TW200405662A - Complementary input dynamic muxed decoder - Google Patents

Complementary input dynamic muxed decoder Download PDF

Info

Publication number
TW200405662A
TW200405662A TW92123090A TW92123090A TW200405662A TW 200405662 A TW200405662 A TW 200405662A TW 92123090 A TW92123090 A TW 92123090A TW 92123090 A TW92123090 A TW 92123090A TW 200405662 A TW200405662 A TW 200405662A
Authority
TW
Taiwan
Prior art keywords
logic
complementary
evaluation
output
coupled
Prior art date
Application number
TW92123090A
Other languages
Chinese (zh)
Other versions
TWI221703B (en
Inventor
Mir S Azam
Original Assignee
Ip First Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ip First Llc filed Critical Ip First Llc
Publication of TW200405662A publication Critical patent/TW200405662A/en
Application granted granted Critical
Publication of TWI221703B publication Critical patent/TWI221703B/en

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Logic Circuits (AREA)

Abstract

A muxed-decoder circuit including multiple complementary dynamic circuits and an AND logic gate. Each complementary input dynamic circuit includes a complementary P-logic AND dynamic circuit, a complementary N-logic AND dynamic circuit and a pass device. The complementary P-logic AND dynamic circuit has an output coupled to a corresponding output evaluation node, and evaluates bits of an encoded address value corresponding and bits of a digital select value having a logic state for selecting the encoded address. The complementary N-logic AND dynamic circuit has an output coupled to a corresponding preliminary evaluation node, and evaluates inverted bits of the address value and the digital select value. The pass device is coupled between corresponding the first and second evaluation nodes and drives the second evaluation node low if the complementary N-logic AND dynamic circuit fails to evaluate. The AND logic gate couples to the output evaluation nodes and provides a corresponding decoded bit.

Description

200405662 五、發明說明(1) [0 0 0 1 ]本申請案係依據以下美國先行申請案 (Provisional Application)主張受惠:案號 60/412,110,申請日為2002年9月19日,以及案號: 60/412, 112 ,申請日:2002 年9 月 19 日。 [0 0 0 2 ]本申請案與下列同在申請中之美國專利申請案 有關,其申請日與本案相同,且具有相同的申請人與發明 人0 台灣 申請案號 DOCKETNUMBER 專利名稱 92123092 CNTR :220 3 互補式輸入動態邏輯 架構 92123091 CNTR :220 5 複雜邏輯函數之互補 式動態輸入邏輯架構 【發明之技術領域】 [0 0 0 3 ]本發明為邏輯電路相關領域,特別指邏輯電路 中包含多工解調的高扇入複雜邏輯電路的使用。 【先前技術】200405662 V. Description of the Invention (1) [0 0 0 1] This application claims to benefit from the following United States Advance Application: Case No. 60 / 412,110, the application date is September 19, 2002, and the case No. 60/412, 112. Application date: September 19, 2002. [0 0 0 2] This application is related to the following U.S. patent applications, which are also in the same application, with the same filing date and the same applicants and inventors: 0 Taiwan application number DOCKETNUMBER Patent name 92230292 CNTR: 220 3 Complementary Input Dynamic Logic Architecture 92123091 CNTR: 220 5 Complementary Dynamic Input Logic Architecture for Complex Logic Functions [Technical Field of the Invention] [0 0 0 3] The present invention is a field related to logic circuits, and particularly refers to logic circuits that include multiplexing. The use of demodulated high fan-in complex logic circuits. [Prior art]

第6頁 200405662 五、發明說明(2) [0004]因為速度上的要求,動態電路經常使用來實現 在目前管線系統中的邏輯函數。圖1為一表示及邏輯函 ;;邏輯間概要圖100 ’以及-實現及邏輯間1〇〇的示範動 如圖1所示,動態電路102與及邏輯間_皆 U個輸入,分別以D1、D2、,表示,此外還包含一 p個輪^Q,,、。、動態邏輯電路1〇2包括:一卜通道之帶頭元件 104 -於通道之結尾7、—評估邏輯函數之邏輯電路 、一輸出緩衝器或是反向器/驅動 州中,保管電侧由反向及二 ϋ 的輸出耦合至u3的輸出,反之亦然。 時,在反在相關時脈訊號"cu"上升頂點 電路的動暫驅二器υι的輸出建立出Q訊號。動態邏輯 準時,本質由以^訊號控制,當cu訊號為無效的低位 寺’動態邏輯電路為蓉爲^ 至高位準時,雷待或預先充電狀態;當訊號被拉 p〇的源結尾元件_邏輯間。帶頭元件 點"m"。ϊί至源電壓"VDD",汲極端耦合至評估 的標號相同此文/,端點的標號與其端點所負載訊號 極端輕合至i£用^端/^負載ΗΙ訊號)。結尾元件㈣的源 玀$ 共用參考電壓,,GND,,,汲極端耦合至nrv, N 。間…在實例中 碼"Ν''二Λ稱N-邏輯問)中被實現,而使用號 —細H生元件Ν1_ΝΝ在點ΗΙ至L〇間申㈣合。尤指第 k疋件N1的汲極端粞合到HI,而源極端耦合到下 第7頁 200405662Page 6 200405662 V. Description of the invention (2) [0004] Because of speed requirements, dynamic circuits are often used to implement logic functions in current pipeline systems. Figure 1 is a representation and logic function; a schematic diagram of the logic between 100 ′ and-the implementation of the demonstration and logic between 100 is shown in Figure 1, the dynamic circuit 102 and the logic _ are U inputs, respectively D1 , D2 ,, means that it also contains a p round ^ Q ,,,. The dynamic logic circuit 102 includes: a leading element 104 of the channel-at the end of the channel 7, a logic circuit that evaluates the logic function, an output buffer or inverter / drive state, and the storage side The outputs of Xiang and Erϋ are coupled to the output of u3 and vice versa. At the same time, the Q signal is established by the output of the dynamic temporary driver υι of the circuit of the anti-correlation clock signal " cu ". Dynamic logic punctuality is controlled by ^ signal. When the cu signal is invalid, the low-level temple 'dynamic logic circuit is Rong Wei ^ to the high level, the state of waiting or pre-charging; when the signal is pulled p0 source end element _ logic between. Leading component point " m ". For example, the source voltage " VDD ", the drain terminal coupled to the evaluation is the same as in this article, the terminal label and the signal loaded by the terminal are extremely light to i (use the ^ terminal / ^ load signal). The source $ of the end element $ shares a reference voltage,, GND ,, and the drain terminal is coupled to nrv, N. Time ... is implemented in the code "N" (referred to as N-logical question), and the use number-fine H element N1_NN is applied between points H1 and L0. Especially the drain terminal of the k-th component N1 is coupled to HI, while the source terminal is coupled to the next page 200405662

、個通道元件的汲極端,並依次類推,直到最後一個N -通道π件NN的源極端耦合至L〇。N個輸入M—DN分別提供至 各自的N-通道元件n1—nn中。此時點们耦合至反向器们和 U2的輸入端以及反向器元件U3的輸出端。 [0 0 0 6 ]操作時’當c l κ訊號為低時,帶頭元件對點η I 預先充電至邏輯高準位,訊號Q經由反向器/驅動器被拉至 低位準備,同時輸入訊號])1_1^為邏輯函數的評估作準 備。當CLK訊號為高位準時,依據D1_DN的輸入狀態,邏輯 電路104的邏輯函數若非處於評估就是評估失敗。當邏輯 電路104正在評估時,所有的輸入訊號M—DN都在可導通所 有N-通道元件Nl-NN的發出高準位,邏輯電路1〇4經由活化 的結尾元驅使點HI為邏輯低準位,同時輸出訊號9被 驅使成邏輯高準位。一但點01被驅動成低準位,點HI會一 直保持低準位直到CLK訊號再一次被驅動到低位。若邏輯 電路104評估失敗,則維持電路1〇6維持點HI於邏輯高位, 則訊號Q依然為低位。因此,當CLK訊號為低位時,貝彳Q訊 號亦為低位,如果邏輯函數為真時,當CLK訊號為高,此 時可藉由邏輯電路1〇4驅使訊號q為高位。 [0007]由邏輯電路1〇4所實現的邏輯函數為多重輸入 之及函數。為了評估,因此當CLK訊號為高位時,所有輸 入吼號D1 DN必須也為尚準位。通常在由通道元件串聯 而成的Ν-邏輯閘中(如邏輯電路1〇4所示)實現及邏輯函 數。像這樣^聯或是堆疊連結的Ν—通道元件,至少會存在 兩個導致動態電路發生問題的因素。第一,在们點與⑶點, The drain terminal of each channel element, and so on until the source terminal of the last N-channel π piece NN is coupled to L0. The N inputs M-DN are provided to the respective N-channel elements n1-nn. At this point the points are coupled to the inputs of the inverters and U2 and the output of the inverter element U3. [0 0 0 6] During operation, when the cl κ signal is low, the lead element is pre-charged to the logic high level to the point η I, and the signal Q is pulled to the low position via the inverter / driver to prepare for the input signal at the same time]) 1_1 ^ prepares for the evaluation of the logic function. When the CLK signal is at a high level, the logic function of the logic circuit 104 is either an evaluation failure or an evaluation failure according to the input state of D1_DN. When the logic circuit 104 is being evaluated, all the input signals M-DN are at the high level which can turn on all the N-channel elements Nl-NN. The logic circuit 104 drives the point HI to the logic low level through the activated ending element. At the same time, the output signal 9 is driven to a logic high level. Once point 01 is driven low, point HI will remain low until the CLK signal is driven low again. If the evaluation of the logic circuit 104 fails, the maintenance circuit 106 maintains the point HI at a logic high level, and the signal Q remains low. Therefore, when the CLK signal is low, the Behr Q signal is also low. If the logic function is true, when the CLK signal is high, the logic q can be used to drive the signal q to high. [0007] The logic function implemented by the logic circuit 104 is a sum function of multiple inputs. For evaluation, therefore, when the CLK signal is high, all input bellows D1 DN must also be high. The logic function is usually implemented in an N-logic gate (shown as logic circuit 104) formed by the serial connection of channel elements. In this way, there are at least two factors that cause problems in dynamic circuits. First, at our point and ⑶ point

五、發明說明(4) 間的評估路徑县 數,也就是屬入:函Ϊ(輯亦電:、:估路徑中元件個數的函 估路徑需要評估相對亦^被及起來的輸入個數)。長評 訊號需要較長時間去 目的輸入訊號,而較多數目的 其次,因為使用N_ y ,因此會降低全部的電路速度。 較高的元件會受芙=件實現評估函數’所以在堆疊中 件基體效應元件^成j的影響。因為堆叠的關係使得元 穩定位能。^成臨界電壓改變’因此提供了電路的不 輯電[:二H了ΐϊί這個與評估路徑長度有關的問題,邏 二制每一個堆疊的尺寸不超過4個階 的門顳又心丨°:估電路以2階層較佳。解決評估路徑限制 4碭,可利用反向函數(用或邏輯閘項實現),或是 羽入及函數分解成串聯堆疊的低扇入及函數。 阿 、[ 0009 ]實現反向及函數,關係到將串聯的及路徑轉換 成或路徑(以並聯的或邏輯閘項實現)。當一反向輸出可以 獲得時,反向或邏輯函數的解決方式滿足普通函數。然而 因為將邏輯運算的第1階層的及項轉換成或項會迫使在後 面階層中的或項被轉換成及項,因此使得反向解決方式在 複雜邏輯狀態下無法使用。所以這個反向的方法只是將Ν 堆疊的問題移交給後面的邏輯階層而已。 [0010]圖2為16輸入及邏輯閘2 00與實現及邏輯閘2〇〇 的示範邏輯電路202與圖解一般分解方法的概要圖。及邏 輯閘200包含有·· 16個輸入訊號(分別以Α1-Α16表示之)、 出訊號Q、同時還考慮一個高扇入及函數。用4個低 個輸V. Description of the invention (4) The number of counties in the evaluation path, that is, the number of inputs that belong to: the function of the line (series also ::: the number of components in the evaluation path, the function of the evaluation path needs to be evaluated and the number of inputs is also summed up) ). The long evaluation signal takes a long time to reach the destination input signal, and the larger number is second. Because N_y is used, the overall circuit speed will be reduced. Higher components are affected by the element realization evaluation function, so the element effect element in the stack becomes j. Because of the stacking relationship, the meta-stable potential energy is maintained. ^ Critical voltage change 'therefore provides the circuit's non-collective electricity [: 二 H 了 ΐϊί This problem related to the evaluation of the path length, the size of each stack of the logic two system does not exceed 4 orders of portal time and heart 丨 °: The estimation circuit is better in two levels. Resolving the evaluation path limitation 4 砀, can use the inverse function (implemented with OR logic gate term), or the feathering and function decomposition into a low fanning and function stacked in series. A, [0009] The realization of the inverse and function is related to the conversion of the series and path into an OR path (implemented with a parallel or logic gate term). When an inverted output is available, the solution of the inverted or logical function satisfies the ordinary function. However, transforming the first-level sum of logical operations into an or-term will force the or-terms in the later hierarchy to be converted into and-terms, thus making the reverse solution method unusable in a complex logic state. So this reverse method just transfers the problem of N stacking to the later logical hierarchy. [0010] FIG. 2 is a schematic diagram of an exemplary logic circuit 202 and a general decomposition method illustrating a 16-input and logic gate 2000 and an implementation and logic gate 2000. The AND gate 200 includes 16 input signals (represented by A1-A16 respectively), an output signal Q, and also considers a high fan-in and function. Use 4 lows to lose

224 200405662 五、發明說明(5) 扇入階層204、206、208、210串聯形成單一及邏輯閘 200,每一階層都包含了一個或—個以上的2_輸入及邏輯 閘。第1階層204包含有8個及邏輯閘,每一個及邏輯閘分224 200405662 V. Description of the invention (5) Fan-in levels 204, 206, 208, and 210 form a single and logic gate 200 in series. Each level contains one or more 2_ inputs and logic gates. The first level 204 contains 8 logic gates, each of which is divided into logic gates.

別由輸入訊號A1—A16中接收各自的輸入訊號對。第2階層 206包含4個及邏輯問’每一個及 J 中的2個及邏輯閑的輸出當成其輸入對第3階層 l 3 2個及邏輯閘’每一個及邏輯 2階層206中的2個及邏M ps认认,L 4 ^ n …:人" 輯的輸出當成其輸入對。第4階層 21 0包含1個及邏輯閘,兮孩、肢& i铒閘4及邏輯閘將所對應的第3階層208 的2個及邏軏閘的輸出當成其輸入對。 •都[口〇〇^值J寻注意的是,邏輯電路202中的每-個及函 ^^2 ^固雨入’因此各自的評估路徑皆被分解成低扇 造成整體電路的延遲,個附加串聯耦合階層會 層的低扇入的操作並不好=兩扇入及函數分解成數個階 Λ ^ ^ Ν ^ ^ ^ 不好。利用增加每一個及邏輯閘的扇 n a二ut °閘個數的目的,如此一 *,其個數可以 :咸:成為5:4輸入的及邏輯閑,每一個邏輯閉都 4個扇入。然而因為每_個及函數都有相對較大的扇入的 且還疋需要2個階層,所,、,、^ , „ 厅从這個方法還是會有延遲的問 趨0 【發明内容】 [0 01 2 ]本發明實例φ ^ e u ^^ 例中的多工解碼器電路包含有j 補輸入動態電路和一及邏 加方站仏X私么 、铒閘。母一個互補輸入動疼 互 路Do not receive the respective input signal pairs from the input signals A1-A16. The second level 206 includes 4 logic levels and each of the 2 logic levels and the output of the logic idle are regarded as its input pairs. The third level l 3 2 levels and the logic gate are each of the 2 levels and the logic level 206. And logical M ps recognizes that L 4 ^ n…: the output of the human series is regarded as its input pair. The fourth level 21 0 includes one logic gate, and the child, limb & gate 4 and logic gate take the output of the corresponding two levels of the third level 208 and logic gate as their input pairs. • All [口 〇〇〇 ^ 值 J 找 Attention is that each of the logic circuit 202 and the function ^^ 2 ^ Solid rain input 'Therefore the respective evaluation paths are decomposed into low fans causing the overall circuit delay, a The low fan-in operation of the additional series-coupling hierarchy is not good = two fan-in and the function decomposition into several orders Λ ^ ^ Ν ^ ^ ^ are not good. For the purpose of increasing the number of fans n a and ut ° of each logic gate, such a *, the number can be: salt: become 5: 4 input and logic idle, each logic gate has 4 fans. However, because each and every function has a relatively large fan-in and it also requires 2 levels, so, there is still a delay from this method. [Content of the Invention] [0 01 2] Example of the present invention φ ^ eu ^^ The multiplexer decoder circuit in the example includes a j-complement input dynamic circuit and a logic plus station 仏 X 么 铒, 铒 brake. A complementary input is used to move the circuit.

200405662 五、發明說明(6) 皆與其對應 碼輸出位元 個互補p _邏 以及一個導 耦合到對應 號,評估對 位址之邏輯 電路有一個 並回應時脈 擇。導通元 N-邏輯及動 準。此及邏 應解碼位元 的數個 相關。 輯及動 通元件 的其中 應編碼 狀態的 輸出耦 訊號, 件在對 態電路 輯閘有 的輸出 ^ =元編碼位址之一個以及其對應的解 T 一個互補輸入動態電路都包含有:一 態電路、一個互補N-邏輯及動態電路、 二互補P-邏輯及動態電路有一個輸出 個夕重輸出評估點,並回應時脈訊 t址之位址值的位元,以及對選擇編碼 數位選擇位元值。互補式\—邏輯及動態 :到對應的其中一個多重初步評估點, 評估對位址值之反向位元以及數位選 應的第1與第2評估點中耦合,且當互補 評估失敗時,驅動第2評估點為低位 夕個麵合至輸出外估點的輸入和提供對200405662 V. Description of the invention (6) are complementary to the corresponding code output bits p_logic and a lead coupled to the corresponding number. It is evaluated that there is a logic circuit for the address and responds to the clock selection. Continuity element N-logic and motion. This is related to the number of logic decoding bits. The output and coupling signals of the serial and dynamic components should be coded. The output of the component in the opposite circuit is ^ = one of the meta-coded address and its corresponding solution T. A complementary input dynamic circuit includes: one state Circuit, one complementary N-logic and dynamic circuit, two complementary P-logic and dynamic circuits have an output evaluation output point, and respond to the bits of the address value of the clock t address, and digital selection of the selection code Bit value. Complementary Logic and Dynamics: Go to one of the corresponding multiple preliminary evaluation points, evaluate the reverse bit of the address value, and couple between the first and second evaluation points of the digital selection, and when the complementary evaluation fails, Drive the second evaluation point as the input and provide countermeasures for the low-level face to the output overestimation point

[0 0 1 3 ]及邏輯閘可以是反及邏輯閘。多工解碼器可俨 ,含一個或以上個反向器/驅動器,每一個反向器/驅動^ 都有一個接收時脈訊號的輸入與一個提供反向時脈訊號到 導通電路中的輸出。互補N-邏輯及動態電路可能包含^ 個並聯耦合的N-通道元件,每一個卜通道元件都有一個接 收選擇位元以及位址位元的輸入。互補p—邏輯及動態電路 可能包含複數個並聯耦合的P-通道元件,每一個卜^道元 件都有一個接收選擇位元以及位址位元的輸入。 、 [0〇14]根據本發明實例,在複數個多位元編碼位址 選擇的並至少解碼出丨個位元的方法,包含有··合併選名 值的每一個位元’為選擇對應的位址以對應位址"的位[0 0 1 3] and the logic gate may be a reverse logic gate. The multiplex decoder can include one or more inverters / drivers. Each inverter / driver has an input to receive the clock signal and an output to provide the reverse clock signal to the conduction circuit. Complementary N-logic and dynamic circuits may include ^ N-channel elements coupled in parallel, and each channel element has an input for receiving a selection bit and an address bit. Complementary p-logic and dynamic circuits may include a plurality of P-channel elements coupled in parallel, and each channel element has an input for receiving a selection bit and an address bit. [0014] According to an example of the present invention, a method for selecting and decoding at least 丨 bits at a plurality of multi-bit encoding addresses includes: merging each bit of the selection value 'for selection correspondence. The address of the address "

第11頁 200405662Page 11 200405662

N到ίΞΐΪ之以數,及項集合、評估使用複數個互補 應的互-邏=:;=合口邏輯函數的補數、當對 對庫签〇 用母一個互補Ν—邏輯電路將 路:乃is 一點拉至低位準、評估使用複數個ρ-邏輯電 電路評估輯補數、當互補ρ-邏輯 用母個互補p-邏軏電路將對應第2個評估 點拉至高位準、經由對應導通元件(由對應的第1個評估點 控制)將對。應的第2評估點拉至低位準,使得每一個對應的 互補N-邏輯電路評估失敗、使用邏輯閘合併第2評估點以 提供解碼位元。 【實施方式】 [0 0 2 6 ]以下的說明,係在一特定實施列及其必要條件 的脈絡下而提供,可使一般熟悉此項技術者能夠利用本發 明。然而’各種對該較佳實施列所做的修改,對熟悉此項 技術者而言乃係顯而易見,並且在此所定義的一般原理, 亦可應用至其他實施列。因此,本發明並不限於此處所展 示與敘述之特定實施列,而是具有與此處所?露之原理與 新穎特徵相符之最大範圍。 〃 [0 0 2 7 ]本應用的發明者已承認在動態電路中實現高扇 入複雜邏輯函數的必要性,其中此實現方式並不會對到目 前為止與較多數目輸入項之動態邏輯相關的實現產生基體 效應和潛在因素。發明者因此發展出一互補輸入動態邏輯 電路,該互補輸入動態邏輯電路可以幫助多個數之輸入From N to ΞΐΪ, the number of items, the set of items, the evaluation uses a plurality of complementary mutual-logical logic = :; = the complement of the logical function of the joint, when the pair is signed to the library, a complementary N-logic circuit will be used: is is pulled to a low level at one point, the evaluation uses a plurality of ρ-logic electrical circuits to evaluate the complement, and when complementary ρ- logic uses a mother complementary p-logic circuit to pull the corresponding second evaluation point to a high level, the corresponding conduction is conducted through The components (controlled by the corresponding 1st evaluation point) will be paired. The corresponding second evaluation point is pulled to a low level, so that the evaluation of each corresponding complementary N-logic circuit fails, and the second evaluation point is combined with a logic gate to provide a decoding bit. [Embodiment] [0 0 2 6] The following description is provided in the context of a specific implementation and its necessary conditions, so that those skilled in the art can use the present invention. However, various modifications to this preferred embodiment will be apparent to those skilled in the art, and the general principles defined herein may also be applied to other embodiments. Therefore, the present invention is not limited to the specific implementations shown and described herein, but has the same features as those described herein? The widest scope of the principle of exposure is consistent with novel features. 〃 [0 0 2 7] The inventor of this application has acknowledged the necessity of implementing high fan-in complex logic functions in dynamic circuits, where this implementation is not related to dynamic logic with a large number of input entries so far The realization of the matrix effect and potential factors. The inventors have therefore developed a complementary input dynamic logic circuit which can assist the input of multiple numbers

第12頁 227 200405662Page 12 227 200405662

五、發明說明(8) 項,而不會產生因為高堆疊而發生的基體效應或是因 項分解而發生的潛在因素。利用圖3 —10更進一步描述^ [ 0028 ]圖3為一根據本發明實例實現的示範互補轸 動態邏輯電路300。CLK訊號被提供到p-通道帶頭元件以 及N-通道結尾元件NO的閘極端。帶頭元件p〇的源極端連 至源極電流VDD且汲極端耦合至第一初步評估點"NT〇p,,。 結尾元件NO的汲極端耦合到參考點” NB〇T,’,源極端耦合到 參考電壓點GND。用以評估之邏輯函數的補數(用Ν—邏二與 現)NC0MP 302 ;此邏輯函數3〇2的輸出端耦合至⑽⑽點貝 參考點耦合至ΝΒ0Τ點。NC0MP 302接收Ν個輸入訊號^-⑽ 的反向訊號,以DNB: DIB表示,其中字母” β,,除了特別說明 $,指的就是邏輯上的反向(亦即邏輯丨或真的反向既為邏 輯〇或否,依此類推)。值得注意的是,D1B—dnb和dib:dnb 代表的是同一組訊號(N為大於丨的正整數)。一儲存電 304於VDD與NT0P中耦合。實例中顯示,儲存電路3〇4被當 作半-、維持304實現,該儲存電路3〇4包含:一反向器^和 二通道7C件P1。反向器U1的輸入輕合到NT〇p,輸出麵合 到pi疋件的閘極端,同時該?1元件的源極端耦合到vdd, 汲極端耦合到NT0P。 [ 0029 ]CLK訊號同時也被提供到另一個p_通道元件以 端和-個反向器/驅動器的輪入端则。p2元件的源 3合至,㈣輕合至第2或是輪出評估點,,ρτ〇ρ"。反 向益/驅動器則發出其輸出為脈波5. Description of the invention Item (8), without the matrix effect due to the high stacking or the potential factor due to the item decomposition. [0028] FIG. 3 is an exemplary complementary dynamic logic circuit 300 implemented according to an example of the present invention. The CLK signal is supplied to the gate terminals of the p-channel head element and the N-channel end element NO. The source terminal of the lead element p0 is connected to the source current VDD and the drain terminal is coupled to the first preliminary evaluation point "NT0p". The drain terminal of the end element NO is coupled to the reference point "NB〇T, ', and the source terminal is coupled to the reference voltage point GND. The complement of the logic function used to evaluate (using N-logic two and present) NC0MP 302; this logic function The output of 30 is coupled to the ⑽⑽point reference point and the NB0T point. The NC0MP 302 receives the reverse signals of N input signals ^ -⑽, which is represented by DNB: DIB, where the letter "β", except for the special description $, Refers to a logical reversal (that is, logical or true reversal is both logical 0 or no, and so on). It is worth noting that D1B-dnb and dib: dnb represent the same set of signals (N is a positive integer greater than 丨). A stored power 304 is coupled between VDD and NT0P. The example shows that the storage circuit 304 is implemented as a half-, maintenance 304. The storage circuit 304 includes: an inverter ^ and two channel 7C pieces P1. The input of inverter U1 is lightly closed to NT〇p, and the output surface is closed to the gate terminal of pi. The source terminal of element 1 is coupled to vdd and the drain terminal is coupled to NT0P. [0029] The CLK signal is also provided to another p-channel element and a wheel-in terminal of an inverter / driver. The source 3 of the p2 element is closed, the light is closed to the second or the evaluation point is turned out, ρτ〇ρ ". The opposite direction / driver sends out its output as a pulse

200405662 五、發明說明(9) 之為’’CLKB’’),其輸出耦合至N-通道導通元件N1的源 極。N1之閘極耦合至NT0P,汲極耦合至ρΤ〇ρ。#NC〇Mp 302評估之邏輯函數補數可利用p—邏輯(以pc〇Mp 3〇6表示) 來實現’ PC0MP 306的參考點耦合至VDD,輸出點耦合至 PTOP點。PCOMP 306接收N個輸入訊號D1-DN,並在ΠΡ-邏 輯"中實現(亦即使用Ρ—通道元件),就如同NC0MP 3〇2在Ν一 邏輯中實現邏輯函數之補數。PT0P被提供到一輸出反向 器/驅動器U2的輸入端,該反向器/驅動器U2的輸出端顯示 其輸出訊號為n Q"。 [0030 ]操作時,CLK訊號初始值為低為準,因此ρτορ 輸出評估點經由帶頭元件P2預先充電至高位準,同時NT〇p 初步評估點經由帶頭元件P〇預先充電至高位準。輸出訊號 Q初始值亦為低準位。當CLK訊號為高位準時,NC〇Mp 302 與PCOMP 306分別評估輸入訊號dnB:d1b和dn:D1,此動作 是為了要計算或控制NTOP及PTOP點的狀態。NCOMP 302與 ?(:〇^*卩30 6二者實現相同邏輯函數的補數,因此當(^[為高 位準時,NCOMP 302與PCOMP 306二者若非處於評估就是評 估失敗。當NCOMP 302與PCOMP 306二者皆為否時(或是說 當NCOMP 302與PCOMP 306評估失敗時),邏輯函數本身為 正。當NCOPM302與PCOMP 306二者皆為評估時,邏輯函數 本身為否。 [0031]因此,當邏輯函數為真,NC〇Mp 20 3與pc〇Mp 306皆評估失敗,經由維持電路3〇4運算之NT〇IM$持高位 準。既然NTOP依然為高位準,導通元件N1依舊導通或開200405662 5. Description of Invention (9) is '' CLKB ''), and its output is coupled to the source of N-channel conduction element N1. The gate of N1 is coupled to NT0P, and the drain is coupled to ρΤ〇ρ. # NC〇Mp 302 The evaluation of the logical function complement can be implemented using p-logic (represented by pc〇Mp 3〇6) ’The reference point of PC0MP 306 is coupled to VDD, and the output point is coupled to the PTOP point. PCOMP 306 receives N input signals D1-DN, and implements them in the Π-logic " (that is, using P-channel elements), just as NC0MP 302 implements the complement of the logic function in N-logic. PT0P is provided to the input terminal of an output inverter / driver U2, and the output terminal of the inverter / driver U2 shows that its output signal is n Q ". [0030] During operation, the initial value of the CLK signal is low, so the ρτορ output evaluation point is pre-charged to a high level via the lead element P2, while the NT0p preliminary evaluation point is pre-charged to a high level via the lead element P0. The initial value of the output signal Q is also a low level. When the CLK signal is at a high level, NCOM 302 and PCOMP 306 evaluate the input signals dnB: d1b and dn: D1, respectively. This action is to calculate or control the status of NTOP and PTOP points. NCOMP 302 and? (: 0 ^ * 卩 30 6 both implement the complement of the same logical function, so when (^ [is a high level, both NCOMP 302 and PCOMP 306 are either in evaluation or the evaluation fails. When NCOMP 302 and PCOMP When both 306 are negative (or when NCOMP 302 and PCOMP 306 failed to evaluate), the logical function itself is positive. When both NCOPM302 and PCOMP 306 are evaluated, the logical function itself is not. [0031] Therefore When the logic function is true, both NC〇Mp 20 3 and pc〇Mp 306 fail to evaluate, and NT〇IM $ calculated by the maintenance circuit 300 holds a high level. Since NTOP is still high, the conducting element N1 is still conducting or open

晒 第14頁 229 200405662 五、發明說明(ίο) 啟。由反向器/驅動器UC0發出緩衝CLKB訊號為低位準,該 訊號通過導通元件對ΡΤ0Ρ放電至低位準,因此q變成高位 準(真),也就是邏輯函數為真。在這個方法中,導通π元件 Ν1由ΝΤ0Ρ控制而保持在導通狀態時,反向器uc〇最多經由2 個N-元件路徑將評估點PT0P拉低,因此導致邏輯真狀態會 被Q輸出訊號發出。這2個N-通道元件在反向器uc〇與導通 元件N1範圍中為明確地n -通道元件。當邏輯函數為否時, 則NC0MP 302與PC0MP 306評估,以至於ΝΤ0Ρ經由結尾元件 NO被拉至低位準,而3〇6拉至高位準。導通 元件N1被撤銷或關閉,因此PT0P保持在高位準。q輸出訊 號保持在低位準(否),也就是說邏輯函數為否。 [0032]不同於單純的骨牌電路,互補輸入動態邏輯電 路3 0 0允許其輸出在評估期間可被驅動至高位準。不同於 骨牌電路’如果輸入訊號較晚到達,但當CLK訊號為高位 準,NC0MP 302與PC0MP 306皆評估時,輸出訊號Q依舊可 以被驅動回低位準。互補輸入動態邏輯電路3 〇〇可被視為 包含:與第1個初步評估點NT0P相關的互補N-通道邏輯電 路308和與第2個輸出評估點PT0P相關的互補P-通道邏輯電 路310 ’其中PT0P被用以經由反向器/驅動器U2發展輸出訊 號Q。互補N-通道邏輯電路3 〇8包含:帶頭與結尾元件p〇與 N0、邏輯函數評估之互補N_邏輯電路…⑽? 3〇2以及維持 電路304。互補p-通道邏輯電路31〇包含:帶頭元件P 2以 及邏輯函數評估之互補P—邏輯電路PC0MP 306。若兩互補 邏輯電路308與310同為評估,則NT0P被電路308驅動成低Sun Page 14 229 200405662 V. Description of Invention (ίο) Kai. The inverter / driver UC0 sends a buffered CLKB signal to the low level. This signal discharges PT0P to the low level through the conduction element, so q becomes the high level (true), that is, the logic function is true. In this method, when the conducting π element N1 is controlled by NTOP and kept in the conducting state, the inverter uc0 pulls the evaluation point PT0P low through a maximum of 2 N-element paths, so the logic true state will be issued by the Q output signal . These two N-channel elements are explicitly n-channel elements in the range of the inverter uc0 and the conduction element N1. When the logic function is negative, the NC0MP 302 and the PC0MP 306 are evaluated, so that the NTOP is pulled to a low level by the end element NO, and 306 is pulled to a high level. The conducting element N1 is deactivated or turned off, so PTOP remains at a high level. The q output signal remains at a low level (No), that is, the logic function is No. [0032] Unlike a simple domino circuit, the complementary input dynamic logic circuit 300 allows its output to be driven to a high level during the evaluation. Unlike the domino circuit, if the input signal arrives later, when the CLK signal is high and both the NC0MP 302 and PC0MP 306 are evaluated, the output signal Q can still be driven back to the low level. The complementary input dynamic logic circuit 3 may be considered to include: a complementary N-channel logic circuit 308 related to the first preliminary evaluation point NT0P and a complementary P-channel logic circuit 310 ′ related to the second output evaluation point PT0P. The PTOP is used to develop the output signal Q via the inverter / driver U2. Complementary N-channel logic circuit 3 〇8 includes: Leading and ending elements p0 and N0, Complementary N_ logic circuit for logic function evaluation ... ⑽? 302 and the sustain circuit 304. The complementary p-channel logic circuit 31 includes: a lead element P 2 and a complementary P-logic circuit PC0MP 306 for evaluating the logic function. If two complementary logic circuits 308 and 310 are both evaluated, NT0P is driven low by circuit 308

第15頁 200405662 五、發明說明(11) 準位,ΡΤ0Ρ被電路310驅動成高準位。當電路3〇8愈31〇 評估失敗時,ΝΤ0Ρ提供且控制導通元件N1通過一^向器, CLK訊號的緩衝(由反向器/驅動器則形成)驅動ρτ〇ρ為低 位準。 [ 0033 ]另一替代實施例如圖3的虛線連接所示, 利用Ν-通道Ν2取代反向器UC0,的源極端麵合至接地^ 考點,N2的汲極端耦合至旁路元件M的源極端,n2的閘極 端耦合至CLK訊號。如此一來,當CLK為高準位時,N2導 通,將N1的汲極拉至低位準。gNC〇Mp 3〇2與%〇犯3〇6評 估失敗,則低位準會經由N1傳送至訊號ρτ〇ρ,因此可提供 兩位準的輸出Q。 [0034]汛號ΡΤ0Ρ的穩定參考點由一包含元件Μ與μ之 微弱維持電路增補。因為這些元件是可以被建議使用但卻 非必要的’因此用虛連接線表示。用一包含2個反向器之 全維持電路(如圖1)取代半維持型態的電路同樣也可以對 ΡΤΟΡ提供穩定的參考點。 > [00^35]另一替代的下拉元件Ν2可代替反向器uc〇 ;被 建歲的Μ弱維持電路附加物提供點ρτ〇ρ穩定的參考點,該 方法可以應用於本發明中隨後所被描述的所有實例中。 [0036]圖4為一根據本發明實現及邏輯函數中更特定 的實例實現示範互補輸入動態邏輯電路4〇〇的概要圖。互 補式輸入動態邏輯電路4〇〇大體上與互補式動態邏輯電路 0類似’相同的元件使用相同標示。對互補輸入動態邏 輯電路400而言,互補及n—邏輯電路4〇2取代NC〇pM 302, 200405662 五、發明說明(12) 互補及P-邏輯電路406取代PC0MP 3 06。換句話說,除了特 定實現評估及邏輯函數的部分之外,互補輸入動態邏輯電 路400與互補式動態邏輯電路300完全相同。值得注意的 是,只要將反向器/驅動器U2以一驅動器取代,或是緩衝 器移除反向函數,或是在U2的輸出加入另一個反向器/驅 動器(圖中沒有顯示),則互補式動態邏輯電路4〇〇就可以 轉換成執行反及邏輯函數的電路。 [ 0037 ]在N-邏輯中,利用耦合並聯於NTOP與NBOT間的 N個N -通道元件NC卜NCN實現互補及N-邏輯電路,同時也實 現在N-邏輯中的及函數之補數。然而,當補數輸入 DNB被提供時,其結果所要D1-DN輸入之邏輯及。以相同的 方式,在P-邏輯中,使用耦合並聯於VDD與PTOP間的N個P-通道元件pen -PCN實現互補及P-邏輯電路並實現在及函數 之其餘補數。輸入訊號補數DIB-DNB分別被提供到n-通道 元件N C1 - N C N的閘極端,(例如:D1 B提供到N C1的閘極; D2B提供到NC2的閘極;…),非補數的輸入訊號di—分別 被提供到P -通道元件P C1 - P C N的閘極端,(例如·· j) 1提供到 PC1的閘極;D2提供到PC2的閘極;…)。 [ 0038 ]互補輸入動態邏輯電路400的操作方式類似並 參考上述互補輸入動態邏輯電路30 0的操作方式。當D1_DN 輸入訊號之任一個或以上為否或低位準(例如:邏 輯”〇’’),則互補及邏輯電路402與4 06皆做評估的動作,因 此D1B-DNB輸入訊號所對應的訊號就為真或高位準(例如· 邏輯Π1Π)。若互補及邏輯電路40 2與406皆評估,及函數為Page 15 200405662 V. Description of the invention (11) Level, PTOP is driven to high level by circuit 310. When the evaluation of the circuit 308 is more than 31, the NTOP provides and controls the conduction element N1 to pass through a commutator, and the buffer of the CLK signal (formed by the inverter / driver) drives ρτ〇ρ to a low level. [0033] Another alternative embodiment is shown by the dashed connection in FIG. 3, the source terminal of the inverter UC0 is replaced by the N-channel N2, and the drain terminal of N2 is coupled to the source terminal of the bypass element M. The gate of n2 is coupled to the CLK signal. As a result, when CLK is at the high level, N2 is turned on and the drain of N1 is pulled to the low level. If gNC〇Mp 302 and% 〇 commit 306 evaluation failure, the low level will be transmitted to the signal ρτ〇ρ through N1, so it can provide two-level output Q. [0034] The stable reference point of the flood number TPOP is supplemented by a weak maintenance circuit including the components M and μ. Because these components are recommended but not necessary, 'they are indicated by dashed links. Replacing the semi-sustained circuit with a fully maintained circuit (see Figure 1) containing two inverters can also provide a stable reference point for PTOP. > [00 ^ 35] Another alternative pull-down element N2 can replace the inverter uc〇; the built-in M weak maintenance circuit add-on provides a stable reference point ρτ〇ρ, this method can be applied to the present invention In all examples described later. [0036] FIG. 4 is a schematic diagram of an exemplary complementary input dynamic logic circuit 400 implemented in accordance with the present invention and a more specific example of a logic function. The complementary input dynamic logic circuit 400 is generally similar to the complementary dynamic logic circuit 0, and the same components have the same designations. For the complementary input dynamic logic circuit 400, the complementary and n-logic circuit 4O2 replaces NC0pM 302, 200405662 V. Description of the invention (12) The complementary and P-logic circuit 406 replaces PC0MP3 06. In other words, the complementary input dynamic logic circuit 400 is exactly the same as the complementary dynamic logic circuit 300 except for the part that specifically implements the evaluation and logic functions. It is worth noting that as long as the inverter / driver U2 is replaced with a driver, or the buffer removes the inversion function, or another inverter / driver is added to the output of U2 (not shown in the figure), then The complementary dynamic logic circuit 400 can be converted into a circuit that performs an inverse logic function. [0037] In N-logic, N and N-channel elements NC and NCN coupled in parallel between NTOP and NBOT are used to implement complementary and N-logic circuits, and the complement of the sum function in N-logic is also realized. However, when the complement input DNB is provided, the result requires a logical sum of the D1-DN inputs. In the same way, in P-logic, N P-channel elements pen-PCN coupled in parallel between VDD and PTOP are used to implement complementary and P-logic circuits and implement the remainder of the AND function. The input signal complement DIB-DNB is provided to the gate terminals of the n-channel components N C1-NCN, respectively (for example: D1 B is provided to the gate of N C1; D2B is provided to the gate of NC2; ...), non-complement The input signals di—are provided to the gate terminals of P-channel elements PC1 to PCN, respectively (for example, j) 1 to the gate of PC1; D2 to the gate of PC2; ...). [0038] The operation of the complementary input dynamic logic circuit 400 is similar and reference is made to the operation of the complementary input dynamic logic circuit 300 described above. When any one or more of the D1_DN input signals are at the low or low level (for example: logic "0"), the complementary and logic circuits 402 and 4 06 both perform the evaluation action, so the signal corresponding to the D1B-DNB input signal is Is true or high (for example, · logic Π1Π). If the complementary and logic circuits 40 2 and 406 are both evaluated, and the function is

第17頁 200405662 五、發明說明(13) ,二至於當CLK訊號發出高位準時,_訊號變為否 ^氐位準)。或者是,當所有的輸入訊號D1 -DN皆為真 時’互補及邏輯電路4〇2與406皆評估失敗,以至於D1B一 輸入汛號所對應的訊號皆為否。若互補及邏輯電路 ;、06皆评估失敗,及函數為真,以至於當clk訊號發出高 立準時,Q輸出訊號變為真(發出高位準)。非常值得注意 的是,圖4的電路速度對扇入不靈敏;任何輸入到及函數 之合理的個數,皆可以不降低電路的速度而被執行。這是 因為評估路徑只通過2個堆疊的]^元件·· uc〇中的N1和⑽元 件。 [0039]圖5為一根據本發明實現或邏輯函數中另一更 特定的實例實現示範互補輸入動態邏輯電路5〇〇的概要 ,。互補式輸入動態邏輯電路5〇〇大體上與互補式動態邏 輯電路30 0相似(相同的元件使用相同標示),除TNC〇pM 302由互補或N-邏輯電路5〇2取代,PC〇Mp 3〇6由互補或p_ 邏輯電路506取代。換句話說,除了某部分特定實現評估 或邏輯函數的部分之外,互補輸入動態邏輯電路5〇〇與互 補式動態邏輯電路300完全相同。 [0040 ]在^邏輯中,利用耦合串聯於NTOP與NBOT間的 N個N-通道元件NCI-NCN實現互補或n-邏輯電路502。同時 也實現在N-邏輯中由補數輸入D1B — DNB驅動的或函數之補 數。以相同的方式’在p—邏輯中,利用耦合串聯於VD])與 PTOP間的N個P-通道元件pC1—PCn實現互補或p—邏輯電路 506。同時也實現在或函數中由真輸入D1_DN驅動的補數。Page 17 200405662 V. Description of the invention (13) Second, when the CLK signal sends a high level, the _ signal becomes no (^ 氐 level). Or, when all the input signals D1-DN are true, the complementary and logic circuits 402 and 406 both fail to evaluate, so that the signals corresponding to D1B-input flood numbers are all negative. If the complementary and logic circuits; and 06 both fail to evaluate, and the function is true, so that when the clk signal is sent high, the Q output signal becomes true (high level is issued). It is worth noting that the circuit speed in Figure 4 is not sensitive to fan-in; any reasonable number of inputs and functions can be executed without reducing the speed of the circuit. This is because the evaluation path only passes through the two stacked N ^ and N1 elements in uc0. [0039] FIG. 5 is a schematic diagram of an exemplary complementary input dynamic logic circuit 500 implemented in another or more specific example of the implementation of a logic function according to the present invention. Complementary input dynamic logic circuit 500 is generally similar to complementary dynamic logic circuit 300 (the same components use the same designation), except that TNC〇pM 302 is replaced by complementary or N-logic circuit 502, and PC〇Mp 3 〇6 is replaced by complementary or p_ logic circuit 506. In other words, the complementary input dynamic logic circuit 500 is exactly the same as the complementary dynamic logic circuit 300 except for a part that specifically implements the evaluation or logic function. [0040] In the logic, a complementary or n-logic circuit 502 is implemented using N N-channel elements NCI-NCN coupled in series between NTOP and NBOT. It also implements the complement of the OR function driven by the complement input D1B — DNB in N-logic. In the same way, in p-logic, a complementary OR p-logic circuit 506 is implemented by using N P-channel elements pC1-PCn coupled between VD]) and PTOP. It also implements the complement driven by the true input D1_DN in the OR function.

第18頁 200405662 五、發明說明(14) 因此’輸入訊號D1B-DNB分別被提供到N-通道元件NC1-NCN 的閘極端,同時,輸入訊號D1-DN分別被提供到p-通道元 件P C1 - P C N的閘極端。 [ 0 041 ]當所有D1-DN輸入訊號為否時,則互補或邏輯 電路502與506皆做評估的動作,而D1B_DNB輸入訊號所對 應的訊號為真。若互補或邏輯電路5〇2與5〇6皆評估,或函 數為否,以至於當CLK訊號被拉至高位準時,Q輸出訊號變 為否(、發出低位準)。相反的,當輸入訊號D1—1^的一個或 以上為真時,互補或邏輯電路5〇2與5〇6皆評估失敗,而Page 18, 200405662 V. Description of the invention (14) Therefore, the 'input signals D1B-DNB are provided to the gate terminals of the N-channel elements NC1-NCN, and the input signals D1-DN are provided to the p-channel element P C1, respectively. -The brake extreme of PCN. [0 041] When all D1-DN input signals are NO, the complementary or logic circuits 502 and 506 both perform the evaluation action, and the signal corresponding to the D1B_DNB input signal is true. If the complementary OR logic circuits 502 and 506 are both evaluated, the OR function is negative, so that when the CLK signal is pulled to a high level, the Q output signal becomes no (and a low level is issued). Conversely, when one or more of the input signals D1-1 ^ are true, the complementary or logic circuits 502 and 506 both fail to evaluate, and

DIB-DNB輸入訊號所對應的訊號為否。若互補及邏輯電路 40 2與^06皆評估失敗,或函數為真,以至於當clk訊號被 拉至高位準時,Q輸出訊號變為真(聲稱高位準)。 [ 0042 ]當利用互補輸入動態邏輯電路3〇()和其相關形 式如互補輸入動態邏輯電路4〇〇,可以的到許多的益處及 ,點。互補輸入動態邏輯電路3〇〇特別適合在高扇入及應 =,解碼電路中使用。如上面參考圖4的討論所提 1 - L § ^ # 1 ^3〇° ^4 00 ^ ^ ^ Hilf ^ ^ , =,件:因此會比在這之前所提供的其他邏輯電The signal corresponding to the DIB-DNB input signal is NO. If the complementary and logic circuits 40 2 and ^ 06 both fail to evaluate, or the function is true, so that when the clk signal is pulled to a high level, the Q output signal becomes true (the high level is claimed). [0042] When using the complementary input dynamic logic circuit 30 () and its related forms such as the complementary input dynamic logic circuit 400, many benefits and points can be obtained. The complementary input dynamic logic circuit 300 is particularly suitable for use in high fan-in and decoding circuits. As mentioned above with reference to the discussion of FIG. 4 1-L § ^ # 1 ^ 3〇 ° ^ 4 00 ^ ^ ^ Hilf ^ ^, =, pieces: so it will be more than other logic power provided before this

节、2 ζ於比車父目前使用於實現高扇入及函數的分解技 ίΐϊϊΐ入動態邏輯電路300和4 0 0會較其他電路快到孝 502和506 互補輸入動態邏輯電路的互補或邏輯電路 502和506為Ν -通道盘Ρ—通增—从 芙#效# h π Γ t1 件堆疊的型態,因此會因^ 基體效應和潛在因素限制扇入的個數。 [0043 ]圖6為一實現複雜邏輯函數之示範互補輸入動Section 2 is more than the current technology used by the car parent to achieve high fan-in and function decomposition. The dynamic logic circuits 300 and 400 are faster than other circuits. 502 and 506 are complementary or logical circuits of complementary input dynamic logic circuits. 502 and 506 are N-channel disks P— 通 增 — 从 芙 # 效应 # h π Γ t1 pieces of stacked type, so the number of fans will be limited due to ^ matrix effect and potential factors. [0043] FIG. 6 is an exemplary complementary input operation for implementing a complex logic function

$ 19頁 200405662 五、發明說明(15) 態邏輯電路600的概要圖。互補輸入動態邏輯電路6〇〇與互 補輸入動態邏輯電路3 0 0有相似的圖形結構,會適當的提 供本身達到接近3到4個或項的實現,其中每一個或項皆包 含有高扇入邏輯及函數。由互補輸入動態邏輯電路6 〇〇所 實現的複雜邏輯函數其複雜及/或函數形式之方程式1如 下: Q = D11,D12 ·〜D1X + D21 *D22 ·…D2Y+ …+ DM1,DM2 • --DMZ (1) 其中π ·’’表示邏輯及函數,表示邏輯或函數。方程式1 為Μ多重輸入及項之邏輯或,通常出現在管線執行系統的 運算中。第1項有”Χ”個及項:Dll、D12.....D1X ;第2 項有π Υπ個及項:D 2 1、D 2 2、…、D 2 Υ ;依此類推值到最後 一項或是第Μ項(最後一項)共有π Ζπ個及項:DM 1、DM2、 …、DMZ 〇 [0044]互補輸入動態邏輯電路600總共有Μ個互補N-通 道動態邏輯電路,每一個都很類似互補輸入動態邏輯電路 300的互補Ν-通道邏輯電路部分。第1互補Ν-通道動態邏輯 電路602實現第1個及項•’及Γ ( D21、D22.....D2Y),其 電路包含有:一Ρ-通道帶頭元件Ρ1 0、一Ν-通道結尾元件 Ν1 0、一以及1標記之Ν-邏輯方塊604和一儲存電路si。CLK 訊號提供到元件Ρ10與Ν10的閘極端,反向輸入訊號])ilB-〇1乂6(亦即〇118:〇116)被提供到^1-邏輯方塊6 04各自的輸入 中。帶頭元件Ρ10的源極端耦合至VDD,汲極端耦合至第一 初步評估點ΝΤΟΡ1。結尾元件Ν10的源極端耦合到GND,汲$ 19 pages 200405662 V. Description of the invention (15) A schematic diagram of the state logic circuit 600. The complementary input dynamic logic circuit 600 has a similar graphic structure as the complementary input dynamic logic circuit 300, and will appropriately provide implementations that approach three to four or terms, each of which includes a high fan-in Logic and functions. The complex logic function implemented by the complementary input dynamic logic circuit 6 00 has complex and / or functional form Equation 1 as follows: Q = D11, D12 · ~ D1X + D21 * D22 · ... D2Y + ... + DM1, DM2 •- DMZ (1) where π · '' represents logic and function, and represents logical OR function. Equation 1 is the logical OR of multiple inputs and terms. It usually appears in the operations of pipeline execution systems. The first term has "X" and terms: Dll, D12 ..... D1X; the second term has π Υπ and terms: D 2 1, D 2 2, ..., D 2 Υ; and so on to The last or M term (the last term) has a total of π Zπ and terms: DM 1, DM2, ..., DMZ. [0044] The complementary input dynamic logic circuit 600 has a total of M complementary N-channel dynamic logic circuits. Each is very similar to the complementary N-channel logic circuit portion of the complementary input dynamic logic circuit 300. The first complementary N-channel dynamic logic circuit 602 implements the first sum term 'and Γ (D21, D22, ..., D2Y), and its circuit includes: a P-channel head element P1 0, an N-channel The ending elements N1 0, one, and one are labeled N-logic block 604 and a storage circuit si. The CLK signal is provided to the gate terminals of components P10 and N10, and the reverse input signal]) ilB-〇1 乂 6 (that is, 〇118: 〇116) is provided to the respective inputs of ^ 1-logic block 604. The source terminal of the lead element P10 is coupled to VDD, and the drain terminal is coupled to the first preliminary evaluation point NTOP1. The source terminal of the end element N10 is coupled to GND.

第20頁 200405662 五、發明說明(16) 極端麵合到第1參考點ΝΒΟΊΊ °N-邏輯方塊604的輸出耦合 到NT0P1點,參考點耦合到NB0T1點,與及N-邏輯電路402 的配置方式相同,都包含X個並聯配置的N-通道元件,每 一個N-通道元件的閘極端都可接收D1XB:D11B中各自的一 個反向輸入訊號。儲存電路S1被當成半維持實現,和儲存 電路304 —樣,包含:一個反向器un和一個在VDD與點 NTOP1間麵合的p—通道元件pii。Page 20, 200405662 V. Description of the invention (16) The extreme surface closes to the first reference point ΝΒΟΊΊ ° The output of the N-logic block 604 is coupled to the NT0P1 point, the reference point is coupled to the NB0T1 point, and the configuration method of the N-logic circuit 402 Similarly, they all include X N-channel elements arranged in parallel, and the gate terminal of each N-channel element can receive a respective reverse input signal in D1XB: D11B. The storage circuit S1 is implemented as a semi-maintenance, and, like the storage circuit 304, includes: an inverter un and a p-channel element pii that is planar between VDD and the point NTOP1.

[ 0 045 ]互補輸入動態邏輯電路6〇〇中,用以實現剩餘 及項的剩餘M-1個互補N-通道動態邏輯電路的型態,皆和 第1個互補N-通道動態邏輯電路6〇2相同。如圖所示,最後 一個(或第Μ個)互補N-通道動態邏輯電路6〇6實現最後一個 及項n ANDMn (DM1、DM2.....DMY),其電路包含有:一p一[0 045] In the complementary input dynamic logic circuit 600, the type of the remaining M-1 complementary N-channel dynamic logic circuits used to realize the remaining and terms is the same as the first complementary N-channel dynamic logic circuit 6 〇2 is the same. As shown in the figure, the last (or M) complementary N-channel dynamic logic circuit 606 realizes the last sum term n ANDMn (DM1, DM2, ..., DMY), and its circuit includes:

通道帶頭元件ΡΜ0、一 N-通道結尾元件題0、一個以ANDM標 記之N-邏輯方塊608和一儲存電路SM。CLK訊號提供到元件 ΡΜ0與ΝΜ0的閘極端,反向輸入訊號DM1B —DMZB(亦即 DMZB :DM1B)被提供到μ-邏輯方塊6〇8的n—邏輯方塊6〇8各自 的輸^中。帶頭元件PM0的源極端耦合至〇1),汲極端輕合 至最後初步評估點NTOPM。結尾元件題〇的源極端耦合到 GND,汲極端耦合到最後參考點Νβ〇ΤΜ。N—邏輯方塊的 輸出耦合到NTOPM點,參考點耦合到〇〇1^點,與及N—邏輯 電路2的配指方式相同,都包含2個並聯配置的通道元 件’每一個N-通道元件的閘極端都可接收dmxb:])M1b中各 自的一個反向輸入訊號。儲存電路SM被當成半維持 和儲存電路304 —樣,包含:一個反向器UM1和一個在仰〇The channel head element PM0, an N-channel end element question 0, an N-logic block 608 marked with ANDM, and a storage circuit SM. The CLK signal is provided to the gate terminals of the components PM0 and NM0, and the reverse input signals DM1B—DMZB (ie, DMZB: DM1B) are provided to the respective inputs of the n-logic block 608 of the μ-logic block 608. The source terminal of the lead element PM0 is coupled to O1), and the drain terminal is closed to the final preliminary evaluation point NTOPM. The source terminal of the end element Q is coupled to GND, and the drain terminal is coupled to the final reference point Nβ〇TM. The output of the N-logic block is coupled to the NTOPM point, and the reference point is coupled to the 〇001 ^ point, which is the same as the assignment method of the N-logic circuit 2. They both contain 2 channel elements arranged in parallel. 'Each N-channel element The gate terminals can each receive a reverse input signal from dmxb:]) M1b. The storage circuit SM is treated as half-maintained and the storage circuit 304 is the same, and includes: an inverter UM1 and an on-chip inverter.

第21頁 200405662 五、發明說明(17) 與點ΝΤ0ΡΜ間耦合的P-通道元件PM1。Page 21 200405662 V. Description of the invention (17) P-channel element PM1 coupled with the point NTPO.

[0 046 ]M個初步評估點NT0P;i -ντορμ都分別輕合到M個 Ρ-通道件Ρ21-Ρ2Μ中各自的閘極端,同時也耦合到M個N_通 道導通元件Ν11-ΝΜ1中個自的閘極端。ρ—通道元件ρ21_ρ2Μ 以串聯或是在VDD與輸出評估點ρτορ間ρ-堆疊的方式麵 合。尤指第1個Ρ-通道元件Ρ21的汲極端耦合至點ρτ〇ρ,源 極端耦合至第2個Ρ-通道元件Ρ22(圖中沒有顯示)的汲極 端,第2個Ρ-通道元件Ρ22的源極端耦合至第3個ρ—通道元 件Ρ23(圖中沒有顯示)的汲極端,依此類推,最後一個ρ — 通道元件Ρ2Μ的源極端耦合到VDD。Ν—通道導通元件Νη_ ΝΜ1在ΡΤ0Ρ與一反向器/驅動器jjco的輸出間並聯耦合,該 反向器/驅動器UC0於點CLKB處提供一反向時脈訊號CL〇。 尤指每一個N-通道導通元件Nn —〇}的汲極端耦合至ρτ〇ρ 點,源極端耦合至反向器/驅動器uc〇,以便接收以“訊 號。反向器/驅動器UC0的輸入可接收CLK訊號,而其輸出 便提供CLKB訊號。一輸出反向器/驅動器U2的輸入端耦合 至ΡΤ0Ρ點’而其輸出則提供一輸出訊號卩。[0 046] M preliminary evaluation points NT0P; i-ντορμ are respectively closed to the respective gate terminals of the M P-channel elements P21-P2M, and are also coupled to each of the M N-channel conduction elements N11-NM1. Self brake extreme. The ρ-channel element ρ21_ρ2M is faced in series or ρ-stacked between VDD and the output evaluation point ρτορ. Especially the drain terminal of the first P-channel element P21 is coupled to the point ρτ〇ρ, the source terminal is coupled to the drain terminal of the second P-channel element P22 (not shown), and the second P-channel element P22 The source terminal of is coupled to the drain terminal of the third p-channel element P23 (not shown), and so on, and the source terminal of the last p-channel element P2M is coupled to VDD. The N-channel conduction element Nη_NM1 is coupled in parallel between the TPOP and the output of an inverter / driver jjco. The inverter / driver UC0 provides a reverse clock signal CL0 at point CLKB. In particular, the drain terminal of each N-channel conduction element Nn —〇} is coupled to the ρτ〇ρ point, and the source terminal is coupled to the inverter / driver uc〇 so as to receive a “signal. The input of the inverter / driver UC0 can be The CLK signal is received, and its output provides the CLKB signal. The input of an output inverter / driver U2 is coupled to the PTOP point 'and its output provides an output signal 卩.

[ 0047 ]互補輸入動態邏輯電路的運算方式敘述如下。 當CLKrfL唬為低位準時,每一個初步評估點ΝΤ〇ρ1—Ντ〇ρΜ各 自經由帶頭元件Ρ10-ΡΜ0被拉到高位準,使得每一個N—通 道導通兀件Nil-ΝΜ1開始動作。反向器/驅動器uc〇發出 CKLB訊號為高位準,PT0P預先充電至高位準,因此q輸出 訊號初始值為低位準。因為N—邏輯方塊ανμ—ΑΝΜ為並聯 耦合’因此當CLK訊號為高位準時,每一個N一邏輯方塊[0047] The operation method of the complementary input dynamic logic circuit is described below. When CLKrfL is at a low level, each preliminary evaluation point NT0ρ1-Nτ〇ρM is pulled to a high level through the lead element P10-PM0, so that each N-channel conduction element Nil-NM1 starts to operate. The inverter / driver uc〇 sends the CKLB signal to the high level, and PT0P is charged to the high level in advance, so the initial value of the q output signal is the low level. Because N-logic blocks ανμ-ΑNM are coupled in parallel ’, so when the CLK signal is at a high level, each N-logic block

_画_ 第22頁 200405662_ Painting_ Page 22 200405662

AND1-ANDM分別同時評估各自的輸入訊號。如果一個 上的N-邏輯方塊AND1-ANDM評估失敗,因為所對應之儲 π件SI-SM的操作,所以對應評估NT〇IM—NT〇pM保持 子 準,維持所對應的N-通道導通元件NU-NM1的動作^一 個或以上的N-通道導通元件因為CL〇訊號為低位準而田 時,反向器/驅動器UC0對ΡΤ0Ρ點放電至低位準,以至於 輸出訊號為高位準(真)。這種情形發生在當N—邏輯方塊 AND1-ANDM之一個或以上之反向輸入為否時(意指常態,非 反1輸入全為真),所以導致複雜邏輯函數為真。如果n — 邏輯方塊AND1-ANDM評估,N—通道導通元件NU—NM1皆關 閉,P-通道元件P21-P2M皆導通並將ρτορ拉至高位準,因 此Q輸出訊號為低位準(否)。當每一個卜邏輯方塊錢^一 ANDM至少有一個反向輸入為真時(意指對應常態,非反向 輸入為否),則後面這種情況會發生,所以複雜邏輯函數 為否。AND1-ANDM evaluate their respective input signals simultaneously. If the evaluation of one of the N-logic blocks AND1-ANDM fails, because of the operation of the corresponding storage π piece SI-SM, the corresponding evaluation NT〇IM-NT〇pM maintains the sub-standard and maintains the corresponding N-channel conduction element Action of NU-NM1 ^ When one or more N-channel conducting elements are turned on because the CL0 signal is low, the inverter / driver UC0 discharges the PT0P point to a low level, so that the output signal is a high level (true) . This situation occurs when one or more of the N-logic blocks AND1-ANDM's reverse inputs are negative (meaning normal, all non-reverse 1 inputs are true), so the complex logic function is true. If n — logic blocks AND1-ANDM are evaluated, N-channel conduction elements NU-NM1 are all turned off, P-channel elements P21-P2M are all turned on and ρτορ is pulled to a high level, so the Q output signal is a low level (No). When at least one inverse input of each logic block ^ ANDM is true (meaning the corresponding normal state, the non-inverting input is no), then the latter situation will occur, so the complex logic function is not.

[ 0 048 ]如同圖3中互補輸入動態邏輯電路3〇〇所比較 的,不同於P-邏輯中複雜邏輯函數補數的實現,互補輸入 動態邏輯電路600利用每一個初始評估點NT0P卜NT〇PM的觀 點。尤指在普通的互補電路中可觀察到,想要表示的p _邏 輯互補實現邏輯地評估成實現邏輯函數互補的替換表示。 因此NT0P1-NT0PM點被當成計算輸出評估點ρτορ的p—通道 的P-邏輯堆疊輸入使用,而不是對每一個在P—邏輯的及項 實現其邏輯函數補數(每一個及項可能包含並聯的P—通道 元件)。因此,Μ個互補P -邏輯方塊(一個方塊代表一個及[0 048] As compared to the complementary input dynamic logic circuit 300 in FIG. 3, unlike the implementation of the complex logic function complement in P-logic, the complementary input dynamic logic circuit 600 uses each initial evaluation point NT0P and NT. PM's point of view. Especially in ordinary complementary circuits, it can be observed that the logical implementation of p_logic complementation that is desired to be represented is evaluated logically to achieve an alternative representation of the logical function complementarity. Therefore, the NT0P1-NT0PM points are used as the P-logic stack input of the p-channel of the calculation output evaluation point ρτορ, instead of implementing the logical complement of each of the P-logical AND terms (each and term may include parallel P-channel element). Therefore, M complementary P-logical blocks (one block represents one and

第23頁 200405662 五、發明說明(19) --- 項)的每一個皆可以被一個單_ p〜通道元件取代,1 一個P-通道元件P2 1-P2M的閘極端由對應的其中—個評估 點NT0P1-ΝΤ0ΡΜ驅動。該合成型態可被有效簡化了。 [ 0 049 ]互補輸入動態邏輯電路6〇〇在N—邏輯方塊.Μ 一 ANDM的N-通道評估路徑中並不需要堆疊元件。舉例來說, 互補輸入動態邏輯電路30 0在N-和p—通道評估路徑中的配 置可能需要堆疊元件以得到複雜邏輯函數中的每一個附加 或項。但是互補輸入動態邏輯電路6〇〇在p_通道評估路徑 中的確有P-通道元件P2卜P2M的堆疊,因此或項的最大數 目會因為leakage因素以及基體效應而被限制。實例中所 不’或項的數目被限制成近似3-4項。對簡化電路而言, 互補輸入動態邏輯電路600比互補輸入動態邏輯電路3〇〇稍 微慢了一點’這是因為N-邏輯方全都評估優 先,驅動PTOP點。與現今實現複雜函數的動態電路比較, 不管怎樣’用互補輸入動態邏輯電路6〇〇作為例子的方法 還是較其他方式快到一個強度。 [0050]圖7為一使用多互補輸入動態邏輯電路7〇2、 704 .....706的互補輸入動態邏輯電路700的簡化方塊 圖。每一個多互補輸入動態邏輯電路皆與以多個及項實現 複雜邏輯函數的互補輸入動態邏輯電路6〇〇相同。第1個邏 輯電路7 0 2運算下列2項,包括第一項有” a π個及項:d 11、 1)12.....D1A以及第二項有” Β,,個及項:D21、D22、 …D2B。第2個邏輯電路704運算另兩項,包括第三項 有C個及項.D31、D32、…、D3C以及第四項有’’D"個及Page 23, 200405662 V. Description of the invention (19)-each item can be replaced by a single _ p ~ channel element, 1 a P-channel element P2 1-P2M has a gate terminal corresponding to one Evaluation points NT0P1-NTTOPM drive. This synthetic pattern can be effectively simplified. [0 049] Complementary input dynamic logic circuit 600 does not require stacked components in the N-channel evaluation path of the N-logic block .M-ANDM. For example, the configuration of the complementary input dynamic logic circuit 300 in the N- and p-channel evaluation paths may require stacked components to obtain each additional or term in a complex logic function. However, the complementary input dynamic logic circuit 600 does have a stack of P-channel elements P2 and P2M in the p-channel evaluation path, so the maximum number of OR terms will be limited due to the leakage factor and the matrix effect. The number of items in the examples is limited to approximately 3-4 items. For the simplified circuit, the complementary input dynamic logic circuit 600 is slightly slower than the complementary input dynamic logic circuit 300. This is because the N-logic side all evaluates the priority and drives the PTOP point. Compared with today's dynamic circuits that implement complex functions, the method using complementary input dynamic logic circuit 600 as an example is faster than other methods. [0050] FIG. 7 is a simplified block diagram of a complementary input dynamic logic circuit 700 using multiple complementary input dynamic logic circuits 702, 704, ..... 706. Each multiple complementary input dynamic logic circuit is the same as a complementary input dynamic logic circuit 600 that implements a complex logic function with multiple sum terms. The first logic circuit 7 0 2 calculates the following two terms, including the first term having "a π sum terms: d 11, 1) 12 ..... D1A and the second term having" B, "and sum terms: D21, D22, ... D2B. The second logic circuit 704 computes two other terms, including the third term with C and terms. D31, D32, ..., D3C, and the fourth term with ‘’ D " and

第24頁 200405662 五、發明說明(20) 項:D41、D4 2、…D4D。依此類推,最後一個邏輯電路 7 0 6運鼻最後第Μ項與第N項兩項,分別包括"γπ個與” 2π個 及項。為了得到最佳的結果,每一個互補輸入動態邏輯 電路702-706都只有運算2個及項。 [0051] 互補輸入動態邏輯電路702-706的輸出被提供 到各自或邏輯閘的輸入,該或邏輯閘決定最後的輸出值 Q。如圖所示,邏輯電路7〇2提供輸AQ12給或邏輯閘7〇8的 其中一個輸入,邏輯電路704提供輸出Q34給或邏輯閘7〇8 的另一個輸入,依此類推到最後一個邏輯電路7〇6提供衿 出QMN給或邏輯閘708的另一個輸入。熟習此領域技術者别 察覺到,因為不需要考慮元件的基體效應或潛在因素,: 邏輯閘7 0 8可以很容易的以所需要輸入的個數來實現,戶 以任何數目的互補輸入動態邏輯電路都可以並聯堆疊。 例來說,或邏輯閘708可以用N-通道元件並聯耦合(圖中: 有顯示)來實現,每一個卜通道元件分別接收所對應^ 輸入動態邏輯電路702一7〇6的輸出。 词 [0052] 互補輸入動態邏輯電路3〇〇非常適合用以 f而要邏輯上及運算時的運算次序之連續邏輯運算的^ 二。炎圖8為一般常用多工解碼器800的方塊圖。多工解螞考 經吊使用於管線系統中2個位址位元集合間的選^ 和二所選擇的集合解碼之及操作實例。如圖所示Ά ^802的於和B[Z :〇]的兩個集合被提供到各自之2_bit多工 Is 8 0 2的輸入中。該圖組奋 此領域技術者可Λ :例顯不每一位址的2位元’熟習 ㈣者可察覺到,現今-般運算在位址上的多工解Page 24 200405662 V. Description of the Invention (20) Item: D41, D4 2, ... D4D. By analogy, the last logic circuit 706 runs the last two items of M and N, including " γπ and 2π sums respectively. In order to obtain the best results, each complementary input dynamic logic The circuits 702-706 all have only 2 sum terms. [0051] The outputs of the complementary input dynamic logic circuits 702-706 are provided to the inputs of respective OR logic gates, which determine the final output value Q. As shown in the figure The logic circuit 702 provides one of the inputs of the OR logic gate 700, and the logic circuit 704 provides the output Q34 to the other input of the OR logic gate 700, and so on to the last logic circuit 70. Provide another input to pull out the QMN to OR logic gate 708. Those skilled in the art should not perceive, because there is no need to consider the element's matrix effect or potential factors: Logic gate 7 0 8 can be easily input with the required It can be implemented in number, and any number of complementary input dynamic logic circuits can be stacked in parallel. For example, or logic gate 708 can be realized by parallel coupling of N-channel elements (pictured: shown), each one Each channel element receives the corresponding output from the input dynamic logic circuit 702-7007. Word [0052] The complementary input dynamic logic circuit 300 is very suitable for continuous logical operations where f is required logically and in the order of operations during operation. ^ 2. Yan Figure 8 is a block diagram of a commonly used multiplexing decoder 800. The multiplexing solution is used to select between two sets of address bits in the pipeline system and two of the selected sets are decoded. And operation examples. As shown in the figure, two sets of ^ 802 and Yu B [Z: 〇] are provided to the inputs of the respective 2_bit multiplexing Is 8 0 2. The figure group can be Λ : Examples show that the 2-bits of each address are familiar to those who are familiar with it.

第25頁 200405662 五、發明說明(21) 碼器都至少要2-bits。一選擇訊號SEL·被提供到多工器8〇2 的第1個選擇輸入和提供到反向器^的輸入端。反向器Η 的,出被提供到多工器802的另一個選擇輸入。sel訊號的 狀態使用在編碼位址A [ 1 : 〇 ]和B [ 1 : 〇 ]間選擇。而所選擇的 位元(以訊號ENCODED[1:0]表示)被提供到解碼器8〇4的輸 入,该解碼器804將ENCODED[1:〇]解碼成輸出訊號DEC〇DED [3:0]。 [〇〇 53j熟習此領域技術者可以察覺到,解碼包含並聯 邏輯及運算的位元,用以決定每一個解碼輸出dec〇ded [3 : 0 ]的狀態。舉例來說,edc〇ded [ 〇 ]訊號的狀態由及運 鼻’其運算方式如下列方程式2所示: ENC0DED[1]B ·ENCODED[0]B (2) 其中:符號π ·"表示局部及函數,字母” B”附加於訊號名 稱之後表示先前所描述的邏輯反向。若SEL訊號被發出, 則A[1:0]訊號被多工器802選擇成ENC〇DED[1:〇]訊號反 之’若SEL訊號被否認,則B[1:〇]訊號被選擇,這也是邏 輯上的運算。 [0054]圖9為一計算最上層解碼位元或*dec〇ded[3] 訊號之解碼狀態的示範互補輸入動態多工解碼器電路9〇〇 概要圖。互補輸入動態多工解碼器電路900包含第1與第2 互補輸入動態邏輯電路902與906,互補輸入動態邏^電路 9 0 2與9 0 6與先别所提到的互補輸入動態邏輯電路4 〇 〇所實 現的方式相同。尤指互補輸入動態邏輯電路9〇2與互補輸 入動態邏輯電路400類似,除了 :導通元件…更名為N4 ;Page 25 200405662 V. Description of the invention (21) The encoders must be at least 2-bits. A selection signal SEL is provided to the first selection input of the multiplexer 802 and to the input terminal of the inverter ^. The output of the inverter Η is provided to another selection input of the multiplexer 802. The state of the sel signal is used to select between coded addresses A [1: 〇] and B [1: 〇]. The selected bit (indicated by the signal ENCODED [1: 0]) is provided to the input of the decoder 804. The decoder 804 decodes ENCODED [1: 〇] into the output signal DEC〇DED [3: 0 ]. 53. Those skilled in the art can perceive that decoding includes bits that include parallel logic and operations to determine the state of each decoded output decoded [3: 0]. For example, the state of the edc〇ded [〇] signal is related to its operation mode as shown in the following Equation 2: ENC0DED [1] B · ENCODED [0] B (2) where: the symbol π · " means Local and function, the letter "B" appended to the signal name indicates the logical inversion described previously. If the SEL signal is sent, then the A [1: 0] signal is selected by the multiplexer 802 as the ENC〇DED [1: 〇] signal. If the SEL signal is denied, the B [1: 0] signal is selected. It is also a logical operation. [0054] FIG. 9 is a schematic diagram of an exemplary complementary input dynamic multiplexing decoder circuit 900 that calculates the decoding state of the uppermost decoding bit or the * decoded [3] signal. The complementary input dynamic multiplex decoder circuit 900 includes first and second complementary input dynamic logic circuits 902 and 906, complementary input dynamic logic circuits 9 0 2 and 9 0 6 and the complementary input dynamic logic circuit 4 mentioned previously. 〇〇 achieved the same way. Especially the complementary input dynamic logic circuit 902 is similar to the complementary input dynamic logic circuit 400, except that: the conducting element ... is renamed to N4;

第26頁 200405662 五、發明說明(22) 訊號/點ΝΤ0Ρ、ΝΒ0Τ、CLKB、和ΡΤ0Ρ分別重新更名為 NT0P1、NB0T1、CLKB1、和 PT0P1 ;以3 個N-通道元件 N1、 N2、和N3並聯耦合成的及N_邏輯電路4〇2被當作N-邏輯電 路903實現;以3個P-通道元件pi、P2、和P3並聯耦合成的 及P-邏輯電路406被當作P-邏輯電路904實現;儲存電路 304由替代的相同儲存電路9〇5取代;反向器/驅動器U2被 移除,或是用一 2 -輸入反及邏輯閘/驅動器U4取代。 PTOP1訊號被提供到反及邏輯閘/驅動器U4的一個輸 入。 [ 0 055 ]互補輸入動態邏輯電路9〇6也與互補輸入動態 邏輯電路400類似,除了 :導通元件…更名為N9 ;訊號/點 NTOP、NBOT、CLKB、和PTOP 分別重新更名為NTOP2、 NBOT2、CLKB2、和PTOP2 ;以3 個N-通道元件N6、N7、和N8 並聯耦合成的及N-邏輯電路402被當作N-邏輯電路907實 現’以3個P-通道元件P9、pi 〇、和?11並聯耦合成的及p一 邏輯電路406被當作P-邏輯電路9〇8實現;儲存電路3〇4由 替,的相同儲存電路909取代;反向器/驅動器…被移除, 或是用一2 -輸入反及邏輯閘/驅動器U4取代。ρτ〇ρ2訊號被 提供到反及邏輯閘/驅動器U4的一個輸入。 [ 0 0 56 ]如圖所示,互補輸入動態邏輯電路9〇2與9〇6為 反向CLK訊號及對分布型態提供各自的反向時脈CLKBi和 CUB2,因此分別包含對應的時脈反向器/驅動器UCQ* UC3、。可以察覺到的是,單一時脈緩衝電路可以被使用來 取代提供到每一個導通元件之單一緩衝和反向的時脈訊Page 26, 200405662 V. Description of the invention (22) Signals / points NTP0, NB0T, CLKB, and PT0P are renamed NT0P1, NB0T1, CLKB1, and PT0P1 respectively; they are coupled in parallel with three N-channel elements N1, N2, and N3 The formed and N_logic circuit 402 is implemented as an N-logic circuit 903; and the P-logic circuit 406, which is coupled in parallel with three P-channel elements pi, P2, and P3, is regarded as a P-logic circuit 904 is implemented; storage circuit 304 is replaced by the same storage circuit 905 replaced; inverter / driver U2 is removed or replaced with a 2-input inverse logic gate / driver U4. The PTOP1 signal is supplied to an input of the inverse logic gate / driver U4. [0 055] The complementary input dynamic logic circuit 906 is also similar to the complementary input dynamic logic circuit 400, except that: the conducting element ... is renamed to N9; the signal / point NTOP, NBOT, CLKB, and PTOP are renamed to NTOP2, NBOT2, respectively CLKB2 and PTOP2; 3 N-channel elements N6, N7, and N8 are coupled in parallel and N-logic circuit 402 is implemented as N-logic circuit 907 'with 3 P-channel elements P9, pi, with? The 11-coupled and p-logic circuit 406 is implemented as P-logic circuit 908; the storage circuit 304 is replaced by the same storage circuit 909; the inverter / driver ... is removed, or Replace with a 2-input inverse logic gate / driver U4. The ρτ〇ρ2 signal is provided to an input of the inverse logic gate / driver U4. [0 0 56] As shown in the figure, the complementary input dynamic logic circuits 902 and 906 provide respective reverse clocks CLKBi and CUB2 for the reverse CLK signal and the distribution pattern, so they respectively include corresponding clocks. Inverter / Driver UCQ * UC3 ,. It is noticeable that a single clock buffer circuit can be used instead of the single buffer and reverse clock signal provided to each conducting element

第27頁 242 200405662 五、發明說明(23) 號。Page 27 242 200405662 V. Description of Invention (23).

[ 0057 ]N-通道元件N1的閘極端接收一反向SEL訊號(或 寫成SELB)。N-通道元件N2與N3的閘極端分別接收一反向 A0與A1訊號(或寫成A0B和A1B)。用這方式,則互補輸入動 態邏輯電路902可以得到邏輯值為3£[*人0*人1。1^-通道元 件N6的閘極端接收SEL訊號。N-通道元件N2與N3的閘極端 分別接收一反向B0與B1訊號(或寫成BOB和B1B)。用這方 式,則互補輸入動態邏輯電路9 〇 2可以得到邏輯值為 SELB · B0 · B1。因此,此互補輸入動態多工器電路9〇〇決 定DEC0DED[3] = ENC0DED[1] .ENCDDEDfO],該互補輸又 動態多工器電路9 〇〇於反及邏輯閘/驅動器U4的輸出被聲 稱0[0057] The gate terminal of N-channel element N1 receives a reverse SEL signal (or written as SELB). The gate terminals of N-channel elements N2 and N3 respectively receive a reverse A0 and A1 signal (or written as A0B and A1B). In this way, the complementary input dynamic logic circuit 902 can obtain a logic value of 3 £ [* person 0 * person 1. The gate terminal of the channel element N6 receives the SEL signal. The gate terminals of N-channel elements N2 and N3 respectively receive a reverse B0 and B1 signal (or written as BOB and B1B). In this way, the complementary input dynamic logic circuit 9 02 can get the logic value SELB · B0 · B1. Therefore, the complementary input dynamic multiplexer circuit 900 determines DEC0DED [3] = ENC0DED [1] .ENCDDEDfO]. The complementary input and the dynamic multiplexer circuit 900 are inversely inverted to the output of the logic gate / driver U4. Claim 0

[0 0 5 8 ]利用並聯的方式執行A和B位址位元的解 碼。SEL訊號的狀態可決定解碼的a或b輸出哪一個被選擇 並提供到反及邏輯閘U4。若SEL訊號被發出(SELB無效), 則選擇關於互補輸入動態邏輯電路9〇2的人位元,接著較々 的互補輸入動態邏輯電路90 6評估驅動pT〇p輸出評估點 高位準。且若Α0和Α1訊號為高位準,則導通元件Ν4導通、 許CLKB1訊號驅動ΡΤ0Ρ!輸出評估點為低位準,原因3 DEC0DED[3]輸出訊號被發出為高位準。 ’、疋 [ 0059 ]在計算全部位元DECODED[3:〇]的全快速多工負 碼器中,互補輸入動態多工解碼電路9〇〇被複寫4次(一個 位元複寫-次)’位址位元被提供到評估路徑_ P-通道^件輸人,該評估路徑是因為其適當的特殊解^[0 0 5 8] A and B address bits are decoded in parallel. The state of the SEL signal determines which of the decoded a or b outputs is selected and supplied to the inverse logic gate U4. If the SEL signal is issued (SELB is invalid), then the human bit of the complementary input dynamic logic circuit 902 is selected, and then the comparative complementary input dynamic logic circuit 90 6 evaluates the drive pT0p output evaluation point to a high level. And if the A0 and A1 signals are high level, the conduction element N4 is turned on, and the CLKB1 signal drives the PT0P! Output evaluation point to be a low level. Cause 3 The DEC0DED [3] output signal is sent to a high level. ', 疋 [0059] In a full-speed multiplex negative encoder that calculates all bits DECODED [3: 〇], the complementary input dynamic multiplex decoding circuit 900 is overwritten 4 times (one bit overwrite-time)' Address bits are provided to the evaluation path _ P-channel ^ input, the evaluation path is due to its appropriate special solution ^

第28頁Page 28

Z4 J 200405662 五、發明說明(24) 出位元而被選擇的。較低位元DECODED[2:0]由執行輸入位 元及其補數組合之邏輯上的及運算所提供。舉列來^兒, 為了了解DEC0DED[2]位元,互補輸入動態多工解碼電路 9 0 0被複寫,同時,除了被交換的位址位元外,輸入訊號 大體上相同。尤指A0/A1和A0B/A1B交換,B0/B1和 B0B/B1B交換(亦即不是A0B而是A0被提供到通道元件]^2 的閘極端;不是A0而是A0B被提供到p—通道元件?4的間極 端;不是A1B而是A1被提供到N-通道元件们的閘極端;不 是A1而是A1B被提供到P-通道元件P5的閘極端;不是B〇B而 是B0被提供到N-通道元件N7的閘極端;不是B〇而是β〇Β被 提供到P-通道元件P10的閘極端;不是B1B而是…被 提供到N-通道元件N8的閘極端;不是β1而是B1B被提供到 P-通道元件P11的閘極端)。 [0060]附加位元可以利用在各自的評估路徑中增加附 加N-通道與P-通道元件去解碼(亦即分別在點ΝΤ〇ρχ / ΝΒΟΤχ間與點VDD / ΡΤΟΡχ間;其中"χ"表示並聯之互補輸 入動態邏輯電路的數目)。可增加多工函數以便從2個以上 的輸入集合中選擇,而增加方式是利用:在各自的評估路 $的並聯Ν-通道與Ρ-通道元件中,添加並聯解碼階層和選 擇訊號的輸入邏輯組合。 [ 0061 ]反及邏輯閘U4大致上可以利用與互補入動態邏 = =400相同的方式實現,也就是利用足夠的輸入和反 :1回数也汗』以引用·將互補入動態邏輯電路400 的反向器/驅動器U2取代成非;5 & κ β 〜风并反向驅動器(圖中沒有顯Z4 J 200405662 V. Description of the invention (24) It is selected by bit. The lower bits DECODED [2: 0] are provided by performing a logical sum of the input bits and their complements. For example, in order to understand the DEC0DED [2] bits, the complementary input dynamic multiplexing decoding circuit 900 is overwritten, and the input signals are substantially the same except for the address bits that are exchanged. Especially A0 / A1 and A0B / A1B exchanges, B0 / B1 and B0B / B1B exchanges (that is, not A0B but A0 is provided to the channel element) ^ 2's gate extreme; not A0 but A0B is provided to the p-channel The intermediate terminal of element 4; not A1B but A1 is provided to the gate terminal of the N-channel elements; not A1 but A1B is provided to the gate terminal of P-channel element P5; not B0B but B0 To the gate terminal of N-channel element N7; not B0 but β〇B is provided to the gate terminal of P-channel element P10; not B1B but ... provided to the gate terminal of N-channel element N8; not β1 and It is B1B provided to the gate terminal of P-channel element P11). [0060] Additional bits can be used to add additional N-channel and P-channel elements to their respective evaluation paths to decode (that is, between points NTTOpx / ΝΒΟΤχ and points VDD / PTΟΡχ respectively; where " χ " Represents the number of complementary input dynamic logic circuits in parallel). A multiplexing function can be added to select from more than two input sets, and the increase method is to use: in the parallel N-channel and P-channel elements of the respective evaluation circuit $, add the parallel decoding hierarchy and the input logic of the selection signal combination. [0061] The reverse logic gate U4 can be implemented in the same manner as the complementary logic dynamic logic == 400, that is, using sufficient inputs and inverses: 1 times the number is also used. Inverter / driver U2 is replaced by non; 5 & κ β ~ wind and reverse driver (not shown in the figure)

第29頁 244 200405662Page 29 244 200405662

示);或是在輸出添加另一個反向器(圖中沒有顯示),來 達成反向輸出的目的。熟習此領域技術者可察覺到,因 其高扇入特性,所以使用互補輸入動態邏輯電路4 〇 〇當作“、、 輸出反及邏輯閘可以幫助任何個數之位址(例如:4個以 [ 0062 ]圖1〇是一個用互補輸入動態邏輯電路來解螞4 個4-位元位址A[3:〇]、B[3:〇]、(:[3:〇]和1)[3:〇]的示範协 速動態、夕工解碼器1 〇 〇 0的簡化方塊圖。動態多工解碼岑 1000包含16個互補輸入動態多工解碼電路⑽^、MD14、 、MD0(或寫成md [15:0]),每一個互補輸入動態多工解 瑪電路分別解碼16個輸出解碼位元DECODED[ 1 5 : 0 ]中各自 的一個。除了為了從多數個位址間選擇而包含的附加互 輸入動態邏輯電路外,每一個互補輸入動態多工解碼電 MD [ 1 5 : 0 ]皆和互補輸入動態多工解碼電路9 〇 〇相同的方式 實現。同時,在每一個互補輸入動態多工解碼電路中的"a 一個互補輸入動態邏輯電路,包含了附加的N__通道與p〜^ 道元件(在對應的N-邏輯與P-邏輯電路中)用以解碼^加^ 選擇和位址位元。 、 [0063]每一個互補輸入動態多工解碼電路j 5 : 〇 ]都 很相似’所以在此只顯示第1個多工解碼器電路⑽1 $的細(Shown); or add another inverter (not shown) to the output to achieve the purpose of reverse output. Those skilled in this field will notice that because of its high fan-in characteristic, using complementary input dynamic logic circuit 4 00 as ",, output and logic gate can help any number of addresses (for example: 4 to [0062] FIG. 10 is a solution using complementary input dynamic logic circuits to solve four 4-bit addresses A [3: 〇], B [3: 〇], (: [3: 〇], and 1) [ 3: 〇] 's simplified block diagram of the demonstration co-speed dynamic, evening decoder 1 000. Dynamic multiplex decoding Cen 1000 contains 16 complementary input dynamic multiplex decoding circuits ⑽, MD14,, MD0 (or written as md [15: 0]), each complementary input dynamic multiplexing decoding circuit decodes each of the 16 output decoding bits DECODED [1 5: 0] separately. In addition to the additional included for selection from the majority of addresses Outside the mutual input dynamic logic circuit, each complementary input dynamic multiplex decoding circuit MD [15: 0] is implemented in the same way as the complementary input dynamic multiplex decoding circuit 9 00. At the same time, at each complementary input dynamic multiplexing &Quot; a in the decoding circuit a complementary input dynamic logic circuit containing additional N The __ channel and p ~ ^ channel elements (in the corresponding N-logic and P-logic circuits) are used to decode ^ plus ^ selection and address bits. [0063] Each complementary input dynamic multiplex decoding circuit j 5: 〇] are very similar, so only the first multiplexing decoder circuit is shown here.

節。位址,選擇位元:A [ 3 : 0 ]、B [ 3 : 0 ]、C [ 3 : 0 ]、DSection. Address, select bits: A [3: 0], B [3: 0], C [3: 0], D

[3 : 0 ]和SEL [ 1 : 0 ],和對應的反向位址及選擇位元:a = :〇]B、B[3:0]B、C[3:0]B、D[3:0] B 和 SEL[l:〇],皆被 提供到每一個互補輸入動態多工解碼電路〇 [丨5 ·· 〇 ]中。多[3: 0] and SEL [1: 0], and the corresponding reverse address and selection bit: a =: 〇] B, B [3: 0] B, C [3: 0] B, D [ 3: 0] B and SEL [l: 〇] are provided to each complementary input dynamic multiplexing decoding circuit 〇 [丨 5 ·· 〇]. many

第30頁 200405662 五、發明說明(26) 工解碼器電路MD15包含4個互補輸入動態邏輯電路1〇〇2、 1004、1006和1〇〇8,此4個互補輸入動態邏輯電路1〇〇2、 1004、1006和1〇〇8依據4 -輸入BADB邏輯閘1010的輸入分別 提供4個輸出評估點輸出ΡΤ1、ΡΤ2、ρτ3和pT4。反及邏輯 閘1 οι〇的輸出提供最上層之解碼位元DEC0DED[ j5]。Page 30, 200405662 V. Description of the invention (26) The industrial decoder circuit MD15 includes 4 complementary input dynamic logic circuits 1002, 1004, 1006 and 1008. These 4 complementary input dynamic logic circuits 1002 , 1004, 1006 and 1008 provide 4 output evaluation point outputs PT1, PT2, ρτ3 and pT4 respectively according to the inputs of the 4-input BADB logic gate 1010. The output of the inverse logic gate 1 provides the uppermost decoding bit DEC0DED [j5].

[ 0 064 ]多工函數利用2個選擇位元在4個位a、b、c、D[0 064] The multiplexing function uses 2 selection bits at 4 bits a, b, c, D

中選擇,其中:*SEL1 *SEL〇2皆發出(經邏輯電路 1 002 ),則位址A被選擇;*SEL1發出而SEL〇無效(經邏輯 電路1 004),則位址B被選擇;,SEL1無效而SEL〇發出(經 邏輯電路1 006 ),則位址C被選擇;gSEL1 *SEL〇2皆無效 (經邏輯電路1 008 ),則位址0被選擇。因此,A位址位元 被提供到邏輯電路1 002,B位址位元被提供到邏輯電路 1 004,C位址位元被提供到邏輯電路1〇〇6,而D位址位元被 提供到邏輯電路1 008。每一個N_通道和P-通道都包含6個 π件(2個選擇位元和4個位址位元)。每一個評估路徑的選 擇和位址位元的特殊組合是根據被解碼的特殊輸出位 -»53r -4W w vSelection, where: * SEL1 * SEL〇2 are all issued (via logic circuit 1 002), then address A is selected; * SEL1 is issued and SEL〇 is invalid (via logic circuit 1 004), then address B is selected; If SEL1 is invalid and SEL0 is issued (via logic circuit 1 006), then address C is selected; gSEL1 * SEL〇2 is invalid (via logic circuit 1 008), then address 0 is selected. Therefore, the address A bit is provided to the logic circuit 1 002, the address B bit is provided to the logic circuit 1 004, the address C bit is provided to the logic circuit 1006, and the address D bit is provided Provided to logic circuit 1 008. Each N-channel and P-channel contains 6 π pieces (2 select bits and 4 address bits). The selection of each evaluation path and the special combination of address bits are based on the decoded special output bits-»53r -4W w v

[0065 ]根據本發明的實例,利用互補輸入動態邏 路來實現動態多工解碼器,因此相較之下互補輸入動能 工解碼電路900會比一般常用多工解碼器(如多工 ; 8〇〇)快速。根據本發明實例,多工解碼器 互補 ,態邏輯電路的解碼位元數目是可以擴張的用 谷易的被擴張以便從2個以上的解碼輸入集合中作選擇 [ 00 66 ]在一般全動態多工解碼器實例中,n些編碼[0065] According to an example of the present invention, a dynamic multiplexing decoder is implemented by using a complementary input dynamic logic circuit. Therefore, in comparison, a complementary input kinetic energy decoding circuit 900 will be more commonly used than a commonly used multiplexing decoder (such as multiplexing; 8). 〇) Fast. According to the example of the present invention, the multiplexing decoder is complementary, and the number of decoding bits of the state logic circuit can be expanded by Gu Yi to be expanded to select from more than two sets of decoding inputs. [00 66] In the decoder example, n encodings

第31頁 200405662 五 發明說明(27)Page 31, 2004,056,62 5. Description of the invention (27)

N 址每一個都Μ些位址位元,產生2M個解碼輸出位 v、Μ為大於1的整數。提供所有2„個動態多工 : ::包::從解碼位元中選擇並對所選擇的位元:碼:-供早一解碼位元之Ν個互互補入動態邏輯電路。/入& 器包含:請互補輸入動態邏輯電路 :‘ 組。母一個動態多工解碼器每一斤有2群 路都接收-位址之位元和該位址之反=輯電 被解碼以決定是其位址還是其反向的副本被殊位元 評估路徑或是ρ-通道評估路徑中。 /、彳-通道 [0067]更進一部,ρ些選擇位元包含直 足以從Ν個編瑪位址中選擇的整數)例、=於〇且 :…㈣或…時—5〜8位二^ 推。母一個Ρ選擇位元都被提供到每一個互補A 類 電路的每一個p-通道與N-通道路徑中。ρ 動I、邏輯 互補輸入動態邏輯電路之每一個評估 一個 或邏輯狀態由互補輸人㈣邏輯轉決的特殊組合 的位址。舉例來說,如互補輸入動態多工解碼丄1處理 中,SEL訊號於p_通道評估路徑中Ul輯電路9 0 2 本漏於對應的N-通道評估路徑中被提供反之其反向副 址,因此在互補輸入動態邏輯電擇了、擇B位 SEL/SELB的邏輯狀態為反向的。 T選擇位tl [ 00 68 ]雖然本發明已盡可能的提及某種 方式並將可考慮之細節部分詳加描述,但其“式 200405662 五、發明說明(28) 亦可能同時值得考慮。舉例來說,一輸出訊號的 狀態可依據其在邏輯電路中的使用而可能反向。此外I雖 然本發明揭露考慮的應用是金氧半導體(M〇s)型態的元 件,(包含互補M0S兀件,及其類似如:NM〇s、pM〇s電晶 體),但也可以已相同的方式應用於技術或型態之類比型 態上,如雙載子元件等等。 [0 0 6 9 ]最後,熟習此領域技術者可察覺到可以快速的 使用此一公開的概念,使用此一具體的實例當作設計或修 改後之結構的基礎’並得到與本發明相同的目的而不違背 本發明之精神與範圍者如同專利申請範圍之定義。Each N address has M address bits, which generates 2M decoded output bits, where M is an integer greater than 1. Provide all 2 „dynamic multiplexing ::: packets :: select from the decoded bits and select the selected bits: code: -N complementary complementary dynamic logic circuits for the first decoded bit. / 入 & The device contains: Please complement the input dynamic logic circuit: 'Group. A dynamic multiplexing decoder has 2 groups per kilogram to receive-the bit of the address and the inverse of the address = the code is decoded to determine the Its address or its inverse copy is included in the special bit evaluation path or the ρ-channel evaluation path. /, 彳 -channel [0067] Going one step further, ρ selects bits that are sufficient to edit bits from N (Integer selected in the address) Example, == 0, and:… ㈣ or… when 5 ~ 8 bits are inferred. A P-selection bit is provided to each p-channel of each complementary class A circuit. In the N-channel path, each of the dynamic I and logical complementary input dynamic logic circuits evaluates the address of a special combination or logical state that is determined by complementary input and logic. For example, such as complementary input dynamic multiplex decoding丄 1 processing, the SEL signal in the p_ channel evaluation path Ul series circuit 9 0 2 this is missing the corresponding The N-channel evaluation path is provided with the reverse secondary address, so the logic state of the B-bit SEL / SELB is reversed in the complementary input dynamic logic. The T-selection bit tl [00 68] Although the present invention As far as possible, some methods have been mentioned and the details that can be considered are described in detail, but the "formula 200405662 V. Invention description (28) may also be worth considering at the same time. For example, the state of an output signal may be reversed depending on its use in a logic circuit. In addition, although the application considered in the present disclosure is a metal-oxide-semiconductor (MOS) type device (including complementary MOS elements, and the like such as: NMOS, pMOS transistors), it can also be The same applies to analogic types such as technology or types, such as bi-amplitude elements. [0 0 6 9] Finally, those skilled in the art can perceive that the disclosed concept can be quickly used, using this specific example as the basis for the design or modified structure, and get the same as the present invention The purpose without departing from the spirit and scope of the present invention is the same as the scope of the patent application.

200405662200405662

【圖式簡單說明】 [0015] 本發明之前述與其它益處、特徵及優點,在配 合下列說明及所附圖事後,將可以獲得更好的理解··[Brief description of the drawings] [0015] The foregoing and other benefits, features, and advantages of the present invention will be better understood after combining the following description and the attached drawings.

[0016] 圖1為一個利用一N—輸入及邏輯閘表示出一及 邏輯函數及其對應實現N-輸入及邏輯閘之示範電路概要 圖; [0017]圖2為16 -輸入及邏輯閘以及一實現圖解一般分 解方法之1 6 ~輸入及閘之示範電路概要圖;[0016] FIG. 1 is a schematic diagram of an exemplary circuit using an N-input and logic gate to represent a and logic function and its corresponding implementation of N-input and logic gate; [0017] FIG. 2 is a 16-input and logic gate and A schematic diagram of a demonstration circuit that realizes the general decomposition method of 16 ~ input and gate;

[〇 〇 1 8 ]圖3為根據本發明實例實現的示範互補輸入動 態邏輯電路; [〇 〇 1 9 ]圖4為根據一更特定及邏輯函數實現之實例實 現的示範互補輸入動態邏輯電路概要圖; [0020] 圖5為根據另一特定或邏輯函數實現之實例實 現的示範互補輸入動態邏輯電路概要圖; [0021] 圖6為根據另一複雜邏輯函數實現之實例的示 範互補輸入動態邏輯電路概要圖;[0018] FIG. 3 is an exemplary complementary input dynamic logic circuit implemented according to an example of the present invention; [0019] FIG. 4 is an overview of an exemplary complementary input dynamic logic circuit implemented according to a more specific and logical function implementation example [0020] FIG. 5 is a schematic diagram of an exemplary complementary input dynamic logic circuit implemented according to another example implemented by a specific or logical function; [0021] FIG. 6 is an exemplary complementary input dynamic logic implemented according to another example of a complex logic function Circuit outline diagram;

[0022] 圖7為一以包含多數互補輸入動態邏輯電路之 ,多個數及邏輯閘項實現複雜邏輯函數之互補輸入動態邏 輯電路的特定方塊圖。此圖中的多數互補輸入動態邏輯電 路皆類似於圖6的互補輸入動態邏輯電路; 023 ]圖8為一常見多工解碼器方塊圖,圖解一般使 用在管線系統中,於2集合間選擇位址位元及解碼所選之 位元的後續及運算之實例。 ” 、 [ 0 024 ]圖9為一決定最高解碼位元之解碼狀態之示範[0022] FIG. 7 is a specific block diagram of a complementary input dynamic logic circuit that implements a complex logic function with multiple numbers and logic gate terms including a plurality of complementary input dynamic logic circuits. Most of the complementary input dynamic logic circuits in this figure are similar to the complementary input dynamic logic circuit of Fig. 6; Fig. 8 is a block diagram of a common multiplex decoder, which is generally used in a pipeline system, and selects bits between 2 sets. An example of the subsequent and operation of the address bit and the bit selected for decoding. ", [0 024] Fig. 9 is an example of determining the decoding status of the highest decoding bit

200405662 圖式簡單說明 互補輸入動態多工解碼器電路概要圖; [0025]圖10為一使用互動態邏輯函數實現示範快速動 態多工解碼器的特定方塊圖。 圖號說明 1 0 2 示範動態電路 104評估邏輯函數之邏輯電路 1 0 6儲存或保管電路 202 示範邏輯電路 2 0 4、2 0 6、2 0 8、2 1 0 低扇入階層 302用N-邏輯實現評估之邏輯函數的補數 304儲存電路 30 6用P-邏輯實現評估之邏輯函數的補數 308互補N-通道邏輯電路 310 互補P-通道邏輯電路 402 互補及N-邏輯電路 406 互補及P-邏輯電路 502 互補或N-邏輯電路200405662 Schematic description of the schematic diagram of the complementary input dynamic multiplex decoder circuit; [0025] FIG. 10 is a specific block diagram of an exemplary fast dynamic multiplex decoder using a mutual dynamic logic function. Description of drawing number 1 0 2 Demonstration dynamic circuit 104 Evaluation logic logic circuit 1 0 6 Storage or storage circuit 202 Demonstration logic circuit 2 0 4, 2 0 6, 2 0 8, 2 1 0 Low fan-in level 302 uses N- Complement 304 of the logical function for the evaluation of the logical implementation 304 Storage circuit 30 6 Complement of the logical function for the evaluation by the P-logic 308 Complementary N-channel logic circuit 310 Complementary P-channel logic circuit 402 Complementary and N-logic circuit 406 Complementary and P-logic circuit 502 complementary or N-logic circuit

506 互補或P -邏輯電路 602第1互補N-通道動態邏輯電路 6 04 以及1標記之N-邏輯方塊 606最後一個(或第Μ個)互補N-通道動態邏輯電路 6 08 以ANDM標記之Ν-邏輯方塊 702、704、706多互補輸入動態邏輯電路506 Complementary or P-logic circuit 602 First complementary N-channel dynamic logic circuit 6 04 and 1-marked N-logic block 606 The last (or M) complementary N-channel dynamic logic circuit 6 08 N marked with ANDM -Logic blocks 702, 704, 706 multiple complementary input dynamic logic circuits

第35頁 200405662 圖式簡單說明 802 2 -位元多工器 8 0 4 解碼器 902第1互補輸入動態邏輯電路 904 P-邏輯電路 906 第2互補輸入動態邏輯電路 908 P-邏輯電路 1002、1004、1006、1008 互補輸入動態邏輯電路 1010 4-輸入BADB邏輯閘Page 35 200405662 Brief description of the diagram 802 2 -bit multiplexer 8 0 4 Decoder 902 First complementary input dynamic logic circuit 904 P-logic circuit 906 Second complementary input dynamic logic circuit 908 P-logic circuit 1002, 1004 , 1006, 1008 complementary input dynamic logic circuit 1010 4-input BADB logic gate

第36頁Page 36

Claims (1)

200405662 六 1 申請專利範圍 一多工解碼電路,至少包含: 複數個互補動態輸入電路,其各自對應至少複數個多位 元編碼位址之一個,以及複數個解螞位元之一個,其 中每一個互補輸入動態電路包含: 參 一互補P -邏輯及動態電路,其輸出耦合到一對應複數個 輸出評估點之一個,該電路用以評估對應到該複數個 編碼位址之一個位址值的位元,以及評估有邏輯狀態 之數位選擇值的位元,以選擇根據時脈訊號反應之該 對應編碼位址; 一互補N -邏輯及動態電路,其輸出耦合至一對應複數個 初步評估點之一個,該電路用以根據該時脈訊號反應 評估該位址值的反向位元,以及評估該數位選擇值得 反向位元;以及 一導通元件,該元件耦合於該對應第二評估點與該對應 第一評估點間,當該互補N_邏輯及動態電路評估失敗 時,該導通元件驅動該對應第2評估點為低位準;以 及 一及邏輯閘,有複數個輸入,每一個輸入皆耦合至一對 應該複數個輸出評估點之一個,同時有一個輸出用來 提供一對應該複數個解碼位之一個。 2·如申請範圍第1項所述的裝置,更進一步包含至少一個 反向器/驅動器,該反向器/驅動器有一輸入接收該時脈 訊號’有一輸出提供一個反向時脈訊號到該導通元件。 3·如申請範圍第2項所述的裝置,其中該導通元件包含_200405662 June 1 Scope of patent application-A multiplex decoding circuit, including at least: a plurality of complementary dynamic input circuits, each of which corresponds to at least one of a plurality of multi-bit coded addresses, and one of a plurality of solution bits The complementary input dynamic circuit includes: a complementary P-logic and dynamic circuit whose output is coupled to one of a plurality of corresponding output evaluation points, and the circuit is used to evaluate a bit corresponding to an address value of the plurality of encoded addresses And a bit that evaluates a digital selection value with a logic state to select the corresponding coding address that responds to the clock signal; a complementary N-logic and dynamic circuit whose output is coupled to a corresponding number of preliminary evaluation points One, the circuit is used to evaluate the reverse bit of the address value according to the clock signal response, and to evaluate the digital selection is worth the reverse bit; and a conducting element, the element is coupled to the corresponding second evaluation point and Between the corresponding first evaluation points, when the complementary N_logic and dynamic circuit evaluation fails, the conducting element drives the corresponding second The estimation point is at a low level; and the logic gate has a plurality of inputs, each input is coupled to one of a pair of output evaluation points, and one output is used to provide one of a pair of decode bits. . 2. The device according to item 1 of the scope of application, further comprising at least one inverter / driver. The inverter / driver has an input to receive the clock signal and an output to provide a reverse clock signal to the conduction. element. 3. The device according to item 2 of the application scope, wherein the conducting element includes _ 第37頁Page 37 200405662 六、申請專利範圍 N-通道導通元件,該N_通道導通元件有—閘 該對應的初步評估點’汲極端耦合至該對庫的::合至 點,源極端耦合至該反向器/驅動器的該輪V出評估 4.如申請範固第2項所述的裝置,其中該至少 器/驅動器包含複數個反向器/驅動器,一 反向 動器對應…該複數個互補輸入動態邏輯電路反驅 補輸入動態邏輯電路的輸出麵合至對 ::個互 巧固^項所述的裝置,為選擇並解碼 丸 而每一個編碼位址都有M個位元,1中鱼’、比 於j的正整數,該數位選擇值包含Ρ個選擇位;t白直 —步\含於.〇的正整數,足夠從該N個位址中選擇,更進、 该Ϊ ί Ϊ互補輸入動態電路包含2M組個N個互補輸入動 ί元之i f中ΓΜ組中的每一個皆解碼成對細解鳴 人& ^ —個,母一個組皆至少包含N個初步評估點隼 合與Ν個輸出評估點集合;以及 干估點集 組合及:對輯J如一個,每一個及邏輯閉包料個輸入麵 σ至〗對應的Ν輸出評估點集合,時耦 對應該Μ解碼位元的一個。Η有輸出&供一 第1項所述的裝置’其中該互補Ν-邏輯及動 複道元”聯耦合於對應初步評估點與對應複 參考點間,母—個該Ν_通道元件有一輸出接收一 選擇位元與一位址位元;200405662 VI. Patent application scope N-channel conduction element, the N_channel conduction element has-the gate the corresponding preliminary evaluation point 'drain terminal is coupled to the pair of libraries :: close to point, source terminal is coupled to the inverter The evaluation of the round V of the driver / driver 4. The device according to item 2 of the application, wherein the at least device / driver includes a plurality of inverters / drivers, and one inverter corresponds to the plurality of complementary input dynamics The logic circuit counter-drives the input dynamic logic circuit. The output side is matched to: a device described in item ^. Each coded address has M bits to select and decode a pill. Compared to a positive integer of j, the digit selection value includes P selection bits; t is a straight integer—steps. A positive integer contained in .0 is enough to select from the N addresses. Further, the Ϊ ί ί complements The input dynamic circuit contains 2M groups of N complementary input motions. Each of the ΓM groups in the if are decoded into a pair of detailed solution Naruto & ^, each of the parent groups contains at least N preliminary evaluation points. With N output evaluation point sets; and dry estimation point set combinations And: The pair J is like one, and each and the logical closure material corresponds to a set of N output evaluation points corresponding to the input planes σ to, and the time coupling corresponds to one of the M decoding bits. Η There is an output & device for the item 1 wherein the complementary N-logic and dynamic restoration element are coupled between the corresponding preliminary evaluation point and the corresponding complex reference point, and there is one of the N_channel element. The output receives a selection bit and an address bit; 第38頁 200405662 六、申請專利範圍 帶頭7L件,接收該時脈訊號並耦合至該對應初步評估 點’當該時脈訊號為低位準時,預先充電該對應初步 評估點;以及 一結尾疋件接收該時脈訊號並耦合至對應參考點; 其中該帶頭與結尾元件對該時脈訊號反應,以驅動該複 數個N -通道元件評估。 7·如申请範圍第6項所述的裝置,其中: 該帶頭元件包含一P—通道元件,其源極端耦合至接地 點,閘極端接收該時脈訊號,汲極端耦合至對應初步 評估點。 其:該結尾元件包含一N—通道元件,其源極端耦合至接 ,閘極端接收該時脈訊號,汲極端耦合至該對應 參考點。 8. ίΓί範圍第6項所述的裝置,更進一步包含一維持電 耦口於源電壓與該對應初步評估點間。 9. ΐ::ϊ圍第1項所述的裝置,其中該互補Ρ-邏輯動態 5個Ρ—通,兀件並聯耦合於對應輸出評估點與源電壓 —位址位元;以及 #輸出接收—選擇位元與 一:頭收ί時脈訊號並耦合至該對應輸出評估 點,當該時脈訊號為低位準時,二估 評估點,並當該時脈訊號為高 “複二出 Ρ-通道元件評估。 子驅動該複數個Page 38 200405662 6. The scope of patent application is to take the lead in 7L pieces, receive the clock signal and couple it to the corresponding preliminary evaluation point. When the clock signal is at a low level, charge the corresponding preliminary evaluation point in advance; and receive a final file. The clock signal is coupled to a corresponding reference point; wherein the leading and trailing elements react to the clock signal to drive the evaluation of the plurality of N-channel elements. 7. The device according to item 6 of the application scope, wherein: the lead element includes a P-channel element whose source terminal is coupled to the ground point, the gate terminal receives the clock signal, and the drain terminal is coupled to the corresponding preliminary evaluation point. The terminal element includes an N-channel element, the source terminal is coupled to the terminal, the gate terminal receives the clock signal, and the drain terminal is coupled to the corresponding reference point. 8. The device described in item 6 of the ΓΓΓ range further includes a sustain coupling between the source voltage and the corresponding preliminary evaluation point. 9. ΐ :: ϊ The device according to item 1, wherein the complementary P-logic dynamics 5 P-links, and the components are coupled in parallel to the corresponding output evaluation point and the source voltage-address bit; and #output receive — Select bit and one: first receive the clock signal and couple it to the corresponding output evaluation point. When the clock signal is at a low level, the second evaluation point is evaluated, and when the clock signal is at a high level, “multiple output P- Channel element evaluation. 200405662 六、申請專利範圍 w·如申請範圍第9項所、+、^ ^ p-通道元件,其漁4 ^的裝置,/、中該帶頭元件包含-時脈訊號,沒極端、輛合至源電壓,閘極端接收該 11 ·如申請範圍第i項:上至該對應Λ出評估點。 反及邏輯閘。、^的裝置’八中該及邏輯閘包含- 12· 了互補多工解碼電路包含: 複數個互補輪人& Afc 複數個多位元‘=電路個每-個皆關於-對應 複數個解碼位=位:之:個初同時皆關於-對應 包含: 之一個,母一個互補輸入動態電路 複數2 ί T,含複數個並聯耦合於源電壓與對應 包含複^個=估點Ρθ1之複數個1"—通道元件,同時 复數個接收複數個選擇及位址位元的輸入· 一 Ν—邏輯電路包含福1兀的勒入, 、 ^ 3複數個並聯耦合於一對應複數個 =^平估點之一個與一對應複數個參考點之一個 仞通道元件,同時包含複數個接收複數 一選擇及位址位元之反向的輸入; ,二帶頭元件耦合至該輸出,與一結尾元件耦合 妹該Ρ邏輯電路之該對應參考點,該第一帶頭與 、、"尾元件對該時脈訊號反應以便對該Ν-邏輯電路 一之該輸出預先充電同時驅動該Ν -邏輯電路評估; 一第二帶頭元件耦合至該對應輸出評估點,該帶頭 疋件對該時脈訊號反應以便對該對應輸出評估點 預先充電同時驅動該Ρ—邏輯電路評估;200405662 6. Scope of patent application w. As in the 9th scope of the application scope, +, ^ ^ p-channel element, its device is 4 ^, and the lead element contains-clock signal, no extreme The source voltage and the gate terminal receive the 11 · As in the application scope item i: up to the corresponding Λ out of the evaluation point. Reverse logic gate. The device ^ of the eight and the logic gate contains-12 · The complementary multiplex decoding circuit contains: a plurality of complementary rounds & Afc a plurality of multi-bits' = each of the circuits is about-corresponding to a plurality of decoding Bit = bit: of: all at the same time-corresponding to include: one, the mother and a complementary input dynamic circuit complex number 2 ί T, contains a plurality of parallel coupled to the source voltage and the corresponding contains a plurality of plural = estimated point Pθ1 1 " —channel components, multiple inputs that simultaneously receive multiple selections and address bits · An N-logic circuit contains a pull-in, a number of ^ 3, a plurality of ^ 3 are coupled in parallel to a corresponding plurality = ^ One of the points corresponds to one channel element corresponding to a plurality of reference points, and also includes a plurality of inputs for receiving a plurality of selections and the inverse of the address bit; two leading elements are coupled to the output and coupled to an ending element For the corresponding reference point of the P logic circuit, the first lead and tail components respond to the clock signal in order to charge the output of the N-logic circuit one in advance while driving the N-logic circuit. Evaluation; a second lead element is coupled to the corresponding output evaluation point, and the lead element responds to the clock signal so as to precharge the corresponding output evaluation point while driving the P-logic circuit evaluation; 第40頁 11^ 200405662 六、申請專利範圍 -:::件麵合至:對應輪出評估點並以該對應初 步汗估點控制,當該N- i羅 兮Λ, 邏輯電路評估失敗時,將 : = ΐ低位準;以及有-輸出與複 的一輸出邏輯閘,每一個輸入耦合至對 應该複數個輸出評估點之一個。 13·如申請範圍第12項所述的裝置,更進一牛勹人· 一時脈反向器/驅動器,苴輪 乂匕1 2 3 · 提供對應的反向時脈訊號,以接及收㈣脈訊號’輸出 其2 =件ΐ含一Ν_通道導通元件,其閉極端麵合 驅動芎的::°子估點’源極端耦合至該時脈反向器/ f的輸出’沒極端轉合至該對應出輸出評估 更進一步包含: 對應初步評 ,其中該第 極端耦合至 合至該對應 一第二P-通 接收該脈訊 中該結尾元 地點,閘極 參考點。 選擇並從所 包含: 的裝置 壓與該 的裝置 ’其源 極端轉 件包含 閘極端 點,其 合至接 該對應 位址中 方法, 估點間。 一帶頭元件 源電壓,閘 初步評估 道元件,其 號,汲極端 件包含一 N -端接收該時 選擇的位置 1 4 ·如申請範圍第1 2 一維持電路耦合 2 15·如申請範圍第12 包含一第一P-通 極端接收該脈訊 點,其中該第二 源極端耦合至源 麵合至該對應輸 通道元件,其源 脈訊號,汲極端 3 1 6. —從複數個多輸 中至少解碼出一 200405662 六、申請專利範圍 對每一個位址,合併畚 .^ ^ 以對應位址的::;:,有邏輯狀態的選擇值, 項集合; 、 對應位址’形成複數個及 使用複數個互補N—邏輯 其及邏輯函數的補d:母-個及項集合評估 時,每一個互補N-.羅輔二對應互補~'"邏輯電路評估 . 、輯電路將對應複數個第一坪任 點之一個拉至低位準; 吸双1固弟吁估 使用複數個互補P-邏輯電, 其及邏輯函數的補數,u母、、個及項集合評估 主 ^ 田對應互補P -邏輯電路評姑 點之:::互?卜邏輯電路將對應複數個第二評估 點之一個拉至高位準; 當=應N-邏輯電路評估失敗時,藉由一對應第一評估 點之一個,控制一對應複數個導通元件的一個,將 一對應第2評估點拉至低位準;以及 使用一邏輯閘合併第2評估點以提供一解碼位元。 1 7 ·如申請範圍第1 6項所述的方法,更進一步包含: 使用在對應第1評估點與參考點間並聯耦合複數個N—通 道元件實現每一個互補N-邏輯電路; 於每一個參考點與接地點間提供一N-通道結尾元件並 以一時脈訊號控制每^個結尾元件;同時使用在對 應第2評估點與源電壓間並聯耦合複數個P-通道元件 實現每一個互補P-邏輯電路; 18·如申請範圍第1 6項所述的方法,其中拉移該對應第2評 估點至低準位至少包含:Page 40 11 ^ 200405662 6. Scope of patent application-::: Close to: Correspondence evaluation point and control with the corresponding preliminary sweat evaluation point, when the N-i Luo Xi Λ, the logic circuit evaluation fails, Connect: = ΐ low level; and an output logic gate with -output and complex, each input is coupled to one of a plurality of output evaluation points. 13. The device described in item 12 of the scope of application, which is further improved. A clockwise inverter / driver, wheel wheel 1 2 3. Provides a corresponding reverse clock signal to receive and close the clock. The signal 'output 2 = piece contains an N_ channel conduction element, which is driven by the closed-end surface:': The sub-estimation point 'the source is extremely coupled to the output of the clock inverter / f' has no extreme turn The corresponding output evaluation further includes: a corresponding preliminary evaluation, wherein the first extreme is coupled to the corresponding second P-channel receiving the ending meta-site in the pulse, and the gate reference point. Select and include from the device: the device is connected to the device ’whose source terminal contains the gate terminal, which is connected to the corresponding address method, between the estimated points. A lead element source voltage, a gate preliminary assessment of a track element, its number, and a drain terminal element include an N-terminal receiving the position selected at that time 1 4 · As in the application scope 1 2 -Maintain circuit coupling 2 15 · As in the application scope 12 It includes a first P-way terminal to receive the pulse point, wherein the second source terminal is coupled to the source surface and the corresponding output channel element, and its source pulse signal, the drain terminal 3 1 6. —from a plurality of multiple inputs Decode at least one 200,405,662. 6. For each address, apply the patent scope. ^. ^ ^ With the corresponding address ::;:, there are logical state selection values, item set;, the corresponding address' forms a plurality of and Using a plurality of complementary N-logics and the complement d of a logical function: When evaluating mother-items and term sets, each complementary N-. Luo Fu second corresponds to the complementary ~ '" logic circuit evaluation. The edit circuit will correspond to a plurality of Pull one of the first points to a low level; Shuangshuang 1 is calling for the use of a plurality of complementary P-logic circuits, the complement of which and the logical function, and the set of u, ,, and items to evaluate the main complement. P-Logic Circuit Evaluation Point ::: Mutual? The logic circuit pulls one corresponding to the plurality of second evaluation points to a high level; when the evaluation of the N-logic circuit fails, one corresponding to the plurality of conductive elements is controlled by one corresponding to the first evaluation point, Pulling a corresponding second evaluation point to a low level; and using a logic gate to combine the second evaluation point to provide a decoding bit. 17 · The method as described in item 16 of the scope of application, further comprising: using a plurality of N-channel elements coupled in parallel between the corresponding first evaluation point and the reference point to implement each complementary N-logic circuit; An N-channel end element is provided between the reference point and the ground point and each ^ end element is controlled with a clock signal; at the same time, a plurality of P-channel elements are coupled in parallel between the corresponding second evaluation point and the source voltage to achieve each complementary P -A logic circuit; 18. The method according to item 16 of the scope of application, wherein pulling the corresponding second evaluation point to a low level includes at least: 1 第42頁 25? 200405662 六、申請專利範圍 反向以及緩衝一時脈訊號並提供一反向時脈訊號;同 時以通過導通元件之反向訊號驅動對應第2評估點。 1 9.如申請範圍第1 6項所述的方法,更進一步包含當對應 互補N-邏輯電路評失敗時,保存一對應第一評估點被 拉至高位準,以維持對應導通元件的活化。 2 0.如申請範圍第16項所述的方法,其中使用邏輯閘合併 該第2評估點至少包含使用反及邏輯閘。1 Page 42 25? 200405662 6. Scope of patent application Reverse and buffer a clock signal and provide a reverse clock signal; meanwhile, the corresponding second evaluation point is driven by the reverse signal through the conducting element. 19. The method as described in item 16 of the scope of application, further comprising when a corresponding complementary N-logic circuit evaluation fails, saving a corresponding first evaluation point to be pulled to a high level to maintain activation of the corresponding conduction element. 2 0. The method according to item 16 of the scope of application, wherein the logic gate is merged. The second evaluation point includes at least the use of a reverse logic gate. 第43頁Page 43
TW92123090A 2002-09-19 2003-08-22 Complementary input dynamic muxed-decoder TWI221703B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US41211202P 2002-09-19 2002-09-19

Publications (2)

Publication Number Publication Date
TW200405662A true TW200405662A (en) 2004-04-01
TWI221703B TWI221703B (en) 2004-10-01

Family

ID=34392866

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92123090A TWI221703B (en) 2002-09-19 2003-08-22 Complementary input dynamic muxed-decoder

Country Status (1)

Country Link
TW (1) TWI221703B (en)

Also Published As

Publication number Publication date
TWI221703B (en) 2004-10-01

Similar Documents

Publication Publication Date Title
JP3253347B2 (en) Functionally complete logic circuits with self-timing
JP3451579B2 (en) Self-synchronous pipeline data path circuit
TW200408193A (en) Logic circuit and an apparatus and method for reducing power consumption in a logic circuit
TW200536264A (en) N-domino output latch with accelerated evaluate path
US9996317B2 (en) High speed and low power circuit structure for barrel shifter
Kumar et al. 4-2 Compressor design with new XOR-XNOR module
US5389835A (en) Vector logic method and dynamic mousetrap logic gate for a self-timed monotonic logic progression
US5378940A (en) Charge recovery logic including split level logic
US7355454B2 (en) Energy recovery boost logic
JP4313537B2 (en) Low-amplitude charge reuse type low power CMOS circuit device, adder circuit and adder module
JPS63102510A (en) Composite circuit constituting exclusive or gate and/or exclusive nor gate
TW200405662A (en) Complementary input dynamic muxed decoder
US6012079A (en) Conditional sum adder using pass-transistor logic and integrated circuit having the same
TW200410131A (en) Apparatus and method for converting, and adder circuit
US5559462A (en) Digital signal transmission circuit
US6828827B2 (en) Complementary input dynamic logic for complex logic functions
TW200408194A (en) Complementary input dynamic logic
JP7376933B2 (en) non-volatile logic circuit
JP4095578B2 (en) Integrated circuit and method of operating an integrated circuit
KR100332164B1 (en) reversible adiabatic logic circuit and pipeline reversible adiabatic logic apparatus employing the same
US7290027B2 (en) Circuit suitable for use in a carry lookahead adder
US7557617B1 (en) Digital decoder with complementary outputs
US6963228B2 (en) Complementary input dynamic logic
US20040056687A1 (en) Complementary input dynamic muxed-decoder
CN1252930C (en) Complementary input dynamic logic circuit and method of evaluating complex dynamic logic function

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent