TW200400954A - Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a direct process - Google Patents

Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a direct process Download PDF

Info

Publication number
TW200400954A
TW200400954A TW91135288A TW91135288A TW200400954A TW 200400954 A TW200400954 A TW 200400954A TW 91135288 A TW91135288 A TW 91135288A TW 91135288 A TW91135288 A TW 91135288A TW 200400954 A TW200400954 A TW 200400954A
Authority
TW
Taiwan
Prior art keywords
acid
carbon
item
patent application
accelerator
Prior art date
Application number
TW91135288A
Other languages
Chinese (zh)
Inventor
Leo Ernest Manzer
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/191,313 external-priority patent/US6756501B2/en
Application filed by Du Pont filed Critical Du Pont
Publication of TW200400954A publication Critical patent/TW200400954A/en

Links

Abstract

Disclosed is a single step continuous hydrogenation process for the preparation of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone, in the presence of a catalytic metal.

Description

200400954 ⑴ 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 技術領域 本案係揭示一種連續方法,其包含自α-亞甲基-γ-丁内酯 製備3-曱基-四氫呋喃之單一化學步驟。 先前技術 經取代的四氫吱喃(如本發明之3 -甲基-四氫呋喃)通常用 於其中使用四氫呋喃之領域。實例包含製得纖維之聚合反 應及用作溶劑。 聚(四亞甲基醚二醇)經聚合以製得四氫呋喃。此聚合物 係用作聚胺基甲酸酯及聚酯中之鏈嵌段。以聚(四亞甲基醚 二醇)軟嵌段為基礎之聚胺基甲酸酯具有改良的水解安定 性/耐摩蝕性及彈性體性質。其他優勢包含強度、韌性、 耐久性、低壓縮變定性質及高水蒸氣滲透性。此等聚胺基 甲酸酯之最大的最終用途範圍係作為服裝用之斯潘德克斯 (spandex)纖維。含有聚(四亞甲基.¾二醇)之產品亦用於輪 子、高速滾筒、車輛部件、軸襯、特製軟管、電纜覆.蓋物 及塗被、管線襯墊以及屋頂及地板塗料。3-甲基-四氫呋喃 單體可用作供修飾聚(四亞甲基醚二醇)用之共單體,俾生 成較佳彈性體性質。 於使用四氫呋喃作為溶劑之情形中(其中較低揮發性是 必要的),3 -甲基-四氫咬喃是有利的,因為四氫咬喃係於66 °C沸騰,而3-甲基-四氫呋喃則於86°C沸騰。 藉氫化衣康酸酯或3-甲醯基-2-甲基丙酸酯以及藉氫化甲 基-琥珀酸酯以製造3-甲基-四氫呋喃之方法分別揭示於日 本專利申請案219981/ 1994及217768/ 1996中。連同目標3-甲基- 200400954 發明說明續頁 ⑺ 四氫吱喃,此等反應產生醇(必須於另一步驟中分離)。3 -甲基-四氫呋喃形成具有主要為較低碳醇類之共沸混合物 (例如具共沸點為64.5°C之甲醇)及由25重量%之3-甲基-四氫 呋喃與75重量%甲醇組成之共沸组成物。此共沸混合物之存 在需要昂貴、能量密集的分離步驟以生成純3-甲基-四氫呋 喃。確切地,用以修飾聚(四亞甲基醚二醇)之3 -甲基-四氫 呋喃可容許小於0.2%之醇不純度。 同樣地,美國專利第5,990,324號揭示一種製造3-甲基-四氫 呋喃之方法,其係藉氫化具通式ROOC-CH(CH3)-CH2-CHO之β-甲醯基異丁酸酯而進行,其中R為具1至3個碳原子之烷基基 團,且甲醯基基團可存在為具有含1至8個碳原子之烷醇之 縮硿。於此方法中,醇類產物係於第二步驟中,自2-甲基-γ-丁内酯分離。可藉簡單的蒸餾作用進行此分離作用。雖然 共沸蒸餾不是必要的,但於製造3-甲基-四氫呋喃之方法 中,醇類分離仍是必須的步驟。 α-亞甲基-γ-丁内酯係為反應性單體。過去已嘗試直接催 化轉化α-亞甲基-γ-丁内酯為3-甲基-四氫呋喃。但是,由於 催化反應需要高溫(大於150°C )之緣故,轉化反應造成α-亞 曱基-γ-丁内酯之聚合反應。 因此,欲解決的問題為提供簡單、經濟的單一步驟法以 製造3-甲基-四氫呋喃。本發明之單一步驟法係揭示一種更 有效率的途徑,俾以新穎的觸媒系統自α -亞甲基-γ - 丁内酯 製造3 -甲基-四氫ρ失喃(無任何醇類產生),藉以排除共滩或 其他類型分離步驟。 200400954 (3) 發明說明續頁 發明内容 本發明係關於一種製造3-甲基-四氫呋喃之方法,其包含 步驟為氫化以式(I)化合物表示之α-亞甲基-γ-丁内酯以產生 3-甲基-四氫呋喃(II)作為產物(於催化金屬存在下)200400954 玖 玖, description of the invention (the description of the invention should state: the technical field to which the invention belongs, the prior art, the content, the embodiments, and a brief description of the drawings) TECHNICAL FIELD This case discloses a continuous method, which consists of A single chemical step for the preparation of 3-fluorenyl-tetrahydrofuran from γ-butyrolactone. Prior art Substituted tetrahydrofuran (such as 3-methyl-tetrahydrofuran of the present invention) is generally used in the field in which tetrahydrofuran is used. Examples include polymerization reactions to make fibers and use as solvents. Poly (tetramethylene ether glycol) is polymerized to obtain tetrahydrofuran. This polymer is used as a chain block in polyurethanes and polyesters. Polyurethane based on poly (tetramethylene ether glycol) soft block has improved hydrolytic stability / abrasion resistance and elastomeric properties. Other advantages include strength, toughness, durability, low compression set properties and high water vapor permeability. The largest end use range for these polyurethanes is as spandex fibers for apparel. Poly (tetramethylene.¾diol) -containing products are also used in wheels, high-speed rollers, vehicle parts, bushings, special hoses, cable covers, covers and coatings, pipeline liners, and roof and floor coatings. The 3-methyl-tetrahydrofuran monomer can be used as a comonomer for modified poly (tetramethylene ether glycol), resulting in better elastomer properties. In the case where tetrahydrofuran is used as a solvent (where lower volatility is necessary), 3-methyl-tetrahydrofuran is advantageous because tetrahydrofuran boils at 66 ° C, while 3-methyl- Tetrahydrofuran boils at 86 ° C. Methods for producing 3-methyl-tetrahydrofuran by hydrogenating itaconic acid ester or 3-methylfluorenyl-2-methylpropionate and by hydrogenating methyl-succinate are disclosed in Japanese Patent Applications 219981/1994 and 217768/1996. Together with the target 3-methyl-200400954 Description of the invention continued ⑺ Tetrahydrocondensation, these reactions produce alcohols (must be separated in another step). 3-methyl-tetrahydrofuran forms an azeotropic mixture with mainly lower alcohols (for example, methanol with an azeotropic point of 64.5 ° C) and is composed of 25% by weight of 3-methyl-tetrahydrofuran and 75% by weight of methanol An azeotropic composition. The presence of this azeotropic mixture requires expensive, energy-intensive separation steps to produce pure 3-methyl-tetrahydrofuran. Specifically, the 3-methyl-tetrahydrofuran used to modify the poly (tetramethylene ether glycol) can tolerate an alcohol purity of less than 0.2%. Similarly, U.S. Patent No. 5,990,324 discloses a method for producing 3-methyl-tetrahydrofuran, which is carried out by hydrogenating β-formyl isobutyrate having the general formula ROOC-CH (CH3) -CH2-CHO, Wherein R is an alkyl group having 1 to 3 carbon atoms, and the formamyl group may exist as a condensate having an alkanol having 1 to 8 carbon atoms. In this method, the alcohol product is separated from 2-methyl-γ-butyrolactone in the second step. This separation can be performed by simple distillation. Although azeotropic distillation is not necessary, alcohol separation is still a necessary step in the process for producing 3-methyl-tetrahydrofuran. The α-methylene-γ-butyrolactone system is a reactive monomer. Attempts have been made in the past to directly catalyze the conversion of α-methylene-γ-butyrolactone to 3-methyl-tetrahydrofuran. However, because the catalytic reaction requires high temperatures (greater than 150 ° C), the conversion reaction results in the polymerization of α-fluorenyl-γ-butyrolactone. Therefore, the problem to be solved is to provide a simple and economical one-step method for producing 3-methyl-tetrahydrofuran. The single-step method of the present invention reveals a more efficient way to produce 3-methyl-tetrahydroρ-loss from α-methylene-γ-butyrolactone using a novel catalyst system (without any alcohols). Generated) to exclude common beaches or other types of separation steps. 200400954 (3) Description of the Invention Continued Summary of the Invention The present invention relates to a method for producing 3-methyl-tetrahydrofuran, which comprises a step of hydrogenating α-methylene-γ-butyrolactone represented by a compound of formula (I) to Production of 3-methyl-tetrahydrofuran (II) as a product (in the presence of a catalytic metal)

(0 (ID 實施方式(0 (ID implementation

Ct-亞甲基-γ-丁内酯”代表以下式表示之化合物。 ,_/Η2"Ct-methylene-γ-butyrolactone" represents a compound represented by the following formula., _ / Η2

“酸促進劑”代表經添加以增進觸媒物理或化學功能之本 質上為酸性之化合物。 “金屬促進劑”代表經添加以增進觸媒物理或化學功能之 金屬化合物。 酸及金屬促進劑係為通常用以提高觸媒藥劑活性之化學 促進劑。促進劑可於觸媒组份化學處理之任一步驟期間合 併於觸媒中。 本發明係關於自α-亞甲基-γ-丁内酯合成3-甲基-四氫呋喃 之方法。更特別地,本發明係關於以單一化學步驟法自α-亞甲基-γ-丁内酯合成3-甲基-四氫呋喃之方法。化學法不會 200400954 發明說明續頁 (4) 產生作為副產物之醇類。最終產物不需分離或純化醇類。 由於催化反應之高溫(大於150°C ),先前直接轉化α-亞甲基 -γ-丁内酯為3-甲基-四氫呋喃之嘗試已造成α-亞甲基-γ-丁内 酯單體之聚合物形成。 本方法涉及α-亞甲基-γ-丁内酯生成3-甲基-四氫咬喃作為 產物之氫化反應。可存在金屬觸媒(含或不含載體)以進行 氫化反應。視情況可使用酸材料作為促進劍以輔助反應。 視情況亦可使用金屬作為促進劑以輔助反應。 本發明之方法可於任一常用於連績法之裝置中,以分 批、連續批(即一系列批量反應器)或連續模式進行。視情 況於惰性氣體清除之輔助下,自反應主體部分移除冷凝水。 為_ 了獲致高產量之3-甲基-四氫呋喃,需控制製程溫度。 供反應使用之溫度範圍為约100°C至約250°C。約200°C至約 250°C之溫度範圍為較佳。更佳的溫度範圍為約220°C至約 23〇t。 於反應中使用之壓力範圍為约3.4 MPa至約14.0 MPa。約5.1 MPa至約10.4 MPa之壓力範圍為較佳。更佳的壓力範圍為约 5.1 MPa至約 6.9 MPa。 此中使用之觸媒係為可影響反應速率但不影響反應平衡 且自製程形成之物質(化學上不變的)。化學促進劑通常提 高觸媒活性。促進劑可於觸媒組份化學處理之任一步驟期 間合併於觸媒中。化學促進劑通常增進觸媒藥劑之物理或 化學功能,但其亦可經添加以阻礙不想要的副反應。 α-亞甲基-γ-丁内酯成為3-甲基-四氫吱喃之氫化反應係於 (5) (5)200400954 發明說明續頁 催化觸媒存在下進行。觸媒之主要成分係 、%目由鈀、旬、 叙 '铑、銥、鉑、其化合物或其組合所组成之群。— 用於本案揭示之方法中之催化金屬可用 ^ 又叉持或未受 支持的觸媒。受支持的觸媒係為其中活性觸媒藥劑藉噴 淋、浸漬或物理混合,接著進行乾燥、烺燒, _ 丄 且必要時經 由例如還原或氧化法活化而沉積於載體材料 4 1丁上者。經常用 作載體之材料為具有高總表面積(外部及内部)之多孔 :物,其可提供高濃度的單位重量觸媒之活化區 眩可能增進觸媒藥劑之功能。未支持於觸媒載體上之觸媒 為未受支持的觸媒。載體材料係選自由碳、 虱化鋁、二氧 夕、一虱化矽-氧化鋁 '二氧化鈦及其组合所組成之群。 再者,受支持的催化金屬可具有相同的支持材 .. 人打何针或不同的 寺材料。較佳的載體為碳。碳可為市售的碳,例如cahka c、Sibunit C或 Calgon c(商標名 Centaui: (R))。 於爻支持的觸媒中之較佳的催化金屬含量範圍為約〇 至約15%。更佳的催化金屬含量範圍為約1%至约又更 佳的催化金屬含量範圍為約1%至約5%。 較佳的催化金屬與載體系統之組合包含鈀/於碳上合併 鍊’於碳上以及铑/於碳上合併銖/於碳上。 酸促進劑可用於本發明之反應中。適合的促進劑包含具 pKa〗於,..勺4 (較佳具pKa小於約2)之酸’含無機酸、有機續 酸元酸、全氟烷基磺酸及其混合物。亦適合者為具 pKa小於約4之酸的金屬鹽,含金屬磺酸鹽、金屬三氟醋酸 鹽、金屬三I甲烷磺酸鹽(metal triflates)及其混合物(含鹽類 200400954 (6) 發明說明續頁 與其共輛酸之混舍物)°促進劑之特例包含硫酸、氟確酸、 '' 鱗酸、對-甲苯磺酸、笨績酸、辯鷂酸、壤鈿酸、三氟甲燒 -績酸、1,1,2,2-四氟已:^績酸、1,2,3,2,3,3-六丙燒1績酸、三氟 甲烷磺酸鉍、三氟^坡績酸紀、三氟甲燒續酸镱、三氟甲 烷磺酸鈦、三氟甲炫*續酸鑭、三氟甲垸磺酸钪及三氟甲燒 ' 磺酸锆。較佳的促進劑係選自Zn(BF4)2、CBV_3020E沸石及20 - Α ί弗石。酸促進劑係以濃度為〇 · 1重量%至5重量°/。使用。較 佳濃度範圍為〇·250/。至2,5。/。。 籲 適合的非均相酸促進劑為沸石、氟化的氧化鋁、經酸處 理的二氧化矽、經疲處理的二氧化矽-氧化鋁、經酸處理的 白土、非均相的雜多元酸及硫酸化的氧化锆。 金屬促進劑視情況可與酸促進劑用於本發明之方法中。 適合的金屬促進劑包含錫、鋅、銅、金、銀及其组合。較 佳的金屬促進劑為錫。 試驗 以下縮寫係用於 ESCAT Calsicat Carbon Sibunit Carbon JM-A11108 Carbon Calgon Carbon 實例中: 由Engelhard Corp.提供之觸媒系列 由Engelhard Corp.提供之觸媒載體 由 Inst, of Technical Carbon, Omsk (俄羅 斯)提供之觸媒載體 由Johnson Matthey, Inc.提供之觸媒載體 由Calgon Corp.以商標名Centaur(R)提供 之觸媒載體 CBV-3020E 沸石型酸促進劑 20-A 沸石型酸促進劑 藉初濕法使市售載體,例如碳、氧化鋁、二氧化矽、二 - 氧化麥-氧化铭、二氧化鈇(得自Engelhard Corp. (E. Windsor, -10- 200400954 ⑺ 發明說明續頁 CT)),滲入金屬鹽。所用的前驅物為NiCl2· 6H20 (Alfa Chemical Co.)、Re2〇7 (Alfa Chemical Co.)、PdCl2 (Alfa Chemical Co.)、 RuC13 . XH2O (Aldrich Chemical Co.)、H2PtCl6 (Johnson Matthey, W. Deptford, NJ)、CrCl3 . 6H20 (Mallinckrodt Baker, Inc.)、5% Rh (使 用 RhCl3 . xH20 (Alfa Chemical Co·))。樣品係於 300-450°C 之 H2 中乾燥及還原2小時。 所用的碳_ 為市售之 Calsicat Carbon、Sibunit Carbon或 Calgon Carbon (Centaur (R))。Calsicat Carbon係為得自 Engelhard Corp, Beachwood,OH之批號 S-96-140。Sibunit Carbon係為得自 Inst, of Technical Carbon, 5th Kordnaya,Omsk 64418 (俄羅斯)之 Sibunit-2。Calgon Carbon係為得自 Calgon Corp.之 PCB Carbon (Ί主冊商標為Centaur (R))。 實例-1 觸媒製備5%Pt/於酸洗的Calsicat Carbon上 於150毫升燒杯中,以4.5毫升0.3 M H2PtCl6及4.0毫升去離 子Η20组成溶液。添加4.75克酸洗的Calsicat Carbon (12 X 20網 目,於120°C乾燥過夜)至燒杯中。使淤漿於室溫下靜置1小 時(偶爾攪拌),並且伴隨經常攪伴,於120°C乾燥過夜(直到 自由流動為止) 於二氧化鋁晶舟中,於石英襯管爐中,於室溫下以500 SCCM (每分鐘標準立方公分)N2清除15分鐘,且接著於室溫 下以100 SCCM He清除15分鐘。使觸媒加熱至15〇。(3,且於He 下保持於150°C達1小時。此刻添加100 SCCM H2,且於He及 H2下保持於150°C達1小時。提高溫度至300t,且於He-H2下 使觸媒於300°C還原8小時。停止H2,且使樣品於He下保持於 200400954 ⑻ 發明說明續頁 300°C達30分鐘,接著於流動的He中冷卻至室溫。最後於室 溫下使觸媒於1.5% 02 (於N2中)中以500 SCCM鈍化1小時,並 且於卸下時秤得4.93克。 實例1-36: α-亞甲基-γ-丁内酯成為3-甲基-四氫呋喃之氫化反 應 將50% MBL (於二哼烷中)( 1000.6毫克,5.1毫莫耳)及適量 的觸媒及載體(如下表所示)添加於2毫升壓力反應器中。密 閉反應器,且充填6.89 MPa之H2,並且加熱至反應溫度225 °C。於預定期間後停止反應,且於1 〇至15分鐘内冷卻。添 加内標準品(2-甲氧基乙基醚)於反應混合物中,並且於具 Chrompack 管柱(CP-WAX 58,25 公尺 X25 毫米)之 HP-6890 GC 上 進行GC分析。 下表分別列出反應條件、觸媒、酸促進劑及反應物與產 物之轉化率及選擇率。所有試驗係以50%之α-亞甲基-γ-丁内 酯(於二哼烷中)進行。 表1 試驗 編號 時間 (小時) 觸媒 酸促進劑 MBL 轉化率 (%) 3-Me-THF 選擇率(%) MeGBL 選擇率(%) 1. 2 5% Pd/C(ESCAT 140) 99.21 0.23 83.53 2. 2 5% Pd/C(ESCAT 142) 85.57 0.28 93.72 3 2 5% Pd/C(ESCAT 143) 99.49 0.19 96.94 4. 2 5% Pd/C(ESCAT 148) 86.71 0.33 97.80 5. 2 5% Pd/C(ESCAT 149) 99.92 0.14 94.36 6. 2 5% Pd/C(ESCAT 160) 95.05 0.24 97.80 7. 2 5% Pd/C(ESCAT 162) 97.87 0.15 88.55 8. 2 l%Ru/6%Re/C 99.44 0.16 90.27 9. 2 l%Ru/6%Re/C Zn(BF4)2 91.31 0.57 63.14 200400954 (9) 發明說明續頁 試驗 編號 時間 (小時) 觸媒 酸促進劑 MBL 轉化率 (%) 3-Me-THF 選擇率(%) MeGBL 選擇率(%) 10. 2 l%Ru/6%Re/C CBV-3020 94.25 0.87 71.79 11. 2 l%Ru/6%Re/C 20A 93.15 1.05 64.49 12. 2 1,87%Ru/5.65%Re/0.77%Sn /C Zn(BF4)2 78.25 0.46 51.03 13. 2 1.87%Ru/5.65%Re/0.77%Sn /C CBV-3020 96.76 0.06 1.14 14. 4 5%Pd/C JM-A11108-5 + 5%Re/Sibunit C 100.00 1.68 95.62 15. 4 5%Pd/C JM-A11108-5 + 5%Re/Calsicat C 100.00 2.58 95.43 16. 4 5%Pd/CJM-Al 1108-5 + 5%Re/Calgon C 100.00 0.59 61.23 17. 4 5%Pd/C JM-A11108-5 + 5%Re/Calsicat C(400C) 100.00 1.94 94.34 18. 4 5%Pd/C JM-A11108-5+ 10%Re/Calsicat C(400C) 100.00 94.79 19. 4 5%Pd/C + 20%Re/Calsicat C(400C) 100.00 5.10 93.84 20. 4 5%Pd/C JM-A11108-5 + 5%Re/Sibunit C 100.00 8.22 90.04 21. 4 5%Pd/C JM-A11108-5 + 5%Re/Calsicat C 100.00 12.66 82.70 22. 4 5%Pd/C JM-A11108-5 + 5%Re/Calgon C 100.00 2.93 92.38 23. 4 5%Pd/C JM-A11108-5 + 5%Re/Calsicat C(400C) 100.00 10.14 85.15 24. 4 5%Pd/CJM-Al 1108-5 + 10%Re/Calsicat C(400C) 100.00 12.35 83.89 25. 4 5%Pd/Calsicat C+ 5%Ir/Calsicat C 100.00 1.25 89.34"Acid promoter" refers to a compound that is acidic in nature and is added to enhance the physical or chemical function of the catalyst. "Metal accelerator" refers to a metal compound added to enhance the physical or chemical function of the catalyst. Acid and metal accelerators are chemical accelerators commonly used to enhance the activity of catalyst agents. The accelerator can be incorporated into the catalyst during any step of the chemical treatment of the catalyst component. The present invention relates to a method for synthesizing 3-methyl-tetrahydrofuran from α-methylene-γ-butyrolactone. More specifically, the present invention relates to a method for synthesizing 3-methyl-tetrahydrofuran from α-methylene-γ-butyrolactone in a single chemical step. Chemical method 200400954 Description of the invention continued (4) Alcohols are produced as by-products. The final product does not require isolation or purification of alcohols. Due to the high temperature of the catalytic reaction (greater than 150 ° C), previous attempts to directly convert α-methylene-γ-butyrolactone to 3-methyl-tetrahydrofuran have caused α-methylene-γ-butyrolactone monomers Polymer formation. This method involves a hydrogenation reaction of α-methylene-γ-butyrolactone to 3-methyl-tetrahydromalan as a product. Metal catalysts (with or without support) may be present for the hydrogenation reaction. Optionally, an acidic material may be used to promote the sword to assist the reaction. Optionally, metals can be used as accelerators to assist the reaction. The method of the present invention can be carried out in any of the apparatuses commonly used in the continuous method, in a batch, continuous batch (i.e., a series of batch reactor), or continuous mode. If necessary, remove condensed water from the main part of the reaction with the help of inert gas removal. In order to achieve high yields of 3-methyl-tetrahydrofuran, the process temperature needs to be controlled. The temperature range for the reaction is about 100 ° C to about 250 ° C. A temperature range of about 200 ° C to about 250 ° C is preferred. A more preferred temperature range is from about 220 ° C to about 230 ° T. The pressure used in the reaction ranges from about 3.4 MPa to about 14.0 MPa. A pressure range of about 5.1 MPa to about 10.4 MPa is preferred. A better pressure range is about 5.1 MPa to about 6.9 MPa. The catalyst used here is a substance (chemically unchanged) that can affect the reaction rate but does not affect the reaction equilibrium and is formed by the self-made process. Chemical accelerators usually increase catalyst activity. The accelerator can be incorporated into the catalyst during any step of the chemical treatment of the catalyst component. Chemical accelerators usually enhance the physical or chemical function of the catalyst, but they can also be added to block unwanted side reactions. The hydrogenation reaction of α-methylene-γ-butyrolactone into 3-methyl-tetrahydrocran is carried out in (5) (5) 200400954 Description of the invention continued on the presence of a catalytic catalyst. The main component of the catalyst is a group consisting of palladium, ten, rhodium, rhodium, iridium, platinum, compounds or combinations thereof. — The catalytic metal used in the method disclosed in this case may be a catalyst that is either cross-supported or unsupported. Supported catalysts are those in which the active catalyst agent is sprayed, impregnated, or physically mixed, followed by drying, sintering, and, if necessary, deposition on a carrier material 41 by activation such as reduction or oxidation. . Materials often used as carriers are porous materials with a high total surface area (external and internal), which can provide a high concentration of activation area per unit weight of catalyst. Dazzle may enhance the function of catalyst agents. Catalysts not supported on the catalyst carrier are unsupported catalysts. The support material is selected from the group consisting of carbon, aluminum oxide, silicon dioxide, silicon oxide-alumina, titanium dioxide, and combinations thereof. Furthermore, the supported catalytic metals can have the same support material: people make needles or different temple materials. The preferred support is carbon. The carbon may be a commercially available carbon such as cahka c, Sibunit C, or Calgon c (trade name Centaui: (R)). The preferred catalytic metal content in the catalyst supported by rhenium is in the range of about 0 to about 15%. A more preferred catalytic metal content range is from about 1% to about yet a still more preferred catalytic metal content range is from about 1% to about 5%. The preferred combination of catalytic metal and support system comprises palladium / merged on carbon ' on carbon and rhodium / merged on carbon / on carbon. Acid promoters can be used in the reactions of the present invention. Suitable accelerators include acids having a pKa of 4 (preferably having a pKa of less than about 2) 'containing inorganic acids, organic continuous acid acids, perfluoroalkylsulfonic acids, and mixtures thereof. Also suitable are metal salts with acids having a pKa of less than about 4, metal sulfonates, metal trifluoroacetates, metal triflates and mixtures thereof (containing salts 200400954 (6) Invention Explain that the continuation sheet and its co-acid mixture) ° Specific examples of accelerators include sulfuric acid, fluoric acid, '' scale acid, p-toluenesulfonic acid, benzoic acid, arsenic acid, loamic acid, trifluoromethane Burning acid, 1,1,2,2-tetrafluorohexanoic acid: ^ acid, 1,2,3,2,3,3-hexapropane acid, bismuth trifluoromethanesulfonate, trifluoro ^ Slope acid period, trifluoromethane sulfonium acid, titanium trifluoromethanesulfonate, trifluoromethane * lanthanum acid, lanthanum trifluoromethanesulfonate, and trifluoromethane 'zirconium sulfonate. The preferred accelerator is selected from the group consisting of Zn (BF4) 2, CBV_3020E zeolite, and 20-Αίphorite. The acid accelerator is at a concentration of 0.1 to 5% by weight. use. A better concentration range is 0.250 /. To 2,5. /. . Appropriate heterogeneous acid promoters are zeolites, fluorinated alumina, acid-treated silica, fatigued silica-alumina, acid-treated white clay, heterogeneous heteropoly acids And sulfated zirconia. Metal accelerators can optionally be used in the method of the invention with acid accelerators. Suitable metal accelerators include tin, zinc, copper, gold, silver, and combinations thereof. A preferred metal accelerator is tin. The following abbreviations are used in the ESCAT Calsicat Carbon Sibunit Carbon JM-A11108 Carbon Calgon Carbon example: Catalyst series provided by Engelhard Corp. Catalyst support provided by Engelhard Corp. Provided by Inst, of Technical Carbon, Omsk (Russia) The catalyst carrier was provided by Johnson Matthey, Inc. The catalyst carrier was provided by Calgon Corp. under the brand name Centaur (R) CBV-3020E Zeolite type acid accelerator 20-A Zeolite type acid accelerator Commercially available carriers such as carbon, alumina, silicon dioxide, di-oxo-ox-oxide, hafnium dioxide (available from Engelhard Corp. (E. Windsor, -10- 200400954 ⑺ Description of the Invention Continued CT)) , Penetrating into metal salts. The precursors used were NiCl2.6H20 (Alfa Chemical Co.), Re207 (Alfa Chemical Co.), PdCl2 (Alfa Chemical Co.), RuC13.XH2O (Aldrich Chemical Co.), H2PtCl6 (Johnson Matthey, W. Deptford, NJ), CrCl3. 6H20 (Mallinckrodt Baker, Inc.), 5% Rh (using RhCl3. XH20 (Alfa Chemical Co.)). The samples were dried and reduced in H2 at 300-450 ° C for 2 hours. The carbon used is commercially available Calsicat Carbon, Sibunit Carbon or Calgon Carbon (Centaur (R)). Calsicat Carbon is lot number S-96-140 available from Engelhard Corp, Beachwood, OH. Sibunit Carbon is Sibunit-2 available from Inst, of Technical Carbon, 5th Kordnaya, Omsk 64418 (Russia). Calgon Carbon is a PCB Carbon available from Calgon Corp. (ΊMain Bookmark is Centaur (R)). Example-1 Preparation of Catalyst 5% Pt on Pickled Calsicat Carbon In a 150 ml beaker, 4.5 ml of 0.3 M H2PtCl6 and 4.0 ml of deionized osmium 20 were used to form a solution. Add 4.75 grams of pickled Calsicat Carbon (12 X 20 mesh, dried overnight at 120 ° C) to a beaker. Allow the slurry to stand at room temperature for 1 hour (with occasional stirring), and with frequent stirring, dry at 120 ° C overnight (until free flowing) in an alumina boat, in a quartz-lined furnace, and at It was cleared at room temperature with 500 SCCM (standard cubic centimeters per minute) N2 for 15 minutes, and then at room temperature with 100 SCCM He for 15 minutes. The catalyst was heated to 15 °. (3, and kept at 150 ° C for 1 hour under He. At this moment, add 100 SCCM H2, and kept at 150 ° C for 1 hour under He and H2. Increase the temperature to 300t, and make contact under He-H2 The medium was reduced at 300 ° C for 8 hours. The H2 was stopped, and the sample was kept at 400400954 under He. Description of the invention continued at 300 ° C for 30 minutes, and then cooled to room temperature in flowing He. Finally, the solution was allowed to stand at room temperature. The catalyst was passivated in 1.5% 02 (in N2) at 500 SCCM for 1 hour and weighed 4.93 grams when unloaded. Example 1-36: α-Methylene-γ-butyrolactone becomes 3-methyl -Hydrogenation of tetrahydrofuran Add 50% MBL (in dihumane) (1000.6 mg, 5.1 mmol) and appropriate amount of catalyst and carrier (as shown in the table below) to a 2 ml pressure reactor. Closed reactor And filled with H2 of 6.89 MPa and heated to a reaction temperature of 225 ° C. After a predetermined period of time, the reaction was stopped and cooled within 10 to 15 minutes. An internal standard (2-methoxyethyl ether) was added to the reaction The mixture was analyzed by GC on a HP-6890 GC with a Chrompack column (CP-WAX 58, 25 m x 25 mm). Do not list the reaction conditions, catalysts, acid promoters, and conversion and selectivity of reactants and products. All tests are performed with 50% α-methylene-γ-butyrolactone (in dihumane) Table 1 Test number time (hours) Catalytic acid accelerator MBL conversion rate (%) 3-Me-THF selectivity (%) MeGBL selectivity (%) 1.2 5% Pd / C (ESCAT 140) 99.21 0.23 83.53 2. 2 5% Pd / C (ESCAT 142) 85.57 0.28 93.72 3 2 5% Pd / C (ESCAT 143) 99.49 0.19 96.94 4. 2 5% Pd / C (ESCAT 148) 86.71 0.33 97.80 5. 2 5% Pd / C (ESCAT 149) 99.92 0.14 94.36 6. 2 5% Pd / C (ESCAT 160) 95.05 0.24 97.80 7. 2 5% Pd / C (ESCAT 162) 97.87 0.15 88.55 8. 2 l% Ru / 6% Re / C 99.44 0.16 90.27 9. 2 l% Ru / 6% Re / C Zn (BF4) 2 91.31 0.57 63.14 200400954 (9) Description of the invention Continuation test number (hours) Catalyst acid accelerator MBL conversion rate (%) 3-Me-THF selectivity (%) MeGBL selectivity (%) 10. 2 l% Ru / 6% Re / C CBV-3020 94.25 0.87 71.79 11. 2 l% Ru / 6% Re / C 20A 93.15 1.05 64.49 12. 2 1,87% Ru / 5.65% Re / 0.77% Sn / C Zn (BF4) 2 78.25 0.46 51.03 13. 2 1.87% Ru / 5.65% Re / 0.77% Sn / C CBV-3020 96.76 0.06 1.14 14. 4 5% Pd / C JM-A11108-5 + 5% Re / Sibunit C 100.00 1.68 95.62 15. 4 5% Pd / C JM-A11108-5 + 5% Re / Calsicat C 100.00 2.58 95.43 16. 4 5% Pd / CJM-Al 1108-5 + 5% Re / Calgon C 100.00 0.59 61.23 17. 4 5% Pd / C JM-A11108-5 + 5% Re / Calsicat C (400C) 100.00 1.94 94.34 18. 4 5% Pd / C JM-A11108-5 + 10% Re / Calsicat C (400C) 100.00 94.79 19. 4 5% Pd / C + 20% Re / Calsicat C (400C) 100.00 5.10 93.84 20 . 4 5% Pd / C JM-A11108-5 + 5% Re / Sibunit C 100.00 8.22 90.04 21. 4 5% Pd / C JM-A11108-5 + 5% Re / Calsicat C 100.00 12.66 82.70 22. 4 5% Pd / C JM-A11108-5 + 5% Re / Calgon C 100.00 2.93 92.38 23. 4 5% Pd / C JM-A11108-5 + 5% Re / Calsicat C (400C) 100.00 10.14 85.15 24. 4 5% Pd / CJM-Al 1108-5 + 10% Re / Calsicat C (400C) 100.00 12.35 83.89 25. 4 5% Pd / Calsicat C + 5% Ir / Calsicat C 100.00 1.25 89.34

-13 - 200400954 (10) 發明說明續頁 試驗 編號 時間 (小時) 觸媒 酸促進劑 MBL 轉化率 (%) 3-Me-THF 選擇率(%) MeGBL 選擇率(%) 26. 4 5%Rh/Calsicat C+ 5%Ir/Calsicat C 100.00 1.84 87.45 27. 4 5%Ru/Calsicat C+ 5%Ir/Calsicat C 100.00 2.91 81.53 28. 4 5%Ru/A1203 + 5%Ir/Calsicat C 98.41 0.51 80.21 29. 4 5%Pd/Calsicat C + 5%Ir/A1203 100.00 0.67 90.74 30. 4 5%Rh/Calsicat C + 5%Ir/A1203 100.00 0.55 86.61 31. 4 5%Ru/Calsicat C + 5%Ir/A1203 98.50 0.51 62.70 32. 4 5%Ru/A1203 + 5%Ir/A1203 98.33 0.17 68.52 4 5%Pd/Calsicat C + 5%Re/Cal. C 98.74 5.96 77.39 34. 4 5%Rh/Calsicat C + 5%Re/Cal. C 99.63 21.42 60.41 35. 4 5%Ru/Calsicat C + 5%Re/Cal. C 86.95 5.58 55.00 36. 4 5%Ru/A1203 + 5%Re/Cal. C 94.14 5.56 68.68-13-200400954 (10) Description of the invention Continuation page test number time (hours) Catalytic acid accelerator MBL conversion rate (%) 3-Me-THF selectivity (%) MeGBL selectivity (%) 26. 4 5% Rh / Calsicat C + 5% Ir / Calsicat C 100.00 1.84 87.45 27. 4 5% Ru / Calsicat C + 5% Ir / Calsicat C 100.00 2.91 81.53 28. 4 5% Ru / A1203 + 5% Ir / Calsicat C 98.41 0.51 80.21 29. 4 5% Pd / Calsicat C + 5% Ir / A1203 100.00 0.67 90.74 30. 4 5% Rh / Calsicat C + 5% Ir / A1203 100.00 0.55 86.61 31. 4 5% Ru / Calsicat C + 5% Ir / A1203 98.50 0.51 62.70 32. 4 5% Ru / A1203 + 5% Ir / A1203 98.33 0.17 68.52 4 5% Pd / Calsicat C + 5% Re / Cal. C 98.74 5.96 77.39 34. 4 5% Rh / Calsicat C + 5% Re / Cal. C 99.63 21.42 60.41 35. 4 5% Ru / Calsicat C + 5% Re / Cal. C 86.95 5.58 55.00 36. 4 5% Ru / A1203 + 5% Re / Cal. C 94.14 5.56 68.68

-14 --14-

Claims (1)

200400954 拾、申請專利範圍 1. 一種製備式(11)3-甲基-四氫呋喃之方法,其包含於催化金 屬存在下氫化式(I)化合物α-亞甲基-γ-丁内酯。200400954 Patent application scope 1. A method for preparing 3-methyl-tetrahydrofuran of formula (11), which comprises hydrogenating α-methylene-γ-butyrolactone of compound of formula (I) in the presence of a catalytic metal. 2. 如申請專利範圍第1項之方法,其中該催化金屬係選自由 免、4了、銖、铑、錶、始、其化合物及其組合所組成之 群。 3. 如申請專利範圍第1項之方法,其中該催化金屬係支持於 觸媒載體上。 4. 如申請專利範圍第3項之方法,其中該觸媒載體係選自由 碳、氧化鋁、二氧化矽、二氧化矽-氧化鋁、二氧化鈦、 其化合物及其組合所組成之群。 5. 如申請專利範圍第1項之方法,其中反應係於金屬促進劑 存在下進行。 6. 如申請專利範圍第5項之方法,其中該金屬促進劑係選自 由錫、鋅、销、金、銀及其組合所组成之群。 7. 如申請專利範圍第5項之方法,其中該金屬促進劑為錫。 8. 如申請專利範圍第1項之方法,其中反應係於酸促進劑存 在下進行。 9. 如申請專利範圍第8項之方法,其中該酸促進劑為具pKa 小於4之酸或其金屬鹽。 200400954 申請專利範圍續頁 10. 如申請專利範圍第9項之方法,其中該酸促進劑係選自由 無機酸、有機續酸、雜多元酸、全氟燒基續酸及其金屬 鹽組成之群。 11. 如申請專利範圍第10項之方法,其中該酸促進劑係選自 由硫酸、氟磺酸、磷酸、對-甲苯磺酸、苯磺酸、磷鎢酸、 磷鉬酸、三氟甲烷磺酸、1,1,2,2-四氟乙烷磺酸、1,1,1,2,3,4-六丙烷磺酸、三氟甲烷磺酸鉍、三氟甲烷磺酸釔、三氟 甲烷磺酸镱、三氟甲烷磺酸鈦、三氟甲烷磺酸鑭、三氟 甲烷磺酸钪及三氟甲烷磺酸銼组成之群。 12. 如申請專利範圍第8項之方法,其中該酸促進劑係選自由 沸石、氟化的氧化鋁、經硫酸處理的二氧化矽、經硫酸 處理的二氧化矽-氧化鋁、支持於氧化锆、二氧化鈦、氧 化鋁及/或二氧化矽上之雜多元酸組成之群。 13. 如申請專利範圍第8項之方法,其中該酸促進劑為 Zn(BF4)2。 14. 如申請專利範圍第8項之方法,其中該酸促進劑為沸石 CBV-3020E。 15. 如申請專利範圍第8項之方法,其中該酸促進劑為沸石 CBV-20 A。 16. 如申請專利範圍第1項之方法,其中反應係於酸促進劑及 金屬促進劑存在下進行。 17. 如申請專利範圍第1項之方法,其中該方法係於溫度為 100°C至250°C下進行。 18.如申請專利範圍第1項之方法,其中該方法係於溫度為 200400954 申請專利範圍續頁 200°C至250°C下進行。 19. 如申請專利範圍第1項之方法,其中該方法係於溫度為 220°C至230°C下進行。 20. 如申請專利範圍第1項之方法,其中該方法係於壓力為 3.4 MPa至 14.0 MPa下進行。 21. 如申請專利範圍第1項之方法,其中該方法係於壓力為 5.1 MPa至 10.4 MPa下進行。 22. 如申請專利範圍第1項之方法,其中該方法係於壓力為 5.1 MPa至 6.9 MPa下進行。 23. 如申請專利範圍第1項之方法,其中該方法係於溫度為 220°C至230°C且壓力為5.1 MPa至6.9 MPa下進行。 24. 如申請專利範圍第1項之方法,其中該催化金屬係受支 持,且該催化金屬載體為鈀/於碳上合併銖/於碳上。 25. 如申請專利範圍第1項之方法,其中該催化金屬係受支 持,且該催化金屬載體為铑/於碳上合併銖/於碳上。 26. 如申請專利範圍第24項之方法,其中該鈀/於碳上係以含 量5%存在,且該銖/於碳上係以含量5%存在。 27. 如申請專利範圍第24項之方法,其中該鈀/於碳上係以含 量5%存在,且該銖/於碳上係以含量10%存在。 28. 如申請專利範圍第25項之方法,其中該铑/於碳上係以含, 量5 %存在,且該銖/於碳上係以含量5 %存在。 29. 如申請專利範圍第25項之方法,其中該铑/於碳上係以含 量5 %存在,且該銖/於竣上係以含量10 %存在。 200400954 陸、(一)、本案指定代表圖為:第_圖 (二)、本代表圖之元件代表符號簡單說明: 柒、本案若有化學式時,請揭示最能顯示發明特徵的化學式:2. The method according to item 1 of the scope of patent application, wherein the catalytic metal is selected from the group consisting of exemption, tetrahydrofuran, baht, rhodium, watch, starter, compounds and combinations thereof. 3. The method of claim 1 in which the catalytic metal is supported on a catalyst carrier. 4. The method of claim 3, wherein the catalyst carrier is selected from the group consisting of carbon, aluminum oxide, silicon dioxide, silicon dioxide-alumina, titanium dioxide, compounds thereof, and combinations thereof. 5. The method of claim 1 in which the reaction is performed in the presence of a metal accelerator. 6. The method of claim 5 in which the metal accelerator is selected from the group consisting of tin, zinc, pins, gold, silver, and combinations thereof. 7. The method of claim 5 in which the metal accelerator is tin. 8. The method of claim 1 in which the reaction is performed in the presence of an acid promoter. 9. The method according to item 8 of the patent application, wherein the acid accelerator is an acid having a pKa of less than 4 or a metal salt thereof. 200400954 Application for Patent Continued 10. The method as described in Item 9 of the Patent Scope, wherein the acid accelerator is selected from the group consisting of inorganic acids, organic continuous acids, heteropolyacids, perfluoroalkanoic acids and metal salts thereof. . 11. The method of claim 10, wherein the acid promoter is selected from the group consisting of sulfuric acid, fluorosulfonic acid, phosphoric acid, p-toluenesulfonic acid, benzenesulfonic acid, phosphotungstic acid, phosphomolybdic acid, and trifluoromethanesulfonic acid. Acid, 1,1,2,2-tetrafluoroethanesulfonic acid, 1,1,1,2,3,4-hexapropanesulfonic acid, bismuth trifluoromethanesulfonate, yttrium trifluoromethanesulfonate, trifluoro A group of thorium methanesulfonate, titanium trifluoromethanesulfonate, lanthanum trifluoromethanesulfonate, thallium trifluoromethanesulfonate and trifluoromethanesulfonate files. 12. The method according to item 8 of the patent application, wherein the acid accelerator is selected from the group consisting of zeolite, fluorinated alumina, sulfuric acid-treated silicon dioxide, sulfuric acid-treated silicon dioxide-alumina, and support for oxidation. A group of heteropolyacids on zirconium, titanium dioxide, aluminum oxide and / or silicon dioxide. 13. The method according to item 8 of the patent application, wherein the acid accelerator is Zn (BF4) 2. 14. The method as claimed in claim 8 wherein the acid accelerator is zeolite CBV-3020E. 15. The method according to item 8 of the patent application, wherein the acid accelerator is zeolite CBV-20 A. 16. The method of claim 1 in which the reaction is performed in the presence of an acid accelerator and a metal accelerator. 17. The method according to item 1 of the patent application range, wherein the method is performed at a temperature of 100 ° C to 250 ° C. 18. The method according to item 1 of the scope of patent application, wherein the method is performed at a temperature of 200,400,954. 19. The method according to item 1 of the patent application range, wherein the method is performed at a temperature of 220 ° C to 230 ° C. 20. The method according to item 1 of the patent application range, wherein the method is performed under a pressure of 3.4 MPa to 14.0 MPa. 21. The method according to item 1 of the patent application range, wherein the method is performed under a pressure of 5.1 MPa to 10.4 MPa. 22. The method according to item 1 of the patent application range, wherein the method is performed under a pressure of 5.1 MPa to 6.9 MPa. 23. The method according to item 1 of the patent application range, wherein the method is performed at a temperature of 220 ° C to 230 ° C and a pressure of 5.1 MPa to 6.9 MPa. 24. The method of claim 1 in which the catalytic metal is supported, and the catalytic metal support is palladium / merged on carbon / bath on carbon. 25. The method of claim 1 in which the catalytic metal is supported and the catalytic metal support is rhodium / merged on carbon / bath on carbon. 26. The method of claim 24, wherein the palladium / on carbon is present at a content of 5% and the baht / on carbon is present at a content of 5%. 27. The method of claim 24, wherein the palladium / carbon is present at a content of 5% and the baht / carbon is present at a content of 10%. 28. The method as claimed in claim 25, wherein the rhodium / carbon is present as 5%, and the baht / carbon is present as 5%. 29. The method of claim 25, wherein the rhodium / carbon is present at a content of 5%, and the baht / carbon is present at a content of 10%. 200400954 Lu, (a), the designated representative of this case is: Figure _ (b), a brief description of the element representative symbols of this representative:
TW91135288A 2001-07-10 2002-12-05 Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a direct process TW200400954A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30429101P 2001-07-10 2001-07-10
US10/191,313 US6756501B2 (en) 2001-07-10 2002-07-09 Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a single step process

Publications (1)

Publication Number Publication Date
TW200400954A true TW200400954A (en) 2004-01-16

Family

ID=52339999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91135288A TW200400954A (en) 2001-07-10 2002-12-05 Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a direct process

Country Status (1)

Country Link
TW (1) TW200400954A (en)

Similar Documents

Publication Publication Date Title
KR100417353B1 (en) Method of Producing 1,4-Butanediol and Tetrahydrofuran from Furan
JPH0580457B2 (en)
JPS58216131A (en) Alcohol catalytic manufacture by hydrogenolysis of carboxylic acid ester
AU5727090A (en) Ester production by hydrogenation of carboxylic acids and anhydrides
JP2008525372A (en) Method for hydrogenating carboxylic acid or ester containing lactone or γ-carbonyl group
CN1934059B (en) Method for producing refined alcohol
US6756501B2 (en) Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a single step process
JP3400501B2 (en) Method for producing 2-methyl-1,4-butanediol and 3-methyltetrahydrofuran
KR20050088313A (en) Method for the production of 1,6-hexanediol
JP6942738B2 (en) Method for producing catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran and reduced product of 3,4-dihydroxytetrahydrofuran
KR20060111562A (en) Method for the production of defined mixtures of thf, bdo and gbl by gas phase hydrogenation
US5969194A (en) Process for preparing 1, 6-hexanediol
EP0271139B1 (en) Process for producing carboxylic acids
TW200400954A (en) Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a direct process
US6664402B2 (en) Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a two step process
KR100543496B1 (en) Method for Producing Hexanediol
US6673946B2 (en) Manufacture of 3-methyl-tetrahydrofuran from 2-methyl-gamma-butyrolactone
TW200400955A (en) Manufacture of 3-methyl-tetrahydrofuran from alpha-methylene-gamma-butyrolactone in a two step process
EP3858821A1 (en) Method of producing gamma-valerolactone from levulinic acid compound and catalyst using thereof
US4209651A (en) Hydrogenation of butadienepolyperoxide to unsaturated diols
TW200400953A (en) Manufacture of 3-methyl-tetrahydrofuran from 2-methyl-gamma-butyrolactone
US5811601A (en) Isomerization of vinyl glycols to unsaturated diols
RU2793574C1 (en) Method for producing 1,4-butanediol, gamma-butyrolactone and tetrahydrofuran, and a catalyst for implementing the method
KR101088100B1 (en) PALLADIUM CATALYST SUPPORTED ON ALUMINA XEROGEL SUPPORT WITH CONTROLLED ACIDITY AND PRODUCTION METHOD OF γ-BUTYROLACTONE BY HYDROGENATION OF SUCCINIC ACID USING SAID CATALYST
WO2002010147A1 (en) CONTINUOUS PROCESS FOR THE PRODUCTION OF OPTICALLY PURE (S)-β-HYDROXY-η-BUTYROLACTONE