200405034 玖、發明說明: 【發明所屬之技術領域】 本嗇明係關於根據一種感光方法之影像形成裝置,藉由 邊万法,利用複數個光束形成在光敏物體上之複數個影像 係相重叠而輸出成一單一影像。更特別地,本發明係關於 一種諸如雷射光束彩色印表機及數位彩色影印機之影像形 成裝置在這些機器中,基於一影像資訊,該等光敏物體 係以每個發光部分所發射之光束來掃描,然後藉由發亮在 夕光束雷射中之該等發光部分之每個部分來曝光於該這些 光束。 一 【先前技術】 近來,諸如雷射光束彩色印表機之多色彩影像形成裝置 已被要求要能夠利用先前機型更低成本,達成高速及更佳 影像品質。 序列法係為人所熟知可作為增加該影像形成裝置速度的 方法。根據該方法,針對每個色彩所個別安裝之光敏物體 係以光束掃-描,以形成每個色彩的影像,而複數個影像係 重疊在一轉換媒體上以形成一彩色影像。 傳統上,例如已揭露於日本專利特許公開申請案第 63-271275號中的裝置,其作為該類的多色彩影像形成裝 置。 如同在該上述申請案中所揭露,四個光敏物體係配置成 對應於四種色彩(黃(Y)、紅(M)、綠(c),及黑色(κ)),以形 成一個四色影像。用以光束掃描之光學掃描器係配置給每 86182 200405034 個光敏物體。在該方法中,一高速影像形成裝置係利用同 時操作四種色彩之每一種所形成之影像來實現,而該等四 個光學掃描器具有相同配置。 在該方法中,微調諸如配置在每個光學掃描器之鏡或該 光學掃描器本身之光學組件係被執行以修正要被重疊之四 種色彩之每一種色彩之光束位置間的偏差。 在曰本專利特許公開申請案第59-123368號中所揭露之 裝置係為光束進入某一旋轉多邊形鏡之不同反射表面以降 低該等組件之數量的範例。 在該方法中,該等複數個光束之每個光束係配置用以進 入到該旋轉多邊形鏡之不同反射表面上。經由該旋轉多邊 形鏡之反射及偏斜後的光束係各自以不同方向被反射及偏 斜到該鏡。 在S旋轉多邊鏡上以不同方向反射及偏斜之該等光束彼 此在該光敏物體上做為一主掃描方向係具有不同方向。 在該方法中,配置在每個光學掃描器中之諸如鏡之光學 元件的微調-造成將光束位置微調成該光敏物體要被曝光的 位置。因此,要被重疊之四種色彩之光束位置間的誤差會 被修正。 在該JP-A編號9-1 84991中所揭露之裝置係指複數個光束 進入到某一旋轉多邊鏡上的範例。光學掃描系統之組件通 常會被使用。 在該方法中,該光束進入該鏡之相同反射表面。該旋轉 多邊鏡所反射及偏斜之光束係分別以與該旋轉多邊鏡相同 86182 200405034 的方向反射及偏斜。 所有利用該旋轉多邊鏡以相同方向所反射及偏斜之該等 光束係具有與在該光敏物體上之主掃描方向相同的方向。 在該方法中,配置在每個光學掃描器中之諸如鏡之光學 組件的微調會造成讓光束之位置微調到該光敏物體要被曝 光的位置。因此,要被重疊之四種色彩之光束位置間的誤 差會被修正。 —具有以二維方向配置之複數個發光部分的面射型雷射 係用以作為光源的方法係已知可作為用來獲得高影像品質 之影像形成裝置的方法。 在該JP-Α編號20〇1-215423中所揭露之裝置係指一具有 以=維方向配置之發光部分的面射型雷射係用以作為光源 的範例。一面射型雷射係配置36個發光部分。 —具有密度為2400 dpi之高密度光學寫入可以利用同時 以來自該面射型雷射所發射之36道光束掃描及曝光該光敏 物體來實現。 在該JP-A-編號2001-215423中所揭露之裝置中,點亮在該 王掃描万向上之每個發光部分的時間(timing)係受到控 制。廷導致接下來的偏移量係在影像形成時修正,因為在 面射型雷射中,複數個發光部分在該主掃描方向上係配置 成偏移。 旦用以在該主掃描方向上窝人—影像之起始位置係由在一 心像區域外所提供之一同步化光學感測器所控㈣。用以窝 入一影像之起始位置的誤差(該誤差係由於一具有二維寬 86182 200405034 闊化之曝光影像所造成)#、藉由只使用—列要在該面射型 雷射上發光的發光部分(6個部分)來防止。該列的部分係配 置在36個發光部分中之次掃描方向上。 如上文中所描述,太祜m H丄 使用具有以二維方向所配置之發光 部分之面射型雷射的光學系統中,該面射型雷射所發出之 複數個光束具有兩個軸係處於兩個方向。假設該光學軸係 為正交線,則該複數個光束係以該等兩軸所定義之平面上 的二維方向來配置。 、讓我們假《该X軸係為主掃描方向,而該Y軸係為次择描 方向在圖4中,例如,此處36個發光部分係被對準及以6200405034 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to an image forming apparatus based on a photosensitive method, and by using the edge method, a plurality of image systems formed on a photosensitive object by using a plurality of light beams are superimposed and Output as a single image. More specifically, the present invention relates to an image forming apparatus such as a laser beam color printer and a digital color photocopier. In these machines, based on an image information, the photosensitive object system emits a light beam with each light emitting portion. To scan, and then expose the light beams by illuminating each of the light emitting portions of the evening beam laser. 1 [Previous Technology] Recently, multi-color image forming devices such as laser beam color printers have been required to be able to use the previous models at lower cost, to achieve high speed and better image quality. The sequence method is well known as a method for increasing the speed of the image forming apparatus. According to this method, the photosensitive objects individually installed for each color are scanned with a light beam to form an image of each color, and a plurality of images are superimposed on a conversion medium to form a color image. Conventionally, for example, the device disclosed in Japanese Patent Laid-Open Application No. 63-271275 has been used as a multi-color image forming device of this type. As disclosed in the above application, the four photosensitizer systems are configured to correspond to four colors (yellow (Y), red (M), green (c), and black (κ)) to form a four-color image. An optical scanner for beam scanning is provided for every 86182 200405034 photosensitive objects. In this method, a high-speed image forming apparatus is realized by operating an image formed by each of four colors at the same time, and the four optical scanners have the same configuration. In this method, fine adjustments such as the mirrors provided in each optical scanner or the optical components of the optical scanner itself are performed to correct deviations between beam positions of each of the four colors to be superimposed. The device disclosed in Japanese Patent Laid-Open Application No. 59-123368 is an example of a light beam entering different reflecting surfaces of a rotating polygon mirror to reduce the number of these components. In this method, each of the plurality of light beams is configured to enter a different reflecting surface of the rotating polygon mirror. The reflected and deflected light beams passing through the rotating polygon mirror are respectively reflected and deflected to the mirror in different directions. The light beams reflected and skewed in different directions on the S-rotating polygon mirror each have different directions as a main scanning direction on the photosensitive object. In this method, the fine adjustment of an optical element such as a mirror arranged in each optical scanner-causes the position of the light beam to be fine-tuned to the position where the photosensitive object is to be exposed. Therefore, errors between the positions of the beams of the four colors to be superimposed are corrected. The device disclosed in this JP-A No. 9-1 84991 refers to an example in which a plurality of light beams enter a certain rotating polygon mirror. Components of optical scanning systems are often used. In this method, the light beam enters the same reflective surface of the mirror. The light beams reflected and deflected by the rotating polygon mirror are reflected and deflected in the same directions as the rotating polygon mirror 86182 200405034, respectively. All the light beams reflected and deflected in the same direction by the rotating polygon mirror have the same direction as the main scanning direction on the photosensitive object. In this method, the fine adjustment of an optical component such as a mirror arranged in each optical scanner causes the position of the light beam to be fine-tuned to the position where the photosensitive object is to be exposed. Therefore, the errors between the beam positions of the four colors to be superimposed are corrected. -A method of using a surface emitting laser having a plurality of light emitting portions arranged in a two-dimensional direction as a light source is known as a method for obtaining an image forming apparatus of high image quality. The device disclosed in this JP-A No. 201-21523 refers to an example of a surface-emission type laser system having light-emitting portions arranged in the = dimensional direction as a light source. A single-facet laser system is equipped with 36 light-emitting parts. — High-density optical writing with a density of 2400 dpi can be achieved by scanning and exposing the photosensitive object with 36 beams emitted from the surface-emitting laser at the same time. In the device disclosed in the JP-A-No. 2001-215423, the timing of lighting each light-emitting portion in the king scanning direction is controlled. The subsequent offset is corrected when the image is formed, because in a surface-emission laser, a plurality of light-emitting portions are arranged to be offset in the main scanning direction. Once used to nest people in the main scanning direction, the starting position of the image is controlled by a synchronized optical sensor provided outside the center image area. The error is used to nest the starting position of an image (this error is caused by an exposure image with a two-dimensional width 86182 200405034 widening) The light-emitting part (6 parts) to prevent. The part of the column is arranged in the sub-scanning direction among the 36 light-emitting parts. As described above, 祜 m H 祜 uses an optical system of a surface-emitting laser having light-emitting portions arranged in a two-dimensional direction. Both directions. Assuming that the optical axis is an orthogonal line, the plurality of light beams are arranged in a two-dimensional direction on a plane defined by the two axes. Let us assume that the X-axis system is the main scanning direction, and the Y-axis system is the sub-selection direction.
個#伤配置在M次掃描方向上,該等乂個發光部分在該X 軸上具有6個座標,而在該Y軸上具有36個座標。 在该等光學系統中係使用多光束雷射,該等光束雷射係 具有複數個二維地配置之發光部分,當在該光學系統中存 在返回光束之鏡時,取決於返回纟向,⑲之每轴的方向 係相反的。 也就是說,當在光學系統中存在鏡丨〇〇及丨〇2時,如圖8 所示,咸等鏡會以該主掃描方向返回光束,在該X方向上之 光束的方向在通過(在該等鏡1〇〇及1〇2處反射)該等鏡1〇〇及 102之前後都係相反的。 田鏡104及1〇6都是在同一光學系統中的時候,該等鏡會 以咸/入掃描方向返回光束,如同圖9中所示,在該γ方向上 <光束的方向在通過(在該等鏡1〇4及1〇6處反射)該等鏡1〇4 及1〇6之前後都係相反的。 86182 200405034 藉由一種方法,該序列配置及該二維多光束雷射(像是面 射型雷射)係施加在如前文所描述之多彩影像形成裝置對 於高速及高影像品質多彩影像形成裝置係有效的。然而, 當該配置及該雷射係同時安裝時,就已經有該等下列問題 存在。 當該一維多光束雷射係使用在該發光部分時,及當在該 多彩影像形成裝置中對應於複數個色彩之光學系統係彼此 互不相同時’在某些範例中,在該等光敏物體上之複數個 光束之配置對於每個色彩係變得不同。 當在該等光敏物體上之光束配置彼此間互不相同時,則 會發生下列問題: 首先’在一範例中,在該主掃描方向上之光束配置彼此 互不同,這會再加以解釋。 在孩二維多光束雷射中,在發光部分之主掃描方向上之 偏移係被控制成被消除,然後用以在該等主掃描方向上寫 入影像之起始位置係具有相同的位置。 當用以寫入之起始位置係每個色彩都彼此互不相同時, 對於不同位置係要求偏移控制,而導致增加該生產成本。 爲了控制用以窝人影像之起始位置,在同步感測器上所 -占儿用糸同步偵/則之光束也係彼此互不相同。因此,控制 裝置係被要求以科不㈤光束,因而增加該生產成本。 當在光敏物體上之次掃描方向之方向係彼此互不相同 ,,預先將影像資料之方向反向成次掃描方向(這係輸入到 多光束雷射)係被要求用以將該等影像之方向對準該等次 86182 200405034 掃描方向。因此,其他用以反向影像資料之裝置係被要求 而增加該生產成本。 圖1 〇說明某一範例,在該範例中,二維多光束雷射係施 加於根據該JP-A編號59-123368之影像形成裝置之光學系 統。在該光學系統中之兩光源108及110,及對應於該等光 源108及110之返回光學鏡112及114係被誇大以便於解釋。 該等光源108及110所發射出之二維光束的雙軸係具有相 同方向。一參考數字11 5係指一旋轉多邊鏡。 關於在要被分別曝光於該光束之光敏物體116及11 8上之 一維光束的方向’該等X軸(在該主掃描方向上之軸)都係對 應於光學系統之主掃描方向(該等光敏物體116及118之軸 向)。與該等光敏物體116及118之旋轉方向有關之該等次掃 描方向係彼此相反。 因此’爲了對準在曝光後藉由圖丨〇之光學系統所產生在 該等光敏物體116及118上之該等影像之方向,要輸入到該 光源108或110之兩光源之影像信號的方向必須被反向於該 次掃描方向。 反向影像額外地要求改變一面射型雷射控制板或一影像 控制板。這意指不同零件的數目將會增加,而可共用的零 件數目會減少。結果,增加該生產成本。 當使用一共同信號作為一影像信號時,也就是說,試用 影像控制系統之共同板,則要求兩種面射型雷射。該等雷 射之一係具有如同圖10中所示之雙軸的方向,而另一種係 只有該Y軸(在該次掃描方向上之軸)係被反向用於面射型 86182 -11 - 200405034 雷射’做為该光源10 8及110。結果’ 一共同光源係不切實 際而無論如何都會要求高成本。 该一維多光束雷射係施加於一^影像形成裝置中之光學系 統,如同在該JP-Α編號9-184991中所揭露。在一光學系統 中之光源120及122,及返回鏡123、124及126(來自該等光 源120及122之光束會通過該等返回鏡)係在本說明書中誇 大表示以便解釋。 在圖11中,在一旋轉多邊鏡後面的兩個鏡係從在該Jp_ A 編號9-184991中所揭露之影像形成裝置中刪除。影像係被 反向,然後返回到該原始具有兩個光束係以相同方向反射 之鏡的地方。這實質上係等同於沒有鏡。因此,刪除圖面 中的兩個鏡。一參考數字127係為一旋轉多邊鏡。 如同圖11中所示,該等光源120及122所發射之二維光束 之兩個軸的方向係相同。 要被曝光於該等個別光束之光敏物體滾筒(drum)l28& 130之兩個軸的方向彼此在關於該等光束之主掃描方向(該二 光敏物體滾筒128及130之軸向)係相反。 因此,爲了藉由圖11之光學系統來對準曝光於該等光敏 物把來同128及130之影像的方向,在適當時間反向一影像 仏唬(¾係用以輸入到每個光源12〇及122)於該主掃描方向 將會是有需要的。 面射型雷射之控制板或影像控制板的修正係需要的,以 :在適當時間反向該影像信號。這係意指不同零件的數目 會增加,而可共用的零件數目會減少。結果,增加該生產 86182 -12- 200405034 成本。 當使用一a回户& , ☆ 一冋^唬作為一影像信號時,也就是說,試著 知用共同影像控制系統時,會要求對應於光源120及122之 兩種面射型雷射。某—種雷射係具有 個軸的方向。3 士 口 〈兩 、 口 另一種雷射係只有該X軸(在該次掃描方向上 <軸)係被反向。這係意指不同零件的數目會增加,而可丑 “件數目會減少。結果,增加該生產成本。 在一万法中,藉由該方法,光束掃描之光學掃描器 對每個光敏物體安裝,如同在餅_A編號63_271275中所描 迷,當四個%學掃描器具有相同配置時,書亥等二維光束之 兩個轴:方向在四個光敏物體上係變成-樣。在該範例 中’孩等上述的問題就不會發生。 各存在一些狀況係由於一影像形成裝置之内部佈局,需要 修正光學掃描器,及黑色影像係高速輸出用以增加單色影 象〈輪出產能。當在;ρ·Α編號63_271275中所揭露之系統係 處於14些狀況時,會看到類似於該等上面所描述的問題。 【發明内容】 本♦明已輊考慮到該等上述情形完成,而本發明目的之 係要k供低成本之影像形成裝置,並且該裝置不需要複 雖的影像控制方法、控制用以寫入影像之起始位置的複雜 方去,及使用二維多光束雷射作為光源之類。 本备明之一第一方面係提供一影像形成裝置,在該裝置 中具有複數個多光束雷射,其中具有複數個發光部分係以 一維万式配置;複數個光敏物體係對應於該等多光束雷射 86182 -13- 200405034 配置;潛在影像藉由掃描該等複數個多光束雷射所發射之 複數個光束來形成在每個光敏物體上,用以曝光該等複數 個光敏物體,使用光學掃描系統,其包含返回該等複數個 光束之鏡;1在成像該等潛在影像之後,纟每個光敏物體 上所形成之複數個影像係相重疊而輸出成一單一影像。該 等光學掃H统包含每個該多%束雷$具有冑一個或更多 個返回鏡。該多光束雷射的方向及每個多光束雷射之返回 鏡數目係如此設定使得每個光敏物體在該主掃描方向及該 次掃描方向上’該等多光束雷射發射在該等光敏物體上之 複數個光束具有相同的配置。 然後,根據本發明之影像形成裝置之操作會簡單地加以 解釋。 在根據本4明之#像形成裝置巾,例如,安裝時光源的 方向及返回鏡之數目係設定成多光束雷射所發射之複數個 光束(其中發光部分係以二維方式配置)對於在每個所對應 的光敏物體上之該等二維軸係具有相同方向。 、、疋說在该等光敏物體上之該主掃描方向及該次掃 方向的每個方向係配置成具有與每個光束之主掃描轴 (例如,該x軸)及次掃描軸(例如,該Y軸)相同的方向。 、例如’當只有該X軸方向相同而該γ軸方向不同時,該等 光敏物&可以具有孩等相同的二維方向’因為該Υ值之方向 係=由在該次掃描方向上增加該等返回鏡之數目來反向。 ^該Υ軸方向係相同而該χ軸方向不同時,只有該χ轴方 w系藉由在3主掃描方向上增加該等返回鏡的數目(在從 86182 200405034 一反射裝置到該光束之發氺 反 係 ^ 负先先源的光學路徑上之鏡)來 向。在該等光敏物體上之二 、μ 一維万向在該等光敏物體之中 具有相同方向。 再者田巧X軸及γ軸方向兩者都被反向時,在該等光敏 物體上之二維方向係藉由安裝該多光束雷射作為光源,使 得孩等雷射係對該光學軸旋轉18()度而具有相同方向。 如同上面所描述’在該等光敏物體上之二維方向係利用 -具有根冑本發明之配置的影像形&裝置而具有相同方 向。控制具有相同配置之影像信號係利用複數個多光束雷 射來實現。因此’控制電路並沒有要求要根據該光源及高 速來改菱,戶斤以便可以提供高影像品質且低成纟的影像形 成裝置。 在根據本發明之影像形成裝置中,該下列配置係被施 加。邊等光學掃描系統包含一旋轉多邊鏡,藉由該鏡可以 執行該等光束的偏移及掃描。本發明提供該等複數個多光 束田射’邊等雷射發射光束係在某個方向上偏離一邊界, 3邊界饭设是徑向上通過該旋轉多邊鏡之旋轉軸的虛擬 泉亥等夕米束雷射之間的返回鏡數目的差異係設定成偶 數0 其後將加以解釋該影像形成裝置之操作,其中該上述配 置係被執行。 在具有該上述配置的影像形成裝置中,複數個多光束雷 射所發射的複數個光束係以某個方向偏離該一邊界,該邊 界係假設成徑向上通過該旋轉多邊鏡之旋轉軸的虛擬線。 86182 -15- 200405034 在此,因為該多光束雷射之間的返回鏡數目的差異係設 定成偶數。所以在每個光敏物體上之複數個光束的所有方 向只藉由設定該等方向,使用具有相同配置之多光束雷射 來變成相同。因此,多光束雷射的共用係可以實現。 在根據本發明之影像形成裝置中,該下列配置係被施 加。該等光學掃描系統係包含返回該等光束在該主掃描方 向上之返回鏡,及返回該等光束在該次掃描方向上之該等 返回鏡。當該等多光束雷射之間返回該等光束於該主掃描 方向上之返回鏡數目的差異與該等多光束雷射之間返回該 等光束於該次掃描方向上之返回鏡數目的差異皆係為偶數 時,該等多光束雷射的每個雷射係如此配置使得該雷射係 對該光學軸朝向相同的方向。當該等多光束雷射之間返回 該等光束於該次掃描方向上之返回鏡數目的差異與該等多 光束雷射之間返回該等光束於該主掃描方向上之返回鏡數 目的差異皆係為奇數時,該等多光束雷射之一係如此配置 使得該雷射係對該其他雷射的光學軸旋轉近乎180度。 然後,在該範例中的影像形成裝置的操作將會加以解釋。 該多光束雷射所發射的複數光束係藉由一將光束返回於 該主掃描方向之返回鏡返回於該主掃描方向,而係藉由一 將光束返回於該次掃描方向之返回鏡返回於該次掃描方 向。 在此,當該等多光束雷射之間返回該等光束於該主掃描 方向上之返回鏡數目的差異與該等多光束雷射之間返回該 等光束於該次掃描方向上之返回鏡數目的差異皆係為偶數 86182 •16- 200405034 時’在每個光敏物體上之複數個光束的所有方向係藉由每 個多光束雷射的配置變成相同,使得該等雷射係對該光學 轴朝向該相同方向。 馬為等多光束雷射之間返回該等光束於該次掃描方向上 之返回鏡數目的差異與該等多光束雷射之間返回該等光束 於該主掃描方向上之返回鏡數目的差異皆係為奇數時,在 該等光敏物體上之複數個光束的方向係藉由每個多光束雷 射的配置變成在該等多光束雷射中彼此相反,使得該等雷 射係對該光學軸朝向該相同方向。 因此,在每個光敏物體上之複數個光束的所有方向係藉 由每個多光束雷射的配置變得相同,使得某一雷射係對該 其他多光束雷射對著旋轉軸旋轉近乎1 8 〇度。 在根據本發明之影像形成裝置中,該下列配置係被施 加。孩等光學掃描系統包含一旋轉多邊鏡,該鏡偏移用以 掃描之光束。一多光束雷射係發射出在某個方向上偏離一 邊界之光束,該邊界假設是徑向上通過該旋轉多邊鏡之旋 轉軸的虚擬—線,及一多光束雷射係發射處在其他方向上偏 離該邊界之光束,該邊界假設是該虛擬線,而該等雷射係 被k供。從假設為該虛擬線之邊界返回該等光束於某個方 向之该等返回鏡的數目與從假設為該虛擬線之邊界返回該 等光束於該其他方向之該等返回鏡數目的差異係設定為奇 數。 接著,在該範例中的影像形成裝置的操作將會加以解釋。 一多光束雷射係發射出在某個方向上偏離一邊界之光 86182 -17- 200405034 束,該邊界假設是徑向上通過該旋轉多邊於 少思鲵〈旋轉軸的虛 擬線,及-多光束雷射係發射處在其他方向上偏離該邊界 之光束’該邊界假設是該虛擬線’而該等雷射係被提供。 因此,存在複數個光束在某個方向上係偏離一假設為一虛 擬線之邊界及複數個光束係偏離該其他方向。The ### is arranged in the M scanning directions, and the light-emitting parts have 6 coordinates on the X axis and 36 coordinates on the Y axis. In these optical systems, multi-beam lasers are used. The beam lasers have a plurality of two-dimensionally arranged light-emitting parts. When a mirror that returns a beam exists in the optical system, depending on the return direction, The directions of each axis are opposite. That is, when there are mirrors 丨 〇〇 and 〇 02 in the optical system, as shown in FIG. 8, the mirror will return the light beam in the main scanning direction, and the direction of the light beam in the X direction is passing ( Reflected at the mirrors 100 and 102) The mirrors 100 and 102 are opposite. When the field mirrors 104 and 106 are in the same optical system, the mirrors will return the beam in the scanning direction, as shown in FIG. 9. In the gamma direction, the direction of the beam is passing ( Reflected at the mirrors 104 and 106) The mirrors 104 and 106 are opposite. 86182 200405034 By one method, the sequence configuration and the two-dimensional multi-beam laser (such as a surface-emitting laser) are applied to a colorful image forming device as described above. For high speed and high image quality colorful image forming device systems, Effective. However, when the configuration and the laser system are installed at the same time, the following problems already exist. When the one-dimensional multi-beam laser is used in the light-emitting portion, and when the optical systems corresponding to a plurality of colors in the colorful image forming apparatus are different from each other, in some examples, in the photosensitive The configuration of the plurality of light beams on the object becomes different for each color system. When the beam configurations on these photosensitive objects are different from each other, the following problems occur: First, in one example, the beam configurations in the main scanning direction are different from each other, which will be explained again. In the two-dimensional multi-beam laser, the offset in the main scanning direction of the light-emitting part is controlled to be eliminated, and then the starting positions for writing images in these main scanning directions have the same position. . When the initial positions used for writing are different from each other, offset control is required for different positions, resulting in an increase in the production cost. In order to control the starting position of the human image, the beams on the sync sensor are also different from each other. Therefore, the control device is required to avoid the beam, thereby increasing the production cost. When the directions of the sub-scanning directions on photosensitive objects are different from each other, the direction of the image data is reversed into the sub-scanning direction (this is input to the multi-beam laser) in advance. The direction is aligned with the scanning direction of this 86182 200405034. Therefore, other devices for reverse image data are required to increase the production cost. Fig. 10 illustrates an example in which a two-dimensional multi-beam laser system is applied to an optical system of an image forming apparatus according to the JP-A No. 59-123368. The two light sources 108 and 110 in the optical system, and the return optical mirrors 112 and 114 corresponding to the light sources 108 and 110 are exaggerated for ease of explanation. The two-axis systems of the two-dimensional light beams emitted by the light sources 108 and 110 have the same direction. A reference number 11 5 refers to a rotating polygon mirror. Regarding the directions of the one-dimensional light beams on the light-sensitive objects 116 and 118 respectively to be exposed to the light beam, the X-axis (the axis in the main scanning direction) corresponds to the main scanning direction of the optical system (the And so on of the photosensitive objects 116 and 118). The scanning directions related to the rotation directions of the photosensitive objects 116 and 118 are opposite to each other. Therefore, in order to align the directions of the images on the photosensitive objects 116 and 118 produced by the optical system of FIG. 0 after exposure, the directions of the image signals of the two light sources to be input to the light source 108 or 110 Must be reversed to this scan direction. The reverse image additionally requires changes to a side-fired laser control board or an image control board. This means that the number of different parts will increase and the number of common parts will decrease. As a result, the production cost is increased. When a common signal is used as an image signal, that is, when a common board of an image control system is tried, two surface-emitting lasers are required. One of these lasers has a biaxial direction as shown in FIG. 10, while the other is only the Y-axis (the axis in the scanning direction) is reversed for the surface-emitting 86182 -11 -200405034 Laser 'as the light source 10 8 and 110. As a result, a common light source is impractical and requires high costs anyway. The one-dimensional multi-beam laser system is applied to an optical system in an image forming apparatus, as disclosed in the JP-A No. 9-184991. The light sources 120 and 122 and the return mirrors 123, 124, and 126 (the light beams from the light sources 120 and 122 will pass through the return mirrors) in an optical system are exaggerated in this specification for explanation. In FIG. 11, two mirrors behind a rotating polygon mirror are deleted from the image forming apparatus disclosed in the Jp_A number 9-184991. The image system is reversed and returns to the original place where the two beams reflected in the same direction. This is essentially equivalent to having no mirror. Therefore, delete the two mirrors in the drawing. A reference numeral 127 is a rotating polygon mirror. As shown in FIG. 11, the directions of the two axes of the two-dimensional light beams emitted by the light sources 120 and 122 are the same. The directions of the two axes of the photosensitive object drum 128 and 130 to be exposed to the individual beams are opposite to each other with respect to the main scanning direction of the beams (the axial directions of the two photosensitive object cylinders 128 and 130). Therefore, in order to align the direction of the exposure of the photosensitive objects with the images of 128 and 130 by the optical system of FIG. 11, reverse an image at an appropriate time. (¾ is used to input to each light source 12 (0 and 122) will be needed in this main scanning direction. The correction of the control panel or image control panel of the surface-emitting laser is required to reverse the image signal at an appropriate time. This means that the number of different parts will increase and the number of parts that can be shared decreases. As a result, the cost of the production 86182 -12- 200405034 is increased. When using a a home & ☆ ^^^ as an image signal, that is, when trying to use a common image control system, two surface-emitting lasers corresponding to the light sources 120 and 122 will be required . A certain type of laser system has the directions of several axes. 3 Shikou <Two, mouth Another type of laser system is only the X-axis (< axis in this scanning direction) is reversed. This means that the number of different parts will increase, and the number of ugly "pieces will decrease. As a result, the production cost will increase. In the ten thousand method, by this method, an optical scanner for beam scanning is mounted on each photosensitive object As described in Pie_A No. 63_271275, when the four scanners have the same configuration, the two axes of the two-dimensional beam such as Shu Hai: the direction becomes -like on four photosensitive objects. In this In the example, the above-mentioned problems will not occur. There are some situations due to the internal layout of an image forming device, the optical scanner needs to be corrected, and the black image is a high-speed output to increase monochrome images. . When the system disclosed in ρ · A No. 63_271275 is in 14 conditions, you will see problems similar to those described above. [Summary of the Invention] The present invention has been completed in consideration of these situations The purpose of the present invention is to provide a low-cost image forming device, and the device does not need a complicated image control method, a complicated method for controlling the starting position for writing an image, and A two-dimensional multi-beam laser is used as a light source or the like. One of the first aspects of the present invention is to provide an image forming apparatus having a plurality of multi-beam lasers in which a plurality of light-emitting portions are in a one-dimensional Wan type Configuration; a plurality of photosensitive systems corresponds to the configuration of the multi-beam lasers 86182 -13- 200405034; a latent image is formed on each photosensitive object by scanning a plurality of beams emitted by the plurality of multi-beam lasers, To expose the plurality of light-sensitive objects, an optical scanning system is used, which includes a mirror that returns the plurality of light beams; 1 After the potential images are imaged, the plurality of images formed on each light-sensitive object overlap The output is a single image. The optical scanning systems include one or more return mirrors for each of the multi-% beam lasers. The direction of the multi-beam laser and the number of return mirrors for each multi-beam laser are This is set so that each photosensitive object has the same configuration in the main scanning direction and the secondary scanning direction. Then, the operation of the image forming apparatus according to the present invention will be briefly explained. In the #image forming apparatus according to the present invention, for example, the direction of the light source and the number of return mirrors during installation are set to a multi-beam laser. The emitted plurality of light beams (where the light-emitting parts are arranged in a two-dimensional manner) have the same direction for the two-dimensional axis systems on each corresponding photosensitive object. Let us say that the main scan on the photosensitive objects Each direction of the direction and the sub-scanning direction is configured to have the same direction as the main scanning axis (for example, the x-axis) and the sub-scanning axis (for example, the Y-axis) of each light beam. For example, 'When only the When the X-axis direction is the same and the γ-axis direction is different, the photosensitive objects & may have the same two-dimensional direction 'because the direction of the threshold value = by increasing the number of the return mirrors in the scanning direction Come reverse. ^ When the Υ-axis directions are the same and the χ-axis directions are different, only the χ-axis square w is increased by increasing the number of such return mirrors in the 3 main scanning direction (from 86182 200405034 a reflection device to the light beam氺 Reverse ^ Mirror on the optical path of negative antecedent). The two-dimensional, μ one-dimensional gimbals on the photosensitive objects have the same orientation among the photosensitive objects. Furthermore, when Tian Qiao's X-axis and γ-axis directions are both reversed, the two-dimensional direction on these photosensitive objects is by installing the multi-beam laser as a light source, so that the laser system is aligned with the optical axis. Rotate 18 () degrees to have the same direction. As described above, the two-dimensional direction on these photosensitive objects is the same direction using the image-shaped & device according to the configuration of the present invention. Controlling image signals with the same configuration is achieved using multiple multi-beam lasers. Therefore, the control circuit does not require that the diamond be changed according to the light source and the high speed, so that the user can provide an image forming device with high image quality and low formation. In the image forming apparatus according to the present invention, the following configuration is applied. The edge optical scanning system includes a rotating polygon mirror with which the beams can be shifted and scanned. The present invention provides a plurality of multi-beam field-emission laser emission beams that deviate from a boundary in a certain direction. The three-border design is a virtual spring that passes through the rotation axis of the rotating polygon mirror in the radial direction. The difference in the number of return mirrors between the beam lasers is set to an even number of 0, and the operation of the image forming apparatus will be explained later, in which the above configuration is performed. In the image forming apparatus having the above configuration, the plurality of light beams emitted by the plurality of multi-beam lasers deviate from the boundary in a certain direction, and the boundary is assumed to be a virtual passing through the rotation axis of the rotating polygon mirror in a radial direction. line. 86182 -15- 200405034 Here, the difference in the number of return mirrors between the multi-beam lasers is set to an even number. Therefore, all directions of the plurality of light beams on each photosensitive object become the same only by setting these directions and using a multi-beam laser with the same configuration. Therefore, a multi-beam laser common system can be realized. In the image forming apparatus according to the present invention, the following configuration is applied. The optical scanning systems include return mirrors returning the light beams in the main scanning direction, and return mirrors returning the light beams in the scanning direction. The difference between the number of return mirrors in the main scanning direction between the multi-beam lasers and the number of return mirrors in the main scanning direction between the multi-beam lasers When both are even numbers, each laser system of the multi-beam lasers is configured such that the laser systems face the same direction with respect to the optical axis. The difference between the number of return mirrors between the multi-beam lasers that returned the beams in that scanning direction and the difference between the number of return mirrors that returned the beams in the main scanning direction between the multi-beam lasers When both are odd numbers, one of the multi-beam lasers is configured such that the laser system rotates approximately 180 degrees to the optical axis of the other lasers. Then, the operation of the image forming apparatus in this example will be explained. The multiple light beams emitted by the multi-beam laser are returned to the main scanning direction by a return mirror that returns the light beam in the main scanning direction, and are returned by a return mirror that returns the light beam in the main scanning direction. The scan direction. Here, when the difference between the number of return mirrors of the multiple beam lasers returning the light beams in the main scanning direction and the return mirrors of the multiple beam lasers returning the light beams in the secondary scanning direction The difference in the numbers is an even number of 86182 • 16- 200405034. 'All directions of the multiple beams on each photosensitive object are made the same by the configuration of each multi-beam laser, so that these lasers are The axes are oriented in this same direction. The difference between the number of mirrors returned by Ma Wei and other multi-beam lasers in the main scanning direction and the number of mirrors returned by the multi-beam laser in the main scanning direction When all are odd numbers, the directions of the plurality of light beams on the photosensitive objects are changed by the configuration of each multi-beam laser to be opposite to each other in the multi-beam laser, so that the lasers are opposite to the optical The axes are oriented in this same direction. Therefore, all the directions of the plurality of light beams on each photosensitive object are made the same by the configuration of each multi-beam laser, so that a certain laser system rotates the other multi-beam laser toward the rotation axis by nearly 1 80 degrees. In the image forming apparatus according to the present invention, the following configuration is applied. Children's optical scanning systems include a rotating polygon mirror that shifts the beam used to scan. A multi-beam laser system emits a beam that deviates from a boundary in a certain direction. The boundary is assumed to be a virtual line passing radially through the rotation axis of the rotating polygon mirror, and a multi-beam laser system emits in other directions. The beam is deviated from the boundary, the boundary is assumed to be the virtual line, and the lasers are supplied by k. The difference between the number of return mirrors that return the light beams in a certain direction from the boundary assumed to be the virtual line and the number of return mirrors that return the light beams in the other direction from the boundary assumed to be the virtual line Is odd. Next, the operation of the image forming apparatus in this example will be explained. A multi-beam laser system emits a beam of light 86182 -17- 200405034 that deviates from a boundary in a certain direction. The boundary is assumed to be a virtual line passing through the rotating polygon in the radial direction of Shaosi <rotation axis, and- The laser system emits a light beam which deviates from the boundary in other directions 'the boundary is assumed to be the virtual line' and the laser systems are provided. Therefore, there are a plurality of light beams deviating from a boundary assumed to be a virtual line in a certain direction and a plurality of light beams deviating from the other direction.
此處,將光束從假設為該虛擬線之邊界返回到某一方白 之返回鏡的數目與將光束從假設為該虚擬線之邊界返回到 其他方向之返回鏡的數目間的差異係為奇數。因而,在每 個光敏物體上之複數個光束的所有方向只藉由設定該等方 向及使用具有該相同配置之多光束雷射來變成相同。因 此,共同使用多光束雷射便可實現。Here, the difference between the number of return mirrors that return the light beam from the boundary assumed to be the virtual line to a certain square and the number of return mirrors that return the light beam from the boundary assumed to the virtual line to other directions is an odd number. Therefore, all directions of the plurality of light beams on each photosensitive object become the same only by setting the directions and using a multi-beam laser having the same configuration. Therefore, the common use of multi-beam lasers can be achieved.
在根據本發明之影像形成裝置中,該下列配置可以進一 步施加。該等光學掃描系統係包含返回該光束於該主掃描 方向上之返回鏡及返回該光束於該次掃描方向上之返回 鏡。每個多光束雷射係如此配置使得當該等多光束雷射之 間返回該等光束於該主掃描方向上之返回鏡數目的差異係 為偶數及該—等多光束雷射之間返回該等光束於該次掃描方 向上之返回鏡數目的差異係為奇數時,該雷射係對著該光 學軸朝向相同方向。該等多光束雷射之一係如此配置使得 當该等多光束雷射之間返回該等光束於該主掃描方向上之 返回鏡數目的差異係為奇數及該等多光束雷射之間返回該 等光束於該次掃描方向上之返回鏡數目的差異係為偶數 時,該雷射係對該其他雷射的光學軸旋轉近乎18〇度。 接著’在該範例中的影像形成裝置的操作將會加以解釋。 86182 -18- 200405034 該多光束雷射所發射的複數光束係藉由—將光束返回於 該主掃描方向之返回鏡返回於該主掃插方向。該等複數個 光束係藉由一將光束返回於該次择描方向之返回鏡返回於 該次知描方向。 在此’每個多光束雷射係如此配置使得當該等多光束雷 射之間返回該等光束於該主掃描方向上之返回鏡數目的差 異係為偶數及該等多光束雷射之間返回該等光束於該次掃 描方向上之返回鏡數目的差異係為偶數及該等多光束雷射 〈間返回該等光束於該次掃描方向上之返回鏡數目的差星 係為奇數時,該雷射係對著該光學軸朝向相同方向。因此、, 在每㈣敏物體上之複數個光束之所有方向係變成相同。 孩等多光束雷射之-係如此配置使得當該等多光束 之間返回該等光束於該主掃描方向上之返回鏡數目的:里 係為奇數*料彡光束料之間心該等光束於該次择描 、之l回‘數目的差異係為偶數時,該雷射係對該其 他雷射的光學軸旋轉近乎180度。然後,在每個光敏物體^ <複數個光涑之所有方向係變成相同。 【實施方式】 [第一實施例] 在下又中,根據本發明之一第一實施例之影像形成裝 1 〇將會參考圖示加以解釋。 W像形成裝置之一般配置 如圖1中所不’根據該實施例之影像形成裝置10具有 成黑色影像之感光單元1GK,另—個形成綠色影像:感料 86182 -19- 200405034 元10C,還有另一個形成紅色影像之感光單元10M,及另一 個形成黃色影像之感光單元10Y。 該等感光單元10K、10C、10M及10Y的每一個係各自具 有一光敏物體鼓12、一電氣化裝置14、一成像裝置16、一 轉移裝置1 8,及一清除裝置20。 形成黑色影像之感光單元10K的光敏物體鼓12係具有比 該等其他感光單元l〇C、10M及10 Y之光敏物體鼓12還大的 直徑。這只係爲了避免該感光單元10K的光敏物體鼓12比其 他零件更快結束其壽命週期。因為輸出單色影像會縮短該 壽命週期。 該等感光單元10K、10C、10M及10Y係水平地配置。黑 色及綠色的光學掃描器22CK係配置在該等感光單元10K及 10C之上,而紅色及黃色的光學掃描器22MY係配置在該等 感光單元10M及10Y之上。 由滾輪24A到24G所支撐之帶狀中間轉移元件26係配置 在該等感光單元10K、10C、10M及10Y之下。 利用該等—滚輪24 A到24G,該中間轉移元件26以圖1中所 示之箭頭A的方向驅動。 該中間轉移元件26係配置以保持在該光敏物體鼓12與該 等轉移裝置18的滚輪間。在該光敏物體鼓12之上的著色 (toner)影像係轉移到該中間轉移元件26之上。 一用以堆疊複數張紙28之紙匣30係配置於該中間轉移元 件26之下。用以運送一張紙28之滾輪32 A到32F係配置在該 紙匣30上。 86182 -20- 200405034 該張紙28係藉由滾輪32 A到32F—張張地運送。該張紙28 會進入與該滾輪32F與該滾輪24E間的中間轉移元件26相接 觸。在該中間轉移元件26上的影像會被轉移到該紙張28上。 透過一固定裝置34,該張被轉移影像於其上的紙28係被 帶出該裝置。 光學掃描裝置之細節 一光學掃描器22YM及該光學掃描器22CK將會詳加解 釋。 在圖2中,該等光學掃描器22YM及22CK係顯示處於互相 重疊的狀態。在圖2中,實線係指該光學掃描器22 YM之情 況而虛線係指該光學掃描器22CK之情況。 該等光學掃描器22YM及22CK之每一個係配置一機殼 36 〇 在該機殼36中配置一旋轉多邊境38、一組兩個fe透鏡40A 及40B、一返回鏡42、一返回鏡44、一具有在次掃描方向上 之折射率之柱狀鏡46、一返回鏡48、一返回鏡50、一返回 鏡52及一柱—狀鏡54。 兩光源到譎等兩個光敏物體鼓12之照明量(luminous flux) 係在一旋轉多邊鏡38處反射及偏移。這兩個光源的細節會 在稍後詳細描述,但是並未顯示圖2中。該等照明量係在主 掃描方向上使用一組兩個ίθ透鏡40A及40B來聚焦,以讓該 等照明量以固定速度掃描該光敏物體鼓12。 當解釋有關紅色(M)及黑色(K)光學路徑時,已經通過該 等ίθ透鏡40 A及40B之照明量係被該等返回鏡42及44返回。 -21-In the image forming apparatus according to the present invention, the following configuration can be further applied. The optical scanning systems include a return mirror that returns the light beam in the main scanning direction and a return mirror that returns the light beam in the secondary scanning direction. Each multi-beam laser system is configured such that when the number of return mirrors in the main scanning direction of the beams returned between the multi-beam lasers is an even number and the- When the difference between the number of returning mirrors in the scanning direction of the light beam is an odd number, the laser system faces the same direction toward the optical axis. One of the multi-beam lasers is configured such that when the multi-beam lasers return, the difference in the number of return mirrors of the beams in the main scanning direction is an odd number and the return between the multi-beam lasers is When the difference in the number of returning mirrors of the beams in the scanning direction is an even number, the laser is rotated by approximately 180 degrees to the optical axis of the other lasers. Next, the operation of the image forming apparatus in this example will be explained. 86182 -18- 200405034 The multiple beams emitted by the multi-beam laser are returned to the main scanning direction by a return mirror that returns the beam in the main scanning direction. The plurality of light beams are returned to the secondary scanning direction by a return mirror that returns the light beam to the secondary scanning direction. Here, each multi-beam laser is configured such that when the multi-beam lasers return the difference between the number of return mirrors of the beams in the main scanning direction is an even number and between the multi-beam lasers The difference in the number of returning mirrors that returned the beams in the scan direction was an even number and the multiple beam lasers were different. When the difference in the number of returning mirrors that returned the beams in the scan direction was odd, The laser system faces the same direction toward the optical axis. Therefore, all directions of the plurality of light beams on each sensitive object become the same. Children's multi-beam lasers are configured so that when the multiple beams return the number of return mirrors of the beams in the main scanning direction: the inner line is an odd number. When the difference between the number of tracings and the number of times is an even number, the laser system rotates about 180 degrees to the optical axis of the other lasers. Then, all directions of each light-sensitive object ^ < a plurality of light beams become the same. [Embodiment] [First Embodiment] In the following, the image forming apparatus 10 according to a first embodiment of the present invention will be explained with reference to the drawings. The general configuration of the W image forming device is as shown in FIG. 1. The image forming device 10 according to this embodiment has a photosensitive unit 1GK that forms a black image, and another one forms a green image: 86182 -19- 200405034 yuan 10C, also There is another photosensitive unit 10M that forms a red image, and another photosensitive unit 10Y that forms a yellow image. Each of the photosensitive units 10K, 10C, 10M, and 10Y has a photosensitive object drum 12, an electrification device 14, an imaging device 16, a transfer device 18, and a cleaning device 20, respectively. The photosensitive object drum 12 of the photosensitive unit 10K forming a black image has a larger diameter than the photosensitive object drum 12 of the other photosensitive units 10C, 10M, and 10Y. This is only to prevent the photosensitive object drum 12 of the photosensitive unit 10K from ending its life cycle faster than other parts. This is because outputting a monochrome image shortens the life cycle. These photosensitive units 10K, 10C, 10M, and 10Y are arranged horizontally. Black and green optical scanners 22CK are arranged on the photosensitive units 10K and 10C, and red and yellow optical scanners 22MY are arranged on the photosensitive units 10M and 10Y. The belt-shaped intermediate transfer elements 26 supported by the rollers 24A to 24G are arranged under the photosensitive units 10K, 10C, 10M, and 10Y. With the rollers 24 A to 24G, the intermediate transfer member 26 is driven in the direction of the arrow A shown in FIG. 1. The intermediate transfer member 26 is arranged to be held between the photosensitive object drum 12 and a roller of the transfer device 18. The toner image on the photosensitive object drum 12 is transferred onto the intermediate transfer element 26. A paper cassette 30 for stacking a plurality of sheets of paper 28 is disposed under the intermediate transfer element 26. Rollers 32 A to 32F for conveying a sheet of paper 28 are arranged on the paper cassette 30. 86182 -20- 200405034 The sheet of paper 28 is conveyed sheet by sheet by rollers 32 A to 32F. The sheet of paper 28 comes into contact with the intermediate transfer member 26 between the roller 32F and the roller 24E. The image on the intermediate transfer element 26 is transferred to the paper 28. Through a fixing device 34, the sheet of paper 28 on which the image was transferred is taken out of the device. Details of the optical scanning device An optical scanner 22YM and the optical scanner 22CK will be explained in detail. In Fig. 2, the optical scanners 22YM and 22CK are shown in a state of overlapping each other. In FIG. 2, the solid line refers to the case of the optical scanner 22 YM and the dotted line refers to the case of the optical scanner 22CK. Each of the optical scanners 22YM and 22CK is provided with a casing 36. In the casing 36, a rotating multi-border 38, a set of two fe lenses 40A and 40B, a return mirror 42, and a return mirror 44 are provided. A cylindrical mirror 46 having a refractive index in the sub-scanning direction, a return mirror 48, a return mirror 50, a return mirror 52, and a cylindrical mirror 54. The luminous flux of the two light-sensitive object drums 12 such as two light sources to 谲 is reflected and shifted at a rotating polygon mirror 38. The details of these two light sources are described in detail later, but are not shown in Figure 2. The illumination amounts are focused in the main scanning direction using a set of two θ lenses 40A and 40B, so that the illumination amounts scan the photosensitive object drum 12 at a fixed speed. When explaining the red (M) and black (K) optical paths, the amount of illumination that has passed through the θ lenses 40 A and 40B is returned by the return mirrors 42 and 44. -twenty one-
86182 791 200405034 邊等照明f係在該次掃描方向上穿過該柱狀鏡46及該返回 鏡48而聚焦在該光敏物體鼓丨2。 該柱狀鏡46也可作為該旋轉多邊鏡38之面混亂(tangle) 錯誤修正光學系統。 關於黃色及綠色光學路徑,該等照明量穿過該等返回鏡 5 0、5 2及该柱狀鏡5 4抵達該光敏物體鼓12。 因為在一機殼3 6内之兩個光學系統係共用一組的該等 透鏡40A及40B,所以該等兩個光學系統從該旋轉多邊鏡38 到該光敏物體鼓12具有相同的光學路徑長度。 再者’因為該等光學掃描器22CK及22 YM係一起以相同 配置使用該組的f0透鏡40A及40B,所以黃色、紅色、綠色 及黑色之所有光學路徑在該等兩個機殼36内具有相同長 度。 黑色的光學路後長度係被要求在該機殼3 6内要比紅色來 得長,因為黑色從機殼36到該光敏物體鼓12的距離係比紅 色來得短。 因此,該等返回鏡44、48及該柱狀鏡46之位置係對黑色 及紅色的每一個個別逐漸地變化,以消除該圖2中所適之光 學路徑長度的差異。 圖3係為從上面觀看該光學掃描器22 YM之光學系統的平 面圖示。在圖3中,只有顯示該等fe透鏡40 A、40B與該光源 之間的光學系統,而其他的零件係被省略。 該光學掃描器22YM係配置一黃色光源56Y及一紅色光源 56M。該等光源56Y及56M的每個光源係為用以發射光束之 86182 -22- 200405034 面射型雷射陣列。 根據本實施例,該等光源56 Y及56M與該光學掃描器 22CK之光源56C及56K係屬於相同結構的面射型雷射陣 列。如圖4 A到4D中所示,發光部分37係配置在這些光源中 以發射出3 6道光束。 一準直透鏡58Y、一反射鏡60、一柱狀透鏡62Y、一柱狀 透鏡62M、一半鏡64及一旋轉多邊鏡38係依序配置在該光 源56 Y之光束發射邊。該反射鏡60反射該光源56M所發射的 光束。該半鏡64則反射一部分的光束。 如同在圖1及2中所示,黃色光束及紅色光束係分別以不 同的高度進入該旋轉多邊鏡3 8。黃色光束之位置係高於紅 色光束之位置。 該鏡60係配置在黃色光源56 Y所發射之光束的光學路徑 之下。因此,用以反射該光源56M所發射之光束的反射鏡 60係只有反射紅色光束。這係用以造成從上方看來,紅色 光束之光學路徑與黃色光束之光學路徑係重疊。 一準直透鏡66M及該光源56M係配置在垂直於該反射鏡 60到該光源56Y之方向的方向上。 該光源56Y所發射的複數個光束係藉由該準直透鏡58 Y 來變成近乎平行的光線,及該光源56M所發射的複數個光 束係藉由該準直透鏡66M來變成近乎平行的光線。 如上面所描述,黃色光束之光學路徑及紅色光束之光學 路徑彼此係在不同的高度。至少直到抵達該等ίθ透鏡40 A及 40B之前,黃色光束之光學路徑的高度係高於紅色光束之光 86182 -23 - 200405034 學路徑的高度。 該柱狀透鏡62M係配置在該柱狀透鏡62Y之下。當從上面 來看時,該柱狀透鏡62 Y及柱狀透鏡62M看起來係重疊,如 同圖3中所示。 該柱狀透鏡62 Y只有在該次掃描方向上聚焦已準直的黃 色光束。該柱狀透鏡62M只有在該次掃描方向上聚焦已準 直的紅色光束。 該半鏡64分隔及反射一部分的光束到一用以偵測光量之 感測器68。不像端面發射型雷射,該面射型雷射並沒有回 射光束。所以需要使用前端光束來偵測該光量。 已經通過該半鏡64之黃色光束YB係藉由該旋轉多邊鏡 38來反射及偏移。如圖2中所示,該光束YB穿過該等ίθ透鏡 40A及40B、該返回鏡50、該返回鏡52及該柱狀鏡54抵達該 光敏物體鼓12。 已經通過該半鏡64之紅色光束MB係藉由該旋轉多邊鏡 38來反射及偏移。如圖2中所示,該光束MB穿過該等fe透 鏡40 A及40B、該返回鏡42、該返回鏡44、該柱狀鏡46及該 返回鏡48抵達該光敏物體鼓12。 如圖3中所示,一光束通過計時偵測器70係配置在該光學 掃描器22 YM内。該光束通過計時偵測器70係偵測在開始掃 描該光敏物體鼓之前光束通過的時間,以便使用該旋轉多 邊鏡38之每個反射表面來調整該光敏物體鼓12之曝光時 間。 該光束通過計時偵測器70具有一拾取鏡72及一同步光學 86182 -24- 200405034 感測器74。該拾取鏡72反射在掃描該光敏物體之前用以同 步化之光束(參見圖4A到4D ··每條線六道光束)。在該拾取 鏡72所反射用以同步化的光束係進入該同步光學偵測器 74 〇 該光學掃描器22CK具有與該光學掃描器22YM相同的配 置。所以刪減該光學掃描器22CK的解釋。 在本實施例中,在每個光學系統中之返回鏡的數目係設 定如同表1中所示。該旋轉多邊鏡3 8之反射表面係被計算成 當作一返回鏡,因為光束係在該主掃描方向上返回於該等 表面。 表1 光學系統 在該主掃描方向上 之返回鏡的數目 在該次掃描方向上 之返回鏡的數目 總數 Y:黃色 1 3 4 M:紅色 2 4 6 C綠色 1 3 4 K:黑色 2 4 6 也就是說,在本實施例中,該等黃色及綠色的光學系統 分別具有四個返回鏡。在其中,在該主掃描方向上的返回 鏡之一係為該旋轉多邊鏡3 8之反射表面,在該次掃描方向 上的其餘三個返回鏡係為該返回鏡50、52及該柱狀鏡54。 該等紅色及黑色的光學系統分別具有六個返回鏡。在其 中,在該主掃描方向上的返回鏡之二係為該旋轉多邊鏡38 及反射鏡6 0之反射表面,在該次掃描方向上的其餘四個返 回鏡係為該返回鏡42、44及48,及該柱狀鏡46。 86182 -25· 200405034 圖4 A到4D係為每個光束黃色、紅色、綠色及黑色之光源 的視圖,如同從該旋轉多邊鏡38看來。圖4A到4D中的垂直 方向係符合該旋轉多邊鏡38之旋轉軸的方向。在圖4A到4D 中所式的發光部分37中的特定發光部分係利用黑點來標 示,用以了解每個多光束雷射的方向。 在本實施例中,在該主掃描方向上之返回鏡數目的差異 係為一個或奇數個,在該次掃描方向上,黃色光學系統與 紅色光學系統之間的返回鏡數目的差異係為一個或奇數 個。在該主掃描方向上之返回鏡數目的差異係為一個(奇數 個),在該次掃描方向上,黑色光學系統與綠色光學系統之 間的返回鏡數目的差異係為一個(奇數個)。 因此,在本實施例中,該紅色光源56M及黑色光源56K係 如同圖4A到4D中所示,以56M及56K之光源係相對於黃色 56Y及綠色56C之光源旋轉180度之狀態安裝。 圖5 A及5B說明根據本實施例利用該等返回鏡所造成複 數個光束(二維光束)之軸向變化。 紅色光源勹6M及黑色光源56K係分別以56M及56K光源相 對於黃色光源56 Y及綠色光源56C旋轉180度之狀態安裝。 黃色及綠色之光學系統之主掃描方向之軸向及次掃描方向 之軸向在該等光源之位置處係與紅色及黑色之光學系統相 反。 操作 根據本實施例之影像形成裝置的操作將會加以解釋。 當光束係在該主掃描方向上的返回鏡處反射時,該主掃 86182 -26- 200405034 描方向上的軸會被反轉。當光束係在該次掃描方向上的返 回鏡處反射時’該次掃描方向上的軸會被反轉。 在本實施例中,紅色光源56M及黑色光源56K係分別以 56Μ及56Κ光源相對於黃色光源56γ及綠色光源56C旋轉 1 80度之狀怨安裝。在黃色光學系統與紅色光學系統之間, 在該王掃描方向上之返回鏡數目的差異係為一個(奇數 個),而在該次掃描方向上之返回鏡數目的差異係為一個(奇 數個)。在黑色光學系統與綠色光學系統之間,該主掃描方 向上之返回鏡數目的差異係為一個(奇數個),而在該次掃描 方向上之返回鏡數目的差異係為一個(奇數個),如同圖4 a 到圖4D所示。因此,每個光束(二維光束之方向)之所有配 置在該等黃色、紅色、綠色及黑色之光敏物體鼓12的每一 個上面係相同。 因此’以相同配置來控制影像信號係被實現,及控制電 路並沒有被要求要根據在該等光源56Y、56c、56M及56κ 中的光源(色彩)而改變。所以便可以提供高影像品質及低成 本影像形成—裝置10。 [第二實施例] 根據本發明之一第二實施例的影像形成裝置80將會參考 圖ό A及6 B ’及7 A到7 D來力口以解釋。與該第一實施例共用的 零件具有相同的參考數字,所以省略該等零件的解釋。 在該第一實施例中,黑色及綠色之光學掃描器22CK及紅 色及黃色之光學掃描器22MY之兩個光學掃描器係被安 裝。反而,在根據該第二實施例之影像形成裝置80中所提 86182 -27- 200405034 供的是一單一光學掃描器22CKMY,用以發射該等黃色、 紅色、綠色及黑色之光束。 在該第二實施例中,對應於各別色彩之所有光敏物體鼓 12係被設定成具有相同直徑。 圖6A只有顯示分別位在感光單元10K、10C、10M及10Y 内之光敏物體鼓12。一電氣化裝置14、一成像裝置16、一 轉移裝置1 8,及一清除裝置20及該等類似的裝置都從圖6 A 中省略。 該第二實施例之光學掃描器22CKMY幾乎具有與該第一 實施例類似光學組件。該等光學組件之配置及數目係不同 於該第一實施例。 在該第二實施例中,一旋轉多邊鏡38係配置在一機殼36 之中心處。黑色及綠色光學系統係配置在該旋轉多邊鏡38 之左側(該箭頭L之方向)。黃色及紅色光學系統係配置在該 旋轉多邊鏡38之右侧(該箭頭R之方向)。 在該第二實施例中,黃色光束YB之光學路徑及紅色光束 MB之光學路徑係具有不同高度。至少直到抵達該等f0透鏡 40 A及40B之前,黃色光束YB之光學路徑的高度係低於紅色 光束MB之光學路徑的高度。 黑色光束KB之光學路徑及綠色光束CB之光學路徑係具 有不同高度。至少直到抵達該等f0透鏡40 A及40B之前,黑 色光束KB之光學路徑的高度係低於綠色光束CB之光學路 徑的高度。 從該光源到該等ίθ透鏡40A及40B,黑色及綠色的光學系 86182 -28- 200405034 統,及黃色及紅色的光學系統相對於該光學系統中的旋轉 多邊鏡38係為對稱的,如圖6B中所示。 在該第二實施例中,在每個光學系統中之返回鏡的數目 係設定如同表2中所示。 表2 光學系統 在該主掃描方向上 之返回鏡的數目 在該次掃描方向上 之返回鏡的數目 總數 Y:黃色 2 3 5 M:紅色 1 2 3 C:綠色 1 3 4 K:黑色 2 4 6 也就是說,在該第二實施例中,該黃色光學系統總共具 有五個返回鏡。其中在該主掃描方向上的返回鏡之二係為 該旋轉多邊鏡38之反射表面及一反射鏡60。在該次掃描方 向上的其餘三個返回鏡係為該返回鏡50、52及該柱狀鏡54。 該紅色光學系統總共具有三個返回鏡。在該主择描方向 上的返回鏡之一係為該旋轉多邊鏡38之反射表面。在該次 掃描方向上的其餘兩個返回鏡係為該返回鏡42及該柱狀鏡 46 ° 在該實施例中,未說明的紅色光源56係以該光源56係對 黃色光源56 Y之光學軸旋轉180度之狀態安裝。 該綠色光學系統總共具有四個返回鏡。在該主掃描方向 上的返回鏡之一係為該旋轉多邊鏡38之反射表面。在該次 掃描方向上的其餘三個返回鏡係為該返回鏡50、52及該柱 狀鏡54。 86182 -29- 200405034 該黑色光學系統總共具有六個返回鏡。在該主掃描方向 上的返回鏡之二係為該旋轉多邊鏡38之反射表面及該反射 鏡60。在該次掃描方向上的其餘四個返回鏡係為該返回鏡 42及44、該柱狀鏡46,及一返回鏡48。 也就是說,根據該第二實施例之黑色及綠色光學系統具 有與在該第一實施例中之綠色及黑色光學系統相同的配置 (參考圖2)。 圖7A到7D說明根據該第二實施例,利用該等返回鏡所造 成複數個光束之軸向變化。 該黃色光源56Y及綠色光源56C係以該等光源56M及56κ 刀別相對於紅色光源5 6Μ及黑色光源56Κ旋轉1 8〇度之狀離 士裝。紅色及黑色之光學系統之主掃描方向之轴向及次掃 描方向之軸向在該等光源之位置處係與黃色及綠色之光學 系統相反。 操作 根據#弟一貫施例之影像形成裝置8 0的操作將會加以解 釋。 - 根據該第一實施例之綠色及黑色光學系統具有與在該第 一實施例中之綠色及黑色光學系統相同的配置。個別的光 束(一維光束的方向)係以相同的方式配置在該等綠色及黑 色之光敏物體鼓12之每一個之上。 然後’根據該第二實施例之黃色及紅色的光學系統係配 置如下。該等返回鏡之總數的差異係為偶數(5-3=2)。紅色 光源56Μ係定位在相對於黃色光源56Υ旋轉180度的方向。 86182 -30- 200405034 在碳王掃描方向上之返回鏡數目的差異係設定成一個或奇 數個。在孩次掃描方向上之返回鏡數目的差異也係設定成 個或奇數個。因此,每個光束(二維光束之方向)之所有配 置在該等只色及紅色之光敏物體鼓12的每一個上面係相 同。 " -色及紅色的光束及綠色及黑色的光束係從用以偏移及 掃描之旋轉多邊鏡38,發射在該相反的方向上。對於在每 個色才X光敏物體鼓12上之方向及座標係變成相同而處於 當該主掃描方向係相反於該次掃描方向時四種色彩係重疊 之狀態。 且 如同可從圖7A到7D中了解,每個光束(二維光束之方向) 係利用施加該第二實施例之配置來允許在黃色、紅色、綠 色及黑色的光敏物體鼓12之每一個之上具有相同的配置。 因此,根據該第二實施例之影像形成裝置8〇,可以提供 如同該第一實施例一樣的高影像品質及低成本的影像形成 裝置。 [其他實施例] 在一範例中,複數個光源所發射的複數個光束係進入某 一旋轉多邊鏡38,該範例已經在該等上述實施例中詳細地 解釋。本發明並非受限於該一範例。本發明可以被施加於 一種範例,在該範例中,具有一從某一多光束雷射所發射 的光束進入一旋轉多邊鏡之系統的光學掃描器係如同在 JP-A編號63-271275中所揭露般地配置。該等光學掃描哭的 某一些係符合用以增加速度及類似東西的佈局限制及要 86182 -31 - 200405034 求。這允許本發明應用在包含不同光學系統之範例中。 返回鏡之數目(在該主掃描方向上及在該次掃描方向上) 並非限制於在該等上面實施例中所描述。明顯地,該數目 可以在不悖離本發明之真實精神及範圍之下適當地增減。 如同上面所解釋,根據本發明之影像形成裝置具有該裝 置能夠即使當使用-二維多光束雷射作H原時也不用 讓控制影像之方法及用以窝入影像之起始位置變得複雜而 以低成本來提供之優點。 【圖式簡單說明】 圖1係為根據一第—眘#也丨4 f & 弟貫她例 < 影像形成裝置之主要部分 的側視圖; 實施例之影像形成裝置之光學掃描 圖2係為根據該第一 器之侧視圖; 圖3係為胃光學掃描器之主要部分的平面圖 圖4A到4D分別係為一光源之前視圖; 回鏡’對黃色及綠色光 圖5 A係為說明藉由光學系統之返 束之軸向之雙化的解釋圖示; 圖5B係為說明藉由 土、^ — 田先子系統惑返回鏡,對黑色及紅色光 束尤軸向之變化的解釋圖示; 圖ό A係為根據一第二旦 —貫施例<衫像形成裝置之主要部分 的側視圖; κ 土貴Η刀 平面圖; ’對黃色光束之軸 圖6Β係為—光學掃插器之主要部分 圖7Α係為說明藉由光學系統之返回 向之變化的解釋圖示; 8618286182 791 200405034 Edge lighting f passes through the lenticular lens 46 and the return mirror 48 in the scanning direction and focuses on the photosensitive object drum 2. The cylindrical lens 46 can also be used as a tangle error correction optical system of the rotating polygon mirror 38. With regard to the yellow and green optical paths, the amounts of illumination pass through the return mirrors 50, 52 and the cylindrical mirror 54 to the photosensitive object drum 12. Since the two optical systems in one casing 36 share a group of these lenses 40A and 40B, the two optical systems have the same optical path length from the rotating polygon mirror 38 to the photosensitive object drum 12 . Furthermore, 'because the optical scanners 22CK and 22 YM use the same f0 lenses 40A and 40B in the same configuration, all optical paths of yellow, red, green, and black are provided in the two casings 36 Same length. The length of the black optical path is required to be longer in the housing 36 than the red because the distance from the housing 36 to the photosensitive object drum 12 is shorter than that of red. Therefore, the positions of the return mirrors 44 and 48 and the lenticular lens 46 are gradually changed individually for each of black and red, so as to eliminate the difference of the optical path lengths suitable in FIG. 2. Fig. 3 is a plan view of the optical system of the optical scanner 22 YM as viewed from above. In FIG. 3, only the optical system between the fe lenses 40A, 40B and the light source is shown, and other parts are omitted. The optical scanner 22YM is configured with a yellow light source 56Y and a red light source 56M. Each of the light sources 56Y and 56M is a 86182 -22- 200405034 surface-emitting laser array for emitting a light beam. According to this embodiment, the light sources 56 Y and 56M and the light sources 56C and 56K of the optical scanner 22CK belong to a surface-emitting laser array having the same structure. As shown in Figs. 4A to 4D, the light emitting portion 37 is arranged in these light sources to emit 36 light beams. A collimating lens 58Y, a reflecting mirror 60, a lenticular lens 62Y, a lenticular lens 62M, a half mirror 64, and a rotating polygon mirror 38 are sequentially arranged on the light emitting side of the light source 56 Y. The reflecting mirror 60 reflects the light beam emitted from the light source 56M. The half mirror 64 reflects a part of the light beam. As shown in Figs. 1 and 2, the yellow light beam and the red light beam enter the rotating polygon mirror 38 at different heights, respectively. The position of the yellow beam is higher than the position of the red beam. The mirror 60 is arranged below the optical path of the light beam emitted by the yellow light source 56 Y. Therefore, the mirror 60 for reflecting the light beam emitted by the light source 56M only reflects the red light beam. This is to cause the optical path of the red beam to overlap the optical path of the yellow beam as seen from above. A collimator lens 66M and the light source 56M are disposed in a direction perpendicular to the direction from the mirror 60 to the light source 56Y. The plurality of light beams emitted by the light source 56Y are changed into nearly parallel rays by the collimating lens 58 Y, and the plurality of light beams emitted by the light source 56M are changed into nearly parallel rays by the collimating lens 66M. As described above, the optical path of the yellow light beam and the optical path of the red light beam are tied to each other at different heights. The height of the optical path of the yellow light beam is higher than the height of the light path of the red beam 86182 -23-200405034 at least until reaching the θ lenses 40 A and 40B. The lenticular lens 62M is disposed below the lenticular lens 62Y. When viewed from above, the lenticular lens 62 Y and the lenticular lens 62M appear to overlap, as shown in FIG. 3. The lenticular lens 62 Y focuses the collimated yellow light beam only in this scanning direction. The lenticular lens 62M focuses the collimated red light beam only in this scanning direction. The half mirror 64 divides and reflects a part of the light beam to a sensor 68 for detecting the amount of light. Unlike the end-emission laser, this surface-emission laser does not return a beam. It is necessary to use a front-end beam to detect this amount of light. The yellow light beam YB that has passed through the half mirror 64 is reflected and shifted by the rotating polygon mirror 38. As shown in FIG. 2, the light beam YB passes through the θ lenses 40A and 40B, the return mirror 50, the return mirror 52, and the cylindrical mirror 54 to reach the photosensitive object drum 12. The red light beam MB that has passed through the half mirror 64 is reflected and shifted by the rotating polygon mirror 38. As shown in FIG. 2, the light beam MB passes through the fe lenses 40 A and 40B, the return mirror 42, the return mirror 44, the lenticular lens 46, and the return mirror 48 to reach the photosensitive object drum 12. As shown in Fig. 3, a light beam is arranged in the optical scanner 22 YM through the timing detector 70. The timing detector 70 detects the passage time of the light beam before the scanning of the photosensitive object drum is started, so as to use each reflecting surface of the rotating polygon mirror 38 to adjust the exposure time of the photosensitive object drum 12. The beam passing timing detector 70 has a pickup mirror 72 and a sync optic 86182 -24- 200405034 sensor 74. The pickup mirror 72 reflects the light beams for synchronization before scanning the photosensitive object (see Figs. 4A to 4D ... six beams per line). The synchronization beam reflected by the pickup mirror 72 enters the synchronous optical detector 74. The optical scanner 22CK has the same configuration as the optical scanner 22YM. Therefore, the explanation of the optical scanner 22CK is omitted. In this embodiment, the number of return mirrors in each optical system is set as shown in Table 1. The reflecting surfaces of the rotating polygon mirror 38 are calculated as a return mirror because the light beam returns to the surfaces in the main scanning direction. Table 1 Number of return mirrors of the optical system in the main scanning direction Total number of return mirrors in the secondary scanning direction Y: Yellow 1 3 4 M: Red 2 4 6 C Green 1 3 4 K: Black 2 4 6 That is, in this embodiment, the yellow and green optical systems each have four return mirrors. Among them, one of the return mirrors in the main scanning direction is the reflective surface of the rotating polygon mirror 38, and the remaining three return mirrors in the secondary scanning direction are the return mirrors 50, 52 and the columnar shape.镜 54。 The mirror 54. The red and black optical systems each have six return mirrors. Among them, two of the return mirrors in the main scanning direction are the reflecting surfaces of the rotating polygon mirror 38 and the reflecting mirror 60, and the remaining four return mirrors in the sub-scanning direction are the return mirrors 42, 44. And 48, and the lenticular lens 46. 86182-25 · 200405034 Figures 4A to 4D are views of the light sources of yellow, red, green, and black for each beam, as seen from the rotating polygon mirror 38. The vertical directions in Figs. 4A to 4D correspond to the directions of the rotation axis of the rotary polygon mirror 38. Figs. The specific light-emitting portion of the light-emitting portion 37 shown in Figs. 4A to 4D is indicated by a black dot to understand the direction of each multi-beam laser. In this embodiment, the difference in the number of return mirrors in the main scanning direction is one or an odd number. In this sub-scanning direction, the difference in the number of return mirrors between the yellow optical system and the red optical system is one. Or an odd number. The difference in the number of return mirrors in the main scanning direction is one (odd number), and the difference in the number of return mirrors between the black optical system and green optical system is one (odd number) in this secondary scanning direction. Therefore, in this embodiment, the red light source 56M and the black light source 56K are installed as shown in Figs. 4A to 4D with the light sources of 56M and 56K rotated 180 degrees relative to the light sources of yellow 56Y and green 56C. 5A and 5B illustrate the axial changes of a plurality of light beams (two-dimensional light beams) caused by using the return mirrors according to the present embodiment. The red light source 勹 6M and the black light source 56K are installed with the 56M and 56K light sources rotated 180 degrees relative to the yellow light source 56 Y and the green light source 56C, respectively. The axial directions of the main scanning direction and the secondary scanning direction of the yellow and green optical systems are opposite to those of the red and black optical systems at the positions of these light sources. Operation The operation of the image forming apparatus according to this embodiment will be explained. When the light beam is reflected at the return mirror in the main scanning direction, the axis of the main scanning 86182 -26- 200405034 will be reversed. When the light beam is reflected at the return mirror in the scanning direction ', the axis in the scanning direction is reversed. In this embodiment, the red light source 56M and the black light source 56K are installed with the 56M and 56K light sources rotated 180 degrees relative to the yellow light source 56γ and the green light source 56C, respectively. Between the yellow optical system and the red optical system, the difference in the number of return mirrors in the scanning direction of the king is one (odd number), and the difference in the number of return mirrors in the scanning direction is one (odd number) ). Between the black optical system and the green optical system, the difference in the number of return mirrors in the main scanning direction is one (odd number), and the difference in the number of return mirrors in the secondary scanning direction is one (odd number) , As shown in Figures 4a to 4D. Therefore, all the configurations of each light beam (the direction of the two-dimensional light beam) are the same on each of the yellow, red, green, and black photosensitive object drums 12. Therefore, the control of the image signal with the same configuration is realized, and the control circuit is not required to be changed according to the light sources (colors) among the light sources 56Y, 56c, 56M, and 56κ. Therefore, it is possible to provide high image quality and low cost image formation-device 10. [Second Embodiment] An image forming apparatus 80 according to a second embodiment of the present invention will be explained with reference to FIGS. A and 6B 'and 7A to 7D. The parts common to this first embodiment have the same reference numerals, so the explanation of these parts is omitted. In the first embodiment, two optical scanners of the black and green optical scanners 22CK and the red and yellow optical scanners 22MY are installed. Instead, 86182-27-27200405034 provided in the image forming apparatus 80 according to the second embodiment is provided with a single optical scanner 22CKMY for emitting the yellow, red, green, and black light beams. In this second embodiment, all the photosensitive object drums 12 corresponding to the respective colors are set to have the same diameter. FIG. 6A shows only the photosensitive object drums 12 located in the photosensitive units 10K, 10C, 10M, and 10Y, respectively. An electrification device 14, an imaging device 16, a transfer device 18, and a cleaning device 20 and the like are omitted from Fig. 6A. The optical scanner 22CKMY of the second embodiment has almost optical components similar to those of the first embodiment. The configuration and number of the optical components are different from the first embodiment. In the second embodiment, a rotating polygon mirror 38 is disposed at the center of a casing 36. The black and green optical systems are arranged on the left side of the rotating polygon mirror 38 (in the direction of the arrow L). The yellow and red optical systems are arranged to the right of the rotating polygon mirror 38 (in the direction of the arrow R). In this second embodiment, the optical path of the yellow light beam YB and the optical path of the red light beam MB have different heights. At least until the f0 lenses 40 A and 40B are reached, the height of the optical path of the yellow light beam YB is lower than the height of the optical path of the red light beam MB. The optical path of the black beam KB and the optical path of the green beam CB have different heights. At least until the f0 lenses 40 A and 40B are reached, the height of the optical path of the black beam KB is lower than the height of the optical path of the green beam CB. From the light source to the θ lenses 40A and 40B, the black and green optical systems 86182 -28- 200405034, and the yellow and red optical systems are symmetrical with respect to the rotating polygon mirror 38 system in the optical system, as shown in the figure. Shown in 6B. In this second embodiment, the number of return mirrors in each optical system is set as shown in Table 2. Table 2 Number of return mirrors of the optical system in the main scanning direction Total number of return mirrors in the secondary scanning direction Y: Yellow 2 3 5 M: Red 1 2 3 C: Green 1 3 4 K: Black 2 4 6 That is, in the second embodiment, the yellow optical system has a total of five return mirrors. Two of the return mirrors in the main scanning direction are the reflecting surface of the rotating polygon mirror 38 and a reflecting mirror 60. The remaining three return mirrors in this scanning direction are the return mirrors 50, 52 and the cylindrical mirror 54. The red optical system has a total of three return mirrors. One of the return mirrors in the main tracing direction is the reflecting surface of the rotating polygon mirror 38. The remaining two return mirrors in this scanning direction are the return mirror 42 and the lenticular lens 46 °. In this embodiment, the unexplained red light source 56 uses the light source 56 to optically affect the yellow light source 56 Y. Mounted with the shaft rotated 180 degrees. The green optical system has a total of four return mirrors. One of the returning mirrors in the main scanning direction is the reflecting surface of the rotating polygon mirror 38. The remaining three return mirrors in the scanning direction are the return mirrors 50, 52 and the cylindrical mirror 54. 86182 -29- 200405034 This black optical system has a total of six return mirrors. Two of the return mirrors in the main scanning direction are the reflecting surface of the rotating polygon mirror 38 and the reflecting mirror 60. The remaining four return mirrors in the scanning direction are the return mirrors 42 and 44, the cylindrical mirror 46, and a return mirror 48. That is, the black and green optical system according to the second embodiment has the same configuration as the green and black optical system in the first embodiment (refer to FIG. 2). Figs. 7A to 7D illustrate axial changes of a plurality of light beams made using the return mirrors according to the second embodiment. The yellow light source 56Y and the green light source 56C are separated from the light source 56M and 56κ by rotating them 180 ° relative to the red light source 56M and the black light source 56K. The axial directions of the main scanning direction and the secondary scanning direction of the red and black optical systems are opposite to those of the yellow and green optical systems at the positions of these light sources. Operation The operation of the image forming apparatus 80 according to the #bristle embodiment will be explained. -The green and black optical systems according to the first embodiment have the same configuration as the green and black optical systems in the first embodiment. The individual light beams (directions of the one-dimensional light beams) are arranged in the same manner on each of the green and black photosensitive object drums 12. Then, the yellow and red optical systems according to the second embodiment are configured as follows. The difference in the total number of these returning mirrors is an even number (5-3 = 2). The red light source 56M is positioned in a direction rotated 180 degrees relative to the yellow light source 56 °. 86182 -30- 200405034 The difference in the number of return mirrors in the scanning direction of Carbon King is set to one or an odd number. The difference in the number of return mirrors in the scan direction is also set to or odd. Therefore, all the configurations of each light beam (the direction of the two-dimensional light beam) are the same on each of the color and red photosensitive object drums 12. "-Color and red light beams and green and black light beams are emitted from the rotating polygon mirror 38 for shifting and scanning in the opposite directions. For each color, the direction and coordinate system on the X-ray-sensitive object drum 12 become the same and are in a state where the four color systems overlap when the main scanning direction is opposite to the sub scanning direction. And as can be understood from Figs. 7A to 7D, each light beam (the direction of the two-dimensional light beam) uses the configuration of the second embodiment to allow each of the yellow, red, green, and black photosensitive object drums 12 to be With the same configuration. Therefore, according to the image forming apparatus 80 of the second embodiment, it is possible to provide an image forming apparatus with high image quality and low cost as in the first embodiment. [Other embodiments] In an example, a plurality of light beams emitted by a plurality of light sources enter a certain rotating polygon mirror 38, and this example has been explained in detail in the above-mentioned embodiments. The invention is not limited to this example. The present invention can be applied to an example in which an optical scanner having a system in which a light beam emitted from a multi-beam laser enters a rotating polygon mirror is as described in JP-A No. 63-271275. Exposed configuration. Some of these optical scans meet the layout restrictions and requirements 86182 -31-200405034 for increasing speed and the like. This allows the invention to be applied to examples involving different optical systems. The number of return mirrors (in the main scanning direction and in the secondary scanning direction) is not limited to those described in the above embodiments. Obviously, the number can be appropriately increased or decreased without departing from the true spirit and scope of the present invention. As explained above, the image forming apparatus according to the present invention has a device that does not complicate the method of controlling the image and the starting position for nesting the image even when a two-dimensional multi-beam laser is used as the H source. And the advantages offered at low cost. [Schematic description] Figure 1 is a side view of a main part of an image forming apparatus according to a first-shen #ye 丨 4 f & younger example < an optical scanning diagram of the image forming apparatus of the embodiment 2 Is a side view according to the first device; FIG. 3 is a plan view of the main part of the gastric optical scanner; FIGS. 4A to 4D are front views of a light source; Figure 5B is an explanatory diagram for explaining the axial and axial changes of the black and red light beams by using the soil, ^ — Tian Xian subsystem to return to the mirror; A series is a side view of the main part of a second embodiment of the embodiment < shirt image forming device; κ soil expensive knife plan view; 'for the axis of the yellow beam Figure 6B is-the main of the optical scanner Partial FIG. 7A is an explanatory diagram illustrating a change in a return direction by an optical system; 86182
-32- 200405034 圖7B係為說明藉由光學 。予牙、既之返回鏡,對 向之變化的解釋圖示; 色光束<軸 圖7C係為說明藉由光皋萃 △、先予系統<返回鏡,對,綠色光束之軸 向 < 變化的解釋圖示; 圖7D係為說明藉由光學豸、 田尤予系統<返回鏡,對黑色光束之軸 向之變化的解釋圖示; 圖8係為解釋配置返回井击 、…、 尤朿不一王知描万向上(該X方向) <光學系統之光束的方向的解釋圖示; 圖9係為解釋配置返回光》 ^ Uh ^ JL^ 、 、, 心口尤末於一次知描万向上(該Y方向) <光學系統之光束的方向的解釋圖示; 圖1〇係為說明:維多光束雷射係施加於根據相關技藝之 影像形成裝置之光學系統之範例的解釋圖示; Η係為說明一維多光束雷射係施加於根據相關技藝之 其他影像形成裝置之光學系統的解釋圖示。 圖式代表符號說明】 10 一影像形成裝置 10Κ —黑色感光單元 10C _綠色感光單元 10Μ 紅色感光單元 10Υ 黃色感光單元 12 光敏物體鼓 14 電氣化裝置 16 成像裝置 18 轉移裝置 86182 -33- 200405034 20 清除裝置 22CK 綠色及黑色光學掃描器 22MY 紅色及黃色光學掃描器 22CMYK 綠色、紅色、黃色及黑色光學掃描器 24A 〜G 滾輪 26 中間轉移元件 28 複數張紙 30 紙匣 32A 〜F 滾輪 34 固定裝置 36 機殼 37 發光部分 38 旋轉多邊鏡 40A,40B fe透鏡 42 返回鏡 44 返回鏡 46 柱狀鏡 48 _返回鏡 50 返回鏡 52 返回鏡 54 柱狀鏡 56Y 黃色光源 56M 紅色光源 56C 綠色光源 -34- 86182 200405034 56K 58Y 60 62Y 62M 64 66M 68 70 72 74 80 100 102 104 106 108 110 112 114 115 116 118 120 黑色光源 準直透鏡 反射鏡 柱狀透鏡 柱狀透鏡 半鏡 準直透鏡 感測器 光束通過計時偵測器 拾取鏡 同步化光學感測器 影像形成裝置 鏡 鏡 鏡 鏡 光源 光源 返回光學鏡 返回光學鏡 旋轉多邊鏡 光敏物體 光敏物體 光源 86182 -35- 200405034 122 光源 123 返回鏡 124 返回鏡 126 返回鏡 127 旋轉多邊鏡 128 光敏物體鼓 130 光敏物體鼓 86182 -36-32- 200405034 Figure 7B is for illustration by optics. The pre-existing tooth, the return mirror, is an explanatory diagram of the change to the direction; the color beam < axis FIG. 7C is for explaining the extraction of the light by the light, the pre-existing system < Figure 7D is an explanatory diagram illustrating the change of the axial direction of the black beam by the optical chirp, Tian Youyu system & return mirror; Figure 8 is an explanation of the configuration of the return blow, ... , You are not familiar with the description of the upward direction (the X direction) < the illustration of the direction of the light beam of the optical system; Figure 9 is to explain the configuration of the return light "^ Uh ^ JL ^ Universal upward direction (the Y direction) < Explanation diagram of the beam direction of the optical system; FIG. 10 is an explanatory diagram of an example of a Vido beam laser system applied to an optical system of an image forming apparatus according to the related art Η is an explanatory diagram illustrating the one-dimensional multi-beam laser system applied to the optical system of other image forming apparatuses according to the related art. Explanation of the representative symbols of the drawings] 10 image forming device 10K — black photosensitive unit 10C _ green photosensitive unit 10M red photosensitive unit 10Υ yellow photosensitive unit 12 photosensitive object drum 14 electrification device 16 imaging device 18 transfer device 86182 -33- 200405034 20 cleaning device 22CK Green and Black Optical Scanner 22MY Red and Yellow Optical Scanner 22CMYK Green, Red, Yellow and Black Optical Scanner 24A to G Roller 26 Intermediate transfer element 28 Multiple sheets of paper 30 Paper cassette 32A to F Roller 34 Fixing device 36 Housing 37 Light emitting part 38 Rotating polygon mirror 40A, 40B fe lens 42 Return mirror 44 Return mirror 46 Bar mirror 48 _ Return mirror 50 Return mirror 52 Return mirror 54 Bar mirror 56Y Yellow light source 56M Red light source 56C Green light source-34- 86182 200405034 56K 58Y 60 62Y 62M 64 66M 68 70 72 74 80 100 102 104 106 108 110 112 114 115 116 118 120 Black light source collimating lens reflector lens lenticular lens half lens collimating lens sensor beam passing through timing detection Image pick-up mirror synchronization optical sensor image formation Device Mirror Mirror Mirror Light Source Light Source Return Optical Mirror Return Optical Mirror Rotating Polygonal Mirror Photosensitive Object Light Source 86182 -35- 200405034 122 Light Source 123 Return Mirror 124 Return Mirror 126 Return Mirror 127 Rotating Polygon Mirror 128 Photosensitive Object Drum 130 Photosensitive Object Drum 86182 -36