6—A substantially linear ethylene / octene copolymer prepared according to the teachings of US 5,278,236, which has a measured I2 lg / 10min and a density of 0.855 g / cm3. A5—A polymer prepared according to the teachings of US 5,278,236 A substantially linear ethylene / 1-octane copolymer having a density of 0.855 g / cm3 and a refining index of 30 g / 10 min. Polymer A8—10—very low molecular weight ethylene / 1-octene copolymer prepared according to the teachings of US Patent Application Serial No. 784,683, filed Jamary 22, 1997 (WO 97/01181), with a density of 0.855 g / cm3 and A melt viscosity of 350 centipoise (350 g / cm · sec) at 350 ° F (177 ° C). Polymer A9—A substantially linear ethylene / 1-octene copolymer prepared according to the teachings of US 5,278,236, which has a density of 0.855 g / cm3 and a melt index of 0.5 g / 10 min. 0.15 Polymer A10—is according to US 5,278,236 Teaching to prepare a substantially linear ethylene / 1-octene, which has a density of 0.870 g / cm3 and a melting index of 30 g / 10 min. Polymer Bl—HDPE 55500—an ethylene / butene copolymer provided by Phillips Petroleum, which There are measured I2 49g / 100min and density 20 0.955g / cm3. Polymer B2--Marlex-50-100 high density polyethylene has a density of 0.952 g / cm3 and a density of 0.08 g / 10 min, and is available from Phillips. • Blend B3—Dowlex ™ 25355 high density polyethylene has a density of 39 200406456 玖, invention description 0.955g / cm3 and an I2 25g / 10min. Polymer B4—Dowlex ™ 25455 high density polyethylene has a density of 0.955g / cm3 and an I2 of 25g / 10min. Polymer B5—A substantially linear 5 ethylene / 1-octene copolymer prepared according to the teachings of US 5,278,236, which has a density of 0.902 g / cm3 and a melting index of 30 g / 10 min. Polymer B6—prepared according to the teachings of US 5,278,236 A substantially linear ethylene / 1-octene copolymer having a density of 0.913g / cm3 and a melting index of 30g / 10min. 〇10 Polymer B7--Attane ™ 6152 very low density polyethylene, a heterogeneous linear ethylene / 1-octene Ethylene copolymer has a density of 0.904 g / cm3 and a melt index of 0.5 g / 10 min. Polymer B8—15 extremely low molecular weight ethyl ester prepared according to the teachings of US Patent Application Serial No. 784,683, filed January 22, 1997 (WO 87/01181). The F / 1 copolymer has a density of 0.9 55 g / cm3 and a viscosity of 350 centipoise (5000 g / cm · sec) at 350 ° F (177 ° C). Polymer B9—Dow HDPE 12165 has a density of 0.955@/〇113 and a melt index of 1.08 / (: 1] 13. Polymer B10—Dow HDPE 25355 has a density of 20 〇.955 & / 〇113 and a dissolution index 1 (^ / 1〇11 ^ 11. Polymer C: a polymer mixture prepared in a reactor prepared by the low WO 94/17112 method, which has its target composition: 68.5 A wt% of a substantially linear ethylene / octene copolymer has a density of 0.861 g / cm3 and an I2 of 0.29 g / 10min and 40 200406456 玖, invention description 3 1.5 wt% of a high-density polyethylene having a density of 0.946 g / cm3 and I2 370g / 10 min 〇 Polymer D—— maleic anhydride-linked high-density polyethylene has a density of 0.953g / cm3, a melting index of 9g / 10min, and a weight percentage of 1.2 · 5 Butadiene anhydride is prepared from reactive extrusion of high density polyethylene and maleic anhydride with a density of 0.953 g / cm3.

Lupersol 500R(99°/〇純二累積烯基過氧化物,可得自Elf Atochem)°Lupersol-130(90-95% 的 2,5-二甲基-2,5-二(t-丁基 過氧基)己炔-3,可得自 Elf Atochem)。Lupersol-101 2,5-二 10 甲基_2,5_二(t-丁基過氧基)己烷(可得自EH Atochem)。 用於評估實例及比較實例之組成的測試方法 在負載下之使用溫度(ULST)係使用一熱機械性分析儀 (TMA) 〇穿透相對於溫度被測量。在探針穿透imm的溫度 用作在負載下之使用溫度。一加熱率/min及一負載102g 15 被使用。 一Rheometrics Solid Analyzer Model RSAII 被用於決 定相對於溫度的變化率。樣品壓縮鑄型至約〇.25mm厚之薄 片以維持於1500psi(10.3 Mpa)及350°F(177°C)5分鐘,接著 冷卻以27°?/11^11(-2.8。(:/〇1丨11)至90卞(32。(:)。樣品維持在90 2〇 F (32 C ) 1分鐘並接者自該壓縮移去。一條件1 〇rad/sec頻率 於扭曲矩形測試,開始以-145°C並增加至120°C或150°C或 270°C以5°C每步之大小以一 30秒之滲入時間對每一步驟, 在氮大氣壓下。 • ^ - ·. . . · . »· - - . ...· . . ·. 41 200406456 玖、發明說明 凝膠成分決定以依ASTM 2785,方法A之二甲苯萃取。 壓力及拉力於23°C及70°C係測量依ASTM D-1708。在 括弧之值係在70°C之壓力及拉力。 支柱A硬度係測量依ASTM D2240。 ‘ 5 終極張力係測量以使用微張力棒依ASTM-1708。 、 炼化黏度決定以依以下之方法使用一 Brookfield Laboratories DV Π + Viscometer於可丟棄之鋁樣品槽。使用 之軸係一 SC-31熱熔軸,適於測量黏度在範圍從10至 鲁 100,000厘泊(10至100,0008/〇11*36(:)。一切片刀被使用以將 10 樣品切成足夠小片以置入該1英对(2.5cm)寬,5英对(12.5公 分)長之樣品槽。樣品被置入槽内,其接著插入一Brookfield Thermosel並鎖入有彎曲來回之探針的所在。該樣品槽有一 凹口在底品其符合Brookfield Thermosel底部以確保該槽無 法旋轉在軸被插入並旋轉時。該樣品加熱至350°F(177°C) 15 ,而另一樣品至該熔化樣品係約1英吋(2.5cm)於樣品槽頂部 φ 之下時被加入。該黏度計裝置係較低的且軸沈入該樣品槽 。降低被持續至在黏度計的小籃和Thermosel成一直線。黏 度計被打開,並段至一切碎率其使一扭力讀在範圍百分之 30至60。讀取之取出為每分鐘至15分鐘,或至值穩定時, 20 其最終值被記錄。 實例1-3 :決定反應於該發明之多晶墊聚合物組成物之分支 聚合物的量 一Haake Rheocord System 40扭力流力計有一Rheomix 42 200406456 玖、發明說明 600混合器及滾筒型混合葉片被用於製備這些實例的組成 。混合物係製備以混合成分於75轉每分鐘在145°C。聚合物 A2,A3,及B之組成被設於上。Lupersol 500(百分之99純 累積稀基過氧化物,可得自Elf Atochem)被加入以指定量 5 且所成的混合物被混合約1分鐘於145°C,溫度上升至175 °C,且樣品混合共15分鐘。樣品置於一冷卻壓縮鑄型平台 而仍熱時並壓縮至一薄片以供乙烯基含量的FTIR分析。 該發明代表性之組成的FTIR分析係設定於表一。 表一實例1-3的乙烯基分析 10 實例 描述 在過氧化物前之 Vinyls/1000C 在過氧化物後 之Vinyl/lOOOC 反應之乙 烯基0/〇 1 40.2g 50/50之聚合物A3 及聚合物B1之混合+ 0.20g Lupersol 500R 0.448 0.167 63 2 40.2g 50/50聚合物A2及 聚合物B1之混合+ 0.20g Lupersol 500R 0.735 0.206 72 3 40.2g 50/50之聚合物A3 及聚合物B1之混合+ 0.50g Lupersol 500R 0.636 0.069 89 在乙埽基終族滬縮的還原可彳見作“ T”連結形成之程度 43 200406456 玖、發明說明 的指標。因可自聚合物A2及A3萃取出的氫可設為可自聚合 物B1萃取出之氫約相等的機率,因大部分的乙烯基族係在 該較低分子量聚合物B1較在該較高分子量聚合物A2及A3( 設一 50 : 50之聚合物成分的混合被使用),其可設約50%形 5 成之” T”連結歸因於聚合物B1至聚合物A2及A3的接合。在 乙烯基濃縮的強還原示於表一更證明了’’T”連結的形成。高 結晶度聚合物Β1在主鏈的附支係支持以在溫度抗性上的巨 大改變如描述於以下的實例。 實例及比較實例4-18 :由該發明之多晶型聚合物展示的在 10 抗溫性的改良 一Haake Rheocord System 40扭力流力計有一Rheomix 3000E混合器及滾筒式混合葉片被使用。樣品係裝備以熔化 混合聚合物B1及可使用的聚合物A卜A2,及A3樹脂共同於 60至70轉每分鐘且約145°C約4分鐘。Lupersol 500R(百分之 15 99純二累積烯基過氧化物,可得自Elf Atochem)加入以指 示量。混合器速度升至約160轉與分鐘以在過氧化物快速地 混合,以造成一黏滯加熱效應,其,在1-2分鐘的過程,升 高該混合物之溫度至約190°C,造成過氧化物的分解。混合 器速度降至60轉每分鐘以一另一分鐘。混合之後,混合器 20 停止且樣品移去並使冷卻。該聚合物厚塊接著使其成粒狀 44 200406456 &瘦 a他 苌基 uil>l .13 rir> 1720/1177(11.86/8.115) 2839/1966(19.57/13.56) 2904/2585(20.02/17.82) 2614/3020(18.02/20.82) 1628/1635(11.23/11.27) 1875/2307(12.93/15.91) 2335/2845(16.10/19.62) 2662/3036(18.35/20.93) 1164/1238(8.025/8.536) 910/1099(6.28/7.577) 953/1312(6.57/9.046) 936/1680(6.453/11.58) 1790/2700(12.34/18.62) 2306/2923(15.90/20.15) 2253/3367(15.53/23.22) 延伸百分比 無過氧化物 /有過氧化 物 946/972 892/427 790/423 812/437 1317/1048 1218/756 1089/621 50/482 1341/1285 1496/1253 1385/961 790/895 715/865 761/656 17/67 最大溫度*(。〇 -無過氧化物/ 有過氧化物 65/65 125/135 90^150 130^150 55/65 110^120 80/110 95/127 50/55 105/115 85/115 70/130 75/127 115/128 130Μ20 1裏 ^ 2 ^ ^ 參 “ ¥ ^4 蟑6碳暫 6.33/0 16.24/0 44.52/0 118.06/0 33.08/0.58 61.44/0.23 113.13/0 196.61/0 145.44/11.1 140.68/9.07 167.84/3.39 203.17/1.33 232.37/0.28 276.52/0.1 350.25/0.04 樣品密度(g/cm3) -無過氧化物/有 過氧化物 0.8714/0.8716 0.8931/0.8887 0.9132/0.9060 0.9329/0.9239 0.8697/0.8698 0.8898/0.8882 0.9109/0.9058 0.9328/0.9240 0.8683/0.8687 0.8739/0.8738 0.8818/0.8812 0.8890/0.8877 0.9103/0.9066 0.9317/0.9249 0.9547/0.9410 聚合物 B1 〇 tn <N in 〇 CN jn 〇 (Ν in ο τ—Η 聚合物 A3 〇 Ο 〇 〇 〇 Ο 〇 〇 〇 Os 00 un CS Ο 聚合物 A2 〇 Ο 〇 〇 〇 r—Η in (N 〇 Ο ο Ο 〇 ο Ο 聚合物 A1 〇 r—< κη (Ν Ο Ο 〇 〇 〇 Ο ο ο 〇 ο ο 比較實例4a/比較實例4b 比較實例5/實例5 比較實例6/實例6 比較實例7/實例7 比較實例8a/比較實例8b 比較實例9/實例9 比較實例10/實例10 比較實例11/實例11 比較實例12a/比較實例12b 比較實例13/實例13 比較實例14/實例14 比較實例15/實例15 比較實例16/實例16 比較實例17/實例17 比較實例18a/比較實例18b 200406456 玖、發明說明 表二展示了比較實例15的混合,即,不受過氧化物處 理的混合,失效於約70°C。歸因於聚合物A3結晶的熔化, 該混合設有足夠力量以保持其在R S A測試的完整性而此樣 品樣本破壞。相對地,實例15的多品型聚合物組成物,即 5 有受過氧化物處理的組成,保持具完整性至130°C,其約為 聚合物B1的熔點。 表二總合了對一系列此比較性混合組成(製備而無過 氧化物處理)及一系列該發明之多晶型聚合物組成物(製備 以過氧化物處理)的結果。表二顯示該發明的多晶型組成具 10 明顯地抗溫性改良較該比較性的混合。此外,表二顯示該 純聚合物A1,A2,及A3,其係處理以過氧化物,附加地失 效於相對低地溫度。因此,對該發明的多晶型聚合物組成 物之在抗溫性的實質上之改良不能歸因於一交鏈網路的形 成,而應歸因於該高熔點聚合物B1分支附加至形成以聚合 15 物Al,A2,及A3之主鏈。 實例19-23 :過氧化物對多晶型聚合物組成物之物理性質的 影響 比較實例及實例19-23的多晶型聚合物組成物係製備 依之前設於實例1-4的方法。該多晶型聚合物組成物及比較 20 性混合物之組成,及所成的性質係設於以下的表三。 46 200406456 lw 實例25 〇 〇 100 in o 120 ND ND OO 比較例24 〇 〇 100 o ND ND OO 實例23 S o d S 1800/260/200 (12.4/1.79/1.38) 1000/330/215 们 OO 實例… 〇 o 0.5 130 1900/700/470 (13.1/4.83/3.24) 290/120/120 5: 實例21 (N o in O 120 4300/560/250 (29.6/3.86/1.72) 480/150/130 S 實例20 CN o m d 100 1800/220/180 (12.4/1.52/1.24) 1200/360/330 VO OO |比較實例 (N o O 0.5 730/60 (5.03/0.41) 1400/20 00 實例 組成 聚合物A3(wt%) 聚合物B2(wt%) 聚合物(wt%) Lupersol 500R(wt%) 性質 ULST(°C ) 凝膠(%) 壓力(psi(MPa)) 拉力(%)23/70/100°C si λ << 〇m iS ® 1¾ 200406456 玖、發明說明 貫例i9-2m读。相對於實例19_21,當過氧化物之量增加,該在負 載下的使用/jnL度同樣增力口,以27 C於實例20的例子中,及47°c於實例21的 例子中。該不於表3的結果顯示實例2〇及21之該發明的多晶型聚合物組成物 有一#父比較貫例19之相對的比較性混合遠較高的抗熱性。此係設於第3圖, 此顯示貫例20及21的多晶型聚合物組成物忍受一溫度在支撐物a硬度降低 至45較比較性實例至19之前。此更見於第4圖,其顯示實例2〇及21的多晶型 聚合物組成物遭至lmm之探針穿透於較高之溫度較比較實例19。 表3更指出該多晶型聚合物組成物有張力性質於升溫下超越比較實 例19之比較性混合物的。例如,比較實例19之混合失去大部分之其張力於 7〇°C。相對地,實例20及21的多晶型聚合物組成物各自地展示張力在1〇〇 °C 為25(^丨(1.72MPa)及 180psi(124MPa) 〇 此外,實例20及21的多晶型聚合物組成物之凝膠合量係少於之前作 品之部分之鏈混合,例如,U.S. 3,806,558,其揭示一凝膠含量大於百分之 30。驚言牙地是該多晶型聚合物組成物展示了在高溫性質如此大的改良而無 大量降低彈性及柔軟性,且無明顯量的一交鏈網路結構的形成。 f例21-23的討論〇相對於實例21-23,該在負載下的使用溫度增加當 該高結晶度分支形成之聚合物的濃度增加時。有趣的是注意當在實例23及 21之間,在高結晶度物質之量的一增加從重量百分比20至25使得在負載下 使用溫度40°C的一增加。 實例24-25的討論。實例24及25示範了高結晶度聚合物及低結晶度聚 ^ 7 Λ 48 200406456 玖、發明說明 合物在反應器中製造的混合物可有益地製造成該發明之多晶型組成。應注 意實例25多晶型聚合物組成物展示一負載下之使用溫度其係大於比較實例 24之非反應之在反應器中之混合物的以40°C。 實例及比較實例19-20及24-25之多晶型聚合物組成物之穿透式電子顯微圖 (ΊΈΜ)分析 該多晶型聚合物組成物及比較性混合物被壓縮鑄型至有空間為1英 忖(2.5cm)内徑及%英吋(〇.16cm)厚的碟中以一鑄型溫度177°C,接著冷卻至 22°C以一速率15°C/分鐘在去禱模前。 該壓縮鑄模樣品的薄長片被嵌於Epofix(Struers環氧基為主的嵌入套 組)於至溫下。在修飾此小塊後’這些在三氯化釘及漂白劑中染色 二小時於室溫下。約1000埃之厚度的超薄切片收集於室溫下使用一 Reichert-Jung Ultracut取致切片集。切片置於弗姆瓦塗佈的銅柵上。切片使 用一 JEOL 2000FX TEM操作於100kV力σ速電壓且放大3〇,〇〇〇倍下觀看。 ΤΕΜ影像的數位分析進行於一LeiCaQuantimet570灰階分析器。灰階 影像對每一影像各自地輸入經一CCD照像以放大增加及零點設定。包含分 散相及各自層合的二分影像創造以灰階界限化。這些二元體型態上打開以 大小一的水平及垂直操作器以自基質移去各自的層合。背景雜訊以一型態 上打開以大小2的-小碟移去。手冊操作接著進行以修正殘餘的錯誤。對使 用之影像轉化之描述,見 “Image Anajysis — Mathematieal ’ Vol.l,by Jean Serra^ Academic Press (1982)。 數位影像分析器測量了在每一分散相及總區域部分自該二分體的8 一…-·..-〜...... 49 200406456 玖、發明說明 個直徑。統計上的直徑係計算自每一分散相的平均直徑。這些統計上的直 4二傳送有關相大小及大小分布之丸度的資訊。體積計量平均直徑強調了大 特徵的出現,而調和的平均直徑強調了小特徵。 比較實例19的ΤΈΜ影像係示於第5圖,以30,000倍放大。顯微圖顯示 一二相形態包含分散的較高密度聚乙烯部分在可歸於聚合物^之彈性物 相的連續基質中。可歸於聚合物B2之較高密度聚乙烯成分的部分特出以它 們的層合型態皆在且發散出入該基質。歸因於聚合物A3的較低密度聚乙婦 成份的彈性物相顯示了特徵的粒狀型態之邊飾的微粒結晶。相對地,實例 20之多晶型聚合物組成物之TEM景Μ象係示於第6圖,以30,000倍放大。當顯 微圖示出一二相型態,可歸於聚合物Β2之分散的較高密度聚乙烯相的平均 領域大小明顯地降至低於第5圖的。在彈性物相層合的良好分散係與信念吻 合,其聚合物Β2之較高密度聚乙烯成分接合至形成以聚合物八3的彈性物主 鏈。比較實例24及實例25的ΤΈΜ影像,以30,000倍放大,係設於第7及8圖 〇 該分散的高密度聚乙烯相的體積部分係決定以數位影像分析。在比 較混合物及在多晶型聚合物組成物的高密度聚乙烯分散相的體積及大小係 設於以下的表4 〇 50 200406456 玖、發明說明 Μ 口口 着/〇 辦坪均 平均直徑 魄實靖 192 025 052 156 峨實娜 245 0.13 036 1.43 實修 8.1 0.19 026 153 實修 8.0 0.18 020 034 如設定於表5,該發明之實例20的多晶型聚合物組成物展示了超過百 分之50較少的較高結晶度島區(如證明以一明顯較低的體積百分比漱比較 貝例19的未反應混合物。相同地,該發明之實例25的多晶型聚合物組成物 展不了百分之67較少的較高的結晶度島區(如證明以一明顯較低的體積百 分比)較比較實例24之未反應混合物。此表示該發明的多晶型組成實際上包 含彈性物主鏈其係該較高密度聚合物成分所接合的。 比車父貫例19及24之體積百分比的一平均係百分之22·ι。實例2〇及25 之體積百分比之一平均係8。依此基礎,估計總的高密度聚乙烯的百分之64 彈性物管架。 壓力感應黏著劑之多晶型乙烯聚合物 接下來的聚合物係用於製備此實例之多晶型聚合物組成物。 樣品由溶化混合聚合物A6及D製備以指示之量在一有一Rhe^ 3〇〇E 筒式混合葉片之H^ake Rheocord System 40扭力流力器以60至75轉 每分鐘及約145°C約4分鐘。Lupersol™ 1〇1(可得自Elf Atochem)係加入以指 51 200406456 玖、發明說明 示量,且混合器速度升至約160轉每分鐘以快速地混合其且造成一黏度加熱 效應,且在此過程1-2分鐘,升高溫度至約190°C以分解過氧化物。混合器 速度降至60轉每分鐘對另一分鐘。混合之後,混合器停止且樣品移去並使 冷卻。聚合物塊接著使其成粒狀。 所成的多晶型聚合物及一比較性聚合物混合測試作為供膠帶用的一 壓力感應黏著劑的效能。以下的黏著劑組成被使用:lOOphr樹脂,220phrLupersol 500R (99 ° / 〇 pure di-cumulative alkenyl peroxide, available from Elf Atochem) ° Lupersol-130 (90-95% of 2,5-dimethyl-2,5-bis (t-butyl peroxide) (Oxy) hexyne-3, available from Elf Atochem). Lupersol-101 2,5-di 10 methyl-2,5-di (t-butylperoxy) hexane (available from EH Atochem). Test Method for Evaluating the Composition of Examples and Comparative Examples The temperature under load (ULST) is measured using a thermomechanical analyzer (TMA). The penetration is measured with respect to temperature. The temperature at which the probe penetrates imm is used as the operating temperature under load. A heating rate / min and a load of 102 g 15 were used. A Rheometrics Solid Analyzer Model RSAII was used to determine the rate of change with respect to temperature. The sample was compression-molded to a sheet of approximately 0.25 mm thick to be maintained at 1500 psi (10.3 Mpa) and 350 ° F (177 ° C) for 5 minutes, and then cooled to 27 °? / 11 ^ 11 (-2.8. 1 丨 11) to 90 卞 (32. (:). The sample is maintained at 90 2F (32 C) for 1 minute and the receiver is removed from the compression. A condition of 10 rad / sec frequency is tested in the twisted rectangle and starts At -145 ° C and increase to 120 ° C or 150 ° C or 270 ° C at a step size of 5 ° C with an infiltration time of 30 seconds for each step, under nitrogen atmosphere. • ^-·... . · · »---... 41 200406456 玖, description of the invention The gel composition was determined to be extracted by xylene according to ASTM 2785, Method A. The pressure and tension are at 23 ° C and 70 ° C. The measurement is in accordance with ASTM D-1708. The values in parentheses are the pressure and tension at 70 ° C. The hardness of pillar A is measured in accordance with ASTM D2240. '5 The ultimate tension measurement is in accordance with ASTM-1708 using a micro-tension bar. Decided to use a Brookfield Laboratories DV Π + Viscometer in a disposable aluminum sample tank according to the following method. The shaft used was a SC-31 hot melt shaft, suitable for measuring viscosity in the range from 10 to 100,00 0 centipoise (10 to 100,0008 / 〇11 * 36 (:). All slice knives are used to cut 10 samples into small enough pieces to fit the 1 inch pair (2.5cm) width, 5 inch pairs (12.5 cm) ) Long sample cell. The sample is placed in the cell, which is then inserted into a Brookfield Thermosel and locked into place with a bent back and forth probe. The sample cell has a notch in the base that conforms to the bottom of the Brookfield Thermosel to ensure that the cell cannot The rotation is when the shaft is inserted and rotated. The sample is heated to 350 ° F (177 ° C) 15 while another sample is added to the molten sample approximately 1 inch (2.5cm) below the top of the sample cell φ The viscometer device is lower and the shaft sinks into the sample slot. The reduction is continued until the small basket of the viscometer and Thermosel are in line. The viscometer is opened and segmented to all breakage rates so that a torque reading is in the range Percents 30 to 60. Read out and take it out every minute to 15 minutes, or when the value is stable, the final value of 20 is recorded. Example 1-3: Determine the reaction of the polycrystalline pad polymer composition of the invention Amount of branched polymer-a Haake Rheocord System 40 torque flow meter with a Rheomix 42 200 406456 玖, description of the invention 600 mixer and roller type mixing blades were used to prepare the composition of these examples. The mixture was prepared by mixing the ingredients at 75 rpm at 145 ° C. The composition of the polymers A2, A3, and B was provided thereon. Lupersol 500 (99% pure cumulative dilute peroxide, available from Elf Atochem) is added at a specified amount of 5 and the resulting mixture is mixed for about 1 minute at 145 ° C, the temperature rises to 175 ° C, and The samples were mixed for a total of 15 minutes. The samples were placed on a cooled compression mold platform while still hot and compressed into a sheet for FTIR analysis of vinyl content. The FTIR analysis of the representative composition of this invention is set in Table 1. Table 1 Vinyl analysis of Examples 1-3. Example 10 describes Vinyls / 1000C before peroxide. Vinyl / 1100OC after peroxide. Vinyl 0 / 〇1 40.2g 50/50 polymer A3 and polymerization. Compound B1 + 0.20g Lupersol 500R 0.448 0.167 63 2 40.2g 50/50 polymer A2 and polymer B1 + 0.20g Lupersol 500R 0.735 0.206 72 3 40.2g 50/50 polymer A3 and polymer B1 Mixing + 0.50g Lupersol 500R 0.636 0.069 89 The reduction of the shrinkage in the final group of Acetylate can be seen as the degree of the formation of the "T" link 43 200406456. Because the hydrogen that can be extracted from polymers A2 and A3 can be set to have approximately the same probability as the hydrogen that can be extracted from polymer B1, most of the vinyl families are higher in this lower molecular weight polymer B1 than in this Molecular weight polymers A2 and A3 (a mixture of 50:50 polymer components is used), which can be set to about 50%. The "T" connection is attributed to the joining of polymer B1 to polymers A2 and A3 . The strong reduction in vinyl concentration is shown in Table 1 to further demonstrate the formation of `` T '' linkages. The high crystallinity polymer B1 supports the branching of the main chain with great changes in temperature resistance as described below EXAMPLES Examples and Comparative Examples 4-18: An improved Haake Rheocord System 40 torsional rheometer exhibited by the polymorphic polymer of the present invention at a temperature resistance of 10—a Rheomix 3000E mixer and a roller-type mixing blade were used. The sample is equipped to melt the mixed polymer B1 and the usable polymer A1, A2, and A3 resin together at 60 to 70 revolutions per minute and about 145 ° C for about 4 minutes. Lupersol 500R (15 99% pure dicumene) Base peroxide, available from Elf Atochem) was added as indicated. The mixer speed was increased to about 160 rpm and minutes to quickly mix with the peroxide to create a viscous heating effect, which was within 1-2 minutes Process, raising the temperature of the mixture to about 190 ° C, causing decomposition of the peroxide. The mixer speed was reduced to 60 rpm to one minute. After mixing, the mixer 20 was stopped and the sample was removed and the Cool. The polymer block Then make it into a granule 44 200406456 & thin a tartar uil > l .13 rir > 1720/1177 (11.86 / 8.115) 2839/1966 (19.57 / 13.56) 2904/2585 (20.02 / 17.82) 2614/3020 ( 18.02 / 20.82) 1628/1635 (11.23 / 11.27) 1875/2307 (12.93 / 15.91) 2335/2845 (16.10 / 19.62) 2662/3036 (18.35 / 20.93) 1164/1238 (8.025 / 8.536) 910/1099 (6.28 / 7.577) 953/1312 (6.57 / 9.046) 936/1680 (6.453 / 11.58) 1790/2700 (12.34 / 18.62) 2306/2923 (15.90 / 20.15) 2253/3367 (15.53 / 23.22) Percent extension without peroxide / yes Peroxide 946/972 892/427 790/423 812/437 1317/1048 1218/756 1089/621 50/482 1341/1285 1496/1253 1385/961 790/895 715/865 761/656 17/67 Maximum temperature * (. 〇-peroxide-free / peroxide 65/65 125/135 90 ^ 150 130 ^ 150 55/65 110 ^ 120 80/110 95/127 50/55 105/115 85/115 70/130 75/127 115/128 130M20 1 mile ^ 2 ^ ^ See "¥ ^ 4 cockroach 6 carbon temporarily 6.33 / 0 16.24 / 0 44.52 / 0 118.06 / 0 33.08 / 0.58 61.44 / 0.23 113.13 / 0 196.61 / 0 145.44 / 11.1 140.68 /9.07 167.84 / 3.39 203.17 / 1.33 232.37 / 0.28 276.52 / 0.1 350.25 / 0.04 Sample density (g / cm3)-without peroxide / with Compound 0.8714 / 0.8716 0.8931 / 0.8887 0.9132 / 0.9060 0.9329 / 0.9239 0.8697 / 0.8698 0.8898 / 0.8882 0.9109 / 0.9058 0.9328 / 0.9240 0.8683 / 0.8687 0.8739 / 0.8738 0.8818 / 0.8812 0.8890 / 0.8877 0.9103 / 0.9066 0.9317 / 0.9249 0.9547 / 0.9410 Polymer B1. tn < N in 〇CN jn 〇 (Ν in ο τ-Η polymer A3 〇 〇 〇〇〇〇〇〇〇〇 〇 00 00 OO 〇 polymer A2 〇 〇 〇〇〇r-Η in (N 〇 ο ο 〇 〇ο Ο Polymer A1 〇r— < κη (ΝΟΟ 〇〇〇〇〇〇 ο ο ο ο ο Comparative Example 4a / Comparative Example 4b Comparative Example 5 / Example 5 Comparative Example 6 / Example 6 Comparative Example 7 / Example 7 Comparative Example 8a / Comparative Example 8b Comparative Example 9 / Example 9 Comparative Example 10 / Example 10 Comparative Example 11 / Example 11 Comparative Example 12a / Comparative Example 12b Comparative Example 13 / Example 13 Comparative Example 14 / Example 14 Comparative Example 15 / Example 15 Comparative Example 16 / Example 16 Comparative Example 17 / Example 17 Comparative Example 18a / Comparative Example 18b 200406456 玖, Description of Invention Table 2 shows the blend of Comparative Example 15, that is, the blend that is not treated with peroxide, and fails at 70 ° C. Due to the melting of polymer A3 crystals, the mix was provided with sufficient strength to maintain its integrity in the RSA test and this sample sample was destroyed. In contrast, the multi-type polymer composition of Example 15, i.e., 5 has a peroxide-treated composition, and maintains integrity to 130 ° C, which is about the melting point of polymer B1. Table 2 summarizes the results for a series of this comparative mixed composition (prepared without peroxide treatment) and a series of polymorphic polymer compositions of the invention (prepared treated with peroxide). Table 2 shows that the polymorphic composition of the present invention has significantly improved temperature resistance than the comparative blend. In addition, Table 2 shows that the pure polymers A1, A2, and A3, which are treated with peroxides, additionally fail at relatively low temperatures. Therefore, the substantial improvement in the temperature resistance of the polymorphic polymer composition of the present invention cannot be attributed to the formation of a cross-linked network, but should be attributed to the addition of the high-melting polymer B1 branch to the formation To polymerize the main chains of Al, A2, and A3. Examples 19-23: Effects of peroxides on the physical properties of polymorphic polymer compositions Comparative Examples and Preparation of Polymorphic Polymer Compositions of Examples 19-23 Following the method previously set forth in Examples 1-4. The composition of the polymorphic polymer composition and the comparative mixture, and the properties obtained are set forth in Table 3 below. 46 200406456 lw Example 25 〇100 in o 120 ND ND OO Comparative Example 24 〇100 o ND ND OO Example 23 S od S 1800/260/200 (12.4 / 1.79 / 1.38) 1000/330/215 Examples… 〇o 0.5 130 1900/700/470 (13.1 / 4.83 / 3.24) 290/120/120 5: Example 21 (N o in O 120 4300/560/250 (29.6 / 3.86 / 1.72) 480/150/130 S Examples 20 CN omd 100 1800/220/180 (12.4 / 1.52 / 1.24) 1200/360/330 VO OO | Comparative example (N o O 0.5 730/60 (5.03 / 0.41) 1400/20 00 Example composition polymer A3 (wt %) Polymer B2 (wt%) Polymer (wt%) Lupersol 500R (wt%) Properties ULST (° C) Gel (%) Pressure (psi (MPa)) Tension (%) 23/70/100 ° C si λ < < 〇m iS ® 1¾ 200406456 玖, the description of the invention i9-2m reading. Compared to Example 19-21, when the amount of peroxide increases, the use under load / jnL degree also increases the mouth, Take 27 C in the example of Example 20 and 47 ° c in the example of Example 21. The results shown in Table 3 show that the polymorphic polymer composition of the invention of Examples 20 and 21 has a #parent comparative consistency Comparative Comparative Mixing of Example 19 Far higher heat resistance. This is shown in Figure 3. This shows that the polymorphic polymer compositions of Examples 20 and 21 endure a temperature before the hardness of the support a decreases to 45 compared to the comparative example to 19. This See more in Figure 4, which shows that the polymorphic polymer compositions of Examples 20 and 21 were penetrated to a higher temperature by a probe of 1 mm than Comparative Example 19. Table 3 further indicates the polymorphic polymer composition The material has tensile properties that exceed the comparative mixture of Comparative Example 19 at elevated temperatures. For example, the blend of Comparative Example 19 loses most of its tension at 70 ° C. In contrast, the polymorphic polymer compositions of Examples 20 and 21 Each exhibited a tension of 25 ° (1.72 MPa) and 180 psi (124 MPa) at 100 ° C. In addition, the polycrystalline polymer composition of Examples 20 and 21 had less gel content than the previous work. Part of the chain is mixed, for example, US 3,806,558, which reveals a gel content greater than 30 percent. Surprisingly, the polymorphic polymer composition exhibited such a large improvement in properties at high temperatures without greatly reducing elasticity and softness, and without the formation of a significant amount of a crosslinked network structure. f. Discussion of Examples 21-23. Compared to Examples 21-23, the use temperature under load increases as the concentration of the polymer formed by the high crystallinity branch increases. It is interesting to note that when between Examples 23 and 21, an increase in the amount of high crystallinity material from a weight percentage of 20 to 25 makes an increase in the use temperature of 40 ° C under load. Discussion of Examples 24-25. Examples 24 and 25 demonstrate high crystallinity polymers and low crystallinity polymers ^ 7 Λ 48 200406456 玖, description of the invention The mixture of the compound produced in the reactor can be advantageously made into the polymorphic composition of the invention. It should be noted that the polymorphic polymer composition of Example 25 exhibits a use temperature under a load which is higher than that of the non-reacted mixture in the reactor of Comparative Example 24 at 40 ° C. Examples and Comparative Examples 19-20 and 24-25 Transmission electron micrographs (ΊΈM) of polymorphic polymer compositions. The polymorphic polymer compositions and comparative mixtures were compression molded into space. It is a 1-inch (2.5cm) inner diameter and% -inch (0.16cm) thick dish at a mold temperature of 177 ° C, and then cooled to 22 ° C at a rate of 15 ° C / min. before. The thin long piece of the compression mold sample was embedded in Epofix (Struers epoxy-based embedding kit) at room temperature. After modifying this small piece 'these were dyed in trichloride and bleach for two hours at room temperature. Ultrathin sections with a thickness of about 1000 angstroms were collected at room temperature using a Reichert-Jung Ultracut to obtain a set of sections. The sections were placed on a fermwa-coated copper grid. The sections were viewed using a JEOL 2000FX TEM at a 100 kV force σ speed voltage and a magnification of 30,000 times. Digital analysis of TEM images was performed on a LeiCaQuantimet 570 grayscale analyzer. The grayscale image is input to each image through a CCD image to enlarge and increase and set the zero point. The creation of binary images containing disperse phases and their respective layers is delimited in grayscale. These binary forms are opened with large and small horizontal and vertical manipulators to remove the respective laminations from the matrix. The background noise is opened in a pattern and the size of the small disc is removed. Manual operations then proceed to correct residual errors. For a description of the image transformations used, see "Image Anajysis — Mathematieal 'Vol.l, by Jean Serra ^ Academic Press (1982). Digital image analyzers measure 8 parts of the disperse phase and the total area from the bipartite in each disperse phase. I ...- · ..- ~ ...... 49 200406456 玖, the diameter of the invention. The statistical diameter is calculated from the average diameter of each dispersed phase. These statistics are straight and the size of the phase and Information on the size of the size distribution. The volumetric mean diameter emphasizes the appearance of large features, while the blended mean diameter emphasizes the small features. The TMM image of Comparative Example 19 is shown in Figure 5, magnified at 30,000 times. Micrograph It shows a two-phase morphology containing dispersed higher density polyethylene fractions in a continuous matrix of the elastomeric phase attributable to the polymer. The portions of the higher density polyethylene composition attributable to the polymer B2 are distinguished by their lamination The patterns are all present and diverging into and out of the matrix. The elastomer phase of the lower density polyethylene component due to polymer A3 shows the characteristic grainy grained microparticle crystals. In contrast, Example 20 The TEM image of the crystalline polymer composition is shown in Figure 6, magnified at 30,000 times. When the micrograph shows a two-phase pattern, it can be attributed to the dispersed higher density polyethylene phase of polymer B2. The average field size is significantly lower than that in Figure 5. The good dispersion system laminated in the elastomer phase is consistent with the belief that the higher density polyethylene component of its polymer B2 is joined to form an elastomer with polymer 8.3. The main chain. The TMM images of Comparative Example 24 and Example 25, magnified at 30,000 times, are located in Figures 7 and 8. The volume portion of the dispersed high-density polyethylene phase was determined to be analyzed by digital images. The volume and size of the high-density polyethylene dispersed phase of the polymorphic polymer composition are set out in Table 4 below. 〇50 200406456 玖, Description of the invention Μ 口 口 着 / 〇 Office floor average diameter is realistic 192 025 052 156 Ezina 245 0.13 036 1.43 Practice 8.1 0.19 026 153 Practice 8.0 0.18 020 034 As set in Table 5, the polymorphic polymer composition of Example 20 of the invention shows a higher than 50% less Island of crystallinity (if proven A significantly lower volume percentage was compared to the unreacted mixture of Example 19. Similarly, the polymorphic polymer composition of Example 25 of the invention did not exhibit 67% less of the higher crystallinity island region ( As demonstrated by a significantly lower volume percentage) than the unreacted mixture of Comparative Example 24. This means that the polymorphic composition of the invention actually contains an elastomer backbone which is joined by the higher density polymer component. An average of the volume percentages of Car Parents 19 and 24 is 22%. One of the volume percentages of Examples 20 and 25 is an average of 8. On this basis, it is estimated that 64% of the total high-density polyethylene elastomer pipe rack. Polymorphic Ethylene Polymer of Pressure Sensitive Adhesive The next polymer was used to prepare the polymorphic polymer composition of this example. The samples were prepared by dissolving the mixed polymers A6 and D in the indicated amounts in a H ^ ake Rheocord System 40 Torque Flow Torque with a Rhe ^ 300E cylindrical mixing blade at 60 to 75 revolutions per minute and about 145 ° C. About 4 minutes. Lupersol ™ 101 (available from Elf Atochem) is added to refer to the amount of 51 200406456 说明, the description of the invention, and the mixer speed is increased to about 160 revolutions per minute to quickly mix it and cause a viscosity heating effect, and in This process takes 1-2 minutes and raises the temperature to about 190 ° C to decompose the peroxide. Mixer speed drops to 60 rpm for another minute. After mixing, the mixer is stopped and the sample is removed and allowed to cool. The polymer mass is then granulated. The resulting polymorphic polymer and a comparative polymer were mixed to test their effectiveness as a pressure-sensitive adhesive for tapes. The following adhesive composition was used: 100 phr resin, 220 phr

Escorez 1310LC結合劑,及1 phrlrganox™ 1010。該組成成分炫化混合於no C在一Haake。由達到一物質混合,80phrkaydol油經一注射器加入。膠帶 樣品製備以壓縮鑄型在Mylar™膜及一釋出板之間所成的黏著劑以17〇°c在 壓力20,000psi(138MPa)下。所成之黏著劑厚度約2mil(0.05mm)。 所成黏著劑之抗熱性測量以使用一以,動力機 械性光譜儀。在橡膠平台之儲存率(G,)的溫度突然降低作為抗熱溫度。一 溫度掃描運行從約-70°C至200°C以5t/每步30秒平衡延遲於每一步驟。振 動鮮係1孤度/秒以-自動拉緊函數以開始百分之〇1拉力,增加以正百 为之100凋整當扭力降低至4克-公分。最大拉力設以百分。76咖平行片 裝置係用以一起始間 HOLD”函數係進行於赋且該儀器冷卻至贼而測試開始,其對熱膨服 或收縮校正以測言_口熱或冷卻。一氮環境被保持在實驗全程以減少氧化 因破壞。 探針結合測量細娜娜7卜使用一停留時間1〇秒且—探針分 離率 lCM/sec 〇 52 200406456 玖、發明說明Escorez 1310LC binder, and 1 phrlrganox ™ 1010. The composition is stunningly mixed in no C in a Haake. From reaching a substance mix, 80 phrkaydol oil was added via a syringe. Tape The sample was prepared by compression molding an adhesive formed between a Mylar ™ membrane and a release plate at 170 ° C under a pressure of 20,000 psi (138 MPa). The thickness of the adhesive is about 2mil (0.05mm). The heat resistance of the resulting adhesive was measured using a mechanical mechanical spectrometer. The temperature of the storage rate (G,) on the rubber platform suddenly decreases as the heat resistance temperature. A temperature scan run is delayed from about -70 ° C to 200 ° C at a balance of 5t / step for 30 seconds per step. Vibration is 1 degree / second, and the auto-tension function is used to start the tensile force of 0.1%, increase by 100 to 100 when the torque is reduced to 4 grams-cm. The maximum pulling force is set to 100%. The 76-ga tablet device was started with a “HOLD” function and the device was cooled to the thief and the test was started. It corrected for thermal expansion or contraction to measure _ mouth heat or cooling. A nitrogen environment was maintained In the whole process of the experiment to reduce the damage caused by oxidative factors. Probe combination measurement Xana 7 uses a retention time of 10 seconds and-probe separation rate lCM / sec 〇 52 200406456 发明, description of the invention

黏度於177 C係測1依以下的方法使用一Brookfield Labomtories DV Π+Viscometer在可丟棄之鋁樣品腔中。使用之軸係sc_3i熱溶轴。樣品切 成足夠小片以安裝入該1英对(2·5αη)寬,5英时(12.5cm)長之樣品腔。樣品加 熱至177 C,以溶化樣品係約1英忖(2.5cm)在該樣品腔的頂部之下。該黏度 劑裝置降較低且軸浸入該樣品腔内。該黏度計打開,設至一切碎率其導至 一扭力讀取在範圍百分之30至60。讀取被取出以每分鐘共15分鐘,或至值 穩定時,其是終值被記錄。 多晶型聚合物組成物及比較性聚合物,其性質,及功能如壓力敏感 的黏著劑組成,係設定於表5至7。 樣?口 聚辦蝴 移翻聚合 聚^D·出現 移曰總織 之Kph) 聰嫩出職 多曰曰aS!聚練咸 *i*r) 多翻聚合 ^DLST CO 讀纖丨贼 1徽供贼 ) 黍徽贼在 nrcmmm 泊) (jgfcm · sec)) 21-1 ----- — 78 22 05 115 380 110 46,000 (46^000) 21-2 78 22 0 58 630 80 ^,000 (42,000) 踯 ------ 恭导 370 输 mViscosity was measured at 177 C series. A Brookfield Labomtories DV + Viscometer was used in a disposable aluminum sample chamber according to the following method. The shaft system used is sc_3i hot melt shaft. The sample was cut into small enough pieces to fit into the 1-inch (2 · 5αη) wide and 5-inch (12.5 cm) long sample cavity. The sample was heated to 177 C to dissolve the sample approximately 1 inch (2.5 cm) below the top of the sample cavity. The viscosity device is lowered and the shaft is immersed in the sample cavity. The viscometer was turned on and set to all fractions which led to a torque reading in the range of 30 to 60 percent. The reading is taken out for a total of 15 minutes per minute, or until the value is stable, its final value is recorded. Polymorphic polymer compositions and comparative polymers, their properties, and functions such as pressure-sensitive adhesive composition are set in Tables 5 to 7. What? Oral gatherings, butterflies, gatherings, gatherings, ^ D. Appearing, moving, and weaving, Kph), Teng Nen, and more, aS! Julianxian * i * r), multiple turnings, ^ DLST CO, reading fiber 丨 Thief 1 emblem (For thief) 黍 emblem thief at nrcmmm (jgfcm · sec)) 21-1 ----- — 78 22 05 115 380 110 46,000 (46 ^ 000) 21-2 78 22 0 58 630 80 ^, 000 ( 42,000) 踯 ------ Conduct 370 lose m

於表5之結果顯示多晶型聚合物可用作一壓力感應黏著劑:樣品有一 可接受的可處理性,探針結合(與商業上可得之蘇格蘭神奇膠帶比較),及 較比較性混合物高的使用溫度。 53 200406456 疚、發明說明 表6 多晶型聚合物組成物26-39之組成物 m 第賴 綱 分另 第 Lupersol 101 (phr) 26 A6 m 78.0 2Z0 05 27 A6 m 70.0 30.0 05 蛾飾¢7 A6 B4 70.0 30.0 0 28 A6 B5 70.0 426 0.7 tfc|馈歹¢8 A6 B5 m 416 0 29 A6 B5 40.0 60.0 05 30 A6 B6 70.0 30.0 05 31 A6 B7 70.0 30.0 05 32 A6 D 70.0 30.0 05 33 A6 B5 70.0 30.0 05 34 A7 B3 78.0 m 1.0 35 A8 B3 78.0 m 1.0 36 A7 B8 7&0 220 1.0 37 A7 B9 7&0 2Z0 1.0 38 A7 BIO 7&0 2Z0 1.0 39 Α»Ά8 B3 50ptrA9 28phrA8 220 1.0 表7 壓力敏感之黏著劑 滅 多曰翅聚合献實 命J/tt#雜J 多日雜规 E131〇J〇0r) Ka^dd m IMACO G,就 (φΠ£8^ΐή Robe Tack(g) Tg( °0 21-1 26 100.0 220.0 80.0 115 3x l(f 430 -3 21-2 27 100.0 230.0 80.0 122 2x l(f 380 1 21-3 嫩都¢7 100.0 220.0 80.0 58 3x \& 510 0 214 28 100.0 230.0 80.0 m 3x l(f 380 -9 21-5 100.0 220.0 80.0 63 7k ltf 400 2 21-6 29 mo 220.0 80.0 % 2x l& 200 0 21-7 30 100.0 220.0 80.0 95 lx \(f 300 0 21-8 31 100D 220.0 80.0 92 6κ 105 380 0 21-9 32 100.0 220.0 80.0 120 3x l(f 320 0 21-10 33 110.0 110D 40.0 84 ND ND ND 22-1 34 100.0 220.0 80.0 117 3x l(f ND 0 22-2 35 100.0 230.0 80.0 75 4< 105 ND 0 22-3 36 100.0 220.0 SOD m 3x 10? ND 3 224 37 100.0 220.0 80.0 108 6< \(f ND 0 22-5 38 100.0 230.0 80.0 109 9x 10? ND 4 m 39 MO 220.0 m 95 ND ND 5 *所有組成雜龙以璃蔽相领網可得自CibaGdgy) 54 200406456 玖、發明說明 設於表7的TMA數據指出該多晶型聚合物組成物的上限操作溫度係 高於比較之非接合樣品的。比較於,例如,實例21-2至21_3, 。該探針結合結果指出該發明的組成有可接受的結合度,即,探針结合值 至少200克,更佳地至少300克,且最佳地至少380克。該G,及Tg數據指出 多晶型聚合物組成物可用於對麗感應黏合劑組成中,即,它們具特徵係有 一G’105至106dyneS/Cm2及一Tg後-10至1〇。(:。表7的實例顯示該發明之技術 的靈活性,即,該主鏈聚合物及分支聚合物的分子量及密度可改變以製造 該組成適於使用於各種對壓感應黏著劑之使用。 實例40-41 :功能化以改基對玻璃的黏合性 樣品係製備以聚合物A10及B4(在實例40的例子中)和聚合物A1〇和D( 在實例41的例子中)的反應性共擠出。在每一例子中,聚合物反應物的混合 係收過氧化物吸入,且該被吸入之樣品係擠出於一雙螺旋擠出器於21〇。〇 〇 該所成之組成評估供較上之處理溫度,餘面剪切黏合,及τ_剝離剪切黏合 〇 餘面另切黏合係決定以壓縮鑄型該測試樹脂於35〇卞(177。[)在二顯 微鏡之玻璃玻片之間,玻片後襯以紗帶,接著進行一餘面剪切黏合完全測 試於一 Instron張力儀。 τ-剝離剪切黏合係決定如下。玻璃玻片(長寬高:3χ 1χ 〇〇5英时(7·6 X 〇·12αι〇從Pisher Scientific)接合至冷旋轉鋼條(CRS,長寬高·· 6χ i x 0.032射(15χ 2·5χ 〇夠自Q-Panei CGmpany)使用—表面活化劑在該 55 200406456 玖、發明說明 CRS條上及黏合性樹脂在玻片上。黏合劑充足的混合發生當玻片及CRS放 在一起時。該CRS/玻璃條置於一熱板(180。〇。該HOPE- g-EO測試聚合物 及第二金屬條放上置於熱板上之CRS/玻璃條上。它們被加熱至聚合物樣品 已溶化。接著它們冷卻至室溫。這些測試樣本係測試24小時於製備後。 名義上的壓力-拉力圖之產生係使用一Instron 4204 Materials Testing System依ASIM法D1876-72 〇在握物之間的距離係2英对(5cra),且交首速度 係 10英忖/min(25cnymin) 〇 該多晶型聚合物組成物及所成物性質係設定以下的表8。 獻口 聚撕 BKphr) 聚触 晰) 聚錄 Al_ Ιιρ®ο1130 聰 I^LT CQ 麵胸洽 T-i丨嫩城綠碎 謝生势#gim)) HDPBg- B0(2W) 25 75 05 120 25(13¾ 〇(〇) MAHg· HOEg. Β0(14-2) 25 75 05 120 129(112) 3429) 該多晶型聚合物組成物之對玻璃的黏合明顯地增加當 取代HDPE用以作分支聚合物。在表8的結果顯示_兮妾合之多晶 型組成有相當高之餘面剪切結合及T-_剪切黏合較該未功能化之多晶型 聚合物組成物。 如設於之上之黏合劑組成21-9的討論,順丁烯二酉_官能化的多晶型 聚合物組成物可有用地使用於對壓感應之黏劑組成令。 本發明,已充份地描述及詳細馨例於上,應僅依以下的申請 專利範圍。 56 200406456 玖、發明說明 【圖式簡翠說明】 第1圖示範脑边均心請質雜雜物之高溫抗性的 定律。 4和科學 第2圖多晶形聚合物組成之實例。 第3圖顯示實例20及21的多晶型聚合物組成物忍受一溫度在支撑物 A硬度降低至45較比較性實例至19之前。 第4圖顯不實例2〇及21的多晶型聚合物組成物遭至1麵之探針穿透 於較高之溫度較比較實例19。 第5圖顯示比較實例19的TEM影像。 第6圖顯示實例2〇之多晶型聚合物組成物之见“影像。 第7及8圖顯示比較實例24及實例25的TEM影像,以30,000倍放 大。 【圖式之主要元件代表符號表】無The results in Table 5 show that polymorphic polymers can be used as a pressure-sensitive adhesive: the sample has an acceptable processability, probe binding (compared to commercially available Scottish Magic Tape), and a more comparable mixture High use temperature. 53 200406456 Guilt, description of invention Table 6 Composition of polymorphic polymer composition 26-39 m Di Laigang and Lupersol 101 (phr) 26 A6 m 78.0 2Z0 05 27 A6 m 70.0 30.0 05 Moth decoration 7 A6 B4 70.0 30.0 0 28 A6 B5 70.0 426 0.7 tfc | Feeder ¢ 8 A6 B5 m 416 0 29 A6 B5 40.0 60.0 05 30 A6 B6 70.0 30.0 05 31 A6 B7 70.0 30.0 05 32 A6 D 70.0 30.0 05 33 A6 B5 70.0 30.0 05 34 A7 B3 78.0 m 1.0 35 A8 B3 78.0 m 1.0 36 A7 B8 7 & 0 220 1.0 37 A7 B9 7 & 0 2Z0 1.0 38 A7 BIO 7 & 0 2Z0 1.0 39 Α »Ά8 B3 50ptrA9 28phrA8 220 1.0 Table 7 Pressure sensitive Adhesive to destroy the multi-winged wing to aggregate the life J / tt # Miscellaneous multi-day miscellaneous regulations E131〇J〇0r) Ka ^ dd m IMACO G, just (φΠ £ 8 ^ ΐPrice Robe Tack (g) Tg (° 0 21 -1 26 100.0 220.0 80.0 115 3x l (f 430 -3 21-2 27 100.0 230.0 80.0 122 2x l (f 380 1 21-3 Nendu ¢ 7 100.0 220.0 80.0 58 3x \ & 510 0 214 28 100.0 230.0 80.0 m 3x l (f 380 -9 21-5 100.0 220.0 80.0 63 7k ltf 400 2 21-6 29 mo 220.0 80.0% 2x l & 200 0 21-7 30 100.0 220.0 80.0 95 lx \ (f 300 0 21-8 31 100D 220.0 80.0 92 6κ 105 380 0 21-9 32 100.0 220.0 80.0 120 3x l (f 320 0 21-10 33 110.0 110D 40.0 84 ND ND ND 22-1 34 100.0 220.0 80.0 117 3x l (f ND 0 22-2 35 100.0 230.0 80.0 75 4 < 105 ND 0 22-3 36 100.0 220.0 SOD m 3x 10? ND 3 224 37 100.0 220.0 80.0 108 6 < \ (f ND 0 22-5 38 100.0 230.0 80.0 109 9x 10? ND 4 m 39 MO 220.0 m 95 ND ND 5 * All composition hybrids can be obtained from CibaGdgy) 54 200406456 玖, description of the invention TMA data set in Table 7 indicates that the upper limit operating temperature of the polymorphic polymer composition is high For comparison of non-joined samples. Compare to, for example, Examples 21-2 to 21_3. The probe binding results indicate that the composition of the invention has an acceptable degree of binding, i.e., the probe binding value is at least 200 grams, more preferably at least 300 grams, and most preferably at least 380 grams. The G and Tg data indicate that polymorphic polymer compositions can be used in the composition of Inductive Adhesives, i.e., they are characterized by a G'105 to 106 dyneS / Cm2 and a Tg of -10 to 10. (: The examples in Table 7 show the flexibility of the technology of the invention, that is, the molecular weight and density of the main chain polymer and branched polymer can be changed to make the composition suitable for use in various pressure-sensitive adhesives. Examples 40-41: Adhesive samples functionalized to glass to prepare reactivity with polymers A10 and B4 (in the example of Example 40) and polymers A10 and D (in the example of Example 41) Co-extrusion. In each example, the polymer reactant was mixed by peroxide inhalation, and the inhaled sample was extruded in a twin-screw extruder at 21.0. Assess the higher processing temperature, shear surface adhesion, and τ_peel shear adhesion. The other surface shear adhesion system was determined by compression molding. The test resin was 35 ° F (177 °) in the glass of the second microscope. Between the slides, the slides were lined with gauze tape, and then a full-side shear adhesion test was performed on an Instron tensiometer. The τ-peel shear adhesion system was determined as follows. Glass slides (length, width, height: 3x1x 〇 〇 〇5 Inch (7.6 X 〇12αι〇 from Pisher Scientific) to cold spin Steel bar (CRS, length, width, height · 6χ ix 0.032 shots (15χ 2 · 5χ 〇 enough from Q-Panei CGmpany)-surface active agent in the 55 200406456 发明, invention description CRS bar and adhesive resin in glass On the sheet. Adequate mixing of the adhesive occurs when the slide and CRS are put together. The CRS / glass strip is placed on a hot plate (180 °. The HOPE-g-EO test polymer and the second metal strip are placed on top On a CRS / glass strip on a hot plate. They are heated until the polymer sample has dissolved. Then they are cooled to room temperature. These test samples are tested for 24 hours after preparation. The nominal pressure-tension diagram generation is used An Instron 4204 Materials Testing System according to ASIM method D1876-72 〇 The distance between the grips is 2 British pairs (5cra), and the crossover speed is 10 Ying / min (25cnymin) 〇 The polymorphic polymer composition and The properties of the finished product are set in the following Table 8. Consecrated BKphr) Poly-touch clear) Gathering Al_ Ιιρ®ο1130 Satoshi I ^ LT CQ Face chest contact Ti 丨 tender city green broken Xie Shengshi #gim)) HDPBg- B0 (2W) 25 75 05 120 25 (13¾ 〇 (〇) MAHg · HOEg. Β0 (14-2) 25 75 05 120 129 (112) 342 9) The polycrystalline polymer composition has a significantly increased adhesion to glass when it replaces HDPE as a branched polymer. The results in Table 8 show that the polymorphic composition of the polycrystalline form has a relatively high residual surface shear bonding and T-shear bonding compared to the non-functional polymorphic polymer composition. As discussed above with respect to the adhesive composition 21-9, the cis-butadiene-functional polymorphic polymer composition can be usefully used for pressure-sensitive adhesive composition. The present invention, which has been fully described and detailed above, should be based only on the scope of patent application below. 56 200406456 发明, description of the invention [Simplified description of the figure] Figure 1 shows the law of high temperature resistance of masses and impurities in the brain. 4 and Science Figure 2 Example of polymorphic polymer composition. Figure 3 shows that the polymorphic polymer compositions of Examples 20 and 21 endure a temperature before the hardness of support A decreases to 45 compared to Comparative Examples to 19. Figure 4 shows that the polymorphic polymer compositions of Examples 20 and 21 were penetrated by the probe to one side at a higher temperature than Comparative Example 19. Figure 5 shows a TEM image of Comparative Example 19. Figure 6 shows the "image" of the polymorphic polymer composition of Example 20. Figures 7 and 8 show the TEM images of Comparative Example 24 and Example 25 at 30,000 times magnification. [The main elements of the figure represent the symbol table 】no

5757

Claims (1)

拾、申請專利範圍 種夕晶型聚合物組成物,其特徵在於包含有:⑷一均 貝線性或貫質線性乙婦/α婦烴間聚物主鏈;及⑻一 刀支附自該主鏈,該分支包含_具—密度大於該主鍵所 5 *者至少0.004g/cm3之乙稀單質聚合物或乙埽烯 烴間聚物。 2·如申凊專利範圍第i項之多晶型聚合物組成物,其中該 分支之特徵在於包含一具有一密度大於該主鍵所具者 至少0.006g/cm3乙蝉單質聚合㈣乙婦A稀煙間聚 合物。 10 3·如申請專利範圍第丨項之多晶型聚合物組成物,其中該 聚合物主鏈之進一步特徵在於其為一由乙烯及至少一 種α -烯烴所構成的單質線性或實質線性間聚物 〇 4·如申請專利範圍第3項之多晶型聚合物組成物,其中該 15 主鏈之均質線性或實質線性聚合物之進一步特徵在於 具有一CDBI值為至少50&_Mw/Mn值為低於3。 5·如申請專利範圍第1項之多晶型聚合物組成物,其中該 主鏈之間聚物之特徵在於具有一具下列特徵之實質線 性間聚物: 2〇 ⑷一熔化流比例,I10/I2g5.63, (b) —分子量分布,MVV/Mn係以凝膠滲透色層分析來測 疋且以下列方程式來定義 (Mw/Μη) $ (110/12)-4.63, ……(C)、在總溶發斷裂.起始點之一臨界.剪切壓力,以氡態擠 58 200406456 拾、申請專利範圍 出、々丨l力儀測疋’係大於4χ i〇6dynes/cm2(0.4Mpa) 或一氣態擠出流體力學,使得在對該實質線性乙烯 間聚物之表面熔融斷裂起始點的臨界剪切速率係 至少百分之5 0大於對一線性乙稀聚合物之表面溶 融斷裂起始點的臨界剪切速率,其中該實質線性乙 婦間聚物及該線性乙烯聚合物包含相同的共聚單 體’該線性乙烯聚合物具一在該實質線性乙烯間聚 物的百分之十内的la,Mw/]VIn及密度,且其中該實 質線性乙烯間聚物及該線性乙烯聚合物各自的臨 界剪切速率係於相同之熔融溫度下使用一氣態擠 出流力儀來測量,且 (d) —單一微分掃描熱度計,Dsc,熔化峯在-3〇及15〇 °C之間。 6·如申請專利範圍第丨項之多晶型聚合物組成物,其中該 主鏈的間聚物之特徵在於其為被取代以一平均值為〇〇1 至3長鏈分支/ 1000碳的實質線性乙烯/ α -烯烴間聚 物。 7.如申請專利範圍第1項之多晶型聚合物組成物,其進一 步特徵在於包含一極性分子部分接合到該主鏈聚合物 或分支聚合物之至少一者上而衍生出的分子部分。 8· —種用於製備如申請專利範圍第丨項之多晶型聚合物組 成物的方法’其中該方法之特徵在於包含: (a)在反應條件下聚合乙烯及任擇的一或多個烯烴 共琴物單韓以形成一形成分支的聚合物;及 59 200406456 拾、申請專利範圍 (b)於反應條件下聚合乙烯、—或多個單體以及 (a)中之该形成分支的聚合物以形成該多晶型聚合 物組成物; 其中该多晶型聚合物組成物之特徵在於具有一主 鏈聚合物部分及一附加分支聚合物部分,其中該分支聚 石物邛分在室溫的結晶度係至少百分之5大於該主鏈聚 合物部分。 9·如申請專利範圍第8項之方法,其中(“之聚合反應發生 ίο 於第一反應器且(b)之聚合反應發生於一第二反應器 ,或 其中(a)之聚合反應發生於和聚合反應(13)相同之反 應器中,且其中一第一催化劑係在之聚合反應時使用 而一第二可共適之催化劑在(b)之聚合反應時使用。 15 10·—種用於製備如申請專利範圍第1項的多晶型聚合物組 成物之方法,其中該方法之特徵在於包含: (a) 在反應條件下聚合乙婦及任擇的一或多個α -婦煙 共聚單體以形成一包含一形成分支的聚合物之反應 蒸氣; 20 (b) 聚合乙烯及一或多個α -烯烴共聚單體以形成包含 一均質線性或實質線性形成主鏈之聚合物的反應蒸 氣, (c) 任擇地單離(a)中反應蒸氣的該形成分支之聚合物 及(b)中之反應蒸氣的形成主鏈之聚合物,及 (d) 在一自由基起始物的存在下反應該形成分夫之聚合 60 200406456 拾、申請專利箪泡圍 物及該形成主鏈之聚合物,以使該形成分支的聚合 物附於該形成主鏈之聚合物上以製造該多晶型聚合 物組成物; 纟中該形成分支之聚合物有—結晶度於室溫下係 5 為至少百分之5大於形成主鏈聚合物之結晶度。 Η·如中請專利第Η)項的方法,其中該步驟⑷之反應發 生先於自(a)及⑻中的反應蒸氣自單離該形成分支之聚 合物及該形成主鏈之聚合物,且該方法更包含: ⑷自結合的反應蒸氣中單離該多晶型聚合物組成物。 1〇 I2.如申請專利範圍第1項之多晶型聚合物組成物,其係呈 -黏著劑、密封劑、塗布劑、鑄型部件、膜片、熱成形 部件或纖維的形式。 13.—種熱熔黏著劑配方,其包含如申請專利範圍第丨項的 多晶型組成物。 15 14· 一種熱溶黏著劑配方’其包含一種多晶型聚合物組成物 ,其中該多晶型聚合物組成物之特徵在於包含一由下列 所構成的反應產物:(a)從重量百分比4〇至5的形成分支 之聚合物,該分支包含一乙烯單質聚合物或乙烯 烯烴間聚物,及(b)從重量百分比60至95之一形成主鍵之 20 物質’其係乙烯或一種或更多共聚單體或其係一均質線 性或實質線性乙烯/α-烯烴間聚物;且 其中所形的分支之結晶度係至少百分之5大於所成 的主鏈的結晶度;且 .......丼中該多晶裂聚合物組成物有一上限操作溫度係 61 200406456 〇 ' . - - · ; * - · 拾、申請專利範圍 為至少10°c大於一由所形成分支之聚合物及該所形成 的主鏈之聚合物所構成的未反應摻合物。 15·如申請專利範圍第13或14項之熱熔黏著劑配方,具特徵 在於具有一探針結合係為至少2〇〇克以及一上限操作溫 ,係為至少HTC大於一由一包含以相等於出現於該多 晶^聚合物組成物之數量而提供的分支聚合物及該主 =聚合物之未反應的摻合物的構成之熱熔黏著劑的溫 10 62The invention claims a patented seed crystal type polymer composition, which is characterized by comprising: a homogeneous linear or homogeneous linear ethene / α-hydrocarbon interpolymer main chain; and a single blade attached to the main chain. This branch contains ethylene monomers or acetoolefin interpolymers with a density greater than 5 * of the primary bond and at least 0.004 g / cm3. 2. The polymorphic polymer composition as described in item i of the patent application, wherein the branch is characterized by containing a single element polymer with a density greater than that of the primary bond of at least 0.006 g / cm3. Smoke polymer. 10 3. The polymorphic polymer composition according to the scope of the patent application, wherein the polymer main chain is further characterized in that it is a simple linear or substantially linear interpolymerization composed of ethylene and at least one α-olefin. Property 04. The polymorphic polymer composition according to item 3 of the scope of patent application, wherein the 15 main chain homogeneous linear or substantially linear polymer is further characterized by having a CDBI value of at least 50 & Mw / Mn value Below 3. 5. The polymorphic polymer composition according to item 1 of the scope of patent application, wherein the polymer between the main chains is characterized by a substantially linear interpolymer having the following characteristics: 20% of melt flow ratio, I10 /I2g5.63, (b) —Molecular weight distribution, MVV / Mn is measured by gel permeation chromatography and defined by the following equation (Mw / Μη) $ (110/12) -4.63, …… (C ), At the total melting point. One of the starting points is critical. Shear pressure is squeezed in a morphology. Mpa) or a gaseous extrusion hydrodynamics such that the critical shear rate at the onset of melt fracture of the substantially linear ethylene interpolymer is at least 50% greater than the surface melting of a linear ethylene polymer The critical shear rate at the fracture initiation point, where the substantially linear ethylene polymer and the linear ethylene polymer contain the same comonomer. The linear ethylene polymer has a percentage of the substantially linear ethylene interpolymer. La, Mw /] VIn and density within ten, and wherein the substantially linear ethylene The critical shear rates of the interpolymer and the linear ethylene polymer were measured at the same melting temperature using a gaseous extrusion flow force meter, and (d) — a single differential scanning calorimeter, Dsc, with a melting peak at- Between 30 and 150 ° C. 6. The polymorphic polymer composition according to the scope of the patent application, wherein the interpolymer of the main chain is characterized in that it is substituted with a long-chain branch with an average value of 0.001 to 3 long chain / 1000 carbons. Substantially linear ethylene / α-olefin interpolymer. 7. The polymorphic polymer composition according to item 1 of the patent application scope, further characterized by comprising a molecular portion derived from a polar molecular portion bonded to at least one of the main chain polymer or the branched polymer. 8 · —A method for preparing a polymorphic polymer composition as described in the scope of the patent application ', wherein the method is characterized by comprising: (a) polymerizing ethylene and optionally one or more under reaction conditions Olefins are used to form a branch-forming polymer; and 59 200406456, the scope of patent application (b) polymerizes ethylene, or a plurality of monomers under reaction conditions, and (a) the branch-forming polymerization To form the polymorphic polymer composition; wherein the polymorphic polymer composition is characterized by having a main chain polymer portion and an additional branched polymer portion, wherein the branched polyliths are separated at room temperature The degree of crystallinity is at least 5 percent greater than the backbone polymer portion. 9. The method of claim 8 in the scope of patent application, wherein ("the polymerization reaction occurs in the first reactor and (b) the polymerization reaction occurs in a second reactor, or (a) the polymerization reaction occurs in In the same reactor as the polymerization reaction (13), and wherein a first catalyst is used during the polymerization reaction and a second compatible catalyst is used during the polymerization reaction of (b). 15 10 · —Type A method for preparing a polymorphic polymer composition according to item 1 of the scope of the patent application, wherein the method is characterized by comprising: (a) polymerizing ethyl glutamate and optionally one or more α-foam under the reaction conditions; Comonomers to form a reaction vapor comprising a branched polymer; 20 (b) polymerizing ethylene and one or more alpha-olefin comonomers to form a polymer comprising a homogeneous linear or substantially linear backbone Reaction vapor, (c) optionally isolating (a) the branch-forming polymer of the reaction vapor and (b) the backbone-forming polymer of the reaction vapor, and (d) a radical initiation In the presence of matter He 60 200406456 Pick up and apply for a patent for the foam enclosure and the polymer forming the main chain, so that the branched polymer is attached to the polymer forming the main chain to make the polymorphic polymer composition; 纟The branch-forming polymer has-the degree of crystallinity at room temperature of 5 is at least 5 percent greater than the degree of crystallinity of the polymer forming the main chain. Η · The method of item (i) of the patent, wherein this step ⑷ The reaction occurs before the branching polymer and the polymer forming the main chain are isolated from the reaction vapor in (a) and ⑻, and the method further includes: 单 detaching the poly from the reaction vapor in the self-binding reaction Crystalline polymer composition. 10I2. The polycrystalline polymer composition according to item 1 of the scope of patent application, which is a -adhesive, sealant, coating agent, casting part, diaphragm, thermoformed part. Or in the form of fibers. 13. A hot melt adhesive formulation comprising a polymorphic composition as described in the scope of the patent application. 15 14 · A hot melt adhesive formulation 'comprising a polymorphic polymer composition Substance, wherein the polymorphic polymer The product is characterized by containing a reaction product consisting of: (a) a branching polymer from 40 to 5 weight percent, the branch comprising an ethylene simple polymer or an ethylene olefin interpolymer, and (b ) 20 substances that form a primary bond from one of 60 to 95 percent by weight, which is ethylene or one or more comonomers or which is a homogeneous linear or substantially linear ethylene / α-olefin interpolymer; and the branches shaped therein The degree of crystallinity is at least 5 percent greater than the crystallinity of the main chain formed; and ... the polycrystalline polymer composition has an upper limit operating temperature of 61 200406456 0 '.--· ; *-· Pick up and apply for a patent with a range of at least 10 ° c greater than an unreacted blend composed of the branched polymer and the main chain polymer formed. 15. The hot melt adhesive formulation according to item 13 or 14 of the patent application scope, which is characterized by having a probe binding system of at least 200 grams and an upper operating temperature of at least HTC greater than The temperature of the hot-melt adhesive consisting of a branched polymer and an unreacted blend of the main = polymer provided in an amount equal to the amount of the polycrystalline polymer composition 10 62
TW092130810A 1997-01-29 1998-01-26 Heteromorphic polymer compositions and a process for preparing the same and the hot melt adhesive formulation comprising the same TWI278482B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3656097P 1997-01-29 1997-01-29

Publications (2)

Publication Number Publication Date
TW200406456A true TW200406456A (en) 2004-05-01
TWI278482B TWI278482B (en) 2007-04-11

Family

ID=21889277

Family Applications (2)

Application Number Title Priority Date Filing Date
TW092130810A TWI278482B (en) 1997-01-29 1998-01-26 Heteromorphic polymer compositions and a process for preparing the same and the hot melt adhesive formulation comprising the same
TW87101097A TW574295B (en) 1997-01-29 1998-01-26 Heteromorphic polymer compositions and a process for preparing the same and the hot melt adhesive formulation comprising the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW87101097A TW574295B (en) 1997-01-29 1998-01-26 Heteromorphic polymer compositions and a process for preparing the same and the hot melt adhesive formulation comprising the same

Country Status (17)

Country Link
EP (1) EP0958318A1 (en)
JP (1) JP2001509190A (en)
KR (1) KR100546923B1 (en)
CN (1) CN1246130A (en)
AR (1) AR011779A1 (en)
AU (1) AU739183B2 (en)
BR (1) BR9807123A (en)
CA (1) CA2277106C (en)
DK (1) DK0933373T3 (en)
ID (1) ID19676A (en)
MY (1) MY120974A (en)
NO (1) NO993659L (en)
NZ (1) NZ336421A (en)
RU (1) RU2196152C2 (en)
TW (2) TWI278482B (en)
WO (1) WO1998032784A1 (en)
ZA (1) ZA98688B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821193C2 (en) * 1998-05-12 2002-03-07 Dlw Ag Low-emission flooring and process for its manufacture
WO2004046214A2 (en) 2002-10-15 2004-06-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7645829B2 (en) 2004-04-15 2010-01-12 Exxonmobil Chemical Patents Inc. Plasticized functionalized propylene copolymer adhesive composition
US9745461B2 (en) 2005-06-22 2017-08-29 Exxonmobil Chemical Patents Inc. Vulcanized polymer blends
US9644092B2 (en) 2005-06-22 2017-05-09 Exxonmobil Chemical Patents Inc. Heterogeneous in-situ polymer blend
KR20080031734A (en) 2005-06-24 2008-04-10 엑손모빌 케미칼 패턴츠 인코포레이티드 Functionalized propylene copolymer adhesive composition
RU2433144C2 (en) 2005-12-29 2011-11-10 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Low molecular weight ethylene copolymers, synthesis methods and use thereof
US8076407B2 (en) * 2008-02-08 2011-12-13 Henkel Ag & Co. Kgaa Hot melt adhesive
ATE532805T1 (en) * 2008-03-13 2011-11-15 Dow Global Technologies Llc LONG CHAIN AND BRANCHED BLOCK OR CROSS-LINKED COPOLYMERS MADE OF ETHYLENE IN COMBINATION WITH ANOTHER POLYMER
JP7381449B2 (en) * 2017-08-24 2023-11-15 ダウ グローバル テクノロジーズ エルエルシー Ethylene/C5-C10 alpha-olefin/polyethylene interpolymer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299177A (en) * 1962-10-01 1967-01-17 Union Carbide Corp Polyethylene modified with branched polyethylene wax
JPS5610506A (en) * 1979-07-09 1981-02-03 Mitsui Petrochem Ind Ltd Production of ethylene polymer composition
US5272236A (en) * 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US5278272A (en) * 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
WO1994017112A2 (en) * 1993-01-29 1994-08-04 The Dow Chemical Company Ethylene interpolymerizations
US5346963A (en) * 1993-04-28 1994-09-13 The Dow Chemical Company Graft-modified, substantially linear ethylene polymers and methods for their use
US5530072A (en) * 1995-04-19 1996-06-25 Mobil Oil Corporation Introduction of long chain branching into linear polyethylenes

Also Published As

Publication number Publication date
AU5731698A (en) 1998-08-18
NO993659L (en) 1999-09-28
MY120974A (en) 2005-12-30
CN1246130A (en) 2000-03-01
CA2277106C (en) 2008-04-22
ZA98688B (en) 1999-07-28
AU739183B2 (en) 2001-10-04
ID19676A (en) 1998-07-30
BR9807123A (en) 2000-04-25
TWI278482B (en) 2007-04-11
NO993659D0 (en) 1999-07-28
CA2277106A1 (en) 1998-07-30
TW574295B (en) 2004-02-01
RU2196152C2 (en) 2003-01-10
NZ336421A (en) 2001-06-29
WO1998032784A1 (en) 1998-07-30
JP2001509190A (en) 2001-07-10
AR011779A1 (en) 2000-09-13
KR100546923B1 (en) 2006-01-26
EP0958318A1 (en) 1999-11-24
DK0933373T3 (en) 2002-07-01
KR20000070573A (en) 2000-11-25

Similar Documents

Publication Publication Date Title
KR101281896B1 (en) Adhesive composition and adhesive agent comprising same
JP3333214B2 (en) LLDPE blends with ethylene-norbornene copolymers for resins with improved toughness and processability for film production
JP5705241B2 (en) Adhesive resin composition and hot melt adhesive obtained therefrom
US6221448B1 (en) Cold seal compositions comprising homogeneous ethylene polymers
EP1655341B1 (en) Transparent polyolefin compositions
JP5148877B2 (en) Hot melt adhesive with improved performance window
JP2000507283A (en) Olefin polymer-containing adhesive
TW200406456A (en) Heteromorphic polymer compositions and a process for preparing the same and the hot melt adhesive formulation comprising the same II
KR20000068456A (en) Compositions Comprising a Substantially Random Interpolymer of at Least One Alpa-Olefin and at Least One Vinylidene Aromatic Monomer or Hindered Aliphatic Vinylidene Monomer
US6323285B1 (en) Heteromorphic polymer compositions
JP5738135B2 (en) Modified propylene-based resin composition and adhesive comprising the composition
JP2018518570A (en) Filled polymer composition having low viscosity, good mechanical properties, and adhesion
CN112384589B (en) Polyolefin-based hot melt adhesive composition
JP2002520439A (en) Polyethylene compositions having improved optical and mechanical properties and improved processability in the molten state
KR20070057085A (en) Hot-melt adhesive compositions based on olefin co-polymers
JP3396389B2 (en) Polypropylene film
WO1995020487A1 (en) Adhesive composition
JP4053872B2 (en) Polyolefin composition
CN111278945A (en) Composition comprising a metal oxide and a metal oxide
MXPA99007007A (en) Heteromorphic polymer compositions
JP2020176207A (en) Adhesive composition, and adhesive film for temporary fixation
JP2006528826A (en) Cable insulation system with flexibility, high temperature deformation resistance and reduced degree of adhesion
JPH11228757A (en) Adhesive composition and film comprising the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees