TW200404163A - Method and apparatus for improving positioning of mobile communication devices using inertial positioning - Google Patents

Method and apparatus for improving positioning of mobile communication devices using inertial positioning Download PDF

Info

Publication number
TW200404163A
TW200404163A TW092116000A TW92116000A TW200404163A TW 200404163 A TW200404163 A TW 200404163A TW 092116000 A TW092116000 A TW 092116000A TW 92116000 A TW92116000 A TW 92116000A TW 200404163 A TW200404163 A TW 200404163A
Authority
TW
Taiwan
Prior art keywords
positioning system
base station
positioning
mobile base
inertial
Prior art date
Application number
TW092116000A
Other languages
Chinese (zh)
Inventor
Anil Chitre Mandar
Yew-Choong Ng
Original Assignee
Wireless Intellect Labs Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wireless Intellect Labs Pte Ltd filed Critical Wireless Intellect Labs Pte Ltd
Publication of TW200404163A publication Critical patent/TW200404163A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • G01S5/0264Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems at least one of the systems being a non-radio wave positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

Mobile communication devices or mobile station positioning methods may be improved by employing an inertial positioning system in the mobile station. The inertial positioning system is to be used in conjunction with a primary MS positioning method (such as UL-TOA, E-OTD, or A-GPS) to determine the location of the mobile station. The inertial positioning system, using the last known position as a point of reference, continually computes the latest position of the mobile station using measurements gathered from sensors. The inertial positioning system calculated location may periodically be used in lieu of invoking the primary positioning method. In doing so, this method aims to improve time taken to locate position of a mobile station, and provide location estimates in situations where the primary positioning method is unable to do so.

Description

200404163 Π) 玖、發明說明 【發明所屬之技術領域】 本發明係相關於位置或定位系統。尤其是本發明係相 關使用基礎結構系統及慣性系統之彳了動通信裝置中的位 置或定位系統。 【先前技術】 行動通信系統一般稱作行動基地台,並且通常不是運 用GSM (全球性行動通信系統)蜂巢式網路就是運用 CDMA (碼部門多重存取)蜂巢式網路。每一種蜂巢式網 路類型具有各種用以定位這些行動基地台位置之機構。 GSM位置服務(LCS )使用下列定位行動基地台位置 的方法:到達的觀測時間(E-OTD )所增加之到達的上接 時間(UL-TOA ) ’及GPS的支援。CDMA網路使用下列 方法:到達的時間差(TDOA ),到達的角度(AOA ), 及全球定位系統的支援(A - G P S )。其他蜂巢式網路亦規 定類似的定位行動基地台位置之方法。所有上述方法皆以 無線電爲基礎。參照涵蓋GSM位置服務的細節之Gs Μ 03.71。以U· S.專利文件號碼6,061,021證明E-OTD技術 的例子。 通常,無線電基礎的位置方法典型上需要至少三種射 頻(RF )信號才能夠三角測量並且決定行動基地台的位 置。就G P S基礎的定位系統而言,在習知諸如G S Μ或 CDMA等蜂巢式網路中需要來自至少三個基地台的信號以 (2) (2)200404163 決定行動基地台的位置時,使用來自至少三個G P S衛星 的信號。但是’將發生防止定位行動基地台的位置之所需 信號數目無法獲得的情況。 而且,A-GPS方法在需要獲得GPS衛星時,需要幾 秒到幾分鐘定位行動基地台的位置。當所需的G P S衛星 視線(L 0 S )是在室內或高密度都市區時,此方法並無法 運作的很好。在基地台幾何配置貧乏的區域中,U L - Τ Ο A ,E-OTD,TDOA,及AOA方法亦無法良好運作。因此, 僅使用無線電基礎的位置方法之定位系統無法提供不中斷 的位置更新或行動基地台的追蹤。 U. S·專利文件號碼6,240,3 67及 u. S.專利文件號碼 6,3 2 7,5 3 3提出包含結合有慣性導航系統的GPS之導航系 統例子。這些導航系統典型上用於車輛中。此種導航系統 用於行動基地台亦不錯。但是,並不適用於MS製造商使 用未利用GP S的無線電位置系統之行動基地台。 爲了解決上述習知技術的缺點,本發明的主要目的係 改善M S的位置估計,以高效率及及時方式提供此種估計 ’並且適用於不同的定位技術。 【發明內容】 本發明設置一用以改善使用慣性定位之行動通信裝置 的方法及設備。 因此,在其中一觀點中,本發明提供一用以定位包含 主要定位系統及慣性定位系統之行動通信裝置的改善方法 (3) (3)200404163 ’該方法包含以下步驟: 決定是否繞過主要定位系統; 右不能k過主要定位系統,則使用主要定位系統執行 定位; 若繞過主要定位系統或若主要定位系統不能返回一可 接受的位置估計’則使用慣性定位系統執行定位。 因此’在另〜觀點中,本發明設置一包含行動基地台 控制器及慣性定位子系統的行動基地台; 行動基地台控制器,用以控制行動基地台的操作及用 以與蜂巢式網路通信以操作主要定位系統;及慣性定位子 系統用以擴增主要定位系統。 【實施方式】 参照圖1 ’圖不有根據本發明之行動通信裝置或行動 基地台1 2的方塊圖。本發明建議添加慣性定位子系統】6 到行動基地台1 2以擴增它自己之依賴蜂巢式網路作爲三 角測量的無線電基礎之主要定位系統。包含一般操作行動 基地台1 2所需的硬體及軟體與用以和蜂巢式網路通信以 操作主要定位系統之行動基地台控制器1 4用於接合慣性 定位子系統1 6。慣性定位子系統1 6使用慣性定位方法用 以決定整座系統1 〇的位置。本發明的較佳實施例係慣性 定位子系統1 6完全封裝在機架內並且裝附於行動基地台 1 2的機架上。另一實施例具有經由連接機構將慣性定位 子系統1 6自外部固定於MS 1 2機架上。200404163 Π) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a position or positioning system. In particular, the present invention relates to a position or positioning system in a mobile communication device using an infrastructure system and an inertial system. [Prior art] Mobile communication systems are commonly referred to as mobile base stations, and usually use either a GSM (Global System for Mobile Communications) cellular network or a CDMA (Code Division Multiple Access) cellular network. Each honeycomb network type has various mechanisms for locating these mobile base stations. The GSM Location Service (LCS) uses the following methods to locate the location of the mobile base station: the increase of the arrival time (E-OTD) and the uplink time (UL-TOA) 'and GPS support. CDMA networks use the following methods: time difference of arrival (TDOA), angle of arrival (AOA), and global positioning system support (A-G P S). Other cellular networks have similar methods for locating mobile base stations. All of the above methods are radio-based. Refer to Gs M 03.71 for details covering GSM location services. An example of E-OTD technology is shown in U.S. Patent Document No. 6,061,021. Generally, radio-based location methods typically require at least three radio frequency (RF) signals to be able to triangulate and determine the location of the mobile base station. As far as GPS-based positioning systems are concerned, it is known in cellular networks such as GS M or CDMA that signals from at least three base stations are needed to determine the location of mobile base stations using (2) (2) 200404163. Signals from at least three GPS satellites. However, it will happen that the number of signals required to prevent the location of the mobile base station cannot be obtained. In addition, when the A-GPS method is required to acquire a GPS satellite, it takes several seconds to several minutes to locate the mobile base station. This method does not work well when the required GPS line of sight (L 0 S) is indoors or in high-density urban areas. In areas where the base station's geometric configuration is poor, the U L-TOA, E-OTD, TDOA, and AOA methods also fail to work well. Therefore, positioning systems that use only radio-based location methods cannot provide uninterrupted location updates or mobile base station tracking. U.S. Patent Document No. 6,240,3 67 and U.S. Patent Document No. 6,3 2 7,5 3 3 propose examples of a navigation system including a GPS integrated with an inertial navigation system. These navigation systems are typically used in vehicles. This navigation system is also good for mobile base stations. However, it does not apply to mobile base stations where MS manufacturers use radio location systems that do not use GPS. In order to solve the shortcomings of the above-mentioned conventional techniques, the main object of the present invention is to improve the position estimation of MS, provide such an estimation in an efficient and timely manner, and be applicable to different positioning techniques. SUMMARY OF THE INVENTION The present invention provides a method and device for improving a mobile communication device using inertial positioning. Therefore, in one aspect, the present invention provides an improved method for locating a mobile communication device including a main positioning system and an inertial positioning system (3) (3) 200404163 'The method includes the following steps: Decide whether to bypass the main positioning System; right cannot pass the main positioning system, use the main positioning system to perform positioning; if the main positioning system is bypassed or if the main positioning system cannot return an acceptable position estimate, then use the inertial positioning system to perform positioning. Therefore, in another aspect, the present invention provides a mobile base station including a mobile base station controller and an inertial positioning subsystem; the mobile base station controller is used to control the operation of the mobile base station and to communicate with the cellular network Communication to operate the main positioning system; and an inertial positioning subsystem to augment the main positioning system. [Embodiment] Referring to FIG. 1 ', there is no block diagram of a mobile communication device or a mobile base station 12 according to the present invention. The present invention proposes to add an inertial positioning subsystem [6] to the mobile base station 12 to augment its own main positioning system that relies on the cellular network as a radio base for triangulation measurement. Contains the hardware and software required for general operations and base stations 12 and mobile base station controllers 14 for communicating with the cellular network to operate the main positioning system for engaging the inertial positioning subsystem 16. The inertial positioning subsystem 16 uses the inertial positioning method to determine the position of the entire seat system 10. The preferred embodiment of the present invention is that the inertial positioning subsystem 16 is completely enclosed in the rack and attached to the rack of the mobile base station 12. Another embodiment has an inertia positioning subsystem 16 fixed to the MS 12 frame from the outside via a connection mechanism.

(4) (4)200404163 參照圖2,慣性定位子系統1 6包含:感應器陣列1 9 、九個信號濾波器30a-i、及處理器模組40。感應器陣列 19更包含九個感應器。 九個感應器包含:X軸加速度計20、y軸加速度計2 1 、及z軸加速度計22 ; X軸磁力計23、y軸磁力計24、 及z軸磁力計2 5 ; X軸傾斜計2 6及y軸傾斜計2 7 ;及溫 度感應器2 8。 X軸加速度計2 0、y軸加速度計2 1、及z軸加速度計 2 2量測沿著行動基地台1 2的X,y及z軸的加速度各自當 作加速度讀數。同樣地,X軸磁力計23、y軸磁力計24、 及z軸磁力計25量測沿著行動基地台1 2的X,y及z軸的 地磁場各自當作磁場讀數。X軸傾斜計26及y軸傾斜計 2 7量測行動基地台1 2繞著行動基地台1 2的X及y軸之 傾斜各自當作傾斜計讀數。溫度感應器2 8量測系統1 6的 溫度。九個信號濾波器30a-i的每一個皆設定讀自感應器 的信號條件以防止混淆及減少噪音。較佳實施例使用固態 或微電機械系統(MEMS )基礎的感應器,因爲它們的尺 寸小。亦可使用具有包含各種下列方法的組合之複數感應 器的積體感應器:加速度計、磁力計、傾斜計、及溫度感 應器。 處理器模組40執行感應器陣列1 9所發出的信號之類 比到數位轉換,及執行決定行動基地台1 2的目前位置所 需的計算。在較佳實施例中,可使用習知執行儲存在記憶 體中的軟體程式之微控制器、微處理器等裝置取代處理器 -8 - (5) 200404163 模組4 0。 行動基地台12方位的特點爲以磁力計23,24,25 量測的地磁場及傾斜計2 6,2 7所量測的系統傾斜。對 動基地台1 2的磁干擾場所引起的磁力計讀數錯誤施加 正。可自這些値導出行動基地台1 2的方位角(朝向磁 )及斜角。藉由應用在系統目前位置的斜角之適當値可 出朝向正北的行動基地台1 2之方位角。自空間上的一 移動行動基地台12到另一點將產生加速度計20,21, 所量測的加速度。處理器模組4 0將溫度補償施加到取 感應器陣列1 9的讀數。 必須使用利用主要定位方法的自己之主要定位系統 獲得的行動基地台1 2之位置估計的最初位置資料初始 性定位子系統1 6。此最初位置資料然後被供給到慣性 位子系統1 6中。 圖3,圖4,及圖5圖示處理器模組4 0所進行的後 作業程序1 〇〇之狀態及活動圖。圖6圖示蜂巢式網路所 行的前台作業程序2 00以決定行動基地台1 2的位置之 程圖。後台作業程序1 〇 〇及前台作業程序2 0 0彼此獨立 行並且可視作並存執行。 參照圖3,未初始化1 02爲慣性定位子系統1 6開 的狀態。在此狀態中,因爲未注意到其最初位置,因此 法提供任何位置估計。初始化狀態1 爲慣性定位子系 1 6已接收到足夠的初始化專用資料。在此狀態中,慣 定位子系統1 6注意到其最初位置並且能夠提供位置估 所 行 校 北 導 點 22 白 所 慣 定 台 進 流 執 始 Μ 統 性 計 -9- (6) (6)200404163 圖4及圖5提到幾個共同訊息或事件。他們包含:位 置資料訊息120、位置請求122、及內部計時器事件124 。位置資料訊息1 2 0包含如主要定位方法所決定的行動基 地台1 2位置。位置請求1 22基本上請求如慣性定位子系 統1 6所決定的行動基地台1 2位置。位置資料訊息1 20及 位置請求訊息122二者皆來自前台作業程序2 00所產生的 蜂巢式網路。內部計時器事件1 2 4以規律間隔由時鐘信號 產生在處理器模組40中。 參照圖4,當處理器模組40接收位置資料訊息120 時,包含行動基地台1 2位置之位置資料1 2 0然後被儲存 1 6 0當作最初位置。接下來,行動基地台1 2的位移向量 被重新設定1 6 2爲零。此位移向量意指行動基地台1 2與 行動基地台1 2的最初位置之位移。然後,後台作業程序 1〇〇變成初始化104狀態。 若接收到位置請求訊息1 22,則後台作業程序1 〇〇將 產生”尙未就緒” 1 6 4訊息,表示慣性定位子系統1 6未準 備好提供位置估計及後台作業程序1 00維持在未初始化 102狀態。 參照圖5,當後台作業程序在初始化1 04狀態中並且 接收到位置資料訊息1 2 0時,包含行動基地台1 2位置之 位置資料120被儲存180當作最初位置。接下來,行動基 地台1 2的位移向量被重新設定1 8 2爲零。後台作業程序 1〇〇維持在初始化104狀態。 -10- u'·· ;.-4 (7) (7)200404163 若接收到位置請求訊息1 2 2,則後台作業程序i 〇 〇將 進行到使用行動基地台的最初位置及位移向量的値計算 1 8 4位置估計。然後,位置資料被發送到;| 8 6行動基地台 控制器1 4,然後控制器1 4與蜂巢式網路通信以轉運位置 資料。後台作業程序1 〇〇維持在初始化1 04狀態。 右出現內部g十時益事件1 2 4 ’則後台作業程序1 〇 〇將 進行到自感應器陣列1 9讀取1 8 8資料。資料讀取然後被 用於更新1 9 0位移向量。後台作業程序〗〇 〇維持在初始化 1 〇 4狀態。 參照圖6,前台作業程序2 0 0在蜂巢式網路中被執行 。當需要行動基地台1 2位置時執行此前台作業程序2 0 0 。首先’前台作業程序200檢查決定主要定位系統是否可 被繞過2 0 2。此種決定的標準可由使用者定義並且可隨情 況而變。此使得蜂巢式網路可減少在主要定位系統上的負 載,並且減少因主要定位系統所引起的負載。若蜂巢式網 路決疋不繞過主要定位系統,則下一步將使用主要定位系 統執行2 04主要定位。接下來,蜂巢式網路將決定是否可 接受206由先前主要定位程序所到達的位置估計。若位置 估計可接受2 0 6,則前台作業程序2 0 0接著進行到將主要 定位位置估計返回20 8到蜂巢式網路。當定位方法未能將 位置估計返回時’或當定位方法返回到具有高度不確定性 或錯誤的位置估計時,位置估計被視作無法接受。接下來 ’慣性定位子系統1 6以主要定位位置估計更新2 i 〇。然 後結束2 4 0前台作業程序2 〇 〇。 >11 - (8) (8)200404163 若蜂巢式網路決定繞過202主要定位系統,或若主要 定位系統的位置估計未被接受2 0 6,則前台作業程序接著 進行到使用慣性定位子系統1 6執行定位。首先,前台作 業程序200查詢220行動基地台1 2中慣性定位子系統;[6 的位置。行動基地台1 2返回到其由後台作業程序1 〇 〇所 計算出的目前位置。接下來,若位置估計未能自慣性定位 系統取得2 2 2,則前台作業程序返回到執行2 0 4主要定位 系統的步驟。否則,來自慣性定位系統位置估計被返回到 2 2 4蜂巢式網路。然後結束2 4 0前台作業程序2 0 0。 參照圖7,在後台作業程序1 0 0的更新位移向量1 9 0 之步驟開始於將加速度讀數3 0 1自感應器陣列1 9投射到 當地水平面上。接下來,將磁場讀數3 02自感應器陣列 1 9投射到當地水平面上。傾斜計讀數亦被合倂到加速度 5買數3 0 1及磁場|買數3 0 2的投射步驟中。更新移位向量步 驟190的基本目標係爲了獲得北-南、東-西、及垂直方向 的成分,接著使用這些値計算相對位移量。 此處列舉投射加速度讀數3 01及磁場讀數3 02的計算 例子: 假設行動基地台1 2的航向在相同方向當作其當地X 軸的正方向。 假設: τχ =繞著當地水平面的X軸之傾斜(0 )。(4) (4) 200404163 Referring to FIG. 2, the inertial positioning subsystem 16 includes a sensor array 19, nine signal filters 30 a-i, and a processor module 40. The sensor array 19 further includes nine sensors. Nine sensors include: X-axis accelerometer 20, y-axis accelerometer 21, and z-axis accelerometer 22; X-axis magnetometer 23, y-axis magnetometer 24, and z-axis magnetometer 25; X-axis inclinometer 26 and y-axis inclinometers 27; and temperature sensors 28. The X-axis accelerometer 20, y-axis accelerometer 21, and z-axis accelerometer 22 measure the acceleration along the X, y, and z axes of the mobile base station 12 as the acceleration readings. Similarly, the X-axis magnetometer 23, the y-axis magnetometer 24, and the z-axis magnetometer 25 measure the geomagnetic fields along the X, y, and z axes of the mobile base station 12 as magnetic field readings. The X-axis inclinometer 26 and the y-axis inclinometer 2 7 measure the tilt of the mobile base station 12 around the X and y axes of the mobile base station 12 as the inclinometer readings. The temperature sensor 2 8 measures the temperature of the system 16. Each of the nine signal filters 30a-i sets the signal conditions read from the sensor to prevent confusion and reduce noise. The preferred embodiment uses solid state or microelectromechanical systems (MEMS) based sensors because they are small in size. It is also possible to use an integrated sensor having a plurality of sensors including a combination of the following methods: an accelerometer, a magnetometer, an inclinometer, and a temperature sensor. The processor module 40 performs analog-to-digital conversion of signals from the sensor array 19 and performs calculations required to determine the current position of the mobile base station 12. In a preferred embodiment, a processor, such as a microcontroller, a microprocessor, and the like that execute software programs stored in the memory, may be used instead of the processor -8-(5) 200404163 module 40. The orientation of the mobile base station 12 is characterized by the geomagnetic field measured by the magnetometers 23, 24, and 25, and the system tilt measured by the inclinometers 26, 27. The magnetometer reading caused by the magnetic interference place of the moving base station 12 is applied positively. From these frames, the azimuth (orientation) and oblique angle of the mobile base station 12 can be derived. The azimuth angle of the mobile base station 12 facing north is obtained by the proper angle of the oblique angle applied at the current position of the system. Moving a mobile base station 12 from space to another point will produce accelerometers 20, 21, measured accelerations. The processor module 40 applies temperature compensation to the readings of the sensor array 19. The initial location data of the mobile base station 12's initial position data obtained by using its own primary positioning system using the primary positioning method must be used for the initial positioning subsystem 16. This initial position data is then supplied to the inertial position subsystem 16. FIG. 3, FIG. 4, and FIG. 5 show states and activities of the post-operation program 100 performed by the processor module 40. FIG. 6 is a flowchart illustrating a front-end operation procedure 200 performed by the cellular network to determine the position of the mobile base station 12. The background job program 100 and the foreground job program 2000 run independently of each other and can be regarded as concurrent execution. Referring to Fig. 3, uninitialized 102 is a state where the inertial positioning subsystem 16 is on. In this state, because its original position is not noticed, the method provides no position estimate. Initialization state 1 is the inertial positioning subsystem 1 6 has received sufficient initialization-specific data. In this state, the inertial positioning subsystem 16 notices its initial position and is able to provide a position estimate. The north guidance point 22 The inertial positioning platform of the inertial platform -9- (6) (6) 200404163 Figures 4 and 5 mention several common messages or events. They include: location data message 120, location request 122, and internal timer event 124. The position data message 120 contains the position of the mobile base station 12 as determined by the main positioning method. The position request 1 22 basically requests the position of the mobile base station 12 as determined by the inertial positioning subsystem 16. Both the location data message 120 and the location request message 122 are from the cellular network generated by the front-end operation program 200. Internal timer events 1 2 4 are generated in the processor module 40 by clock signals at regular intervals. Referring to FIG. 4, when the processor module 40 receives the position data message 120, the position data 1 2 0 including the position of the mobile base station 12 is then stored 1 60 as the initial position. Next, the displacement vector of mobile base station 12 is reset to 16 2 to zero. This displacement vector means the displacement of the initial positions of mobile base station 12 and mobile base station 12. Then, the background job program 100 becomes the initialization 104 state. If a position request message 1 22 is received, the background operation program 100 will generate a “尙 Not Ready” 1 6 4 message, indicating that the inertial positioning subsystem 16 is not ready to provide a position estimate and the background operation program 100 remains in the unavailable position. Initialize the 102 state. Referring to FIG. 5, when the background operation program is in the initial state 104 and the position data message 120 is received, the position data 120 including the position of the mobile base station 12 is stored 180 as the initial position. Next, the displacement vector of the mobile base station 12 is reset to 1 8 2 to zero. The background job program 100 is maintained at the initialization 104 state. -10- u '··; .- 4 (7) (7) 200404163 If a position request message 1 2 2 is received, the background operation program i 〇〇 will proceed to the initial position and displacement vector of the mobile base station. Calculate 1 8 4 position estimates. Then, the location data is sent to; | 8 6 mobile base station controller 14 and then controller 14 communicates with the cellular network to transfer the location data. The background job program 100 is maintained in the initial state 104. The internal g Shishiyi event 1 2 4 ′ appears on the right, and the background operation program 1 00 will proceed to read 1 8 8 data from the sensor array 19. The data read is then used to update the 190 displacement vector. Background operation procedure 〖〇 〇 Maintained in the initial state of 104. Referring to FIG. 6, the foreground operation program 2000 is executed in a cellular network. This front-end operation procedure 2 00 is executed when the base station 12 position needs to be moved. First, the foreground process 200 checks to determine whether the main positioning system can be bypassed. The criteria for such decisions are user-definable and may vary from case to case. This enables the cellular network to reduce the load on the primary positioning system and reduce the load caused by the primary positioning system. If the honeycomb network never bypasses the main positioning system, the next step will be to perform the main positioning using the main positioning system. Next, the honeycomb network will decide whether to accept 206 the position estimate reached by the previous main positioning procedure. If the position estimate is acceptable for 206, the front-end operation program 200 then proceeds to return the main positioning position estimate to 208 to the honeycomb network. When the positioning method fails to return the position estimate ' or when the positioning method returns a position estimate with a high degree of uncertainty or error, the position estimate is considered unacceptable. Next, the inertial positioning subsystem 16 updates 2 i 0 with the main positioning position estimate. Then end the 240 front-end operation program 2000. > 11-(8) (8) 200404163 If the honeycomb network decides to bypass the 202 main positioning system, or if the position of the main positioning system is not accepted 2 06, the foreground operation procedure then proceeds to the use of inertial locators The system 16 performs positioning. First, the front-end operating program 200 queries 220 the position of the inertial positioning subsystem in the mobile base station 12; [6. The mobile base station 12 returns to its current position calculated by the background operation program 100. Next, if the position estimation fails to obtain 2 2 2 from the inertial positioning system, the foreground operation procedure returns to the step of performing the main positioning system 2 0 4. Otherwise, the position estimate from the inertial positioning system is returned to the 2 2 4 honeycomb network. Then end the 2 4 0 foreground job program 2 0 0. Referring to FIG. 7, the step of updating the displacement vector 190 in the background operation program 100 starts with projecting the acceleration reading 301 from the sensor array 19 onto the local horizontal plane. Next, project the magnetic field reading 3 02 from the sensor array 19 onto the local horizontal plane. The inclinometer readings are also combined into the projection steps of acceleration 5 3 1 and magnetic field 3 3 2. The basic objective of updating the shift vector step 190 is to obtain north-south, east-west, and vertical components, and then use these 値 to calculate the relative displacement. Here is a calculation example of the projection acceleration reading 3 01 and the magnetic field reading 3 02: Assume that the heading of the mobile base station 12 is in the same direction as the positive direction of its local X axis. Assumptions: τχ = tilt (0) around the X axis of the local horizontal plane.

Ty =繞著當地水平面的Y軸之傾斜(0 )。 傾斜校正變換矩陣指定爲: -12- 200404163Ty = tilt (0) around the Y axis of the local horizontal plane. The skew correction transformation matrix is specified as: -12- 200404163

cos 孕 0 sin 令 0 sin0 sin φ cosd - sin Θ cos φ 0 一 cos 0 sin 沴 sin6 cos Θ cos 0 0 0 coscf) 0 sin0 0 0 0 10 0 0 — sin 伞 0 cos0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 假設:cos pregnant 0 sin Let 0 sin0 sin φ cosd-sin Θ cos φ 0-cos 0 sin 沴 sin6 cos Θ cos 0 0 0 coscf) 0 sin0 0 0 0 10 0 0 — sin umbrella 0 cos0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 Assume:

Hx = 沿著當地行動基地台1 2的X軸之地磁場。 Hy =沿著當地行動基地台1 2的Y軸之地磁場。 Hz == 沿著當地行動基地台1 2的Z軸之地磁場。 Hx 沿著當地水平面的X軸之地磁場。Hx = geomagnetic field along the X axis of the local mobile base station 1 2. Hy = geomagnetic field along the Y axis of the local mobile base station 1 2. Hz == Geomagnetic field along the Z axis of the local mobile base station 1 2. Hx Geomagnetic field along the X axis of the local horizontal plane.

Hy’ =沿著當地水平面的Y軸之地磁場。Hy ’= geomagnetic field along the Y axis of the local horizontal plane.

Hz’ =在垂直方向的地磁場。 校正傾斜專用的磁場讀數指定爲: - / -/ Ή; Ηχ cos φ ^ Ηζ sin φ Hy =Τ· 4 sin 0 sin 令十 7^ cos0 — sin 0 cos0 Η: Η: -Ηχ cos θ sin φ + Ηy sin θ·¥ Ηζ cos θ cos φ _ 1 _ 1 _ 1 L 幽 假設: ax =沿著當地行動基地台1 2的X軸之加速度。 ay =沿著當地行動基地台1 2的Y軸之加速度。 az =沿著當地行動基地台1 2的Z軸之加速度。 h =沿著當地水平面的X軸之加速度。 ay’ =沿著當地水平面的Y軸之加速度。 a2’ =在垂直方向的加速度。 校正傾斜專用的加速度讀數指定爲: -13- (10)200404163Hz ’= geomagnetic field in the vertical direction. The magnetic field readings for correction of tilt are specified as:-/-/ Ή; Ηχ cos φ ^ Ηζ sin φ Hy = T · 4 sin 0 sin Let ten 7 ^ cos0 — sin 0 cos0 Η: Η: -Ηχ cos θ sin φ + Ηy sin θ · ¥ Ηζ cos θ cos φ _ 1 _ 1 _ 1 L Hypothesis: ax = acceleration along the X axis of the local mobile base station 1 2. ay = acceleration along the Y axis of the local mobile base station 1 2. az = acceleration along the Z axis of the local mobile base station 1 2. h = acceleration along the X axis of the local horizontal plane. ay ’= acceleration along the Y axis of the local horizontal plane. a2 '= acceleration in the vertical direction. The acceleration reading dedicated to correct tilt is specified as: -13- (10) 200404163

ax cos^ i-a2 sin φ ax sin Θ sin 0 + ay cos0 ~ a2 sin6 cos^ -qx cos Θ sin 0 + ay sin Θ& a2 cos Θ cos φ a i = 沿著北-南方向的加速度。 a』=沿著東-西方向的加速度。 ak=在當地垂直方向的加速度(無地新引力)。 接下來,自投射的磁場讀數及目前地面位置估計計算 3 〇 3正方位及斜角。及斜角。此處列舉此種計算的例子: 方位角(磁北及航向方向之間的角度),α ,指定爲 (自磁北順時針方向計算出α ) Η; α = arctan —v-ax cos ^ i-a2 sin φ ax sin Θ sin 0 + ay cos0 ~ a2 sin6 cos ^ -qx cos Θ sin 0 + ay sin Θ & a2 cos Θ cos φ a i = acceleration along the north-south direction. a '= acceleration along the east-west direction. ak = acceleration in the local vertical direction (new gravity without ground). Next, from the projected magnetic field reading and the current ground position estimate, the positive azimuth and oblique angle of 303 are calculated. And bevel. Examples of such calculations are listed here: Azimuth (angle between magnetic north and heading direction), α, specified as (calculated α from magnetic north clockwise) Η; α = arctan —v-

Hx 斜角(地面的場向量及水平面之間的角度),(5 ,指 定爲: (若垂直向下指,則(5爲正的,反之爲負的) 〇 = arctan Η:Hx oblique angle (the angle between the field vector on the ground and the horizontal plane), (5, specified as: (if pointing down vertically, (5 is positive, otherwise negative)) 〇 = arctan Η:

FJW 偏角(正北及磁北之間的角度,自正北順時針方向計 算出),λ ,可使用地面的地磁場模型計算出。此値視在 地面上的準確位置及目前時間而定。在小型當地區域內的 偏角將可能差異不大。 正方位, 接下來,計算在N-S,E-W,及垂直方向的加速度成 分3 0 4。此處列舉此種計算的例子: -14- (11) (11)200404163 沿著NS/EW的加速度指定爲: • cosp -sin β 0 ax / = sin )8 cos β 0 ay _ 1 _ 0 〇 L 1 ak^az 之後,計算自行動基地台1 2的最初位置之相對偏移 量3 0 5。此處列舉此種計算的例子: 假設: 5 s i ==沿著北-南方向的位置偏移量。 5 s j =沿著東-西方向的位置偏移量。 (5 sk =當地垂直方向的位置偏移量。 在時間//的位置偏移量指定爲: 私⑻=f f2 &» = ί/。、(⑽2 本發明如此設置改善的行動基地台1 2位置或定位系 統,該系統包括無線電基礎的主要定位系統及慣性定位子 系統1 6。此系統爲目前僅依賴無線電定位方法的行動基 地台之改善系統,因爲當無法利用無線電定位時,其設置 一提供位置估計的機構。不管如何,即使當能夠利用無線 電位置估計時,其另外可用於校正由慣性定位系統所返回 的估計。 【圖式簡單說明】 自詳細說明及申請專利範圍可更加完整瞭解本發明。 •15· (12) (12)200404163 g羊細說明及申請專利範圍可參照附圖,附圖中的相同號碼 意指所有圖示中的類似項目。 圖1爲本發明的綱要方塊圖。 圖2爲圖1中的慣性定位系統的綱要方塊圖。 圖3爲圖2的處理器模組部位所執行的後台作業程序 之狀態圖。 圖4爲根據本發明,藉由處理器模組所執行的後台作 業程序之未初始化狀態的活動圖。 圖5爲根據本發明,藉由處理器模組所執行的後台作 業程序之初始化狀態的活動圖。 圖6爲根據本發明的前台作業之流程圖。 圖7爲根據本發明的計算位移向量之流程圖。 元件對照表 1 2 :行動通信裝置 1 2 :行動基地台 1 4 :行動基地台控制器 1 6 :慣性定位子系統 1 9 :感應器陣列 2 〇 : X軸加速度計 2 1 : y軸加速度計 22 : z軸加速度計 23 : X軸磁力計 24 : y軸磁力計 -16- (13) (13)200404163 2 5 : z軸磁力計 2 6 : X軸傾斜計 2 7 : y軸傾斜計 2 8 :溫度感應器 3 0a :信號濾波器 3 0b :信號濾波器 3 0 c :信號濾波器 3 0 d :信號濾波器 3 0 e :信號濾波器 3 Of :信號濾波器 3 0g :信號濾波器 3 0 h :信號濾波器 3 0 i :信號濾波器 40 :處理器模組FJW declination (angle between true north and magnetic north, calculated clockwise from true north), λ, can be calculated using the ground geomagnetic model. This depends on the exact location on the ground and the current time. The deflection angles in small local areas will likely not vary much. For positive bearing, next, calculate the acceleration components in N-S, E-W, and vertical direction 3 0 4. Examples of such calculations are listed here: -14- (11) (11) 200404163 The acceleration along NS / EW is specified as: • cosp -sin β 0 ax / = sin) 8 cos β 0 ay _ 1 _ 0 〇 After L 1 ak ^ az, the relative offset from the initial position of the mobile base station 12 is calculated. Here is an example of such a calculation: Assume: 5 s i == position offset along the north-south direction. 5 s j = position offset along the east-west direction. (5 sk = local vertical position offset. The position offset at time // is specified as: ⑻ = f f2 & »= ί /., (⑽ 2 The present invention provides an improved mobile base station 1 2 Position or positioning system, which includes the main positioning system based on radio and the inertial positioning subsystem 16. This system is an improved system for mobile base stations that currently only rely on radio positioning methods, because when radio positioning cannot be used, its settings A mechanism that provides position estimation. In any case, even when radio position estimation can be used, it can also be used to correct the estimation returned by the inertial positioning system. [Simplified illustration of the drawing] The scope of the patent and the patent application can be more fully understood The invention. • 15 · (12) (12) 200404163 g For detailed description of sheep and patent application scope, please refer to the drawings, the same numbers in the drawings mean similar items in all the drawings. Figure 1 is the outline block of the invention Fig. 2 is a schematic block diagram of the inertial positioning system in Fig. 1. Fig. 3 is a state diagram of a background operation program executed by the processor module of Fig. 2. 4 is an activity diagram of an uninitialized state of a background operation program executed by a processor module according to the present invention. FIG. 5 is an activity diagram of an initialized state of a background operation program executed by a processor module according to the present invention. Fig. 6 is a flowchart of a foreground operation according to the present invention. Fig. 7 is a flowchart of calculating a displacement vector according to the present invention. Component comparison table 12: Mobile communication device 12: Mobile base station 14: Mobile base station Controller 16: Inertial positioning subsystem 19: Sensor array 2 〇: X-axis accelerometer 2 1: y-axis accelerometer 22: z-axis accelerometer 23: X-axis magnetometer 24: y-axis magnetometer-16- (13) (13) 200404163 2 5: Z-axis magnetometer 2 6: X-axis tilt meter 2 7: Y-axis tilt meter 2 8: Temperature sensor 3 0a: Signal filter 3 0b: Signal filter 3 0 c: Signal filter 3 0 d: Signal filter 3 0 e: Signal filter 3 Of: Signal filter 3 0g: Signal filter 3 0 h: Signal filter 3 0 i: Signal filter 40: Processor module

Claims (1)

(1) (1)200404163 拾、申請專利範圍 , /.、—種用以定位包含主要定位系統及憤性定位系統 之行動通信裝置的改善方法,該方法包含以下步驟: 、 決定是否繞過該主要定位系統; - 若不繞過該主要定位系統,則使用該主要定位系統執 行定位; 若繞過該主要定位系統或若該主要定位系統不能回送 一可接受的位置估計,則使用該慣性定位系統執行定位。 馨 2 ·如申請專利範圍第1項之方法,其中若不繞過該 主要定位系統,則使用該主要定位系統執行定位之該步驟 另外包含以下步驟: 儲存該可接受的位置估計當作主要位置估計; 發送該主要位置估計到該慣性定位系統。 3 ·如申請專利範圍第1項之方法,其中若繞過該主 要定位系統,則使用該慣性定位系統執行定位之該步驟另 外包含發送定位請求到該慣性定位系統的步驟。 H 4.如申請專利範圍第1項之方法,其中該慣性定位系 ’ 統另外包含: 感應器陣列; 及至少一處理器模組。 5 ·如申請專利範圍第4項之方法,其中該感應器陣 列另外包含: 至少三加速度計,該至少三加速度計的每一個皆配置 成產生加速度計信號; •18- (2) (2)200404163 至少三磁力計,該至少三磁力計的每一個皆配置成產 生磁力計信號; 至少兩傾斜計,該至少兩傾斜計的每一個皆配置成產 生傾斜計信號; 及至少一溫度感應器,該至少一溫度感應器的每一個 皆配置成產生溫度感應器信號。 6 ·如申請專利範圍第5項之方法,其中使用該慣性 定位系統執行定位之該步驟另外包含以下步驟: 自該感應器陣列讀取感應器信號。 7. —種包含行動基地台控制器及慣性定位子系統之 行動基地台; 該行動基地台控制器用以控制該行動基地台的操作及 用以與蜂巢式網路通信以操作主要定位系統; 及該慣性定位子系統用以擴增該主要定位系統。 8 ·如申請專利範圍第4項之行動基地台,其中該慣 性定位子系統另外包含: 至少三加速度計,該至少三加速度計的每一個皆配置 成產生加速度計信號; 至少三磁力計,該至少三磁力計的每一個皆配置成產 生磁力計信號; 至少兩傾斜計,該至少兩傾斜計的每一個皆配置成產 生傾斜計信號; 及至少一溫度感應器’該至少一溫度感應器的每一個 皆配置成產生溫度感應器信號;及 -19- (3) (3)200404163 至少一處理器模組。 9. 如根據申請專利範圍第5項之行動基地台,其中 該至少三加速度計用以產生以該慣性定位子系統的位移加 速度爲特徵之加速度計信號。 10. 如申請專利範圍第6項之行動基地台,其中該至 少三磁力計產生以該慣性定位子系統的航向爲特徵之磁力 計信號。 11·如申請專利範圍第5項之行動基地台,其中該至 少兩傾斜計產生以慣性定位子系統的傾斜爲特徵之傾斜計 信號。 12.如申請專利範圍第5項之行動基地台,其中該溫 度感應器產生以該慣性定位子系統的總溫度爲特徵之溫度 感應器信號。 1 3 .如申請專利範圍第5項之行動基地台,其中該處 理器模組用以決定該慣性定位子系統的位置。 -20-(1) (1) 200404163, patent application scope, /., An improved method for locating a mobile communication device including a main positioning system and an angry positioning system, the method includes the following steps:, decide whether to bypass the Primary positioning system;-If the primary positioning system is not bypassed, use the primary positioning system to perform positioning; if the primary positioning system is bypassed or if the primary positioning system cannot return an acceptable position estimate, use the inertial positioning The system performs positioning. Xin 2 · If the method of the first scope of the patent application, if the main positioning system is not bypassed, the step of performing positioning using the main positioning system additionally includes the following steps: storing the acceptable position estimate as the main position Estimate; Send the primary position estimate to the inertial positioning system. 3. The method of claim 1 in the scope of patent application, wherein if the main positioning system is bypassed, the step of performing positioning using the inertial positioning system additionally includes the step of sending a positioning request to the inertial positioning system. H 4. The method according to item 1 of the scope of patent application, wherein the inertial positioning system further comprises: a sensor array; and at least one processor module. 5. The method according to item 4 of the patent application scope, wherein the sensor array further comprises: at least three accelerometers, each of which is configured to generate an accelerometer signal; • 18- (2) (2) 200404163 at least three magnetometers, each of which is configured to generate a magnetometer signal; at least two inclinometers, each of which is configured to generate an inclinometer signal; and at least one temperature sensor, Each of the at least one temperature sensor is configured to generate a temperature sensor signal. 6. The method according to item 5 of the patent application, wherein the step of performing positioning using the inertial positioning system further comprises the following steps: reading a sensor signal from the sensor array. 7. A mobile base station including a mobile base station controller and an inertial positioning subsystem; the mobile base station controller is used to control the operation of the mobile base station and to communicate with the cellular network to operate the main positioning system; and The inertial positioning subsystem is used to augment the main positioning system. 8 · The mobile base station according to item 4 of the patent application scope, wherein the inertial positioning subsystem further includes: at least three accelerometers, each of which is configured to generate an accelerometer signal; at least three magnetometers, the Each of the at least three magnetometers is configured to generate a magnetometer signal; at least two inclinometers, each of the at least two inclinometers are configured to generate an inclinometer signal; and at least one temperature sensor 'of the at least one temperature sensor Each is configured to generate a temperature sensor signal; and -19- (3) (3) 200404163 at least one processor module. 9. The mobile base station according to item 5 of the scope of patent application, wherein the at least three accelerometers are used to generate an accelerometer signal characterized by the displacement acceleration of the inertial positioning subsystem. 10. The mobile base station of claim 6 in which the at least three magnetometers generate a magnetometer signal that is characterized by the heading of the inertial positioning subsystem. 11. The mobile base station according to item 5 of the patent application, wherein the at least two inclinometers generate inclinometer signals characterized by the inclination of the inertial positioning subsystem. 12. The mobile base station according to item 5 of the patent application, wherein the temperature sensor generates a temperature sensor signal characterized by the total temperature of the inertial positioning subsystem. 1 3. The mobile base station according to item 5 of the scope of patent application, wherein the processor module is used to determine the position of the inertial positioning subsystem. -20-
TW092116000A 2002-06-24 2003-06-12 Method and apparatus for improving positioning of mobile communication devices using inertial positioning TW200404163A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SG200203803A SG108301A1 (en) 2002-06-24 2002-06-24 Method and apparatus for improving positioning of mobile communication devices using inertial positioning

Publications (1)

Publication Number Publication Date
TW200404163A true TW200404163A (en) 2004-03-16

Family

ID=29997743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092116000A TW200404163A (en) 2002-06-24 2003-06-12 Method and apparatus for improving positioning of mobile communication devices using inertial positioning

Country Status (4)

Country Link
AU (1) AU2003278054A1 (en)
SG (1) SG108301A1 (en)
TW (1) TW200404163A (en)
WO (1) WO2004001337A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004155A1 (en) * 2005-01-28 2006-08-03 Siemens Ag Movable object e.g. trolley, position determining system for use in field of material monitoring, has relative sensor arrangement to determine object`s position based on object`s absolute position as determined by local positioning radar
WO2006086398A2 (en) * 2005-02-10 2006-08-17 Pinc Solutions Position-tracking system
US7321305B2 (en) 2005-07-05 2008-01-22 Pinc Solutions Systems and methods for determining a location of an object
US7245215B2 (en) 2005-02-10 2007-07-17 Pinc Solutions Position-tracking device for position-tracking system
US7236091B2 (en) 2005-02-10 2007-06-26 Pinc Solutions Position-tracking system
SE528484C2 (en) * 2005-04-11 2006-11-28 Advanced Inertial Measurement Vehicle control system
JP2007093448A (en) * 2005-09-29 2007-04-12 Aichi Steel Works Ltd Motion sensor and portable telephone using the same
US20080242310A1 (en) * 2007-03-27 2008-10-02 Qualcomm Incorporated Method and apparatus for determining location of access point
CN102221685B (en) * 2011-06-08 2013-04-03 东南大学 Code division multiple access (CDMA) wireless positioning method suitable for ultra-tight global positioning system (GPS)/strap-down inertial navigation system (SINS) integration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542824B1 (en) * 1999-01-29 2003-04-01 International Business Machines Corporation Method and system for determining position information utilizing a portable electronic device lacking global positioning system (GPS) reception capability
US20020008661A1 (en) * 2000-07-20 2002-01-24 Mccall Hiram Micro integrated global positioning system/inertial measurement unit system

Also Published As

Publication number Publication date
WO2004001337A1 (en) 2003-12-31
AU2003278054A1 (en) 2004-01-06
SG108301A1 (en) 2005-01-28

Similar Documents

Publication Publication Date Title
JP5068073B2 (en) Inertial GPS navigation system using input alignment data for inertial system
US6445927B1 (en) Method and apparatus for calibrating base station locations and perceived time bias offsets in an assisted GPS transceiver
US7460066B2 (en) Positioning system
TWI443361B (en) Aided location communication revice and system and method for determining the geolocation of the device
KR100684541B1 (en) Method and apparatus for determining an algebraic solution to gps terrestrial hybrid location system equations
US8160610B2 (en) System and method for locating mobile device in wireless communication network
US8630804B2 (en) Method for geolocating an object by multitelemetry
US10309786B2 (en) Navigational and location determination system
WO2003019223A2 (en) Methods and systems for improvement of measurement efficiency in surveying
US20130229303A1 (en) Positioning using a local wave-propagation model
KR100721517B1 (en) Apparatus and method for determining a position of mobile terminal equipment
WO2003091745A2 (en) Method and apparatus for location determination in a wireless assisted hybrid positioning system
JP2012207919A (en) Abnormal value determination device, positioning device, and program
US8634846B2 (en) Method and system for determining a location of a mobile device based on a plurality of location samples
CA2405054A1 (en) Precise positioning system for mobile gps users
TW200404163A (en) Method and apparatus for improving positioning of mobile communication devices using inertial positioning
CN112050807A (en) SINS-GNSS combined navigation method based on time synchronization compensation
US20230168389A1 (en) Information processing device and information processing method
JP6501437B1 (en) Satellite positioning system and satellite positioning method
KR20140142610A (en) Location measurement device and method
JP2002318272A (en) Hybrid positioning system and recording medium
JPH04175606A (en) Surveying device equipped with gps function and ts surveying function
US10330768B2 (en) Method implemented by a mobile device for obtaining its position and device implementing this method
CN114280656A (en) Attitude measurement method and system of GNSS (Global navigation satellite System)
CN115453594A (en) Positioning navigation method based on double-carrier phase differential mobile station