TW200403447A - Magnetic detection device - Google Patents

Magnetic detection device Download PDF

Info

Publication number
TW200403447A
TW200403447A TW92119156A TW92119156A TW200403447A TW 200403447 A TW200403447 A TW 200403447A TW 92119156 A TW92119156 A TW 92119156A TW 92119156 A TW92119156 A TW 92119156A TW 200403447 A TW200403447 A TW 200403447A
Authority
TW
Taiwan
Prior art keywords
magnetic field
bias
magnetic
positive
negative
Prior art date
Application number
TW92119156A
Other languages
Chinese (zh)
Inventor
Kudo Takahiro
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of TW200403447A publication Critical patent/TW200403447A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

In accordance with the object of the present invention, in a magnetic detection element using a magnetic impedance element utilizing the magnetic impedance effect, the condition to obtain a linear output and the magnitude of the magnetic field to obtain a linear output depend on the characteristic of the magnetic impedance element. Accordingly, in order to increase the detection sensitivity within a limited operation range, a method of applying the AC bias magnetic field to the magnetic impedance element is used. However, when considering application to an overload current safety device such as a thermal relay, there is a disadvantage that the current detection range is small and cannot be used in practice. To cope with this, as the bias magnetic field applied to the magnetic impedance element, firstly, a positive-negative equivalent bias magnetic field is applied and according to the obtained output polarity, the magnetic polarity of the magnetic field to be measured is judged, so as to generate a variable type bias magnetic field of a different magnetic field intensity with the magnetic field polarity effective for the judged external magnetic field polarity.

Description

200403447 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關利用磁性砠抗效應的磁性阻抗元件,特 別是利用此種磁性檢測元件的磁性感測器及磁性檢測裝置 【先前技術】200403447 (1) Description of the invention [Technical field to which the invention belongs] The present invention relates to a magnetic impedance element using a magnetic anti-effect effect, particularly a magnetic sensor and a magnetic detection device using such a magnetic detection element [Prior Art]

以往磁性檢測裝置雖廣泛採用霍耳元件、磁性電阻元 件’但以檢測感度的觀點來看並無法滿足。於是,取代霍 耳元件、磁性電阻元件的高感度磁性檢測元件,而提出例 如揭示於日本特開平第〇 6 - 2 8 1 7 1 2號公報中之利用非晶質 導線的磁性阻抗元件或揭示於日本特開平第〇 8 - 0 7 5 8 3 5號 公報中之薄膜形狀等。Conventionally, although a Hall element and a magnetoresistive element have been widely used in a magnetic detection device, it is not satisfactory from the viewpoint of detection sensitivity. Then, instead of the Hall element and the high-sensitivity magnetic detection element of the magnetoresistive element, for example, a magnetic impedance element or a disclosure using an amorphous wire disclosed in Japanese Patent Application Laid-Open No. 06-2 8 1 7 1 2 is proposed. The film shape and the like described in Japanese Patent Application Laid-Open No. 08-0 7 5 8 35.

但是,無論使用那種形狀的磁性阻抗元件,均顯現高 感度的磁性檢測特性.,但元件本身的磁性檢測特性例如會 相對於非晶質導線元件之磁場的阻抗變化,如第1 9圖所 示具有非線形性的緣故,就無法得到線形輸出。因此,對 揭示於日本特開平第9- 1 272 1 8號公報中之磁性阻抗元件 施加交流偏壓磁場的方法,可由利用交流偏壓磁場之正負 發生磁場與被測定外部磁場之和所產生的磁性阻抗元件之 變化量的差,得到相對於磁場的線形輸出。 也針對磁場之正負極性,開發出顯示對象之阻抗特性 的磁性阻抗元件’具有如第20圖所示之相對於磁場的阻 抗特性。 -4- (2) (2)200403447 第2 0圖係爲在外部磁場零之施加偏壓磁場時的動作 ★ 說明圖。 第20圖(a)係模式表示沒有感知之被測定外部磁場, _ 且對磁性阻抗元件施加正負磁場強度爲均等的偏壓磁場之 % 時的特性圖。 於第20圖(a)中,一倂記載著表示相對於外部磁場強 度之變化的阻抗變化和施加於磁性阻抗元件之偏壓磁場的 磁場強度和經由施加時間之變化的部分。 # 外部磁場強度在零附近的阻抗特性雖未表現出圓滑曲 線的特性,但磁場之極性處於變化點上,一般會成爲不穩 定的特性區域。 而顯示在阻抗特性上的白圓圈是指利用正磁場和負磁 場經矩形波進行周期性振動的偏壓磁場,且由正和負的最 大偏壓磁場値所得到的阻抗値,而得到從施加於磁性阻抗 兀件與驅動用局頻電流之關係所輸出的電壓。檢測該兩點 的輸出電壓差。 因此,在沒有感知的被測定外部磁場的情形下,兩點 的輸出電壓爲相同電壓的緣故,電壓差爲零,差動放大後 的輸出乃如第20圖(b)所示爲零。 對此,第21圖係爲存在被測定外部磁場時之施加偏 壓時的動作說明圖。 第21圖(a)係表示作爲被測定外部磁場,且感知△ H4 的正磁場時之特性的模式圖。顯示在阻抗特性上的白圓圈 是指根據偏壓的正磁場和負磁場的最大値所得到的阻抗値 -5- (3) 200403447 ,且藉由外部磁場△ H4移動至黑圓圈的位置。針對利用 該振動之偏壓磁場的正磁場側和負磁場側所得到的兩點黑 圓圈,且藉由從相當於負磁場側黑圓圈的電壓値減去相當‘ 於正磁場側黑圓圈的電壓値而表示的方向來定義電壓極性However, no matter what type of magnetic impedance element is used, it exhibits high-sensitivity magnetic detection characteristics. However, the magnetic detection characteristics of the element itself may change, for example, with respect to the impedance of the magnetic field of an amorphous wire element, as shown in Fig. 19 It is shown that it has a non-linearity, so a linear output cannot be obtained. Therefore, the method of applying an AC bias magnetic field to the magnetic impedance element disclosed in Japanese Patent Application Laid-Open No. 9- 1 272 1 8 can be generated by the sum of the magnetic field generated by the positive and negative of the AC bias magnetic field and the external magnetic field to be measured. The difference in the amount of change in the magnetic impedance element results in a linear output with respect to the magnetic field. In response to the positive and negative polarities of the magnetic field, a magnetic impedance element 'has been developed that displays the impedance characteristics of the object, as shown in Fig. 20, which has impedance characteristics against the magnetic field. -4- (2) (2) 200403447 Figure 20 shows the operation when a bias magnetic field is applied with zero external magnetic field. ★ Explanation diagram. Fig. 20 (a) is a characteristic diagram when the external magnetic field to be measured is not sensed, and the positive and negative magnetic field strengths are applied to the magnetic impedance element as equal to% of the bias magnetic field. In Fig. 20 (a), a portion of the change in the impedance showing the change in the strength with respect to the external magnetic field strength, the change in the magnetic field strength of the bias magnetic field applied to the magnetic impedance element, and the change over time are described. # Although the impedance characteristic of the external magnetic field strength near zero does not show the characteristics of a smooth curve, the polarity of the magnetic field is at the point of change, and it generally becomes an unstable characteristic region. The white circle displayed on the impedance characteristic refers to a bias magnetic field that periodically vibrates through a rectangular wave using a positive magnetic field and a negative magnetic field, and the impedance 値 obtained from the positive and negative maximum bias magnetic fields 値 is obtained from the The voltage output from the relationship between the magnetic impedance element and the local frequency current for driving. The output voltage difference between these two points is detected. Therefore, in the case of no external magnetic field being measured, the output voltages at the two points are the same voltage, the voltage difference is zero, and the output after differential amplification is zero as shown in Figure 20 (b). In this regard, Fig. 21 is an explanatory diagram of the operation when a bias voltage is applied when an external magnetic field is measured. Fig. 21 (a) is a schematic diagram showing characteristics when a positive magnetic field of ΔH4 is sensed as an external magnetic field to be measured. The white circle displayed on the impedance characteristic refers to the impedance 根据 -5- (3) 200403447 based on the maximum value of the positive and negative magnetic fields of the bias voltage, and moves to the position of the black circle by the external magnetic field △ H4. For the two black circles obtained from the positive magnetic field side and the negative magnetic field side of the bias magnetic field using this vibration, the voltage corresponding to the black circle on the positive magnetic field side is subtracted from the voltage corresponding to the black circle on the negative magnetic field side.表示 and the direction to define the voltage polarity

因而,所得到的輸出電壓差(差動輸出)爲正電壓△ V4 ,感知到被測定外部磁場△ H2時,所測定的差動放大後 的輸出乃如第21圖(b)所示,差動放大器之放大率爲A的 話,會得到A X △ V 4。 而該些技術的應用例,檢測到透過接觸器流到三相電 動機的電流對超過安全臨限値時的狀態而切斷電流之對過 負荷電流保護裝置展開檢討。 習知是使用利用雙金屬開關的方式,但在開關爲開放 狀態的時候很難調整電流,且有可能會在長時間的調整下 發生錯誤。Therefore, when the obtained output voltage difference (differential output) is a positive voltage Δ V4 and the measured external magnetic field Δ H2 is sensed, the measured differentially amplified output is as shown in FIG. 21 (b). If the amplification of the amplifier is A, AX △ V 4 will be obtained. As for the application examples of these technologies, the current flowing to the three-phase motor through the contactor is detected when the current exceeds the safety threshold and the current is cut off. The overload current protection device is reviewed. The conventional method is to use a bimetal switch, but it is difficult to adjust the current when the switch is in the open state, and errors may occur during long-term adjustment.

解決該些問題的方法則有採用電子式電路的電流檢測 變壓器、利用霍耳元件或是磁性電阻元件的用法。但除了 電流檢測感度低外,還有感測部無法避免大型化的問題。 [發明內容】 可是就使用前述之磁性阻抗元件的方式來看,有如以 下所記載的問題。 首先爲了得到線形的輸出,針對外部磁場的磁性阻抗 元件的變化量必須是以正磁場側和負磁場側爲對象的特性 -6- (4) 200403447 ’得到線形輸出之磁場的大小其原因在於磁性阻抗元件的 特性。若按照發明人,利用使用交流偏壓磁場之試作裝置 的可測定磁場之大小,對檢測定格之最小値而言,可檢測 到5 〇倍左右的最大定格値。 但是對於應用例的過負荷電流保護裝置的電流檢測器 必須爲定格電流之10倍以上的電流計測,會有磁性檢測 需要數百倍之檢測範圍的問題。 亦即,如前所述磁性阻抗元件的電流檢測範圍很窄, 有實用上不適合的缺點。 於是,本發明之課題乃在於解決上述問題,且提供利 用簡單的構成而磁場測定範圍寬廣的磁性檢測元件。 [用以解決課題的手段] 本發明爲解決上述課題,採用以下構成。The methods to solve these problems include current detection transformers using electronic circuits, Hall elements or magnetoresistive elements. However, in addition to the low current detection sensitivity, there is also a problem that the sensing unit cannot avoid large size. [Summary of the Invention] However, the method using the aforementioned magnetic impedance element has the problems described below. First of all, in order to obtain a linear output, the change in the magnetic impedance element against the external magnetic field must be a characteristic of the positive magnetic field side and the negative magnetic field side.-6- (4) 200403447 'The magnitude of the magnetic field for linear output is due to the magnetic Characteristics of impedance elements. According to the inventor, the size of a measurable magnetic field using a test device using an AC bias magnetic field can detect a maximum frame size of about 50 times the minimum frame size for detecting the frame size. However, the current detector of the overload current protection device of the application example must be a current measurement that is 10 times or more the rated current, and there is a problem that the magnetic detection requires a detection range of hundreds of times. That is, as described above, the current detection range of the magnetic impedance element is very narrow, which has a disadvantage that it is not suitable for practical use. Then, an object of the present invention is to solve the above problems and provide a magnetic detection element with a simple configuration and a wide magnetic field measurement range. [Means for Solving the Problems] In order to solve the problems described above, the present invention employs the following configuration.

亦即,本發明之申請專利範圍第1項所記載的磁性檢 測裝置,乃屬於具有:設有磁性阻抗效應的磁性阻抗元件 ;和對該磁性阻抗元件之兩端施加高頻驅動電流的電流施 加手段;和捲繞在磁性阻抗元件的偏壓線圈;和對偏壓線 圈施加低頻偏壓電流的偏壓電流施加手段;且藉由利用低 頻偏壓電流改變磁場強度的偏壓磁場和被測定外部磁場, 由對應磁性阻抗元件之阻抗變化的輸出差來檢測外部磁場 的磁性檢測裝置,其特徵爲:偏壓電流施加手段可以設定 強度不同的磁場經時間變化的可變型偏壓磁場,對應被測 定外部磁場的極性,選擇可變型偏壓磁場的磁場強度,施 200403447That is, the magnetic detection device described in the first patent application scope of the present invention belongs to a magnetic impedance element provided with a magnetic impedance effect; and a current application that applies a high-frequency driving current to both ends of the magnetic impedance element. Means; and a bias coil that is wound around a magnetic impedance element; and a bias current applying means that applies a low-frequency bias current to the bias coil; and a bias magnetic field that changes the strength of the magnetic field by using the low-frequency bias current and is measured externally The magnetic field is a magnetic detection device that detects an external magnetic field based on an output difference corresponding to a change in impedance of a magnetic impedance element, and is characterized in that the bias current applying means can set a variable bias magnetic field that varies in intensity over time with respect to a magnetic field. The polarity of the external magnetic field. Select the magnetic field strength of the variable bias magnetic field.

加於磁性阻抗元件。 此時,本發明之申請專利範圍第2項中,施加於磁性 阻抗元件之磁場強度不同的可變型偏壓磁場是指正負均等 型的偏壓磁場、和正磁場型的偏壓磁場、和負磁場型的偏 壓磁場、和正磁場側強調型的偏壓磁場、和負磁場側強調 型的偏壓磁場;Add to the magnetic impedance element. At this time, in item 2 of the scope of patent application of the present invention, the variable bias magnetic field having different magnetic field strengths applied to the magnetic impedance element refers to a positive and negative equal-type bias magnetic field, a positive magnetic field-type bias magnetic field, and a negative magnetic field. A bias magnetic field of a positive magnetic field type, a bias magnetic field of a positive magnetic field side emphasis type, and a bias magnetic field of a negative magnetic field side emphasis type;

且正負均等型的偏壓磁場係爲周期性交互產生正磁場 側和負磁場側爲相同強度之磁場的磁場; 且正磁場型的偏壓磁場係爲周期性交互產生在具有正 極性的磁場的正磁場範圍內之不同磁場強度的磁場; 正磁場側強調型的偏壓磁場係爲周期性交互產生磁場 強度不同之強的正磁場和弱的負磁場所構成之磁場極性強 調程度不同的磁場; 且負磁場型的偏壓磁場係爲周期性交互產生在具有負 極性的負磁場範圍內之不同磁場強度的磁場;And the positive and negative equal-type bias magnetic field is a magnetic field that periodically generates positive and negative magnetic fields with a magnetic field of the same strength; and the positive-magnetic type bias magnetic field is that the positive and negative magnetic fields periodically generate a magnetic field with a positive polarity. Magnetic fields with different magnetic field strengths in the positive magnetic field range; The positive-bias-side-emphasized bias magnetic field is a magnetic field with a different degree of polarity and a strong magnetic field consisting of a strong positive magnetic field and a weak negative magnetic field with different magnetic field strengths that are periodically exchanged; In addition, the negative magnetic field-type bias magnetic field is a magnetic field of different magnetic field strengths generated periodically and in a negative magnetic field range with negative polarity;

且負磁場側強調型的偏壓磁場係爲藉由周期性交互產 生強的負磁場和弱的正磁場所構成之磁場極性強調程度不 同的磁場。 於本發明之申請專利範圍第3項中,施加於磁性阻抗 元件的可變型偏壓磁場至少可設定爲正磁場型之偏壓磁場 和正磁場側強調型之偏壓磁場的任一方、和負磁場型之偏 壓磁場和負磁場側強調型之偏壓磁場的任一方之兩種可變 型偏壓磁場,配合被測定外部磁場的極性,選擇其中一種 的可變型偏壓磁場,施加於磁性阻抗元件。 -8- (6) 200403447 而本發明之申請專利範圍第4項中,可變型偏壓磁場 爲至少可設定爲正負均等型的偏壓磁場、正磁場型之偏壓 磁場和正磁場側強調型之偏壓磁場的一任一方、負磁場型 之偏壓磁場和負磁場側強調型之偏壓磁場的任一方的三種 可變型偏壓磁場;And the negative magnetic field side-emphasis bias magnetic field is a magnetic field with different degrees of magnetic field polarity generated by periodic interaction to generate a strong negative magnetic field and a weak positive magnetic field. In item 3 of the scope of patent application of the present invention, the variable bias magnetic field applied to the magnetic impedance element can be set to at least one of a positive magnetic field bias type and a positive magnetic field side emphasized bias magnetic field, and a negative magnetic field. Either two types of variable bias magnetic field of the bias bias magnetic field type and the negative magnetic field side emphasized bias magnetic field type. Depending on the polarity of the external magnetic field to be measured, one of the variable bias magnetic fields is selected and applied to the magnetic impedance element. . -8- (6) 200403447 In item 4 of the scope of patent application of the present invention, the variable bias magnetic field is at least a bias magnetic field that can be set to a positive and negative equal type, a positive magnetic field type bias magnetic field, and a positive magnetic field side emphasized type. Three types of variable bias magnetic fields: one of the bias magnetic field, one of the negative magnetic field type bias magnetic field and the negative magnetic field side emphasized type bias magnetic field;

可選擇性設定包括三種可變型偏壓磁場之至少三個可 變型偏壓磁場,以該至少三個可變型偏壓磁場中之一的可 變型偏壓磁場作爲被測定外部磁場的極性檢測手段而施加 於磁性阻抗元件,且配合檢測結果,選擇可變型偏壓磁場 的種類,施加於磁性阻抗元件。At least three variable bias magnetic fields including three types of variable bias magnetic fields can be selectively set, and the variable bias magnetic field of one of the at least three variable bias magnetic fields is used as a polarity detection means for measuring an external magnetic field. It is applied to the magnetic impedance element, and in accordance with the detection result, the type of the variable bias magnetic field is selected and applied to the magnetic impedance element.

此時,本發明之申請專利範圍第5項中,被測定外部 磁場的極性檢測手段是使用正負均等型的偏壓磁場。此時 ,藉由可變型偏壓磁場和被測定外部磁場,以配合磁性阻 抗元件的阻抗變化的輸出差作爲電壓而輸出,且該輸出於 被測定外部磁場爲正磁場的時候爲正電壓,相反的,被測 疋磁場爲負磁場的時il矢’爲負電壓的緣故’能利用輸出電 壓的極性來判斷被測定磁場的極性。 更於本發明之申請專利範圍第6項中,施加於磁性阻 抗元件的偏壓磁場乃針對各個正磁場側和負磁場側,以隨 機產生隨著時間變化之不同的磁場,選擇發生在正磁場側 和負磁場側的磁場強度的組合,藉此成爲正負均等型的偏 壓磁場、正磁場側強調型的偏壓磁場’或是本發明之申請 專利範圍第7項能以負磁場側強調型的偏壓磁場之方式加 以設定。 -9- (7) 200403447 更於本發明之申請專利範圍第8項中,可變型偏壓磁 場爲可包括脈衝波形的矩形波形式或交流波形式。At this time, in item 5 of the scope of patent application of the present invention, the polarity detection means of the external magnetic field to be measured is a bias magnetic field of a positive-negative type. At this time, a variable bias magnetic field and an external magnetic field to be measured are output as a voltage in accordance with the output difference of the impedance change of the magnetic impedance element, and the output is a positive voltage when the external magnetic field to be measured is a positive magnetic field, and vice versa When the measured magnetic field is a negative magnetic field, the il vector 'is a negative voltage', and the polarity of the measured magnetic field can be judged by the polarity of the output voltage. Furthermore, in item 6 of the scope of patent application of the present invention, the bias magnetic field applied to the magnetic impedance element is directed to each of the positive magnetic field side and the negative magnetic field side to randomly generate different magnetic fields that change with time, and the positive magnetic field is selected to occur. The combination of the magnetic field strengths of the magnetic field side and the negative magnetic field side, thereby becoming a positive and negative equal type bias magnetic field, a positive magnetic field side emphasized type bias magnetic field 'or the seventh item in the scope of patent application of the present invention, which can emphasize the negative magnetic field side The bias magnetic field is set. -9- (7) 200403447 In item 8 of the scope of patent application of the present invention, the variable bias magnetic field is a rectangular wave form or an alternating wave form that can include a pulse waveform.

而於本發明之申請專利範圍第9項所記載的過負荷繼 電器中,乃屬於控制由電源對負荷裝置供給多相電流的裝 置,爲具有:設有磁性阻抗效應的磁性阻抗元件;和對該 磁性阻抗元件的兩端施加高頻驅動電流的電流施加手段; 和捲繞在前述磁性阻抗元件的偏壓線圈;和對偏壓線圈施 加低頻偏壓電流的偏壓電流施加手段;且具備有:藉由低 頻偏壓電流改變磁場強度的偏壓磁場和藉由被測定外部磁 場由對應磁性阻抗元件的阻抗變化的輸出差來檢測外部磁 場的磁性檢測器的過負荷繼電器,其特徵爲:The overload relay described in item 9 of the scope of patent application of the present invention is a device that controls the supply of multi-phase current from a power source to a load device, and is a magnetic impedance element having a magnetic impedance effect; and A current applying means for applying a high-frequency driving current to both ends of the magnetic impedance element; and a bias coil wound around the magnetic impedance element; and a bias current applying means for applying a low-frequency bias current to the bias coil; and comprising: An overload relay of a magnetic detector that detects an external magnetic field by outputting a difference between a bias magnetic field whose magnetic field strength is changed by a low-frequency bias current and an external magnetic field measured by an impedance change corresponding to an impedance change of a magnetic impedance element, is characterized by:

發生被測定磁場的被測定電流値,於定格電流測定區 域的情形或裝置之電源投入之後的情形,對磁性阻抗元件 施加正負均等型的偏壓磁場,且在被測定電流値爲過負荷 區域的情形,對磁性阻抗元件施加具有正磁場或負磁場之 任一方的極性的正磁場型或負磁場型,或是磁場極性之強 調程度不同的正磁場側強調型或負磁場側強調型的偏壓磁 場之任一個。 而於本發明之申請專利範圍第1 〇項所記載的過負荷 繼電器中,使用施加於磁性阻抗元件的偏壓磁場乃針對各 個正磁場側和負磁場側,以隨機產生隨著時間變化之不同 的磁場,選擇發生在正磁場側和負磁場側的磁場強度組合 ,藉此成爲正磁場側強調型的偏壓磁場、負磁場側強調型 的偏壓fe場’或正負均等型的偏壓磁場的方式加以設定的 -10- (8) (8)200403447 磁性檢測元件。 + 更於本發明之申請專利範圍第1 1項所記載的過負荷 繼電器中,施加於磁性阻抗元件的可變型偏壓磁場可爲包、 , 括脈衝波形的矩形波形式或交流波形式。 匍 將利用以上之構成的可變型偏壓磁場施加於磁性阻抗 元件來解決課題。 【實施方式】 Φ 以下根據圖面說明有關本發明的實施例形態。 弟1圖係爲有關本發明之一*貫施例的磁性檢測裝置之 系統構成。 於第1圖中,在磁性阻抗元件1的兩端連接著用來施 加局頻驅動電流的兀件驅動用高頻電流發生器3。 並在磁性阻抗元件1上捲繞可變型偏壓磁場用線圈2 ,且利用可變型偏壓線圈用電源4來驅動可變型偏壓磁場 用線圈2。 可變型偏壓線圈用電源4通常爲定電壓電源的緣故, 改變與可變型偏壓磁場用線圈之閉電路內的電阻値,就很 容易改變流至可變型偏壓磁場用線圈2的電流値。因此, 改變電阻値的負荷切換器5是配置在利用可變型偏壓磁場 用線圈2和可變型偏壓線圈用電源4所構成的電路內,而 構成發生兩種峰値強度不同的可變型偏壓磁場。 來自可變型偏壓線圈用電源4的輸出,於周期性發生 正負均等之電壓値的情形下,一旦相對於流到負荷切換部 -11- (9) 200403447 5內開關爲開狀態的可變型偏壓磁場用線圈2的正負電流 値,閉合負荷切換器5內開關,電阻値變小的緣故,正負 電流値變大。因而,就算來自可變型偏壓線圈用電源4的 輸出電壓値爲一定,且形成正磁場側和負磁場側爲相同強 度的正負均等型偏壓磁場,還是可選擇性地發生兩種不同 磁場強度的正負均等型偏壓磁場。When the measured current 値 of the measured magnetic field occurs, in the case of the freeze current measurement area or after the device is powered on, a positive and negative equal-type bias magnetic field is applied to the magnetic impedance element, and the measured current 被 is in the overload area. In some cases, a bias of a positive magnetic field type or a negative magnetic field type having a polarity of either a positive magnetic field or a negative magnetic field, or a positive magnetic field side emphasized type or a negative magnetic field side emphasized type having a different degree of magnetic field polarity bias is applied to the magnetic impedance element. Either of the magnetic fields. In the overload relay described in Item 10 of the scope of patent application of the present invention, the bias magnetic field applied to the magnetic impedance element is directed to each of the positive magnetic field side and the negative magnetic field side to randomly generate changes over time. Select the combination of the magnetic field strengths that occur on the positive and negative magnetic fields to form a positive magnetic field-emphasized bias magnetic field, a negative magnetic field-emphasized bias magnetic field ', or a positive and negative equal bias magnetic field. -10- (8) (8) 200403447 magnetic detection element. + In the overload relay described in item 11 of the scope of patent application of the present invention, the variable bias magnetic field to be applied to the magnetic impedance element may be a rectangular wave form including a pulse waveform or an AC wave form.解决 A variable bias magnetic field using the above configuration is applied to a magnetic impedance element to solve the problem. [Embodiment] Φ An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a system configuration of a magnetic detection device according to a first embodiment of the present invention. In Fig. 1, a high-frequency current generator 3 for element driving for applying a local-frequency driving current is connected to both ends of the magnetic impedance element 1. The variable bias magnetic field coil 2 is wound around the magnetic impedance element 1, and the variable bias magnetic field coil 2 is driven by the variable bias coil power source 4. The variable bias coil power supply 4 is usually a constant voltage power supply. It is easy to change the current flowing to the variable bias magnetic field coil 2 by changing the resistance 値 in the closed circuit with the variable bias magnetic field coil. . Therefore, the load switcher 5 that changes the resistance 値 is arranged in a circuit constituted by the variable bias magnetic field coil 2 and the variable bias coil power supply 4, so that two types of variable bias having different peak 値 intensity are formed. Pressure field. When the output from the variable bias coil power supply 4 periodically and positively and negatively oscillates, the voltage will flow to the load switching section-11- (9) 200403447. The positive and negative currents 値 of the piezomagnetic coil 2 close the switches in the load switch 5 and the resistance 値 becomes smaller, so that the positive and negative currents 大 become larger. Therefore, even if the output voltage 値 from the variable bias coil power source 4 is constant and a positive and negative equal-type bias magnetic field having the same strength is formed on the positive magnetic field side and the negative magnetic field side, two different magnetic field intensities can be selectively generated. The positive and negative equal-type bias magnetic fields.

而對由可變型偏壓線圈用電源4所發生的正負均等値 的電壓周期而言,透過微電腦1 1使負荷切換器5內開關 的開閉爲同步動作,就能發生磁場極性之強調程度不同的 正磁場側強調型或是負磁場側強調型偏壓磁場。Regarding the positive and negative equalized voltage cycles generated by the variable bias coil power source 4, the microcomputer 11 can be used to synchronize the opening and closing of the switches in the load switch 5 to produce different degrees of emphasis on the magnetic field polarity. Positive magnetic field side emphasis type or negative magnetic field side emphasis type bias magnetic field.

亦即在發生正磁場側強調型偏壓磁場的時候,來自可 變型偏壓線圈用電源4的輸出爲正電壓時,負荷切換器5 內開關就會閉合,電阻値變小,且來自可變型偏壓線圈用 電源4的輸出爲負電壓時,負荷切換器5內開關會打開, 電阻値變大。藉由此動作,流至可變型偏壓磁場用線圈2 的電流就會周期性流出大的正電流和小的負電流,還會施 加周期性交互發生磁場強度不同之強的正磁場和弱的負磁 場的正磁場側強調型偏壓磁場。 而負磁場側強調型偏壓磁場對上述之正磁場側強調型 偏壓磁場的發生手段而言,一旦在由可變型偏壓線圈用電 源4輸出的電壓極性、和可以實現負荷切換器5內開關切 換動作的閉合和打開之對應爲相反的磁性阻抗元件1感知 到測定的外部磁場,就會針對磁場強度經時間變化的偏壓 磁場値與外部磁場値之和的磁場値,且從磁性阻抗元件1 -12- (10) 200403447 的阻抗變化,而得到與偏壓磁場同步之進行電壓値變化的 輸出電壓。 該輸出電壓由於峰値很重要,故利用整流器6只檢測 上限與下限的峰値,其上限與下限的兩個檢測値,是利用 與偏壓磁場同時的定時而保持在保持器(上限値)7和保持 器(下限値)8中。That is, when a positive-type side-emphasis bias magnetic field occurs, when the output from the variable bias coil power source 4 is a positive voltage, the switch in the load switch 5 is closed, the resistance 値 becomes small, and the variable type When the output of the bias coil power supply 4 is a negative voltage, the switch in the load switch 5 is turned on, and the resistance 値 is increased. With this operation, the current flowing to the coil 2 for the variable bias magnetic field periodically flows out of a large positive current and a small negative current, and a strong positive magnetic field and a weak magnetic field with different magnetic field strength are periodically applied to each other. The positive magnetic field side of the negative magnetic field emphasizes the bias type magnetic field. On the other hand, the negative-field-side-emphasized bias magnetic field is a means for generating the positive-field-side-emphasized bias magnetic field. Once the voltage polarity output from the variable bias coil power source 4 and the load switch 5 are realized, The switching of the switching action corresponds to the opposite. The magnetic impedance element 1 perceives the measured external magnetic field, and then responds to the magnetic field of the sum of the bias magnetic field 値 and the external magnetic field 经 over time. Element 1 -12- (10) 200403447 changes the impedance and obtains the output voltage that changes in voltage in synchronization with the bias magnetic field. The output voltage is important because of the peak value. Therefore, only the peak value of the upper limit and the lower limit are detected by the rectifier. The two detection signals of the upper limit and the lower limit are held in the holder (the upper limit) by using the timing simultaneously with the bias magnetic field. 7 and retainer (lower limit 値) 8.

保持在保持器7、8的値,是藉由差動放大器9取得 各個値的輸出差而加以放大,接著藉由A/D轉換器1 〇將 類比値轉換爲數位値之後,利用微電腦1 1等執行演算和 控制。The 値 held in the holders 7 and 8 is amplified by the output difference of each 値 obtained by the differential amplifier 9, and then converted by the A / D converter 1 〇 to the analog 値 into a digital 値. Then, a microcomputer 1 1 is used. Wait to perform calculus and control.

詳細容於後述,但於本發明中,爲提高測定精度,而 在被測定外部磁場爲正磁場時,施加負側的可變型偏壓磁 場,且相反的於被測定外部磁場爲負時,施加正側的可變 型偏壓磁場。因此,藉由極性檢測器1 2來判斷被測定外 部磁場的極性,且利用微電腦1 1來處理該結果,而爲了 發生所選擇的磁場極性強調型偏壓磁場,以如上所述來控 制負荷切換器5內的開關動作。 第2圖及第3圖係有關本發明之一實施例的磁性阻抗 元件的動作說明圖。再者,有關於第20圖及第2 1圖所說 明的相同構成及相同作用,其說明予以省略。 第2圖係爲感知之被測定外部磁場以△ Η 1表示的正 磁場之情況的說明圖。 第2圖(a)中,由於感知的被測定外部磁場爲正磁場 ,故可變型偏壓磁場會針對施加時間而施加周期性交互地 -13- (11) 200403447 發生強的負磁場和弱的正磁場的負磁場側強調型偏壓磁場 。顯示在相當於負磁場側強調型偏壓磁場的正磁場側和負 磁場側的各個最大値之阻抗特性上的白圓圈位置,會向著 正磁場方向移動至顯示在加上外部磁場△ Η 1之位置的阻 抗特性上的黑圓圈位置。一旦該兩點黑圓圈間的輸出電壓 差達到第2 1圖(a)所記述之電壓極性方向的整合,就可獲 得△ V 1的正電壓。The details are described later, but in the present invention, in order to improve the measurement accuracy, when the external magnetic field to be measured is a positive magnetic field, a variable bias magnetic field on the negative side is applied, and conversely when the external magnetic field to be measured is negative, the Variable bias magnetic field on the positive side. Therefore, the polarity of the external magnetic field to be measured is determined by the polarity detector 12 and the result is processed by the microcomputer 11 to control the load switching as described above in order to generate the selected magnetic field polarity-biased bias magnetic field. The switch in the device 5 operates. Figures 2 and 3 are diagrams illustrating the operation of a magnetic impedance element according to an embodiment of the present invention. It should be noted that descriptions of the same configurations and the same functions as those shown in Figs. 20 and 21 are omitted. Fig. 2 is an explanatory diagram of a case of sensing a positive magnetic field represented by △ Η 1 in an external magnetic field to be measured. In Figure 2 (a), since the measured external magnetic field is a positive magnetic field, the variable bias magnetic field is applied periodically and interactively for the application time. 13- (11) 200403447 Strong negative magnetic field and weak The negative magnetic field side of the positive magnetic field emphasizes the bias magnetic field. The position of the white circle on the impedance characteristics of the maximum magnetic field on the positive magnetic field side and the negative magnetic field side corresponding to the negative magnetic field-emphasized bias magnetic field will move toward the positive magnetic field until the external magnetic field △ Η 1 is displayed. Position of the black circle on the impedance characteristic of the position. Once the output voltage difference between the two black circles reaches the integration of the voltage polarity directions described in Fig. 21 (a), a positive voltage of Δ V 1 can be obtained.

因而,被測定外部磁場作爲正磁場之△ Η 1而被感知 時,例如第1圖之磁性檢測裝置所測定的差動放大後之輸 出乃如第2圖(b)所示,在第1圖的差動放大器9的放大 率爲A的話,會得到A X △ V1。 第3圖係爲感知的被測定外部磁場爲以一 △ Η 1所示 的負磁場之情形的說明圖。Therefore, when the measured external magnetic field is sensed as Δ Η 1 of the positive magnetic field, for example, the differentially amplified output measured by the magnetic detection device shown in FIG. 1 is as shown in FIG. 2 (b). If the amplification factor of the differential amplifier 9 is A, AX Δ V1 is obtained. FIG. 3 is an explanatory diagram of a case where the measured external magnetic field to be measured is a negative magnetic field represented by ΔΗ1.

第3圖(a)中,由於感知的被測定外部磁場爲負磁場 ,故可變型偏壓磁場會施加上相對於施加時間而周期性交 互也發生強的正磁場和弱的負磁場的正磁場側強調型偏壓 磁場。顯示在相當於正磁場側強調型偏壓磁場的正磁場側 和負磁場側的各個最大値之阻抗特性上的白圓圈位置,會 向著負磁場方向移動至顯示在加上負的外部磁場—△ Η 1 之位置的阻抗特性上的黑圓圈位置。該兩點黑圓圈間的輸 出電壓差會得—Δνΐ的負電壓。 因而,被測定外部磁場作爲負磁場之- △ Η 1而感知 時,例如第1圖之磁性檢測裝置所測定的差動放大後之輸 出乃如第3圖(b)所示,在第1圖的差動放大器9的放大 -14- (12) 200403447 率爲A的話,會得到A x (- △ V 1)。 可變型偏壓磁場使用正磁場側強調型或負磁場側強調 型之磁場時的詳細動作,以感知的被測定外部磁場爲正磁 場時,以負磁場側強調型偏壓磁場爲例,由第4圖至第6 圖做說明。In FIG. 3 (a), since the measured external magnetic field to be measured is a negative magnetic field, a variable bias magnetic field is applied with a positive magnetic field in which a strong positive magnetic field and a weak negative magnetic field are periodically interacted with respect to the application time. Side-emphasized bias magnetic field. The position of the white circle on the impedance characteristics of the maximum magnetic field on the positive magnetic field side and the negative magnetic field side corresponding to the positive biased magnetic field side biased magnetic field will move toward the negative magnetic field until the negative external magnetic field is added— △ The position of the black circle on the impedance characteristic at the position of Η 1. The output voltage difference between these two black circles will result in a negative voltage of -Δνΐ. Therefore, when the measured external magnetic field is perceived as-△ Η 1 of the negative magnetic field, for example, the differentially amplified output measured by the magnetic detection device shown in FIG. 1 is as shown in FIG. 3 (b). The amplification of the differential amplifier 9 of -14- (12) 200403447 is A, and A x (-△ V 1) is obtained. The detailed operation when the variable bias magnetic field uses a positive magnetic field-emphasized or negative magnetic field-emphasized magnetic field. When the external magnetic field to be measured is a positive magnetic field, the negative magnetic field-emphasized bias magnetic field is used as an example. Figures 4 to 6 are used for illustration.

第4圖係表不被測定磁場爲正磁場,施加負場側強 調型偏壓磁場的結果,輸出電壓差爲經由利用正電壓所得 到之情形下的磁場強度的特性,第5圖係表示相反的輸出 電壓差爲經由利用負電壓所得到之情形下的磁場強度的特 性。第5圖及第6圖的動作說明圖是與第2圖所說明的圖 爲相同形式。 而第6圖係表示針對被測定之外部磁場強度的差動輸 出關係之特性圖,且表示第4圖及第5圖和被測定外部磁 場強度的關係。Figure 4 shows the result of applying a positive magnetic field to the measured magnetic field and applying a negative-field-side bias bias magnetic field. The output voltage difference is a characteristic of the magnetic field strength obtained by using a positive voltage. Figure 5 shows the opposite. The output voltage difference is a characteristic of the magnetic field strength obtained by using a negative voltage. The operation explanatory diagrams of Figs. 5 and 6 are the same as those described in Fig. 2. Fig. 6 is a characteristic diagram showing the differential output relationship with respect to the measured external magnetic field strength, and Fig. 4 and Fig. 5 show the relationship with the measured external magnetic field strength.

亦即被測定磁場爲正磁場,施加負磁場側強調型偏壓 磁場的情形下,經由被測定磁場的磁場強度改變輸出電壓 差的極性。 相當於第4圖所示的被測定外部磁場之△ Η 2的磁場 強度是指當作利用本實施例的磁性阻抗元件的特性及施加 偏壓磁場(負磁場側強調型偏壓磁場)所得到的輸出電壓差 ,而得到正電壓+△ V 2。被測定外部磁場強度爲零的時候 ,藉由負磁場側強調型偏壓磁場表示相當於顯示在阻抗特 性上之白圓圈位置的特性,但外部磁場一是感知到相當於 △ Η2的磁場強度之被測定外部磁場,特性就會從顯示在 -15- (13) 200403447 阻抗特性上的白圓圈位置移動到黑圓圈位置,外部磁場是 以相當於位於各個正磁場和負磁場之黑圓圈的兩點間之差 的輸出作爲電壓而獲得。在此所獲得的差動輸出電壓爲△ V2,並爲正的電壓。That is, in the case where the measured magnetic field is a positive magnetic field and a negative magnetic field-side emphasized bias magnetic field is applied, the polarity of the output voltage difference is changed by the magnetic field strength of the measured magnetic field. The magnetic field strength corresponding to △ Η 2 of the external magnetic field to be measured shown in FIG. 4 is obtained by using the characteristics of the magnetic impedance element of this embodiment and applying a bias magnetic field (negative magnetic field side emphasized bias magnetic field). Output voltage difference, and a positive voltage + ΔV 2 is obtained. When the measured external magnetic field strength is zero, the negative magnetic field side emphasized bias magnetic field indicates a characteristic equivalent to the position of the white circle displayed on the impedance characteristic. However, the external magnetic field is a magnetic field equivalent to △ Η2. When the external magnetic field is measured, the characteristic moves from the position of the white circle displayed on the impedance characteristic of -15- (13) 200403447 to the position of the black circle. The external magnetic field is two points corresponding to the black circles located in each of the positive and negative magnetic fields. The difference in output is obtained as a voltage. The differential output voltage obtained here is ΔV2 and is a positive voltage.

相反的,小於相當於第5圖所示之△ H3的△ H2之磁 場強度的被測定外部磁場,經由磁性阻抗元件感知到的話 ,從阻抗特性上的白圓圈位置往黑圓圈位置的移動量變得 比第4圖小,相對於黑圓圈間之差的極性反轉的緣故,輸 出電壓差爲一 AV3,並爲負的電壓。 於第4圖或第5圖之阻抗特性圖中,藉由被測定外部 磁場的磁場強度,阻抗特性上的黑圓圈在外部磁場強度( 橫軸)的正磁場側和負磁場側,成爲與縱軸方向同位置, 所得到的輸出電壓差爲零,存在被測定外部磁場強度。In contrast, when the measured external magnetic field having a magnetic field strength smaller than ΔH2 corresponding to ΔH3 shown in FIG. 5 is sensed through the magnetic impedance element, the amount of movement from the white circle position to the black circle position in the impedance characteristic becomes It is smaller than the figure 4, and because of the polarity inversion with respect to the difference between the black circles, the output voltage difference is -AV3, and it is a negative voltage. In the impedance characteristic diagram of Fig. 4 or Fig. 5, the magnetic field strength of the external magnetic field is measured, and the black circle on the impedance characteristic is on the positive magnetic field side and the negative magnetic field side of the external magnetic field intensity (horizontal axis), and is the same as the vertical The axial direction is at the same position, the obtained output voltage difference is zero, and the external magnetic field strength is measured.

以該被測定外部磁場的強度爲界限,在較小的磁場強 度之被測定外部磁場的情形下,從輸出電壓差所得到的差 動輸出會得到負的電壓,相反的,在較大的磁場強度之被 測定外部磁場的情形下,差動輸出會得到正的電壓。該關 係表示在第6圖中。 因而,在施加負磁場側強調型偏壓磁場或正磁場側強 調型偏壓磁場或磁場極性之強調程度不同的可變型偏壓之 情形下所得到的差動輸出乃如第6圖所示,自負成爲正的 電壓而得到直線性的輸出。 但是被測定外部磁場非常小的時候,在磁性阻抗元件 的正磁場側和負磁場側,相對於磁場的感度不一定會相同 -16- (14) 200403447With the measured external magnetic field strength as the limit, in the case of a small magnetic field strength measured external magnetic field, the differential output obtained from the output voltage difference will get a negative voltage. On the contrary, in a larger magnetic field In the case where the strength is measured by an external magnetic field, the differential output will get a positive voltage. This relationship is shown in FIG. Therefore, the differential output obtained when a negative bias magnetic field side bias bias magnetic field or a positive magnetic field bias magnetic field bias or a variable bias voltage with different degrees of emphasis of magnetic field polarity are applied is shown in FIG. 6, Since the negative becomes a positive voltage, a linear output is obtained. However, when the external magnetic field to be measured is very small, the sensitivity to the magnetic field may not be the same on the positive and negative magnetic fields of the magnetic impedance element. -16- (14) 200403447

的緣故,測定精度變差,也有使用正磁場和負磁場之強度 相同的正負均等型偏壓磁場之情形。 針對施加磁場極性之強調程度不同的負磁場側強調型 偏壓磁場或正磁場側強調型偏壓磁場的情形之動作做說明 ,但於以下記述著得以在本發明之實施例所特有的效果。For this reason, the measurement accuracy deteriorates, and there may be cases where a positive and negative equal-type bias magnetic field having the same strength as the positive and negative magnetic fields is used. The operation of the case where a negative magnetic field side bias type bias magnetic field or a positive magnetic field side bias type bias magnetic field with different emphasis levels of applied magnetic field polarities will be described, but the following describes the effects unique to the embodiments of the present invention.

偏壓磁場在被測定磁場爲正磁場的情形下,基本上偏 壓磁場也可爲負磁場,但在阻抗特性上,零磁場附近的特 性會產生應變,顯示出圓滑曲線特性的情形。 但阻抗特性乃如第20圖所說明的,外部磁場強度會 在零附近改變磁場極性之點,一般會變成很不穩定之特性 區域緣故,第2圖中也記載著一般的阻抗特性。When the measured magnetic field is a positive magnetic field, the bias magnetic field can also be a negative magnetic field. However, in the impedance characteristic, the characteristics near the zero magnetic field will cause strain and show a smooth curve characteristic. However, the impedance characteristic is as shown in Figure 20. The point where the external magnetic field strength changes the polarity of the magnetic field near zero will generally become a very unstable characteristic region. The general impedance characteristic is also shown in Figure 2.

因此,偏壓磁場爲了避開阻抗特性的不穩定區域,欲 施加負磁場偏壓的時候,採用也能夠施加只要能迴避不穩 定特性區域的弱強度之正磁場的方式成爲偏壓磁場範圍的 負磁場側強調型,相反的欲施加正磁場偏壓的時候,採用 也能夠施加只要能迴避不穩定特性區域的弱強度之負磁場 的方式成爲偏壓磁場範圍的正磁場側強調型。 於第7圖係爲有關本發明之另一實施例的偏壓磁場施 加方法,作爲可變型偏壓磁場在正磁場側和負磁場側交互 產生強度不同的各兩種磁場之情形的說明圖。 可變型偏壓磁場是作爲正磁場,產生強度弱的A磁 場和強度強的C磁場,負磁場是產生強度弱的B磁場和 強度強的D磁場,於本實施例中,周期性地依序產生A 磁場、B磁場、C磁場、D磁場。 -17- (15) 200403447Therefore, in order to avoid the unstable region of the impedance characteristic when the bias magnetic field is applied, when a negative magnetic field bias voltage is to be applied, a negative magnetic field in the bias magnetic field range can be applied so long as it can avoid the weak magnetic field of the unstable characteristic region. The magnetic field side emphasized type. On the contrary, when a positive magnetic field bias is to be applied, a positive magnetic field side emphasized type that becomes a bias magnetic field range can also be applied so long as a weak magnetic field of a weak intensity can be avoided in an unstable characteristic region. Fig. 7 is a diagram illustrating a method of applying a bias magnetic field according to another embodiment of the present invention, in which a variable bias magnetic field alternately generates two kinds of magnetic fields of different strengths on the positive magnetic field side and the negative magnetic field side. The variable bias magnetic field is used as a positive magnetic field to generate a weak A magnetic field and a strong C magnetic field, and a negative magnetic field is used to generate a weak B magnetic field and a strong D magnetic field. In this embodiment, periodically and sequentially Generate A magnetic field, B magnetic field, C magnetic field, D magnetic field. -17- (15) 200403447

藉由需施加於磁性阻抗元件之本發明的可變型偏壓磁 場,選擇並組合B磁場和C磁場的話,會成爲正負均等 型偏壓磁場,選擇並組合A磁場和B磁場時,屬於負磁 場強調型偏壓磁場,選擇並組合C磁場和D磁場時,會 成爲正磁場強調型偏壓磁場。因而,例如爲了得到利用第 1圖的微電腦1 1執行保持器7、8之控制所需要的可變型 偏壓磁場,產生上述組合之磁場時,可以保持輸出値並將 資訊傳送到差動放大器9。 第8圖及第9圖係爲有關本發明之另一實施例的磁性 阻抗元件的動作說明圖。於本實施例中,在阻抗特性顯示 出沒有不穩定區域的圓滑曲線之特性時,被測定磁場是以 △ Η 1表示的正磁場,施加表示負極性的偏壓磁場,作爲 差動輸出而獲得△ V 1 1之正電壓時的例子。By selecting and combining the B magnetic field and the C magnetic field with the variable bias magnetic field of the present invention to be applied to the magnetic impedance element, it becomes a positive and negative equal type bias magnetic field. When the A magnetic field and the B magnetic field are selected and combined, it is a negative magnetic field. Emphasis bias magnetic field. When C magnetic field and D magnetic field are selected and combined, it becomes a positive magnetic field. Therefore, for example, in order to obtain the variable bias magnetic field required for the control of the holders 7 and 8 using the microcomputer 11 shown in FIG. 1, when the combined magnetic field is generated, the output 値 can be held and the information can be transmitted to the differential amplifier 9. . Figures 8 and 9 are diagrams illustrating the operation of a magnetic impedance element according to another embodiment of the present invention. In this embodiment, when the impedance characteristic shows a characteristic of a smooth curve without an unstable region, the measured magnetic field is a positive magnetic field represented by Δ Η 1, and a bias magnetic field indicating a negative polarity is applied to obtain as a differential output. Example of △ V 1 1 positive voltage.

第8圖係爲有關偏壓磁場相對於施加時間而施加顯示 矩形波之負磁場型偏壓磁場時的另一實施例的磁性阻抗元 件的動作圖’同圖(a)係表示脈衝狀的矩形波,同圖(b)係 表示相對於施加時間具有上昇和下降時間而到達所定磁場 強度的矩形波之例子。 第9圖係爲有關偏壓磁場相對於施加時間而顯示交流 波形’施加負磁場型偏壓磁場時的另一實施例的磁性阻抗 元件的動作圖。 第1 〇圖係爲有關本發明之另一實施例的磁性檢測裝 置之系統構成圖。再者,有關第1圖所說明之相同構成及 相同作用,其說明予以省略。 -18- (16) 200403447Fig. 8 is an operation diagram of a magnetic impedance element according to another embodiment when a bias magnetic field is applied with a negative magnetic field-type bias magnetic field showing a rectangular wave with respect to an application time; the same figure (a) shows a pulse-shaped rectangle (B) shows an example of a rectangular wave having a rising and falling time with respect to the application time and reaching a predetermined magnetic field strength. Fig. 9 is a diagram showing the operation of a magnetic impedance element according to another embodiment when a bias magnetic field is displayed with respect to an application time and an alternating current waveform is applied. FIG. 10 is a system configuration diagram of a magnetic detection device according to another embodiment of the present invention. In addition, the description of the same configuration and the same function described in FIG. 1 will be omitted. -18- (16) 200403447

於第1 0圖中係在負荷切換器5 a內配置三列電阻,其 中兩個電阻的分別附加開關。該開關係與由可變型偏壓線 圈用電源4所產生的偏壓用矩形波形或交流波形的電壓之 周期同步,並透過微電腦1 1加以控制。In FIG. 10, three rows of resistors are arranged in the load switch 5a, and two of them are respectively added with switches. This open relationship is synchronized with the cycle of the voltage of the rectangular waveform or AC waveform generated by the variable bias coil power source 4 and controlled by the microcomputer 11.

負荷切換器5 a內的兩個開關的開閉組合,有開關兩 方都打開的情形、開關兩方都閉合的情形、開關之一方爲 打開另一*方爲閉合的情形爲兩種’合I十四種,三個並列的 電阻狀態亦即電阻値可爲四種變化。藉此,流至可變型偏 壓磁場用線圈2的電流就能以一方的極性設定爲四種。 因此,來自可變型偏壓線圈用電源4的輸出電壓,在 以矩形波或交流而周期性產生正負均等之電壓値時,施加 於磁性阻抗元件1的偏壓磁場可分別在正磁場和負磁場產 生強度相等的四種磁場。The combination of opening and closing of the two switches in the load switch 5a includes the case where both switches are open, the switches are both closed, and one of the switches is open and the other one is closed. There are fourteen types and three parallel resistance states, that is, resistance 値 can be changed in four ways. Thereby, the current flowing to the variable bias magnetic field coil 2 can be set to four types with one polarity. Therefore, when the output voltage from the variable bias coil power source 4 periodically generates positive and negative voltages 値 in a rectangular wave or alternating current, the bias magnetic field applied to the magnetic impedance element 1 can be in a positive magnetic field and a negative magnetic field, respectively. Generate four magnetic fields of equal strength.

因而,可以設定正磁場和負磁場之強度相同的四種正 負均等型偏壓磁場。進而選擇三種對正磁場而言絕對値不 同之磁場強度的負磁場,且變化四種正磁場,就能設定合 計十二種磁場極性之強調程度不同的正磁場側強調型偏壓 磁場或負磁場側強調型偏壓磁場。該些種種的可變型偏壓 磁場可利用微電腦1 1進行選擇控制。 而在來自可變型偏壓線圈用電源4的輸出電壓加上或 減去直流成份,而周期性產生正負不同値的矩形波形或交 流波形的電壓,即使不切換負荷切換器5 a內的電阻値, 還是可以設有磁場極性之強調程度不同的正磁場側強調型 偏壓磁場或負磁場側強調型偏壓磁場,進而切換負荷切換 -19- (17) 200403447Therefore, it is possible to set four kinds of positive and negative equal-type bias magnetic fields having the same intensity of the positive magnetic field and the negative magnetic field. Furthermore, by selecting three kinds of negative magnetic fields that have absolutely different magnetic field strengths for the positive magnetic field, and changing the four types of positive magnetic fields, a total of twelve types of magnetic fields with different degrees of emphasis can be set. Side-emphasized bias magnetic field. These various types of variable bias magnetic fields can be selected and controlled by the microcomputer 11. When the DC voltage component is added to or subtracted from the output voltage of the variable bias coil power supply 4, a rectangular waveform or an AC waveform voltage with different positive and negative cycles is periodically generated, even if the resistance in the load switch 5a is not switched. It is also possible to provide a positive magnetic field side bias type bias magnetic field or a negative magnetic field side bias type bias magnetic field with different degrees of emphasis of the magnetic field polarity, and then switch the load switching -19- (17) 200403447

器5 a內的電阻値,當作來自可變型偏壓線圈用電源4的 輸出電壓,只對一定電壓値的矩形波形或交流波形電壓加 上或減去直流電壓成份,就可產生正磁場和負磁場之強度 比不同的各種可變型偏壓磁場。 更不用說當然可藉由微電腦1 1的控制,於每個周期 隨機產生各種強度的磁場。The resistor 値 in the device 5 a is regarded as the output voltage from the variable bias coil power supply 4. Only a rectangular waveform or an AC waveform voltage of a certain voltage 加上 is added or subtracted from the DC voltage component to generate a positive magnetic field and Various variable bias magnetic fields with different intensity ratios of negative magnetic fields. Not to mention, of course, it is possible to generate magnetic fields of various intensities randomly at each cycle by the control of the microcomputer 11.

第1 1圖及第1 2圖係爲針對有關本發明之另一實施例 所說明的磁性阻抗元件的動作說明圖,屬於與第2圖至第 5圖所說明的圖相同的形式。 如上所述,於第2圖至第6圖中,若以磁場極性之強 調程度不同的可變型偏壓磁場之發生方法,針對於被測定 磁場爲正磁場時施加負磁場側強調型偏壓磁場,且相反的 於被測定磁場爲負磁場時施加正磁場側強調型偏壓磁場做 說明。11 and 12 are diagrams for explaining the operation of the magnetic impedance element according to another embodiment of the present invention, and belong to the same form as the diagrams described in FIGS. 2 to 5. As described above, in Figs. 2 to 6, if the method of generating a variable bias magnetic field with different degrees of emphasis of magnetic field polarity is used, a negative magnetic field-side emphasized bias magnetic field is applied when the measured magnetic field is a positive magnetic field. In contrast, when the measured magnetic field is a negative magnetic field, a positive magnetic field-side emphasized bias magnetic field is applied for explanation.

爲了決定選擇該些磁場極性之強調程度不同的正磁場 側強調型或負磁場側強調型偏壓磁場的那一個磁場,針對 被測定外部磁場而作爲偏壓磁場,先施加正負均等型偏壓 磁場,就能藉此判斷被測定外部磁場的極性。 第1 1圖係爲施加正負均等型偏壓磁場,且被測定磁 場爲具有屬於正磁場之△ Η 1時的說明圖。 由阻抗特性和正負均等型偏壓磁場顯示相當於圖示之 正負各個磁場範圍之阻抗特性上的白圓圈位置的特性(得 以輸出),但被測定外部磁場感知到屬於正磁場之△ Η 1時 ,特性會往正磁場側移動到相當於藉由加上正負均等型偏 -20- (18) 200403447In order to decide which magnetic field of positive magnetic field side or negative magnetic field side bias type bias magnetic field with different emphasis levels of magnetic field polarity is selected, a positive and negative equal bias magnetic field is applied to the measured external magnetic field as a bias magnetic field. , So you can determine the polarity of the external magnetic field being measured. Fig. 11 is an explanatory diagram when a positive-negative equal-type bias magnetic field is applied and the measured magnetic field has Δ Η 1 which belongs to a positive magnetic field. The impedance characteristics and the positive and negative equal-type bias magnetic fields show the characteristics corresponding to the position of the white circle on the impedance characteristics of the respective positive and negative magnetic field ranges (exported), but when the measured external magnetic field perceives △ Η 1 as a positive magnetic field , The characteristic will move towards the positive magnetic field side to the equivalent of -20- (18) 200403447

壓磁場和被測定外部磁場所得到的阻抗特性上之黑圓圈的 位置。此時,從阻抗特性之負磁場側的白圓圈位置開始移 動的黑圓圏會越過阻抗特性的最大値而位於正磁場側,但 經由相當於兩個黑圓圈位置之差的輸出作爲電壓而獲得的 情形是相同的。在此所獲得的差動輸出電壓爲△ V 1 2的正 電壓。The position of the black circle on the impedance characteristic obtained from the piezomagnetic field and the external magnetic field to be measured. At this time, the black circle 移动 moving from the position of the white circle on the negative magnetic field side of the impedance characteristic will pass the maximum value of the impedance characteristic and be located on the positive magnetic field side, but obtained through the output corresponding to the difference between the positions of the two black circles as voltage. The situation is the same. The differential output voltage obtained here is a positive voltage of Δ V 1 2.

與第1 1圖相反的,第1 2圖是施加正負均等偏壓磁場 ,且被測定磁場爲具有屬於負磁場之- △ Η 1的情形。Contrary to Fig. 11, Fig. 12 shows a case where a positive and negative equal bias magnetic field is applied and the measured magnetic field has-△ Η 1 which is a negative magnetic field.

於第1 2圖所示的阻抗特性中,特性也會從由正負均 等型偏壓磁場所得到的阻抗特性上之白圓圈位置往負磁場 側移動到相當於經由加上正負均等型偏壓磁場和被測定外 部磁場所得到的阻抗特性上之黑圓圈的位置。此時,在正 磁場側之阻抗特性上的白圓圈位置的特性會感知到負的被 測定外部磁場,並移動到負磁場側之阻抗特性上的黑圓圈 位置,但由相對於兩個黑圓圈位置之差所得到的差動輸出 電壓是與檢測第1 1圖之正的被測定外部磁場情形相反的 極性,會得到—△ V 1 2的負電壓。 自以上在對磁性阻抗元件施加正負均等型偏壓磁場的 情形,在檢測之被測定外部磁場爲正磁場的情形所、得到 的差動輸出電壓,會得到正的電壓。而相反的,檢測的被 測定外部磁場爲負磁場時,所得到的差動輸出電壓會得到 負的電壓。 因而,對磁性阻抗元件施加正負均等型偏壓磁場的時 候,可藉由所得到的差動輸出電壓之極性來判斷所檢測的 -21- (19) 200403447 被測定外部磁場之極性。 根據判斷所檢測之被測定外部磁場之極性的結果,被 測定外部磁場爲正磁場時,選擇第2圖的正磁場側強調型 偏壓磁場,被測定外部磁場爲磁場時,即選擇第3圖的負 磁場側強調型偏壓磁場。In the impedance characteristics shown in FIG. 12, the characteristics also move from the position of the white circle on the impedance characteristics obtained from the positive and negative equal-type bias magnetic fields to the negative magnetic field side to the equivalent of adding the positive and negative equal-type bias magnetic fields. And the position of the black circle on the impedance characteristic measured by the external magnetic field. At this time, the characteristic of the white circle position on the impedance characteristic of the positive magnetic field side will sense the negative measured external magnetic field and move to the position of the black circle on the impedance characteristic of the negative magnetic field side. The differential output voltage obtained by the position difference is of the opposite polarity to that of the measured external magnetic field detected in Figure 11 and will give a negative voltage of ΔV 1 2. From the case where a positive and negative equal-type bias magnetic field is applied to the magnetic impedance element, the differential output voltage obtained when the measured external magnetic field is a positive magnetic field is detected, and a positive voltage is obtained. In contrast, when the detected external magnetic field is a negative magnetic field, the resulting differential output voltage will get a negative voltage. Therefore, when a positive and negative equal-type bias magnetic field is applied to the magnetic impedance element, the polarity of the detected external magnetic field can be judged by the polarity of the obtained differential output voltage. Based on the result of judging the polarity of the detected external magnetic field, when the measured external magnetic field is a positive magnetic field, the positive magnetic field side emphasized bias magnetic field shown in Figure 2 is selected. When the measured external magnetic field is a magnetic field, Figure 3 is selected. The negative magnetic field side emphasizes the bias-type magnetic field.

更可從正負均等型偏壓磁場和磁場極性之強調程度不 同的正磁場側強調型或負磁場側強調型偏壓磁場的輸出求 得磁性阻抗元件的磁場檢測感度。 例如針對阻抗特性之單側的外部磁場極性的輸出,施 行求得正負均等型偏壓時的輸出電壓値和正磁場側強調型 偏壓時的輸出電壓値之差,並針對已知磁場的輸出求得磁 性阻抗元件的磁場檢測感度的方法。Furthermore, the magnetic field detection sensitivity of the magnetic impedance element can be obtained from the output of a positive magnetic field side-emphasis type or a negative magnetic field side-emphasis type bias magnetic field with different degrees of positive and negative bias magnetic fields and magnetic field polarities. For example, for the output of the external magnetic field polarity on one side of the impedance characteristic, the difference between the output voltage 値 at the positive and negative equal-type biases and the output voltage 强调 at the positive-field-side emphasized biases is calculated, and the output of a known magnetic field is calculated. A method for obtaining the magnetic field detection sensitivity of a magnetic impedance element.

而且例如電子式過負荷繼電器(熱動電驛器)的情形下 ’測定電流是在測定範圍之滿刻度1 / 1 〇以上而成爲過負 荷區域’但測定精度在測定電流爲滿刻度1 / i 〇以下的電 子式過負荷繼電器之定格電流區域爲± 5 %範圍,測定電流 在滿刻度1 / 1 0以上爲± 1 〇 %範圍的話,可藉由J I s規格加 以限定。 因此’在精度嚴格的定格電流區域可使用比磁場極性 之強調程度不同的可變型偏壓磁場少丨/2左右之測定誤差 的正負均等型偏壓磁場。 第1 3圖係爲有關本發明之另一實施例的磁性檢測裝 置的系統構成圖。於第1 3中,在與第1 〇圖相同的構件上 附上相同的符號,說明予以省略。 -22- (20) (20)200403447 第1 3圖中的本實施例之磁性檢測裝置系統係藉由磁 性檢測元件1 0 0、磁性檢測器1 〇 1、切換器1 4、電流規格 化器1 3、A/D轉換器10和微電腦1 1所構成。本實施例 乃屬於爲了檢測別部位的被測定外部磁場,利用切換器 14將藉由磁性檢測元件100a和磁性檢測器101a檢測的 結果傳送到微電腦1 1進行處理的構成。而切換器1 4並不 限於第1 3圖所示的構成,不用說當然也可爲配合需要測 定部位的數量進行複數切換的構成。 來自經由切換器1 4選擇的差動放大器9的輸出是利 用電流規格化器1 3形成對應電流設定的放大,連接到 A/D轉換器1 0的類比輸入,輸出會連接到微電腦1 1,進 行控制和測定處理。 在此的電流規格化器1 3是可配合電流設定調整放大 度的放大器,使用將普通的運算放大器的放大度設定電阻 置換爲可變電阻的構成。 第1 4圖係爲將表示本發明之實施例的第1 3圖的磁性 檢測裝置的系統構成,例如應用於電子式過負荷繼電器時 的具體例。 第1 4圖中,連接在圖未示的三相交流電源的電源供 給線2 5之各相的R、S、T是針對電動機3 0透過三相接 觸器2 0及電力供給變壓器b 1而連接,電流檢測裝置1 〇 3 是檢測電源供給線2 5之R、S、T之各相的每個電流。如 本實施例,例如於電子式過負荷繼電器中,只要檢測一相 缺相就足夠的緣故,雖然電力供給變壓器5 1是形成二相 -23- (21) 200403447 部分的配置構成,但不限於上述實施例,也可爲配置在各 相的構成。 三相接觸器20係具有三組接點21、22、23,直接連 接在各不相同的電源供給線2 5之各相的R、S、T,或通 過電力供給變壓器5 1的一次繞組連接在電動機3 0。For example, in the case of an electronic overload relay (thermodynamic relay), 'the measurement current is an overload region when the measurement range is at full scale 1/10 or more, but the measurement accuracy is at the full scale 1 / i. 〇 The rated current range of the electronic overload relay below is within the range of ± 5%. If the measurement current is within the range of 1/10 from full scale to ± 10%, it can be limited by the JI s specification. Therefore, a positive-negative equal-type bias magnetic field having a measurement error of about / 2, which is smaller than that of a variable-type bias magnetic field having a different degree of emphasis on magnetic field polarity, can be used in a strict-precision stop current region. Fig. 13 is a system configuration diagram of a magnetic detection device according to another embodiment of the present invention. In the thirteenth embodiment, the same components as those in the tenth embodiment are denoted by the same reference numerals, and descriptions thereof are omitted. -22- (20) (20) 200403447 The magnetic detection device system of this embodiment shown in FIG. 3 uses a magnetic detection element 100, a magnetic detector 1 〇1, a switch 14 and a current normalizer. 1 3, A / D converter 10 and microcomputer 1 1 constitute. This embodiment is a configuration for transmitting the results detected by the magnetic detection element 100a and the magnetic detector 101a to the microcomputer 11 for processing in order to detect an external magnetic field to be measured in another part. The switcher 14 is not limited to the configuration shown in FIG. 13, and it goes without saying that the switcher 14 can also be configured to switch plurally in accordance with the number of measurement locations. The output from the differential amplifier 9 selected via the switcher 14 is amplified by the current normalizer 13 corresponding to the current setting, connected to the analog input of the A / D converter 10, and the output is connected to the microcomputer 11 1 Perform control and measurement processing. The current normalizer 13 here is an amplifier that can adjust the amplification in accordance with the current setting, and uses a configuration in which the amplification setting resistor of a common operational amplifier is replaced with a variable resistor. Fig. 14 is a specific example of a system configuration of the magnetic detection device of Fig. 13 showing an embodiment of the present invention, for example, when it is applied to an electronic overload relay. In FIG. 14, R, S, and T of each phase of the power supply line 25 connected to a three-phase AC power source (not shown) are for the motor 3 0 through the three-phase contactor 20 and the power supply transformer b 1. When connected, the current detection device 10 detects each current of each phase of R, S, and T of the power supply line 25. As in this embodiment, for example, in an electronic overload relay, it is sufficient to detect only one phase lacking phase. Although the power supply transformer 51 is configured to form a two-phase -23- (21) 200403447 portion, it is not limited to The above-mentioned embodiment may be configured to be arranged in each phase. The three-phase contactor 20 has three sets of contacts 21, 22, and 23, which are directly connected to R, S, and T of each phase of the different power supply lines 25, or are connected through the primary winding of the power supply transformer 51 3 in the motor.

三相接觸器2 0內的各接點2 1、2 2、2 3是藉由電磁線 圈2 4同時驅動的構成。電磁線圈2 4會連接在控制電路 4 1內的微電腦11,並被控制。 電子式過負荷繼電器(電子式熱動電驛器)40是藉由電 流檢測裝置1 03、控制電路4 1和電力供給變壓器5 1所構 成。Each contact 2 1, 2 2, 2 3 in the three-phase contactor 20 is configured to be driven simultaneously by an electromagnetic coil 24. The electromagnetic coil 24 is connected to the microcomputer 11 in the control circuit 41 and controlled. The electronic overload relay (electronic thermal relay) 40 is constituted by a current detection device 103, a control circuit 41, and a power supply transformer 51.

分別配置在電源供給線2 5之各相的R、S、T的磁性 檢測元件1 00係具有與流到電源供給線25的電流成正比 的阻抗變化特性,利用磁性檢測器1 01轉換爲電壓輸出。 藉由分別從電源供給線2 5之各相的R、S、T所得到的磁 性檢測器1 〇〗輸出電壓,是利用切換器1 4依序切換選擇 ,透過電流規格化器1 3、A/D轉換器1 0成爲資訊傳送到 微電腦1 1。 電力供給變壓器5 1是屬於在面對電源供給線25之一 部分的一次繞組而配置的二次繞組,並透過整流二極體 52而連接第一電容器54,在整流二極體52的正極側和電 路接地間連接著保護二極體5 3。而第一電容器5 4是連接 在鼠壓e周整器5 0之正的輸入和電路接地間,更在電壓調 整器50之正的輸入和電路接地間連接著第二電容器55, -24- (22) 200403447 利用電壓調整器50輸出一定電壓値之VCC的構成。 第1 5圖係爲表示本發明之實施形態的第1 4圖的磁性 檢測裝置1 0 3的槪略構成圖。 'The magnetic detection elements 100 of R, S, and T arranged on each phase of the power supply line 25 respectively have impedance change characteristics proportional to the current flowing to the power supply line 25, and are converted into a voltage by the magnetic detector 101. Output. The output voltage of the magnetic detector 1 obtained from the R, S, and T of each phase of the power supply line 25 is respectively selected by the switcher 14 in order, and the current normalizer 1 3, A The / D converter 10 becomes information transmitted to the microcomputer 1 1. The power supply transformer 51 is a secondary winding that is arranged on the primary winding facing a part of the power supply line 25, and is connected to a first capacitor 54 through a rectifying diode 52. The positive side of the rectifying diode 52 and A protective diode 5 3 is connected between the circuit grounds. The first capacitor 54 is connected between the positive input of the rattifier 50 and the circuit ground, and the second capacitor 55 is connected between the positive input of the voltage regulator 50 and the circuit ground. -24- (22) 200403447 A configuration in which a voltage regulator 50 is used to output a constant voltage VCC. Fig. 15 is a schematic configuration diagram showing the magnetic detection device 103 of Fig. 14 according to the embodiment of the present invention. '

構成係在垂直於流到配線60的電流方向的位置配置 固定基板6 1,在固定基板6 1上,在可以檢測利用流到配 線6 0之電流於周圍產生磁場的位置,配置固定磁性檢測 元件1 〇〇。利用磁性檢測元件1 〇〇所檢測的資訊會傳送到 檢測電路1 0 1進行處理,且輸出檢測結果。 第1 6圖係爲表示磁性檢測元件部之具體構成例的立 體圖,特別是磁性檢測元件是屬於使用薄膜狀磁性檢測元 件的實施例。The configuration is such that a fixed substrate 61 is disposed at a position perpendicular to the direction of the current flowing to the wiring 60, and a fixed magnetic detection element is disposed on the fixed substrate 61 at a position where a magnetic field can be generated around the current by the current flowing to the wiring 60. 1 00. The information detected by the magnetic detection element 100 is transmitted to the detection circuit 101 for processing, and the detection result is output. Fig. 16 is a perspective view showing a specific configuration example of the magnetic detection element section. In particular, the magnetic detection element is an embodiment using a thin-film magnetic detection element.

於第1 6圖中,裝置構成是屬於薄膜狀的磁性阻抗元 件1 a,並在其外側利用嵌入成型等製作樹脂製捲線軸63 。線圈捲線軸乃如圖所示,在兩側設有捲線軸鍔63 a,在 捲線軸鍔63a間的捲線框部63b捲繞著線圈2a。該線圈 2 a是由欲對薄膜狀的磁性阻抗元件1 a施加偏壓磁場的可 變型偏壓磁場用線圈2和欲施加負回歸磁場的負回歸磁場 用線圈1 5所形成。更爲了自周圍環境開始保護薄膜狀的 磁性阻抗元件1 a、線圈2a等,而將構成零件收納在利用 嵌入成型等製作的樹脂外殼64內。從樹脂外殼64向單邊 伸出三條端子62 (兩側合計六條),但分別爲欲對薄膜狀的 磁性阻抗元件1 a兩端施加高頻電流的端子62爲兩條,欲 對可變型偏壓磁場用線圈2流入電流的端子62爲兩條, 欲對負回歸磁場用線圈1 5流入電流的端子62爲兩條合計 -25- (23) 200403447 六條。藉由以上所構成的整體即爲磁性檢測元件1 0 0。 由於薄膜狀的磁性阻抗元件1 a可製成丨min左右的方 形,且能以5mm左右的方形製成磁性檢測元件1 〇〇的外 形,因此能大幅減低薄膜狀的磁性阻抗元件1 a和線圈2 a 的磁性電阻。In FIG. 16, the device is constituted by a thin film-shaped magnetic impedance element 1 a, and a resin spool 63 is produced on the outside thereof by insert molding or the like. The coil bobbin is provided with a bobbin 锷 63a on both sides as shown in the figure, and a coil 2a is wound around a bobbin frame 63b between the bobbin 锷 63a. The coil 2a is formed by a variable bias magnetic field coil 2 to apply a bias magnetic field to the thin-film magnetic impedance element 1a and a negative return magnetic field coil 15 to apply a negative return magnetic field. Furthermore, the film-shaped magnetic resistance element 1a, the coil 2a, and the like are protected from the surrounding environment, and the constituent parts are housed in a resin case 64 made by insert molding or the like. Three terminals 62 (one total of six on both sides) extend from the resin case 64 to one side, but there are two terminals 62 to apply high-frequency current to both ends of the film-shaped magnetic resistance element 1 a. There are two terminals 62 for the current flowing into the coil 2 for the bias magnetic field, and two terminals 62- (23) 200403447 for the current flowing into the coil 15 for the negative return magnetic field. The entire structure constituted as above is the magnetic detection element 100. Since the thin film-shaped magnetic resistance element 1 a can be made into a square of about 丨 min, and the shape of the magnetic detection element 100 can be made with a square of about 5 mm, the film-shaped magnetic resistance element 1 a and the coil can be greatly reduced. 2 a magnetic resistance.

再者,於第1 6圖中以合計六條端子的磁性檢測元件 1 〇 〇爲實施例而表示,但通常基本上爲欲對磁性阻抗元件 施加高頻電流的端子62爲兩條和欲對可變型偏壓磁場用 線圈2流入電流的端子62爲兩條合計四條端子的構成。 自以上並不限於第1 6圖所示之合計6條的端子,端子數 的總合也可爲四條以上的構成。 第1 7圖係爲第1 6圖所示的磁性檢測元件1 00是根據 第15圖的槪略構成圖的實裝形態說明圖,同圖(a)爲立體 圖、同圖(b)爲上面圖。In addition, in FIG. 16, a magnetic detection element 100 having a total of six terminals is shown as an example, but generally, two terminals 62 which are basically intended to apply a high-frequency current to the magnetic impedance element are The terminal 62 in which the variable bias magnetic field coil 2 flows a current has a configuration of two terminals in total. Since the above is not limited to the total of six terminals shown in Fig. 16, the total number of terminals may be a configuration of four or more terminals. Figure 17 shows the magnetic detection element 100 shown in Figure 16 as an explanatory diagram of the installation form according to the schematic configuration diagram of Figure 15. The same figure (a) is a perspective view, and the same figure (b) is the top view. Illustration.

如第1 7圖(a),在具有導入電流之配線60的固定基 板6 1實裝著磁性檢測元件1 〇〇,藉由針對經由電流所產 生之同圖(b)以虛線所示之磁束配置的磁性檢測元件1 00, 來決定磁性檢測元件1 00的輸出感度,考慮到磁性檢測元 件1 〇 〇的配置,磁性檢測元件1 0 0就能配合電流的大小來 調整輸出感度。 第1 8圖係表示磁蔽構成例。 第1 8圖係爲在第1 7圖(a)所示的磁性檢測元件之實 裝形態附加上磁蔽7 0,其形狀於本實施例中以橢圓形狀 表示,但希望配合電流之大小而最適化,即不限於本形狀 -26- (24) (24)200403447 ’也可爲圓形、矩形或者角部爲圓弧的矩形、多角形。 [發明1效果] 如上,根據本發明,包括正磁場或正磁場側強調型( 主要爲正磁場側)偏壓磁場和負磁場或負磁場側強調型(主 要爲負磁場側)偏壓磁場這兩種,可設定兩種以上的可變 型偏壓磁場,在被測定外部磁場爲正磁場的情形下,施加 負磁場或負磁場側強調型偏壓磁場,相反的被測定外部磁 場爲負磁場的情形下,正磁場或正磁場側強調型偏壓磁場 是藉由具有施加手段的裝置構成,由習知施加正負均等的 偏壓磁場,並針對磁場在阻抗變化大的點上動作,磁場測 定範圍就能放大到維持相對於磁場得到高感度應答的特徵 〇 而且由於能利用種類不同的可變型偏壓磁場之切換器 切換偏壓磁場施加電路內的電阻値,故能以簡單的裝置實As shown in FIG. 17 (a), a magnetic detection element 100 is mounted on a fixed substrate 61 having a wiring 60 for introducing a current, and a magnetic beam shown by a dotted line in FIG. The configured magnetic detection element 100 determines the output sensitivity of the magnetic detection element 100. Considering the configuration of the magnetic detection element 100, the magnetic detection element 100 can adjust the output sensitivity in accordance with the magnitude of the current. Fig. 18 shows an example of a magnetic shield configuration. Fig. 18 shows the magnetic detection element shown in Fig. 17 (a) with a magnetic shield 70. Its shape is shown as an ellipse in this embodiment, but it is desirable to match the magnitude of the current. Optimized, that is, not limited to this shape-26- (24) (24) 200403447 'can also be circular, rectangular, or rectangular or polygonal with rounded corners. [Effect of Invention 1] As described above, according to the present invention, a positive magnetic field or a positive magnetic field side emphasized type (mainly a positive magnetic field side) bias magnetic field and a negative magnetic field or a negative magnetic field side emphasized type (mainly a negative magnetic field side) bias magnetic field are included. Two types. Two or more variable bias magnetic fields can be set. When the external magnetic field to be measured is a positive magnetic field, a negative magnetic field or a negative magnetic field side emphasized bias magnetic field is applied. On the contrary, the external magnetic field to be measured is a negative magnetic field. In the case, the positive magnetic field or the positive magnetic field side bias type bias magnetic field is constituted by a device having an application means, and a conventionally applied positive and negative bias magnetic field is applied, and the magnetic field operates at a point where the impedance changes greatly. The magnetic field measurement range It can be amplified to maintain the characteristic of obtaining a high sensitivity response to the magnetic field. Furthermore, the resistance in the bias magnetic field application circuit can be switched by a switch of a different type of variable bias magnetic field, so it can be implemented with a simple device.

而加上包括上述記載的兩種可變型偏壓磁場,就能施 加具有正負均等之磁場範圍的正負均等型偏壓磁場,藉由 至少具有三種以上之可變型偏壓磁場施加手段的裝置構成 ,就能形成感知正負均等型偏壓磁場的測定外部磁場的極 性檢測手段,不需要另外準備極性檢測器,就能設定最適 合測定電流的偏壓磁場,就能提供構成很簡單且便宜的磁 性檢測裝置。 由於可經由切換上述記載的三種可變型偏壓,求得磁 -27- (25) (25)200403447 性阻抗元件的感度,就能提供一檢測並校正經由周圍環境 特性、歷經時間變化的磁性阻抗元件檢測感度變化,得到 穩定的特性,甚至壽命長且優的磁性檢測裝置。 更於電子式過負荷繼電器中,在測定電流値爲定格電 流測定區域的情形下或是裝置投入電源之後的情形下施加 正負均等型偏壓磁場,且於測定電流値爲過負荷區域的情 形下,一方施加磁場極性或磁場極性之強調程度不同的可 變型偏壓磁場,都不會使得測定電流小的情形下,裝置投 入電源之後的小電流區域和測定電流大的大電流區域的任 何一個區域的測定精度下降,以很簡單的構成就能放大電 流測定範圍。 【圖式簡單說明】 第1圖係有關本發明之一實施例的磁性檢測裝置的系 統構成圖。 第2圖係有關本發明之一實施例的磁性阻抗元件之動 作的正外部磁場的說明圖。 第3圖係有關本發明之一實施例的磁性阻抗元件之動 作的負外部磁場的說明圖。 第4圖係有關本發明之一實施例的磁性阻抗元件的動 作g兌明B ’並利用正外部磁場獲得正電壓輸出時的特性說 明圖。 弟5圖係有關本發明之一實施例的磁性阻抗元件的動 作g兌明圖’並利用正外部磁場獲得負電壓輸出時的特性說 -28- (26) (26)200403447 明圖。 第6圖係表示有關本發明之一實施例的外部磁場強度 和差動輸出之關係的說明圖。 第7圖係有關本發明之另一實施例的施加偏壓磁場方 法的說明圖。 第8圖係有關本發明之另一實施例的磁性阻抗元件之 動作施加矩形型偏壓時的說明圖 第9圖係有關本發明之一另一實施例的磁性阻抗元件 之動作的施加交流型偏壓時的說明圖。 桌1 0圖係有關本發明之另一實施例的磁性檢測裝置 的系統構成圖。 第1 1圖係針對有關本發明之另一實施例所說明的磁 性阻抗元件之動作的正外部磁場的說明圖。 第1 2圖係針對有關本發明之另一實施例所說明的磁 性阻抗元件之動作的負外部磁場的說明圖。 第1 3圖係有關本發明之另一實施例的磁性檢測裝置 的系統構成圖。 第14圖係有關本發明之實施例的電子式過負荷繼電 器的構成圖。 第1 5圖係表示有關本發明之實施形態的磁性檢測裝 置的槪略構成圖。 第1 6圖係表示有關本發明之實施形態的磁性檢測元 件部之具體構成例的立體圖。 第1 7圖係有關本發明之實施形態的磁性檢測元件的 -29- (27) (27)200403447 實裝形態說明圖。 第1 8圖係有關本發明之實施形態的磁蔽構成立體圖 〇 第1 9圖係表示習知例之非晶質導線元件的磁性阻抗 特性說明圖。 第20圖係表示習知例之在外部磁場零施加偏壓磁場 時的動作說明圖。 第2 1圖係表示習知例之施加偏壓磁場時的動作說明 圖。 [圖號說明] 1…磁性阻抗元件、 2…可變型偏壓磁場用線圈、 4 ··可變型偏壓線圈用電源、 5…負荷切換器、 5a···負荷切換器、 # 1 1…微電腦、 12…極性檢測器、 13…電流規格化器、 14…切換器、 40···電子式負荷繼電器、 ’ 1〇〇…磁性檢測元件、 101…磁性檢測器、 103磁性檢測裝置 -30-In addition, by adding the two types of variable bias magnetic fields described above, a positive and negative equal type bias magnetic field having a positive and negative equal magnetic field range can be applied. It is constituted by a device having at least three or more variable bias magnetic field applying means. It can form a polarity detection method for measuring the external magnetic field that senses the positive and negative equal-type bias magnetic fields. It is possible to set the bias magnetic field that is most suitable for measuring the current without preparing a polar detector. It can provide a simple and inexpensive magnetic detection. Device. The sensitivity of the magnetic -27- (25) (25) 200403447 magnetic impedance element can be obtained by switching the three kinds of variable bias voltages described above, which can provide a magnetic impedance that can detect and correct the change of the environmental characteristics over time. Element detection sensitivity changes to obtain stable characteristics, and even long life and excellent magnetic detection device. Furthermore, in the electronic overload relay, a positive and negative equal-type bias magnetic field is applied when the measurement current 値 is a stop current measurement area or after the device is powered on, and when the measurement current 値 is an overload area. If one side applies a variable bias magnetic field with different degrees of emphasis on the magnetic field polarity or magnetic field polarity, neither of the small current region and the large current region with a large measurement current after the device is powered on will be measured in the case of a small measurement current. The accuracy of the measurement is reduced, and the current measurement range can be enlarged with a simple structure. [Brief Description of the Drawings] FIG. 1 is a system configuration diagram of a magnetic detection device according to an embodiment of the present invention. Fig. 2 is an explanatory diagram of a positive external magnetic field relating to the operation of a magnetic impedance element according to an embodiment of the present invention. Fig. 3 is a diagram for explaining the negative external magnetic field of the operation of the magnetic impedance element according to an embodiment of the present invention. Fig. 4 is a characteristic explanatory diagram when the operation g of the magnetic impedance element according to an embodiment of the present invention is g to clarify B 'and a positive external magnetic field is used to obtain a positive voltage output. Figure 5 is a graph showing the operation g of a magnetic impedance element according to an embodiment of the present invention, and characteristics obtained when a positive external magnetic field is used to obtain a negative voltage output -28- (26) (26) 200403447. Fig. 6 is an explanatory diagram showing the relationship between the external magnetic field intensity and the differential output according to an embodiment of the present invention. Fig. 7 is a diagram for explaining a method of applying a bias magnetic field according to another embodiment of the present invention. FIG. 8 is an illustration when a rectangular bias is applied to the operation of a magnetic impedance element according to another embodiment of the present invention. FIG. 9 is an AC-type application to the operation of a magnetic impedance element according to another embodiment of the present invention. Explanatory diagram at the time of bias. The table 10 is a system configuration diagram of a magnetic detection device according to another embodiment of the present invention. FIG. 11 is an explanatory diagram of a positive external magnetic field related to the operation of the magnetic impedance element according to another embodiment of the present invention. Fig. 12 is an explanatory diagram of a negative external magnetic field related to the operation of the magnetic impedance element according to another embodiment of the present invention. Fig. 13 is a system configuration diagram of a magnetic detection device according to another embodiment of the present invention. Fig. 14 is a configuration diagram of an electronic overload relay according to an embodiment of the present invention. Fig. 15 is a schematic configuration diagram showing a magnetic detection device according to an embodiment of the present invention. Fig. 16 is a perspective view showing a specific configuration example of a magnetic detection element unit according to an embodiment of the present invention. Fig. 17 is a diagram for explaining the mounting form of the magnetic detection element according to the embodiment of the present invention. Fig. 18 is a perspective view of a magnetic shield structure according to an embodiment of the present invention. Fig. 19 is an explanatory diagram showing a magnetic impedance characteristic of a conventional amorphous wire element. Fig. 20 is a diagram illustrating the operation of a conventional example when a bias magnetic field is applied at zero external magnetic field. Fig. 21 is a diagram illustrating the operation when a bias magnetic field is applied in a conventional example. [Description of drawing number] 1 ... magnetic impedance element, 2 ... variable bias magnetic field coil, 4 ... · variable bias coil power source, 5 ... load switch, 5a ... load switch, # 1 1 ... Microcomputer, 12 ... polarity detector, 13 ... current normalizer, 14 ... switch, 40 ... electronic load relay, '100 ... magnetic detection element, 101 ... magnetic detector, 103 magnetic detection device-30 -

Claims (1)

(1) 200403447 拾、申請專利範圍(1) 200403447 Patent application scope 1 · 一種磁性檢測裝置,乃屬於具有:設有磁性阻抗 效應的磁性阻抗元件;和對前述磁性阻抗元件之兩端施加 高頻驅動電流的電流施加手段;和捲繞在前述磁性阻抗元 件的偏壓線圈;和對前述偏壓線圈施加低頻偏壓電流的偏 壓電流施加手段;且藉由利用前述低頻偏壓電流改變磁場 強度的偏壓磁場和被測定外部磁場,由對應前述磁性阻抗 元件之阻抗變化的輸出差來檢測外部磁場的磁性檢測裝置 ,其特徵爲: 前述偏壓電流施加手段可以設定強度不同的磁場經時 間變化的可變型偏壓磁場,對應被測定外部磁場的極性, 選擇前述可變型偏壓磁場的磁場強度,施加於前述磁性阻 抗元件。1. A magnetic detection device, comprising: a magnetic impedance element provided with a magnetic impedance effect; and a current applying means for applying a high-frequency driving current to both ends of the magnetic impedance element; and a bias wound around the magnetic impedance element. A bias current applying means for applying a low-frequency bias current to the bias coil; and a bias magnetic field and a measured external magnetic field that change the strength of the magnetic field by using the low-frequency bias current; The magnetic detection device for detecting an external magnetic field by an output difference of an impedance change is characterized in that: the bias current applying means can set a variable bias magnetic field of a magnetic field having a different strength over time, corresponding to the polarity of the external magnetic field to be measured, and selecting the aforementioned The magnetic field strength of the variable bias magnetic field is applied to the magnetic impedance element. 2.如申請專利範圍第1項所記載的磁性檢測裝置, 其中,施加於前述磁性阻抗元件的前述可變型偏壓磁場是 指正磁場型的偏壓磁場.和負磁場型的偏壓磁場.和正磁 場側強調型的偏壓磁場·和負磁場側強調型的偏壓磁場; 且前述正磁場型的偏壓磁場係爲具有正極性的磁場; 前述正磁場側強調型的偏壓磁場係爲藉由磁場強度不 同之強的正磁場和弱的負磁場所構成之磁場極性強調程度 不同的磁場; 前述負磁場型的偏壓磁場係爲具有負極性的磁場; 前述負磁場側強調型的偏壓磁場係爲藉由強的負磁場 和弱的正磁場所構成之磁場極性強調程度不同的磁場。 -31 - (2) 2004034472. The magnetic detection device according to item 1 of the scope of patent application, wherein the variable bias magnetic field applied to the magnetic impedance element refers to a positive magnetic field-type bias magnetic field; and a negative magnetic field-type bias magnetic field. The magnetic field side emphasized bias magnetic field and the negative magnetic field side emphasized bias magnetic field; and the positive magnetic field type bias magnetic field is a magnetic field having a positive polarity; the positive magnetic field side emphasized bias magnetic field is based on the The magnetic field composed of a strong positive magnetic field and a weak negative magnetic field with different magnetic field strengths has a magnetic field with a different degree of polarity emphasis; the negative magnetic field type bias magnetic field is a magnetic field having a negative polarity; the negative magnetic field side emphasized bias type The magnetic field is a magnetic field having a different degree of polarity emphasis, which is composed of a strong negative magnetic field and a weak positive magnetic field. -31-(2) 200403447 3 ·如申請專利範圍第2項所記載的磁性檢測裝置, 其中,前述可變型偏壓磁場係爲具前述正磁場型的偏壓磁 場和前述正磁場側強調型的偏壓磁場中之任一方·和前述 負磁場型的偏壓磁場和前述負磁場側強調型的偏壓磁場中 之任一方的兩種可變型偏壓磁場;且可以設定包括前述兩 種可變型偏壓磁場的至少兩個前述可變型偏壓磁場,對應 被測定外部磁場的極性,選擇前述可變型偏壓磁場之一種 ,施加於前述磁性阻抗元件。 4. 如申請專利範圍第2項所記載的磁性檢測裝置, 其中,具有:正負均等型的偏壓磁場.前述正磁場型的偏 壓磁場和前述正磁場側強調型之偏壓磁場中之任一方’前 述負磁場型的偏壓磁場和前述負磁場側強調型的偏壓磁場 中之任一方的三種可變型偏壓磁場; 且前述正負均等型的偏壓磁場係正磁場側和負磁場側 爲相同強度的磁場;3. The magnetic detection device according to item 2 of the scope of patent application, wherein the variable bias magnetic field is any one of the positive magnetic field type bias magnetic field and the positive magnetic field side emphasis type bias magnetic field. And two types of variable bias magnetic fields of either the aforementioned negative magnetic field type bias magnetic field or the aforementioned negative magnetic field side emphasis type bias magnetic field; and at least two of the aforementioned two types of variable bias magnetic field may be set The variable bias magnetic field corresponds to a polarity of an external magnetic field to be measured, and one of the variable bias magnetic fields is selected and applied to the magnetic impedance element. 4. The magnetic detection device according to item 2 of the scope of patent application, comprising: a positive and negative equal type bias magnetic field. Any one of the positive magnetic field type bias magnetic field and the positive magnetic field side emphasis type bias magnetic field. One of the three types of variable bias magnetic fields of the aforementioned negative magnetic field type bias magnetic field and the negative magnetic field side emphasized bias magnetic field; and the positive and negative equal type bias magnetic fields are a positive magnetic field side and a negative magnetic field side. Are magnetic fields of the same strength; 可以設定包括前述三種可變型偏壓磁場的至少三個前 述可變型偏壓磁場,該至少三個前述可變型偏壓磁場中之 一個前述可變型偏壓磁場作爲被測定外部磁場的極性檢測 手段而施加於前述磁性阻抗元件’對應檢測結果,選擇前 述可變型偏壓磁場的種類,施加於前述磁性阻抗元件。 5. 如申請專利範圍第4項所記載的磁性檢測裝置, 其中,以前述正負均等型的偏壓磁場作爲被測定外部磁場 的極性檢測手段使用,藉由前述正磁場側強調型和前述負 磁場側強調型的偏壓磁場中之任一方·和前述正磁場型與 -32- (3) (3)200403447 前述負磁場型的偏壓磁場中之任一方的兩種可變型偏壓磁 場中,根據前述極性檢測手段的檢測結果所指定的被測定 外部磁場之極性,選擇任一種則述可變型偏壓磁場作爲外 部磁場的檢測手段使用。 6. 如申請專利範圍第1項至第5項之任一項所記載 的磁性檢測裝置’其中’施加於前述磁性阻抗元件的偏壓 磁場是針對各個正磁場側和負磁場側’以隨機產生隨著時 間變化之不同的磁場’選擇發生在正磁場側和負磁場側的 磁場強度組合’藉此成爲前述正磁場側強調型或前述負磁 場側強調型的偏壓磁場的方式加以設定。 7. 如申請專利範圍第4項或第5項所記載的磁性檢 測裝置,其中,施加於前述磁性阻抗元件的偏壓磁場是針 對各個正磁場側和負磁場側,以隨機產生隨著時間變化之 不同的磁場,選擇發生在正磁場側和負磁場側的磁場強度 組合,藉此成爲前述正負均等型的偏壓磁場的方式加以設At least three of the aforementioned variable bias magnetic fields including the aforementioned three kinds of variable bias magnetic fields may be set, and one of the at least three aforementioned variable bias magnetic fields may be set as a polarity detection means for measuring an external magnetic field. The type of the variable bias magnetic field is applied to the magnetic impedance element according to the detection result, and is applied to the magnetic impedance element. 5. The magnetic detection device according to item 4 of the scope of the patent application, wherein the positive and negative equal-type bias magnetic fields are used as a polarity detection means for measuring an external magnetic field, and the positive magnetic field side emphasized type and the negative magnetic field are used. Either one of the side-emphasized bias magnetic field and one of the two types of variable bias magnetic fields of the aforementioned positive magnetic field type and -32- (3) (3) 200403447 According to the polarity of the external magnetic field to be measured specified by the detection result of the polarity detection means, any one of the variable bias magnetic fields is selected as the external magnetic field detection means. 6. The magnetic detection device described in any one of the items 1 to 5 of the scope of the patent application, where 'the' bias magnetic field applied to the aforementioned magnetic impedance element is randomly generated for each of the positive magnetic field side and the negative magnetic field side '. Different magnetic fields that change with time 'select the combination of magnetic field strengths that occur on the positive and negative magnetic field sides', thereby setting the method to be the aforementioned positive magnetic field side emphasis type or the negative magnetic field side emphasis type bias magnetic field. 7. The magnetic detection device described in item 4 or 5 of the scope of the patent application, wherein the bias magnetic field applied to the magnetic impedance element is for each of the positive magnetic field side and the negative magnetic field side to randomly generate changes with time. For the different magnetic fields, the combination of the magnetic field strengths that occur on the positive and negative magnetic fields is selected to set the method of the aforementioned positive and negative equal-type bias magnetic field. 8.如申請專利範圍第2項至第5項之任一項所記載 的磁性檢測裝置,其中,對應施加於前述偏壓線圈的前述 低頻偏壓電流而產生的前述可變型偏壓磁場係爲矩形波形 式或交流波形式。 9·如申請專利範圍第2項至第5項之任一項所記載 的磁性檢測裝置,其中,對應施加於前述偏壓線圈的前述 低頻偏壓電流而產生的前述可變型偏壓磁場係爲矩形波形 式或交流波形式; -33- (4) 200403447 施加於前述磁性阻抗元件的偏壓磁場乃針對各個正磁 場側和負磁場側,以隨機產生隨著時間變化之不同的磁場 ,選擇發生在正磁場側和負磁場側的磁場強度組合’藉此 成爲前述正磁場側強調型或前述負磁場側強調型的偏壓磁 場的方式加以設定。8. The magnetic detection device according to any one of items 2 to 5 in the scope of the patent application, wherein the variable bias magnetic field generated in response to the low-frequency bias current applied to the bias coil is Rectangular wave form or AC wave form. 9. The magnetic detection device according to any one of items 2 to 5 of the scope of the patent application, wherein the variable bias magnetic field generated in response to the low-frequency bias current applied to the bias coil is Rectangular wave form or AC wave form; -33- (4) 200403447 The bias magnetic field applied to the aforementioned magnetic impedance element is for each positive magnetic field side and negative magnetic field side to randomly generate different magnetic fields that change with time and choose to occur The combination of the magnetic field strengths of the positive magnetic field side and the negative magnetic field side is set in such a manner as to become the positive magnetic field side emphasis type or the negative magnetic field side emphasis type bias magnetic field. 10.如申請專利範圍第4項或第5項所記載的磁性檢 測裝置,其中,對應施加於前述偏壓線圈的前述低頻偏壓 電流而產生的前述可變型偏壓磁場係爲矩形波形式或交流 波形式; 施加於前述磁性阻抗元件的偏壓磁場乃針對正磁場側 和負磁場側,以隨機產生隨著時間變化之不同的磁場,選 擇發生在正磁場側和負磁場側的磁場強度組合,藉此成爲 前述正磁場側強調型或前述負磁場側強調型的偏壓磁場的 方式加以設定;10. The magnetic detection device described in claim 4 or 5, wherein the variable bias magnetic field generated in response to the low-frequency bias current applied to the bias coil is a rectangular wave form or AC wave form; the bias magnetic field applied to the aforementioned magnetic impedance element is directed to the positive magnetic field side and the negative magnetic field side to randomly generate different magnetic fields that change with time, and select the combination of magnetic field strengths that occur on the positive and negative magnetic fields , So as to be set as the bias magnetic field of the aforementioned positive magnetic field side emphasis type or the aforementioned negative magnetic field side emphasis type; 施加於前述磁性阻抗元件的偏壓磁場乃針對各個正磁 場側和負磁場側,以隨機產生隨著時間變化之不同的磁場 ’選擇發生在正磁場側和負磁場側的磁場強度組合,藉此 成爲前述正負均等型磁的偏歷磁場的方式加以設定。 1 1 · 一種過負荷繼電器,乃屬於控制由電源對負荷裝 置供給多相電流的裝置,爲具有:設有磁性阻抗效應的磁 性阻抗元件;和對前述磁性阻抗元件的兩端施加高頻驅動 電流的電流施加手段;和捲繞在前述磁性阻抗元件的偏壓 線圈;和對前述偏壓線圈施加低頻偏壓電流的偏壓電流施 加手段,且具備有·錯由則述低頻偏壓電流改變磁場強度 -34- (5) 200403447 的偏壓磁場和藉由被測定外部磁場由對應前述磁性阻抗元 件的阻抗變化的輸出差來檢測外部磁場的磁性檢測器的過 負荷繼電器「,其特徵爲: -The bias magnetic field applied to the aforementioned magnetic impedance element is for each of the positive magnetic field side and the negative magnetic field side to randomly generate different magnetic fields that change with time. 'The combination of magnetic field strengths that occur on the positive magnetic field side and the negative magnetic field side is selected, thereby It is set so as to become the eccentric magnetic field of the aforementioned positive and negative uniform magnetic field. 1 1 · An overload relay is a device that controls the supply of multi-phase current from a power source to a load device. It is a magnetic impedance element with a magnetic impedance effect; and a high-frequency drive current is applied to both ends of the magnetic impedance element. Means for applying a current; a bias coil wound around the magnetic impedance element; and a bias current applying means for applying a low-frequency bias current to the bias coil; Intensity-34- (5) 200403447 Overload relay of a magnetic detector that detects the external magnetic field by measuring the difference between the bias magnetic field of the external magnetic field and the output difference corresponding to the impedance change of the aforementioned magnetic impedance element, characterized by:- 前述磁性檢測器爲使用申請專利範圍第2項所記載的 磁性檢測裝置,發生被測定磁場的被測定電流値’於額定 電流測定區域的情形或裝置之電源投入之後’對前述磁性 阻抗元件施加前述正負均等型的偏壓磁場,在前述被測定 電流値爲過負荷區域的情形,對前述磁性阻抗元件施加具 有正磁場或負磁場之任一方的極性的前述正磁場型或前述 負磁場型,或是磁場極性之強調程度不同的前述正磁場側 強調型或前述負磁場側強調型的偏壓磁場之任一個。The magnetic detector is a magnetic detection device described in item 2 of the scope of patent application. The measured current of the magnetic field to be measured occurs in the case of the rated current measurement area or after the power of the device is turned on. A positive and negative equal-type bias magnetic field, in the case where the current to be measured is an overload region, applying the positive magnetic field type or the negative magnetic field type having a polarity of either a positive magnetic field or a negative magnetic field to the magnetic impedance element, or Either the bias magnetic field of the positive magnetic field side emphasis type or the negative magnetic field side emphasis type of the magnetic field polarity with different degrees of emphasis. 12.如申請專利範圍第1 1項所記載的過負荷繼電器 ,其中,施加於前述磁性阻抗元件的偏壓磁場乃針對各個 正磁場側和負磁場側,以隨機產生隨著時間變化之不同的 磁場,選擇發生在正磁場側和負磁場側的磁場強度組合, 藉此成爲前述正磁場側強調型的偏壓磁場·前述負磁場側 強調型的偏壓磁場,或前述正負均等型的偏壓磁場的方式 加以設定。 1 3 .如申請專利範圍第1 1項或第1 2項所記載的過負荷 繼電器,其中,對應施加於前述偏壓線圈的前述低頻偏壓 電流而產生的前述可變型偏壓磁場是使用矩形波形式或交 流波形式的磁性檢測裝置。 -35-12. The overload relay according to item 11 in the scope of the patent application, wherein the bias magnetic field applied to the magnetic impedance element is for each positive magnetic field side and negative magnetic field side, and randomly generates different changes over time. The magnetic field is selected from a combination of magnetic field intensities that occur on the positive and negative magnetic fields, and thereby becomes the bias magnetic field of the positive magnetic field-emphasized bias type. The mode of the magnetic field is set. 1 3. The overload relay according to item 11 or item 12 in the scope of patent application, wherein the variable bias magnetic field generated in response to the low-frequency bias current applied to the bias coil is a rectangular shape. Magnetic detection device in wave form or AC wave form. -35-
TW92119156A 2002-07-15 2003-07-14 Magnetic detection device TW200403447A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205885A JP4016750B2 (en) 2002-07-15 2002-07-15 Magnetic detector

Publications (1)

Publication Number Publication Date
TW200403447A true TW200403447A (en) 2004-03-01

Family

ID=30112782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92119156A TW200403447A (en) 2002-07-15 2003-07-14 Magnetic detection device

Country Status (4)

Country Link
JP (1) JP4016750B2 (en)
AU (1) AU2003281105A1 (en)
TW (1) TW200403447A (en)
WO (1) WO2004008167A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240202A (en) * 2006-03-06 2007-09-20 Alps Electric Co Ltd Magnetic detector and electronic compass using it
JP6370768B2 (en) 2015-11-26 2018-08-08 矢崎総業株式会社 Magnetic field detection sensor
JP6870960B2 (en) * 2016-11-18 2021-05-12 矢崎総業株式会社 Magnetic field detection sensor
JP2021188976A (en) * 2020-05-28 2021-12-13 Tdk株式会社 Magnetic field detector and magnetic field detector array

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865878A (en) * 1994-08-18 1996-03-08 Ngk Insulators Ltd Protection relay device with magneto-optical sensor
JP3414292B2 (en) * 1998-12-25 2003-06-09 株式会社豊田中央研究所 Magnetic field detecting device and magnetic field detecting element
JP2002006016A (en) * 2000-06-21 2002-01-09 Tokin Corp Magnetic sensor

Also Published As

Publication number Publication date
AU2003281105A1 (en) 2004-02-02
JP4016750B2 (en) 2007-12-05
JP2004045332A (en) 2004-02-12
WO2004008167A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US5811965A (en) DC and AC current sensor having a minor-loop operated current transformer
US10823766B2 (en) Detector and a voltage converter
US7629761B2 (en) System for measuring current in multiple motor coils using a single sensing element
US7242157B1 (en) Switched-voltage control of the magnetization of current transforms and other magnetic bodies
JP2012002723A (en) Current detector
JP6220748B2 (en) DC leakage current detector
JP2006266909A5 (en)
TWI221929B (en) Overload current protection apparatus
JP4925595B2 (en) AC impedance measuring apparatus and method
KR101524560B1 (en) Apparatus of compensating offset of current sensor and control method thereof
US20090302699A1 (en) Method for mounting a body
JP2007519385A (en) Method and apparatus for current sensing
US11573250B2 (en) Electric circuit arrangement and a method for a galvanically insulated, AC/DC sensitive differential-current measurement having high resolution
US7521919B2 (en) Measuring device for measuring an electrical current
TW200403447A (en) Magnetic detection device
JP5516079B2 (en) Current detector
US7218494B2 (en) Overload current protection device using magnetic impedance element
US20080191660A1 (en) Method and device for controlling a three-phase machine having several phase windings, which can be controlled by means of pulse width modulation
US7256574B2 (en) Device for measuring electric current intensity
CA2766758A1 (en) Active core current sensor
JPH0630579A (en) Current detecting circuit
JP2004347501A (en) Current sensor
JP4178743B2 (en) DC leakage detection device for grid-connected inverter
JP2002006014A (en) Magnetic sensor
JPH06265613A (en) Magnetic sensor apparatus