TW200404405A - Composite resonant circuit and filter - Google Patents

Composite resonant circuit and filter Download PDF

Info

Publication number
TW200404405A
TW200404405A TW92114151A TW92114151A TW200404405A TW 200404405 A TW200404405 A TW 200404405A TW 92114151 A TW92114151 A TW 92114151A TW 92114151 A TW92114151 A TW 92114151A TW 200404405 A TW200404405 A TW 200404405A
Authority
TW
Taiwan
Prior art keywords
circuit
resonance circuit
resonance
coil
parallel
Prior art date
Application number
TW92114151A
Other languages
Chinese (zh)
Inventor
Masaru Wasaki
Yoshihiro Saitoh
Original Assignee
Tdk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp filed Critical Tdk Corp
Publication of TW200404405A publication Critical patent/TW200404405A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Landscapes

  • Filters And Equalizers (AREA)
  • Power Conversion In General (AREA)

Abstract

A composite resonant circuit comprises an inductance element (1) and two capacitors (2, 3) connected to the inductance element (1). The inductance element (1) has a core (10), a winding (11), and two windings for resonance (12, 13). The windings (11, 12, 13) are wound around the core (10). Terminals (11a, 11b) are connected to respective ends of the winding (11). Both ends of the winding for resonance (12) are connected via the capacitor (2), while both ends of the winding for resonance (13) are connected via the capacitor (3). The core (10), the winding for resonance (12) and the capacitor (2) constitute a first parallel resonant circuit. The core (10), the winding for resonance (13) and the capacitor (3) constitute a second parallel resonant circuit. The composite resonant circuit has composite resonance characteristics resulting from a combination of the resonance characteristics of the two parallel resonant circuits.

Description

200404405 玖、發明說明: 【發明所屬之技術領域】 本發明有關於可以利用作為濾波器用來減小波紋電 (ripple voltage)和雜訊之複合共振電路和包含該複合 振電路之濾·波器。 【先前技術】 開關電源、換流器、照明機器之點亮電路等之電力電 機器,具有電力變換電路用來進行電力之變換。該電力 換電路通常使用2 0 k Η z以上之頻率之交流,用來進行電 之變換。另外,該電力變換電路具有開關電路用來將直 變換成為矩形波之交流。 電力變換電路會產生具有頻率與開關電路之開關頻率 同之波紋電壓,和隨著開關電路之開關動作而產生之 訊。該波紋電壓和雜訊會對其他之機器造成不良之影響 因此,在電力變換電路和其他機器或線路之間,需要設 用以減小波紋電壓和雜訊之裝置。 一般之用以減小波紋電壓和雜訊之裝置使用包含有電 組件(電感器)和電容器之濾波器,稱為L C濾波器。 但是,在電力變換電路用之濾波器具有電力輸送用之 流或交流之電流流動。因此,在電力變換電路用之濾波蒙 要求在有電力輸送用之電流流動之狀態時獲得所希望之 性,和對溫度之上升具有對策。因此,通常在電力變換 路用之濾波器之電感組件,其磁芯使用具有間隙之鐵磁 磁芯。但是,在此種電感組件為著要使其特性接近空芯 電感組件之特性,所以要實現所希望之特性時需要使電 312/發明說明書(補件)/92-08/92114151 壓 共 子 變 力 流 相 雜 〇 有 感 直 , 特 電 體 之 感 5 200404405 組件大型化為其問題。 【發明内容】 本發明之目的是提供複合共振電路和包含該複合共振電 路之濾波器,可以被利用作為濾波器用來減小電力變換電 路所產生之波紋電壓和雜訊,而且可以小型化。 本發明之複合共振電路包含具有互異之共振特性而且被 複合之多個並聯共振電路,具有複合各個並聯共振電路之 共振特性所形成之複合共振特性。 在本發明之複合共振電路中,可以獲得複合多個並聯共 振電路之共振特性所形成之複合共振特性。 在本發明之複合共振電路中,多個並聯共振電路具有包 含多個電感元件之1個之電感組件,和連接到該電感組件 之1個以上之電容器。 電感組件亦可以具有1個之磁芯和捲繞在該磁芯之多個 線圈,利用該等用來構成多個之電感元件,在各個線圈分 別連接有別個之電容器。 另外,電感組件亦可以具有接合之多個磁芯,和捲繞在 各個磁芯之多個線圈,利用該等用來構成多個之電感元 件,在各個線圈分別連接有別個之電容器。在此種情況, 亦可以使該多個磁芯之特性成為互異。 另外,電感組件亦可以具有特性互異之多個磁芯,和捲 繞在該多個磁芯之1個之線圈,利用該等用來構成多個電 感元件,在線圈連接有1個之電容器。 另外,在本發明之複合共振電路中,多個之並聯共振電 路亦可以具有多個線圈,和分別對各個線圈並聯連接之電 312/發明說明書(補件)/92-08/92114151 200404405 容器。多個線圈亦可以串聯連接。在此種情況,多個並 共振電路亦可以更具有捲繞多個線圈之 1個之磁芯。 外,多個並聯共振電路亦可以更具有分別用來捲繞各個 圈之多個磁芯。 另外,在本發明之複合共振電路中,亦可以使多個並 共振電路之各個之阻抗絕對值成為大於指定值之頻率 圍,形成部份的重疊,複合共振電路之阻抗絕對值成為 於指定值之頻率範圍,形成比各個並聯共振電路之上述 率範圍寬廣。 另外,在本發明之複合共振電路中,亦可以使多個並 共振電路之各個之阻抗絕對值大於指定值之頻率範圍, 成互相分離,複合共振電路之阻抗絕對值大於指定值之 率範圍,形成包含各個並聯共振電路之上述頻率範圍。 另外,在本發明之複合共振電路中,亦可以使指定之 率範圍之複合共振電路之阻抗之絕對值,形成大於該頻 範圍之多個並聯共振電路之各個者。 本發明之濾波器用來減小指定之頻率範圍之信號。本 明之濾波器包含有共振特性互異而且被複合之多個並聯 振電路,具有複合各個並聯共振電路之共振特性所形成 複合共振特性。本發明之濾波器利用上述複合共振特性 用來減小指定之頻率範圍之信號。 本發明之其他目的,特徵和優點經由以下之說明當可 分的明白。 【實施方式】 下面將參照圖面用來詳細的說明本發明之實施形態。 312/發明說明書(補件)/92-08/92114151 聯 另 線 聯 範 大 頻 聯 形 頻 頻 率 發 共 之 充 7 200404405 (第1實施形態) 首先,參照圖1和圖2用來說明本發明之第1實施形態 之複合共振電路之構造。圖1是說明圖,用來表示本實施 形態之複合共振電路之構造,圖2是電路圖,用來表示圖 1所示之複合共振電路之等效電路。 如圖1所示,本實施形態之複合共振電路具備有:1個之 電感組件1 ;和2個之電容器2、3,連接到該電感組件1。 電感組件1具備有1個之磁芯1 0 '磁芯1 0具有:中央之 腳部1 0 a ; 2個之腳部1 0 b、1 0 c,被配置在該腳部1 0 a之 兩側,對腳部 1 0 a離開指定之間隔;連結部1 0 d,用來連 結腳部 1 0 a、1 0 b、1 0 c之各個之一端部;和連結部1 0 e, 用來連結腳部10a、10b、10c之各個之另外一端部。電感 組件 1更具備有:線圈1 1,捲繞在腳部 1 0 a ;共振用線圈 1 2,捲繞在腳部1 0 b ;和共振用線圈1 3,捲繞在腳部1 0 c。 在線圈1 1之兩端分別連接有端子1 1 a、1 1 b。共振用線圈 1 2之兩端經由電容器2互相連接,共振用線圈1 3之兩端 經由電容器3互相連接。 如圖2所示,由磁芯1 0,共振用線圈1 2和電容器2構 成第1並聯共振電路21,由磁芯1 0,共振用線圈1 3和電 容器3構成第2並聯共振電路2 2。另外,利用磁芯1 0和 共振用線圈1 2構成1個之電感元件,和利用磁芯1 0和共 振用線圈1 3構成另外1個之電感元件。另外,線圈1 1和 共振用線圈1 2經由磁芯1 0產生磁耦合。同樣的,線圈1 1 和共振用線圈1 3經由磁芯1 0產生磁耦合。 第1並聯共振電路21和第2並聯共振電路2 2具有互異 8 312/發明說明書(補件)/92-08/92114151 200404405 之共振特性。特別是第1並聯共振電路2 1之共振頻率和第 2並聯共振電路2 2之共振頻率成為互異。要使第1並聯共 振電路 21和第2並聯共振電路 2 2之共振特性成為互異 時,可以使共振用線圈1 2、1 3之電感成為互異,或是使電 容器2、3之電容成為互異,或是使該雙方均成為互異。 下面將參照圖3和圖4用來說明一般之並聯共振電路。 圖3是電路圖,用來表示並聯共振電路。該並聯共振電路 具備有2個之端子3 1、3 2,和並聯連接在該2個端子3 1、 3 2之間之磁圈3 3和電容器3 4。磁圈3 3具有磁芯3 3 a和捲 繞在該磁芯3 3 a之線圈3 3 b。在圖3中符號3 5表示假想之 電阻器,所具有之電阻值等於磁芯3 3 a中之磁損失等所引 起之磁圈3 3之内部電阻。如圖3所示,假想之電阻器3 5 可以視為對磁圈3 3形成串聯連接。 下面將說明圖3所示之並聯共振電路之共振特性。在此 處使圖3之磁圈33之電感成為L,電容器34之電容成為C, 和電阻器3 5之電阻值成為R s。圖3所示之並聯共振電路 之共振頻率f。以下式表示。 f〇-l/{2Tr^(L· 〇} 圖 4概念式的表示圖 3所示之並聯共振電路和磁圈 33 之阻抗絕對值之頻率特性。在圖4中,符號3 8表示並聯共 振電路之特性,符號3 9表示磁圈3 3單獨之特性。如圖4 所示,並聯共振電路之阻抗之絕對值,在共振頻率f。獲得 尖峰值。尖峰值和電阻值R s相等。與此相對的,磁圈 3 3 單獨之阻抗之絕對值,當頻率為f時,以2 7Γ f L表示。在 共振頻率f。時,並聯共振電路之阻抗之絕對值,成為遠大 9 312/發明說明書(補件)/92-08/92114151 200404405 於磁圈3 3單獨之阻抗之絕對值。因此,假如在導電線之途 中插入並聯共振電路,將該並聯共振電路之共振頻率 f 〇 設定在欲減小之波紋電壓或雜訊之頻率之近傍時,可以有 效的減小該波紋電壓或雜訊。 本實施形態之共振用線圈 1 2、1 3 對應到圖 3 之線圈 3 3 b。本實施形態之電容器2、3對應到圖3之電容器3 4。 在本實施形態之複合共振電路中,利用 1個之磁芯 10 用來使2個之並聯共振電路2 1、2 2複合。另外,線圈1 1 經由磁芯1 0對並聯共振電路2 1之共振用線圈1 2和並聯共 振電路 2 2之共振用線圈1 3產生磁耦合。因此,線圈 1 1 具有使2個之並聯共振電路2 1、2 2之各個共振特性複合之 複合共振特性。 本實施形態之複合共振電路,利用線圈 1 1之經由端子 1 1 a、1 1 b連接到導電線,用來插入在導電線之途中。例如, 複合共振電路可以插入在開關電源等之電力變換電路之輸 入側或輸出側導電線之途中。複合共振電路用來減小在導 電線上傳輸之波紋電壓或雜訊。因此,本實施形態之複合 共振電路可以利用作為濾波器,用來減小在導電線上傳輸 之波紋電壓或雜訊。 另外,假如將本實施形態之複合共振電路,插入到一對 導電線中之一方時,可以減小在導電線上傳輸之正常模態 雜訊。另外,假如在一對之導電線之各個插入複合共振電 路時,可以減小在導電線上傳輸之共同模態雜訊。 下面參照圖5和圖6用來說明本實施形態之複合共振電 路之複合共振特性之第1和第2實例。第1實例是並聯共 10 312/發明說明書(補件)/92-08/92114151 200404405 振電路2 1、2 2之共振頻率比較接近之情況時之實例。圖5 表示並聯共振電路 2 1、2 2之各個之阻抗絕對值之頻率特 性,作為第1實例之並聯共振電路2 1、2 2之共振特性。在 圖5中,符號4 1表示並聯共振電路2 1之特性,符號4 2 表示並聯共振電路22之特性。另外,f!表示並聯共振電路 2 1之共振頻率,f 2表示並聯共振電路2 2之共振頻率。各 個頻率之複合共振電路之阻抗之絕對值,與各個頻率之並 聯共振電路2 1、2 2之阻抗之絕對值中之較大之一方一致。 在第1實例中,並聯共振電路2 1、2 2之各個阻抗之絕 對值成為大於指定值(例如,複合共振電路之阻抗之絕對值 之最大值之2分之1 )之頻率範圍,形成部份的重疊。另外, 複合共振電路之阻抗之絕對值成為大於上述指定值之頻率 範圍,形成比各個並聯共振電路 2 1、2 2上述頻率範圍寬 廣。因此,依照第1實例之複合共振電路時,當與使用1 個之並聯共振電路之情況比較,可以使能夠減小波紋電壓 和雜訊之頻率範圍擴大。 第 2實例是使並聯共振電路2 1、2 2之共振頻率,分別 調合在所希望之頻率之實例。圖6表示第2實例之並聯共 振電路2 1、2 2之共振特性,亦即並聯共振電路2 1、2 2之 各個之阻抗絕對值之頻率特性。在圖6中,符號4 1表示並 聯共振電路2 1之特性,符號4 2表示並聯共振電路2 2之特 性。另外,f!表示並聯共振電路2 1之共振頻率,f2表示並 聯共振電路2 2之共振頻率。各個頻率之複合共振電路之阻 抗之絕對值,形成與各個頻率之並聯共振電路2 1、2 2之阻 抗之絕對值中之較大一方一致。 11 312/發明說明書(補件)/92-08/921Μ151 200404405 在第 2實例中,並聯共振電路2 1、2 2之各個之阻抗之 絕對值其大於指定值(例如,複合共振電路之阻抗之絕對值 之最大值之2分之1 )之頻率範圍成為互相離開。另外,複 合共振電路之阻抗之絕對值其大於上述指定值之頻率範 圍,形成包含各個並聯共振電路2 1、2 2之上述頻率範圍。 因此,依照第2實例之複合共振電路時,在2個頻率範圍 可以減小波紋電壓和雜訊。在圖6中顯示有頻率與開關電 路之開關頻率相同之波紋電壓之波形,和隨著開關電路之 開關動作所產生之雜訊之波形。在圖6中,符號43表示波 紋電壓之波形,符號44表示雜訊之波形。通常,波紋電壓 之頻率為500kHz以下,雜訊之頻率為1MHz以上。在第2 實例中,假如將並聯共振電路2 1之共振頻率h調合在波 紋電壓之頻率,並聯共振電路2 2之共振頻率f2調合在雜 訊之頻率時,則可以有效的減小波紋電壓和雜訊。因此, 依照第2實例時,可以對電力變換電路所產生之波紋電壓 和雜訊進行綜合之對策。 下面將參照圖 7至圖 9用來說明本實施形態之磁芯 1 0 之3個實例。第1實例之磁芯1 0如圖7所示,全體由相同 之磁性材料形成。磁芯1 0例如可以由鐵磁體或非晶形磁性 材料形成,亦可以由壓粉磁芯形成。另外,圖7所示之磁 芯1 0之形狀是一實例,第1實例之磁芯1 0包含與圖7所 示之磁芯1 0同等之構成磁迴路者。另外,第1實例之磁芯 1 0亦可以由多個構件之接合而構成。實質上,第1實例之 磁芯 1 0可以使用例如 E E型磁芯或EI型磁芯,或筒型磁 芯。 12 312/發明說明書(補件)/92-08/92114151 200404405 第2實例之磁芯1 0如圖8所示,由2個磁芯1 0 A、 之接合而構成,其各個亦可以單獨的構成磁迴路。 1 0 A、1 Ο B之形狀和大小亦可以互不相同。在使用第 例之磁芯1 0之情況時,圖1所示之電感組件1具有接 2個磁芯 1 0 A、1 Ο B,和捲繞在各個磁芯 1 0 A、1 Ο B之 線圈1 2、1 3,利用該等可以構成2個之電感元件。 第3實例之磁芯1 0如圖9所示,由2個磁芯1 0 C、 之接合構成,其各個可以單獨的構成環狀之磁迴路。 1 0 C、1 0 D之特性互異。實質上例如磁芯1 0 C、1 0 D由 率互不相同之磁性材料形成。磁芯 1 0 C、1 0 D之材料 使用鐵磁體,非晶形磁性材料,壓粉磁芯用材料等之 特性互異之任意材料。在使用第3實例之磁芯1 0之 時,圖1所示之電感組件1具有特性互異之2個磁芯 1 0 D,和捲繞在各個磁芯1 0 C、1 0 D之2個線圈1 2、 利用該等用來構成2個之電感元件。在使用第3實例 芯1 0之情況時,捲繞在各個磁芯1 0 C、1 0 D之線圈即 用相同者,各個線圈之阻抗之頻率特性亦成為不同。 如以上所說明之方式,本實施形態之複合共振電路 複合多個並聯共振電路之共振特性所形成之複合共 性。另外,在本實施形態中,利用該複合共振特性, 減小電力變換電路所產生之波紋電壓和雜訊。另外, 實施形態中,因為利用複合共振特性,所以可以減小 某種程度之頻率幅度之雜訊,和同時減小不同頻率之 電壓和雜訊。利用此種構成。複合共振電路可以被利 為濾波器,用來減小電力變換電路所產生之波紋電壓 312/發明說明書(補件)/92-08/92 U 4151 1 0B 磁芯 2實 合之 2個 1 0D 磁芯 導磁 可以 中之 情況 1 0C、 13, 之磁 使使 具有 振特 可以 在本 具有 波紋 用作 和雜 13 200404405 訊。另夕卜,在複合共振電路,因為利用複合共振特性可以 減小波紋電壓和雜訊,所以當與 LC濾波器比較時,可以 使電感組件小型化,其結果是複合共振電路全體可以比LC 濾波器小型。 另外,依照本實施形態時,可以使用包含多個電感元件 之1個之電感組件1,和連接到該電感組件1之電容器2、 3,用來構成多個並聯共振電路 2 1、2 2。因此,依照本實 施形態,當與使用多個電感組件構成多個並聯共振電路之 情況比較時,可以使複合共振電路更小型。 (第2實施形態) 下面將參照圖1 0和圖1 1用來說明本發明之第2實施形 態之複合共振電路。圖1 〇是說明圖,用來表示本實施形態 之複合共振電路之構造,圖11是電路圖,用來表示圖10 所示之複合共振電路之等效電路。 如圖1 0所示,本實施形態之複合共振電路具備有1個之 電感組件5 1,和連接到該電感組件5 1之1個之電容器5 2。 電感組件5 1具有2個之磁芯5 3 A、5 3 B分別構成環狀之 磁迴路。該2個之磁芯 5 3 A、5 3 B分別具有中空部,被配 置成使該2個中空部之軸方向成為一致,形成互相接合。 磁芯5 3 A、5 3 B具有互異之特性。實質上,例如,磁芯5 3 A、 5 3 B由導磁率互異之磁性材料形成。磁芯 5 3 A、5 3 B之材 料可以使用鐵磁體’非晶形磁性材料’壓粉磁芯用材料等 之中之特性互異之任意材料。 電感組件 5 1更具有:線圈5 4,捲繞在磁芯 5 3 A、5 3 B ; 和共振用線圈5 5,捲繞在磁芯5 3 A、5 3 B。在線圈5 4之兩 14 312/發明說明書(補件)/92-08/92〗14151 200404405 端分別連接有端子 5 4 a、5 4 b。共振用線圈5 5之兩端經由 電容器5 2互相連接。 共振用線圈5 5因為捲繞在特性互異之磁芯5 3 A、5 3 B, 所以如圖 1 1所示,可以視為包含有捲繞在磁芯 5 3 A之線 圈部份 5 5 a,和捲繞在磁芯 5 3 B之線圈部份 5 5 b。在此種 情況,可以視為線圈部份5 5 a、5 5 b並聯連接。電容器5 2 可以視為被設在線圈部份5 5 a之兩端之間,和線圈部份5 5 b 之兩端之間。磁芯5 3 A,線圈部份5 5 a和電容器5 2構成第 1並聯共振電路,磁芯5 3 B,線圈部份5 5 b和電容器5 2構 成第2並聯共振電路。另外,利用磁芯5 3 A和線圈部份5 5 a 構成1個之電感元件,利用磁芯5 3 B和線圈部份5 5 b構成 另夕卜1個之電感元件。另外,線圈5 4和線圈部份5 5 a經由 磁芯 5 3 A產生磁耦合,線圈5 4和線圈部份5 5 b經由磁芯 5 3B產生磁粞合。 另外,因為磁芯 5 3 A、5 3 B之特性互異,所以線圈部份 55a、55b之電感互異。因此,第1並聯共振電路和第2並 聯共振電路具有互異之共振特性。特別是第1並聯共振電 路之共振頻率和第2並聯共振電路之共振頻率成為互異。 在本實施形態之複合共振電路中,利用1個之共振用線 圈5 5和 1個之電容器5 2用來複合2個之並聯共振電路。 另外,線圈 5 4經由磁芯 5 3 A、5 3 B形成對共振用線圈 5 5 磁耦合。因此,線圈5 4成為具有複合2個並聯共振電路之 共振特性所形成之複合共振特性。 本實施形態之複合共振電路,經由端子5 4 a、5 4 b使線圈 5 4連接到導電線,用來插入在導電線之途中。該複合共振 15 312/發明說明書(補件)/92-08/92114151 200404405 電路可以被利用作為濾波器,用來減小在該導電線上 之波紋電壓和雜訊。 本實施形態之其他之構造,作用和效果與第1實施 相同。 (第3實施形態) 下面將參照圖1 2和圖1 3用來說明本發明之第3實 態之複合共振電路。圖1 2是說明圖,用來表示本實施 之複合共振電路之構造,圖13是電路圖,用來表示I 所示之複合共振電路之等效電路。 如圖1 2所示,本實施形態之複合共振電路具備有1 電感組件6 1,和連接到該電感組件6 1之1個之電容器 電感組件6 1具有2個之磁芯6 3 A、6 3 B,分另ιΐ用來 環狀之磁迴路。磁芯6 3 A、6 3 B互相接合。磁芯6 3 A、 之配置和材料與第2實施形態之磁芯5 3 A、5 3 B相同 電感元件 6 1更具有捲繞在磁芯 6 3 A、6 3 B之線圈 在線圈 65之兩端分別連接有端子65c、65d。另外, 65之兩端經由電容器62互相連接。 線圈6 5因為捲繞在特性互異之磁芯6 3 A、6 3 B,所 圖 1 3所示,可以視為包含有捲繞在磁芯 6 3 A之線圈 6 5 a,和捲繞在磁芯6 3 B之線圈部份6 5 b。在此種情況 圈部份6 5 a、6 5 b可以視為並聯連接。電容器6 2可以 被設在線圈部份6 5 a之兩端之間和線圈部份6 5 b之兩 間。磁芯6 3 A,線圈部份6 5 b和電容器6 2構成第1並 振電路,磁芯6 3 B,線圈部份6 5 b和電容器6 2構成第 聯共振電路。另外,利用磁芯6 3 A和線圈部份6 5 a榍 312/發明說明書(補件)/92-08/92114151 傳輸 形態 施形 形態 E 1 2 個之 62° 構成 63B 〇 6 5 〇 線圈 以如 部份 ,線 視為 端之 聯共 2並 成1 16 200404405 個之電感元件,利用磁芯6 3 B和線圈部份6 5 b構成另外1 個之電感元件。 另外,因為磁芯 63 A、63B之特性互異,所以線圈部份 65a、65b之電感互異。因此,第1並聯共振電路和第2並 聯共振電路具有互異之共振特性。特別是第1並聯共振電 路之共振頻率和第2並聯共振電路之共振頻率成為互異。 在本實施形態之複合共振電路中,利用 1個之線圈 65 和1個之電容器62用來複合2個之並聯共振電路。因此, 該複合共振電路具有複合2個並聯共振電路之共振特性所 形成之複合共振特性。 本實施形態之複合共振電路,使線圈 65 之經由端子 6 5 c、6 5 d連接到導電線,用來插入到導電線之途中。複合 共振電路可以被利用作為濾波器,用來減小在該導電線上 傳輸之波紋電壓和雜訊。 本實施形態之其他之構造,作用和效果與第2實施形態 相同。 (第4實施形態) 下面將參照圖1 4至圖1 6用來說明本發明之第4實施形 態之複合共振電路。圖1 4是說明圖,用來表示本實施形態 之複合共振電路之構造,圖15是電路圖,用來表示圖14 所示之複合共振電路之等效電路,圖1 6是特性圖,用來表 示本實施形態之複合共振電路之複合共振特性。 如圖1 4所示,本實施形態之複合共振電路具備有1個之 電感組件7 1,和連接到該電感組件7 1之2個之電容器7 2、 7 3。電感組件7 1具有1個之磁芯7 4。磁芯 7 4具有:中央 17 312/發明說明書(補件)/92-08/92114151 200404405 之腳部7 4 a ; 2個之腳部7 4 b、7 4 c,在該腳部 7 4 a之兩側, 被配置成對腳部 74a離開指定之間隔;連結部 74d,用來 連結腳部7 4 a、7 4 b、7 4 c之各個之一端部;和連結部7 4 e, 用來連結腳部74a、74b、74c之各個之另一端部。另外, 磁芯 7 4,與圖 7所示之磁芯1 0同樣的,亦可以使其全體 由相同之磁性材料形成。另外,磁芯7 4,與圖8所示之磁 芯1 0同樣的,由2個磁芯之接合而構成,其各個亦可以單 獨的構成壞狀之磁迴路。另外’磁芯74’與圖9所不之磁 芯1 0同樣的,由2個磁芯之接合而構成,其各個之特性互 異,而且可以單獨的構成環狀之磁迴路。電感組件7 1更具 備有捲繞在腳部7 4 b之線圈7 5,和捲繞在腳部7 4 c之線圈 7 6。線圈7 5之兩端經由電容器7 2互相連接,線圈7 6之兩 端經由電容器7 3互相連接。在線圈7 5之一端連接有端子 7 7。線圈 7 5之另外一端連接到線圈 7 6之一端。線圈 7 6 之另外一端連接到端子7 8。因此,如圖1 5所示,線圈7 5 和線圈76形成串聯連接。 如圖1 5所示,磁芯 7 4,線圈 7 5和電容器 7 2構成第1 並聯共振電路7 9,磁芯7 4,線圈7 6和電容器7 3構成第2 並聯共振電路8 0。另外,利用磁芯7 4和線圈7 5用來構成 1個之電感元件,和利用磁芯7 4和線圈7 6用來構成另外1 個之電感元件。 第1並聯共振電路7 9和第2並聯共振電路8 0具有互異 之共振特性。特別是第1並聯共振電路7 9之共振頻率和第 2並聯共振電路8 0之共振頻率成為互異。要使第1並聯共 振電路 7 9和第 2並聯共振電路 8 0之共振特性成為互異 18 312/發明說明書(補件)/92-08/92114151 200404405 時,可以使線圈75、76之電感成為互異,或是電容器72、 73之電容成為互異,或使雙方均成為互異。 在本實施形態之複合共振電路中,如圖 1 5所示,使 2 個之並聯共振電路7 9、8 0串聯連接,用來複合該2個之並 聯共振電路7 9、8 0。因此,該複合共振電路具有複合2個 並聯共振電路7 9、8 0之共振特性所形成之複合共振特性。 下面將參照圖 1 6用來說明本實施形態之複合共振電路 之複合共振特性之一實例。該實例是並聯共振電路7 9、8 0 之共振頻率比較接近之情況之實例。圖1 6表示並聯共振電 路7 9、8 0之各個之阻抗絕對值之頻率特性,作為並聯共振 電路7 9、8 0之共振特性。在圖1 6中,符號8 1表示並聯共 振電路7 9之特性,符號8 2表示並聯共振電路8 0之特性, 符號8 3表示複合共振電路之特性。另外,f〗表示並聯共振 電路7 9之共振頻率,f 2表示並聯共振電路8 0之共振頻率。 複合共振電路之阻抗之絕對值成為各個頻率之並聯共振電 路79、80之阻抗之絕對值之和。 在此實例中,並聯共振電路7 9、8 0之各個之阻抗絕對值 大於指定值(例如,並聯共振電路7 9、8 0之任一個之阻抗 絕對值之最大值之 2分之 1 )之頻率範圍,形成部份的重 疊。另外,複合共振電路之阻抗絕對值大於上述指定值之 頻率範圍,形成比各個並聯共振電路7 9、8 0之上述頻率範 圍寬廣。 另外,在此實例中,指定頻率範圍(例如,複合共振電路 之阻抗絕對值大於上述指定值之頻率範圍)之複合共振電 路之阻抗絕對值,形成大於該頻率範圍之並聯共振電路 19 312/發明說明書(補件)/92-08/92114151 200404405 7 9、8 0之各個之阻抗絕對值。 因此,依照該實例之複合共振電路,當與使用1個 聯共振電路之情況比較時,使能夠減小波紋電壓和雜 頻率範圍可以擴大,和可以更進一步的減小波紋電壓 訊。 另外,在本實施形態中,亦可以將並聯共振電路7 9 之共振特性設定成為使並聯共振電路7 9、8 0之各個之 絕對值大於指定值(例如,並聯共振電路7 9、8 0之任 之阻抗絕對值之最大值之2分之1)以上之頻率範圍, 互相分離。在此種情況,複合共振電路之複合共振特 為如圖 6所示。 本實施形態之複合共振電路,經由使端子7 7、7 8連 導電線,用來插入在導電線之途中。複合共振電路可 利用作為濾波器,用來減小在該導電線上傳輸之波紋 和雜訊。 本實施形態之其他構造,作用和效果與第1實施形 同。 (第5實施形態) 下面將參照圖1 7用來說明本發明之第5實施形態之 共振電路。圖1 7是說明圖,用來表示本實施形態之複 振電路之構造。 本實施形態之複合共振電路具備有:2個之磁芯9 1、 用來構成環狀之磁迴路;線圈9 3、9 4,分別捲繞在磁芯 9 2 ;電容器9 5,對線圈9 3並聯連接;和電容器9 6, 圈9 4並聯連接。在線圈9 3之一端連接有端子9 7。線| 312/發明說明書(補件)/92-08/92114151 之並 訊之 和雜 、80 阻抗 一個 成為 性成 接到 以被 電壓 態相 複合 合共 92, 9 1、 對線 193 20 200404405 之另外一端連接到線圈94之一端。在線圈94之另外一端 連接有端子9 8。因此,線圈9 3和線圈9 4形成串聯連接。 本實施形態之複合共振電路之等效電路,與圖1 5所示之第 4實施形態之等效電路相同。 在本實施形態中,由磁芯9 1,線圈9 3和電容器9 5構成 第1並聯共振電路1 01,由磁芯9 2,線圈9 4和電容器9 6 構成第2並聯共振電路1 0 2。 第1並聯共振電路101和第2並聯共振電路102具有互 異之共振特性。特別是第1並聯共振電路1 〇 1之共振頻率 和第2並聯共振電路1 0 2之共振效率成為互異。要使第1 並聯共振電路1 〇 1和第2並聯共振電路1 0 2之共振特性成 為互異時,可以使線圈93、94之電感成為互異,或是使電 容器95、96之電容成為互異,或是使雙方均成為互異。 在本實施形態之複合共振電路中,使2個之並聯共振電 路1 0 1、1 0 2串聯連接,用來複合該2個之並聯共振電路。 因此,該複合共振電路具有複合2個並聯共振電路1 0 1、 1 0 2之共振特性所形成之複合共振特性。 本實施形態之複合共振電路之複合共振特性與第4實施 形態相同,例如成為圖1 6或圖6所示。 本實施形態之其他之構造,作用和效果與第4實施形態 相同。 (第6實施形態) 下面說明本發明之第6實施形態之濾波器。本實施形態 之濾波器用來減小指定之頻率範圍之信號。另外,此處所 指之信號包含波紋電壓和雜訊。本實施形態之濾波器是包 21 312/發明說明書(補件)/92-08/92114151 200404405 含有本發明之複合共振電路者。亦即,本實施形態 器包含具有互異之共振特性而且被複合之多個並聯 路,具有複合各個並聯共振電路之共振特性所形成 共振特性。本實施形態之濾波器利用上述複合共振 用來減小指定之頻率範圍之信號。 首先參照圖 1 8用來說明包含本實施形態之濾波 訊抑制電路之構造。該雜訊抑制電路11 1插入在2 電線1 1 3 a、1 1 3 b之途中,該2根之導電線1 1 3 a、 接到成為雜訊發生源之電子機器1 1 2。導電線1 1 3 a 連接到用以輸送交流電力或直流電力之電源線 Π4 線1 1 4包含有2根之導電線1 1 4 a、1 1 4b。導電線1 1 3 分別連接到導電線1 1 4 a、1 1 4b。電子機器1 1 2經由 113a、1 1 3 b接受電源線1 1 4之電力之供給。電子機 例如使用開關電源。 雜訊抑制電路1 1 1用來抑制由電子機器1 1 2產生 電線1 1 3 a、1 1 3 b上傳輸之雜訊。雜訊抑制電路1 1 1 本實施形態之濾波器之低頻帶雜訊衰減電路 120, 帶雜訊衰減電路 1 8 0。低頻帶雜訊衰減電路 1 2 0經 線1 1 3 a、1 1 3 b連接到電子機器1 1 2。高頻帶雜訊衰 1 8 0,對低頻帶雜訊衰減電路1 2 0形成縱向連接,而 到電源線1 1 4之導電線1 1 4 a、1 1 4b。另外,被配置 機器11 2和電源線1 1 4之間之低頻帶雜訊衰減電路 高頻帶雜訊衰減電路1 8 0,亦可以成為與圖1 8所示配. 高頻帶雜訊衰減電路1 8 0主要的是用來減小第1 圍之雜訊。低頻帶雜訊衰減電路1 2 0主要的是用來 312/發明說明書(補件)/92-08/921Μ151 之濾波 共振電 之複合 特性, 器之雜 根之導 ί 1 3b 連 、113b 。電源 a、1 1 3b 導電線 器112 之在導 具備有 和南頻 由導電 減電路 且連接 在電子 1 20和 t相反。 頻率範 減小第 22 200404405 2頻率範圍(包含比第1頻率範圍内之頻率低之頻率)之雜 訊。第 1頻率範圍例如包含 1 Μ Η z〜3 0 Μ Η z之範圍。第 2 頻率範圍例如是〇〜1 Μ Η ζ之範圍,或該範圍内之一部份之 範圍。本實施形態之濾波器之低頻帶雜訊衰減電路 120, 用來減小指定之頻率範圍之信號,亦即減小上述第2頻率 範圍之雜訊。 低頻帶雜訊衰減電路1 2 0和高頻帶雜訊衰減電路1 8 0被 收納在對該等進行接地之框體 1 1 5。低頻帶雜訊衰減電路 1 2 0和高頻帶雜訊衰減電路1 8 0中之被接地之部份,連接 到地線1 1 3 c。該地線1 1 3 c電連接到框體1 1 5。亦可以將高 頻帶雜訊衰減電路 1 8 0配置在比低頻帶雜訊衰減電路1 2 0 更接近框體1 1 5之位置。另外,在電源線1 1 4除了導電線 114a、1 1 4 b之外更具有地線之情況時,亦可以使地線1 1 3 c 電連接到該電源線1 1 4之地線。 雜訊抑制電路1 1 1,可以與電子機器1 12分開,亦可以 形成一體。在雜訊抑制電路1 1 1與電子機器1 1 2分開之情 況時,框體1 1 5成為雜訊抑制電路1 1 1之專用之框體。在 雜訊抑制電路1 1 1與電子機器1 1 2形成一體之情況時,框 體1 1 5可以成為電子機器1 1 2之框體,亦可以是被收納在 電子機器 1 1 2之框體内之雜訊抑制電路 11 1之專用之框 體。電子機器1 1 2中之接地之部份亦可以連接到地線1 1 3 c。 下面將參照圖1 9用來說明本實施形態之濾波器,亦即低 頻帶雜訊衰減電路 1 2 0之構造。低頻帶雜訊衰減電路1 2 0 用來減小在導電線1 1 3 a、1 1 3 b傳輸之正常模態雜訊和共同 模態雜訊。在此處以低頻帶雜訊衰減電路1 2 0被配置在電 23 312/發明說明書(補件)/92-08/921】4151 200404405 子機器1 1 2和高頻帶雜訊電路1 8 0之間者進行說明。低頻 帶雜訊衰減電路1 2 0具備有連接到電子機器11 2之2個之 端子1 2 1 a、1 2 1 b,和連接到高頻帶雜訊衰減電路1 8 0之2 個之端子 1 2 2 a、1 2 2 b。端子 1 2 1 a、1 2 2 a之間利用導電線 1 1 3 a連接。端子 1 2 1 b、1 2 2 b之間利用導電線1 1 3 b連接。 低頻帶雜訊衰減電路1 2 0更具備有:複合共振電路1 2 3, 在端子 1 2 1 a、1 2 2 a之間,插入在導電線 1 1 3 a ;和複合共 振電路124,在端子121b、122b之間,插入在導電線113b。 複合共振電路 123、124成為同樣之構造。複合共振電路 1 2 3、1 2 4可以使用第1至第5實施形態中之任何一個之複 合共振電路。 依照該低頻帶雜訊衰減電路1 2 0時,可以減小在導電線 1 1 3 a、1 1 3 b傳輸之第2頻率範圍之正常模態雜訊和共同模 態雜訊。另外,低頻帶雜訊衰減電路1 2 0亦可以只具有複 合共振電路1 2 3、1 2 4之一方,用來只減小正常模態雜訊。 下面將參照圖2 0用來說明高頻帶雜訊衰減電路1 8 0之具 體之電路構造之一實例。圖2 0所示之高頻帶雜訊衰減電路 1 8 0用來減小在導電線1 1 3 a、1 1 3 b傳輸之共同模態雜訊。 在此處是以高頻帶雜訊衰減電路1 8 0被配置在低頻帶雜訊 衰減電路1 2 0和電源線1 1 4之間者進行說明。高頻帶雜訊 衰減電路1 8 0具備有連接到低頻帶雜訊衰減電路1 2 0之2 個之端子1 8 1 a、1 8 1 b,和連接到電源線1 1 4之導電線1 1 4 a、 114b之2個之端子 182a、182b。端子 181a、182a之間利 用導電線1 1 3 a連接。端子1 8 1 b、1 8 2 b之間利用導電線1 1 3 b 連接。 24 312/發明說明書(補件)/92-08/921Μ151 200404405 高頻帶雜訊衰減電路1 8 0更具備有:檢測電路1 置在導電線1 1 3 a、1 1 3 b之指定之位置,用來檢測 1 1 3 a、1 1 3 b傳輸之共同模態雜訊,·逆相信號產生1 用來產生與該檢測電路1 8 4檢測到之雜訊成為逆 之逆相信號;注入電路1 8 6,被配置在與導電線1 之檢測電路 1 8 4不同之位置,用來對導電線 11 注入逆相信號產生電路1 8 5所產生之逆相信號; 1 8 7,被設在導電線1 1 3 a、1 1 3 b之配置有檢測電 位置和配置有注入電路1 8 6之位置之間之位置, 用來減小通過之雜訊之波高值;和阻抗元件 188 逆相信號產生電路1 8 5和注入電路1 8 6之間。 阻抗元件1 8 8用來調整逆相信號之相位,使輸 電路 1 8 6 之雜訊,和利用注入電路 1 8 6 注入 1 1 3 a、1 1 3 b之逆相信號,其相位差成為接近1 8 0 ° 利用該阻抗元件1 8 8可以調整由注入電路1 8 6注 線1 1 3 a、1 1 3 b之逆相信號之波高值,使其接近被 注入電路1 8 6之雜訊之波高值。 檢測電路 1 8 4具有:電容器1 8 4 a,其一端連接 1 1 3 a,其另外一端連接到逆相信號產生電路 18 端;和電容器1 8 4 b,其一端連接到導電線1 1 3 b, 端連接到逆相信號產生電路1 8 5之輸入端。電容 1 8 4 b分別使導電線 1 1 3 a、1 1 3 b之電壓變動之中 分通過,和阻斷包含交流電力之頻率之低頻成分 路 1 8 6具有:電容器1 8 6 a,其一端連接到阻抗元 輸出端,其另外一端連接到導電線Π 3 a ;和電容 312/發明說明書(補件)/92-08/92丨14151 84,被配 在導電線 t 路 185 , 相之信號 13 a > 113b 3a 、 113b 阻抗元件 路1 84之 具有阻抗 ,被設在 入到注入 到導電線 。另外, 入到導電 注入到該 到導電線 5 之輸入 其另外一 器 184a、 之南頻成 。注入電 件 1 8 8之 器 186b, 25 200404405 其一端連接到阻抗元件1 8 8之輸出端,其另外一端連接到 導電線 1 1 3 b。在此實例中,注入電路 1 8 6,經由電容器 18 6a、186b,對導電線1 1 3 a、1 1 3 b施加與逆相信號對應之 相同之電壓變化。 逆相信號產生電路1 8 5具有變壓器1 8 9。變壓器1 8 9之1 次線圈之一端連接到電容器1 8 4 a、1 8 4 b。變壓器1 8 9之1 次線圈之另外一端,和變壓器1 8 9之2次線圈之一端,一 起連接到地線。變壓器1 8 9之2次線圈之另外一端連接到 阻抗元件1 8 8。阻抗元件1 8 7使用共同模態扼流磁圈1 9 0, 阻抗元件1 8 8使用線扼流磁圈1 9 1或具有與其同等之相位 特性之阻抗元件。 電容器184a、184b、186a、186b之電容量設定成為例如 使洩漏電流值在指定之規格值以内。實質上電容器1 8 4 a、 184b、186a、1 86b之電容量例如在 10〜20,000pF之範圍 内。 另外,變壓器1 8 9之1次線圈和2次線圈之圈數比以1 : 1 最為理想,但是考慮到變壓器1 8 9之信號之衰減時,亦可 以變化圈數比。 下面將說明圖 2 0所示之高頻帶雜訊衰減電路 1 8 0之作 用。在該高頻帶雜訊衰減電路1 8 0,在阻抗元件1 8 7之檢 出電路 1 8 4側之導電線 1 1 3 a、1 1 3 b (以下簡稱為檢測電路 1 8 4側之導電線1 1 3 a、1 1 3 b )上產生之雜訊,通過阻抗元件 1 8 7,當流入到阻抗元件1 8 7之注入電路 1 8 6側之導電線 113a、1 1 3 b (以下簡稱為注入電路 1 8 6側之導電線 1 1 3 a、 1 1 3 b )時,注入電路 1 8 6側之導電線 1 1 3 a、1 1 3 b上之雜訊 26 312/發明說明書(補件)/92-08/92114151 200404405 之波高值,變成為小於檢測電路1 8 4側之導電線1 1 3 a、1 1 3 上之雜訊之波高值。另外,在該高頻帶雜訊衰減電路1 8 0, 利用阻抗元件1 8 7,可以使檢測電路1 8 4側之導電線1 1 3 a、 1 1 3 b 上之雜訊之波高值,和注入電路 1 8 6 側之導電線 113a、1 1 3 b上之雜訊之波高值,維持互異之狀態。 另外,在圖2 0所示之高頻帶雜訊衰減電路1 8 0,利用檢 測電路1 8 4檢測導電線1 1 3 a、1 1 3 b上之共同模態雜訊。然 後,利用逆相信號產生電路1 8 5產生與檢測電路1 8 4所檢 測到之雜訊逆相之信號之逆相信號。然後,利用注入電路 1 8 6對導電線1 1 3 a、1 1 3 b注入由逆相信號產生電路1 8 5產 生之逆相信號。利用此種構成使注入電路1 8 6側之導電線 113a、1 1 3 b上之共同模態雜訊互相抵消。 另外,通過阻抗元件1 8 7後之雜訊之波高值,小於通過 阻抗元件1 8 7前之雜訊之波高值。因此,需要調整由注入 電路1 8 6注入到導電線1 1 3 a、1 1 3 b之逆相信號之波高值, 使其接近通過阻抗元件1 8 7後輸入到注入電路1 8 6之雜訊 之波高值。 另外,在圖2 0所示之高頻帶雜訊衰減電路1 8 0,利用阻 抗元件 1 8 8,可以使輸入到注入電路 1 8 6之雜訊,和由注 入電路1 8 6注入到導電線1 1 3 a、1 1 3 b之逆相信號,其相位 差接近 1 8 0 ° ,和可以使由注入電路 1 8 6 注入到導電線 1 1 3 a、1 1 3 b之逆相信號之波高值,接近輸入到注入電路1 8 6 之雜訊之波高值。因此,依照該高頻帶雜訊衰減電路 1 8 0 時,可以更有效的減小注入電路1 8 6側之導電線1 1 3 a、1 1 3 之雜訊。 27 312/發明說明書(補件)/92-08/92114151 200404405 另外,本發明並不只限於上述各個實施形態,而是可以 有各種變更。例如,在各個實施形態中是構成複合2個之 並聯共振電路之複合共振電路,但是在本發明中亦可構建 成複合3個以上之並聯共振電路之複合共振電路。 依照以上所說明之本發明之複合共振電路時,利用複合 多個並聯共振電路之共振特性所產生之複合共振特性,可 以減小電力變換電路所產生之波紋電壓和雜訊。另外,在 本發明中可以減小具有某種程度之頻率之幅度之雜訊,同 時可以減小不同頻率之波紋電壓和雜訊。另外,依照本發 明時,因為利用複合共振特性減小波紋電壓和雜訊,所以 可以小型化。因此,依照本發明時,可以被利用作為濾波 器用來減小電力變換電路所產生之波紋電壓和雜訊,而且 可以實現能夠小型化之複合共振電路。 另外,在本發明之複合共振電路中,亦可以使用包含多 個電感元件之1個之電感組件,和連接到該電感組件之1 個以上之電容器,用來構成多個並聯共振電路。在此種情 況,可以使複合共振電路更小型化。 另外,依照本發明之濾波器時,可以獲得與本發明之複 合共振電路同樣之效果。 根據以上之說明,可以實施本發明之各種態樣和變化例 當可明白。因此,在以下之申請專利範圍之同等範圍内, 亦可以以上述最佳形態以外之形態實施本發明。 【圖式簡單說明】 圖1是說明圖,用來表示本發明之第1實施形態之複合 共振電路之構造。 28 312/發明說明書(補件)/92-08/92丨14151 200404405 圖2是電路圖,用來表示圖1所示之複合共振電路之等 效電路。 圖3是電路圖,用來表示並聯共振電路。 圖4是說明圖,用來概念式的表示圖3所示之並聯共振 電路之阻抗絕對值之頻率特性。 圖5是特性圖,用來說明本發明之第1實施形態之複合 共振電路之複合共振特性之第1實例。 圖6是特性圖,用來說明本發明之第1實施形態之複合 共振電路之複合共振特性之第2實例。 圖7是平面圖,用來表示本發明之第1實施形態之磁芯 之第1實例。 圖8是平面圖,用來表示本發明之第1實施形態之磁芯 之第2實例。 圖9是平面圖,用來表示本發明之第1實施形態之磁芯 之第3實例。 圖1 0是說明圖,用來表示本發明之第2實施形態之複合 共振電路之構造。 圖11是電路圖,用來表示圖10所示之複合共振電路之 等效電路。 圖1 2是說明圖,用來表示本發明之第3實施形態之複合 共振電路之構造。 圖13是電路圖,用來表示圖12所示之複合共振電路之 等效電路。 圖1 4是說明圖,用來表示本發明之第4實施形態之複合 共振電路之構造。 29 312/發明說明書(補件)/92-08/92114151 200404405 圖15是電路圖,用來表示圖14所示之複合共振電路之 等效電路。 圖1 6是特性圖,用來表示本發明之第4實施形態之複合 共振電路之複合共振特性。 圖1 7是說明圖,用來表示本發明之第5實施形態之複合 共振電路之構造。 圖1 8是方塊圖,用來表示包含本發明之第6實施形態之 濾波器之雜訊抑制電路之概略構造。 圖19是方塊圖,用來表示圖18之低頻帶雜訊衰減電路 之構造。 圖20是電路圖,用來表示圖18之高頻帶雜訊衰減電路 之構造之一實例。 (元件符號說明) 1 電 感 組 件 2、3 電 容 器 10 磁 芯 10A、10B、 10C 、10D 1 磁芯 10a、 10b、 10c 腳部 1 Od 連 結 部 1 Oe 連 結 部 11 線 圈 11a、 lib 端 子 1 2 > 1 3 共 振 用 線 圈 2 1 第 1 並 聯 共振電 22 第 2 並 聯 共振電 30 312/發明說明書(補件)/92-08/92114151 200404405 3 1、 3 2 端 子 33 磁 圈 3 3a 磁 33b 線 圈 34 電 容 器 3 5 假 想 電 阻 器 5 1 電 感 組 件 52 電 容 器 5 3 A 、5 3 B 磁 芯 54 線 圈 54a 、54b 端 子 5 5 共 振 用 線 圈 5 5a 、5 5b 線 圈 部 份 6 1 電 感 組 件 62 電 容 器 63 A 、63B 磁 芯 65 -線 圈 65a 、65b 線 圈 部 份 65c 、65d 端 子 7 1 電 感 組 件 Ί 2、 73 電 容 器 74 磁 芯 74a 、74b、 74( 腳 部 74d 、74e 連 結 75、 76 線 圈 3 12/發明說明書(補件)/92-08/92114151 200404405 77 78 79 80 9 1、92 93、9 4 95 > 96 97、9 8 10 1 1 02 111 112 113a、 113b 113c 114 114a、 114b 115 1 20 121a、 121b 123 、 124 1 80 181a、 181b 1 84 184a、 184b 18 5 端子 端子 第1並聯共振電路 第2並聯共振電路 磁芯 線圈 電容器 端子 第1並聯共振電路 第2並聯共振電路 雜訊抑制電路 電子機器 導電線 接地線 電源線 導電線 框體 低頻帶雜訊衰減電路 、122a 、 122b 端子 複合共振電路 高頻帶雜訊衰減電路 、182a 、 182b 端子 檢測電路 電容器 逆相信號產生電路 32 312/發明說明書(補件)/92-08/92114151 200404405 路 件 流磁圈 磁圈 率 18 6 注入電 186a、 186b電容器 1 8 7、1 8 8 阻抗元 1 89 變壓器 190 共模扼 19 1 線扼流 fi ' f2 共振頻 33 312/發明說明書(補件)/92-08/92114151200404405 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a composite resonance circuit that can be used as a filter to reduce ripple voltage and noise, and a filter and wave filter including the composite resonance circuit. [Prior art] Electric power devices such as switching power supplies, inverters, lighting circuits of lighting equipment, etc., have a power conversion circuit for converting power. The power conversion circuit usually uses AC with a frequency of more than 20 k Η z for power conversion. In addition, the power conversion circuit has a switching circuit for directly converting the AC to a rectangular wave. The power conversion circuit generates a ripple voltage with the same frequency as the switching frequency of the switching circuit, and a signal generated by the switching operation of the switching circuit. This ripple voltage and noise will adversely affect other equipment. Therefore, a device to reduce ripple voltage and noise is required between the power conversion circuit and other equipment or circuits. Generally, a device for reducing ripple voltage and noise uses a filter including an electric component (inductor) and a capacitor, which is called an LC filter. However, a filter used in a power conversion circuit has a current for power transmission or an alternating current flow. Therefore, a filter for a power conversion circuit is required to obtain a desired characteristic in a state where a current for power transmission is flowing, and countermeasures against temperature rise. Therefore, inductive components of filters used in power conversion circuits usually use ferromagnetic cores with gaps. However, in order to make its characteristics close to the characteristics of air-core inductors, the inductance 312 / Invention Manual (Supplement) / 92-08 / 92114151 is required to achieve the desired characteristics Force flow is mixed. I feel straight. Special electric body. 5 200404405 Large-scale components are the problem. SUMMARY OF THE INVENTION An object of the present invention is to provide a composite resonance circuit and a filter including the composite resonance circuit, which can be used as a filter to reduce ripple voltage and noise generated by a power conversion circuit, and can be miniaturized. The composite resonance circuit of the present invention includes a plurality of parallel resonance circuits that have mutually different resonance characteristics and are compounded, and has a composite resonance characteristic formed by compounding the resonance characteristics of each parallel resonance circuit. In the composite resonance circuit of the present invention, a composite resonance characteristic formed by combining the resonance characteristics of a plurality of parallel resonance circuits can be obtained. In the composite resonance circuit of the present invention, the plurality of parallel resonance circuits have an inductive component including one of the plurality of inductive elements, and one or more capacitors connected to the inductive component. The inductive component may also have one magnetic core and a plurality of coils wound around the magnetic core. These are used to form a plurality of inductive elements, and each capacitor is connected with another capacitor in each coil. In addition, the inductive component may have a plurality of magnetic cores bonded together, and a plurality of coils wound around each magnetic core. These are used to form a plurality of inductance elements, and each coil is connected with another capacitor. In this case, the characteristics of the plurality of magnetic cores may be made different from each other. In addition, the inductive component may have multiple magnetic cores with mutually different characteristics, and a coil wound around one of the multiple magnetic cores. These are used to form multiple inductive elements, and one capacitor is connected to the coil. . In addition, in the composite resonance circuit of the present invention, a plurality of parallel resonance circuits may also have a plurality of coils, and electric power connected to each coil in parallel 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405 container. Multiple coils can also be connected in series. In this case, a plurality of parallel resonance circuits may further have a magnetic core wound with one of a plurality of coils. In addition, the multiple parallel resonance circuits may further have multiple magnetic cores for winding each turn. In addition, in the composite resonance circuit of the present invention, the absolute value of the impedance of each of the plurality of parallel resonance circuits can also be set to a frequency range greater than a specified value, forming a partial overlap, and the absolute value of the impedance of the composite resonance circuit becomes a specified value The frequency range is wider than the above frequency range of each parallel resonance circuit. In addition, in the composite resonance circuit of the present invention, the absolute value of the impedance of each of the multiple parallel resonance circuits can be separated from each other in a frequency range greater than the specified value, and the absolute value of the impedance of the composite resonance circuit is greater than the specified frequency range. The above-mentioned frequency range including each parallel resonance circuit is formed. In addition, in the composite resonance circuit of the present invention, the absolute value of the impedance of the composite resonance circuit in a specified frequency range can also be made to each of a plurality of parallel resonance circuits larger than the frequency range. The filter of the present invention is used to reduce a signal in a specified frequency range. The filter of the present invention includes a plurality of parallel resonant circuits that have mutually different resonance characteristics and are compounded, and has a composite resonance characteristic formed by compounding the resonance characteristics of each parallel resonance circuit. The filter of the present invention uses the above-mentioned composite resonance characteristic to reduce a signal in a specified frequency range. Other objects, features and advantages of the present invention will be clearly understood through the following description. [Embodiment] Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 312 / Invention Specification (Supplement) / 92-08 / 92114151 7-line connection, high-frequency connection, and high-frequency connection 7200404405 (First Embodiment) First, the present invention will be described with reference to FIGS. 1 and 2. The structure of the composite resonance circuit of the first embodiment. FIG. 1 is an explanatory diagram showing the structure of the composite resonance circuit of this embodiment, and FIG. 2 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. As shown in FIG. 1, the composite resonance circuit of this embodiment includes: one inductive component 1; and two capacitors 2 and 3 connected to the inductive component 1. The inductive component 1 is provided with one magnetic core 1 0 ′, and the magnetic core 10 includes: a central leg portion 1 a; two leg portions 1 b and 1 0 c, and is disposed on the leg portion 1 0 a. On both sides, the foot 10 a is separated from the designated interval; the connecting part 10 d is used to connect one end of each of the feet 10 a, 10 b, and 1 c; and the connecting part 10 e is used The other end portions of each of the leg portions 10a, 10b, and 10c are connected. The inductive component 1 further includes a coil 11 which is wound around the leg portion 10 a; a resonance coil 12 which is wound around the leg portion 10 b; and a resonance coil 13 which is wound around the leg portion 1 0 c . Terminals 1 1 a and 1 1 b are connected to both ends of the coil 11. Both ends of the resonance coil 12 are connected to each other via a capacitor 2, and both ends of the resonance coil 13 are connected to each other via a capacitor 3. As shown in FIG. 2, the first parallel resonance circuit 21 is constituted by the magnetic core 10, the resonance coil 12 and the capacitor 2, and the second parallel resonance circuit 2 is constituted by the magnetic core 10, the resonance coil 13 and the capacitor 3. . In addition, one inductance element is constituted by the magnetic core 10 and the resonance coil 12 and one inductance element is constituted by the magnetic core 10 and the resonance coil 13. The coil 11 and the resonance coil 12 are magnetically coupled via a magnetic core 10. Similarly, the coil 1 1 and the resonance coil 13 are magnetically coupled via the magnetic core 10. The first parallel resonance circuit 21 and the second parallel resonance circuit 22 have mutually different resonance characteristics 8 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405. In particular, the resonance frequency of the first parallel resonance circuit 21 and the resonance frequency of the second parallel resonance circuit 22 are different from each other. When the resonance characteristics of the first parallel resonance circuit 21 and the second parallel resonance circuit 22 are made mutually different, the inductances of the resonance coils 1 and 13 may be made different from each other, or the capacitances of the capacitors 2 and 3 may be made different. Being different, or making both sides different. The general parallel resonance circuit will be described below with reference to FIGS. 3 and 4. Fig. 3 is a circuit diagram showing a parallel resonance circuit. The parallel resonance circuit includes two terminals 3 1 and 3 2, and a magnetic coil 3 3 and a capacitor 3 4 connected in parallel between the two terminals 3 1 and 3 2. The magnetic coil 3 3 includes a magnetic core 3 3 a and a coil 3 3 b wound around the magnetic core 3 3 a. In Fig. 3, symbol 3 5 represents an imaginary resistor having a resistance value equal to the internal resistance of the magnetic coil 33 caused by the magnetic loss in the magnetic core 3 3 a and the like. As shown in FIG. 3, the imaginary resistor 3 5 can be regarded as forming a series connection with the magnetic coil 33. The resonance characteristics of the parallel resonance circuit shown in FIG. 3 will be described below. Here, the inductance of the magnetic coil 33 of Fig. 3 is L, the capacitance of the capacitor 34 is C, and the resistance value of the resistor 35 is R s. The resonance frequency f of the parallel resonance circuit shown in FIG. It is expressed by the following formula. f〇-1 / {2Tr ^ (L · 〇} Figure 4 conceptually shows the frequency characteristics of the absolute value of the impedance of the parallel resonance circuit and the magnetic coil 33 shown in Figure 3. In Figure 4, the symbol 38 represents the parallel resonance The characteristics of the circuit, the symbol 39 indicates the individual characteristics of the magnetic coil 33. As shown in Figure 4, the absolute value of the impedance of the parallel resonance circuit, at the resonance frequency f. A spike is obtained. The spike and the resistance value R s are equal. In contrast, the absolute value of the individual impedance of the magnetic coil 3 3 is represented by 2 7Γ f L when the frequency is f. At the resonance frequency f., The absolute value of the impedance of the parallel resonant circuit becomes as large as 9 312 / invention Manual (Supplement) / 92-08 / 92114151 200404405 The absolute value of the separate impedance of the magnetic coil 3 3. Therefore, if a parallel resonance circuit is inserted in the middle of the conductive line, the resonance frequency f of the parallel resonance circuit is set to When the frequency of the reduced ripple voltage or noise is near, the ripple voltage or noise can be effectively reduced. The resonance coil 1 2, 1 3 of this embodiment corresponds to the coil 3 3 b of FIG. 3. This implementation The capacitors 2 and 3 in the form correspond to the capacitors 3 4 in FIG. 3. In the composite resonance circuit of this embodiment, one magnetic core 10 is used to recombine two parallel resonance circuits 2 1 and 2 2. In addition, the coil 1 1 is connected to the parallel resonance circuit 2 1 through the magnetic core 10 The resonance coil 12 and the resonance coil 13 of the parallel resonance circuit 22 generate magnetic coupling. Therefore, the coil 1 1 has a composite resonance characteristic that combines the resonance characteristics of the two parallel resonance circuits 2 1 and 2 2. The composite resonance circuit of the embodiment is connected to the conductive wire through the terminals 1 1 a and 1 1 b of the coil 11 to be inserted into the conductive wire. For example, the composite resonance circuit can be inserted into a power conversion circuit such as a switching power supply. The input or output side of the conductive line. The composite resonance circuit is used to reduce the ripple voltage or noise transmitted on the conductive line. Therefore, the composite resonance circuit of this embodiment can be used as a filter to reduce Ripple voltage or noise transmitted on the wire. In addition, if the composite resonance circuit of this embodiment is inserted into one of a pair of conductive wires, transmission on the conductive wire can be reduced. Normal modal noise. In addition, if a composite resonance circuit is inserted into each of a pair of conductive wires, the common modal noise transmitted on the conductive wires can be reduced. The following describes the embodiment with reference to FIGS. 5 and 6. The first and second examples of the composite resonance characteristics of the composite resonance circuit. The first example is a parallel total of 10 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405 The resonance frequencies of the vibration circuit 2 1, 2 2 are relatively close An example of this situation is shown in Fig. 5. Fig. 5 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 2 1 and 2 2 as the resonance characteristics of the parallel resonance circuits 2 1 and 2 2 of the first example. In Fig. 5, reference numeral 41 indicates the characteristics of the parallel resonance circuit 21, and reference numeral 4 2 indicates the characteristics of the parallel resonance circuit 22. In addition, f! Represents the resonance frequency of the parallel resonance circuit 2 1, and f 2 represents the resonance frequency of the parallel resonance circuit 22. The absolute value of the impedance of the composite resonance circuit at each frequency is consistent with the larger of the absolute values of the impedance of the parallel resonance circuits 2 1 and 22 at each frequency. In the first example, the absolute value of each impedance of the parallel resonance circuits 2 1 and 2 2 becomes a frequency range greater than a specified value (for example, 1/2 of the maximum value of the absolute value of the impedance of the composite resonance circuit), forming the portion Copies. In addition, the absolute value of the impedance of the composite resonance circuit becomes a frequency range larger than the above-specified value, and is formed to be wider than the above-mentioned frequency range of each of the parallel resonance circuits 2 1 and 2 2. Therefore, when the composite resonance circuit according to the first example is used, the frequency range in which the ripple voltage and noise can be reduced can be enlarged when compared with the case where one parallel resonance circuit is used. The second example is an example in which the resonance frequencies of the parallel resonance circuits 21 and 22 are adjusted to the desired frequencies, respectively. Fig. 6 shows the resonance characteristics of the parallel resonance circuits 2 1, 2 of the second example, that is, the frequency characteristics of the absolute values of the impedances of the parallel resonance circuits 2 1, 2 2. In Fig. 6, reference numeral 41 indicates the characteristics of the parallel resonance circuit 21, and reference numeral 42 indicates the characteristics of the parallel resonance circuit 22. In addition, f! Represents the resonance frequency of the parallel resonance circuit 21, and f2 represents the resonance frequency of the parallel resonance circuit 22. The absolute value of the impedance of the composite resonance circuit at each frequency is consistent with the larger of the absolute values of the impedance of the parallel resonance circuits 2 1 and 2 2 at each frequency. 11 312 / Invention Specification (Supplement) / 92-08 / 921M151 200404405 In the second example, the absolute value of the impedance of each of the parallel resonance circuits 2 1, 2 2 is greater than the specified value (for example, the impedance of the composite resonance circuit The frequency ranges of 1/2 of the maximum of the absolute value are separated from each other. In addition, the absolute value of the impedance of the composite resonance circuit is larger than the above-specified frequency range, forming the above-mentioned frequency range including each of the parallel resonance circuits 2 1 and 2 2. Therefore, according to the composite resonance circuit of the second example, ripple voltage and noise can be reduced in two frequency ranges. Fig. 6 shows a waveform of a ripple voltage having the same frequency as the switching frequency of the switching circuit, and a waveform of noise generated by the switching operation of the switching circuit. In Fig. 6, reference numeral 43 denotes a waveform of a ripple voltage, and reference numeral 44 denotes a waveform of noise. Generally, the frequency of ripple voltage is below 500kHz, and the frequency of noise is above 1MHz. In the second example, if the resonance frequency h of the parallel resonance circuit 21 is tuned to the frequency of the ripple voltage, and the resonance frequency f2 of the parallel resonance circuit 22 is tuned to the frequency of the noise, the ripple voltage and Noise. Therefore, according to the second example, it is possible to comprehensively cope with the ripple voltage and noise generated by the power conversion circuit. 7 to 9 are used to explain three examples of the magnetic core 10 of this embodiment. As shown in Fig. 7, the magnetic core 10 of the first example is entirely made of the same magnetic material. The magnetic core 10 may be formed of, for example, a ferromagnetic or amorphous magnetic material, or may be formed of a powder magnetic core. The shape of the magnetic core 10 shown in FIG. 7 is an example, and the magnetic core 10 of the first example includes a magnetic circuit equivalent to the magnetic core 10 shown in FIG. 7. In addition, the magnetic core 10 of the first example may be formed by joining a plurality of members. In essence, the magnetic core 10 of the first example may use, for example, an E E type core or an EI type core, or a cylindrical type core. 12 312 / Invention Manual (Supplement) / 92-08 / 92114151 200404405 The magnetic core 10 of the second example is shown in FIG. 8 and is formed by joining two magnetic cores 10 A, each of which can also be individually Form a magnetic circuit. The shapes and sizes of 10 A and 10 B can also be different from each other. In the case where the magnetic core 10 of the first example is used, the inductance component 1 shown in FIG. 1 has two magnetic cores 10 A and 10 Ω, and is wound around each of the magnetic cores 10 A and 100 Ω. Coils 1 2, 1 and 3 can be used to form two inductance elements. As shown in FIG. 9, the magnetic core 10 of the third example is composed of two magnetic cores 10 C, and each of them can form a ring-shaped magnetic circuit independently. The characteristics of 10 C and 10 D are different. Essentially, for example, the magnetic cores 10 C and 10 D are formed of magnetic materials having different rates. Materials for cores 10 C and 10 D Use any materials with different characteristics, such as ferromagnets, amorphous magnetic materials, and powder magnetic core materials. When the magnetic core 10 of the third example is used, the inductive component 1 shown in FIG. 1 has two magnetic cores 1 0 D having different characteristics, and two of the magnetic cores 1 C and 1 0 D are wound. Coils 1 2. These are used to form two inductive elements. When the core 10 of the third example is used, even if the coils wound around each of the magnetic cores 10 C and 10 D are the same, the frequency characteristics of the impedances of the respective coils are also different. As described above, the composite resonance circuit of this embodiment is a composite common formed by combining the resonance characteristics of a plurality of parallel resonance circuits. In addition, in this embodiment, the complex resonance characteristic is used to reduce the ripple voltage and noise generated by the power conversion circuit. In addition, in the embodiment, since the composite resonance characteristic is used, it is possible to reduce noise at a certain frequency amplitude and voltage and noise at different frequencies at the same time. Use this structure. The compound resonance circuit can be used as a filter to reduce the ripple voltage generated by the power conversion circuit. 312 / Invention Manual (Supplement) / 92-08 / 92 U 4151 1 0B Core 2 2 of 2 1 0D The magnetic permeability of the magnetic core can be in the case of 10C, 13, and its magnetic properties make it possible to have a vibrating wave that can be used as a hybrid in 2004. In addition, in the composite resonance circuit, the ripple voltage and noise can be reduced by using the composite resonance characteristic. Therefore, when compared with the LC filter, the inductance component can be miniaturized. As a result, the entire composite resonance circuit can be filtered more than the LC filter. Device is small. In addition, according to this embodiment, an inductive element 1 including one of a plurality of inductive elements and capacitors 2 and 3 connected to the inductive element 1 may be used to constitute a plurality of parallel resonant circuits 2 1 and 2 2. Therefore, according to this embodiment, the composite resonance circuit can be made smaller when compared with the case where a plurality of parallel resonance circuits are formed by using a plurality of inductance components. (Second Embodiment) A composite resonance circuit according to a second embodiment of the present invention will be described below with reference to Figs. 10 and 11. FIG. 10 is an explanatory diagram showing the structure of the composite resonance circuit of this embodiment, and FIG. 11 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. As shown in FIG. 10, the composite resonance circuit of this embodiment includes one inductive element 51 and one capacitor 52 connected to one of the inductive elements 51. The inductive component 51 has two magnetic cores 5 3 A and 5 3 B, which respectively form a loop-shaped magnetic circuit. The two magnetic cores 5 3 A and 5 3 B each have a hollow portion, and are arranged so that the axial directions of the two hollow portions are aligned to form mutual joints. The magnetic cores 5 3 A and 5 3 B have different characteristics. In essence, for example, the magnetic cores 5 3 A and 5 3 B are formed of magnetic materials having mutually different magnetic permeability. As the material of the magnetic cores 5 3 A and 5 3 B, any material having different characteristics among ferromagnets 'amorphous magnetic materials' powder magnetic core materials and the like can be used. The inductance component 51 further includes a coil 5 4 wound around the magnetic cores 5 3 A and 5 3 B; and a resonance coil 5 5 wound around the magnetic cores 5 3 A and 5 3 B. Terminals 5 4 a and 5 4 b are connected to two ends of the coil 5 4 14 312 / Invention Specification (Supplement) / 92-08 / 92 〖14151 200404405 respectively. Both ends of the resonance coil 55 are connected to each other via a capacitor 5 2. The resonance coil 5 5 is wound around the magnetic cores 5 3 A and 5 3 B with different characteristics. Therefore, as shown in FIG. 11, it can be considered that the coil part 5 5 is wound around the magnetic core 5 3 A. a, and a coil portion 5 5 b wound around a magnetic core 5 3 B. In this case, it can be considered that the coil parts 5 5 a and 5 5 b are connected in parallel. The capacitor 5 2 can be regarded as being provided between the two ends of the coil portion 5 5 a and between the two ends of the coil portion 5 5 b. The magnetic core 5 3 A, the coil portion 5 5 a and the capacitor 5 2 constitute a first parallel resonance circuit, and the magnetic core 5 3 B, the coil portion 5 5 b and the capacitor 5 2 constitute a second parallel resonance circuit. In addition, one inductance element is formed by the magnetic core 5 3 A and the coil portion 5 5 a, and one inductance element is formed by the magnetic core 5 3 B and the coil portion 5 5 b. In addition, the coil 54 and the coil portion 5 5 a generate magnetic coupling via the magnetic core 5 3 A, and the coil 54 and the coil portion 5 5 b generate magnetic coupling through the magnetic core 5 3B. In addition, because the characteristics of the magnetic cores 5 3 A and 5 3 B are different from each other, the inductances of the coil portions 55a and 55b are different from each other. Therefore, the first parallel resonance circuit and the second parallel resonance circuit have mutually different resonance characteristics. In particular, the resonance frequency of the first parallel resonance circuit and the resonance frequency of the second parallel resonance circuit are different from each other. In the compound resonance circuit of this embodiment, one resonance coil 55 and one capacitor 52 are used to compound two parallel resonance circuits. The coil 54 is magnetically coupled to the resonance coil 5 5 via the magnetic cores 5 3 A and 5 3 B. Therefore, the coil 54 has a composite resonance characteristic formed by combining the resonance characteristics of the two parallel resonance circuits. In the composite resonance circuit of this embodiment, the coil 5 4 is connected to a conductive wire through terminals 5 4 a and 5 4 b, and is used to be inserted in the middle of the conductive wire. The composite resonance 15 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405 circuit can be used as a filter to reduce the ripple voltage and noise on the conductive line. The other structures, functions and effects of this embodiment are the same as those of the first embodiment. (Third Embodiment) Next, a third embodiment of the composite resonance circuit of the present invention will be described with reference to Figs. 12 and 13. Fig. 12 is an explanatory diagram showing the structure of the composite resonance circuit of this embodiment, and Fig. 13 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in I. As shown in FIG. 12, the composite resonance circuit of this embodiment is provided with 1 inductive component 6 1, and a capacitor inductive component 6 1 connected to one of the inductive component 6 1, and has two magnetic cores 6 3 A, 6 3 B, which is used for the magnetic circuit of the ring. The magnetic cores 6 3 A and 6 3 B are bonded to each other. The configuration and materials of the magnetic core 6 3 A are the same as those of the magnetic core 5 3 A, 5 3 B of the second embodiment. The inductance element 6 1 further has a coil wound around the magnetic core 6 3 A, 6 3 B in the coil 65. Terminals 65c and 65d are connected at both ends. In addition, both ends of 65 are connected to each other via a capacitor 62. The coil 6 5 is wound around the magnetic cores 6 3 A and 6 3 B with different characteristics. As shown in FIG. 13, it can be considered that the coil 6 5 a is wound around the magnetic core 6 3 A, and the winding is wound. In the coil portion 6 5 b of the magnetic core 6 3 B. In this case, the loop parts 6 5 a and 6 5 b can be considered as parallel connections. The capacitor 62 can be provided between both ends of the coil portion 65a and between the two ends of the coil portion 65b. The magnetic core 6 3 A, the coil portion 6 5 b and the capacitor 62 constitute a first parallel circuit, and the magnetic core 6 3 B, the coil portion 6 5 b and the capacitor 62 constitute a first resonant circuit. In addition, using the magnetic core 6 3 A and the coil part 6 5 a 榍 312 / Invention Specification (Supplement) / 92-08 / 92114151 Transmission form E1 2 of 62 ° to form 63B 〇6 5 〇 Coil to For example, the wire is regarded as a terminal with a total of 2 and 1 16 200404405 inductive elements. The magnetic core 6 3 B and the coil part 6 5 b are used to form another 1 inductive element. In addition, because the characteristics of the magnetic cores 63 A and 63B are different from each other, the inductances of the coil portions 65a and 65b are different from each other. Therefore, the first parallel resonance circuit and the second parallel resonance circuit have mutually different resonance characteristics. In particular, the resonance frequency of the first parallel resonance circuit and the resonance frequency of the second parallel resonance circuit are different from each other. In the compound resonance circuit of this embodiment, one coil 65 and one capacitor 62 are used to compound two parallel resonance circuits. Therefore, the composite resonance circuit has a composite resonance characteristic formed by combining the resonance characteristics of two parallel resonance circuits. In the composite resonance circuit of this embodiment, the coil 65 is connected to the conductive wire through the terminals 6 5 c and 6 5 d, and is used to be inserted into the conductive wire. The composite resonance circuit can be used as a filter to reduce the ripple voltage and noise transmitted on the conductive line. The other structures, functions and effects of this embodiment are the same as those of the second embodiment. (Fourth Embodiment) A composite resonance circuit according to a fourth embodiment of the present invention will be described below with reference to Figs. 14 to 16. FIG. 14 is an explanatory diagram showing the structure of the composite resonance circuit of this embodiment. FIG. 15 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in FIG. The composite resonance characteristics of the composite resonance circuit of this embodiment are shown. As shown in FIG. 14, the composite resonance circuit of this embodiment includes one inductive element 71 and one capacitor 7 2 and 7 3 connected to two of the inductive elements 7 1. The inductive component 7 1 has one magnetic core 7 4. The magnetic core 7 4 has: a central portion 17 312 / invention specification (supplement) / 92-08 / 92114151 200404405 foot portion 7 4 a; two foot portions 7 4 b, 7 4 c, and at the foot portion 7 4 a On both sides, the feet 74a are arranged away from the designated interval; the connecting portion 74d is used to connect one end of each of the feet 7 4 a, 7 4 b, 7 4 c; and the connecting portion 7 4 e is used The other ends of each of the legs 74a, 74b, and 74c are connected. The magnetic core 74 may be formed of the same magnetic material as the magnetic core 10 shown in FIG. 7 as a whole. In addition, the magnetic core 74 is formed by joining two magnetic cores in the same way as the magnetic core 10 shown in FIG. 8, and each of them can also form a broken magnetic circuit separately. In addition, the 'magnetic core 74' is the same as the magnetic core 10 shown in Fig. 9 and is formed by joining two magnetic cores, each of which has different characteristics, and can form a ring-shaped magnetic circuit independently. The inductor 7 1 further includes a coil 7 5 wound around the leg portion 7 4 b, and a coil 7 6 wound around the leg portion 7 4 c. Both ends of the coil 75 are connected to each other via a capacitor 72, and both ends of the coil 76 are connected to each other via a capacitor 73. A terminal 7 7 is connected to one end of the coil 7 5. The other end of the coil 75 is connected to one end of the coil 76. The other end of the coil 7 6 is connected to the terminal 7 8. Therefore, as shown in FIG. 15, the coil 75 and the coil 76 are connected in series. As shown in FIG. 15, the magnetic core 74, the coil 75 and the capacitor 7 2 constitute a first parallel resonance circuit 7 9, the magnetic core 74, the coil 76 and the capacitor 7 3 constitute a second parallel resonance circuit 80. In addition, a magnetic core 74 and a coil 75 are used to constitute one inductance element, and a magnetic core 74 and a coil 76 are used to constitute another inductance element. The first parallel resonance circuit 79 and the second parallel resonance circuit 80 have mutually different resonance characteristics. In particular, the resonance frequency of the first parallel resonance circuit 79 and the resonance frequency of the second parallel resonance circuit 80 are different from each other. When the resonance characteristics of the first parallel resonance circuit 79 and the second parallel resonance circuit 80 are different from each other 18 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405, the inductances of the coils 75 and 76 can be made Mutual differences, or the capacitances of capacitors 72, 73 become mutually different, or both sides become mutually different. In the composite resonance circuit of this embodiment, as shown in FIG. 15, two parallel resonance circuits 79, 80 are connected in series to compound the two parallel resonance circuits 79, 80. Therefore, the composite resonance circuit has a composite resonance characteristic formed by combining the resonance characteristics of two parallel resonance circuits 799 and 80. An example of the composite resonance characteristics of the composite resonance circuit of this embodiment will be described below with reference to Figs. This example is an example of a case where the resonance frequencies of the parallel resonance circuits 79 and 80 are relatively close. Fig. 16 shows the frequency characteristics of the absolute value of the impedance of each of the parallel resonance circuits 799 and 80 as the resonance characteristics of the parallel resonance circuits 799 and 80. In Fig. 16, reference numeral 81 indicates characteristics of the parallel resonance circuit 79, reference numeral 82 indicates characteristics of the parallel resonance circuit 80, and reference numeral 83 indicates characteristics of the composite resonance circuit. In addition, f represents the resonance frequency of the parallel resonance circuit 79, and f2 represents the resonance frequency of the parallel resonance circuit 80. The absolute value of the impedance of the composite resonance circuit becomes the sum of the absolute values of the impedances of the parallel resonance circuits 79 and 80 of each frequency. In this example, the absolute impedance of each of the parallel resonance circuits 799 and 80 is greater than a specified value (for example, 1/2 of the maximum value of the absolute impedance of any of the parallel resonance circuits 799 and 80). Frequency range, forming partial overlap. In addition, the absolute value of the impedance of the composite resonance circuit is larger than the above-specified frequency range, which is wider than the above-mentioned frequency range of each of the parallel resonance circuits 799 and 80. In addition, in this example, the absolute value of the impedance of the compound resonance circuit in the specified frequency range (for example, the absolute value of the impedance of the compound resonance circuit is greater than the frequency range specified above), forming a parallel resonance circuit greater than the frequency range Instruction (Supplement) / 92-08 / 92114151 200404405 7 9, 8 0 The absolute value of each impedance. Therefore, according to the composite resonance circuit of this example, when compared with the case of using a single resonance circuit, the range of ripple voltage and noise frequency can be enlarged, and the ripple voltage signal can be further reduced. In addition, in this embodiment, the resonance characteristic of the parallel resonance circuit 7 9 may be set so that the absolute value of each of the parallel resonance circuits 7 9 and 80 is larger than a predetermined value (for example, the parallel resonance circuit 7 9 and 80 The frequency range above 1/2 of the maximum absolute value of the impedance is separated from each other. In this case, the composite resonance of the composite resonance circuit is particularly shown in FIG. 6. The composite resonance circuit of this embodiment is used to insert the conductive wires through the terminals 7 7 and 7 8 and insert them into the conductive wires. The compound resonance circuit can be used as a filter to reduce the ripple and noise transmitted on the conductive line. The other structures, functions and effects of this embodiment are the same as those of the first embodiment. (Fifth Embodiment) A resonance circuit according to a fifth embodiment of the present invention will be described below with reference to Figs. Fig. 17 is an explanatory diagram showing the structure of a resonating circuit according to this embodiment. The composite resonance circuit of this embodiment is provided with: two magnetic cores 9 1. used to form a ring-shaped magnetic circuit; coils 9 3 and 9 4 respectively wound around the magnetic core 9 2; a capacitor 9 5 and a coil 9 3 connected in parallel; connected in parallel with capacitor 9 6 and coil 9 4. A terminal 9 7 is connected to one end of the coil 9 3. Line | 312 / Instruction of the Invention (Supplement) / 92-08 / 92114151 Combined and mixed, 80 Impedance One becomes a coupling connected to be voltage-phase combined 92, 9 1, Pair 193 20 200404405 In addition One end is connected to one end of the coil 94. A terminal 98 is connected to the other end of the coil 94. Therefore, the coil 93 and the coil 94 are connected in series. The equivalent circuit of the composite resonance circuit of this embodiment is the same as the equivalent circuit of the fourth embodiment shown in FIG. 15. In this embodiment, the first parallel resonance circuit 101 is formed by the magnetic core 91, the coil 9 3, and the capacitor 95, and the second parallel resonance circuit 1 02 is formed by the magnetic core 92, the coil 94, and the capacitor 96. . The first parallel resonance circuit 101 and the second parallel resonance circuit 102 have mutually different resonance characteristics. In particular, the resonance frequency of the first parallel resonance circuit 101 is different from the resonance efficiency of the second parallel resonance circuit 102. When the resonance characteristics of the first parallel resonance circuit 1 〇1 and the second parallel resonance circuit 102 are mutually different, the inductances of the coils 93 and 94 can be made mutually different, or the capacitances of the capacitors 95 and 96 can be made mutually different. Difference, or make both sides different. In the composite resonance circuit of this embodiment, two parallel resonance circuits 1 101 and 102 are connected in series to compound the two parallel resonance circuits. Therefore, the composite resonance circuit has a composite resonance characteristic formed by combining the resonance characteristics of two parallel resonance circuits 1 0 1 and 10 2. The composite resonance characteristic of the composite resonance circuit of this embodiment is the same as that of the fourth embodiment, and is shown in Fig. 16 or Fig. 6, for example. The other structures, functions and effects of this embodiment are the same as those of the fourth embodiment. (Sixth Embodiment) A filter according to a sixth embodiment of the present invention will be described below. The filter in this embodiment is used to reduce a signal in a specified frequency range. In addition, the signals referred to here include ripple voltage and noise. The filter of this embodiment is a package containing the compound resonance circuit of the present invention including package 21 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405. That is, the device according to this embodiment includes a plurality of parallel circuits that have mutually different resonance characteristics and are compounded, and has resonance characteristics formed by combining the resonance characteristics of each parallel resonance circuit. The filter of this embodiment uses the above-mentioned composite resonance to reduce a signal in a specified frequency range. First, referring to Fig. 18, the structure of the filtering signal suppression circuit including this embodiment will be described. The noise suppression circuit 11 1 is inserted in the two wires 1 1 3 a and 1 1 3 b, and the two conductive wires 1 1 3 a are connected to the electronic device 1 1 2 which is a source of noise generation. The conductive wire 1 1 3 a is connected to a power line for transmitting AC power or DC power. The wire 1 1 4 includes two conductive wires 1 1 4 a and 1 1 4b. The conductive wires 1 1 3 are connected to the conductive wires 1 1 4 a and 1 1 4b, respectively. The electronic device 1 1 2 receives power from the power line 1 1 4 via 113a and 1 1 3 b. Electronic machines use switching power supplies, for example. The noise suppression circuit 1 1 1 is used to suppress the noise transmitted on the electric wires 1 1 3 a and 1 1 3 b generated by the electronic device 1 1 2. Noise suppression circuit 1 1 1 The low-band noise attenuation circuit 120 of the filter of this embodiment is provided with a noise attenuation circuit 180. The low-frequency noise attenuation circuit 1 2 0 is connected to the electronic device 1 1 2 through a 1 3 a and 1 1 3 b. The high-frequency noise attenuation is 180, and the low-frequency noise attenuation circuit 12 is formed in a vertical connection, and the conductive wires 1 1 4 a and 1 1 4b are connected to the power line 1 1 4. In addition, the low-frequency noise attenuation circuit 1 80 which is configured between the device 11 2 and the power line 1 1 4 can also be configured as shown in Figure 18.  The high-frequency noise attenuation circuit 180 is mainly used to reduce noise in the first area. The low-frequency noise attenuation circuit 1 2 0 is mainly used for 312 / invention specification (supplement) / 92-08 / 921M151 to filter the composite characteristics of resonance electricity, and the guide of the noise root of the device is 1 3b, 113b. Power supply a, 1 1 3b Conductor 112 is equipped with on-conductor and south frequency by conductive subtraction circuit, and is connected to electronics 1 20 and t opposite. Frequency range No. 22 200404405 2 Noise in the frequency range (including frequencies lower than the frequency in the first frequency range). The first frequency range includes, for example, a range from 1 Μ Η z to 30 Μ Η z. The second frequency range is, for example, a range of 0 to 1 M Η ζ, or a part of the range. The low-frequency noise attenuation circuit 120 of the filter in this embodiment is used to reduce signals in a specified frequency range, that is, to reduce noise in the second frequency range. The low-frequency noise attenuation circuit 120 and the high-frequency noise attenuation circuit 180 are housed in a frame 1 15 which grounds these. The grounded part of the low-frequency noise attenuation circuit 1 2 0 and the high-frequency noise attenuation circuit 1 80 is connected to the ground line 1 1 3 c. The ground wire 1 1 3 c is electrically connected to the frame 1 1 5. It is also possible to arrange the high-frequency noise attenuation circuit 1 80 in a position closer to the frame 1 15 than the low-frequency noise attenuation circuit 1 2 0. In addition, when the power line 1 1 4 has a ground line in addition to the conductive lines 114 a and 1 1 4 b, the ground line 1 1 3 c may be electrically connected to the ground line of the power line 1 1 4. The noise suppression circuit 1 1 1 may be separated from the electronic device 1 12 or may be integrated into one. When the noise suppression circuit 1 1 1 is separated from the electronic device 1 1 2, the housing 1 1 5 becomes a dedicated housing for the noise suppression circuit 1 1 1. When the noise suppression circuit 1 1 1 is integrated with the electronic device 1 1 2, the frame 1 1 5 may be a frame of the electronic device 1 1 2 or may be a frame housed in the electronic device 1 1 2 A dedicated frame for the noise suppression circuit 111 inside. The ground part of the electronic device 1 1 2 can also be connected to the ground line 1 1 3 c. The structure of the filter of this embodiment, that is, the low-frequency noise attenuation circuit 120 will be described below with reference to FIG. The low-frequency noise attenuation circuit 1 2 0 is used to reduce the normal mode noise and common mode noise transmitted on the conductive lines 1 1 3 a and 1 1 3 b. Here, a low-frequency noise attenuation circuit 1 2 0 is arranged between the electric circuit 23 312 / Invention Specification (Supplement) / 92-08 / 921] 4151 200404405 sub-machine 1 1 2 and the high-frequency noise circuit 1 8 0 Person to explain. The low-frequency noise attenuation circuit 1 2 0 is provided with two terminals 1 2 1 a and 1 2 1 b connected to the electronic device 11 2 and the two high-frequency noise attenuation circuit 1 8 0 two terminals 1 2 2 a, 1 2 2 b. The terminals 1 2 1 a and 1 2 2 a are connected by a conductive wire 1 1 3 a. The terminals 1 2 1 b and 1 2 2 b are connected by a conductive wire 1 1 3 b. The low-frequency noise attenuation circuit 1 2 0 further includes: a composite resonance circuit 1 2 3, which is inserted between the conductive lines 1 1 3 a between the terminals 1 2 1 a and 1 2 2 a; and a composite resonance circuit 124, which Between the terminals 121b and 122b, a conductive wire 113b is inserted. The composite resonance circuits 123 and 124 have the same structure. The composite resonance circuit 1 2 3, 1 2 4 may use the composite resonance circuit of any one of the first to fifth embodiments. According to the low-frequency noise attenuation circuit 1220, normal mode noise and common mode noise in the second frequency range transmitted on the conductive lines 1 1a, 1 3b can be reduced. In addition, the low-frequency noise attenuation circuit 120 may have only one of the composite resonance circuits 1 2 3, 1 2 4 to reduce only normal mode noise. An example of a specific circuit configuration of the high-band noise attenuation circuit 180 will be described below with reference to FIG. The high-frequency noise attenuation circuit 180 shown in FIG. 20 is used to reduce common modal noise transmitted on the conductive lines 1 3 a and 1 1 3 b. Here, a description will be given with a case where the high-band noise attenuation circuit 180 is arranged between the low-band noise attenuation circuit 120 and the power supply line 114. The high-frequency noise attenuation circuit 1 8 0 has two terminals 1 8 1 a, 1 8 1 b connected to the low-frequency noise attenuation circuit 1 2 0, and a conductive wire 1 1 4 connected to a power line 1 1 4 4 a, 114b Two terminals 182a, 182b. The terminals 181a and 182a are connected by a conductive wire 1 1 3a. The terminals 1 8 1 b and 1 8 2 b are connected by a conductive wire 1 1 3 b. 24 312 / Invention Specification (Supplement) / 92-08 / 921M151 200404405 High-frequency noise attenuation circuit 1 8 0 is further equipped with: the detection circuit 1 is placed at the designated position of the conductive line 1 1 3 a, 1 1 3 b, Used to detect the common modal noise transmitted by 1 1 3 a, 1 1 3 b, and the inverse phase signal generation 1 is used to generate the inverse phase signal with the noise detected by the detection circuit 1 8 4; injection circuit 1 8 6 is arranged at a position different from the detection circuit 1 8 4 of the conductive line 1 and is used to inject the reverse phase signal generated by the reverse phase signal generating circuit 1 8 5 into the conductive line 11; 1 8 7 is set at Conductive wires 1 1 3 a, 1 1 3 b are located between the position where the electrical detection is located and the position where the injection circuit 1 8 6 is located to reduce the wave height of the noise passing through it; and the impedance element 188 is in the opposite phase Between the signal generating circuit 185 and the injection circuit 186. The impedance element 1 8 is used to adjust the phase of the reverse-phase signal, so that the noise of the output circuit 1 8 6 and the inverse signal of 1 1 3 a, 1 1 3 b are injected by the injection circuit 1 8 6. The phase difference becomes Close to 18 0 ° Using this impedance element 1 8 8 can adjust the wave height value of the inverse phase signal from the injection circuit 1 8 6 injection line 1 1 3 a, 1 1 3 b to make it close to the miscellaneous of the injected circuit 1 8 6 The high wave of information. The detection circuit 1 8 4 has: a capacitor 1 8 4 a, one end of which is connected to 1 1 3 a, and the other end of which is connected to 18 of the reverse-phase signal generating circuit; and a capacitor 1 8 4 b, which is connected at one end to the conductive wire 1 1 3 b, terminal is connected to the input terminal of the reverse-phase signal generating circuit 185. The capacitor 1 8 4 b passes through the voltage variation of the conductive wires 1 1 3 a and 1 1 3 b respectively, and blocks the low-frequency component circuit 1 8 6 including the frequency of the AC power. The capacitor 1 8 6 a has: One end is connected to the output terminal of the impedance element, and the other end is connected to the conductive line Π 3 a; and the capacitor 312 / Invention Specification (Supplement) / 92-08 / 92 丨 14151 84, is arranged on the conductive line t circuit 185, in contrast The signal 13a > 113b 3a, 113b impedance element circuit 184 has an impedance, and is set to be injected into the conductive line. In addition, the input to the conductive line 5 is injected into the input of the conductive line 5 by its other device 184a. Injector 188b, 186b, 25 200404405 has one end connected to the output end of the impedance element 188, and the other end connected to the conductive line 1 1 3b. In this example, the injection circuit 1 8 6 applies the same voltage change corresponding to the reverse phase signal to the conductive lines 1 1 3 a, 1 1 3 b via the capacitors 18 6a, 186b. The reverse-phase signal generating circuit 1 8 5 includes a transformer 1 8 9. One end of the primary coil of the transformer 189 is connected to the capacitors 1 8 4 a and 1 8 4 b. The other end of the primary coil of the transformer 189 and the other end of the secondary coil of the transformer 189 are connected to the ground. The other end of the secondary coil of the transformer 1 8 9 is connected to the impedance element 1 8 8. The impedance element 1 8 7 uses a common mode choke coil 190, and the impedance element 1 8 8 uses a line choke coil 191 or an impedance element having a phase characteristic equivalent thereto. The capacitances of the capacitors 184a, 184b, 186a, and 186b are set so that, for example, the leakage current value is within a predetermined specification value. The capacitances of the capacitors 1 8 4 a, 184b, 186a, and 1 86b are, for example, in the range of 10 to 20,000 pF. In addition, the ratio of the turns of the primary and secondary coils of the transformer 189 is 1: 1, but it is also possible to change the turns ratio when considering the attenuation of the signal of the transformer 189. The function of the high-band noise attenuation circuit 180 shown in FIG. 20 will be described below. In this high-frequency noise attenuation circuit 180, conductive lines 1 1 3 a and 1 1 3 b on the detection circuit 1 8 4 side of the impedance element 1 8 7 (hereinafter referred to as conductive circuits on the detection circuit 1 8 4 side). Noise generated on the wires 1 1 3 a, 1 1 3 b) passes through the impedance element 1 8 7 and flows into the conductive lines 113 a, 1 1 3 b (below) of the injection circuit 1 8 6 side of the impedance element 1 8 7 When referred to as the conductive wires 1 1 3 a and 1 1 3 b on the injection circuit 1 8 6 side, the noise 26 1 312 / invention specification on the conductive wires 1 1 3 a and 1 1 3 b on the injection circuit 1 8 6 side (Supplement) The wave height value of / 92-08 / 92114151 200404405 becomes smaller than the wave height value of the noise on the conductive lines 1 1 3 a and 1 1 3 on the 1 8 4 side of the detection circuit. In addition, in the high-frequency noise attenuation circuit 180, using the impedance element 1 87, the wave height value of the noise on the conductive lines 1 1 3 a, 1 1 3 b on the detection circuit 1 8 4 side, and The wave height values of the noise on the conductive lines 113a and 1 1 3 b on the injection circuit 1 8 6 side are maintained in different states. In addition, in the high-frequency noise attenuation circuit 180 shown in FIG. 20, the detection circuit 1 84 detects the common modal noise on the conductive lines 1 1a and 1 1b. Then, the inverse-phase signal is generated by the inverse-phase signal generating circuit 185 and the noise-inverse-phase signal detected by the detection circuit 184. Then, an injection circuit 1 8 6 is used to inject a reverse phase signal generated by the reverse phase signal generating circuit 1 8 5 to the conductive lines 1 1 a, 1 1 3 b. With this configuration, the common modal noise on the conductive lines 113a and 1 1 3 b on the injection circuit 18 side cancels each other out. In addition, the wave height value of the noise after passing through the impedance element 187 is smaller than the wave height value of the noise before passing through the impedance element 187. Therefore, it is necessary to adjust the wave height value of the reverse phase signal injected into the conductive line 1 1 3 a and 1 1 3 b by the injection circuit 1 8 6 so as to be close to the impurity input to the injection circuit 1 8 6 after passing through the impedance element 1 8 7 The high wave of information. In addition, in the high-frequency noise attenuation circuit 180 shown in FIG. 20, the impedance inputted to the injection circuit 18 6 can be used by the impedance element 18 8 to be injected into the conductive line by the injection circuit 18 6 The phase difference of the reverse phase signals of 1 1 3 a, 1 1 3 b is close to 180 °, and the reverse phase signals of 1 1 3 a, 1 1 3 b can be injected by the injection circuit 1 6 6 into the conductive line. The wave height value is close to the wave height value of the noise input to the injection circuit 1 8 6. Therefore, according to the high-frequency noise attenuation circuit 180, the noise of the conductive lines 1 13a and 1 1 3 on the injection circuit 18 side can be more effectively reduced. 27 312 / Description of the Invention (Supplement) / 92-08 / 92114151 200404405 In addition, the present invention is not limited to each of the above-mentioned embodiments, but various changes can be made. For example, in each embodiment, a composite resonance circuit that composes two parallel resonance circuits is compounded, but in the present invention, a composite resonance circuit that compound three or more parallel resonance circuits can be constructed. According to the composite resonance circuit of the present invention described above, the ripple voltage and noise generated by the power conversion circuit can be reduced by using the composite resonance characteristics generated by combining the resonance characteristics of a plurality of parallel resonance circuits. In addition, in the present invention, noise with a certain frequency amplitude can be reduced, and ripple voltage and noise at different frequencies can be reduced. In addition, according to the present invention, since the ripple voltage and noise are reduced by using the composite resonance characteristic, it can be miniaturized. Therefore, according to the present invention, it can be used as a filter to reduce the ripple voltage and noise generated by the power conversion circuit, and a composite resonance circuit capable of miniaturization can be realized. In addition, in the composite resonance circuit of the present invention, an inductive component including one of a plurality of inductive elements and one or more capacitors connected to the inductive component may be used to constitute a plurality of parallel resonant circuits. In this case, the size of the composite resonance circuit can be further reduced. When the filter according to the present invention is used, the same effect as that of the composite resonance circuit of the present invention can be obtained. From the foregoing description, it will be apparent that various aspects and modifications of the present invention can be implemented. Therefore, the present invention can also be implemented in a form other than the above-mentioned best form, within the same scope as the scope of patent application below. [Brief description of the drawings] Fig. 1 is an explanatory diagram showing the structure of a composite resonance circuit according to a first embodiment of the present invention. 28 312 / Invention Specification (Supplement) / 92-08 / 92 丨 14151 200404405 Figure 2 is a circuit diagram showing the equivalent circuit of the composite resonance circuit shown in Figure 1. Fig. 3 is a circuit diagram showing a parallel resonance circuit. Fig. 4 is an explanatory diagram for conceptually showing the frequency characteristics of the absolute value of the impedance of the parallel resonance circuit shown in Fig. 3. Fig. 5 is a characteristic diagram for explaining a first example of a composite resonance characteristic of the composite resonance circuit according to the first embodiment of the present invention. Fig. 6 is a characteristic diagram for explaining a second example of the composite resonance characteristic of the composite resonance circuit according to the first embodiment of the present invention. Fig. 7 is a plan view showing a first example of a magnetic core according to a first embodiment of the present invention. Fig. 8 is a plan view showing a second example of the magnetic core according to the first embodiment of the present invention. Fig. 9 is a plan view showing a third example of the magnetic core according to the first embodiment of the present invention. Fig. 10 is an explanatory diagram showing the structure of a composite resonance circuit according to a second embodiment of the present invention. Fig. 11 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in Fig. 10. Fig. 12 is an explanatory diagram showing the structure of a composite resonance circuit according to a third embodiment of the present invention. Fig. 13 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in Fig. 12. Fig. 14 is an explanatory diagram showing the structure of a composite resonance circuit according to a fourth embodiment of the present invention. 29 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405 Fig. 15 is a circuit diagram showing an equivalent circuit of the composite resonance circuit shown in Fig. 14. Fig. 16 is a characteristic diagram showing composite resonance characteristics of a composite resonance circuit according to a fourth embodiment of the present invention. Fig. 17 is an explanatory diagram showing the structure of a composite resonance circuit according to a fifth embodiment of the present invention. Fig. 18 is a block diagram showing a schematic structure of a noise suppression circuit including a filter according to a sixth embodiment of the present invention. FIG. 19 is a block diagram showing the structure of the low-frequency noise attenuation circuit of FIG. 18. FIG. FIG. 20 is a circuit diagram showing an example of the configuration of the high-band noise attenuation circuit of FIG. 18. FIG. (Description of component symbols) 1 Inductor components 2, 3 Capacitors 10 Cores 10A, 10B, 10C, 10D 1 Cores 10a, 10b, 10c Pin 1 Od connection 1 Oe connection 11 Coil 11a, lib terminal 1 2 > 1 3 Resonant coil 2 1 1st parallel resonance power 22 2nd parallel resonance power 30 312 / Instruction Manual (Supplement) / 92-08 / 92114151 200404405 3 1, 3 2 Terminal 33 Magnetic coil 3 3a Magnetic 33b Coil 34 Capacitor 3 5 Imaginary resistor 5 1 Inductive component 52 Capacitor 5 3 A, 5 3 B Core 54 Coil 54a, 54b Terminal 5 5 Resonant coil 5 5a, 5 5b Coil part 6 1 Inductive component 62 Capacitor 63 A, 63B Magnetic Core 65-Coil 65a, 65b Coil part 65c, 65d Terminal 7 1 Inductive element Ί 2, 73 Capacitor 74 Core 74a, 74b, 74 (pin 74d, 74e connection 75, 76 Coil 3 12 / Invention specification (Supplementary ) / 92-08 / 92114151 200404405 77 78 79 80 9 1, 92 93, 9 4 95 > 96 97, 9 8 10 1 1 02 111 112 113a, 113b 113c 114 114a, 114b 115 1 20 121a, 121b 123, 124 1 80 181a, 181b 1 84 184a, 184b 18 5 Terminal terminal 1st parallel resonance circuit 2nd parallel resonance circuit, core coil capacitor terminal, 1st parallel resonance circuit, 2nd parallel resonance circuit, noise suppression circuit, electronic equipment, conductive line, ground line, power line, conductive wire frame, low-band noise attenuation circuit, 122a, 122b terminal composite resonance circuit High-frequency noise attenuation circuit, 182a, 182b terminal detection circuit, capacitor reverse phase signal generation circuit 32 312 / Invention Specification (Supplement) / 92-08 / 92114151 200404405 Circuit magnetic flux ratio 18 6 Injected electricity 186a, 186b Capacitor 1 8 7, 1 8 8 Impedance element 1 89 Transformer 190 Common mode choke 19 1 Line choke fi 'f2 Resonant frequency 33 312 / Invention specification (Supplement) / 92-08 / 92114151

Claims (1)

200404405 拾、申請專利範圍: 1. 一種複合共振電路,其特徵是包含具有互異之共 性而且被複合之多個並聯共振電路,具有複合各個並 振電路之共振特性所形成之複合共振特性。 2 .如申請專利範圍第1項之複合共振電路,其中上 個並聯共振電路具有包含多個電感元件之1個電感組 和連接到該電感組件之1個以上之電容器。 3 .如申請專利範圍第2項之複合共振電路,其中上 感組件具有1個之磁芯和捲繞在該磁芯之多個線圈, 該等用來構成多個電感元件,在各個線圈分別連接有 電容器。 4 .如申請專利範圍第2項之複合共振電路,其中上 感組件具有接合之多個磁芯,和捲繞在各個磁芯之多 圈,利用該等用來構成多個電感元件,在各個線圈分 接有個別電容器。 5 .如申請專利範圍第4項之複合共振電路,其中上 個磁芯之特性成為互異。 6 .如申請專利範圍第2項之複合共振電路,其中上 感組件具有特性互異之多個磁芯,和捲繞在該多個磁 1個線圈,利用該等用來構成多個電感元件,在上述 連接有1個電容器。 7 .如申請專利範圍第1項之複合共振電路,其中上 個並聯共振電路具有多個線圈,和分別對各個線圈並 接之電容器。 8 .如申請專利範圍第7項之複合共振電路,其中上 312/發明說明書(補件)/92-08/92114151 振特 聯共 述多 件, 述電 利用 個別 述電 個線 別連 述多 述電 芯之 線圈 述多 聯連 述多 34 200404405 個線圈串聯連接。 9 .如申請專利範圍第8項之複合共振電路,其中上述 個並聯共振電路更具有捲繞上述多個線圈之1個磁芯。 1 ◦.如申請專利範圍第8項之複合共振電路,其中上述 個並聯共振電路更具有分別用來捲繞上述各個線圈之多 磁芯。 1 1 .如申請專利範圍第1項之複合共振電路,其中上述 個並聯共振電路之各個之阻抗絕對值成為大於指定值之 率範圍,形成部份的重疊,上述複合共振電路之阻抗絕 值成為大於上述指定值之頻率範圍,成為比各個並聯共 電路之上述頻率範圍寬廣。 1 2.如申請專利範圍第1項之複合共振電路,其中上述 個並聯共振電路之各個阻抗絕對值大於指定值之頻率 圍,形成互相分離,上述複合共振電路之阻抗絕對值大 上述指定值之頻率範圍,形成包含各個並聯共振電路之 述頻率範圍。 1 3 .如申請專利範圍第1項之複合共振電路,其中指定 率範圍之上述複合共振電路之阻抗之絕對值,形成大於 述頻率範圍之上述多個並聯共振電路之各個者。 1 4. 一種濾波器,用來減小指定之頻率範圍之信號,其 徵是包含有共振特性互異而且被複合之多個並聯共振 路,具有複合各個並聯共振電路之共振特性所形成之複 共振特性。 312/發明說明書(補件)/92-08/92114151 多 多 個 多 頻 對 振 多 範 於 上 頻 上 特 電 合 35200404405 Scope of patent application: 1. A composite resonance circuit, which is characterized by including multiple parallel resonance circuits that have different characteristics in common and are compounded, and has a compound resonance characteristic formed by compounding the resonance characteristics of each parallel circuit. 2. The compound resonance circuit according to item 1 of the scope of the patent application, wherein the last parallel resonance circuit has an inductance group including a plurality of inductance elements and one or more capacitors connected to the inductance component. 3. The compound resonance circuit according to item 2 of the patent application scope, wherein the upper sensing component has a magnetic core and a plurality of coils wound around the magnetic core, and these are used to form a plurality of inductive elements, and each coil is respectively A capacitor is connected. 4. The compound resonance circuit according to item 2 of the patent application range, wherein the upper sensing component has a plurality of magnetic cores bonded together and a plurality of turns wound around each magnetic core, and these are used to form a plurality of inductive elements in each The coil is tapped with individual capacitors. 5. If the compound resonance circuit of item 4 of the patent application scope, the characteristics of the last magnetic core become mutually different. 6. The compound resonance circuit according to item 2 of the scope of patent application, wherein the upper sensing component has a plurality of magnetic cores with different characteristics, and a coil wound around the plurality of magnetics, and these are used to form a plurality of inductive elements. A capacitor is connected to the above. 7. The compound resonance circuit according to item 1 of the scope of patent application, wherein the last parallel resonance circuit has a plurality of coils and a capacitor connected in parallel to each coil respectively. 8. If the compound resonance circuit of item 7 of the scope of patent application, there are multiple pieces of 312 / Invention Specification (Supplement) / 92-08 / 92114151, the special line is described in detail, and the electricity is described by using a separate line of electricity. The coils of the battery core are connected in series, and the number of coils is 34,400,040. 9. The compound resonance circuit according to item 8 of the scope of the patent application, wherein the parallel resonance circuits further include a magnetic core wound with the plurality of coils. 1 ◦. For example, the compound resonance circuit of the eighth scope of the patent application, wherein the above-mentioned parallel resonance circuits further have multiple magnetic cores for winding the above-mentioned coils respectively. 1 1. If the composite resonance circuit of the first patent application range, wherein the absolute impedance value of each of the parallel resonance circuits becomes a rate range greater than a specified value, forming a partial overlap, the absolute impedance of the composite resonance circuit becomes A frequency range larger than the above-mentioned specified value becomes wider than the above-mentioned frequency range of each parallel common circuit. 1 2. According to the compound resonance circuit of the first patent application range, wherein the absolute value of each impedance of the above-mentioned parallel resonance circuits is greater than the specified value, forming a separation from each other. The frequency range forms a frequency range including each parallel resonance circuit. 1 3. The compound resonance circuit according to item 1 of the scope of patent application, wherein the absolute value of the impedance of the above-mentioned composite resonance circuit in the specified frequency range forms each of the above-mentioned multiple parallel resonance circuits in a frequency range. 1 4. A filter used to reduce a signal in a specified frequency range. Its characteristics include multiple parallel resonance circuits that have mutually different resonance characteristics and are compounded, and have a complex formed by compounding the resonance characteristics of each parallel resonance circuit. Resonance characteristics. 312 / Instruction of the Invention (Supplement) / 92-08 / 92114151 Multiple multiple frequency pair vibrations.
TW92114151A 2002-05-27 2003-05-26 Composite resonant circuit and filter TW200404405A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151853A JP4233273B2 (en) 2002-05-27 2002-05-27 Complex resonant circuit

Publications (1)

Publication Number Publication Date
TW200404405A true TW200404405A (en) 2004-03-16

Family

ID=29561263

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92114151A TW200404405A (en) 2002-05-27 2003-05-26 Composite resonant circuit and filter

Country Status (3)

Country Link
JP (1) JP4233273B2 (en)
TW (1) TW200404405A (en)
WO (1) WO2003100972A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219907B2 (en) * 2005-03-31 2009-02-04 Tdk株式会社 Noise suppression circuit
US8062783B2 (en) * 2006-12-01 2011-11-22 Tti Ellebeau, Inc. Systems, devices, and methods for powering and/or controlling devices, for instance transdermal delivery devices
JP6975034B2 (en) * 2017-12-21 2021-12-01 株式会社Soken Drive device for rotary electric machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924881Y1 (en) * 1973-08-09 1974-07-04
JPS5927618U (en) * 1982-08-12 1984-02-21 松下電器産業株式会社 power transformer equipment
JPS59140525U (en) * 1983-03-10 1984-09-19 ティーディーケイ株式会社 power line filter
JPS61140617U (en) * 1985-02-22 1986-08-30
JPH0159341U (en) * 1987-10-08 1989-04-13
JPH01105215U (en) * 1987-12-29 1989-07-14
JP2523993Y2 (en) * 1990-01-24 1997-01-29 ティーディーケイ株式会社 Line filter
JPH04362805A (en) * 1991-06-11 1992-12-15 Toshiba Corp Resonance filter
JPH10229315A (en) * 1997-02-13 1998-08-25 Matsushita Electric Ind Co Ltd Terminal noise filter
JPH11205063A (en) * 1998-01-13 1999-07-30 Mitsubishi Materials Corp Band stop filter component
CN1255943C (en) * 2000-10-31 2006-05-10 Tdk株式会社 Power line noise filter

Also Published As

Publication number Publication date
WO2003100972A1 (en) 2003-12-04
JP4233273B2 (en) 2009-03-04
JP2003347879A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
US7999414B2 (en) Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device
US10003316B2 (en) Device and method for filtering electromagnetic interference
JP5354097B2 (en) Power transmission device, power reception device, and power transmission system
US20150137615A1 (en) Electromagnetic interference mitigation
JP2004274161A (en) Noise suppression circuit
CA2639155A1 (en) Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device
WO2005101626A1 (en) Noise control circuit
US20210036553A1 (en) Inductive Power Transfer
RU2012148899A (en) ULTRA HIGH EFFICIENT SWITCHING POWER INVERTER AND POWER AMPLIFIER
JP2013528351A5 (en)
TW201349744A (en) Method of improving performance of wave filter and power conversion device using same
EP2628164A1 (en) A multiple-loop symmetrical inductor
JP7214259B2 (en) hybrid inductance device
TW200404405A (en) Composite resonant circuit and filter
JP2004297551A (en) Noise filter device and switching power supply
JP6239468B2 (en) Medical equipment
CN214541851U (en) Hybrid inductor device
JPH0613120U (en) Noise prevention choke coil
JP2006186620A (en) Line filter
WO2002033711A1 (en) Inductor arrangement
CN113439313B (en) Common Mode Choke
TWM612524U (en) Hybrid inductive device
JP2004356918A (en) Noise suppression circuit
CN217037146U (en) Filter circuit, filter and washing machine
CN210667963U (en) Common mode inductor with differential mode effect