200402479 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係關於半導體範圍。更特定言之,本發明係關 於平整均勻多金屬薄膜於半導體裝置和晶圓上之原子層澱 積法(ALD)。 【先前技術】 新一代半導體裝置會須要更薄的介電膜用於金屬一氧 化物-矽(Μ Ο S )電晶體閘極和電容器介電物。但隨著氧 化物的縮小,隧道漏電變得更顯著並將閘極氧化物的可用 範圍限制於厚度約1 . 8奈米或以上。據此,致力於硏究以 確認高k材料(於其超薄時),使得二氧化矽的介電性質 不利於漏電。 微電子工業對多金屬薄膜的興趣日增。例如,矽酸飴 (Hf - S i - Ο )膜被視爲可能代替氧化矽(S i — Ο )膜作爲 閘極氧化物膜。類似地,曾報導氮化鉬矽( Ta - Si - N ) 膜作爲銅相互聯絡阻礙物的性質優於氮化鉅(TaN )。 目前用以在半導體裝置和晶圓上形成膜的澱積技巧包 括化學蒸鍍法(CVD ) 。CVD中,二或多種反應物氣體在 澱積槽中混在一起,氣體於澱積槽中以氣相反應及使膜澱 積於基板表面或者直接在基板表面上反應。藉CVD澱積 達特定時間,此時間視所欲澱積膜厚度而定。因爲特定時 間與反應物進入槽中的通量有關,所以在每個槽中所須時 間可能不同。 -4- (2) (2)200402479 CVD越來越無法符合製造先進薄膜的要求。CVD須 要高加工溫度且使得反應物之使用無效率。此外,CVD 會導致相當大量雜質存在於所得膜中。最後,用於晶圓上 的高k閘極介電物,CVD澱積超薄均勻平整膜的能力受 限。 原子層澱積(ALD)是一種代替傳統CVD·以澱積薄 膜的替代方案。慣用 ALD澱積循環中,各反應物氣體連 續引至槽中,使得沒有氣相內部混合情況發生。第一種反 應物(即,先質)單層物理或化學吸附於基板表面上。之 後抽除過多的第一種反應物,此通常藉惰性滌氣氣體和/ 或抽取之助而達成。之後,第二種反應物引至澱積槽中並 與第一種反應物反應,藉由自身限制表面反應,形成所欲 膜單層。一旦初時吸附的第一種反應物完全與第二種反應 物反應,便中止此自身限制反應。抽除過量第二種反應物 ,此通常藉惰性滌氣氣體和/或抽取之助而達成。視所須 地重覆此澱積循環以得到所欲膜厚度。藉澱積循環次數, 膜厚度可控制至原子層(即,埃)。 ALD有數個優於傳統CVD之處。首先,ALD可於較 低溫度進行。再者,ALD可製得超薄平整膜。事實上, ALD可控制膜厚度至原子規格且可用於 ''極微設計〃複合 薄膜。第三,ALD在非平面基板上提供平整覆蓋的薄膜 〇 但一個與慣用ALD法有關的問題在於產量低,其原 因在於循環時間長。慣用ALD法使用交替輸入的先質和 (3) (3)200402479 反應物進行相當緩慢的 ''層-層〃生長。澱積膜是多金屬 膜時,因爲使用多種先質,所以此問題更嚴重。多金屬膜 的澱積速率基本上低於1埃7循環。欲用於半導體製造, ALD法必須具有可被接受的產量。 使用慣用 ALD法製造多金屬膜的其他困難處在於所 得膜不均勻。在如:MOS裝置應用,希望有均勻膜。慣 用 ALD法因爲使用交替輸入的化學來源,形成的膜是一 系列相分離的極微層合物。之後須要高溫退火以使得多種 元素於內部擴散以形成均勻組成。據此,工業上對於進一 步發展有明顯需求存在。 【發明內容Ί 本發明提出用以在基板上澱積平整均勻多金屬膜的新 穎ALD法。可藉本發明之ALD法澱積的膜包括金屬合金 膜、多金屬氧化物膜、多金屬氮化物膜和多金屬氧氮化物 膜。本發明之方法含括的ALD澱積法包括熱ALD、光輔 助 ALD、雷射輔助 ALD、電漿輔助 ALD和自由基輔助 ALD 〇 在基板上形成多金屬膜的第一種ALD法包含至少一 個循環,循環步驟包含將多金屬分子先質氣體引至含有基 板的澱積槽中。較佳情況中,此多金屬分子先質包含製造 均勻單層膜所須所有金屬元素。藉由於每次循環的單一脈 衝引入金屬元素,作爲單一先質的一部分,金屬元素均勻 混合至分子程度且能夠去除多重先質的交替輸入的必要性 -6 - (4) 200402479 。多金屬分子先質的一個例子是三(第三丁氧 基一三(第三丁氧基)鈦一(tBuO ) 3Si— 0 — 一在後續反應物是氧來源時,其可用以澱積矽 (Ti— Si- 0 )膜。 一個實施例中,第一種ALD法包括至少 循環包含下列步驟:(i)將多金屬分子先質 有基板的澱積槽中;(ii )對澱積槽滌氣;( 多種反應物氣體引至澱積槽中;及(iv)對澱 藉此方法,多金屬分子先質物理-或化學一吸 面上,後續反應物裂解來自先質的任何非所欲 下單層所欲多金屬膜。反應物可以是任何氧化 或它們的混合物並經選擇以將物理-或化學-轉化成所欲多金屬膜類型。每次重覆循環,增 。以此方式,所欲厚度的平整均勻膜和組成可 計者。 本發明的另一特點中,提出第二種ALD 基板上形成多金屬膜,其包含至少一個循環, 含將金屬分子先質氣體混合物引至含有基板的 較佳情況中,先質混合物包含製造均勻單層膜 金屬元素。藉由於每次循環的單一脈衝引入金 爲混合物先質的一部分,金屬元素以分子程度 能夠去除多重先質的交替輸入的必要性。適當 的一個例子是兩種化合物Hf(NEtMe) 2和Si 之混合物-在後續反應物是氧來源時,其可用 to」 基)甲矽烷 Ti ( OtBu)3 酸鈦 一個循環, 氣體引至含 i U )將一或 積槽滌氣。 附於基板表 配位基,留 劑或還原劑 吸附的先質 添另一單層 爲經極微設 法,用以在 循環步驟包 澱積槽中。 所須的所有 屬元素,作 均勻混合且 先質混合物 (NEtMe ) 2 以澱積矽酸 -7- (5) (5)200402479 鈴(Hf - Si - Ο)膜。 一個實施例中,第一種 ALD法包括至少一個循環, 循環包含下列步驟:(i )將至少兩種不同金屬分子先質 之混合物引至澱積槽中;(ii )對澱積槽滌氣;(iii )將 反應物氣體引至澱積槽;及(iv )對澱積槽滌氣。藉此方 法,金屬分子先質之混合物先物理-或化學-吸附於基板 表面上,後續反應物裂解來自先質的任何非所欲配位基, 留下單層所欲多金屬膜。同樣地,反應物可以是任何氧化 劑或還原劑或它們的混合物並經選擇以將物理-或化學-吸附的先質轉化成所欲多金屬膜類型。每次重覆循環,增 添另一單層。以此方式,所欲厚度的平整均勻膜和組成可 爲經極微設計者。 這兩種方法使得製造多金屬膜所須的所有金屬組份於 各®積循環中,可以單一物或脈衝供應。因此,本發明提 供數個優點。首先,本發明大幅降低ALD循環時間,及 藉此提高產量。再者,本發明形成均勻膜(如澱積者), 此去除後續退火的必要性。第三,藉由減少在膜澱積法期 間內’氣相中生成的顆粒數,本發明提高效能。 【實施方式】 定義 此處所謂 ''金屬〃是元素,其選自週期表中的下列元 素:200402479 (1) (ii) Description of the invention [Technical field to which the invention belongs] The present invention relates to the semiconductor field. More specifically, the present invention relates to an atomic layer deposition (ALD) method for planarizing a uniform polymetal thin film on a semiconductor device and a wafer. [Previous Technology] Newer generation semiconductor devices will require thinner dielectric films for metal-oxide-silicon (MOS) transistor gates and capacitor dielectrics. But as the oxides shrink, tunnel leakage becomes more significant and limits the usable range of gate oxides to a thickness of about 1.8 nanometers or more. Based on this, efforts have been made to confirm high-k materials (at the time of their ultra-thinness), making the dielectric properties of silicon dioxide not conducive to leakage. The microelectronics industry is increasingly interested in polymetallic films. For example, a hafnium silicate (Hf-S i-Ο) film is considered as a possible replacement of a silicon oxide (S i-Ο) film as a gate oxide film. Similarly, it has been reported that molybdenum silicon nitride (Ta-Si-N) films have better properties than copper nitrides (TaN) as barriers to copper interconnection. Current deposition techniques used to form films on semiconductor devices and wafers include chemical vapor deposition (CVD). In CVD, two or more reactant gases are mixed together in a deposition tank, and the gases react in a vapor phase in the deposition tank and the film is deposited on the substrate surface or reacted directly on the substrate surface. By CVD deposition for a specific time, this time depends on the desired film thickness. Because the specific time is related to the flux of reactants into the tank, the time required in each tank may be different. -4- (2) (2) 200402479 CVD is increasingly unable to meet the requirements for manufacturing advanced thin films. CVD requires high processing temperatures and makes the use of reactants inefficient. In addition, CVD causes a considerable amount of impurities to be present in the resulting film. Finally, for high-k gate dielectrics on wafers, the ability of CVD to deposit ultra-thin, uniform planarization films is limited. Atomic layer deposition (ALD) is an alternative to traditional CVD to deposit thin films. In the conventional ALD deposition cycle, each reactant gas is continuously introduced into the tank, so that no internal gas phase mixing occurs. The first reactant (ie, precursor) is physically or chemically adsorbed on the substrate surface in a single layer. The excess of the first reactant is then pumped off, usually by inert scrubbing gas and / or pumping aid. After that, the second reactant is introduced into the deposition tank and reacts with the first reactant. By itself, the surface reaction is restricted to form a desired film monolayer. Once the first reactant adsorbed completely reacts with the second reactant, this self-limiting reaction is stopped. Extraction of excess second reactant is usually achieved by inert scrubbing gas and / or pumping aid. Repeat this deposition cycle as necessary to obtain the desired film thickness. By the number of deposition cycles, the film thickness can be controlled to the atomic layer (ie, Angstroms). ALD has several advantages over traditional CVD. First, ALD can be performed at lower temperatures. Furthermore, ALD can produce ultra-thin flat films. In fact, ALD can control film thicknesses to atomic specifications and can be used in '' extremely designed '' composite films. Third, ALD provides a flat cover film on a non-planar substrate. However, a problem associated with the conventional ALD method is low yield due to long cycle times. The conventional ALD method uses alternating input precursors and (3) (3) 200402479 reactants for fairly slow '' layer-to-layer '' growth. This problem is exacerbated when the deposited film is a multi-metal film because multiple precursors are used. The deposition rate of the multi-metal film is substantially lower than 1 angstrom and 7 cycles. To be used in semiconductor manufacturing, the ALD method must have an acceptable yield. Another difficulty with the conventional ALD method for manufacturing a multi-metal film is that the resulting film is not uniform. In applications such as MOS devices, a uniform film is desired. The conventional ALD method, because of the use of alternately input chemical sources, forms a series of phase-separated ultrafine laminates. Afterwards, high temperature annealing is required to allow multiple elements to diffuse inside to form a uniform composition. Based on this, there is a clear need for further development in the industry. [Summary of the Invention] The present invention proposes a novel ALD method for depositing a flat and uniform multi-metal film on a substrate. Films that can be deposited by the ALD method of the present invention include metal alloy films, polymetal oxide films, polymetal nitride films, and polymetal oxynitride films. The ALD deposition method included in the method of the present invention includes thermal ALD, light-assisted ALD, laser-assisted ALD, plasma-assisted ALD, and radical-assisted ALD. The first ALD method for forming a multi-metal film on a substrate includes at least one Cycling. The cycling step includes introducing a polymetallic molecular precursor gas into a deposition tank containing a substrate. In a preferred case, the polymetallic molecule precursor contains all the metal elements required to make a uniform single-layer film. By introducing a metal element with a single pulse for each cycle, as part of a single precursor, the metal element is uniformly mixed to the molecular level and the necessity of alternate input of multiple precursors can be removed -6-(4) 200402479. An example of a polymetallic molecular precursor is tris (third butoxy-tris (third butoxy) titanium- (tBuO) 3Si—0-— when the subsequent reactants are the source of oxygen, which can be used to deposit silicon (Ti—Si-0) film. In one embodiment, the first ALD method includes at least a cycle including the following steps: (i) depositing a polymetal molecule into a deposition tank with a substrate; (ii) opposing the deposition tank Scrubbing gas; (a variety of reactant gases are introduced into the deposition tank; and (iv) by this method, the precursor of the polymetallic molecule is physically or chemically attracted to the surface, and the subsequent reactants are cleaved from any non-reactive substance from the precursor. A single layer of the desired multi-metal film is desired. The reactants can be any oxidation or mixtures of these and are selected to convert the physical- or chemical-to the desired type of multi-metal film. Repeat the cycle each time, increasing. In this way A flat and uniform film of a desired thickness and composition can be counted. In another feature of the present invention, a second type of ALD substrate is proposed to form a multi-metal film, which includes at least one cycle, including introducing a precursor gas mixture of metal molecules to In the preferred case containing a substrate, the precursor mixture packet Manufacture a uniform single-layer film metal element. By introducing gold as a part of the precursor of the mixture by a single pulse per cycle, the metal element can remove the necessity of alternate input of multiple precursors at the molecular level. A suitable example is two compounds A mixture of Hf (NEtMe) 2 and Si-when the subsequent reactant is the source of oxygen, it can use to ”group) silyl Ti (OtBu) 3 titanium acid one cycle, the gas is led to i U) gas. Attached to the substrate surface Ligands, retention agents or reducing agents Adsorbed precursors Add another single layer The micro-setting method is used to wrap the deposition tank in a cyclic step. All required elements are uniformly mixed and the precursor mixture (NEtMe) 2 is used to deposit a silicic acid -7- (5) (5) 200402479 bell (Hf-Si-Ο) film. In one embodiment, the first ALD method includes at least one cycle, and the cycle includes the following steps: (i) introducing a mixture of at least two different metal molecule precursors into the deposition tank; (ii) scrubbing the deposition tank (Iii) introducing the reactant gas to the deposition tank; and (iv) scrubbing the deposition tank. In this way, a mixture of precursors of the metal molecules is first physically- or chemically-adsorbed on the substrate surface, and subsequent reactants cleave any undesired ligands from the precursors, leaving a single layer of the desired polymetallic film. Likewise, the reactant may be any oxidizing or reducing agent or mixture thereof and is selected to convert a physical- or chemical-adsorbed precursor to a desired type of polymetallic membrane. Each cycle repeats, adding another single layer. In this way, a flat and uniform film and composition of a desired thickness can be obtained by a minimal designer. These two methods allow all metal components required to make a multi-metal film to be supplied in a single product or in a single pulse. Therefore, the present invention provides several advantages. First, the present invention drastically reduces the ALD cycle time and thereby increases the yield. Furthermore, the present invention forms a uniform film (such as a depositor), which eliminates the necessity of subsequent annealing. Third, the present invention improves performance by reducing the number of particles generated in the 'gas phase during the film deposition method. [Embodiment] Definition Here, the so-called `` metal rhenium '' is an element selected from the following elements in the periodic table:
Be ; Na ; Mg ; Al ; K ; Ca ; Sc ; Ti ; V ; Cr ; Mn ; Fe -8 - 200402479Be; Na; Mg; Al; K; Ca; Sc; Ti; V; Cr; Mn; Fe -8-200402479
;Co ; Ni ; Cu ; Zn ; Ga ; Ge ; Rb ; Sr ; Y ; Zr ; Nb ; Mo ;Tc ; Ru ; Rh ; Pd ; Ag ; Cd ; In ; Sn ; Sb ; Cs ; Ba ; La ;Hf; T a ; W; Re; Os; I r ; Pt; Au; Hg;Tl; Pb; Bi;Co; Ni; Cu; Zn; Ga; Ge; Rb; Sr; Y; Zr; Nb; Mo; Tc; Ru; Rh; Pd; Ag; Cd; In; Sn; Sb; Cs; Ba; La; Hf T a; W; Re; Os; I r; Pt; Au; Hg; Tl; Pb; Bi;
Po; Fr; Ra; A&; Ce; Pr; Nd; Pm; Sm; Eu; Gd; Tb; Dy; Ho; Er; Tm; Yb: Lu; Th; Pa; U; Np; Pu; Am; Cm; Bk; Cf; Es; Fm;Md; No 和 Lr。 此處所謂&類金屬〃是元素,其選自週期表中的下列 元素:B; Si; Ge; As; Sb;Te 和 At。 此處所謂v'金屬質〃是指有至少一種選自前述金屬和 類金屬的元素存在。 此處所謂 > 多金屬質〃是指有二或多種選自前述金屬 和類金屬的元素存在。 此處所謂 ''分子先質〃是指用以將原子或化學基團引 至基板上以形成膜的反應物。此分子先質物理-或化學吸 附於基板表面上,且必須以後續一或多種反應物修飾,以 製得所欲膜。 此處所謂 ''金屬分子先質〃是指含有至少一個元素選 自前述金屬和類金屬的分子先質。 此處所謂 ''多金屬分子先質〃是指含有至少二個元素 選自前述金屬和類金屬的分子先質。 此處交替使用的、、離去基〃和、配位基〃是指有金屬 #子先質中之以共價或非共價方式連接至其中之金屬組份 的原子或化學基。 'v氫來源〃是指其結構中含有反應性氫的任何化合物 (7) (7)200402479 ,包括氫氣之類,但不在此限。 〜氧來源〃是指其結構中含有反應性氧的任何化合物 ,包括原子態氧、氧氣、臭氧、水、醇、過氧化氫之類’ 但不在此限。 ''氮來源〃是指其結構中含有反應性氮的任何化合物 ,包括原子態氮、氮氣、氨、聯氨、烷基聯氨、烷基胺之 類,但不在此限。 此處所謂 ''多金屬膜〃是任何膜,其組份(未將任何 污染物列入)包括二或多個元素選自前面定義的金屬和類 金屬。代表性的多金屬膜包括,但不限於,金屬合金膜、 多金屬氧化物膜、多金屬氮化物膜和多金屬氧氮化物膜。 此處所謂 '金屬合金膜〃是基本上由前面定義的金屬 和/或類金屬元素形成的膜。 此處所謂 > 氧化物膜〃是指基本上由氧和至少一種前 面定義的金屬或類金屬形成的膜。 此處所謂 ''氮化物膜〃是指基本上由氮和至少一種前 面定義的金屬或類金屬形成的膜。 此處所謂''氧氮化物膜〃是指基本上由氧、氮和至少 一種前面定義的金屬或類金屬形成的膜。 槪述 本發明的一個特點中,多金屬分子先質用於ALD法 中,以於基板上澱積平整均勻的多金屬膜。另一特點中, 二或多種金屬分子先質之混合物用於ALD法中,以於基 -10- (8) (8)200402479 板上澱積平整均勻的多金屬膜。較佳情況中,這兩個實施 例中,製造多金屬膜所須所有金屬元素在各澱積循環中以 單一物或脈衝引入。 據此,本發明免除二或多種金屬先質交替脈衝的必要 性,並藉此提高產量。此外,除其他優點以外,本發明生 成均勻膜(如澱積者),藉此消除膜之後續退火的必要性 。本發明減少在膜澱積期間內,於氣相中生成的顆粒。 多金屬分子先質化合物 用以在基板上形成多金屬膜的第一個ALD法包含至 少一個循環,循環步驟包含將多金屬分子先質氣體引至含 有基板的澱積槽中。一個實施例中,在基板上形成多金屬 膜的方法包含至少一個循環,循環包含下列步驟:(i ) 將多金屬分子先質氣體引至含有基板的澱積槽中;(ii) 對澱積槽滌氣;(iii )將一或多種反應物氣體引至澱積槽 ;及(iv)對澱積槽滌氣。 多金屬分子先質的各個分子中含有製造所欲膜所須的 不同金屬元素。一個實施例中,多金屬分子先質包含下列 式: (L1 ) 3Μ]ΟΜ2 ( L2) b 其中Μ1和Μ2是不同金屬元素,各個l1和L2是離去 基(配位基)且可相同或相異,此處a和b分別是低於 M1和M2價數的整數,此處G選自單鍵、雙鍵、橋連原子 和橋連基團。 •11 - bb'b (9) 200402479 Μ1和Μ2可以是任何金屬元素,只要 同。作爲Μ1和Μ2的較,佳金屬元素包括 ,Al,K,C a 5 Sc,Ti,V,Cr,Μη,Fe Zn,Ga,Ge,As,Rb,Sr,Y,Zr,Nb, Pd,Ag,Cd,In,Sn,Sb,Te,Ba,La Re,Os,Ir,Pt,Au,Tl,Pb,Bi,Ce: Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu G可以是單鍵、雙鍵、橋連原子或橋 佳選擇包括單鍵(一)、氧橋(一 0 -) 、二級或三級胺橋(—NRS —)、硫橋( 或三級磷橋(—PRS ),此處Rs可以是氫 基。較佳情況中,Rs選自氫和C1 — C6烷^ L1和L2分別選自配位基且可相同或 述者可輕易確定適當配位基,此包括吞 ALD法之先質的配位基。在膜澱積期間 配位基,此因它們的化學鍵相當弱之故。 烷基、烷氧化物、鹵化物、氫化物、醯胺 化物、硝酸鹽、環戊二烯基、羰基、羧酸 的經取代同系物和它們的混合物。較佳情 中,使用相當小配位基,如:具1 一 1 2個 小配位基的化合物的蒸發溫度比含相對較 低。特定較佳配位基包括二甲基醯胺(-二乙基醯胺(N(CH2CH3)2)、甲基乙基 (一 N ( CH3 ) ( CH2CH3 ))、甲氧基(_ [M1和M2不相 Si,Li,Be,Mg ,Cο,Ni,Cu, Mo,Ru,Rh, ,Hf,Ta,W, ,P r,N d,S m, ,和 Th。 連基團。G的較 、氮橋(—N=) —S -)和二及 或任何已知取代 1 〇 相異。嫻於此技 P些已知可用於 內,移除所不欲 較佳配位基包括 、醯亞胺、疊氮 基、二酮及它們 況(但非必要) 原子者。含有較 大配位基者來得 N ( CH3 ) 2 )、 醯胺 一 OCH3 )、乙氧 (10) 200402479 基(一OCH2CH3 )和 丁氧基(一 O ( CH2 ) 3 ( CH2CH3 )) ο 變數a和b分別是低\於Μ1和Μ2價數的整數。較佳 情況中,a和b是分別比Μ1和Μ2價數低1的整數。更佳 情況中,a和b分別選自1、2和3。 一個實施例中,多金屬先質包含下式: (R!0) x ( R2R3N) 3- xSi - O - M ( OR4 ) y ( NR5R6) v-y 其中、R2、R3 ' R4、R5和R6分別選自H、F、 C1 — C6烷基和經取代的Cl — C6烷基,M選自Si.,Li,Po; Fr; Ra; A &;Ce;Pr;Nd;Pm;Sm;Eu;Gd;Tb;Dy;Ho;Er;Tm; Yb: Lu; Th; Pa; U; Np; Pu; Am; Cm Bk; Cf; Es; Fm; Md; No and Lr. The so-called & metalloid is an element selected from the following elements in the periodic table: B; Si; Ge; As; Sb; Te and At. The term "v 'metal" means that at least one element selected from the aforementioned metals and metalloids is present. The > polymetallic hafnium here refers to the presence of two or more elements selected from the aforementioned metals and metalloids. The term “molecular precursor” refers to a reactant used to introduce atoms or chemical groups onto a substrate to form a film. This molecular precursor is physically-or chemically adsorbed on the substrate surface and must be modified with one or more subsequent reactants to produce the desired membrane. The "metal molecular precursor" herein refers to a molecular precursor containing at least one element selected from the aforementioned metals and metalloids. The "polymetallic molecular precursor" herein refers to a molecular precursor containing at least two elements selected from the aforementioned metals and metalloids. As used herein, "leaving group" and "coordination group" refer to the atomic or chemical group of the metal component in the metal #progeny which is covalently or non-covalently connected thereto. 'v Hydrogen source 〃 refers to any compound containing reactive hydrogen in its structure (7) (7) 200402479, including but not limited to hydrogen. ~ Oxygen source 〃 refers to any compound containing reactive oxygen in its structure, including atomic oxygen, oxygen, ozone, water, alcohol, hydrogen peroxide, etc., but is not limited thereto. '' Nitrogen source '' refers to any compound that contains reactive nitrogen in its structure, including, but not limited to, atomic nitrogen, nitrogen, ammonia, hydrazine, alkylhydrazine, and alkylamines. The so-called "multi-metal film" here is any film whose component (without any contaminants) includes two or more elements selected from the metals and metalloids previously defined. Representative multi-metal films include, but are not limited to, metal alloy films, multi-metal oxide films, multi-metal nitride films, and multi-metal oxynitride films. The "metal alloy film" referred to herein is a film formed substantially of a metal and / or a metalloid element as previously defined. The > oxide film 此处 here means a film which is basically formed of oxygen and at least one metal or metalloid previously defined. The term "nitride film" as used herein refers to a film formed substantially of nitrogen and at least one metal or metalloid previously defined. The `` oxynitride film '' as used herein refers to a film formed substantially of oxygen, nitrogen, and at least one of the previously defined metals or metalloids. Introduction In a feature of the present invention, a polymetallic molecular precursor is used in an ALD method to deposit a flat and uniform polymetal film on a substrate. In another feature, a mixture of two or more metal molecule precursors is used in the ALD method to deposit a flat and uniform multi-metal film on a base -10- (8) (8) 200402479 plate. Preferably, in these two embodiments, all metal elements required for manufacturing the multi-metal film are introduced as a single object or pulse in each deposition cycle. Accordingly, the present invention obviates the need for alternating pulses of two or more metal precursors, and thereby increases yield. In addition, among other advantages, the present invention produces a uniform film (such as a depositor), thereby eliminating the need for subsequent annealing of the film. The present invention reduces particles generated in the gas phase during film deposition. Polymetallic molecular precursor compound The first ALD method for forming a polymetallic film on a substrate includes at least one cycle, and the cyclic step includes introducing a polymetallic molecular precursor gas into a deposition tank containing the substrate. In one embodiment, the method for forming a multi-metal film on a substrate includes at least one cycle, and the cycle includes the following steps: (i) introducing a multi-metal molecular precursor gas into a deposition tank containing the substrate; (ii) depositing Tank scrubbing; (iii) introducing one or more reactant gases to the deposition tank; and (iv) scrubbing the deposition tank. Each of the molecules of the polymetallic precursor contains different metal elements necessary to make the desired membrane. In one embodiment, the polymetallic molecule precursor comprises the following formula: (L1) 3M] OM2 (L2) b where M1 and M2 are different metal elements, and each l1 and L2 are leaving groups (coordinating groups) and may be the same or Different, where a and b are integers lower than M1 and M2 respectively, where G is selected from single bonds, double bonds, bridged atoms and bridged groups. • 11-bb'b (9) 200402479 M1 and M2 can be any metal element as long as they are the same. As a comparison of M1 and M2, the preferred metal elements include Al, K, Ca 5 Sc, Ti, V, Cr, Mn, Fe Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce: Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu G can be a single bond, a double bond, a bridged atom, or a bridge. Choices include single bond (one), oxygen bridge (one 0-), secondary or tertiary amine bridge (—NRS —), sulfur bridge (or tertiary Phosphate bridge (—PRS), where Rs may be a hydrogen group. Preferably, Rs is selected from hydrogen and C1-C6 alkyl ^ L1 and L2 are each selected from a ligand and may be the same or the appropriate formula may be easily determined This includes the ligands that swallow the precursors of the ALD method. The ligands during film deposition are due to their relatively weak chemical bonds. Alkyl, alkoxide, halide, hydride, amidine Substituted homologues of compounds, nitrates, cyclopentadienyl, carbonyl, and carboxylic acids and their mixtures. Preferably, relatively small ligands are used, such as those with 1 to 12 small ligands Compounds evaporate at a lower temperature than Specific preferred ligands include dimethylamidamine (-diethylamidamine (N (CH2CH3) 2), methylethyl (mono-N (CH3) (CH2CH3)), methoxy (-[M1 and M2 is not compatible with Si, Li, Be, Mg, Co, Ni, Cu, Mo, Ru, Rh,, Hf, Ta, W,, Pr, N d, S m,, and Th. Linking group. G Comparison, nitrogen bridge (—N =) —S-) and two or any of the known substitutions 10 are different. Skilled in this technology, some known can be used in the removal of undesired better ligands including, Fluorenimine, azide, dione and their (but not necessary) atoms. Those with larger ligands can be N (CH3) 2), hydrazine-OCH3), ethoxy (10) 200402479 group ( OCH2CH3) and butoxy (O (CH2) 3 (CH2CH3)). The variables a and b are integers lower than M1 and M2 valences, respectively. Preferably, a and b are integers which are 1 less than the valence of M1 and M2, respectively. More preferably, a and b are selected from 1, 2 and 3, respectively. In one embodiment, the polymetallic precursor includes the following formula: (R! 0) x (R2R3N) 3- xSi-O-M (OR4) y (NR5R6) vy wherein R2, R3 'R4, R5, and R6 are selected separately From H, F, C1-C6 alkyl and substituted Cl-C6 alkyl, M is selected from Si., Li,
Be,Mg,Al,K ,Ca ,Sc ,Ti ,V, Cr ,Mn ,F e ,Co, ,Ni ,Cu,Zn,Ga, G e, As, Rb, Sr, Y, ,Zr, Nb, Mo, Ru ,Rh,P d,A g, Cd, In, S n, Sb, Te ,B a,La ,Hf, Ta ,W,Re,Os,Ir,Pt,Au,Tl,Pb,Bi,Ce,Pr,Nd, Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,和 Th,x 選自1、2和3,y是小於或等於v的整數,而v是比M 的價數小1的整數。R2、R3、R5和R6的較佳選擇是甲基 和乙基。R1和R4的較佳選擇是甲基、乙基、丙基和丁基 。Μ的較佳選擇是Ti、Zr和Hf,此時,v選自整數1、2 和3 〇 多金屬分子先質的適當例是三(第三丁氧基)甲矽烷 基一二(第二丁氧基)欽 ((tBuO) 3Si — 〇—Ti(〇tBu) 3),其可用以澱積矽酸 鈦(Ti 一 Si - 〇 )。 附圖ΙΑ、1B和1C顯示可用以使多金屬分子先質在 -13- (11) 200402479 基板上澱積均勻平整膜的各式各樣方法。附圖1 A、1 B和 1C所示者是ALD套組100的簡化截面圖。此ALD套組 1〇〇包含澱積槽101。在澱積槽101內的是基板或晶圓 102。欲於晶圓102上澱積所欲厚度的均勻平整膜103。 連接至澱積槽1 〇 1的是一或多個供料管線,用以供應多金 屬分子先質蒸汽110、稀釋氣體120和反應物氣體130至 澱積槽1 〇 1 〇 基板1 02可以是於所用加工溫度安定之具金屬或親水 表面的任何材料。嫻於此技術者熟知適當材料。較佳基板 102包括矽晶圓。基板102可經事先處理以輸入、去除及 標準化化學品補充和/或此基板1 02表面性質。例如,矽 晶圓於外露表面上形成二氧化矽。希望有少量二氧化矽, 因爲其吸引金屬先質至表面。但不希望有大量二氧化矽。 在欲形成層以代替二氧化矽時特別是如此。因此,通常去 除矽晶圓表面上的二氧化矽,例如:在膜形成之前,藉氟 化氫(HF )氣體處理。之後在以標準氧化法(如:.藉暴 於臭氧)形成膜之前,再引入標準化的薄二氧化矽表層.( 僅數埃厚)。 多金屬分子先質蒸汽包含蒸汽化的化合物,其式 爲(L1 ) aM^GM2 ( L2 ) b,其中 Μ1、Μ2、G、’ L1、L2、a 和b如前述者。此化合物於室溫爲液體或固體。此化合物 可溶解於固體中。較佳情況中,此化合物是液體或溶解於 液體中。可藉固態或液態化合物於蒸發器中直接蒸發(有 或無溶劑)或藉由使用氣泡機而生成先質蒸汽1 1 0。 -14 - (12) 200402479 稀釋氣體1 2 0可以晏任何非反應性氣體或非 體混合物(包括一或多種惰性氣體)。典型非反 包括 Ar、He、Ne、.Xe 和 N2。 反應物氣體1 3 0可以是任何還原劑或氧化劑 混合物。因此,在附圖1 B中’反應物氣體1 3 0 13 〇 /,在附圖1C中,反應性氣體1 3 0是氧化劑 劑1 3 0 /或氧化劑1 3 0 〃於室溫可爲氣體或液體 體形式引至澱積槽101。基於所欲多金屬膜本質 應物氣體1 3 0本質。 附圖1A、1B和1 C中,在ALD條件下,在 上形成所欲厚度的金屬膜1 03。多金屬分子先質 與反應物氣體130 (其可爲氧化劑13〇 /或還原 )反應,以形成膜103。 更特定言之,晶圓1 〇2置於澱積槽1 〇 1中時 1 01中沒有氣體,晶圓102受熱至設定澱積溫度 度可由約100°C至600°C,但以約3 00 °C至5 00 t: 後引入流率穩定的稀釋氣體 120,如:Ar、He 或N2。引入稀釋氣體120至設定加工壓力(約 耳至10托耳,以約200毫托耳至1.5托耳爲佳 壓力。達穩定壓力並經過足夠時間以自晶圓表面 氣體之後,開始ALD循環。 第一個步驟中,開啓適當閥,多金屬分子 1 1 〇引至澱積槽1 0 1中。先質氣體1 1 0的蒸汽流 lsccm 至 lOOOsccm,但以約 5sccm 至 lOOsccm 反應性氣 應性氣體 或它們的 是還原劑 ,,。還原 ,但以氣 ,選擇反 晶圓1 0 2 氣體1 1 0 劑 1 30 " ,澱積槽 。源積溫 爲佳。之 、Ne 、 Xe 100毫托 )以提高 抽除殘留 先質蒸汽 率可由約 爲佳。先 -15- (13) (13)200402479 質蒸汽.1 1 0可藉稀釋氣體1 20稀釋。這樣的情況中,稀釋 氣體120流率可由約10〇sccm至i〇〇〇sccm。使用氣泡機 或藉由使液體或固體於蒸發器中蒸發,會產生先質蒸汽。 先質氣體11 〇的脈衝時間可由約ο. ο 1秒至1 〇秒,但以約 0 · 0 5秒至2秒爲佳。脈衝終了時。先質蒸汽!丨0停止進入 槽,此藉由將先質蒸汽1 1 0流導向廢氣管線(使液體直接 蒸發)或轉向環繞氣泡機而達成。 第二個步驟中,澱積槽1 0 1滌氣達適當時間。較佳情 況中,滌氣期間內,非反應性氣體1 20經由蒸汽輸送管線 流至槽101中。例如,非反應性稀釋氣體120可以是He 、Ne、Ar、Xe或N2。此步驟中所用的非反應性氣體12 0 量以與先質蒸汽110脈衝步驟期間內的先質氣體110總流 率相同爲佳。蒸汽滌氣時間可由約0.1秒至1 0秒,但以 約〇. 5秒至5秒爲佳。或者,可藉由將過量先質氣體1 1 0 抽離槽1 〇 1及額外將非反應性氣體1 20輸送至槽1 0 1中或 以非反應性氣體1 20代替地達到滌氣的目的。抽取通常伴 隨使用真空或低壓以利排放。 第三個步驟中,在蒸汽滌氣終了時,反應劑氣流130 進入澱積槽1 〇 1。視所欲澱積材料選擇反應物氣體13 0並 且可以是,如:還原劑1 30 /或氧化劑1 3 0 〃 。反應物氣 體 130流率可由約 lOOsccm至 2000sccm,但以在約 2 00 seem至1 000 seem範圍內爲佳。反應劑氣體130的脈 衝時間可由0.1秒至1 〇秒,但以由〇 · 5秒至3秒爲佳。 循環的第四和最後一個步驟中,在反應物氣體1 3 0脈 -16- (14) (14)200402479 衝完全之後,槽l 〇 1以非反應性氣體1 20滌氣。例如,非 反應性氣體1 2 0可以是H e、N e、A r、X e或N 2。非反應 性氣體120满氣流率以與在反應物氣體130脈衝期間內通 過反應物輸送管線的反應氣體1 3 0總流率相同爲佳。或者 ,可藉由將過量反應物氣體1 3 0抽離槽1 0 1及額外將非反 應性氣體120輸送至槽101中或以非反應性氣體120代替 地達到滌氣的目的。 此完成ALD法的一個循環並生成平整均勻的所欲膜 單層。之後重覆此循環直到獲致所欲膜厚度爲止。 如所述者,視所欲澱積材料地選擇反應物氣體130, 其可爲,如:還原劑130 /或氧化劑130〃 。參考附圖2A 、2B、2C和2D作更詳細的說明。 附圖2A、2B、2C和2D與附圖1只有三個不同處。 首先,多金屬分子先質2 1 0具下列式: (R】0) u ( R2R3N) t - UM】 —0 - M2 ( OR4) y ( NR5R6) v — y 其中 Μ1、M2、R1、R2 ' R3、R4、R5、R6、v 和 y 如 前面之定義,u是低於或等於t的整數,t是比M1價數少 1的整數。第二,所用反應物氣體分別是氫來源2 3 1、氧 來源232、氮來源2 33或氧來源232和氮來源233之組合 。第三,澱積膜分別是金屬合金膜204、多金屬氧化物膜 205、多金屬氮化物膜206和多金屬氧氮化物膜207。 附圖2A中,金屬合金膜204製自先質210和氫來源 2 3 1脈衝。適當氫來源2 3 1包括氫(H2 )氣。此方法的各 次循環激積單層金屬合金膜204。一個實施例中,先質 -17- (15) (15)200402479 210式中的Μ2是矽,所得膜具式(Μ1 — Si ),其中Μ1如 前面之定義。例如,如果先質2 1 0式中的Μ1和Μ2選用 的金屬元素分別是給和矽,則澱積矽化給(Hf- Si )膜。 如果多金屬先質中的B是共價鍵,此方法的操作性亦佳。 附圖2B中,多金屬氧化物膜205製自先質210和氧 來源23 2之脈衝。適當氧來源232包括,但不限於原子態 氧(0)、氧氣(〇2)、臭氧(〇3)、水蒸汽(H20)、 過氧化氫(H202 )、醇、一氧化氮(NO )和一氧化二氮 (N2〇 )。臭氧是較佳氧來源,這是因爲其可於較低溫度 反應及減少所得膜中的污染物量之故。各次循環澱積單層 氧化物膜205。一個實施例中,先質210式中的M2是矽 ,所得膜具式(Μ 1 — Si — Ο ),其中 Μ 1如前面之定義。 例如,如果先質2 1 0中的Μ1和Μ2選用的金屬元素分別 是鈴和矽,那麼會澱積矽酸給(Hf - Si — Ο )膜。如果多 金屬先質中的B是共價鍵,此方法的操作性亦佳。 附圖2C中,多金屬氮化物膜206製自先質210和氮 來源23 3之脈衝。適當氮來源包括,但不限於原子態氮( N )、氮氣(N2 )、氨(NH3 )、聯氨(H2NNH2 )、烷基 聯氨、烷基胺及它們的混合物。一個實施例中,先質2 1 0 式中的M2是矽,所得膜具式(M1 - Si — N),其中Μ1如 前面之定義。例如,如果先質210中的Μ1和Μ2選用的 金屬元素分別是鉬和矽,那麼會殿積氮化矽鉅(T a - S i -N )膜。如果多金屬先質中的B是共價鍵或二級或三級胺 ,此方法的操作性亦佳。 -18- (16) (16)200402479 附圖2D中’多金屬氧氮化物膜207製自先質210、 氧來源2 3 2和氮來源2 3 3之脈衝。適當氧和氮來源包括前 述關.·於附圖2 B和2 e Φ戶斤§寸目侖者1 ° 一*個I貫施例Φ ’先質 210式中的M2是砂’所得膜具式(M1 - Si— 0—N) ’其 中Μ 1如前面之定義。例如’如果先質2 1 0中的M1和M2 M @金屬元素分別是鈦和矽,那麼會澱積氧氮化矽鈦( T i - S i - 〇 - N )膜。 本:¾明的多金屬分子先質可以包含兩種以上的金屬元 素。例如,具有三和四種金屬元素的多金屬分子先質可分 別以下列式表示: (L1) al^G1!^2 ( L2) bG2M3 ( L3) c 和 (L1) aM'G'M2 ( L2) bG2M3 ( L3 ) CG3M4 ( L4 ) d 其中Μ1、M2、L1、L2、a和b如前面之定義,M3和 M4是金屬元素,其可相同和/或可與M1或M2相同,此 處L3和L4是配位基,c和d分別選自低於Μ3和Μ4價數 的整數,G]、G2和G3分別選自單鍵、雙鍵、橋連原子和 橋連基團。但是’通常,隨著先質越來越大,難以維持於 溶液中及汽化。此外,隨著先質變大,其穩定性成爲重要 考量。據此,希望使用僅含兩種金屬元素的多金屬先質。 多金屬分子先質可以與其他多金屬和/或金屬先質混 合以製造金屬組份比例經調整的均勻膜。例如, (tBuO ) 3Si-0— Ti(〇tBu) 3 和 (tBuO ) 3Si — Ο — Si ( OtBu ) 3Si 的 5 0 : 5 0 混合物應會得 到矽/鈦比爲4 : 1的均勻膜。或者, -19- (17) (17)200402479 (tBuO ) 3Si— 0— Ti(〇tBu) 3 和(tBuO) 4S1 的 50: 50 混合物應會得到矽/鈦比爲3 : 1的均勻膜。較佳情況中 ,這樣的實施例中,|先質在蒸發之前於溶劑相中混合’或 在蒸發之後以氣相混合,並同時引至澱積槽中。此外’這 樣的實施例中,以選用類似配位基用於不同先質爲佳’選 用相同配位基更佳。使用類似或相同配位基有助於使不同 先質於類似條件下均勻溶解於單一溶劑中。 此外,多金屬分子先質可用於ALD法而分多個脈衝 地引入其他先質。此非較佳實施例,這是因爲此無法含括 本發明使先質於單一步驟中引入所獲致的全部優點。雖然 如此,在任何 ALD法中使用多金屬分子會統一所須脈衝 數並進一步統一所得膜的均勻度。據此,如果ALD法使 用多金屬分子先質,亦包括以個別脈衝引入其他先質的 ALD 法。 多金屬分子先質混合物 本發明的另一特點中,在基板上形成多金屬膜的第二 種ALD法包含至少一個循環,其循環步驟包含:將金屬 分子先質氣體混合物引至含有基板的澱積槽中。一個實施 例中’第二種ALD法包含至少一個循環,循環包含下列 步驟:(i )將至少兩種不同多金屬分子先質之混合物引 至激積槽中;(i i )對澱積槽滌氣;(Π i )將反應物氣體 引至澱積槽;及(iv)對澱積槽滌氣。 以附圖3說明此方法的此實施例。附圖3與附圖1 a -20- (18) (18)200402479 相同,.但使用金屬先質3 1 0之蒸汽混合物代替多金屬分子 先質蒸汽1 1 0。類似地,第二種方法中的步驟與第一種方 法中所用者相同,但循環的第一個步驟使用金屬先質蒸汽 混合物3 1 0,而非多金屬分子先質1 1 〇。 各金屬先質的分子內含有製造所欲膜所須金屬元素。 一個實施例中,混合物中的金屬先質具下列式: (L1 ) wM1 和 M2 ( L2 ) z 其中 Μ1和 Μ2 是不同金 屬元素,各個 L1和 L2是配 位 基且 可相 同或不同 ,w和 z分別是低於或等於Μ 1和M2 價 數的 整數 0 如所: 述者, Μ1 和Μ 2可 以是任何金屬 元素 ,只要: Μ1 和Μ :2不相同即 可。 作爲 Μ1 和M2的較佳金屬元 素包括 Si ,Li ,Be ,Mg ,A1 ,Κ, Ca ,Sc , Ti , V , Cr, Μη,Fe > Co, Ni, Cu, Zn, G a, Ge ,As , Rb , Sr ,Y, Zr,Nb Mo, Ru, Rh, Pd, Ag, Cd ,In,S n,S b, Te, B a,L a 5Be, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Th, x are selected from 1, 2, and 3, y is an integer less than or equal to v, and v is An integer that is one less than the valence of M. Preferred choices for R2, R3, R5 and R6 are methyl and ethyl. The preferred choices for R1 and R4 are methyl, ethyl, propyl and butyl. The preferred choice of M is Ti, Zr, and Hf. In this case, a suitable example of v is selected from the integers 1, 2, and 30. A suitable example of a polymetallic molecular precursor is tris (third-butoxy) silyl-12 (second Butoxy) zinc ((tBuO) 3Si — 0 —Ti (〇tBu) 3), which can be used to deposit titanium silicate (Ti—Si—〇). FIGS. 1A, 1B, and 1C show various methods that can be used to deposit a polymetallic molecular precursor on a -13- (11) 200402479 substrate to deposit a uniform and flat film. 1, 1 B and 1C are simplified cross-sectional views of an ALD kit 100. The ALD kit 100 includes a deposition tank 101. Within the deposition tank 101 is a substrate or wafer 102. It is intended to deposit a uniform planarizing film 103 of a desired thickness on the wafer 102. Connected to the deposition tank 100 is one or more supply lines for supplying polymetallic molecular precursor vapor 110, a diluent gas 120, and a reactant gas 130 to the deposition tank 100. The substrate 102 may be Any material with a metallic or hydrophilic surface that is stable at the processing temperature used. Those skilled in the art are familiar with suitable materials. The preferred substrate 102 includes a silicon wafer. The substrate 102 may be pre-processed to input, remove, and standardize chemical supplements and / or surface properties of the substrate 102. For example, silicon wafers form silicon dioxide on exposed surfaces. A small amount of silicon dioxide is desirable because it attracts metal precursors to the surface. However, it is not desirable to have a large amount of silicon dioxide. This is especially true when it is desired to form a layer in place of silicon dioxide. Therefore, the silicon dioxide on the surface of the silicon wafer is usually removed, for example, it is treated with a hydrogen fluoride (HF) gas before the film is formed. Later, before the film is formed by standard oxidation methods (eg, by exposure to ozone), a standardized thin silicon dioxide surface layer is introduced (only a few angstroms thick). The polymetallic molecular precursor vapor contains a vaporized compound having the formula (L1) aM ^ GM2 (L2) b, where M1, M2, G, 'L1, L2, a, and b are as described above. This compound is liquid or solid at room temperature. This compound is soluble in solids. Preferably, the compound is a liquid or is dissolved in a liquid. The precursor vapor can be generated by solid or liquid compounds directly in the evaporator (with or without solvent) or by using a bubbler. -14-(12) 200402479 Dilution gas 1 2 0 can be any non-reactive gas or non-reactive gas mixture (including one or more inert gases). Typical non-reverse include Ar, He, Ne, .Xe, and N2. The reactant gas 1 3 0 can be any reducing agent or oxidant mixture. Therefore, in FIG. 1B, 'reactant gas 1 3 0 13 〇 /, in FIG. 1C, the reactive gas 1 3 0 is an oxidizing agent 1 3 0 / or oxidizing agent 1 3 0, which can be a gas at room temperature. Or, it is introduced into the deposition tank 101 in the form of a liquid body. Based on the nature of the desired polymetallic film, the nature of the material gas 1 3 0. In FIGS. 1A, 1B, and 1C, a metal film 103 of a desired thickness is formed on ALD under ALD conditions. The polymetallic molecular precursor reacts with a reactant gas 130 (which may be an oxidizing agent 13 / or reduction) to form a film 103. More specifically, there is no gas in 101 when wafer 102 is placed in the deposition tank 101, and wafer 102 is heated to a set deposition temperature from about 100 ° C to 600 ° C, but at about 3 ° C. 00 ° C to 5 00 t: The diluent gas with stable flow rate 120 is introduced afterwards, such as: Ar, He or N2. Introduce the diluent gas 120 to the set processing pressure (about ear to 10 Torr, preferably about 200 millitorr to 1.5 Torr. After reaching the stable pressure and enough time to get the gas from the wafer surface, start the ALD cycle. In one step, the appropriate valve is opened, and the polymetallic molecules 110 are introduced into the deposition tank 101. The steam flow of the precursor gas 1 110 is lsccm to 1000sccm, but the reactive gas should be about 5sccm to 100sccm. Or they are reducing agents, reducing, but using gas, select reverse wafer 1 2 gas 1 1 0 agent 1 30 " deposition tank. Source temperature is better. Ne, Xe 100 millitorr) In order to improve the extraction rate of residual precursor vapor, it is better. First -15- (13) (13) 200402479 mass steam. 1 1 0 can be diluted by diluent gas 1 20. In such a case, the flow rate of the diluent gas 120 may be from about 100 sccm to about 1000 sccm. Using a bubbler or by evaporating a liquid or solid in an evaporator, precursor vapors are generated. The pulse time of the precursor gas 11 〇 may range from about ο. Ο 1 second to 10 seconds, but preferably about 0. 05 seconds to 2 seconds. At the end of the pulse. Precursor Steam!丨 0 stops entering the tank. This is achieved by directing the flow of precursor vapor 110 to the exhaust line (to allow the liquid to evaporate directly) or by turning around the bubbler. In the second step, the deposition tank 101 was scrubbed for an appropriate time. Preferably, during the scrubbing period, the non-reactive gas 1 20 flows into the tank 101 through the steam transfer line. For example, the non-reactive diluent gas 120 may be He, Ne, Ar, Xe, or N2. The amount of non-reactive gas 12 0 used in this step is preferably the same as the total flow rate of the precursor gas 110 during the precursor vapor 110 pulse step. The steam scrubbing time may be from about 0.1 seconds to 10 seconds, but preferably from about 0.5 seconds to 5 seconds. Alternatively, the purpose of scrubbing can be achieved by extracting excess precursor gas 1 1 0 from the tank 1 0 1 and additionally transporting the non-reactive gas 1 20 to the tank 1 0 1 or by replacing the non-reactive gas 1 20. . Pumping is usually accompanied by the use of vacuum or low pressure to facilitate venting. In the third step, at the end of the steam scrubbing, the reactant gas stream 130 enters the deposition tank 101. Depending on the material to be deposited, the reactant gas 13 0 is selected and can be, for example, a reducing agent 1 30 / or an oxidizing agent 13 0 〃. The reactant gas 130 flow rate may be from about 100 sccm to 2000 sccm, but preferably in the range of about 200 seem to 1 000 seem. The pulse time of the reactant gas 130 may be from 0.1 seconds to 10 seconds, but preferably from 0.5 seconds to 3 seconds. In the fourth and last steps of the cycle, after the reactant gas 130 pulses -16- (14) (14) 200 402 479 is completely flushed, the tank 101 is purged with the non-reactive gas 120. For example, the non-reactive gas 1 2 0 may be He, Ne, Ar, Xe, or N2. The full flow rate of the non-reactive gas 120 is preferably the same as the total flow rate of the reaction gas 130 passing through the reactant transport line during the 130 pulse period of the reactant gas. Alternatively, the purpose of scrubbing can be achieved by extracting an excess of reactant gas 130 from the tank 101 and additionally transporting the non-reactive gas 120 to the tank 101 or replacing the non-reactive gas 120. This completes one cycle of the ALD process and produces a flat and uniform monolayer of the desired film. This cycle is then repeated until the desired film thickness is achieved. As mentioned, the reactant gas 130 is selected depending on the material to be deposited, which may be, for example, a reducing agent 130 / or an oxidizing agent 130〃. A more detailed description will be made with reference to Figs. 2A, 2B, 2C and 2D. Figures 2A, 2B, 2C and 2D differ from Figure 1 only in three ways. First, the polymetallic precursor 2 1 0 has the following formula: (R) 0) u (R2R3N) t-UM] —0-M2 (OR4) y (NR5R6) v — y where M1, M2, R1, R2 ' R3, R4, R5, R6, v and y are as defined above, u is an integer less than or equal to t, and t is an integer less than the valence of M1. Second, the reactant gases used are hydrogen source 231, oxygen source 232, nitrogen source 233, or a combination of oxygen source 232 and nitrogen source 233, respectively. Third, the deposited films are a metal alloy film 204, a polymetal oxide film 205, a polymetal nitride film 206, and a polymetal oxynitride film 207, respectively. In FIG. 2A, the metal alloy film 204 is made from a precursor 210 and a hydrogen source 2 31 pulse. Suitable sources of hydrogen 2 3 1 include hydrogen (H2) gas. The single-layer metal alloy film 204 is polarized in each cycle of this method. In one embodiment, M2 in the formula -17- (15) (15) 200402479 210 is silicon, and the obtained membrane has formula (M1-Si), where M1 is as defined above. For example, if the metal elements M1 and M2 in the precursor 2 10 formula are silicon and silicon, respectively, a siliconized silicon (Hf-Si) film is deposited. If B in the polymetallic precursor is a covalent bond, the operability of this method is also good. In Fig. 2B, the polymetal oxide film 205 is made from pulses of a precursor 210 and an oxygen source 23 2. Suitable sources of oxygen 232 include, but are not limited to, atomic oxygen (0), oxygen (〇2), ozone (〇3), water vapor (H20), hydrogen peroxide (H202), alcohol, nitric oxide (NO), and Nitrous oxide (N20). Ozone is the preferred source of oxygen because it can react at lower temperatures and reduce the amount of contaminants in the resulting membrane. A single-layer oxide film 205 is deposited in each cycle. In one embodiment, M2 in the precursor 210 is silicon, and the obtained membrane has the formula (M 1 —Si — 0), where M 1 is as defined above. For example, if the metal elements selected for M1 and M2 in the precursor 2 10 are boll and silicon, respectively, silicic acid will be deposited to the (Hf-Si — 0) film. If B in the polymetallic precursor is a covalent bond, the operability of this method is also good. In Fig. 2C, a polymetal nitride film 206 is made from a pulse of a precursor 210 and a nitrogen source 23 3. Suitable nitrogen sources include, but are not limited to, atomic nitrogen (N), nitrogen (N2), ammonia (NH3), hydrazine (H2NNH2), alkylhydrazine, alkylamines, and mixtures thereof. In one embodiment, M2 in the precursor 2 1 0 formula is silicon, and the obtained membrane has formula (M1-Si — N), where M1 is as defined above. For example, if the metal elements selected for M1 and M2 in the precursor 210 are molybdenum and silicon, respectively, then a silicon nitride giant (T a-Si -N) film will be deposited. If B in the polymetallic precursor is a covalent bond or a secondary or tertiary amine, this method is also more operable. -18- (16) (16) 200402479 In FIG. 2D, the 'multi-metal oxynitride film 207 is made from the pulses of the precursor 210, the oxygen source 2 3 2 and the nitrogen source 2 3 3. Appropriate sources of oxygen and nitrogen include the foregoing. In Figures 2B and 2e, Φ § ° 寸 仑 仑 仑 目 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 仑 贯 I 贯 贯 贯 Example I Φ 'M2 in the precursor 210 formula is sand' film Formula (M1-Si-0-N) 'where M 1 is as defined above. For example, 'if the M1 and M2 M @ metal elements in the precursor 2 10 are titanium and silicon, respectively, then a titanium silicon oxynitride (T i-Si-0-N) film is deposited. Ben: The polymetallic molecular precursors can contain more than two metal elements. For example, a polymetallic molecular precursor with three and four metal elements can be expressed by the following formulas: (L1) al ^ G1! ^ 2 (L2) bG2M3 (L3) c and (L1) aM'G'M2 (L2 ) bG2M3 (L3) CG3M4 (L4) d where M1, M2, L1, L2, a, and b are as defined above, M3 and M4 are metal elements, which may be the same and / or may be the same as M1 or M2, where L3 And L4 are ligands, c and d are selected from integers lower than M3 and M4, respectively, and G], G2 and G3 are selected from single bonds, double bonds, bridged atoms and bridged groups, respectively. But generally, as the precursor becomes larger, it becomes difficult to maintain in solution and vaporize. In addition, as the precursor becomes larger, its stability becomes an important consideration. Accordingly, it is desirable to use a polymetallic precursor containing only two metal elements. The polymetallic molecular precursor can be mixed with other polymetals and / or metal precursors to produce a uniform film with a modified metal component ratio. For example, a 50:50 mixture of (tBuO) 3Si-0—Ti (〇tBu) 3 and (tBuO) 3Si— 0—Si (OtBu) 3Si should result in a uniform film with a silicon / titanium ratio of 4: 1. Alternatively, a 50:50 mixture of -19- (17) (17) 200402479 (tBuO) 3Si-0-Ti (〇tBu) 3 and (tBuO) 4S1 should give a uniform film with a silicon / titanium ratio of 3: 1. In a preferred case, in such an embodiment, the | precursor is mixed in the solvent phase before evaporation 'or is mixed in the gas phase after evaporation, and is simultaneously introduced into the deposition tank. In addition, in such an embodiment, it is better to use similar ligands for different precursors, and it is better to use the same ligands. The use of similar or identical ligands helps to dissolve different precursors in a single solvent under similar conditions. In addition, polymetallic molecular precursors can be used in the ALD method to introduce other precursors in multiple pulses. This is not a preferred embodiment because it does not include all the advantages of the present invention introduced in a single step. Nonetheless, the use of polymetallic molecules in any ALD method will unify the required pulse number and further unify the uniformity of the resulting film. Accordingly, if the ALD method uses a polymetallic molecular precursor, it also includes an ALD method in which other precursors are introduced with individual pulses. Polymetallic molecular precursor mixture In another feature of the present invention, the second ALD method for forming a polymetallic film on a substrate includes at least one cycle, and the circulation step includes: introducing a mixture of metal molecular precursor gases to a substrate containing Product slot. In one embodiment, the 'second ALD method includes at least one cycle, and the cycle includes the following steps: (i) introducing a mixture of at least two different polymetallic molecular precursors into a deposition tank; (ii) cleaning the deposition tank (Ii) introducing reactant gas to the deposition tank; and (iv) scrubbing the deposition tank. This embodiment of the method will be described with reference to FIG. 3. Figure 3 is the same as Figure 1a -20- (18) (18) 200402479, but a steam mixture of the metal precursor 3 1 0 is used instead of the polymetallic molecule precursor 1 1 0. Similarly, the steps in the second method are the same as those used in the first method, but the first step of the cycle uses a metal precursor vapor mixture 3 1 0 instead of a polymetallic molecular precursor 1 1 0. The molecules of each metal precursor contain the metal elements required to make the desired film. In one embodiment, the metal precursor in the mixture has the following formula: (L1) wM1 and M2 (L2) z where M1 and M2 are different metal elements, each L1 and L2 are ligands and may be the same or different, w and z is an integer 0 which is less than or equal to the valences of M 1 and M2, respectively. As mentioned above, M1 and M2 can be any metal element, as long as: M1 and M: 2 are different. Preferred metal elements as M1 and M2 include Si, Li, Be, Mg, A1, K, Ca, Sc, Ti, V, Cr, Mη, Fe > Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, B a, L a 5
Hf,Ta,W,Re,Os,Ir,Pt,Au,Tl,Pb,Bi,Ce,Pr ,Nd,Sni’Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu, 和Th 〇 如所述者,各個L1和L2分別選自配位基並可相同或 相異。嫻於此技術者能夠無困難地選擇適當配位基,且這 些配位基包括已知可作爲ALD法中之先質者。在膜澱積 期間內移除所不欲配位基,此因它們的化學鍵相當弱之故 。較佳配位基包括,但不限於雙鍵結的氮、烷基、烷氧化 物、鹵化物、氫化物、醯胺、醯亞胺、疊氮、硝酸根、環 -21 - (19) (19)200402479 戊二烯基、羰基、羧基、二酮及它們的經取代同系物和它 們的組合。較佳情況中,使用具,如:1 一 1 2個原子的相 當小配位基,/但此非必要。含有較小配位基的化合物比含 較大配位基的化合物較易於較低溫度蒸發。此外,含較小 配位基的化合物較安定。特定較佳配位基包括雙鍵結的氮 (=N )、二甲基醯胺(一 N ( CH3 ) 2 )、二乙基醯胺 (N ( CH2CH3) 2)、甲基乙基醯胺(一N ( CH3 ) (CH2CH3 ))、甲氧基(一OCH3 )、乙氧基( —OCH2CH3 )和 丁氧基(—0 ( CH2 ) 3 ( CH2CH3 ))。兩 種先質使用類似配位基較佳,使用相同配位基更佳。使用 相同配位基有助於不同先質在類似條件下均勻溶解於相同 溶劑:中。 如所述者,W和Z分別是低於或等於Μ 1和M2價數的 整數。一個賓施例中,w和ζ中之至少一者是低於金屬元 素價數的整數,這是因爲配位基之一和金屬元素之間有雙 鍵存在之故。另一實施例中,w和ζ分別是等於其個別金 屬元素價數的整數。w和ζ以選自1、2、3和4爲佳。 先質蒸汽310可以在澱積區中混合,或者先質氣體混 合物310可藉液相先質混合物直接液體注射(DLI)而輸 送至澱積區。藉直接液體注射輸送時’液態先質於獨立蒸 發步驟中蒸發。一個實施例中’在先質脈衝步驟期間內, 各先質蒸汽於輸送歧管和澱積槽1 0 1中混合。另一實施例 中,使用交替先質脈衝序列。 稀釋氣體1 20可以是任何非反應性氣體或非反應性氣 -22- (20) (20)200402479 體之混合物,包括任何一或多種惰性氣體。典型非反應性 氣體包括Ar、He、Ne、Xe和N2。 反應物氣體1 3 0可以是任何還原劑或氧化劑或它們的 混合物。因此,在附圖1B中,反應物氣體1 3 0是還原劑 1 3 0,,在附圖1 C中,反應物氣體1 3 0是氧化劑i 3 。 還原劑13〇/或氧化劑130〃可以是在室溫爲氣體或液體 者,但其以氣體形式引至澱積槽i 〇丨中。依所欲多金屬膜 選擇反應物氣體130本質。適當反應物氣體130包括氫來 源、氧來源和/或氮來源。 一個實施例中,先質之混合物是兩種化合物 M ( NR8R9) q 和 Si ( NR1GRn ) 2 之混合物,此處 R8、R9 、R1 G和R1 1分別選自Η、F、C 1 一 C 6烷基和經取代的的 Cl — C6 院基,M 選自 F,Cl — C6 alkyls,and substituted Cl — C6 alkyls,where M is selected from Si,Li,Be, Mg,A1,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu ,Zn’ Ga’ Ge,As,Rb,Sr,Y,Zr,Nb,Μ o,R u,R h ,Pd,Ag,Cd,In,Sn,Sb,Te,Ba,La,Hf,Ta,W ,Re,Os,Ir,Pt,Au,Tl,Pb,Bi,Ce,Pr,Nd,Sm ,Eu ’ Gd,Tb ’ Dy ’ Ηo,Er ’ Tm,Yb,Lu,和 Th,而 q低於或等於M的價數。R8、R9、R1G和R1 1的較佳選擇 是甲基和乙基。M的較佳選擇是Ti、Zr和Hf,各者中, q等於2、3或4。 一個這樣的實施例中,先質混合物是N = Ta ( NR / R 〃 )3和Si ( NRR / ) 4之混合物。此混合物在澱積氮化 -23- (21) (21)200402479 矽鉅層時特別有用。 另一個這樣的實施例中,先質混合物是 Hf ( NRI2R13 ) 4 和 Si ( NR]4R15 ) 4 之混合物,,此處的 R12 、R13、R14和R15選自甲基和乙基。此混合物可用以澱積 數種不同給-矽膜,此視所用反應物本質而定。例如,如 果反應物是氧來源,則多組份膜是矽酸給(Hf — Si - 0 ) 膜。或者,如果反應物是氮來源,則會形成氮化矽鈴 (Hf - Si — N )膜。或者,如果使用氧和氮來源之混合物 ,所得膜會是氧氮化矽給(H f - S i - Ο - N )膜。最後, 如果使用氫來源,則會形成給矽合金(H f — S i)膜。適當 氧來源、氮來源和氫來源與前述者相同。 使甩ALD,自包含Hf ( NR12R13 ) 4和 Si ( NR14R15 ) 4的先質混合物澱積HfSiO膜時.,混合物體 積比範圍可由1 0 : 1至1 : 1 0,蒸汽流率可由約〇 · 〇丨克/ 分鐘至1 〇克/分鐘。氧化劑是臭氧時(此爲較佳情況) ,總 〇 2 / 〇 3流率比可由約 1 0 0 s c c m至 1 0 0 0 s c c m',臭氧濃 度可由1體積%至20體積%。澱積期間內,加工壓力可由 約5 0毫托耳至1 0托耳,基板溫度可由約2 0 0 °C至6 0 0 °C ,較佳基板溫度由約3 00 °C至400°C。稀釋氣體流率可由 約 1 00 seem 至 2 000s ccm,但以約 5 00 seem 至 2000 seem Μ 佳。 用以使用包含 Hf(NR12R13)4 和 Si(NR14R15)42 混合物澱積H fS i 0膜的先質混合物的特定例子是其中r ] 2 和R14爲甲基且3和R15爲乙基者。所得飴和矽先質是 -24- (22) 200402479 肆( 乙基 甲基肢 :基) 給(即, TEMAHf) 和肆 (乙基甲 基 胺基 )矽 (即, TEMASi ) 〇 此實例中, 使用 配備蒸發 器 的直 接液 體注射 系統 ,TEMAHf 和 TEMASi 之 無溶劑先 質 混合 物輸 送至澱 積區 。使用臭 氧作 爲氧來源以 澱積金屬 氧 化物 膜。 使用各 式各 樣先質混 合物 ,混合物的 莫耳比範 圍 由 99 : 1 Hf : Si 至1 :9 9 H f : Si 〇 此實例中, 液體流率 可 由約 0.01 至1克/分鐘,但此流率以在 約〇·丨 0 1 至 0 . 1 克 /分 鐘範 圍內爲 佳。 氧流可由 約1 0 0 s c c r η至 1 OOOsccm 〇 澱積 溫度 可由約 250°C 至 450°C。使用 0. 04克 /分鐘流 率 且氧 流爲 3 0 0 s c ( 並 有12體積%0 3,於 3 00°C 至 45 0°C 可 得到 不同 組成的 HfSiO膜(請 參考 下面的 f附表 1 ) ° 附表 1 Hf- Si - 0 膜的 Rutherfo rd向 後散象 f光譜 儀/氫向 Λ V一 刖 散射 (RBS/HFS )組成分析 水溫 500人膜於633 CC) 0 Si Hf 0/(Hf+Si) Η C N 奈米處的RI 300 61.9 6.9 23.5 2.04 3.5 3,3 0.9 1.83 350 63.4 10.9 20.3 2.03 1.4 3 1 1.77 400 62.7 13.3 18.5 1.97 1.8 2.5 1.2 1.72 450 63.8 13.7 18.8 1.96 1 2.1 0.6 1.68Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Pr, Nd, Sni'Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Th O As described, each of L1 and L2 is independently selected from a ligand and may be the same or different. Those skilled in the art can select appropriate ligands without difficulty, and these ligands include those known as precursors in the ALD method. Unwanted ligands are removed during film deposition because their chemical bonds are relatively weak. Preferred ligands include, but are not limited to, double-bonded nitrogen, alkyl, alkoxide, halide, hydride, amidine, amidine, azide, nitrate, cyclo-21-(19) ( 19) 200402479 pentadienyl, carbonyl, carboxyl, dione and their substituted homologues and combinations thereof. Preferably, relatively small ligands such as 1 to 12 atoms are used, but this is not necessary. Compounds containing smaller ligands are more likely to evaporate at lower temperatures than compounds containing larger ligands. In addition, compounds containing smaller ligands are more stable. Specific preferred ligands include double-bonded nitrogen (= N), dimethylamidamine (mono-N (CH3) 2), diethylamidamine (N (CH2CH3) 2), methylethylamidamine (—N (CH3) (CH2CH3)), methoxy (—OCH3), ethoxy (—OCH2CH3), and butoxy (—0 (CH2) 3 (CH2CH3)). It is better to use similar ligands for the two precursors, and it is better to use the same ligands. The use of the same ligands can help dissolve different precursors in the same solvent: under the same conditions. As mentioned, W and Z are integers lower than or equal to the valences of M 1 and M2, respectively. In one example, at least one of w and ζ is an integer lower than the valence of the metal element because a double bond exists between one of the ligands and the metal element. In another embodiment, w and? Are each an integer equal to the valence of the individual metal element. w and ζ are preferably selected from 1, 2, 3 and 4. The precursor vapor 310 may be mixed in the deposition zone, or the precursor gas mixture 310 may be delivered to the deposition zone by direct liquid injection (DLI) of the liquid phase precursor mixture. When delivered by direct liquid injection, the 'liquid precursor is evaporated in a separate evaporation step. In one embodiment ', during the precursor pulse step, each precursor vapor is mixed in the transfer manifold and the deposition tank 101. In another embodiment, an alternating precursor pulse sequence is used. The diluent gas 1 20 may be any non-reactive gas or a mixture of non-reactive gases -22- (20) (20) 200402479, including any one or more inert gases. Typical non-reactive gases include Ar, He, Ne, Xe, and N2. The reactant gas 1 3 0 may be any reducing or oxidizing agent or a mixture thereof. Therefore, in FIG. 1B, the reactant gas 130 is a reducing agent 130, and in FIG. 1C, the reactant gas 130 is an oxidizing agent i3. The reducing agent 13 / or the oxidizing agent 130〃 may be a gas or a liquid at room temperature, but it is introduced into the deposition tank i 0 丨 as a gas. The nature of the reactant gas 130 is selected according to the desired multi-metal film. A suitable reactant gas 130 includes a hydrogen source, an oxygen source, and / or a nitrogen source. In one embodiment, the mixture of precursors is a mixture of two compounds M (NR8R9) q and Si (NR1GRn) 2, where R8, R9, R1 G, and R1 1 are respectively selected from Η, F, C 1 -C 6 Alkyl and substituted Cl — C6 courtyard, M is selected from F, Cl — C6 alkyls, and substituted Cl — C6 alkyls, where M is selected from Si, Li, Be, Mg, A1, K, Ca, Sc , Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn 'Ga' Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Pr, Nd, Sm, Eu 'Gd, Tb' Dy ' Ηo, Er 'Tm, Yb, Lu, and Th, and q is less than or equal to the valence of M. Preferred choices of R8, R9, R1G and R1 1 are methyl and ethyl. The preferred choices for M are Ti, Zr, and Hf, where q is equal to 2, 3, or 4. In one such embodiment, the precursor mixture is a mixture of N = Ta (NR / R 〃) 3 and Si (NRR /) 4. This mixture is especially useful when depositing silicon -23- (21) (21) 200402479 silicon giants. In another such embodiment, the precursor mixture is a mixture of Hf (NRI2R13) 4 and Si (NR) 4R15) 4, where R12, R13, R14, and R15 are selected from methyl and ethyl. This mixture can be used to deposit several different donor-silicon films, depending on the nature of the reactants used. For example, if the reactant is an oxygen source, the multi-component film is a silicic acid (Hf — Si-0) film. Alternatively, if the reactant is a source of nitrogen, a silicon nitride (Hf-Si-N) film is formed. Alternatively, if a mixture of oxygen and nitrogen sources is used, the resulting film will be a silicon oxynitride (H f-Si-0-N) film. Finally, if a hydrogen source is used, a silicon alloy (H f — Si) film is formed. Appropriate sources of oxygen, nitrogen, and hydrogen are the same as the foregoing. When HdSiO is deposited from a precursor mixture containing Hf (NR12R13) 4 and Si (NR14R15) 4 by ALD, the volume ratio of the mixture can range from 10: 1 to 1: 10, and the steam flow rate can be about 0 · G / min to 10 g / min. When the oxidant is ozone (which is the preferred case), the total flow rate ratio of 〇 2 / 〇 3 can be from about 100 s c cm to 100 0 s c cm, and the ozone concentration can be from 1% to 20% by volume. During the deposition period, the processing pressure can be from about 50 millitorr to 10 torr, and the substrate temperature can be from about 200 ° C to 60 ° C. The preferred substrate temperature is from about 300 ° C to 400 ° C. . The flow rate of the diluent gas may be from about 100 seem to 2 000 s ccm, but preferably from about 500 seem to 2000 seem Μ. A specific example of a precursor mixture used to deposit a H fS i 0 film using a mixture comprising Hf (NR12R13) 4 and Si (NR14R15) 42 is one in which r] 2 and R14 are methyl and 3 and R15 are ethyl. The resulting hafnium and silicon precursors are -24- (22) 200402479 (ethylmethyl limb: yl) to (ie, TEMAHf) and silicon (ethylmethylamino) silicon (ie, TEMASi). In this example Using a direct liquid injection system equipped with an evaporator, a solvent-free precursor mixture of TEMAHf and TEMASi is delivered to the deposition zone. Ozone was used as the oxygen source to deposit a metal oxide film. Various precursor mixtures are used. The molar ratio of the mixture ranges from 99: 1 Hf: Si to 1: 9 9 Hf: Si. In this example, the liquid flow rate can be from about 0.01 to 1 g / min, but this The flow rate is preferably in the range of about 0.1 to 0.1 g / min. The oxygen flow can be from about 100 s c c r η to 1 000 sccm. The deposition temperature can be from about 250 ° C to 450 ° C. With a flow rate of 0.04 g / min and an oxygen flow of 3 0 0 sc (with 12 vol% 0 3, HfSiO films with different compositions can be obtained at 300 ° C to 45 0 ° C (please refer to the f attached below) Table 1) ° Table 1 Rutherfo rd backward astigmatism f spectrometer for Hf-Si-0 film / hydrogen Λ V one-ray scattering (RBS / HFS) composition analysis Water temperature 500 human film at 633 CC) 0 Si Hf 0 / (Hf + Si) Η CN at RI 300 61.9 6.9 23.5 2.04 3.5 3,3 0.9 1.83 350 63.4 10.9 20.3 2.03 1.4 3 1 1.77 400 62.7 13.3 18.5 1.97 1.8 2.5 1.2 1.72 450 63.8 13.7 18.8 1.96 1 2.1 0.6 1.68
於4 00°C澱積之HfSiO膜之45埃 HfG.58Si().4202的穿 透式電子顯微鏡截面影像示於附圖4。之後於7 0 0 °C退火 3 〇秒鐘以澱積多矽保護層。厚約7埃的介面氧化物層於 -25- (23) (23)200402479 退火之後仍維持膜的非晶形狀態。 這些方法包含的ALD澱積包括熱ALD、光輔助ALD 、雷射輔助ALD、電漿輔助ALD和自由基輔助ALD。 前述描述用於說明而非用於限制,用以提供本發明的 書面描述,其足以使得嫻於此技術者實施本發明的所有範 圍和任何最佳模式,.此二者亦爲此處聲明之權利。嫻於此 技術者由前述者知道其他實施例和修飾。應瞭解所有這樣 的實施例和修飾,只要是在所附申請專利範圍和其任何對 等物之範禱內,就應被視爲本發明的一部分。 【圖式簡單說明】 本發明將詳述於下交中並參考下列附圖,其中: 附圖1 A、1 B和1 C所示者是根據本發明之各式各樣 實施例的ALD系統和方法圖; 附圖2A、2B、2C和2D所示者也是根據本發明之其 他實施例的ALD系統和方法圖; 附圖3所示者是本發明之Ald系統和方法圖;而 附圖4所不者是根據本發明的一個a l D法製.得之4 5 埃HfG.58Si().42〇2膜的TEM截面影像。 主要元件對照表 100 ALD套組 101 源積槽 102 基板 -26- 200402479 . (24) 瓤 103 膜 110 多金屬分子先質 120 非反應性Λ稀釋氣體 , 130 反應物氣體 130 ^ 還原劑 13 0" 氧化劑 204 合金膜 205 氧化物膜 g 2 0 6 氮化物膜 207 氧氮化物膜 210 (R10)u(R2R3N)t- uM1 - Ο - Μ 2 ( O R4 ) y (N R5 R 6) ν - y 23 1 氫來源 232 氧來源 23 3 氮來源 310 金屬先質之蒸汽混合物 -27-A transmission electron microscope cross-sectional image of a 45 Angstrom HfG.58Si (). 4202 HfSiO film deposited at 400 ° C is shown in Figure 4 of the accompanying drawings. It was then annealed at 700 ° C for 30 seconds to deposit a polysilicon protective layer. The interfacial oxide layer with a thickness of about 7 Angstroms remained in an amorphous state after annealing at -25- (23) (23) 200402479. These methods include ALD deposition including thermal ALD, light-assisted ALD, laser-assisted ALD, plasma-assisted ALD, and radical-assisted ALD. The foregoing description is provided for purposes of illustration and not limitation, and is intended to provide a written description of the invention that is sufficient to enable a skilled person to implement all the scope and any best mode of the invention, both of which are also claimed herein right. Those skilled in the art will recognize other embodiments and modifications from the foregoing. It should be understood that all such embodiments and modifications are considered a part of the present invention as long as they are within the scope of the appended patent application and any equivalents thereof. [Brief Description of the Drawings] The present invention will be described in detail below with reference to the following drawings, in which: Figures 1 A, 1 B and 1 C are ALD systems according to various embodiments of the present invention And method diagrams; Figures 2A, 2B, 2C, and 2D are diagrams of an ALD system and method according to other embodiments of the present invention; Figure 3 is a diagram of an Ald system and method of the present invention; None of the four is a TEM cross-sectional image of a 4 5 Angstrom HfG.58Si (). 42O2 film made according to an al D method of the present invention. Comparison table of main components 100 ALD kit 101 source tank 102 substrate-26-200402479. (24) 瓤 103 membrane 110 polymetallic molecular precursor 120 non-reactive Λ dilution gas, 130 reactant gas 130 ^ reducing agent 13 0 " Oxidant 204 alloy film 205 oxide film g 2 0 6 nitride film 207 oxynitride film 210 (R10) u (R2R3N) t- uM1-〇-Μ 2 (O R4) y (N R5 R 6) ν-y 23 1 Hydrogen source 232 Oxygen source 23 3 Nitrogen source 310 Metal precursor vapor mixture -27-