TW200307592A - Two-leg walking robot and design method for two-leg walking robot - Google Patents

Two-leg walking robot and design method for two-leg walking robot Download PDF

Info

Publication number
TW200307592A
TW200307592A TW092109028A TW92109028A TW200307592A TW 200307592 A TW200307592 A TW 200307592A TW 092109028 A TW092109028 A TW 092109028A TW 92109028 A TW92109028 A TW 92109028A TW 200307592 A TW200307592 A TW 200307592A
Authority
TW
Taiwan
Prior art keywords
walking robot
design
legged walking
robot
legged
Prior art date
Application number
TW092109028A
Other languages
Chinese (zh)
Other versions
TW586998B (en
Inventor
Ken Endo
Hiroaki Kitano
Original Assignee
Japan Science & Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science & Tech Corp filed Critical Japan Science & Tech Corp
Publication of TW200307592A publication Critical patent/TW200307592A/en
Application granted granted Critical
Publication of TW586998B publication Critical patent/TW586998B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/008Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/007Means or methods for designing or fabricating manipulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/086Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Robotics (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Physiology (AREA)
  • Manipulator (AREA)

Abstract

The present invention discloses a method for simultaneously designing the motion pattern and the mechanical construction of a two-leg walking robot, which is useful to reduce the time required for designing and to enhance the design precision, comprising plural steps (S1, S2) of representing the two-leg walking robot (1) by various models and designing the robot in accordance with the models. In the plural steps (S1, S2), the design method comprising a step wherein the design data derived in the previous step is referred to in the next step is used. The plurality of steps (S1, S2) comprises a first step and a second step. In the first step the two-leg walking robot is represented by means of a combination model (S11) of cubic parts, and the physical parameter and the motion pattern of the combination model of cubic parts are calculated by using a first evolutionary algorithm. In the second step, the arranged location of constituent parts in each cubic part is calculated by using a second evolutionary algorithm. The evolutionary algorithm may employ a genetic algorithm, while the motion pattern may be generated by a neural network (S12). Whereby, an optimized design can be automatically performed, the design precision may be enhanced and the designing efficiency may be promoted.

Description

200307592 玖、發明說明: 【發明所屬之技術領域】 本發明係關於同時設計運動模式(pattern)與機構設計 之兩腳步行機器人之設計方法以及藉由該設計方法所設計 之兩腳步行機器人。 【先前技術】 機器人的開發係依照規格決定、機構設計、組裝、動 作確認、重新設計(redesign)的順序所進行。首先在規格的 決定上’需以機器人的大小需設^成μ、要執行何種 動作、在執行動作時需使㈣何種馬達或感測器㈤叩叫、 需採用何種電力系統(electric system)裝置等。 〜y⑺π σ又5丨u 一股而言 構“計係忽略各要素之質量,而僅考慮大小及干择, :=T°mputer Aided Des•,電腦輔助設計)將構 力二圖面化。再根據該圖面進行加工、組裝各構件、安200307592 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a design method of a two-legged walking robot that simultaneously designs a motion pattern and a mechanism design, and a two-legged walking robot designed by the design method. [Prior art] The development of robots was performed in the order of specification determination, mechanism design, assembly, operation confirmation, and redesign. First of all, in determining the specifications, 'the size of the robot needs to be set to μ, what action to perform, what kind of motor or sensor to perform when performing the action, and what kind of power system (electric system) device, etc. ~ Y⑺π σ and 5 丨 u Generally speaking, the "plan is to ignore the quality of each element, and only consider the size and dry choice.: = T ° mputer Aided Des •, computer-aided design) The two forces of the structure are surfaced. Then according to the drawing, process, assemble each component, install

电力糸統裝置,並製作成A 衣乍成為對象之機器人。接著,;, 製作之機哭人,L74 L 考“作) 產生、、舌勒二 '丁動作確認。在大部分的情況下" 產生活動乾圍内各零件發生干 便需要重新設計。 不足寺問逑。此日 /秀化式計算法同時產生撼哭λ 祕 ”建動輪式的研究亦在 械 】加七】)來表現機哭人 甲在此係以鏈結模型(link 演化式計算法曾出槿士 ^ 4杈撻(幻mu:|ation)i 運動模式。 °鍵、纟°長度與各鏈結_ 314618 5 200307592 但是,上述習知之利用計算機模擬上的演化式計管、Power system equipment, and made into a robot targeted by A Yicha. Then, the production machine crying, L74 L test "work" production, tongue two 'D action confirmation. In most cases " production of various parts inside the active fence will need to be redesigned. Insufficient Temple asks 逑. This day / Xiuhua calculation method also produces crying lamb λ secret "Research on building wheel type is also underway [plus seven]) to express the machine crying man armor in this system with a link model (link evolutionary calculation The method has been published by ^^ 4 tart (magic mu: | ation) i motion mode. ° key, 纟 ° length and each link_ 314618 5 200307592 However, the above-mentioned conventional method uses the evolutionary metering on computer simulation,

設計機器人的方法中,只能以單純的鏈結 L ^ 主木表現機器 人,亚错由演化式計算法算出構成鏈結模型之各鏈結長产 與各鏈結之運動模式,因此作為_種由多數構成要:戶;: 成之實際之機器人的設計方法,其較不具有實用性。vIn the method of designing a robot, the robot can only be represented by a simple link L ^ main tree, and the sub-error is calculated by the evolutionary calculation method for the long production of each link and the motion mode of each link, so it is _ species It is composed of a majority of households: a practical design method of a robot, which is less practical. v

因此,並未揭示同時設計實際之機器人之運動模式與 機構設計的具體方法,而產生無法具體實現運用該設計方 法之機器人的製造技術之問題。 此外,在過去之開發過程中的規袼決定與機構設計, 因大多仰賴開發技術者常年的經驗與直覺,而在多數情況 下’需要反覆重新設計,故導致成本攀升。尤其是兩腳步 行機器人係由多數要素構成,且需要高度之控制,但因其 設計技術尚未確立,而產生必須花費極大的成本與時間在 開發上的問題。 【發明内容】 因此,本發明鑒於上述課題,而以提供一種可同時設 計有助於縮短設計時間並提升設計精度之運動模式與機構 設計之兩腳步行機器人之設計方法,以及根據該設計方法 而設計之兩腳步行機器人為目的。 為達成上述目的,本發明之兩腳步行機器人之設計方 法仏由·在設計兩腳步行機器人之各程序中,以不同之模 型表現兩腳步行機器人,並根據模型進行設計之多數程序 所形成,其特徵為:該等多數之程序中係包含有:於下一 程序中參照於前段程序中所求得之設計資料的程序。Therefore, the specific method of simultaneously designing the actual robot's motion mode and mechanism design has not been revealed, and a problem arises that the manufacturing technology of the robot using this design method cannot be realized concretely. In addition, the regulatory decisions and institutional design in the past development process mostly depend on the years of experience and intuition of the development technicians, and in most cases ’need to be redesigned repeatedly, resulting in rising costs. In particular, a two-footed walking robot is composed of many elements and requires a high degree of control. However, because its design technology has not yet been established, it has a problem that it must take a great deal of cost and time to develop. [Summary of the Invention] Therefore, in view of the above-mentioned problems, the present invention provides a design method of a two-footed walking robot that can simultaneously design a motion mode and a mechanism design that help shorten design time and improve design accuracy, and according to the design method, Designed a two-legged walking robot for the purpose. In order to achieve the above object, the design method of the two-legged walking robot of the present invention is formed by: in the procedures for designing the two-legged walking robot, the two-legged walking robot is represented by different models, and most of the programs are designed according to the model. It is characterized in that the majority of procedures include a procedure that refers to the design information obtained in the previous procedure in the next procedure.

6 31461S 200307592 根據本發明 並進行設計,因 低開發成本。 -一夕數程序中以不同之模型表現 此可縮短設計時間、提高設計精度、並降 包含有··利用立體零件之 並藉由第1演化式計算法 理參數與運動模式的第! 弄法异出配置於各立體零 程序。 此外’本發明之多數程序係 結合模型表現兩腳步行機器人, 算出立體零件之結合模型中的物 程序;以及,藉由第2演化式計 件内的構成零件配置位置的第2 以稱成,由於多數程序係包含有 =鼻出物理參數與運動模式的程序;以及以演化式^ 序中的最佳設計,以提J二可以自動化進行“ 如同5又叶精度,並使設計效率化。 卜,本發明之多數程序係包 現兩腳步行機器人,並藉由第二以多關節模㈣ -程序中參:動模式的程序,其特徵係可在下 於多數程序動模式。根據上述構成,由 夕關即杈型表現兩腳步行機器人並1呀夂 鍵結長度與運動模式,以於下-程序中進行來昭因:ΐ 縮短設計時間、提高設計精度、並使設計效率:。口此可 此^’本發明之物理參數係包含:各立體零件之位置、 〜位置及慣性力矩,其特徵為 得之物理參數作為提供給第2演化式計算法之目 根據上述構成,由於物理參數係作為提 算法中的目標值群,故可縮短下二:式计 π r之5又计時間,並6 31461S 200307592 According to the invention and designed because of low development costs. -Different models are used in the overnight program. This can shorten the design time, improve the design accuracy, and reduce the use of the three-dimensional parts. The first evolutionary calculation of the legal parameters and the movement mode is performed! The trick is to arrange it in each three-dimensional zero program. In addition, most programs of the present invention express a two-legged walking robot in combination with a model, and calculate an object program in a combined model of a three-dimensional part; and, by the second term of the component placement position in the second evolutionary piece counting, Because most programs include programs with physical parameters and movement modes of the nose; and the best design in the evolutionary sequence, in order to improve the accuracy of J 2 can be automated, and make the design more efficient. Most programs of the present invention include a two-legged walking robot, and by a second multi-joint model, the program refers to a motion mode program, which is characterized in that it can be lower than most program motion modes. According to the above structure, by Xiguan is a two-legged walking robot that expresses a two-legged walking robot, and the length and motion mode of the bond are performed in the following steps: ΐ Reduce design time, improve design accuracy, and make design efficiency: The physical parameters of the present invention include: the position of each three-dimensional part, the position and the moment of inertia, which are characterized by the obtained physical parameters as the root of the second evolutionary calculation method. According to the above structure, since the physical parameter is used as the target value group in the algorithm, the following two can be shortened: the formula calculates π r 5 and time, and

31461S 7 200307592 提咼設訂 此外,本發明之演化式計曾 ° π法係運用遺傳演算 此,可使得將各種參數最佳—法耩 計效率化。 十异方法自動化,並使設 此外,本發明之運動桓4 、式错由類神經網路 此,可提高設計之自由度, 塔所I成。措 1更6又叶效率化。31461S 7 200307592 In addition, the evolutionary formula of the present invention has used the genetic algorithm to calculate the π method, which can optimize various parameters-the efficiency of the method. Ten different methods are automated and designed. In addition, the kinematics of the present invention can be improved by a neural network. Therefore, the freedom of design can be improved. Measures 1 and 6 are more efficient.

此外,本發明之類神經 ^ , ^ _ 路的加權係數係藉由遺傳.、宗 π法求仔。由於類神經網路/ 寻6、 白勺加推係數係藉由宮曾 求得,故可使得將各種參數、、法 使設計效率化。 化的计异方法自動化,並 此外,本發明之類神經網路入.、 有正回饋之發訊電路進行作動4 s .成組且作為具 因類神經網路含有可作為發訊根據上述構成’ 容易形成兩腳步行機器人之適:^丁作動之神經元,故 U田的運動模式。 此外,本發明之類神經網路 號之訊號發生裝置。藉此$以 口 I生周期性訊 動模式。 乂成兩腳步行機器人之運 此外,本發明之兩腳步行 之結合模型表成Μ人係稭由:以立體零件 营出立父:仃機器人,並以第1演化式計算法 ^出立體零件之結合模型中 1 |成 1裎序·以Β σ立植零件的物理參數的第 牙序,以及以第2演化式計算 内的構& + # Τ开去异出配置於各立體零件 計而成。 壬序所形成之設計方法而設 具有上述構造之兩腳步行機 仃機杰人由於係在多數程序中 314618 8 200307592 以不同之模型表現並進 古< 丁 °又ϋ十,因此可縮短設計時間、袒 阿设計精度、降低開發成太 才間^ '^成本,且可製作出價格低廉的產品。 此外,本發明之 ^ f + Η ^ ^ 步仃機器人係具備有:藉由包含 成對且作為具備正 匕各 . 頌之务汛電路而進行作動之神緩元& 類神經網路;以及可彦 、,工兀的 .^ 屋生周期性訊號之訊號發生裝置而吝 模式。 、置猎由該裝置,可產生正確之運動 腳步=哭^發明之兩腳步行機器人係由:電腦主機;兩 以^立_1 4内之立體零件;兩腳步行機器人内之CPU; 以及立體零件盥CPT了夕认, 、 輻出入界面所形成,其中,雷脱士 機係利用計算機模擬來、、> x 網路之Λ m 產生預定運動模式的類神經 、周路之加推係數,並藉由— τ工 井 用 貝仃由该加權係數所決定之 痛神經網路的程式,以* …… 兩腳步行機器人得以根據適當之 運動杈式進行步行動作。 曰之 本發明之兩腳步行機器人係透過通 前述電腦主機相連接,並藉由 U而與 送。 符田1^ °凡用界面進行資料之收 此外,最好藉由在兩腳步行機器人 明之立體零件及輸出入只石 夕、、且之本勒 散。 知出入界面’以進行功能分散與負載分 此外,本發明之立體零件最好 ΤΤΧ 1, W ^ , J田馬達及感測器 形成,亚赭由兩腳步行機器人内之cpu 產生根據程式所指示之轉矩。 或RAM, 具有上述構造之兩腳步行機器 知稭由貫行類神經網 314618 9 200307592 路之程式,以進行根據適當之運動模式而來的步行動作。 【實施方式】In addition, the weighting coefficients of the neural ^, ^ _ paths of the present invention are obtained by the genetic method and the π method. The neural-like network / finding and adding coefficients are obtained by Gong Zeng, so various parameters and methods can be used to make the design more efficient. The method of calculating the difference is automated, and in addition, the neural network of the present invention is incorporated, and the signaling circuit with positive feedback is operated for 4 s. Grouped and contained as a factorial neural network can be used as a signaling according to the above composition 'It is easy to form a two-legged walking robot: ^ Ding Zuo's neurons, so U Tian's motion pattern. In addition, a signal generating device for a neural network signal such as the present invention. Use this to generate a periodic signal mode. In addition, the two-legged walking robot of the present invention is composed of two human legs. The human model is made up of: three-dimensional parts are used to make the father: the robot, and the first evolutionary calculation method is used to ^ three-dimensional parts. In the combined model, 1 | into 1 sequence, the first order of the physical parameters of the B σ standing parts, and the second evolutionary calculation of the internal structure & + # Τ 开 去 异 异 arranged in each three-dimensional part Made. The design method formed by Ren Xu is a two-legged walking machine with the above-mentioned structure. Since the machine is a master in most programs, it is 314618 8 200307592 with different model performances. It can shorten the design time. , Design accuracy, reduce the cost of development into a talented person ^ '^, and can produce low-cost products. In addition, the ^ f + Η ^ ^ step robot of the present invention is provided with: a god slow element & neural network that operates by including a pair and serving as a circuit having positive daggers and praises; and Ke Yan ,, Gong Wu. ^ The cyclical signal generation device is not in the mode. The device can produce the correct movement footsteps = crying ^ The two-footed walking robot invented by: computer host; two-dimensional parts within ^ Li_1 14; CPU in two-footed walking robot; and three-dimensional The parts are formed by the CPT, and the in and out interfaces are formed. Among them, the Rattles machine uses computer simulation to generate the neural-like, weekly superposition coefficients of the predetermined motion pattern of the > x network. And by using the formula of the pain neural network determined by the weighting coefficient of τ Gongbei, the two-legged walking robot can perform walking motions according to the appropriate motion fork. The two-legged walking robot of the present invention is connected through the aforementioned computer host, and is transmitted through U. Futian 1 ^ ° Every data is received through the interface. In addition, it is best to use the three-dimensional parts and input and output of the two-footed walking robot, and the input and output are separated. Know the access interface 'for function dispersion and load sharing. In addition, the three-dimensional parts of the present invention are preferably formed by TTX 1, W ^, J-field motors and sensors, and the 赭 is generated by the CPU in the two-foot walking robot according to the instructions of the program. Of torque. Or RAM, a two-legged walking machine with the above-mentioned structure. It is known that the neural network 314618 9 200307592 is used to perform the walking action according to the appropriate exercise mode. [Embodiment]

以下根據附加圖示說明本發明之實施形態。圖示中之 同一編號係代表同一物或相當物。第1圖係為本發明之實 施形態之兩腳步行機器人之設計方法流程圖。開始進行設 計時,係在步驟S 1中,以立體零件之結合模型表現兩腳 步行機器人5並根據該立體零件之結合模型進行設計。在 步驟S 2中,設定在所設計之立體零件内配置主要零件之 主要零件模型,並進行主要零件之配置設計,以完成設計。 第2圖係為本發明之實施形態之兩腳步行機器人之其 他設計方法之流程圖。開始進行設計時,係在步驟S3中, 以多關節之鏈結模型表現兩腳步行機器人,以進行各鏈結 長度與運動模式之設計。 在步驟S4中,係以立體零件之結合模型表現兩腳步 行機器人,並根據該立體零件之結合模型進行設計。 在步驟S 5中,設定在所設計之立體零件内配置主要 零件之主要零件模型,並進行主要零件之配置設計,以完 成設計。苐2圖之設計方法與第1圖所說明之設計方法之 相異處係在於:其附加有以多關節之鏈結模型表現兩腳步 行機器人以進行設計之步驟S3之處。 於步驟S4中參照於步驟S3中所得之設計資料,以進 行設計5錯此即可縮短步驟S 4之設計時間’並提南設計 精度。 接著,說明各步驟之詳細設計程序。第3圖係為本發 10 314618 200307592 明之κ知形悲之立體零件模型設計程序之詳細流程圖,係 ”第1圖之步驟S1以及第2圖之步驟S4相對應。設計開 士口後即在步‘ S 11中,設定以立體零件之結合表現兩卿 步行機器人之模型。 方、第4圖中頒不該模型之一例。第*圖係顯示本發明 之實施形態之兩腳步行機器人之立體零件結合模型之-例 圖。以具有如第4圖所示之活動單位之3次元形狀的立體 令件2之、纟σ合杈型表現成為設計對象之兩腳步行機器人 於第3圖之步驟§ 1 9 Φ,接士、^ l & 1 ύ12中,構成輛出各立體零件之運動 模式、例如關節之拉聞备痒 姑μ 角度、孝τ矩寺之類神經網路(neura] network) 〇 接著,利用遺傳淨瞀、丰mPr^ + · Λ Ί /、π 法(Genetic Alg0rithm),將類神經 網路之參數(例如加權传童令、 锥V、數)以及各立體零件之物理參數 (例如位置、大小、重心付罟 卢 位置丨貝性力矩)予以最佳化。 首先’在步驟S 1 3 Φ,腺斗,s λ- 中將痛神經網路之參數以及各立 體零件之物理參數對應染色體並 1々、I因内,以形成 期個體之集團。然後,如後述般 又蔣侍自於第2圖之步si S3的設計資料反映於該初期個體之表 /数如此便可達到絲 短步驟S 4之設计時間,及提冥—凡斗 汉扠同δ又计精度之目的。 在步驟S14中,為完成設計, 〇砟异以下之環路(1 次數,達到預定次數時即結束。未達 步驟S15。 矛達預-次數時’則進」 於步驟S15中’對各個個體進行適應度評價。此時〗 314618 11 200307592 適應度係4日设定例如兩腳步行機哭、 消耗能量、零件間干擾等設計 =步的步行距離' 1工的限制事Jg 廿丄 得之適應度並不需要直接反映 、。/、中,所獲 、、擇時的機樂 何函數以擴大或縮小適應度之差里。 亦可V入任 於步驟s16中,選擇個體以進 擇方法在目前已有數種方法為人所 。此時的個體選 所得之適應度的機率進行選擇。 ’可根據對應 於步驟S17中,將所選擇之 之交又位置決定方法在目前已有數種方法此時 如,可隨機(random)決定—個交叉 ,〇。例 個體們而形成新的個體。亚表其W後替換 於步驟S18中,使個體產生突變(_ 定之機率變化其11)。亦即以一 眾所週知。仏的突變方法在目前已有數種方法 命合二計算交叉作成之兩個個體的距離’距離愈近則 θ車乂阿之機率產生突變的方法。 計算環路次數’當達到預定次數時,即可在適應度最 化之Γ版基因内獲得最佳化之類神經網路之參數以及最佳 之各立體零件之物理參數。該類神經網路參數以及夂立 體零件物if央垂^ σ 多數’可提供作為下一程序之步驟S2或步驟 S5中的設計資料之參考。 藉由κ行上述步驟,便可將以立體零件之結合模型予 ' 勺兩腳步行機器人設計成具備有最佳運動模式盘 314618 200307592 圖係本發明之實施形態之主要零件設計程序之詳 '、、田飢王圖’係與第1圖之步驟S2以 對應。開始設計時,係在 θ之v ^ S5相 # ^ φ ^ 〆驟S21中,設定配置於立體零 件内的主要零件的配置 圖中。 將邊杈型之一例顯示於第ό 弟6圖Α择員示配置於本發明每〜 之主要零件配置模 二月之“形悲之立體零件内 係藉由齒h 圖。立體零件100的旋轉軸101 輸送至I:::1。5傳達馬達的㈣, 測立體零件;:::以進行旋轉者。感測器1〇6係用以檢 …件1之位置者。接著,再藉由遺傳演算法使各 主要令件之配置整體達到最佳化。 使口 因内在ΠΓ、2: ’係使設計參數對應染色體並配置於基 達102、#二卿…目。設計參數係指例如係為馬 103 > 1〇4ν ιπς a、, 於斗咖 105、感測器106之位置。 方;步驟S23中,為了扯束_ 並在達到預定土势$ ;°束6又叶,计鼻以下之環路次數, 至步驟S24。 “…止。當未達預定次數時’則前進 的、自< ^ S24中,對各個個體進行適應度 的適應度係指設定且 、[度之…此時 步驟S 4的設計程序中所以之内土之步驟S】或第2圖之 腳步行機器人之夂立二攻佳運動模式與機構的兩 力矩等之設計資料。 大小、重心位置、慣性 、中,所獲得之適應度並無 率,而亦可導入心 貝直接反映在4擇時之檣 、 可函數以擴大或縮小適應度之差異。 3丨46]8 13 200307592 於步驟S25巾,選擇用以交配之個體。此日士 那-個個體的方法上1目前^已有數種方法為選擇 知。例如,可根據對應所獲得之適應度的機率進=。 於步驟S26中,將所選擇之個體彼此進 。 位置的決定方法…前為止已有數種 二。交又 如:可隨機決定-個交又位置,並於其前後=們例 形成新的個體。 驵們以 於步驟S27中,使個體產生突變。亦即以一— 變化基因。該突纟該方、、表乂 、, 疋之機;率 玄大又方法在目丽已有數種方法為人所4 , 如二計算交又作成之兩個個體的距離,距二。例 較高的機率產生突變之方法。 〜、Ί恐會以 丄計算環路次數,當達到預定次數時,即 局的個體基因内獲得最佳化的設計參數。 、應度最 藉由對各個立體零件進行上述步驟, 具備有在。目之㈣SL„2目之㈣;;^最接近 中所求得之铲 ^ S4的設計程序 步行機器人,* 4曰械^订^态人的兩腳 人。 乂豕…又计製作取終形態之兩腳步行機器 弟7圖係本發明之實施形態之鏈結模 細流程圖,# 、孓°又叶程序之詳 ,,中,以多關節之鏈結表現成…後’ 步行機器人,、,# — χ為6又6十對象之兩腳 中。 心疋該模型。模型之-例係顯示於第8圖 弟8圖係說明本發明之實施形態之兩腳步行機器人之 314618 ]4 多關節之鏈結模型之一 ^ Zv〗圖。利用以關節4結合鏈結5之 …板:表現兩腳步行機器人3。 於第7圖之步驟$ λ ?也 中,構成可輪出各键結之運動模 式例如關郎之拉開角度 ^ — 轉矩寺之類神經網絡。 接者’猎由遣值、、宫管 '辱ο、斤法將類神經網路之參數(例如加權 i丁'數)以及多關節模型 $各鏈結長度予以最佳化。 於步驟S33中,偵容„ μ 你 夕關郎模型中的各鍵铐長度與類神 '、、工、、,罔路的麥數對應染多 體之$團 一版亚配置於基因内,以產生初期個 於步驟S 3 4中,為了处未 马了…束設計,計算以下之環路次數, 亚在達到預定次數後停火 驟S35。 ®未達預定次數時,則進至涉 的、,對各個個體進行適應度之評價。此, 適,指例如設定兩腳步行機器人之一步的步行距Embodiments of the present invention will be described below with reference to the drawings. The same numbers in the figures represent the same or equivalent. FIG. 1 is a flowchart of a design method of a two-legged walking robot according to an embodiment of the present invention. The design is started. In step S1, the two-footed walking robot 5 is represented by a combination model of three-dimensional parts and is designed based on the combination model of the three-dimensional parts. In step S2, a main part model in which the main part is arranged in the designed three-dimensional part is set, and the configuration design of the main part is performed to complete the design. Fig. 2 is a flowchart of another design method of the two-legged walking robot according to the embodiment of the present invention. At the beginning of the design, in step S3, the two-legged walking robot is represented by a multi-joint link model to design the length and motion mode of each link. In step S4, the two-foot walking robot is represented by a combination model of three-dimensional parts, and is designed based on the combination model of the three-dimensional parts. In step S5, the main part model in which the main part is arranged in the designed three-dimensional part is set, and the configuration design of the main part is performed to complete the design. The difference between the design method in Fig. 2 and the design method described in Fig. 1 lies in the addition of step S3 in which a two-footed robot is represented by a multi-joint link model for design. In step S4, reference is made to the design data obtained in step S3 to perform the design. If this is wrong, the design time in step S4 can be shortened and the design accuracy can be improved. Next, a detailed design procedure of each step will be described. Figure 3 is a detailed flow chart of the design procedure of the three-dimensional part model of κ, knowing shape, and sadness in this issue 10 314618 200307592. It corresponds to step S1 in Figure 1 and step S4 in Figure 2. After designing the opening, In step S11, a model of a two-legged walking robot represented by a combination of three-dimensional parts is set. An example of the model is not shown in Figure 4 and Figure 4. The first figure shows a two-legged walking robot showing the embodiment of the present invention. An example of a combination model of three-dimensional parts. A two-legged walking robot with a three-dimensional shape of a three-dimensional shape with an active unit as shown in FIG. 4 and a 纟 σ-combination-type walking object as the design object. Step § 1 9 Φ, Jie Shi, ^ l & 1 1212, constitute the movement mode of each three-dimensional part, such as the joints of the rumors, the angles, and the neural network (neura) such as ττ 寺network) 〇 Next, using genetic net 瞀, mPr ^ + · Λ Ί /, π method (Genetic Alg0rithm), the neural network-like parameters (such as weighted pass order, cone V, number) and the three-dimensional parts Physical parameters (e.g. position, size, center of gravity罟 Lu position 丨 behavioral moment) is optimized. First, in step S 1 3 Φ, gland bucket, s λ-, the parameters of the pain neural network and the physical parameters of the three-dimensional parts correspond to the chromosomes and 1々, I Therefore, the group of individuals in the period is formed. Then, as described later, the design information of step si S3 in Figure 2 is reflected in the table / number of the initial individuals, so that the design of step S 4 can be achieved. Count the time and improve the precision-Fan Douhan fork is the same as δ and calculate the accuracy. In step S14, in order to complete the design, the loop below 0 is different (1 number of times, it will end when it reaches a predetermined number of times. If it does not reach step S15 When you reach the pre-count number of times, you can then proceed to the fitness evaluation of each individual in step S15. At this time, 314618 11 200307592 fitness is set on the 4th, such as biped walking, energy consumption, and interference between parts. Waiting for design = walking distance of steps' 1 work restriction Jg wo n’t need to reflect the fitness directly.. / ,,,,,, and timing machine functions to expand or reduce the difference in fitness You can also use V in step s16 and choose one At present, there are several methods for selection by the method of selection. At this time, the probability of the fitness obtained by the individual selection is selected. 'According to step S17, the selected intersection position determination method is currently in the current state. There are several methods at this time, for example, it is possible to randomly determine a cross, 0. For example, individuals form new individuals. Sub-tables are replaced in step S18, causing individuals to have mutations 11). That is, a well-known mutation method has several methods. At present, there are several methods to calculate the distance between two individuals created by crossover. The closer the distance is, the more likely the method of θ is to produce a mutation. Calculate the number of loops' When the predetermined number of times is reached, the parameters of the neural network such as the optimization and the best physical parameters of the three-dimensional parts can be obtained in the Γ version of the gene whose fitness is optimized. The parameters of this type of neural network, as well as the three-dimensional parts if the central axis ^ σ majority, can be provided as a reference for the design information in step S2 or step S5 of the next procedure. By performing the above steps with κ, a combination model of three-dimensional parts can be used to design a scoop two-legged walking robot with an optimal motion pattern plate 314618 200307592. The figure shows the details of the main part design procedure of the embodiment of the present invention. "Tian Heng Wang Tu" corresponds to step S2 in Figure 1. At the beginning of the design, it is set to v ^ S5 phase # ^ φ ^ in step θ in step S21, and the layout of the main parts arranged in the three-dimensional part is set. An example of the edge type is shown in FIG. 6A. The selector is arranged in each of the main parts of the present invention. The "happiness" three-dimensional part is shown by the tooth h. The rotation of the three-dimensional part 100 The shaft 101 is conveyed to I ::: 1.5. It conveys the ㈣ of the motor and measures the three-dimensional parts; ::: to perform the rotation. The sensor 10 is used to detect the position of the… part 1. Then, by The genetic algorithm optimizes the configuration of the main components as a whole. The internal factors ΠΓ, 2: 'make the design parameters correspond to the chromosomes and are arranged on the basis of 102, # 二 卿 ... The design parameters refer to, for example, the system For horse 103 > 1〇4ν ιπς a, at the position of Dou 105 and sensor 106. Square; in step S23, in order to pull the bundle _ and reach the predetermined earth potential $; bundle 6 leaves, count nose For the following number of loops, go to step S24. "... stop. When the number of times has not been reached, then, from < ^ S24, the fitness for each individual is the setting and [[degrees of ... at this time, the reason for the design process in step S 4] Step S] or the design data of the two-stroke best motion mode and the two moments of the mechanism of the foot walking robot shown in FIG. 2. The size, gravity center position, inertia, and middle, the obtained fitness is not rate, but can also be imported into the heart directly reflected in the 4 timing, can be function to expand or reduce the difference in fitness. 3 丨 46] 8 13 200307592 In step S25, the individual for mating is selected. There are several ways to choose this method. For example, it can be calculated according to the probability corresponding to the obtained fitness. In step S26, the selected individuals enter each other. How to decide the position ... Intersection: For example, the position of an intersection can be randomly determined, and before and after = examples, a new individual is formed. We think that in step S27, the individual is mutated. That is, one-change gene. There are several ways in which this square, square, square, square, square, square, square, and square are present; there are several methods that have been used in Muli by people, such as the calculation of the distance between two individuals and the distance between them. Example A method with a higher probability of generating a mutation. ~, I am afraid that I will use 丄 to calculate the number of loops. When the predetermined number is reached, the optimized design parameters in the individual genes of the station will be obtained. The most suitable is that by performing the above steps on each three-dimensional part, there is a presence.目 之 ㈣SL „2 目 之 ㈣ ;; ^ The closest to the shovel obtained in S ^ The design program of S4 walking robot, * 4 means a machine ^ order ^ two-legged person. 乂 豕 ... Also plan to make the final form Figure 7 of the two-legged walking robot is a detailed flowchart of the link mold of the embodiment of the present invention. The details of the #, 孓 °, and Ye program are, in which, the multi-joint link is expressed as ... after the 'walking robot,' # — Χ is in the two feet of 6 and 60 objects. The model is palpitated. An example of the model is shown in Figure 8. Figure 8 illustrates a two-legged walking robot that illustrates the embodiment of the present invention. 314618 One of the joint model of the joint ^ Zv〗 picture. Using the joint board 4 with the joint 5 to represent the two-footed walking robot 3. In step 7 of Fig. 7, the key can be formed to rotate each key The movement mode is, for example, the opening angle of Guan Lang ^ — a neural network such as Torque Temple. The receiver 'hunting by the value, the palace's insult, the method of the neural network-like parameters (such as weighted Ding') Number) and the multi-joint model $ each link length is optimized. In step S33, the detection volume „μ in your Xiguanlang model The length of the keycuffs corresponds to the number of gods, kung fu, kuro, and the number of wheat in Kushiro. The multi-segment $ group one version of the subgroup is placed in the gene to generate the initial one in step S 3 4 in order to be out of control ... Beam design. Calculate the following number of loops. After reaching the predetermined number of times, Ya ceases to fire at step S35. ® If it has not reached the predetermined number of times, it will go to the involved and evaluate the fitness of each individual. This is suitable, for example, to set the walking distance of one step of a two-footed walking robot.

在選擇時之機率,而可導二=之適應度並無須直接反班 之差異。 可函數以擴大或縮小適應J 於步驟S36中,送蓝田,、,山 那. 、擇用父配之個體。此時,在選指 那一個個體的方法上, 在、韻 知… 則為止已有數種方法為人所 例如,可根據對應所獲得之 於牛酽ς,7 士 、心度的機率進行選擇。 、S37中,將所選擇之個體彼此進 ^ 位置的決定方法在目前已有數種方 X-。义又 隨機决定一個交叉位置,並於其 .所知。例如,可 的個體。 ' 奐個體們以形成新 314618 15 200307592 :步驟S3",使個體產生突變。亦即以—定之機率 义ϋ突變方法在目前已有㈣❹1 ::::算交叉作成之兩個個體的距離,距離愈近則愈會以 車乂同的機率產生突變之方法。 5十异環路次數,當達到IP冑ϋ + 古貝疋A數蚪,即可在適應度最 问的個體基因内獲得最佳化的設計參數。 藉由實行上述步驟,可將客 ,目# 」將以夕關即之鏈結結合模型表 現的兩腳步行機器人設計成 式。 具備有取佳鏈結長度與運動模 於第2圖之步驟S4中,蕤 月扁_ ☆ 稭由在進仃初期個體形成以 及適應度評價時,將該最佳化 計資^ 域、、°長度與運動模式作為設 。十貝枓予以蒼考,將可達到 咬巧ν * S4中之設計時間 及設計精度之提昇之目的。 、 接著,說明類神經網路之構 — 神經维]、番& 一 α 弟9圖k择頁不猎由類 什、,二、,周路產生運動模式之兩 圖。 /仃機為人之鏈結模型示意 關節41係將鏈結51盥 ^ 〇鏈、、Ό 52加以連接,關節42將 鏈結52與鏈結53加以連 加以、金拉, ㈣即43將鏈結53與鏈結54 加以連接,與關節41未連 金問節#、t & 側的鏈結5 1的端部或是 一 Μ即43未連接之一側的士 4^ μ # ^ # 〜4的端部係與地面50形成 接地。根據第9圖之例,鏈处 戍 Λ , /ν ^ ^ μ 51係與地面50形成接地。 在此,分別將關節41、42 A 、〇 ^ a 之拉開角度設定為Θ】、 2、Θ 3,將關節4 1、4 2、4 3夕々“ 將鉍处q u + 之D轉矩設定為T】、IV 丁3 , 、鏈'% 5 1,54之來自地面5 反作用力分別設定為Exj、 3146J8 】6 200307592Probability when choosing, and the adaptability of differentiating == does not require a direct backshift difference. The function can be expanded or reduced to adapt to J. In step S36, send Lantian ,,,,,,,,,, and, the one selected by the parent. At this time, in the method of selecting which individual to refer to, there are already several methods known to people. For example, you can choose according to the probability that you have obtained the tadpoles, 7 shi and heart rate. In S37, there are several methods for determining the positions of the selected individuals in each other. Yi decides a crossing position randomly and knows it. For example, available individuals.奂 Individuals form a new 314618 15 200307592: Step S3 ", causing the individual to mutate. That is to say, the fixed mutation method has been used to determine the distance between the two individuals that have been created by crossover. The closer the distance is, the more likely it is that the mutation will occur at the same rate. When the number of ten different loops reaches IP 胄 ϋ + Gubei 古 A number 蚪, the optimal design parameters can be obtained in the individual genes with the most fitness. By implementing the above steps, the passenger and the head can be designed as a two-legged walking robot that is represented by a link that is connected with the Xiguan. It has the optimal link length and motion mode in step S4 in Figure 2. 蕤 月 扁 _ ☆ When the individual is formed in the initial stage of the advancement and the fitness is evaluated, the optimized capital is calculated. The length and exercise mode are set. The test of Shibei Cang will improve the design time and design accuracy in S4. Next, we will explain the structure of a neural-like network—the neural dimension], Fan & a α 9 Figure k Select page does not hunt the two pictures of the motion pattern generated by the class. / The model of the human link model indicates that the joint 41 is connected to the link 51, the chain 52, and the link 52, and the joint 42 is to link the link 52 to the link 53. The knot 53 and the link 54 are connected, and the joint 41 is not connected to the end of the golden knot #, t & side of the link 5 1 or one M that is 43 is not connected to one side of the taxi 4 ^ μ # ^ # The ends of ~ 4 are grounded to the ground 50. According to the example in FIG. 9, 处 Λ, / ν ^ ^ μ 51 at the chain is grounded to the ground 50. Here, the opening angles of the joints 41, 42 A, 〇 ^ a are respectively set to Θ], 2, Θ 3, and the joints 4 1, 4, 2, and 4 3, respectively. Set to T], IV D3,, chain '% 5 1, 54 from the ground 5 reaction forces are set to Exj, 3146J8] 6 200307592

Ex2 〇 弟10圖係根據第9圖所示之鏈結 類神經網路槿袢。兮4,g、▲ γ 、產生運動模式之 罔路構k圖。该類神經網路係以反 拉開角度㊀、㊀、Ω£χ】、Εχ2, 1 w 2 y 3為輻入點,而於山 之雙層構造之類神經網路。 巨T】、丁2、丁3 存在於中間層的神經元NA]、NA、· · 所有之輸入點相結纟,而存在於 ΝΆ與 间層的神經7L ΝΒ,、 2、. . · 、與所有的輪入點相結合。 此外’存在於輸出層的神經元 經元ΝΑ,、Να2.....ΝΑ相“ 2係刀別與神 .,,7t _ χ η相、,'° δ,而存在於輸出層之 神經兀NTS則分別與神經元NBi、nr 八n ] NB2 . ·.、則„相結 合。^經元ΝΤ】、ΝΤ2、叫係分別輸出轉矩丁,、Τ2、Τ3。 第11(a)圖係'顯示存在於中間層的神經元 ......Ω)之結合示意圖。將神經元财,之輸:設定為 A ’將Μ、ΕΥ θ]、θ2、θ3之輸入加權分別設定為 wk]、wk2、wk3、wk4、%時,係以下列數式⑴表示。 PAk l + e'QAk (1 ) 在此,QAk係為媒介變數,係以下列數式(2)表示。 QAk=wk rEXl+wk 2.Ex2+wk 3·^ 1+wk 4^2+wk ye,,、 -3 ( 2 ) 第11(b)圖係*員示存在於中間層的神經元、 2.....n)的結合示意圖。將神經元NBk之輸出設定為 PBk、Εχ】、Εχ2、Θ】、㊀2、㊀3之輸入加權可分別以_、 wk】、wk5、_wk4、wk3 表示。 \ι 314618 200307592 如此-來,於第9圖所示之鍵結模型中,鍵处 節C、鏈結52與鏈結54 3 清 對應,並形成對摇, 與雙腳相 I办欣對%,因此PBk係以數式(3)表示。 l + e'QBk (3) 在此,QBk係媒介變數,係以下列數式(4)表 PB ^ 不 QBk=wkrEx2+Wk2.Exi+Wk3^_Wk 4.,2+^5^ ⑷ 乐U(C)圖係顯示存在於輸出層的神經元NT的、纟士八 :意圖:將神經元%之輸出設定為轉矩W神::Ex2 〇 Brother 10 is based on the link-like neural network hibiscus shown in Figure 9. Xi 4, g, ▲ γ, the k-path composition of the motion pattern. This type of neural network is a neural network with a double-layered structure such as Yushan's double-layered structure, with the angles of inversion ㊀, ㊀, Ω £ χ], Εχ2, and 1w 2 y 3 as the points of penetration. Giant T], Ding 2 and Ding 3 exist in the neurons of the middle layer NA], NA, · · All the input points are combined, and the nerves 7L ΝΒ that are present in the NM and the interlayer, 2, ... Combined with all rounds. In addition, the neuron meridians existing in the output layer Ν ,, Να2, ..., ΝΑ phase "2 series knife and god. ,, 7t _ χ η phase ,, '° δ, and the nerves that exist in the output layer The Wu NTS is combined with the neurons NBi, nr n n] NB2. ·., Then „. ^ Warp element NT], NT2, and T2 respectively output torque D, T2, and T3. Figure 11 (a) is a schematic diagram showing the combination of neurons existing in the middle layer ... Ω). When the neuron wealth is set to A ', the input weights of M, EΥ θ], θ2, and θ3 are respectively set to wk], wk2, wk3, wk4, and%, which are expressed by the following formula ⑴. PAk l + e'QAk (1) Here, QAk is a medium variable and is expressed by the following formula (2). QAk = wk rEXl + wk 2.Ex2 + wk 3 · ^ 1 + wk 4 ^ 2 + wk ye ,,, -3 (2) The 11th (b) picture shows the neurons existing in the middle layer, 2 ..... n) combined schematic. Set the output of neuron NBk to PBk, Εχ], Εχ2, Θ], ㊀2, ㊀3, and the input weightings can be represented by _, wk], wk5, _wk4, and wk3, respectively. \ ι 314618 200307592 So-here, in the bond model shown in Figure 9, the key joint C, the link 52 and the link 54 3 correspond to each other, and form a shake, which is opposite to the two-phase phase I. Therefore, PBk is expressed by Equation (3). l + e'QBk (3) Here, QBk is a media variable, which is represented by the following formula (4) PB ^ No QBk = wkrEx2 + Wk2.Exi + Wk3 ^ _Wk 4., 2 + ^ 5 ^ 乐乐 U (C) The graph shows the neurons NT present in the output layer. 纟 士 八: Intent: Set the output of the neuron% to the torque W God ::

Ak之幸則出對PAk之加權分別設定為w 下列數式⑺表示。 孝4丁】係以Fortunately for Ak, the weighting of PAk is set as w, and the following formula 数 is used. Xiao 4 Ding

T (5 l + e'QTi 係以下列數式(6)表 在此,QT】係媒介變數 (6) QTi-iwAk.PAk k=l 第“(d)圖係顯示存在 一立 万、知出層的神經兀N八的处人 不思圖。將神經元NT令ά 6 子甲、、工兀ΝΤ2之輪出設定為轉矩 NAk之輪出對PAl之加婼八 ‘將神經兀 k之加杈刀別設定為wC時 下列數式(7)表示。 钤矩丁 2係以 l + e’QT2 ⑺ 在此,队係媒介變數,係以下列數式(8)表示 314618 18 ΖΌΌόΌ/^Ζ η 叩脅ck.PAk (8) 弟1 1 (e)圖係甚— 示意圖。將神經之:議的神經元N τ3的結合 叫之輸出對PBk :"出二二、為轉矩Τ3,將神經元 下列數式⑼表示。…別設定為^時,轉矩了3係, T: 1 + ^QT3 (9) :二係媒她,係以下列數式(1。)表 (10) QT3^JwBk.PB k-l 示 根據上述說明之類神經網路的 拉開角度㊀^㊀”^以及反作用二’可形成以關節 點,而輸出關節之 X] ΕΧ2作為輪入 P之轉矩卩、T2、& ^ 路内外,藉由前述所說明之遺傳”、、:,了 # 路内之加權诃、、你 法,可使類神經j 罟大入货 k、WCk(k=1至η)對鹿毕耷邮 置灰基因内,以決定類神經網路内之"“,並配T (5 l + e'QTi is shown by the following formula (6), QT] is the media variable (6) QTi-iwAk.PAk k = l The "(d) picture shows that The nerves of the emergence layer N N are not thought about. Set the neuron NT order 6 6 and the NT 2 wheel output as the torque NAk wheel output plus the PAl plus 8 'will be the nerve. When the knife type is set to wC, the following formula (7) is expressed. 钤 moment D 2 is represented by l + e'QT2 ⑺ Here, the team is a media variable, which is represented by the following formula (8). 314618 18 ZZΌΌόΌ / ^ Z η 叩 ck.PAk (8) Brother 1 1 (e) The picture is very-schematic. The combination of the nerve: the proposed neuron N τ3 is called the output pair PBk: " Execution 22, is the torque Τ3, the neuron is expressed by the following formula… ... When you do n’t set it to ^, the torque is 3 series, T: 1 + ^ QT3 (9): The second series match her, which is expressed by the following formula (1.) ( 10) QT3 ^ JwBk.PB kl shows the opening angle of the neural network according to the above description ㊀ ^ ㊀ "^ and reaction two 'can form joint points, and output joint X] Εχ2 as the torque of wheel-in P卩, T2, & ^ Inside and outside the road, as explained above Inheritance ",,: ,, ## The weighted 内, 你 method in the road can make the neuron-like j 入 large purchase k, WCk (k = 1 to η) in the gray gene of Lu Biyu to determine &Quot; "in Neural Networks

(k=l至η)。具備該加權之 ” WAk、〜wC 機器人進行步行動作時所需㈣之=係可產生當兩腳步子 接著說明類神經網路之1 :期性運動模式。 類神經網路產生運動模式之兩腳步:機V2圖係顯示藉由 型之示意圖。 ^仃祛态人之其他鏈結模 關節 61 、 62 、 63 、 64 、 65 由鍵結而相互與其相鄰之關節相連接6:68、69,係藉 連接’將具備有腳指板7] 314618 19 200307592 的鏈結與關節61相連接, pe 7Π ^ '連接,而將具備有腳指板72的鏈社 關即70相連接。此外,上 遗、、〇與 月旦73係與關郎65、66之間沾 結相結合。此外,閗 < 間的鏈 二曰 關即 62 、 63 、 64 、 67 、 68 、 69 係 面具有自由度,而關節61 、尉Χζ 由度。此外,問節62— W面具有自 卜 9係分別被彎曲成可使腳指板7 i 腳指板72與地面形成平行的角度。 h 此外’關節61、6 5、6 & 0 形 65 Φ 66、7〇係被設定為可進行周期 例如正弦波波形運動者。 ^ ’ 此外,關即61、62、63、〇 6“ 67、68、69、7〇 “ 64 ^ φ4、叭、φ9、φ]。。 的角度係分別設定為φ】、Φ 弟1 j圖係根據成為設 ,^ ^ ,, χ 十對象之第U圖之鏈結桓刮吝 生運動模式之其他類神經桓型產 吝吐田* ^ , 略構造圖。訊號發生裝置8〇 生周期波形例如正弦波波 、 k > 1 ^ ’以供給使與兩腳步行機哭 人之左右腰關節相對應的關節μ妒 - 成角度φ6的訊號,同時供 4角度°5、關節66形 腳關節相對應的關節61形成戶、φ聊步订機器人之左右 Α, ^ 成角度Φ】、關節7〇形成角产φ 10的訊號神經元8 1以及神細开 又 84係分別對應兩腳步行機哭工人、神經元83以及神經元 用力狄。。⑼读斤、Λ 人之左右股關節的神經元。利 用加异裔89減鼻神經元8丨鱼 〜 據減算結果提供角度〇4給賤:^元82的輸出訊號,並根 曾、A Q, , 4賦予關節64。利用加算哭9〇減 异神經元83與神經元84的輪+ “ ^ 供角度φ7ιι節67。 號,並根據減算結果提 此外’神經元85以及神從 it 8R ^,,, f, r ^ 工兀86、神經元^以及神經 兀8 8係分別對應兩腳步行機哭 。。 之左右膝關節的神經 314618 20 200307592 元。利用加算器91減算神經元85與神經元86的輸出訊 號,並根據減算結果提供角度Φ3給關節63。利用加算哭 92減算神經元87與神經元88的輸出訊號,並根據減算結 果提供角度Φ 8給關節6 8。另外,神經元8 i以及神經元8 2、 神經元83以及神經元84、神經元85以及神經元86、祌經 兀87、以及神經元88、神經元82 «及神經元84係分別成 、且並作為具有正回饋之發訊電路而進行作動。 ,接者》兄明弟i 3圖之神經元内部構造。神經元之内部 構造方塊圖係如第1 4岡糾- χ、χ、 圖所不。神經元93係輸入輸入訊號 L/y Γ Ul 5 ; 制性結合,〇(白:輸入訊號上的·(黑色圓圈)係代表抑 以 圓圈)係代表性激發性結合。 弟1 3圖中的m 神經元83中,神經元均省略U。,心】係僅存在於 輸出同—值者:“表在所有的神經元中於多數個輸出點 數式03)之運算°^運算器94進行數式⑴)、數式U2)、(k = 1 to η). With this weighted "WAk, ~ wC, what the robot needs to do when walking? = Can generate two-foot steps. Then we will explain the neural network-like 1: periodic exercise mode. The two steps of the neural-like network to generate the movement mode : The machine V2 diagram is a schematic diagram of the model. ^ 仃 Other link mold joints 61, 62, 63, 64, 65 of the dispel person are connected to each other and their adjacent joints by bonds 6:68, 69, By the connection, the link with the toeboard 7] 314618 19 200307592 is connected to the joint 61, and pe 7Π ^ 'is connected, and the chain agency with the toeboard 72 is connected to 70. In addition, the above Yi, 0, and Yuedan 73 are combined with Guanlang 65, 66. In addition, the chain between the two lines is 62, 63, 64, 67, 68, 69. The joint 61 and Wei X ζ have a degree. In addition, the joint 62-W surface has a self-buffering 9 series that is bent so that the toe board 7 i and the toe board 72 form a parallel angle with the ground. H In addition, 'joint 61, 6 5, 6 & 0 shape 65 Φ 66, 70 series is set to be able to perform period such as sine wave waveform Sportsman. ^ 'In addition, the off is 61, 62, 63, 〇6 "67, 68, 69, 70" 64 ^ φ4, 、, φ9, φ]. The angle system is set to φ], Φ brother Figure 1j is based on other types of neural crest-type vomiting fields in the U-th graph of the U-th graph of the ten objects, ^ ^ ,, χ, and the structure diagram. The signal generator 80 Periodic waveforms such as sine wave, k > 1 ^ 'to supply the joint μ corresponding to the left and right waist joints of the two-legged walking machine crying-signal at an angle of φ6, and at the same time 4 angle ° 5, joint 66 shape The corresponding joints 61 of the foot joints form the left and right sides of the φ chat-step robot A, ^ form an angle Φ], the joints 70 form the signal neurons 8 1 of the angular production φ 10, and the Shenkaikai 84 series correspond to the two foot steps, respectively. Crying machine worker, neuron 83, and neuron force di ... ⑼Read Jin, Λ neurons of the left and right femoral joints. Use alien 89 to reduce nasal neurons 8 丨 fish ~ According to the result of the reduction, provide the angle of 04 to Low: the output signal of ^ element 82, and Genzen, AQ,, 4 give joints 64. Use the addition to cry 90 and reduce the neuron 83 84 + neurons wheel "^ for angle section 67 φ7ιι. Number, and based on the subtraction results, in addition, ‘Neural 85 and God ’s 8 R ^ ,,, f, r ^ Gongwu 86, Neuron ^, and Neural 8 8 series correspond to two-legged walking machines crying. . The nerves of the left and right knee joints 314618 20 200307592 yuan. The adder 91 subtracts the output signals of the neuron 85 and the neuron 86, and provides an angle Φ3 to the joint 63 according to the result of the subtraction. The output signals of the neuron 87 and the neuron 88 are subtracted using the addition cry 92, and the angle Φ 8 is provided to the joint 6 8 according to the subtraction result. In addition, neuron 8 i and neuron 8 2, neuron 83 and neuron 84, neuron 85 and neuron 86, sacral muscle 87, and neuron 88, neuron 82 «and neuron 84 are respectively, It also operates as a signaling circuit with positive feedback. "Receiver", the inner structure of the neuron of brother i. The internal structural block diagram of the neuron is shown in Fig. 14-Gang, X, and X. Neuron 93 is an input signal L / y Γ Ul 5; it is a combination of binding, 0 (white: (black circle on the input signal represents a circle)) is a representative excitation binding. In the m neuron 83 in the figure, U is omitted from the neurons. , Heart] only exists in the output of the same value: "Table in all the neurons in the majority of the output points of the calculation of the formula 03) ° ^ operator 94 performs the formula ⑴), formula U2),

du dt dv dT · f (v) + U0 + u2 (11) y (12)du dt dv dTf (v) + U0 + u2 (11) y (12)

其中,f (X) (1 3) 其中,u俜相火 當於疲勞谇μ 、4甲經兀之膜電位的内部變數 乃度的内部蠻赵Among them, f (X) (1 3), where u 俜 phase fire is caused by fatigue 谇 μ, the internal variable of the membrane potential of the 4th meridian, and the internal pressure of Nadu

文’ τ 1、τ 2係時間常數,t J 314618 21 200307592 數為加權係數,万係相杂认、e 根據上述說明之,:“田、’皮勞度之係數,k為常數。 62、63、64、65 神經網路的構造,可輸出關節61、 Φ 3、① 4、0) 5、φ > φ 、 、 〇 之各角度 Φ 1、φ 2、 6 Φ7、Φ*、Φ9、Φ】。。 一中,藉由前述所說明之遺傳涫首 路内的各神婉开力广r把 ,、开法,可使頌神經網 申,、二兀加核知數%對應染色體並配置於The text τ 1 and τ 2 are time constants, and t J 314618 21 200307592 is the weighting coefficient, and the various systems are misunderstood. E According to the above description, "Tian, 'the coefficient of Pi Lao degree, k is a constant. 62, 63, 64, 65 The structure of the neural network can output joints 61, Φ 3, ① 4, 0) 5, angles of φ > φ,, 〇 Φ 1, φ 2, 6 Φ7, Φ *, Φ9, Φ] ... In the first, by using the above-mentioned genetics, the gods in the first path can open up a wide range, and open the method, so that the song can be applied to the neural network. Configured at

内,而決定類神經網路内之加權 、土口 路則可產生兩腳步行機器人 ,二, 期性運動模式。 …丁動作時所需關節之周 在上述說明中,係使用遺傳演算法作為演化式計管法 而進行說明,但並不限定於該種演算法,纟演化式計:法 中,例如亦可使用以操作突變為主的演化式策略(“I: uonary S⑽egies,ES),著重在種之進化而非個體之演化 式規劃(Evolutionary Programming,Ep),以樹狀⑴“)結構 處理遺傳資訊之遺傳規劃(Genetic Program_ming,Gp)^, 而可與遺傳演算法進行相同計算。 接著說明根據上述設計方法所設計之兩腳步行機器 人。第1 5圖係本發明之實施形態之兩腳步行機器人之方塊 構造圖。兩腳步行機器人12 0係由多數之立體零件1 〇 〇所 構成,但在此僅顯示其中之一。此外,圖中僅顯示一組之 CPU(Central Processing Unit,中央處理單元)u 工、 (Read Only Memory,唯讀記憶體)112、RAM(Raild〇m Access M e m o r y,隨機存取&己,丨思體)11 3、幸別出入界面11 4,但亦可 視需要於機器人1 20内部配置多組,使之形成可達到功能 314618 200307592 分散及負載刀政之目的之構造。 馬達ι〇2及感測器1〇6係内建於立體零件100内,並 與輸出入界面114相連接。CPU111、R〇MU2、RAMU3、 輸出入界面114、通訊界面115係利用匯流排ιΐ6相連接, 而内建於兩腳步行機器人12〇内。此外,兩腳步行機器人 120係透過通訊線路(c〇mmunicati〇n line)U7而與電腦主 機1 3 0相連接,其資料之收送係利用通訊界面i丨$進行。 電腦主機130係藉由計算機模擬執行前述之設計方法,並 決定產生預疋之運動模式之類神經網路的加權係數。然 後,透過通訊線路117,將用以實行由該加權係數所決、定 之類神經網路的程式傳送到RAM 1 1 3。 在此,通訊線路117係為有線,但亦可為無線。此外, 可將電腦主機13〇所設計之程式寫入非揮發性記憶體中, 並將其作成R〇M112亦可。此外,亦可在電腦主機13〇中, 將程式寫入未圖示之外部記憶媒體中,而在兩腳步行機器 人120中,藉由未圖示之外部記憶媒體讀取裝置讀取該 式並傳送至RAM113 〇 Λ王 丨y玍土切TF吋,可視需要將通 線路in拆除,而使CPU⑴執行内建於R〇Mn2或^ 的程式’且透過輸出入界面114,以感測器1〇6量測 體=件⑽之運動,並驅動馬達1G2而使立體零件_ 生轉矩,藉此’兩腳步行機器人120即可根據程式所指 之適切的運動模式進行步行動作。 經由上述說明即可瞭解,根據本發明係在多數之程 314618 23 200307^2 中藉由不同之模型表現並 短設計時間’提高設 k腳步仃機器人,因此可縮 此外,由於本發。二並降低開發成本。 理參數與運動模式的程序;以及=:=計算法算出物 成零件配置位置的程序1此^自計算法算出構 取佳設計,以提高設計精度,、, 進订各程序t之 發明係以多關節模型表現兩腳=使:计效率化。此外,本 長度與運動模式,並在一卩步灯機器人,而設計各鏈結 設計時間,提高設計精進行參照,因此可縮矩 設計時所求得之物理夫 6又计效率化。此外,由於 之目標值群,故:“乍為提供給第2演化式計算法 精度。此外,=::1序之設計時間,並提高設計 叹叶0才所使用之演 法而來,因此得以使將夂…/法係根據遺傳演算 化,而使嗖’ Γ 玄° *丈取佳化的計算方法自動 神經網外’由於運㈣式係藉由類 化。產生’故可提高設計之自由度,並使設計效率 此外’由於類神經網路之加權係 :二:::以使將力,數最佳化的計算方法自二 電路進^化。此外,因類神經網路包含有可作為發訊 % '丁動作之神經元,故較容易使兩腳步行機哭人產生 適當的運動模式。此外,因類神”路附人產生 甲罔路附加有可產生周期 運動生裝置’故較容易產生兩腳步行機器人之 ^吴式。此外’由於兩腳步行機器人係在多數之程序中 曰不同之輪型表現且加以設計,因此可縮短設計時間, 3)46)8 24 200307592 ’兩腳步行機器 故可產生正確的 P牛低開發成本而製造出價廉的產品。此夕卜 人因具備有類神經網路與訊號發生裝置, 運動模式。 產業上可利用性 ^如上所述,本發明在設計兩腳步行機器人時,可同時 十有助方;纟侣短設計時間並提昇設計精度 ^ Μ ,η. ^ 又 < 建動杈式與機 ,而藉由設計時間之短縮、設計精度之提昇、以及 開發成本之低廉化,可對雨腳步行機器人的 的貢獻。 ' 座玍極大 L圖式簡單說明】 一本發明,可根據用以說明以下詳細發明與本發明之 項實施形態之附加圖面,而獲得進一步的理解。二外, 示於附加圖面的各項實施例,並未特定或限定本發明, 目的僅在於方便本發明之說明及理解。 方法=係本發明之實施形態之兩腳步行機器人之設 第2圖係本發 設計方法流程圖。 第3圖係本發 之詳細流程圖。 明之實施形態之兩腳步行機器人之其他 明之實施形態之立體零件模型設計程序 第4圖係 立體零件結合 顯示本發明之實施形態 模型之一例圖。 之兩腳步行機器人之 第5圖係與本發 詳細流程圖。 明之實施形態之主要零件設計程序之 314618 25 200307592 _'示配置於本發明之實施形態之立體零件内 置模型之一例圖。 本發明之實施形態之鏈結模型設計程序之詳 弟8圖传θ _ 不*頃不本發明之實施形態之兩腳步行機In addition, the weighting of the neural network is determined, and the soil road can generate a two-legged walking robot. Second, the periodic motion pattern. … The week of the joints needed for the movement. In the above description, the genetic algorithm is used as the evolutionary counting method, but it is not limited to this kind of algorithm. For the evolutionary calculation: method, for example, Using evolutionary strategies ("I: uonary S⑽egies (ES)") that focus on mutations, focusing on the evolution of species rather than the individual's Evolutionary Programming (Ep), and using tree-like structures to process genetic information Genetic Programming (Gp) ^, and can perform the same calculations as genetic algorithms. Next, the two-legged walking robot designed according to the above design method will be described. Fig. 15 is a block diagram of a two-legged walking robot according to an embodiment of the present invention. The two-legged walking robot 120 is composed of a large number of three-dimensional parts 100, but only one of them is shown here. In addition, the figure shows only one set of CPU (Central Processing Unit), (Read Only Memory) 112, RAM (Raildom Access Memory, Random Access &丨 Thinking) 11 3. Fortunately, don't enter or exit the interface 11 4, but you can also configure multiple groups inside the robot 1 20 as needed to form a structure that can achieve the functions of 314618 200307592 dispersion and load knife. The motor 102 and the sensor 106 are built into the three-dimensional component 100 and connected to the input / output interface 114. The CPU 111, ROMU2, RAMU3, input / output interface 114, and communication interface 115 are connected by using a busbar ΐ6, and are built in the two-footed walking robot 120. In addition, the two-legged walking robot 120 is connected to the computer host 130 via a communication line (common line) U7, and its data is sent and received using the communication interface i $. The host computer 130 executes the aforementioned design method by computer simulation, and determines the weighting coefficients of the neural network such as the predicted motion pattern. Then, a program for implementing a neural network determined and determined by the weighting coefficient is transmitted to the RAM 1 1 3 through the communication line 117. Here, the communication line 117 is wired, but may be wireless. In addition, the program designed by the host computer 130 can be written into the non-volatile memory, and it can also be ROM112. In addition, the program can also be written into the external storage medium (not shown) in the host computer 130, and the two-legged walking robot 120 can read the formula using an external storage medium reading device (not shown) and Transfer to RAM113 〇Λ 王 丨 y cut soil TF inches, if necessary, remove the connection line in, so that the CPU ⑴ executes the program built in RoMn2 or ^ 'and through the input / output interface 114 to the sensor 1〇 6 Measure the body = the movement of the piece, and drive the motor 1G2 to generate the torque of the three-dimensional part. By this, the two-foot walking robot 120 can perform the walking action according to the appropriate motion mode indicated by the program. As can be understood from the above description, according to the present invention, in most processes 314618 23 200307 ^ 2, different models are used to express and the design time is shortened to increase the k-steps of the robot, so it can be reduced. In addition, due to the present invention. Second, reduce development costs. The program of the physical parameters and motion modes; and =: = the calculation method to calculate the configuration position of the object into parts. ^ The calculation method from the calculation method to obtain a good design to improve the design accuracy, the invention of each order t Multi-joint model performance two feet = make: plan efficiency. In addition, the length and movement mode are combined with a stepping light robot, and the design time of each link is designed to improve the design precision for reference. Therefore, the physical power obtained during the design can be reduced. In addition, because of the target value group: "At first, it provides the accuracy of the second evolutionary calculation method. In addition, the design time of = :: 1 sequence is improved, and the algorithm used to design the sigh leaves 0 is derived. It is possible to make the 夂 ... / law system based on genetic calculations, and to make 嗖 'Γ 玄 ° * the calculation method for optimizing the automatic neural network outside, because the operation system is classified by generating. Therefore, the design can be improved. Degree of freedom and design efficiency. In addition, due to the weighting system of the neural network-like: 2 ::: The calculation method for optimizing the force and number is improved from the second circuit. In addition, the neural network includes It can be used as a signaling neuron for Ding action, so it is easier for a biped walking machine to cry and generate an appropriate exercise mode. In addition, because of the god-like "road-attached person's nails, the road is equipped with a device that can generate periodic movements" Therefore, it is easier to produce a two-legged walking robot. In addition, 'two-legged walking robots have different wheel shapes and designs in most programs, so design time can be shortened. 3) 46) 8 24 200307592' two-legged walking robots can generate correct P-low development Cost-effective products. In the meantime, people are equipped with similar neural networks and signal generating devices, and exercise modes. Industrial applicability ^ As mentioned above, the present invention can be helpful at the same time when designing a two-legged walking robot; the couple can shorten the design time and improve the design accuracy ^ M, η. ^ Also < Machine, and by shortening the design time, improving the design accuracy, and lowering the development cost, it can contribute to the rain foot walking robot. '' Simple illustration of seat block L diagram】 The present invention can be further understood based on the additional drawings used to explain the following detailed invention and embodiments of the present invention. Second, the embodiments shown in the attached drawings do not specifically or limit the present invention, and are only intended to facilitate the description and understanding of the present invention. Method = is the design of a two-legged walking robot according to the embodiment of the present invention. Figure 2 is a flowchart of the design method of the present invention. Figure 3 is a detailed flowchart of the present invention. Others of the two-legged walking robot of the Ming embodiment The program for designing a three-dimensional part model of the Ming embodiment is shown in Fig. 4. An example of the model of the embodiment of the present invention is shown in combination with the three-dimensional parts. Figure 5 of the two-foot walking robot is detailed flow chart of the present invention. 314618 25 200307592 _'shows an example of a built-in model of a three-dimensional part arranged in the embodiment of the present invention. The details of the link model design procedure of the embodiment of the present invention. Brother 8 Picture Biography θ _ No * is not a two-legged walking machine according to the embodiment of the present invention.

夕曰曰丄 J ,;^ ΟΠ /V 夕關:之鏈結模型之一例圖。Xi Yue said 丄 J,; ^ ΟΠ / V Xiguan: An example of a link model.

器人二3藉由類神經網路產生運動模式之兩腳步行機 ^ W辑型之示意圖。 苐1 〇圖私』。,上 構造圖。τ、根據鏈結模型產生運動模式之類神經網路 1 1 U)至(e)圖係顯示存在於中間細 在於輪出爲—4 Μ、、,工凡以及存 層之神經元之結合之示意圖。 第1 2圖係藉由類神經網路產生運動模 一 搡哭、/ 、飞之兩腳步行 •口口 之其他鏈結模型之示意圖。Cyborg II 3 uses a neural network to generate a two-foot walking machine with a motion pattern.苐 1 〇 图 私 』. , On the structural map. τ, neural networks such as generating motion patterns according to the link model 1 1 U) to (e) The graph shows that the combination of neurons that exist in the middle is -4M, Gongfan, and the layered neurons. schematic diagram. Figure 12 is a schematic diagram of the motion model generated by a neural network-like wailing, flying, and two-foot walking.

第6圖係 之主要零件配 第7圖係 細流程圖。 第1 3圖係根據其他鏈結模型產生 神經铜狄 m ^勒棋式之其他類 W、工碉路構造圖。 第1 4圖係神經元之内部構造方塊圖。 塊搆::。圖係本發明之實施形態之兩腳步行機器人之方 1 立體零件 關節 鏈結 71、72腳指板 ° 兩腳步行機器人 4 ' 41 至 43 、 61 至 70 5 、 51 、 52 、 53 、 54 地面 314618 26 50 200307592 通訊界面 通訊線路 電腦主機 、NA2、NAn、NB1、NB2、 wCn y 73 上體 81至88、93神經元 94 運算器 102 馬達Figure 6 shows the main parts and Figure 7 is a detailed flowchart. Figure 13 is based on other link models to generate other types of W, Gonglu road structure diagrams of Ning Tong Di m ^ Le chess. Figure 14 is a block diagram of the internal structure of a neuron. Block structure ::. The figure is the two-legged walking robot of the embodiment of the present invention. The three-dimensional parts are jointed with 71 and 72 finger boards. The two-legged walking robot is 4 '41 to 43, 61 to 70 5, 51, 52, 53, and 54. 314618 26 50 200307592 communication interface communication line computer host, NA2, NAn, NB1, NB2, wCn y 73 upper body 81 to 88, 93 neuron 94 computing unit 102 motor

111 CPU111 CPU

113 RAM 1 15 117 130 ΝΑΙ PAk、PBk 輸出 wkl 至 wl(5、wAn、wBn、 xl至xn、u0、ul輸入訊號 0 1至0 3關節之拉開角度 80 訊號發生裝置 89至92加算器 100 立體零件 106 感測器113 RAM 1 15 117 130 ΝΑ PAk, PBk outputs wkl to wl (5, wAn, wBn, xl to xn, u0, ul input signals 0 1 to 0 3 Joint opening angle 80 Signal generator 89 to 92 Adder 100 Three-dimensional part 106 sensor

112 ROM 114 輸出入界面 116 連接埠 120 兩腳步行機器人112 ROM 114 I / O interface 116 Port 120 Two-foot walking robot

Ex 1、Ex2反作用力 NBn、NT1至NT3神經元 ΤΙ、T2、T3 轉矩 力。權 輸出訊號 0 1至<M〇關節之角度 27 314618Ex 1, Ex2 reaction force NBn, NT1 to NT3 neurons T1, T2, T3 torque force. Weight Output signal 0 1 to < M0 Joint angle 27 314618

Claims (1)

200307592 拾、申请專利範圍: 1 · 一種兩腳步行機器人之設計方法,係由在設計兩腳步行 機器人的各程序中,以不同模型表現兩腳步行機器人, 並根據前述模型進行設計之多數程序所形成,其中,前 述多數之程序係包含有:於下一程序中參照於前段程序 中所求得之設計資料的程序。 2·如申請專利範圍第1項之兩腳步行機器人之設計方 法,其中,前述多數之程序係包含有:利用立體零件之 結合模型表現前述兩腳步行機器人,並藉由第丨演化式 計算法算出前述立體零件之結合模型中的物理參數盘 :動模式的第1程序;以及,藉由第2演化式計算法算 =置於前述各立體零件内的構成零件配置位置的第2 柱序。 3·:申利範圍第1項之兩腳步行機器人之設計方 表現述多數之程序,係包含有:以多關節模型 表見則迭兩腳步行機器人, 出前述多關節模型中之各鏈:/二3演化式計算法算 序,其中,可在下—程序中^=運動模式的程 模式。 、則迷各鏈結長度與運動 4 ·如申凊專利蔚圍楚 靶圍弟2項之兩腳 法,其中,前 仃祛裔人之設計方 处物里荟數係包 置、大小、重心位置及慣性力4/迷各立體零件之位 中所求得之物理參數作 ^將在前述第1程序 法之目標值鮮。 …疋L、、,5珂述第2演化式計算 31461S 28 ^uju/^92 5. 如申請專利範圍第 機器人之設計方法,、乐二項中之任一項之兩腳步行 傳演算法。 /其中,前述演化式計算法係運用遺 6. 如申請專利範圍第2 計方法,其中,前^ 工員之兩腳步行機器人之設 7•如申請專利範圍第=動模式係藉由類神經網路形成。 法,其中,前述類神丄之兩腳步f機器人之設計方 法求得。 、、二、,周路之加權係數係藉由遺傳演算 8·如申請專利範圍第6 法,1 、, 員之兩卿步行機器人之設計方 t其中’爾神經網路係包含有:成组且作為呈有 正回饋之發訊電路而$成、且且作為具有 9 , ^ ^ 進仃動作之神經元。 9·如申请專利範圍第6項 、本甘士 _ 貝之兩腳步行機器人之設計方 …中,W述類神經網 之訊號發生裝置。 名j產生周期性讯唬 10. —種兩腳步行機器人, 型表現兩腳步行”/、讀由:以立體零件之結合模 述立體零件之結合;二:::第1演化式計算法算出前 Μ 、i中的各立體零件之物理參數的 二以及以第2演化式計算法算出配置於前述各 立月豆夺件内之構成零件配斤 設計方法進行料。 2㈣所形成的 Π.一種兩腳步行機器人,其係具備有藉由包含成對且作為 具有正回钱之發訊電路而產生作動的神經元的類神經 網路,以及可產生周期性訊號之訊號發生裳置所產生的 運動模式產生裝置。 314618 29 200307592 12. 一種兩腳步行機器人,係由 人内之立體灾# · Λ m 旬主钱,兩腳步行機器 令件,兩腳步行機器人内之Γρη 立體零件舆上述epU PU,以及上述 … 之知出入界面所形成者,其令, 上迷電腦主機係利用計管棬楹料十上 Ψ 定運動模式之IMW 定可產生預 心一砷經網路之加權係數, 亚藉由用以實行由該加 t 路的程式,以使㈣之類神經網 式進行步行動作。 -人付以根據適當之運動模 13=申請專利範圍第12項之兩腳步行機器人,其中,前 4兩腳步行擔、哭 腦主機相、車i r通訊線路或無線而與前述電 14 ^ 妾’並藉由通訊用界面進行資料之收送。 、,月專评】範圍第12項之兩腳步行機器人,其中,在 =述兩腳步行機器人内配置多組之前述立體零件及前 i 5遨輻出入界面,以進行功能分散與負載分散。 • °申请專利範圍第1 2項或第1 4頊之兩腳步行機器人, 甘 山 ' 前述立體零件係分別由馬達及感測器所形成,並 藉由W述兩腳步行機器人内之CPU及ROM或RAM, 而產生根據前述程式所指示之轉雉。 30 14618200307592 Scope of patent application: 1. A design method of a two-legged walking robot, which consists of different models of the two-legged walking robot in the various programs for designing the two-legged walking robot, and according to the majority of programs designed by the foregoing model Formed, in which the above-mentioned majority of programs include: a program in the next program that refers to the design data obtained in the previous program. 2. According to the design method of the two-legged walking robot in item 1 of the scope of patent application, most of the foregoing procedures include: using a combination model of three-dimensional parts to represent the two-legged walking robot, and using the first evolutionary calculation method Calculate the physical parameter disc in the combined model of the aforementioned three-dimensional part: the first program of the dynamic mode; and calculate by the second evolutionary calculation method = the second column order of the component placement positions placed in the aforementioned three-dimensional parts. 3: The design procedure of the two-legged walking robot described in item 1 of Shenli's scope includes most of the procedures, which include: the multi-joint model is shown as the two-legged walking robot, and the chains in the aforementioned multi-joint model are as follows: / 2 3 evolutionary calculation method sequence, where, in the next-program ^ = range mode of motion mode. The length and movement of each link 4. Ru Shen's patented two-foot method of Weiwei Chu target sibling, in which the number of objects in the design of the front-line family is based on the package, size, and center of gravity. The physical parameters obtained in the position and inertial force 4 / position of the three-dimensional parts will be set at the target value of the first program method described above. … 疋 L ,,, and 5 describe the second evolutionary calculation 31461S 28 ^ uju / ^ 92 5. For the design method of the robot in the scope of the patent application, the two-leg walk teleportation algorithm of any of the two items of music. / Among them, the above-mentioned evolutionary calculation method is applied. 6. If the patent application scope is the second method, in which the former ^ worker ’s two-foot walking robot is set 7 • If the patent application scope is #the dynamic mode is through a neural network. The road is formed. Method, in which the two-step f robot design method of the aforementioned deities is obtained. The weighting coefficient of Zhou Lu is based on genetic calculations. For example, the 6th method of the scope of patent application, the design method of the two walking robots of the two members, where the neural network system includes: group And as a signal circuit with positive feedback, and as a neuron with 9, ^ ^ into the neuron. 9 · For item 6 of the scope of patent application, the designer of Bengans _ Beizhi's two-legged walking robot ... In the above, the signal generating device of neural network is described. The name j produces periodic messages. 10. A kind of two-foot walking robot, which performs two-foot walking. "/, Read by: Modeling the combination of three-dimensional parts with the combination of three-dimensional parts; 2 :: The first evolutionary calculation method Two of the physical parameters of the three-dimensional parts in the front M and i, and the design method of calculating the weights of the component parts arranged in the above-mentioned various moon beans by the second evolutionary calculation method. 2㈣Formed Π.A A two-legged walking robot is provided with a neural-like network including pairs of neurons that act as a signaling circuit with positive return money, and a signal generation circuit that generates periodic signals. Motion mode generating device. 314618 29 200307592 12. A two-legged walking robot, which is composed of three-dimensional disasters in humans # · Λ m Xunzhuan, two-legged walking machine parts, Γρη three-dimensional parts in two-legged walking robots, as described above epU PU, and the formation of the above-mentioned knowledge access interface, the order that the mainframe of the computer is to use the meter to predict the IMW of the predetermined motion mode will definitely produce a pre-arsenic experience. The weighting coefficient of the road is used to implement the program by adding the road t, so that the neural net-like walking action is performed.-The person pays according to the appropriate exercise mode 13 = two of the 12th scope of the patent application A foot walking robot, among which, the first four two-foot walking load, the crying brain host, the car's communication line or wirelessly communicate with the aforementioned electricity 14 ^ 妾 'and send and receive data through the communication interface. The two-legged walking robot of scope item 12, wherein a plurality of groups of the aforementioned three-dimensional parts and front i 5 遨 spoke access interfaces are arranged in the two-legged walking robot for function dispersion and load dispersion. Item 12 or Item 14: A two-legged walking robot, Ganshan 'The aforementioned three-dimensional parts are formed by a motor and a sensor, respectively, and are generated by the CPU and ROM or RAM in the two-legged walking robot. Turn around as instructed in the previous procedure. 30 14618
TW092109028A 2002-04-30 2003-04-18 Two-leg walking robot and design method for two-leg walking robot TW586998B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129276A JP3829302B2 (en) 2002-04-30 2002-04-30 Design method for biped robot

Publications (2)

Publication Number Publication Date
TW200307592A true TW200307592A (en) 2003-12-16
TW586998B TW586998B (en) 2004-05-11

Family

ID=29397300

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092109028A TW586998B (en) 2002-04-30 2003-04-18 Two-leg walking robot and design method for two-leg walking robot

Country Status (3)

Country Link
JP (1) JP3829302B2 (en)
TW (1) TW586998B (en)
WO (1) WO2003092966A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650094B2 (en) * 2005-05-17 2011-03-16 マツダ株式会社 Vehicle design support system
JP4670007B2 (en) * 2005-08-01 2011-04-13 株式会社国際電気通信基礎技術研究所 Sensor design apparatus, sensor design method, sensor design program, and robot
CN111319063B (en) * 2018-12-13 2021-11-12 日本电产三协(浙江)有限公司 Method for manufacturing robot
CN112765876B (en) * 2021-01-07 2023-09-19 上海设序科技有限公司 Mechanical design scheme recommendation method and device and electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245783A (en) * 1992-03-02 1993-09-24 Kawasaki Steel Corp Designing method of robot arm
JPH08129418A (en) * 1994-10-28 1996-05-21 Kajima Corp Intelligent robot simulation system
JP3771670B2 (en) * 1997-05-12 2006-04-26 株式会社竹中工務店 Building management device and building load state prediction device

Also Published As

Publication number Publication date
JP2003326482A (en) 2003-11-18
TW586998B (en) 2004-05-11
JP3829302B2 (en) 2006-10-04
WO2003092966A1 (en) 2003-11-13

Similar Documents

Publication Publication Date Title
Duan et al. Benchmarking deep reinforcement learning for continuous control
JP2588997B2 (en) Categorical Classification Automata Using Neuron Group Selection with Reentry Function
Agrawal et al. Hybrid wolf-bat algorithm for optimization of connection weights in multi-layer perceptron
WO2004068456A3 (en) System and method for developing artificial intelligence
Pérez et al. Bio-inspired spiking neural network for nonlinear systems control
JP2005199403A (en) Emotion recognition device and method, emotion recognition method of robot device, learning method of robot device and robot device
Bongard et al. Once more unto the breach: Co-evolving a robot and its simulator
Huan et al. Adaptive gait generation for humanoid robot using evolutionary neural model optimized with modified differential evolution technique
Oliveira et al. Multi-objective parameter CPG optimization for gait generation of a biped robot
Khan et al. Efficient representation of recurrent neural networks for markovian/non-markovian non-linear control problems
Lu et al. Serpentine locomotion of a snake-like robot controlled by cyclic inhibitory CPG model
Bongard et al. Combining fitness-based search and user modeling in evolutionary robotics
Reeve et al. An analysis of neural models for walking control
Norouzzadeh et al. Neuromodulation improves the evolution of forward models
Téllez et al. Evolving the walking behaviour of a 12 dof quadruped using a distributed neural architecture
Shan et al. Design of central pattern generator for humanoid robot walking based on multi-objective GA
Ren et al. Gait trajectory‐based interactive controller for lower limb exoskeletons for construction workers
Inoue et al. CPG-based control of a simulated snake-like robot adaptable to changing ground friction
TW200307592A (en) Two-leg walking robot and design method for two-leg walking robot
JP2003317073A (en) Neural network processor
Serbest et al. Estimation of joint torques using an artificial neural network model based on kinematic and anthropometric data
Tsai Hybrid high order neural networks
JP3905413B2 (en) Robot equipment
Kim et al. Gait adaptation method of biped robot for various terrains using central pattern generator (CPG) and learning mechanism
Heralić et al. Central pattern generators for gait generation in bipedal robots

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees