TW200305715A - UV optical fluoride crystal elements for λ < 200nm laser lithography and methods therefor - Google Patents

UV optical fluoride crystal elements for λ < 200nm laser lithography and methods therefor Download PDF

Info

Publication number
TW200305715A
TW200305715A TW091136639A TW91136639A TW200305715A TW 200305715 A TW200305715 A TW 200305715A TW 091136639 A TW091136639 A TW 091136639A TW 91136639 A TW91136639 A TW 91136639A TW 200305715 A TW200305715 A TW 200305715A
Authority
TW
Taiwan
Prior art keywords
wavelength
transmission
optical
crystal
fluoride
Prior art date
Application number
TW091136639A
Other languages
Chinese (zh)
Inventor
Alexandre Michel Mayolet
Michael Alan Pell
Nikolay Timofeevitch Timofeev
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW200305715A publication Critical patent/TW200305715A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention provides a method of detecting sub-ppm lead impurity levels in a below 200 nm transmitting optical calcium fluoride crystal. The method includes providing a below 200 nm wavelength transmitting optical fluoride crystal having a crystal light transmission path length, providing a 200-210 nm spectraphotometer having a light source for producing a transmission test wavelength in the range 200 to 210 nm and a transmission detector for measuring transmission of the test wavelength, and transmitting the transmission test wavelength in the range 200 to 210 nm through the below 200 nm wavelength transmitting optical fluoride crystal light transmission path length and measuring the transmission of the 200 to 210 nm test wavelength through path length to provide a lead ppb impurity level measurement less than 500 ppb. The invention provides for improved manufacturing of below 200 nm wavelength optical elements and optical fluoride crystals such as ultralow lead contaminated calcium fluoride.

Description

200305715 五、發明說明(l) -------—-— 一、 發明所屬技術領域: f發明一般係關於λ &lt;2〇〇m透視光學氟化物晶體以及 Γ造出光學元件,以及特別是關於測試以及製造高品 質氟化物晶體以及杏 尤石版印刷/雷射元件具有南氟化物純 度以及非常低鉛以及氧污染量。 、 二、 先前技術 曰改善計算機性能需求的任務落在使用來製造積體線路 晶片^光石版印刷處理過程。光石版印刷法包含照射遮罩 以及聚焦該遮罩圖案經由光學微光石版印刷系統到達塗覆 光抵抗劑之晶片上。遮罩上圖案因而轉移至晶片上。減小 已知的晶片上外形線條寬度將使性能進步。達成較為微細 線條寬度所需要之加強解析度藉由減小照明光源波長而達 成。在光石版印刷圖案化所使用光能逐漸移動深達紫外線 區域。其需要在這些短的光微小光石版印刷波長下能夠達 成可罪性此之光學叙件。在193 nm及157 nm具有高度透射性 以及在密集雷射照射而不會惡化之少數材料為已知的。氟 化物晶體例如氟化鈣以及氟化鋇在波長&lt;2〇〇nm下具有高度 透射性之可能材料。使用低於193nm真空紫外線波長之投 射光石版印刷系統提供有關達成較小外形尺寸所需要優點 。使用1 57nm波長區域真空紫外線之微光石版印刷系統具 有改善積體線路及其製造之可能《商業化使用中採用193 nm以及波長低於例如i57nm真空紫外線已受阻礙,其由於 1 57nm區域深紫外線波長通過光學材料之透射特性所致。 使用低於175nm VUV光線例如157nm區域光線之半導體工200305715 V. Description of the invention (l) --------------- I. Technical field to which the invention belongs: f The invention generally relates to λ &lt; 2000m perspective optical fluoride crystal and Γ to create optical elements, and Especially for testing and manufacturing high-quality fluoride crystals and apricot lithographic / laser elements with south fluoride purity and very low levels of lead and oxygen pollution. Second, the prior art The task of improving computer performance needs lies in the use of manufacturing integrated circuit wafers lithographic printing process. Light lithography involves illuminating a mask and focusing the mask pattern through an optical low-light lithography system onto a wafer coated with a photoresist. The pattern on the mask is thus transferred to the wafer. Reducing the contour line width on known wafers will improve performance. The enhanced resolution required to achieve finer line widths is achieved by reducing the wavelength of the illumination source. The light energy used for patterning in light lithography is gradually moved deeper into the ultraviolet region. It requires optical narratives that can achieve this at these short light microlithographic lithographic wavelengths. A few materials that are highly transmissive at 193 nm and 157 nm and that do not deteriorate under intensive laser exposure are known. Fluoride crystals such as calcium fluoride and barium fluoride are possible materials that are highly transmissive at wavelengths <2000 nm. The use of projection light lithography systems with vacuum ultraviolet wavelengths below 193nm provides the advantages required to achieve smaller form factors. The low-light lithographic printing system using vacuum ultraviolet light in the wavelength range of 1 57nm has the potential to improve the integrated circuit and its manufacturing. The commercial use of 193 nm and wavelengths lower than, for example, i57nm vacuum ultraviolet has been hindered. The wavelength is caused by the transmission characteristics of the optical material. Semiconductor workers using VUV light below 175nm, such as light at 157nm

200305715 五、發明說明(2) 業緩慢的進展係由於缺乏光學透射性材料經濟地製造出毛 胚以及製造毛胚困難所致,該毛胚被辨識為高品質以及符 合所預期微光石版印刷光學元件以及雷射使用。對於νυν 1 57nm區域深紫外線光石版印刷例如使用於製造積體線路 氟準分子雷射之發射頻譜,存在低於20 Onm波長透射性光學 氟化物晶體之需求,該晶體具有有益的光學以及高品質特 性,其包含在低於200nm以及在193nm以及157nm下良好之透 射以及能夠加以製造,測試,評估,量測以及符合經濟地使 用。本發明克服先前技術問題以及提供一種方式以經濟地 提供低於20Onm波長透射性光學氟化物晶體高品質量測非 常低之鉛污染量,該晶體能夠加以使用以利用真空紫外線 波長改善積體線路之製造。本發明提供吸收頻帶分析測試 高品質氟化鈣光學氟化物晶體光石版印刷以及準分子雷射 元件具有非常低的鉛濃度量。 三、發明内容: 本發明包含一種在低於200nm透射光學氟化物晶體中 感測低鉛雜質含量之方法。方法包含提供低於2〇〇nm波長 透射性光學氟化物晶體,其具有晶體光線透射路徑長度^ 2mm。該方法包含提供光線透射2〇 0 — 21 Onm掃描頻譜儀,其 具有光源以產生透射測試波長在2〇〇至21 Onm範圍内以及透 射感測器以量測測試波長之透射以及再透射2〇〇至21 〇nm範 圍内透射測試波長經由低於2〇〇nm波長透射性光學氟化物 光線透射路徑長度以及量測經由路徑長度2〇〇至21〇ηιη測試 波長之透射度以提供低於9〇〇ppb錯雜質含量之量測。優先200305715 V. Description of the invention (2) The slow progress of the industry is due to the lack of optically transmissive materials for the economical manufacture of wool germs and the difficulty of manufacturing wool germs. The wool germs were identified as high quality and in line with the expectations of low-light lithographic printing Components and lasers. For the uvuv 1 57nm region deep ultraviolet light lithography, such as used to manufacture the emission spectrum of fluoro excimer lasers in integrated circuits, there is a need for transmissive optical fluoride crystals with wavelengths below 20 Onm, which have beneficial optics and high quality Characteristics including good transmission at less than 200nm and at 193nm and 157nm and being able to be manufactured, tested, evaluated, measured and economically used. The present invention overcomes the problems of the prior art and provides a way to economically provide a transmissive optical fluoride crystal with a wavelength of less than 20 nm. The quality is very low and the amount of lead contamination can be measured. Manufacturing. The present invention provides an absorption band analysis test for high-quality calcium fluoride optical fluoride crystal light lithography and excimer laser elements with a very low amount of lead concentration. 3. Summary of the Invention: The present invention includes a method for sensing low lead impurity content in transmission optical fluoride crystals below 200 nm. The method includes providing a transmissive optical fluoride crystal having a wavelength below 200 nm, which has a crystal light transmission path length of ^ 2 mm. The method includes providing a light transmission 2000—21 Onm scanning spectrum analyzer with a light source to generate a transmission test wavelength in the range of 2000 to 21 Onm and a transmission sensor to measure the transmission and retransmission of the test wavelength. The transmission test wavelength in the range of 〇 to 2100 nm is transmitted through a wavelength of less than 200 nm. The transmission path length of the optical fluoride light transmission path is measured. 〇〇ppbThe measurement of the content of impurities. priority

200305715 五、發明說明(3) 地本發明提供鉛ppb雜質含量之量測為小於50 〇ppb,優先地 為300ppb,更優先地為lOOppb,更優先地為50ppb,更優先地 為20ppb,以及最優先地為l〇ppb。 本發明包含一種方法在透射低於20 〇nm波長光線之光 學氟化物光石版印刷晶體中量測低於1 ppm鉛雜質含量。該 方法包含提供低於20Onm波長透射光學氟化物晶體,其具有 晶體光線透射路徑長度2 lcm。該方法包含提供200-2 1 Onm 吸收頻帶量測系統頻譜儀,其具有光源以產生在200至210 nm範圍内測試波長以及透射感測器以計算測試波長下吸收 係數,透射200至21 Onm測試波長經由200nm波長透射性光學 氟化物晶體^ 1 cm之光線透射路徑長度及在測試波長下量 測經由-1 cm路徑長度之吸收係數以提供鉛污染量吸收係 數&lt;0· 001 7cm-1 〇 本發明包含一種方法以製造低於20Onm波長光石版印 刷元件。該方法包含提供低於20Onm波長透射光學氟化物 晶體,該晶體光線透射路徑長度22ram以及提供光線透射 2 0 0-21 Onm頻譜儀量測系統,其具有產生200至21 Onm範圍内 透射測試波長之光源以及量測測試波長透射之感測器。該 方法包含透射200至21 Onm範圍内透射測試波長經由低於 2 0Onm波長透射光學氟化物晶體之透射路徑長度以及量測 2 00至21 Onm範圍内測試波長經由路徑長度之透射度以提供 污染量低於50Oppb之量測,優先地小於300ppb,更優先地小 於100ppb以及再形成光學氟化物晶體為低於200nm波長光 學元件,其在200至210nm吸收係數〈0.0017CHT1。200305715 V. Description of the invention (3) The present invention provides that the amount of lead ppb impurities measured is less than 50 ppb, preferably 300 ppb, more preferably 100 ppb, more preferably 50 ppb, more preferably 20 ppb, and It is preferably 10 ppb. The invention comprises a method for measuring the content of lead impurities below 1 ppm in optical fluoride light lithographic printing crystals transmitting light with a wavelength of less than 200 nm. The method includes providing a transmission optical fluoride crystal having a wavelength of less than 20 nm, which has a crystal light transmission path length of 2 lcm. The method includes providing a spectrum analyzer with a 200-2 1 Onm absorption band measurement system, which has a light source to generate a test wavelength in the range of 200 to 210 nm, and a transmission sensor to calculate the absorption coefficient at the test wavelength. The transmission 200 to 21 Onm test The transmission path length of the light transmitting optical fluoride crystal at a wavelength of 200 nm ^ 1 cm and the absorption coefficient measured at a test wavelength through a path length of -1 cm to provide a lead pollution amount absorption coefficient &lt; 0 · 001 7cm-1 〇 The present invention includes a method for making a lithographic printing element with a wavelength of less than 20 nm. The method includes providing a transmission optical fluoride crystal with a wavelength of less than 20 Onm, a crystal light transmission path length of 22 ram, and providing a light transmission 2 0-21 Onm spectrum analyzer measurement system, which has a transmission test wavelength of 200 to 21 Onm. Light source and sensor for measuring transmission of test wavelength. The method includes transmitting a transmission test wavelength in a range of 200 to 21 Onm and transmitting a transmission path length of an optical fluoride crystal through a wavelength less than 20 Onm and measuring a transmittance of the test wavelength in a range of 200 to 21 Onm via a path length to provide a pollution amount. Measurements below 50 Oppb, preferably less than 300 ppb, more preferably less than 100 ppb, and re-formed optical fluoride crystals are optical elements with wavelengths below 200 nm, which have an absorption coefficient <20017CHT1 at 200 to 210 nm.

200305715 五、發明說明(4) 本發明包含一種方法以製造低於200nm波長透射光學 氟化物晶體。該方法包含提供預先溶融氟化躬晶體固體以 形成氟化鈣溶融物以及由溶融物成長出氟化鈣晶體以提供 光學氟化#5晶體以透射低於200nm波長。該方法包含提供 光線透射200-2 1 0nm頻譜儀,其具有產生200-21 Onm範圍内 透射測試波長之光源以及透射感測器以量測測試波長之透 射度以及利用2 0 0至21 0nm範圍内透射測試波長量測氟化舞 路徑長度中鉛污染量,成長出光學氟化鈣晶體以透射低於 200nm波長,其在200至210nm下吸收係數為〈0.0017cm1。 本發明包含低於2OOnm波長氟化鈣之透射光學氟化物晶體, 其低於200nm透射度大於99%/cm以及錯ppb值小於50以及在 200至210nm下吸收係數為〈0.0017cm-1。 本發明包含一種方法以製造低於2OOnm波長透射性光 學氟化物晶體。該方法包含提供預先熔融氟化鋇晶體固體 ,熔融預先熔融氟化鋇晶體固體以形成氟化鋇熔融物以及 由熔融物成長出氟化鋇晶體以提供光學氟化鋇晶體以透射 低於200nm波長。該方法包含提供光線透射200-210nm頻譜 儀,其具有光源以產生在200至210nm範圍内透射測試波長 以及透射感測器以利用200至21 Onm範圍内透射測試波長量 測氟化鋇路徑長度中鉛污染量,並成長出光學氟化鋇晶體 以透射低於200nm波長,其在200至210nm下吸收係數 &lt;0· 0 01 Tcnr1。本發明包含低於20Onm波長透射性氟化鋇之 光學氟化物晶體,其低於200nm透射度大於99%/cm以及鉛 ppb數值小於50以及在200至21 Onm下吸收係數&lt;0· 0017200305715 V. Description of the invention (4) The present invention includes a method for manufacturing a transmission optical fluoride crystal with a wavelength below 200 nm. The method includes providing a pre-melted fluorinated crystalline solid to form a calcium fluoride melt and growing calcium fluoride crystals from the melt to provide an optically fluorinated # 5 crystal to transmit wavelengths below 200 nm. The method includes providing a light transmission 200-2 110nm spectrum analyzer, which has a light source that generates a transmission test wavelength in the range of 200-21 Onm and a transmission sensor to measure the transmission of the test wavelength and uses a range of 200 to 2100 nm. The internal transmission test wavelength measures the amount of lead contamination in the length of the fluorinated dance path, and grows optical calcium fluoride crystals to transmit less than 200 nm wavelength, with an absorption coefficient of <0.0017 cm1 at 200 to 210 nm. The present invention includes a transmission optical fluoride crystal of calcium fluoride with a wavelength of less than 200 nm, a transmission less than 200 nm, a transmission greater than 99% / cm, a ppb value less than 50, and an absorption coefficient of <0.0017 cm-1 at 200 to 210 nm. The present invention includes a method for making a transmissive optical fluoride crystal having a wavelength below 200 nm. The method includes providing a pre-melted barium fluoride crystal solid, melting the pre-melted barium fluoride crystal solid to form a barium fluoride melt, and growing a barium fluoride crystal from the melt to provide an optical barium fluoride crystal to transmit wavelengths below 200 nm. . The method includes providing a light transmission 200-210nm spectrum analyzer having a light source to generate a transmission test wavelength in a range of 200 to 210nm and a transmission sensor to measure a barium fluoride path length using the transmission test wavelength in a range of 200 to 21 Onm. The amount of lead contaminates and grows optical barium fluoride crystals to transmit wavelengths below 200 nm, which has an absorption coefficient &lt; 0. 01 Tcnr1 at 200 to 210 nm. The present invention includes an optical fluoride crystal having a transmissive barium fluoride with a wavelength of less than 20 Onm, a transmittance of less than 200 nm greater than 99% / cm, a lead ppb value of less than 50, and an absorption coefficient at 200 to 21 Onm &lt; 0. 0017

200305715 五、發明說明(5) cm1 ° 四、實施方式 本發明包含一種方法在低於20 〇nm透射光學氟化物晶 體中量測低於低於1 ppm錯雜質含量。該方法包含提供低於 2 0 0nm波長透射性光學氟化物晶體2〇。光學晶體2〇優先地 為錯污染量低於1 ppm之光學氟化物晶體。該方法包含提供 具有光源24之光線吸收頻帶量測系統頻譜儀22以產生2〇〇 至21 Onm範圍内透射測試波長以及透射感測器以量測測試 波長之透射度。該方法包含利用2〇〇至21〇ηιη範圍内透射測 试波長氣化物晶體路徑長度21中鉛污染量。該方法包含透 射20 0至21 Onm範圍内透射測試波長經由低於2〇〇ηπι波長光 學氟化物晶體2 0以及量測經由晶體測試波長透射度以提供 錯ppb雜質含量量測值小於gooppb,優先地小於5〇〇ppb,更 優先地小於300ppb,更優先地小於1 〇〇ppb,更優先地小於50 PPb,更優先地小於2〇ppb,最優先地小於l〇ppb。優先地光 源24為寬廣頻帶波長光源例如為燈泡。優先地光源24提供 200-210 nm可掃描波長頻譜。與雷射光源比較,優先地燈泡 24為寬廣頻帶非同調光源。提供2〇〇至21〇njn測試波長優先 地包含使用波長選擇器34例如單色濾波器以控制掃描通量 以及選擇200至21 Onm範圍内測試波長。在優先實施例中 200-21 Onm可掃描波長頻譜藉由氘燈泡光源提供,其利用單 色濾波器加以濾波。優先地使用頻譜儀掃描2〇〇-21 Onm頻 譜。優先地該方法包含使用頻譜儀以掃描中央波長為205 nm範圍内頻譜以辨識20 5nm吸收頻帶所在基線。由總吸收200305715 V. Description of the invention (5) cm1 ° IV. Implementation The present invention includes a method for measuring the content of impurities below 1 ppm in a transmission optical fluoride crystal below 200 nm. The method includes providing a transmissive optical fluoride crystal 20 at a wavelength below 200 nm. The optical crystal 20 is preferably an optical fluoride crystal having a contamination amount of less than 1 ppm. The method includes providing a light absorption band measurement system spectrum analyzer 22 having a light source 24 to generate a transmission test wavelength in the range of 200 to 21 Onm and a transmission sensor to measure the transmittance of the test wavelength. The method includes the amount of lead contamination in a gas path length 21 of a gaseous crystal with a transmission test wavelength in the range of 2000 to 2100 nm. The method includes transmitting a transmission test wavelength in a range of 20 to 21 Onm via an optical fluoride crystal 20 with a wavelength less than 2000 nm and measuring the transmission through the crystal test wavelength to provide a wrong ppb impurity content measurement value less than gooppb, preferably Ground is less than 500 ppb, more preferably less than 300 ppb, more preferably less than 1000 ppb, more preferably less than 50 ppb, more preferably less than 20 ppb, and most preferably less than 10 ppb. The light source 24 is preferably a light source with a wide band wavelength, such as a light bulb. The light source 24 preferentially provides a scannable wavelength spectrum of 200-210 nm. Compared with the laser light source, the light bulb 24 is preferably a wide-band non-homogeneous light source. Providing 200 to 21nnn test wavelengths preferentially includes the use of a wavelength selector 34, such as a monochromatic filter, to control the scanning flux and the selection of test wavelengths in the 200 to 21 Onm range. In the preferred embodiment, the 200-21 Onm scannable wavelength spectrum is provided by a deuterium bulb light source, which is filtered using a monochromatic filter. Preferentially use the spectrum analyzer to scan the 200-21 Onm spectrum. Preferentially, this method involves using a spectrum analyzer to scan the spectrum in the center wavelength range of 205 nm to identify the baseline where the 20 5 nm absorption band is located. Absorbed by total

200305715 五、發明說明(6) 扣除在205nm基礎之吸收以及得到錯污染數量之吸收。位 於2 05nm中央波長之掃描優先地提供晶體基線吸收,使得其 他吸收頻帶以及表面光學損失(基線)能夠扣除。在感測非 常低含量鉛污染之優先實施例中,中央位於20 5nm之掃描波 長使用1 95-220nm掃描範圍以變化在205nm基線之大小。該 方法提供即時測試整個晶體之鉛污染值。透射2OOnm至210 nm透射測試波長優先地包含透射203至207nm透射測試波長 通過低於2 OOnm波長透射光學氟化物晶體光線透射路徑長 度以及量測20 3至20 7nm測試波長通過路徑長度之透射以提 供鉛口?1)雜質含量量測值低於5〇〇001)。優先地透射2()〇至 21 Onm透射測試波長包含透射約為2 〇5nm透射測試波長通過 低於2OOnm波長透射光學氟化物晶體光線路徑長度以及量 測2 05nm測試波長通過路徑長度之透射度以提供鉛ppb雜質 含量量測值低於300 ppb。在本發明優先實施例中提供具有 晶體光線透射路徑長度$2 mm之低於200nm波長透射光學氟 化物晶體包含提供晶體光線透射路徑長度2丨cin以及透射 測試波長經由-1 cffl氟化物晶體光線路徑長度以提供鉛ppb 雜質含量量測值低於10 〇ppb。更優先地晶體光線透射路徑 長度為-1 0cm以及將透射測試波長透射通過-1 〇cm氟化物 晶體透射路徑長度以提供鉛ppb雜質含量量測值低於5〇ppb ,更優先地小於l〇ppb。如圖1A-B所示,頻譜儀量測之氟化 物晶體透射路徑長度表示為21。如圖1B所示,頻譜儀22具 有槽至22,其在槽室光束視窗23及25間長度為CL,優先地 0.5CL —氟化物晶體光線透射路徑長度。優先地頻譜儀包200305715 V. Description of the invention (6) Subtract the absorption based on 205nm and get the absorption of wrong pollution amount. Scanning at the center wavelength of 2 05nm preferentially provides crystal baseline absorption, so that other absorption bands and surface optical loss (baseline) can be deducted. In a preferred embodiment for sensing very low levels of lead contamination, a scanning wavelength centered at 20 5 nm uses a scanning range of 1 95-220 nm to vary the size at the 205 nm baseline. This method provides instant measurement of lead contamination values across the crystal. Transmission 2OOnm to 210 nm Transmission test wavelengths preferentially include transmission 203 to 207nm transmission test wavelengths. Transmission of optical fluoride crystal light transmission path lengths through wavelengths below 2OOnm and measurement of 20 3 to 20 7nm test wavelengths through transmission of path lengths to provide Lead port? 1) The measured value of the impurity content is lower than 50000). Preferential transmission 2 () 0 to 21 Onm transmission test wavelength includes transmission of about 2.05 nm transmission test wavelength through optical wavelength of less than 200 nm transmission optical fluoride crystal light path length and measurement of the transmittance of 2 05 nm test wavelength through path length to Provides lead ppb impurity content measurements below 300 ppb. In the preferred embodiment of the present invention, a crystal optical transmission crystal having a wavelength of less than 200 nm with a crystal light transmission path length of $ 2 mm is provided, which includes providing a crystal light transmission path length of 2 cin and a transmission test wavelength via a -1 cffl fluoride crystal light path length. To provide lead ppb impurity content measurement value is less than 10 ppb. More preferably, the length of the crystal light transmission path is -10 cm and the transmission test wavelength is transmitted through the -10 cm fluoride crystal transmission path length to provide a lead ppb impurity content measurement value of less than 50 ppb, and more preferably less than 10. ppb. As shown in Figures 1A-B, the transmission path length of the fluoride crystal measured by the spectrum analyzer is 21. As shown in Fig. 1B, the spectrum analyzer 22 has slots 22, which have a length CL between the beam window 23 and 25 of the slot chamber, and preferably 0.5CL-the length of the fluoride crystal light transmission path. Priority Spectrum Analyzer Package

第11頁 200305715 五、發明說明(7) 含槽室試樣固定器1 9以固定以及穩定晶體試樣2〇相對於視 窗23及25。槽室試樣固定器19承受長的晶體試樣以及確保 對準於透射測試波長之光束於視窗間槽室中,使得晶體試 樣中央地位於槽室中央。優先地晶體2〇具有拋光表面17。 優先地利用表面平行度小於1度路徑長度21至少為50mm(50 -100mm)以提供錯ppb雜質含量量測值低於數ppb範圍内(&lt; lOppb) °對於數十ppb範圍内(i〇ppb&lt;鉛濃度&lt;100ppb)鉛濃 度量測,路徑長度在5-1 〇mm範圍内。優先地氟化物晶體試 樣路徑長度至少為50mm,更優先地至少為90mm( 100mm優先 實施例),使得視窗間頻譜儀槽室長度CL至少為100mm,更優 先地CL$150mm,更優先地CL2 200nm(200mm優先實施例)。 本發明包含一種方法在光學氟化物光石版印刷晶體中 量測低於lppm雜質含量,該晶體作為透射低於2〇〇nm波長光 線,例如為氟化鈣或氟化鋇晶體20。該方法包含提供低於 2OOnm波長透射性光學氟化物晶體2〇,其晶體光線透射路徑 長度21 2 lcm以及提供具有光源24之200-21 Onm吸收量測系 統的頻譜儀22以產生200至21 Onm範圍内測試波長以及透射 感測器以計算測試波長下吸收係數。該方法包含透射2〇〇 至21 Onm範圍内範園之測試波長通過低於20〇nm波長透射性 光學氟化物晶體光線透視g 1 cm路徑長度以及量測測試波 長下吸收係數通過g 1 cm路徑長度以提供鉛污染量吸收係 數〈0.0017cm1。優先地該方法包含透射203至207nm範圍 内之測試波長通過低於20Onm波長透射光學氟化物晶體光 線透射^1^11路徑長度以及量測203至20711111測試波長下通Page 11 200305715 V. Description of the invention (7) The sample holder 19 containing the chamber chamber is used to fix and stabilize the crystal sample 20 relative to the windows 23 and 25. The chamber sample holder 19 receives the long crystal sample and ensures that the light beam aligned with the transmission test wavelength is aligned in the chamber between the windows, so that the crystal sample is centered in the center of the chamber. The crystal 20 preferably has a polished surface 17. Preferentially use surface parallelism less than 1 degree, path length 21 to be at least 50mm (50-100mm) to provide the wrong ppb impurity content measurement value within a few ppb range (&lt; lOppb) ° for the tens of ppb range (i. ppb &lt; lead concentration &lt; 100ppb) For lead concentration measurement, the path length is in the range of 5-10 mm. The path length of the fluoride crystal sample is preferably at least 50mm, and more preferably at least 90mm (100mm preferred embodiment), so that the CL of the spectrum analyzer chamber is at least 100mm, more preferably CL $ 150mm, and more preferably CL2 200nm (200mm preferred embodiment). The present invention includes a method for measuring an impurity content of less than 1 ppm in an optical fluoride light lithographic printing crystal, and the crystal is a light transmitting below 200 nm, such as calcium fluoride or barium fluoride crystal20. The method includes providing a transmissive optical fluoride crystal 20 with a wavelength of less than 200 nm, a crystal light transmission path length of 21 2 lcm, and providing a spectrum analyzer 22 with a 200-21 Onm absorption measurement system with a light source 24 to generate 200 to 21 Onm. Test the wavelength in the range and the transmission sensor to calculate the absorption coefficient at the test wavelength. The method includes transmitting the test wavelength of Fan Yuan in the range of 2000 to 21 Onm through a wavelength of less than 200 nm and transmitting the optical fluoride crystal through the g 1 cm path length and measuring the absorption coefficient at the test wavelength through the g 1 cm path Length to provide lead contamination absorption coefficient <0.0017cm1. Preferentially, this method includes transmission of a test wavelength in the range of 203 to 207 nm through a wavelength of less than 20 nm and transmission of optical fluoride crystal light transmission ^ 1 ^ 11 path length and measurement of the test wavelength of 203 to 20711111.

第12頁 200305715 五、發明說明(8) 過該g lcm路徑長度之吸收係數以提供鉛污染量吸收係數&lt; 0· 001 6CHT1。更優先地該方法包含透射約為205nm之測試 波長通過低於20 Onm波長透射光學氟化物晶體光線透射g lcm路徑長度以及量測205nm測試波長下通過該$ lcm路徑 長度之吸收係數以提供鉛污染量吸收係數&lt;0. 0015cm1。 提供低於20Onm波長透射光學氟化物晶體20,其具有晶體光 線透射路徑長度2 1 Ocm以提供鉛污染量吸收係數雜質量測 值小於50ppb,優先地$20,更優先地$10,更優先地$5,以 及最更優先地$lppb。 本發明包含一種方法以製造低於20Onm波長光學元件E 以透射低於200nm波長光線例如為?2準分子雷射157nm輸出 或A rF準分子雷射193nm如圖2-3所示。優先地該方法包含 由光學氟化物晶體20製造出λ&lt;200ηιη高光學品質之光石版 印刷元件42,該晶體20具有錯污染含量量測值小於1 〇〇ppb 。該方法包含提供低於20Onm波長透射光學氟化物晶體20, 其具有晶體光線透射路徑長度21為g 2mm以及提供具有米 源24之光線透射200-21 Onm頻譜儀22以製造透射測試波長 在200至21 Onm範圍内以及透射感測器28以量測該波長之透 射度。該方法包含將透射測試波長(200至21 Onm)透射通過 低於2 0 0nm波長透射光學氟化物晶體之光線透射路徑長度 以量測200至210nm測試波長通過路徑長度之透射度以提供 鉛污染量量測值小於500ppb,優先地&lt;1 OOppb以及將光學氟 化物晶體形成為低於20Onm波長光學元件E,其在200至2 10 nm下具有鉛污染量吸收係數&lt;〇· 〇〇17cm l。優先地污染含量Page 12 200305715 V. Description of the invention (8) The absorption coefficient of the g lcm path length is used to provide the absorption coefficient of lead pollution &lt; 0 · 001 6CHT1. More preferably, the method includes transmitting a test wavelength of about 205 nm through a wavelength below 20 Onm and transmitting optical fluoride crystal light through a g lcm path length and measuring an absorption coefficient through the $ lcm path length at a 205 nm test wavelength to provide lead contamination Amount of absorption coefficient &lt; 0. 0015cm1. Provides a transmission optical fluoride crystal 20 with a wavelength of less than 20 nm, which has a crystal light transmission path length of 21 Ocm to provide a lead pollution amount absorption coefficient and an impurity measurement of less than 50 ppb, preferably $ 20, more preferably $ 10, more preferably $ 5, And most preferentially $ lppb. The present invention includes a method for manufacturing an optical element E with a wavelength of less than 20 Onm to transmit light with a wavelength of less than 200 nm. 2 Excimer laser output of 157nm or ArF excimer laser of 193nm is shown in Figure 2-3. Preferentially, the method comprises manufacturing a light lithographic printing element 42 with a high optical quality of λ &lt; 200 nm, from an optical fluoride crystal 20 having a measurement value of a contamination content of less than 1,000 ppb. The method includes providing a transmission optical fluoride crystal 20 with a wavelength below 20 Onm, which has a crystal light transmission path length 21 of g 2 mm, and provides a light transmission with a rice source 24 of a 200-21 Onm spectrum analyzer 22 to produce a transmission test wavelength between 200 and 200. 21 Onm range and transmission sensor 28 to measure the transmission at this wavelength. The method includes transmitting a transmission test wavelength (200 to 21 Onm) through a light transmission path length of a transmission optical fluoride crystal below a wavelength of 200 nm to measure the transmission of a transmission wavelength through the path length of 200 to 210 nm to provide a lead pollution amount. The measured value is less than 500 ppb, preferentially &lt; 1 OOppb and the formation of optical fluoride crystals with a wavelength of less than 20 Onm optical element E, which has an absorption coefficient of lead pollution at 200 to 2 10 nm &lt; 〇 · 〇〇17cm l . Priority pollution content

第13頁 200305715 五、發明說明(9) 量測為小於lOOppb,優先地&lt;50ppb,更優先地&lt;20ppb,及最 優先地小於lOppb。提供具有晶體透射路徑長度21之低於 2 OOnm波長透射光學氟化物晶體2〇包含提供具有晶體透射 路徑長度g lcm之低於200nm波長透射光學氟化物晶體20以 及透射203至207nm範圍内範圍之測試波長通過低於200nm 波長透射性光學氟化物晶體光線透視g 1 cm路徑長度2 1以 及量測203至207nm測試波長下通過g 1cm路徑長度之吸收 係數以提供鉛污染量量測值小於50ppb以及將光學氟化物 晶體形成為低於200nm波長光學元件E,其在203至207nm下 具有鉛污染量吸收係數&lt;〇· 0016cm1。優先地晶體光線透 射路徑長度為$10 cm以及該方法包含透射約為20 5nm測試 波長通過低於2 00nm波長透射光學氟化物晶體光線透射$ 10cm之路徑長度以及量測通過2 icin路徑長度之205nm的吸 收係數以提供錯污染量量測值小於20ppb以及將光學氟化 物晶體形成為低於200nm波長光學元件E,其在205nm下具有 吸收係數&lt;0. 00 16cm—1。在優先實施例中低於2OOnm波長透 射光學氟化物晶體20由氟化鈣CaF2所構成。在優先實施例 中低於2 0〇11111波長透射光學氟化物晶體2〇由氟化鋇83匕所 構成。在優先實施例中例如圖4所顯示,通過晶體20路徑長 度21之20 0至21 Onm測試波長使用於製造過程中以量測晶體 中鉛污染量使得最終產物低於200nm之光學元件E(由晶體 所形成)200至210nm之吸收係數〈O.OOlTcnr1。優先地晶體 20以及由其中所形成光學元件42鉛污染量量測值小於20 PPb,更優先地&lt;l〇ppb,更優先地&lt;lppb。提供低於200nm透Page 13 200305715 V. Description of the invention (9) The measurement is less than 100ppb, preferably &lt; 50ppb, more preferably &lt; 20ppb, and most preferably less than lOppb. Provides transmission of optical fluoride crystals with a wavelength of less than 200 nm with a crystal transmission path length of 21, including testing of transmission of optical fluoride crystals with a transmission length of l 200 cm with a crystal transmission path length of less than 200 nm, and transmission of a range of 203 to 207 nm The wavelength passes the wavelength of less than 200nm. The optical fluoride crystal transmits light through g 1 cm path length 2 1 and measures the absorption coefficient of g 1 cm path length at the test wavelength of 203 to 207 nm to provide a measurement of lead pollution less than 50 ppb. The optical fluoride crystal is formed as an optical element E having a wavelength of less than 200 nm, which has an absorption coefficient of lead contamination at 203 to 207 nm &lt; 0.00016 cm1. Preferentially, the crystal light transmission path length is $ 10 cm and the method includes transmitting about 20 5 nm test wavelength through a wavelength below 200 nm and transmitting optical fluoride crystal light transmission path length of $ 10 cm and measuring 205 nm through 2 icin path length. The absorption coefficient is to provide a measurement value of less than 20 ppb of contamination and to form an optical fluoride crystal with an optical element E having a wavelength below 200 nm, which has an absorption coefficient &lt; 0.00 16 cm-1 at 205 nm. In the preferred embodiment, the optically-transmissive optical fluoride crystal 20 having a wavelength below 2000 nm is composed of calcium fluoride CaF2. In the preferred embodiment, the wavelength below 2011111 wavelength transmitting optical fluoride crystal 20 is composed of barium fluoride 83. In the preferred embodiment, for example, as shown in FIG. 4, the optical wavelength E (by the optical element E (by Crystal formation) Absorption coefficient <200lTcnr1 from 200 to 210nm. Preferentially, the measured amount of lead contamination of the crystal 20 and the optical element 42 formed therein is less than 20 PPb, more preferably &lt; 10 ppb, and more preferably &lt; lppb. Provides transmission below 200nm

第14頁 200305715 五、發明說明(ίο) 射光學氟化物晶體20優先地包含提供氟化鈣晶體使得入〈 200nm透射度大於99%/cm。該方法提供光石版印刷元件42 具有量測污染值小於5〇PPb以及在200至210nm下吸收係數&lt; 〇· 0017cm-1,以及假如光學塗膜塗覆於晶體表面,優先地在 任何該塗膜前量測。 本發明包含一種方法以製造低於2〇〇ηιη波長透射光學 氟化物晶體2 0。該方法包含提供預先溶融氟化與晶體固體 ,以及溶融預先熔融氟化鈣晶體固體以形成氟化鈣熔融物 以及由溶融物成長出氟化鈣晶體以提供光學氟化鈣晶體以 透射低於200nm波長。該方法包含提供光線透射2〇〇_21〇nm 頻譜儀,其具有光源以產生在200至21 On範圍内透射測試波 長以及透射感測器以利用200至210nm範圍内透射測試波長 量測氟化鈣路徑長度中鉛污染量,並成長出光學氟化鈣晶 體以透射低於200 nm波長,其在200至210 nm下吸收係數為&lt; 〇· 0017CHT1。在實施例中,利用200-21 0nm頻譜儀量測氟化 鈣錯污染量包含在預先溶融氟化鈣晶體固體中量測鉛污染 量。在實施例中,利用200-2 lOnro頻譜儀22量測氟化每中鉛 污染量包含在由氟化約熔融物成長出氟化_晶體中量測錯 污染量。在實施例中,在光學塗覆前當晶體在光學元件E形 式中時利用200-210nm頻譜儀量測氟化#§中錯污染量。在 實施例中,在壓碎為顆粒形式前及/或在由大固體塊壓碎為 較小體積過程中量測氟化鈣中鉛污染量。優先地在晶體製 造過程中量測及監測晶體中鉛污染量提供成長之氟化轉晶 體以透射低於200nm波長並使鉛污染量小於50ppb,更優先Page 14 200305715 V. Description of the invention (o) The optical optical fluoride crystal 20 preferably includes a calcium fluoride crystal so that the transmission at <200 nm is greater than 99% / cm. This method provides a light lithographic printing element 42 having a measured contamination value of less than 50 PPb and an absorption coefficient &lt; 0. 0017 cm-1 at 200 to 210 nm, and if the optical coating film is coated on the surface of the crystal, it is preferentially applied to any Measurement before film. The present invention includes a method for making a sub-200nm wavelength transmitting optical fluoride crystal 20. The method includes providing pre-melted fluorinated and crystalline solids, and melting pre-fused calcium fluoride crystalline solids to form a calcium fluoride melt and growing calcium fluoride crystals from the melt to provide optical calcium fluoride crystals for transmission below 200 nm. wavelength. The method includes providing a light transmission 200-210 nm spectrum analyzer having a light source to generate a transmission test wavelength in a range of 200 to 21 On and a transmission sensor to measure fluorination using a transmission test wavelength in a range of 200 to 210 nm. The amount of lead contamination in the length of the calcium path, and the growth of optical calcium fluoride crystals to transmit wavelengths below 200 nm, and its absorption coefficient at 200 to 210 nm is &lt; 0. 0017CHT1. In the embodiment, measuring the amount of calcium fluoride contamination with a 200-200 nm spectrometer is included in measuring the amount of lead contamination in a pre-melted calcium fluoride crystal solid. In the embodiment, 200-2 l Onro spectrum analyzer 22 is used to measure the amount of lead pollution in fluorination, and the amount of pollution is included in the fluorinated crystal grown from the melt of fluorination. In an embodiment, the amount of fluorinated # § medium contamination is measured using a 200-210 nm spectrum analyzer when the crystal is in the optical element E-form before optical coating. In the examples, the amount of lead contamination in calcium fluoride is measured before crushing into a particulate form and / or during crushing from a large solid block to a smaller volume. Measure and monitor the amount of lead contamination in the crystal during the manufacturing process of the crystal. Provide a growing fluorinated trans-crystal to transmit the wavelength below 200nm and make the amount of lead pollution less than 50ppb.

第15頁 200305715 五、發明說明(li) 地&lt;20 ppb。優先地成長出光學氟化物晶想2〇具有船污染量 小於1 Oppb,優先地&lt;lppb。圖5顯示出本發明實施例,其中 真空控制結晶南溫爐110裝置堆疊交互連結石墨掛堝以 及頂部儲存器坩堝100。中間坩堝裝置預先熔融氟化鈣晶 體固體密集碟狀物80。預先熔融氟化鈣晶體固體碟狀物 藉由加熱及利用氟化劑加以純化及密實得到。在實施例中 預先熔融氟化鈣晶體固體藉由預先熔融純化以及使用pbF2 作為^化鈣之氟化劑密實得到,其利用控制氣體真空高溫 爐之操作以由晶體材料去除揮發性鉛以及氧生成物。在實 施例中例如圖5所示,高溫爐能夠裝載氟化鈣粉末顆粒7〇, 其包含氟化劑例如氟化鉛。裝載至晶體成長高溫爐11〇之 預先熔融氟化鈣晶體固體在坩堝中加以熔融為氟化鈣熔融 物^其藉由緩慢地冷卻晶體成長高溫爐内之熔融物而成長 ^氟化鈣晶體20,例如降低通過St〇ckbarger晶體成長處理 過程中熱梯度。在本發明圖6 —1〇所顯示另外一個實施例中 ,I成長掛塌62具有優先指向化晶轴之晶種晶體60於晶種 器64中。預先溶融氟㈣晶體固體顆粒52裝載於 油: 。含有預先熔融氟化鈣晶體固體之晶體成長坩堝 =於光學氟化物成長高溫爐UGt,其包含高溫上部溶融 以及熱調節壁板14,其提供晶體成長固化之熱梯度。 2於掛觀内氟㈣晶體固體在高溫爐⑽高溫區域8中 熔嘁以形成氟化鈣熔融物66。氟化鈣光學晶體2〇藉由 通過調節壁板14晶體成長固化卩一 板、泰&amp; , u 1匕&amp;域由溶融物66成長出以提 (、透射低於20—波長之光學氟化物晶體2〇。肖方法包含Page 15 200305715 V. Description of the Invention (li) Place &lt; 20 ppb. Optical fluoride crystals are grown preferentially, and 20 has a ship pollution amount of less than 1 Oppb, preferably &lt; lppb. Fig. 5 shows an embodiment of the present invention, in which a vacuum-controlled crystallization south temperature furnace 110 device is stacked and connected to a graphite hanging pot and a top storage crucible 100. The intermediate crucible apparatus previously melted the calcium fluoride crystal solid dense dish 80. Pre-melted calcium fluoride crystal solid dish is obtained by heating and purifying and compacting with a fluorinating agent. In the examples, the pre-fused calcium fluoride crystal solid is obtained by pre-melting and purifying and using pbF2 as a calcium fluoride fluorinating agent. It uses a controlled gas vacuum high temperature furnace operation to remove volatile lead and oxygen from the crystalline material. Thing. In an embodiment, as shown in FIG. 5, for example, a high temperature furnace can be loaded with calcium fluoride powder particles 70, which contains a fluorinating agent such as lead fluoride. The pre-fused calcium fluoride crystal solids loaded into the crystal growth high temperature furnace 11 is melted in a crucible to form a calcium fluoride melt ^ which grows by slowly cooling the melt in the crystal growth high temperature furnace ^ calcium fluoride crystal 20 For example, to reduce the thermal gradient during the growth process through StOckbarger crystals. In another embodiment shown in FIGS. 6-10 of the present invention, the I-growth collapse 62 has a seed crystal 60 that is preferentially oriented to the crystal axis in a seeder 64. The pre-dissolved fluoridium crystal solid particles 52 are loaded in oil:. A crystal growth crucible containing pre-fused calcium fluoride crystal solids = an optical fluoride growth high temperature furnace UGt, which contains a high temperature upper melting and thermally regulated wall plate 14 which provides a thermal gradient for crystal growth and solidification. 2 The fluorinated fluorene crystal solid is melted in a high temperature furnace 8 in a high temperature region 8 to form a calcium fluoride melt 66. Calcium fluoride optical crystals 20 are cured by adjusting the crystal growth of the siding plate 14. A plate, Thai &amp; u 1 &amp; domains are grown out of the melt 66 to improve the optical fluorine (transmission below 20-wavelength). Compound crystal 20. The Shaw method contains

第16頁 200305715 五、發明說明(12) 藉由20 0-21 Onm透射頻譜儀22製造晶體20以量測氟化鈣例 如為預先熔融氟化鈣晶體固體8 0中,成長晶體2〇以及晶種 中鉛污染量。整個晶體製造處理過程中優先地使用2 〇 〇 -21 Onm頻譜儀22以量測,監測,以及控制氟化鈣之鉛含量,特 別是當氟化鉛使用作為氟化劑時,其需要由最終產物晶體 20以及其製造出光學元件E去除以提供在低於2〇〇 ηπι波長下 為高透射以及光學特性。使用200- 21 Onm頻譜儀氟化約鉛 污染量量測值以提供量測值低於50PPb,優先地低於20ppb, 更優先地低於1 Oppb,最優先地低於lppb重量比。能夠使用 2 0 0 -2 1 0nm頻譜儀氟化#5錯污染量量測值以辨識晶體之高 錯污染量區域以及由光學氟化物晶體光學元件製造處理過 程去除。如圖11所示,能夠使用鉛污染量量測以辨識2〇〇至 21 Onm下吸收係數&gt;〇· 〇〇17cm-〗之高污染局部晶體區域132, 以及由更進一步處理為各別光學元件毛胚預製件晶體2〇以 及由其中製造出之光學元件42去除該高鉛污染區域132。 例如圖1 2-1 3C中所顯示,能夠使用量測以辨識預先熔融固 體52中高鉛污染量局部晶體區域5〇以提供由使用壓碎器56 及5 8壓碎處理過程產生之高純度預先熔融固體顆粒。具有 2 0 0-2 1 0nm之吸收係數&gt;〇· 〇〇i7cnLl的高鉛污染區域50能夠 利用200-210 nm透射頻譜儀加以辨識以及在壓碎過程中由 低錯污染區域加以去除以產生分離之低鉛污染量預先溶融 固體52之產物。優先地使用2〇〇-210nm透射量測以提供錯 小於10ppb之氟化鈣,優先地鉛小於5〇ppb,以產生成長氟化 舞晶體以及由其中產生之光學元件,其在2〇〇至21〇ηιη吸收Page 16 200305715 V. Description of the invention (12) The crystal 20 is manufactured by a 20 0-21 Onm transmission spectrum analyzer 22 to measure calcium fluoride. For example, it is a pre-fused calcium fluoride crystal solid 80, and the crystal 20 and the crystal are grown. Amount of lead pollution in species. During the entire crystal manufacturing process, 2000-21 Onm spectrum analyzer 22 is preferentially used to measure, monitor, and control the lead content of calcium fluoride, especially when lead fluoride is used as a fluorinating agent, it needs to be changed by the final The product crystal 20 and its manufactured optical element E are removed to provide high transmission and optical characteristics at wavelengths below 2000 nm. Use a 200-21 Onm spectrum analyzer to measure the amount of lead fluorinated pollution to provide a measured value below 50 PPb, preferably below 20 ppb, more preferably below 1 Oppb, and most preferably below lppb by weight. The fluorination # 5 error contamination measurement value of the 200--2 10nm spectrum analyzer can be used to identify the high error contamination area of the crystal and removed by the optical fluoride crystal optical element manufacturing process. As shown in FIG. 11, the lead pollution measurement can be used to identify the highly contaminated local crystal region 132 of the absorption coefficient &gt; 〇 〇 〇17cm-〗 at 200 to 21 Onm, and further processed into individual optics. The element blank preform crystal 20 and the optical element 42 manufactured therefrom remove the high lead contaminated area 132. For example, as shown in Figures 1 2-1 3C, measurements can be used to identify localized crystal areas 50 of high lead contamination in the pre-melted solids 52 to provide high-purity pre-production results from the use of crushers 56 and 58. Molten solid particles. High lead contaminated area 50 with an absorption coefficient of 2 0 to 2 1 0 nm> 〇 〇〇i7cnLl can be identified by a 200-210 nm transmission spectrum analyzer and removed from the low error contaminated area during crushing to produce The isolated low lead contamination pre-melts the product of solid 52. It is preferred to use a transmission measurement of 200-210 nm to provide calcium fluoride with an error of less than 10 ppb, and preferably lead of less than 50 ppb to produce a grown fluorinated dance crystal and the optical element produced therefrom, which is between 2000 and 2000. 21〇ηιη absorption

第17頁 200305715 五、發明說明(13) 係數&lt;0· 001 7CHL!,優先地203至207nm之吸收係數&lt;0.0017 CH^,更優先地在205nm下吸收係數。製造光 學氟化鈣晶體以及由其中產生光學元件,同時監測以及量 測鉛污染量,使用20 0-2 1 Gnm頻譜儀之方法提供具有極良好 光學特性高品質之晶體,其在20 Onm下具有高透射度大於9 9 %/cm,更優先地157nm透射度大於99%/cm。製造光學氟化物 晶體之方法產生氟化物晶體具有鉛污染量小於5〇ppb,更優 先地&lt;20ppb,更優先地&lt;l〇ppb,更優先地&lt;lppb以及最優先 地低於20Onm波長透射氟化鈣元件具有鉛污染量小於lppb 重量比。本發明包含低於20 Onm波長透射光學氟化物晶體 。光學氟化物晶體20由氟化約所構成,其低於2〇〇nm之透射 度為大於99%/(:111,優先地15711111透射度&gt;99%/(:111,以及錯污染 量小於50ppb以及在200至210nm下吸收係數&lt;〇. ooncmq, 更優先地203至207nm吸收係數&lt;〇· 〇〇1 ,及優先地205 nm吸收係數&lt;0· OOUcrn^。優先地鉛污染量小於i〇ppb,更 優先地&lt;lppb。本發明鉛分析方法能夠使用於整個光學氟 化物晶體光學元件製造處理過程至最終產物光學元件。 本發明包含一種方法以製造低於20Onm波長透射光學 氟化物晶體2 0。該方法包含提供預先溶融氟化鋇晶體固體 ,以及熔融預先熔融氟化鋇晶體固體以形成氟化鋇熔融物 以及由熔融物成長出氟化鋇晶體以提供光學氟化鋇晶體以 透射低於200nm波長。該方法包含提供光線透射2〇〇 —2l〇nm 頻譜儀,其具有光源以產生在200至21 On範圍内透射測試波 長以及透射感測器以利用200至21 Onm範圍内透射測試波長Page 17 200305715 V. Description of the invention (13) Coefficient &lt; 0 · 001 7CHL !, preferentially absorption coefficient of 203 to 207nm &lt; 0.0017 CH ^, more preferably absorption coefficient at 205nm. Manufacture of optical calcium fluoride crystals and the production of optical components from them, while monitoring and measuring the amount of lead contamination, using a method of 20 0-2 1 Gnm spectrometer to provide high-quality crystals with excellent optical characteristics, which have The high transmittance is greater than 99% / cm, and more preferably the 157nm transmittance is greater than 99% / cm. The method for producing optical fluoride crystals produces fluoride crystals with lead contamination of less than 50ppb, more preferably &lt; 20ppb, more preferably &lt; 10ppb, more preferably &lt; lppb, and most preferably less than 20nm wavelength Transmission calcium fluoride elements have a weight ratio of lead contamination less than lppb. The present invention includes optical fluoride crystals with transmission wavelengths below 20 Onm. The optical fluoride crystal 20 is composed of fluorinated silicon, and its transmittance below 2000 nm is greater than 99% / (: 111, preferentially 15711111 transmittance> 99% / (: 111, and the amount of miscontamination is less than 50 ppb and absorption coefficient <200.ooncmq at 200 to 210 nm, more preferably 203 to 207 nm absorption coefficient <0.0 · 〇〇1, and preferentially 205 nm absorption coefficient <0 · OOUcrn ^. Preferential amount of lead pollution Less than IOppb, more preferably &lt; lppb. The lead analysis method of the present invention can be used in the entire optical fluoride crystal optical element manufacturing process to the final product optical element. The present invention includes a method to produce a wavelength of less than 20 nm optical transmission optical fluorine Compound crystal 20. This method includes providing a pre-melted barium fluoride crystal solid, and melting the pre-melted barium fluoride crystal solid to form a barium fluoride melt and growing the barium fluoride crystal from the melt to provide an optical barium fluoride crystal. The transmission is below 200 nm. The method includes providing a light transmission 200-210 nm spectrum analyzer with a light source to generate a transmission test wavelength in the range of 200 to 21 On and a transmission sensor to facilitate Testing the transmission wavelength range of 200 to 21 Onm

第18頁 200305715 五、發明說明(14) 量測氟化鋇路徑長度中鉛污染量,並成長出光學氟化鋇晶 體以透射低於200nm波長,其在200至210nm下吸收係數為&lt; 〇· OOUcm—i。在實施例中,利用200-21 0nm頻譜儀量測氟化 鋇錯污染量包含在預先熔融氟化鋇晶體固體中量測鉛污染 量。在實施例中,利用200-2 1 Onm頻譜儀22量測氟化鋇中鉛 污染量包含在由氟化鋇熔融物成長出氟化鋇晶體中量測錯 污染量。在實施例中,在光學塗覆前當晶體在光學元件E形 式中時利用200 -2 1 0nm頻譜儀量測氟化鋇中鉛污染量。在 實施例中,在壓碎為顆粒形式前及/或在由大固體塊壓碎為 較小體積過程中量測氟化鋇中鉛污染量。優先地在晶體製 造過程中量測及監測晶體中鉛污染量提供成長之氟化鋇晶 體以透射低於20Onm波長並使錯污染量小於5〇ppb,更優先 地&lt;20 ppb。優先地成長出光學氟化物晶體2〇具有錯污染量 小於1 Oppb,優先地〈lppb。圖5顯示出本發明實施例,其中 真空控制結晶高溫爐11 〇裝置堆疊交互連結石墨坩堝g 〇以 及頂部儲存器坩堝100。中間坩堝裝置預先熔融氟化鋇晶 體固體密實碟狀物8 0。預先熔融氟化鋇晶體固體碟狀物8〇 藉由加熱以及利用氟化劑加以純化及密實得到。在實施例 中預先炼融氟化鋇晶體固體藉由預先熔融純化及使用pbF2 作為氟化鋇之氟化劑密實得到,其利用控制氣體真空高溫 爐之操作以由晶體材料去除揮發性鉛以及氧生成物。在實 施例中例如圖5所示,高溫爐能夠裝載氟化鋇粉末顆粒7〇, 其包含氟化劑例如氟化鉛。裝載至晶體成長高溫爐丨丨〇之 預先熔融氟化鋇晶體固體在坩堝中加以熔融為氟化鋇熔融Page 18 200305715 V. Description of the invention (14) Measure the amount of lead contamination in the length of the barium fluoride path, and grow an optical barium fluoride crystal to transmit the wavelength below 200nm, and its absorption coefficient at 200 to 210nm is &lt; 〇 OOUcm-i. In the embodiment, measuring the amount of barium fluoride contamination using a 200-200 nm spectrometer is included in measuring the amount of lead contamination in a pre-melted barium fluoride crystal solid. In the embodiment, the 200-2 1 Onm spectrum analyzer 22 is used to measure the amount of lead contamination in barium fluoride, and the amount of contamination is measured in a barium fluoride crystal grown from a barium fluoride melt. In an embodiment, the amount of lead contamination in barium fluoride is measured using a 200-2 10 nm spectrometer when the crystal is in the optical element E form before optical coating. In the examples, the amount of lead contamination in barium fluoride is measured before crushing into a particulate form and / or during crushing from a large solid block to a smaller volume. It is preferred to measure and monitor the amount of lead contamination in the crystal during the crystal manufacturing process to provide grown barium fluoride crystals to transmit wavelengths below 20 nm and make the amount of miscontamination less than 50 ppb, and more preferably &lt; 20 ppb. The optical fluoride crystal 20 is preferentially grown, and has a contamination amount of less than 1 Oppb, preferably <lppb. Fig. 5 shows an embodiment of the present invention, in which a vacuum-controlled crystallization high-temperature furnace 11o device stack connects the graphite crucible g0 and the top reservoir crucible 100 interactively. The intermediate crucible device previously melted the barium fluoride crystal solid compact dish 80. Pre-melted barium fluoride crystal solid dish 80 is obtained by heating and purifying and compacting with a fluorinating agent. In the examples, the barium fluoride crystal solid was previously smelted and melted by pre-melting and purifying and using pbF2 as the fluorinating agent of barium fluoride. It uses the operation of a controlled gas vacuum high temperature furnace to remove volatile lead and oxygen from the crystalline material. Product. In an embodiment, as shown in FIG. 5, for example, a high temperature furnace can be loaded with barium fluoride powder particles 70, which contains a fluorinating agent such as lead fluoride. Loaded into a crystal growth high-temperature furnace 丨 丨 〇 Pre-melted barium fluoride crystal solids are melted in a crucible to melt barium fluoride

第 200305715 五、發明說明(15) 物,其藉由緩慢地冷卻晶體成長高溫爐内之熔融物而成長 為氟化鋇晶體20,例如降低通過stockbarger晶體成長處理 過程中熱梯度。在本發明圖6-10所顯示另外一個實施例中 使用成長坩堝62具有優先指向化晶轴之晶種晶體60於晶種 晶體承受器64中。預先熔融氟化鋇晶體固體顆粒52裝載於 坩堝62中。含有預先熔融氟化鋇晶體固體之晶體成長坩堝 放置於光學氟化物成長高溫爐110中,其包含高溫上部熔融 區域8以及熱調節壁板14,其提供晶體成長固化之熱梯度。 裝置於坩堝62内氟化鋇晶體固體在高溫爐1〇〇高溫區域8中 熔融以形成氟化鋇熔融物66。氟化鋇光學晶體20藉由降低 通過調節壁板14晶體成長固化區域由熔融物66成長出以提 供透射低於200 nm波長之光學氟化物晶錄20。該方法包含 藉由200-21 Onm透射光度儀22製造晶體20以量測氟化鋇例 如為預先熔融氟化鋇晶體固體80中,成長晶體20以及晶種 中鉛污染量。整個晶體製造處理過程中優先地使用200 -2 10nm頻譜儀22以量測,監測,以及控制氟化鋇之鉛含量,特 別是當氟化鉛使用作為氟化劑時,其需要由最終產物晶體 20以及其製造出光學元件E去除以提供在低於20Onm波長下 為高透射以及光學特性。使用200-21 Onm頻譜儀氟化鋇鉛 污染量量測值以提供量測值低於50ppb,優先地低於2Oppb, 更優先地低於lOppb,最優先地低於lppb重量比。能夠使用 2 0 0-21 Onm頻譜儀氟化鋇鉛污染量量測值以辨識晶體之高 鉛污染量區域以及由光學氟化物晶體光學元件製造處理過 程去除。如圖11所示,能夠使用鉛污染量量測以辨識2 〇〇至Article 200305715 V. Description of the invention (15), which grows into barium fluoride crystals 20 by slowly cooling the crystals to melt in the high temperature furnace, for example, to reduce the thermal gradient during the stockbarger crystal growth process. In another embodiment shown in Figs. 6 to 10 of the present invention, a seed crystal 60 having a crystallizing axis preferentially oriented to a growth crucible 62 is used in the seed crystal holder 64. Crucible 62 is loaded with solid particles 52 of barium fluoride crystals previously melted. A crystal growth crucible containing a previously melted barium fluoride crystal solid is placed in an optical fluoride growth high temperature furnace 110, which includes a high temperature upper melting region 8 and a thermally regulated wall plate 14 that provides a thermal gradient for crystal growth and solidification. The barium fluoride crystal solids placed in the crucible 62 were melted in a high temperature furnace 100 high temperature region 8 to form a barium fluoride melt 66. The barium fluoride optical crystal 20 is grown from the melt 66 by adjusting the crystal growth and solidification region of the wall plate 14 to provide an optical fluoride crystal record 20 having a transmission below 200 nm. The method includes manufacturing a crystal 20 by a 200-21 Onm transmission spectrophotometer 22 to measure barium fluoride, such as a pre-fused barium fluoride crystal solid 80, growing the crystal 20 and the amount of lead contamination in the seed. During the entire crystal manufacturing process, the 200-2 10nm spectrum analyzer 22 is preferentially used to measure, monitor, and control the lead content of barium fluoride. Especially when lead fluoride is used as a fluorinating agent, it needs to be crystallized from the final product. 20 and its manufactured optical element E are removed to provide high transmission and optical characteristics at wavelengths below 20 nm. Use 200-21 Onm spectrum analyzer barium lead pollution measurement to provide measurement values below 50ppb, preferably below 2Oppb, more preferably below lOppb, and most preferably below lppb weight ratio. It can use the measurement value of barium fluoride and lead pollution of 2000--21 Onm spectrum analyzer to identify the high lead pollution area of the crystal and remove it by the optical fluoride crystal optical element manufacturing process. As shown in Figure 11, lead pollution measurements can be used to identify 2000 to

第20頁 200305715 五、發明說明(16) 210nm下吸收係數&gt;0· 0017CHT1之高污染局部晶體區域132, 以及由更進一步處理步為各別光學元件毛胚預製件晶體2〇 以及由其中製造出之光學元件42去除該高鉛污染區域132 。例如圖12-1 3C中所顯示,能夠使用量測以辨識預先熔融 固體52中高鉛污染量局部晶體區域5〇以提供由使用壓碎器 56及58壓碎處理過程產生之高純度預先熔融固體顆粒。具 有200-210nm之吸收係數&gt;(K〇〇i7cm_1的高鉛污染區域50能 夠利用200-210nm透射頻譜儀加以辨識以及在壓碎過程中 由低鉛污染區域加以去除以產生分離之低鉛污染量預先熔 融固體52之產物。優先地使用200-210 ηιη透射量測以提供 鉛小於lOppb之氟化鋇,優先地鉛小於5〇ppb,以產生成長氟 化鋇晶體以及由其中產生之光學元件,其在200至21 〇nm吸 收係數&lt;0· 0017cm1,優先地在203至207nm吸收係數&lt;〇. 0017 cir1,更優先地在205nm下吸收係數〈0.0017cm1。製造光 學氟化鋇晶體以及由其中產生光學元件,同時監測以及量 測鉛污染量,使用200-21 0nm頻譜儀之方法提供具有極良好 光學特性高品質之晶體,其在200nm下具有高透射度大於99 %/cm,更優先地157nm透射度大於99%/cm。製造光學氟化物 晶體之方法產生氟化物晶體之鉛污染量小於5Oppb,更優先 地&lt;2 0ppb,更優先地&lt;l〇ppb,更優先地&lt;lppb以及最優先地 低於2 0Onm波長透射氟化鋇元件具有鉛污染量小於ippb重 量比。本發明包含低於20Onm波長透射光學氟化物晶體。 光學氟化物晶體20由氟化鋇所構成,其低於20Onm透射度大 於99%/cm,優先地157nm透射度&gt;99%/cm,以及鉛污染量小於Page 20 200305715 V. Description of the invention (16) Absorption coefficient at 210nm &gt; 0. 0017CHT1 Highly-contaminated local crystal region 132, and further processing steps for individual optical element blank preform crystals 20 and manufactured therefrom The optical element 42 removes the high-lead contaminated area 132. For example, as shown in Figure 12-1 3C, measurements can be used to identify high lead contamination local crystal regions 50 in the pre-melted solid 52 to provide high-purity pre-melted solids produced by the crusher 56 and 58 crushing processes. Particles. The high lead pollution area 50 with an absorption coefficient of 200-210nm &gt; (K〇〇i7cm_1) can be identified by a 200-210nm transmission spectrum analyzer and removed from the low lead pollution area during crushing to produce separated low lead pollution The amount of the product of the pre-melted solid 52. Preference is given to using 200-210 ηη transmission measurements to provide barium fluoride with lead less than 10 ppb, and preferably lead less than 50 ppb to produce growing barium fluoride crystals and optical components produced there , Its absorption coefficient at 200 to 2100 nm &lt; 0. 0017cm1, preferentially at 203 to 207nm absorption coefficient &lt; 0.017 cir1, more preferably at 205nm absorption coefficient <0.0017cm1. Manufacturing optical barium fluoride crystals and Optical elements are generated from it, and the amount of lead contamination is monitored and measured at the same time. The method of 200-200 nm spectrometer is used to provide high-quality crystals with excellent optical characteristics. It has a high transmittance of more than 99% / cm at 200 nm. Preferentially, the transmission at 157nm is greater than 99% / cm. The method of producing optical fluoride crystals has a lead pollution amount of less than 5Oppb, more preferably &lt; 20ppb, more preferably &lt; 10ppb, more Preferentially &lt; lppb and most preferentially below 200nm wavelength transmission barium fluoride elements have a weight ratio of lead contamination less than ippb. The present invention includes wavelengths below 20nm wavelength transmission optical fluoride crystals. Optical fluoride crystal 20 is made of barium fluoride The composition has a transmittance of less than 20 nm and a transmittance of more than 99% / cm, preferably a transmittance of 157 nm &gt; 99% / cm, and a lead pollution amount of less than

第21頁 200305715 五、發明說明(17) 50ppb以及在200至21 Onm下吸收係數&lt;〇· 001 7cm-1,更優先 地203至20711111吸收係數〈0.〇〇17〇1〇-1,以及優先地205|1111吸 收係數&lt;0· 0016cm—1。優先地鉛污染量小於l〇ppb,更優先 地&lt;lppb。本發明錯分析方法能夠使用於整個光學氟化物 晶體光學元件製造處理過程至最終產物光學元件。 本發明包含藉由量測位於20Onm至21 Onm範圍内已知波 長下晶體透射度測試光學氟化物晶體關於鉛之雜質,優先 地波長在203nm至207nm範圍内,以及更優先地在205nm波長 下。優先地量測光束通過晶體之長度為比2mm長,以及優先 地比1 cm長,以及更優先地通過量測光束之晶體長度至少為 1 0 c m。優先地在該測試中為了控制晶體純度,該方法包含 將量測透射值或由量測透射值所計算出吸收係數與參考值 作比較,優先地與晶體最終吸收係數0· 0017cm1比較。該 方法包含在測試下將晶體鉛含量定量。優先地晶體由鹼金 屬氟化物晶體,驗土金屬氟化物晶體,以及該氟化物晶體混 合物例如為NaF,KF,LiF,CaF2, BaF2, MgF2,以及SrF2及其混 合物選取出。在優先實施例中對具有至少9 9mm光線透射路 徑長度(約為100mm)晶體量測,使用該方法以提供光學氟化 物晶體,其200至210nm(優先地203至207nm,更優先地為205 nm)鉛污染量吸收係數&lt;0· 0017CBT1,優先地&lt;0. 0016CHT1, 優先地&lt;0· 0015cm1,優先地&lt;〇· 0010cm1,優先地&lt;〇. 00084 cm1,優先地&lt;0· 0007cm1,優先地&lt;〇· 〇〇〇65CHT1,優先地&lt; 0· 0004cm1,優先地&lt;0· 0003cm-1,優先地&gt;0· 0002cm_1,優 先地&gt;0· 00025cm1,優先地在〇· 00025cm1 至0· OOOScnr1。Page 21 200305715 V. Description of the invention (17) 50 ppb and absorption coefficient <0.007 cm-1 at 200 to 21 Onm, more preferably 203 to 20711111 absorption coefficient <0.000017〇1〇-1, And preferentially 205 | 1111 absorption coefficient &lt; 0 · 01616cm-1. The amount of lead contamination is preferably less than 10 ppb, and more preferably &lt; lppb. The error analysis method of the present invention can be used in the entire optical fluoride crystal optical element manufacturing process to the final product optical element. The present invention includes measuring the impurity of lead in optical fluoride crystals by measuring the crystal transmittance at a known wavelength in the range of 20 Onm to 21 Onm, preferably in the range of 203 nm to 207 nm, and more preferably in the wavelength of 205 nm. The length of the measuring beam passing through the crystal is preferably longer than 2 mm and preferably longer than 1 cm, and the length of the crystal passing through the measuring beam preferentially is at least 10 cm. In this test, in order to control the purity of the crystal, the method includes comparing the measured transmission value or the absorption coefficient calculated from the measured transmission value with a reference value, and preferentially comparing the final absorption coefficient of the crystal with 0. 0017 cm1. This method involves quantifying the crystalline lead content under test. The crystals are preferably selected from alkali metal fluoride crystals, earth metal fluoride crystals, and a mixture of the fluoride crystals such as NaF, KF, LiF, CaF2, BaF2, MgF2, and SrF2 and mixtures thereof. In a preferred embodiment, a crystal having a light transmission path length of at least 9 mm (approximately 100 mm) is measured, and this method is used to provide an optical fluoride crystal, which is 200 to 210 nm (preferably 203 to 207 nm, and more preferably 205 nm). ) Lead pollution amount absorption coefficient &lt; 0.0017CBT1, preferentially &lt; 0.016CHT1, preferentially &lt; 0.015cm1, preferentially &lt; 0.0010cm1, preferentially &lt; 0.0084 cm1, preferentially &lt; 0 0007cm1, preferentially &lt; 〇 · 〇〇〇〇65CHT1, preferentially &lt; 0, 0004cm1, preferentially &lt; 0.003cm-1, preferentially &gt; 0, 0002cm_1, preferentially &gt; 0.00025cm1, preferentially Between 0.0025cm1 and 0.00Scnr1.

第22頁 200305715 五、發明說明(18) 圖17為本發明Pb之A -吸收頻帶(200nm-210nm)頻譜範圍中 光學氟化物晶體之吸收頻譜。圖1 7之光學氟化物晶體試樣 為具有50mm光線透射路徑長度之氟化鈣晶體試樣。圖丨8光 學氟化物晶體試樣為具有10cm光線透射路徑長度之氟化转 晶體試樣。圖1 8顯示出如何依據本發明使用基線以感測非 常低錯污染值,利用掃描中央位於205nm波長之1 95_220nm 範圍内以辨識在205nm處基線大小。在圖18中可看到錯吸 收接近小於在205 nm處基線大小10倍。在圖18中基線包含 表面損耗以及一些其他内部吸收,使得掃描195-200nm有助 於正確地量測205nm鉛吸收。由於依據訊噪比,可看到約為 0 · 0 0 2鉛吸收為最小吸收。作為範例,光線透射路徑長度J 〇 cm能夠量測具有最小吸收係數為〇· 〇02/i〇cm = 0. 〇〇〇2_1。 考慮消失係數e = 0· ZScm^/ppb,該吸收係數相對於約為1 ppb鉛濃度。在圖18中對於l〇cm光線透射路徑長度在2〇5nm 吸收為0· 0065以產生吸收係數為〇· 00065^1^(0. 0065/1 0 cn^O.OOOeScnr1)。具有〇.〇〇〇65c nr1吸收係數之錯濃度為 2· 6ppb[(0· OOOeScmKlppm 錯/· 25CHT1 ) = 2· 6ppb 錯]。 範例: 本發明更進一步藉由下列範例加以說明。在實施本發 明中,使用 200 - 21 0nm 頻譜儀 22 例如 Perkin - Elmer Lambda-900 頻譜儀 (Perkin Elmer Analysis Instruments, 710 Bridgeport Avenue Shelton, CT 06484-4794 USA)。在 實施例中光源2 4由氣弧光燈泡所構成。在優先實施例中光 源24由重氫燈泡所構成。優先地本發明提供作為非破壞性Page 22 200305715 V. Description of the invention (18) Figure 17 shows the absorption spectrum of the optical fluoride crystal in the A-absorption band (200nm-210nm) of the Pb of the present invention. The optical fluoride crystal sample of Fig. 17 is a calcium fluoride crystal sample having a light transmission path length of 50 mm. Figure 丨 8 Optical fluoride crystal sample is a fluorinated trans-crystalline sample with a light transmission path length of 10 cm. Figure 18 shows how to use the baseline to sense very low-error contamination values according to the present invention, using the scan center to be within the range of 1 95-220 nm of the 205 nm wavelength to identify the baseline size at 205 nm. It can be seen in Figure 18 that the misabsorption is close to 10 times smaller than the baseline size at 205 nm. The baseline in Figure 18 contains surface loss as well as some other internal absorption, so scanning 195-200nm helps to measure 205nm lead absorption correctly. Based on the signal-to-noise ratio, it can be seen that lead absorption is approximately 0 · 0 02 2 as the minimum absorption. As an example, the light transmission path length J 0 cm can be measured with a minimum absorption coefficient of 0.0 · 02 / i0cm = 0. 〇〇〇2_1. Considering the disappearance coefficient e = 0 · ZScm ^ / ppb, the absorption coefficient is relative to a lead concentration of about 1 ppb. In FIG. 18, the transmission path length for a 10 cm light is 2.005 at an absorption of 2.065 to produce an absorption coefficient of 0.00065 ^ 1 ^ (0.065 / 1 0 cn ^ O.OOOeScnr1). The wrong concentration with an absorption coefficient of 0.0065c nr1 is 2. 6 ppb [(0. OOOeScmKlppm wrong / 25 CHT1) = 2. 6 ppb wrong]. Examples: The invention is further illustrated by the following examples. In implementing the present invention, a 200-2100 nm spectrum analyzer 22 such as a Perkin-Elmer Lambda-900 spectrum analyzer (Perkin Elmer Analysis Instruments, 710 Bridgeport Avenue Shelton, CT 06484-4794 USA) is used. In the embodiment, the light source 24 is constituted by a gas arc light bulb. In the preferred embodiment, the light source 24 is constituted by a deuterium bulb. Preferably the invention is provided as non-destructive

第23頁 200305715 五、發明說明(19) 非溶解非損耗性測試(與損耗破壞性促使例如溼化學步驟 以及ICP-AES比較)。在實施例中本發明包含由較大晶體塊 物體去除晶體试樣而具有抛光表面(優先地至少5〇mju長具 有平行平面,其平行度優於1度)。量測大小之試樣塊被切 割下以及進行拋光以及插入於200-21 Onm頻譜儀以在其中 量測。本發明提供氟化鈣晶體依據200-210nm透射量測之 錯濃度低於1 OOppb,優先地低於lppb。優先地本發明提供 低於2 0Onm波長透射性氟化鈣之光學氟化物晶體,其在157 11111下具有低於2〇〇11111之透射度大於99%/〇:111,“雜質重量比小 於〇· 5ppm,K雜質重量比小於〇· 5ppm,以及鉛雜質重量比小 於l〇Ppb,其藉由200-21 Onm頻譜儀量測在200至21 Onm下吸 收係數為&lt;0. OOlTcnr1。 本發明藉由置測200至210nm範圍内氟化物晶體錯吸收 值以控制氟化物晶體之晶體品質以使用於波長&lt;2〇〇nm應用 中。氟化物晶體作為應用於波長&lt;2〇〇nm光學材料呈現出極 良好的特性,因為其高透射性所致。但是只存在於晶體不 含氧雜質之情況。特別地,當氧種類存在於晶體十時波長 193及157nm下(相當於ArF及『2雷射)氟化物晶體透射度將 顯著地減小。為了得到具有極良好透射度之氟化物晶體, 優先地加入清除劑例如氟化鉛清除劑以由晶體原料中去除 氧種類。氟化鉛清除劑能夠有效地去除氧,但是在清除後 疋素錯會殘留於晶體中。鉛雜質對晶體波長&lt;2〇〇nffl透射度 將具有負面影響。特別是,當鉛雜質存在於晶體中時丨5 7nm 之透射度將嚴重地惡化。Page 23 200305715 V. Description of the invention (19) Non-dissolving non-destructive testing (compared with loss-destructive stimuli such as wet chemical steps and ICP-AES). In an embodiment, the present invention includes removing a crystal sample from a larger crystal block object to have a polished surface (preferably at least 50 mju long with parallel planes, and its parallelism is better than 1 degree). The size of the specimen is cut, polished, and inserted into the 200-21 Onm spectrum analyzer for measurement. The present invention provides that the calcium fluoride crystal has an error concentration of less than 100 ppb, preferably less than 1 ppb, measured according to a transmission measurement of 200-210 nm. Preferentially, the present invention provides an optical fluoride crystal having a transmissive calcium fluoride with a wavelength of less than 200 nm, which has a transmittance of less than 200011111 at 157 11111 is greater than 99% / 〇: 111, "the impurity weight ratio is less than 0. OOlTcnr1 · 5ppm, the weight ratio of K impurities is less than 0.5ppm, and the weight ratio of lead impurities is less than 10Ppb, measured by a 200-21 Onm spectrometer at 200 to 21 Onm. The crystal quality of fluoride crystals is controlled by measuring the absorption error of fluoride crystals in the range of 200 to 210 nm for use in wavelength &lt; 2000 nm applications. Fluoride crystals are used as wavelength &lt; 2000 nm optics The material exhibits very good characteristics due to its high transmittance. However, it only exists when the crystal does not contain oxygen impurities. In particular, when the oxygen species exists at the crystal's ten-wavelength 193 and 157nm (equivalent to ArF and " 2Laser) The transmittance of fluoride crystals will be significantly reduced. In order to obtain fluoride crystals with excellent transmittance, it is preferred to add a scavenger such as lead fluoride scavenger to remove oxygen species from the crystal raw material. Lead fluoride Scavenger It is effective to remove oxygen, but the halogen will remain in the crystal after removal. Lead impurities will have a negative effect on the crystal wavelength &lt; 2000 nffl transmittance. In particular, when lead impurities are present in the crystal 5 7nm transmittance will be seriously deteriorated.

第24頁 200305715 五、發明說明(20) 藉由量測1 93nm及1 57nm内部透射度管控所製造晶體之 品質為複雜的處理過程,其需要不含水份頻譜儀,其藉由進 行沖氣或真空抽除以及試樣表面特別的清理達成。該處理 過程提高晶體製造費用。我們提出藉由量測高於2〇〇nm之 Pb吸收值以控制氟化物晶體波長低於20〇nm優先地界於200 與210nm之透射度,當試樣路徑長度至少為i〇〇min時能夠感 測限制值為1 ppb。氟化物晶體特別是摻雜Pb之鹼土氟化物 主要具有三個吸收頻帶·· AC200-21 0nm),B(1 60-1 70nm)及C ( 1 50- 1 60nm)。這些頻帶特性為由Pb2+離子基態1SQ分別地 激發至狀態3Pi,3P2以及1匕。依據本發明,我們藉由量測 Pb吸收/透射至其A-吸收頻帶(200-21 Onm)品質地控制氟化 物晶體。我們發現在C-頻帶最大吸收係數(155nra)高於A-頻帶最大值(205nm)吸收係數2· 5倍。由於該關係,我們能 夠在155nm下得到〇頻帶消失係數,該係數為ε (155) = 6. 25 *10-knrVppb。作為比較,Pb亦能夠藉由iCp-AES加以分 析。不過該方法需要&quot;溼式化學&quot;步驟&quot;,其會污染試樣,以 及該方法感測限制值並不會超過1 P P 。 優先地提供光學元件氟化物晶體157njn之透射度&gt;99· 0 %/cm,在200至21〇nm範圍Pb之吸收係數應該〈o.ooncnr1。 本發明提供關於沿著路徑長度平均pb濃度之光學氟化 物晶體資料。 本發明提供一種方法以測試以及製造高純度以及低於 200nm極良好光學特性以及低鉛含量之高品質光學氟化物 晶體。本發明提供製造例如氟化鈣之光學氟化物晶體,其Page 24 200305715 V. Description of the invention (20) The measurement of the quality of the manufactured crystal by measuring the internal transmittance of 1 93nm and 1 57nm is a complicated process, which requires a moisture-free spectrum analyzer, which is performed by flushing. Or vacuum extraction and special cleaning of the sample surface. This process increases the cost of crystal manufacturing. We propose to measure the Pb absorption value above 200nm to control the transmittance of fluoride crystals with wavelengths below 200nm and preferentially between 200 and 210nm. When the path length of the sample is at least 100min, The sensing limit is 1 ppb. Fluoride crystals, especially Pb-doped alkaline earth fluorides, mainly have three absorption bands (AC200-21 0nm), B (1 60-1 70nm) and C (1 50-1 60nm). These band characteristics are excited from the Pb2 + ion ground state 1SQ to the states 3Pi, 3P2, and 1k, respectively. According to the present invention, we control fluoride crystals by measuring the quality of Pb absorption / transmission to its A-absorption band (200-21 Onm). We found that the maximum absorption coefficient (155nra) in the C-band is 2.5 times higher than the maximum absorption coefficient in the A-band (205nm). Due to this relationship, we can obtain the zero-band disappearance coefficient at 155nm, which is ε (155) = 6. 25 * 10-knrVppb. For comparison, Pb can also be analyzed by iCp-AES. However, this method requires a "wet chemistry" step, which contaminates the sample, and the method's sensing limit value does not exceed 1 P P. It is preferable to provide the transmittance &lt; 99.0% / cm of the fluoride crystal 157njn of the optical element, and the absorption coefficient of Pb in the range of 200 to 210 nm should be <o.ooncnr1. The present invention provides information on optical fluoride crystals with an average pb concentration along the path length. The present invention provides a method for testing and manufacturing high-quality optical fluoride crystals with high purity and excellent optical characteristics below 200 nm and low lead content. The present invention provides the manufacture of optical fluoride crystals such as calcium fluoride, which

第25頁 200305715 五、發明說明(21) 具有低鉛含量以及低氧化污染物,以及製造低於20Οηιπ透射 光學氟化物晶體元件以透射ArF以及F2雷射波長(分別為 193nm以及157nm),優先地使用氟化鉛作為氟化劑氧化物清 除劑進行製造同時仍然產生具有低鉛污染量之光學氟化物 晶體以及光學元件。本發明光學氟化物晶體低於20Onm(例 如193nm以及157 nm)透射度大於99%/cm以及優先地使用作 為低於20Onm光學元件例如為光石版印刷以及雷射光學元 件,棱鏡,投射系統,以及照明系統。本發明光學氟化物晶 體優先地包含LiF,NaF,CaF2, SrF2, BaF2,以及MgF2晶體以 及其組合物晶體,特別是CaF2以及SrF2混合晶體,以及最優 先地為CaF2 4BaF2或8^2未混合晶體。在本發明優先實施 例中,氟化劑氧化物清除劑化合物例如PbF2使用於製造光 學氟化物晶體以減少晶體中含有氧之位址數目。雖然氟化 鉛有益於去除氧以及改善低於20 Onm之光學元件,鉛為雜質 ,特別是使用於波長小於200nm氟化物晶體特別不想要的。 受鉛污染晶體特別會產生1 57nra透射度減小以及其在暴露 於ArF以及F2準分子形式雷射發出光線時會吸收小於2〇〇nm 之波長。 提出測試方法以評估含錯之晶體純度,該方法包含在 157 nm及/或193 nm波長下量測吸收所導致之透射度,該波長 為晶體所使用之波長。這些量測難以實施。在該小於2 〇 〇 nm波長下,試樣必需加以保護避免受到空氣及濕氣影響。 因而需要含有試樣之槽室,該槽室以氣體沖除或保持在高 度真空狀態,或者測試裝置應該保持在不含空氣及濕氣之Page 25 200305715 V. Description of the invention (21) It has low lead content and low oxidative pollutants, and manufactures less than 20nm transmission optical fluoride crystal elements to transmit ArF and F2 laser wavelengths (193nm and 157nm respectively), preferably Manufactured using lead fluoride as a fluorinating agent oxide scavenger while still producing optical fluoride crystals and optical components with low lead pollution. The optical fluoride crystal of the present invention has a transmittance of less than 20 nm (for example, 193 nm and 157 nm) with a transmittance of more than 99% / cm and is preferably used as an optical element below 20 nm, such as light lithography and laser optical elements, prisms, projection systems, and Lighting system. The optical fluoride crystals of the present invention preferably include LiF, NaF, CaF2, SrF2, BaF2, and MgF2 crystals and their composition crystals, especially CaF2 and SrF2 mixed crystals, and most preferably CaF2 4BaF2 or 8 ^ 2 unmixed crystals. . In a preferred embodiment of the present invention, a fluorinating agent oxide scavenger compound such as PbF2 is used in the manufacture of optical fluoride crystals to reduce the number of sites containing oxygen in the crystals. Although lead fluoride is beneficial for removing oxygen and improving optical components below 20 Onm, lead is an impurity, especially for fluoride crystals with wavelengths less than 200 nm, which is particularly undesirable. Lead-contaminated crystals in particular have a reduced transmittance of 1 57nra and they absorb wavelengths of less than 2000 nm when exposed to light emitted by ArF and F2 excimer lasers. A test method is proposed to evaluate the purity of crystals containing errors. This method involves measuring the transmission caused by absorption at a wavelength of 157 nm and / or 193 nm, which is the wavelength used by the crystal. These measurements are difficult to implement. At this wavelength of less than 200 nm, the sample must be protected from air and moisture. Therefore, a tank containing the sample is required, and the tank is flushed with gas or maintained in a high vacuum state, or the test device should be kept in a place free of air and moisture.

第26頁 200305715 五、發明說明(22) ----- 環境中。除此測試雷射堅固程度之先前方法為昂貴的因 為準分子雷射裝置本身以及低於20 〇nm準分子雷射運轉以 及維護費用所致,因而其並不適合經濟地使用於光學氣化 物晶體製造系統中之裝置。Nikon公司之日本第Jp — A — 2〇〇〇 1 1 9098號專利中已說明一些建議以藉由一種方法分析鉛含 量,其藉由感應耦合等離子(ICP)技術分析微量元素。不過 該方法需要濕式化學步驟,其可能會污染試樣。量測儀器 必而使用感應耦合等離子技術加以標定,其同樣地會遭遇 受到污染因而使量測品質惡化之可能。任何情況下,大量 操作步驟將產生操作員誤失以及儀器飄移之空間,因為鉛 會分佈於整個晶體中,其必需在數個點處進行分析。利用 該種方法,錯雜質感測限制值並不會大於1 ppm。本發明提 供一種新穎的方法以測試氟化物晶體有關鉛之純度,該方 法特別有用於製造光學氟化物晶體以及由其中製造出光學 元件。本發明提供一種可靠性以及容易實施之測試β本發 明包含偏移離開使用波長(157nm及/或I93nm)朝向200nm至 210 nm範圍波長,優先地2〇 3nm至207 run範圍内,以及更優先 地為205nm。 本發明製造20Onm透射性光學氟化物晶體元件包含量 測在2 0Onm至210範圍内光學氟化物晶體透射度。該量測透 射度與低於20〇11111使用波長(15711111及/或193111〇)透射度產生 關連,並不量測使用波長本身以及優先地避免,此由於低於 20Onm準分子雷射照射費用以及複雜性。已經發現位於200 nm21 Onm波長透射度有可能感測出鉛的存在以及定量出晶Page 26 200305715 V. Description of Invention (22) ----- Environment. The previous method for testing the robustness of lasers is expensive because the excimer laser device itself and the operation and maintenance costs of excimer lasers below 200 nm are not suitable for economical use in the manufacture of optical gas crystals. Device in the system. Nikon's Japanese Patent No. Jp—A—2000 1 9098 has described some proposals to analyze lead content by a method that analyzes trace elements by inductively coupled plasma (ICP) technology. However, this method requires a wet chemical step, which may contaminate the sample. Measuring instruments must be calibrated using inductively coupled plasma technology, which also suffers from the possibility of being contaminated and deteriorating the quality of the measurement. In any case, a large number of steps will create room for operator error and instrument drift because lead is distributed throughout the crystal and must be analyzed at several points. With this method, the limit of false impurity sensing is not greater than 1 ppm. The present invention provides a novel method for testing the purity of lead crystals with respect to fluoride crystals. This method is particularly useful for the manufacture of optical fluoride crystals and the manufacture of optical elements therefrom. The present invention provides a reliable and easy-to-implement test. The present invention includes shifting away from the used wavelength (157nm and / or I93nm) toward a wavelength in the range of 200nm to 210nm, preferably in the range of 203nm to 207 run, and more preferentially. It was 205 nm. The manufacturing of a 20 Onm transmissive optical fluoride crystal element according to the present invention includes measuring the transmittance of an optical fluoride crystal in a range of 20 Onm to 210. The measured transmittance is related to the transmittance below the wavelength of 2011111 (15711111 and / or 193111〇). The measured wavelength itself is not measured and is preferentially avoided. This is due to the cost of excimer laser irradiation below 20Onm and Complexity. It has been found that transmission at 200 nm21 Onm wavelength may detect the presence of lead and quantify crystals

第27頁 200305715 五、發明說明(23) 體中鉛含量,該種方法具有極良好精確地及準確性。 依據本發明,圖14為120nm至220nm範圍内摻雜鉛BaF2 晶體之透射頻譜。該頻譜顯示出在157nm下受鉛污染晶體 之吸收係數大約大於在20Onm至210nm範圍量測之三倍。對 氣化物晶體進行在157nm下受錯污染晶體所量測之吸收係 數與在20Onm至21 Onm範圍内受鉛污染晶體所量測之吸收係 數的比值一般化,我們發現該比值在2· 5至3範圍内。該數 值提供在測試量測波長(200nm至21 Onm)下光學氟化物晶體 透射度與在使用波長(157nm及/或1 93nm)下該晶體透射度 間產生關連,兩者透射度大小為相同的等級。考慮計算用 途較差的情況(將比值定為2. 5),依據本發明必需得到波長 在2OOnm至21 Onm範圍内之吸收係數小於〇· 〇〇 17cnr1以得到 157nm下透射度大於9 9%/cm(晶體使用於光石版印刷/雷射 情況下進行測試)。本發明測試具有優點,其適合在紫外線 區域中之操作波長在空氣中以標準頻譜儀量測裝置進行測 試° 令人想不到地,本發明亦可能提供量測鉛雜質之精確 性以及能夠製造出高品質光學氟化物晶體元件,其具有低 鉛含量以及波長在2OOnm至21 Onm範圍内之吸收係數小於 〇· 001 Tcnr1。為了得到測試波長(在20Onm至21 Onm範圍内) 下所得到透射度與使用波長(157nm及193nm)所得到透射度 間之比例係數,我們使用2 0 5nm以量測含有不同濃度錯雜質 之CaFz晶體吸收(圖15)。這些量測顯示出鉛消失係數約為 〇· 30cnri/caF2晶體鉛之ppm。本發明感測限制值等級為光Page 27 200305715 V. Description of the invention (23) The content of lead in the body is very accurate and accurate. According to the present invention, FIG. 14 is a transmission spectrum of a lead-doped BaF2 crystal in a range of 120 nm to 220 nm. This spectrum shows that the absorption coefficient of lead-contaminated crystals at 157nm is approximately three times greater than that measured in the range of 20nm to 210nm. Generalizing the ratio of the absorption coefficient measured for gaseous crystals at 157 nm to the contaminated crystals in error and the absorption coefficient measured at lead crystals in the range of 20 Onm to 21 Onm, we found that the ratio was between 2.5 and 5 3 range. This value provides a correlation between the transmittance of the optical fluoride crystal at the measurement wavelength (200nm to 21 Onm) and the transmittance of the crystal at the use wavelength (157nm and / or 1.93nm). The transmittance of the two is the same. grade. Considering the case of poor calculation use (the ratio is set to 2.5), according to the present invention, it is necessary to obtain an absorption coefficient with a wavelength in the range of 200 nm to 21 Onm less than 0.07cnr1 to obtain a transmission at 157 nm of greater than 9 9% / cm (Crystals are tested under light lithography / laser conditions). The test of the present invention has the advantage that it is suitable for testing in the ultraviolet operating region in a standard spectrum analyzer measurement device in the air ° Unexpectedly, the present invention may also provide the accuracy of measuring lead impurities and be able to produce high Quality optical fluoride crystal element, which has a low lead content and an absorption coefficient in the range of 200 nm to 21 Onm is less than 0.001 Tcnr1. In order to obtain the proportionality coefficient between the transmittance obtained at the test wavelength (in the range of 20 Onm to 21 Onm) and the transmittance obtained using the wavelength (157nm and 193nm), we use 2 05nm to measure CaFz containing different concentrations of wrong impurities Crystal absorption (Figure 15). These measurements show that the lead disappearance coefficient is about 30 ppm of lead of 30cnri / caF2 crystal. The sensing limit level of the present invention is light

第28頁 200305715 五、發明說明(24) 學氟化物晶體中鉛ppb。在I57nm下,lppb相當於吸收值為 0· 0 00 3CIT1,其相當於〇· i%/cm透射度,該損耗大小由標準 頻譜儀感測出。我們發現在光學氟化物晶體中錯污染量之 感測限制值藉由提高光束通過光學氟化物晶體試樣之路徑 長度而得到改善。在本發明優先實施例中,對於以2〇〇nm至 21 Onm範圍内測試波長之透射吸收係數測試,其使用至少2 mm光學氟化物晶體路徑長度,優先地大於iCffl,更優先地大 於1Ocm 〇Page 28 200305715 V. Description of the invention (24) Learn lead ppb in fluoride crystals. At I57nm, lppb is equivalent to an absorption value of 0.0000 3CIT1, which is equivalent to 0.1% / cm transmittance, and the loss is sensed by a standard spectrum analyzer. We have found that the sensing limit of the amount of miscontamination in an optical fluoride crystal is improved by increasing the path length of the beam through the optical fluoride crystal sample. In the preferred embodiment of the present invention, for a transmission absorption coefficient test at a test wavelength in the range of 200 nm to 21 Onm, it uses at least 2 mm optical fluoride crystal path length, preferably greater than iCffl, and more preferably greater than 10 cm.

我們發現在含有Pb超過lppb之CaFz試樣中,Pb濃度能 夠依據200-210 nm吸收數據決定出。我們藉由圖η中數據 確認該結果,其中顯示Cat—組試樣在2〇5nmTPb吸收與pb 含量(化學分析數據)之曲線。由該線性相關之斜率我們得 到ε (205) = 2. SnOkn^/ppb。應該注意到為了評估1至 lOppb範圍内Pb含量,沿著光學路徑通過之試樣長度優先地 並不小於1 0 0mm。 該新穎的測試方法實施為篩選氟化物晶體關於童在 1 57nm及/或1 93Π1Π使用波長下透射品質(藉由比較量^We found that in CaFz samples containing more than 1 ppb of Pb, the Pb concentration can be determined based on 200-210 nm absorption data. We confirmed this result with the data in Figure η, which shows the curve of Cat-group samples' TPb absorption and pb content (chemical analysis data) at 205 nm. From the slope of this linear correlation we get ε (205) = 2. SnOkn ^ / ppb. It should be noted that in order to evaluate the Pb content in the range of 1 to 10 ppb, the length of the sample passing along the optical path is preferably not less than 100 mm. This novel test method is implemented to screen fluoride crystals for transmission quality at 1 57nm and / or 1 93Π1Π using wavelengths (by comparing quantities ^

值,或由該量測透射值與參考值比較計算出吸收係數)。談 篩選在200nm至21〇ηιη波長範圍内進行以及最終吸收/ 有益地與1. 7 X1 0 V c m比較;假如量測值小於該數值則、 體157龍下透射度大於99%。依據本發明使用測試方曰 為製造低於2〇0nm透射光學元件以及光學氟化物晶 =控制。尸本發明該測試方法更進一步實施為以經濟容師 施方式疋量光學氟化物晶體材料中整個晶體存在鉛雜質Value, or calculate the absorption coefficient by comparing the measured transmission value with a reference value). The screening is performed in the wavelength range of 200 nm to 2100 nm and the final absorption / beneficial comparison with 1. 7 X 1 0 V cm; if the measured value is less than this value, the transmission under the body 157 is greater than 99%. The test method used in accordance with the present invention is to manufacture transmission optical elements below 200 nm and optical fluoride crystals = control. This test method of the present invention is further implemented as an economical method to measure the presence of lead impurities in the entire crystal of the optical fluoride crystal material.

200305715 五、發明說明(25) 含量。能夠使用本發明來量測光學氟化物晶體中低至數 ppb之錯濃度。該定量藉由量測在2〇〇nm至210nm範圍内波 長下晶體之透射度,更優先地中央波長位於2〇 5nm( 205 ± 1 nm,更優先地205±0.5nm)。量測高於2〇〇nm透射度有可能 藉由使用適當的參考表測定出錯含量。本發明測試方法特 別適合實施於由鹼金屬氟化物晶體,鹼土金屬氟化物晶體, 以及其氟化物晶體混合物選取出之光學氟化物晶體。該測 試方法優先地實施於 NaF,KF,LiF,CaF2, BaF2, MgF2, MgF2, 及Sr以及其混合物之晶體。舉例說明其混合組合物分 子式為)x (Mg )1-XF2,其中化及%獨立地由Ba,Ca,或Sr 選取出以及其中X為O^x^l,組合物可具有分子式為 。8卜}^35^1^^2,其中又及7將使得〇$又$1以及〇$7^1,以 及組合物亦可具有分子式MRF3,其中Μ能夠由Li,Na,K選取 出,以及R能夠由Ca,Sr,Ba,或Mg選取出。 本發明已針對附圖加以說明,其中圖14顯示BaF2受鉛 污染之透射頻譜(在120 nm至220 nm範圍内);以及圖15顯示 出在20 5nm下通過含有不同數量Pn(ppm單位)CaI?2晶體之吸 收(cm1 )變化。 熟知此技術者了解本發明能夠作各種變化及改變而並 不會脫離本發明之精神及範圍。本發明將含蓋這些變化及 改變,其均屬於下列申請專利範圍及其同等物範圍内。200305715 V. Description of the invention (25) Content. The present invention can be used to measure error concentrations as low as a few ppb in optical fluoride crystals. This quantification is performed by measuring the transmittance of the crystal at a wavelength in the range of 200 nm to 210 nm, with the central wavelength being more preferably at 205 nm (205 ± 1 nm, more preferably 205 ± 0.5 nm). It is possible to measure transmittances above 200 nm by using the appropriate reference tables to determine the error content. The test method of the present invention is particularly suitable for optical fluoride crystals selected from alkali metal fluoride crystals, alkaline earth metal fluoride crystals, and a mixture of fluoride crystals thereof. This test method is preferentially implemented on the crystals of NaF, KF, LiF, CaF2, BaF2, MgF2, MgF2, and Sr and mixtures thereof. For example, the molecular formula of the mixed composition is) x (Mg) 1-XF2, wherein the chemical formula and% are independently selected by Ba, Ca, or Sr and wherein X is O ^ x ^ l, and the composition may have a molecular formula of. 8 卜} ^ 35 ^ 1 ^^ 2, where 7 and 7 will make 〇 $ and $ 1 and 〇 $ 7 ^ 1, and the composition can also have the molecular formula MRF3, where M can be selected from Li, Na, K, and R Can be selected from Ca, Sr, Ba, or Mg. The present invention has been described with reference to the accompanying drawings, wherein FIG. 14 shows the transmission spectrum of BaF2 contaminated by lead (in the range of 120 nm to 220 nm); and FIG. 15 shows the passivation of CaI containing different amounts of Pn (ppm units) at 20 5 nm. The absorption (cm1) of? 2 crystal changes. Those skilled in the art will understand that the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. The present invention covers these changes and modifications, all of which fall within the scope of the following patent applications and their equivalents.

第30頁 200305715 圖式簡單說明 附圖簡單說明: 第一圖A - B顯示出本發明實施例。 第二圖至第十二圖顯示出本發明實施例。 第十三圖A-C顯示出本發明實施例。 第十四圖顯示出本發明光學氟化物晶體透射頻譜(透 射/10mm與120至220波長)。 第十五圖為本發明光學氟化物晶體在2〇 5nm下Pb吸收 (cm1)與Pb濃度(ppb)曲線圖。 第十六圖為本發明光學氟化物晶體在2〇5nm下吸收 (cm 1 )與Pb濃度(ppb)曲線圖。 第十七圖為本發明在Pb之A_吸收頻帶(200nm-210nm) 頻譜範圍中光學氟化物晶體之吸收頻譜。 第十八圖為光學氟化物晶體之頻譜儀吸收頻譜。 附圖數字符號說明: 高溫上部熔融區域8;熱調節壁板14;拋光表面17; 試樣固定器19;光學晶體20;晶體路徑長度21 ;頻譜儀 22,視® 23,25;光源24;槽室27;透射感測器28;波長選 擇器34;光石版印刷元件42;高鉛污染量局部晶體區域 氣^鈣晶體固體顆粒52;壓碎器56,58;晶種60;成長 受“4;氣化㈣融物66;氟㈣粉 ΛΊ 石墨掛堝9〇;頂部儲存器掛竭100 ,、、、口日日兩爐1 1 〇 ;高污染局部晶體區域丨32。Page 30 200305715 Brief description of the drawings Brief description of the drawings: The first figures A-B show embodiments of the present invention. The second to twelfth figures show embodiments of the present invention. The thirteenth figure A-C shows an embodiment of the present invention. The fourteenth figure shows the transmission spectrum (transmission / 10 mm and 120 to 220 wavelengths) of the optical fluoride crystal of the present invention. The fifteenth figure is a graph of Pb absorption (cm1) and Pb concentration (ppb) of the optical fluoride crystal of the present invention at 250 nm. The sixteenth figure is a graph of the absorption (cm 1) and Pb concentration (ppb) of the optical fluoride crystal of the present invention at 205 nm. The seventeenth figure is the absorption spectrum of the optical fluoride crystal in the A-absorption band (200nm-210nm) of Pb in the present invention. Figure 18 shows the absorption spectrum of a spectrometer for an optical fluoride crystal. Description of figures and symbols: high temperature upper melting region 8; thermally regulated wall plate 14; polished surface 17; sample holder 19; optical crystal 20; crystal path length 21; spectrum analyzer 22, Vision® 23, 25; light source 24; Cell chamber 27; transmission sensor 28; wavelength selector 34; light lithographic printing element 42; local crystal area with high lead pollution; calcium crystal solid particles 52; crusher 56, 58; seed 60; growth affected by " 4; gasification radon 66; fluoride powder ΛΊ graphite hanging pot 90; the top storage rack is exhausted 100, 1, 2, and 10 furnaces; daily high-contamination local crystal area 32.

Claims (1)

200305715 六、申請專利範圍 1 · 一種感測低於20 0nm透射性光學氟化物晶體中低錯雜質 含量之方法,該方法包含: 提供低於20 Onm波長透射性光學氟化物晶體,其具有晶體 光線透射路徑長度,該低於20Onm波長透射性光學氟化物晶 體之光線透射路徑長度—2 mm, 提供光線透射頻譜儀,其具有光源以產生在2〇〇至21 〇nm 範圍内之透射測試波長以及透射感測器以量測測試波長之 透射度, 透射20 0至21 Onm範圍内之透射測試波長經由低於2〇〇nm 波長透射性光學氟化物的光線透射路徑長度以及量測經由 該路徑長度之2〇〇至21 Onm測試波長的透射度以提供低於 900ppb鉛ppb雜質含量之量測。 2 ·依據申請專利範圍第1項之方法,其中光源為燈泡。 3·依據申請專利範圍第1項之方法,其中透射2〇〇至21〇11]11範 圍内透射測試波長包含透射203至207nm透射測試波長通過 該低於20Onm波長透射性光學氟化物晶體之光線透射路徑 長度以及量測通過該路徑長度2〇3至207nm測試波長之透射 度以提供小於500ppb錯雜質含量之量測。 4·依據申請專利範圍第1項之方法,其中透射2〇〇至21〇 ηιη範 圍内透射測試波長包含透射205nm透射測試波長通過該低 於2 0Onm波長透射性光學氟化物晶體之光線透射路徑長度 以及量測通過該路徑長度2 〇 5 nm測試波長之透射度以提供 小於3 0Oppb鉛雜質含量之量測。 5·依據申請專利範圍第1項之方法,其中提供晶體光線透射200305715 VI. Application Patent Scope 1 · A method for sensing the content of low-error impurities in transmissive optical fluoride crystals below 200 nm, the method comprising: providing a transmissive optical fluoride crystal below 20 Onm wavelength, which has crystal light Transmission path length, the transmission path length of the light-transmitting optical fluoride crystal below 2Onm wavelength—2 mm, providing a light transmission spectrometer with a light source to generate a transmission test wavelength in the range of 2000 to 2100 nm, and The transmission sensor measures the transmittance of the test wavelength, and transmits the transmission test wavelength in the range of 200 to 21 Onm through the light transmission path length of the transmissive optical fluoride at a wavelength below 200 nm and measures the path length The transmittance at a test wavelength of 2000 to 21 Onm is provided to provide a measurement of lead ppb impurity content below 900 ppb. 2. The method according to item 1 of the scope of patent application, wherein the light source is a light bulb. 3. The method according to item 1 of the scope of patent application, in which the transmission test wavelength in the range of 2000 to 2101 is transmitted. The transmission test wavelength includes transmission of 203 to 207 nm. The transmission test wavelength passes through the optical fluoride crystal with a wavelength less than 20 nm. The length of the transmission path and the transmission through the test wavelength of 203 to 207 nm are measured to provide a measurement of less than 500 ppb of impurity content. 4. The method according to item 1 of the scope of patent application, wherein the transmission test wavelength in the range of 200 to 2100 nm includes the transmission of 205 nm. The transmission test wavelength passes the length of the light transmission path of the optical fluoride crystal that is less than 200 nm in wavelength. And measure the transmittance through the test wavelength of 205 nm of the path length to provide a measurement of less than 30Oppb lead impurity content. 5. The method according to item 1 of the scope of patent application, in which crystal light transmission is provided 第32頁 200305715 六、申請專利範圍 路徑長度g2mm之低於20Onm波長透射性光學氟化物晶體包 含提供晶體光線透射路徑長度g 1 cm以及將該透射測試波 長透射通過該gl cm氟化物晶體之光線透射路徑長度以提 供小於1 0 Oppb錯雜質含量之量測。 6·依據申請專利範圍第1項之方法,其中提供晶體光線透射 路徑長度-2ram之低於200nm波長透射性光學氟化物晶體包 含提供晶體光線透射路徑長度$ 1 〇 cm以及將該透射測試波 長透射通過該Ocm氟化物晶體之光線透射路徑長度以提 供小於50ppb鉛雜質含量之量測。 7 · —種量測光學氟化物晶體中低於丨ppm鉛雜質含量之方法 ,該光學氟化物晶體作為透射低於2〇〇n]n波長之光線,該方 法包含: 提供低於20〇nm波長透射性光學氟化物晶體,其具有晶體 光線透射路徑長度,該低於2〇〇ηιη波長透射性光學氟化物晶 體之光線透射路徑長度-lcm, f供200-21 〇nm透射頻譜儀,其具有光源以產生2〇〇至21〇 nm範圍内之測試波長以及感測器以計算在該測試波長下之 吸收係數, 透射20 0至21〇nffl範圍内之測試波長經由低於2〇〇njn波長 ,射性光學氣化物-1 cm之光線透射路徑長度以及在該測 試波長下量測經由該-丨cm路徑長度之吸收係數以提供鉛 污染含量之吸收係數&lt;〇 〇〇17cnrl。 8二依據申請專利範圍第7項之方法其中透射2〇〇至2i〇njn 範圍内之測試波長包含透射203至207nm範圍内之測試波長Page 32 200305715 VI. Patent Application Range Path length g2mm Transmissive optical fluoride crystals with wavelengths below 20 Onm include providing crystal light transmission path length g 1 cm and transmitting the transmission test wavelength through the gl cm fluoride crystal. Path length is measured to provide less than 10 Oppb impurity content. 6. The method according to item 1 of the scope of patent application, wherein providing a crystal optical transmission path length of -2 ram with a wavelength of less than 200 nm and a transmissive optical fluoride crystal includes providing a crystal transmission path length of $ 100 cm and transmitting the transmission test wavelength The length of the light transmission path through the Ocm fluoride crystal is measured to provide a lead impurity content of less than 50 ppb. 7 · —A method for measuring the content of lead impurities below 丨 ppm in optical fluoride crystals, the optical fluoride crystals are used to transmit light with a wavelength less than 2000 n] n, the method includes: providing less than 200 nm A wavelength-transmitting optical fluoride crystal having a crystal light transmission path length. The light-transmitting path length of the wavelength-transmitting optical fluoride crystal below 200 nm is −1 cm, and f is for a transmission spectrum of 200 to 20 nm. With a light source to generate a test wavelength in the range of 2000 to 2100 nm and a sensor to calculate the absorption coefficient at the test wavelength, the transmission of the test wavelength in the range of 200 to 2100 nffl is less than 200 njn Wavelength, the transmission path length of the ray optical vapor of -1 cm, and the absorption coefficient measured through the path length at the test wavelength to provide the absorption coefficient &lt; 〇〇〇〇17cnrl of the lead pollution content. 82. The method according to item 7 of the patent application range, wherein the transmission wavelength in the range of 200 to 2njn includes the transmission wavelength in the range of 203 to 207 nm. 第33頁 200305715 六、申請專利範圍 經由低於20 Onm波長透射性光學氟化物—iCH1之光線透射路 徑長度以及在203至207nm測試波長下量測經由該$ lcin路 徑長度之吸收係數以提供鉛污染含量之吸收係數&lt;0· 0016 cm 1 〇 9·依據申請專利範圍第7項之方法,其中透射2〇〇至21 〇nm範 圍内之測試波長包含透射205nm之測試波長經由低於2〇〇nm 波長透射性光學氟化物cm之光線透射路徑長度以及在 20 5nm測試波長下量測經由該—1 cjq路徑長度之吸收係數以 提供鉛污染含量之吸收係數&lt;〇.〇〇1 5cm1。 10·依據申請專利範圍第7項之方法,其中提供晶體光線透 射路徑長度$ lcm之低於200nm波長透射性光學氟化物晶體 包含提供晶體光線透射路徑長度gl〇cm以提供小於5〇ppb 鉛雜質含量之量測。 U· —種製造低於200 nm波長光學元件之方法,該方法包含: 提供低於200nm波長透射性光學氟化物晶體,其具有晶體 光線透射路徑長度,該低於2〇〇nm波長透射性光學氟化物晶 體之光線透射路徑長度-2mm, 提供200-210 nm透射頻譜儀,其具有光源以產生2〇〇至21〇 nm範圍内之測試波長以及透射感測器以量測該測試波長之 透射度, 透射20G至210nm範圍内之測試波長經由低於2〇〇ηπι波長 透射性光學氟化物之光線透射路徑長度以及量測該2〇〇至 2 1 0nm測試波長通過該路徑長度之透射度以提供錯污染含 量小於1 OOppb之量測,形成光學氟化物晶體為低於2〇〇njn波 第34頁 200305715 六、申請專利範圍 長之光學元件,該光學元件吸收係數&lt;0. 001 Tcnr1。 1 2·依據申請專利範圍第11項之方法,其中提供晶體光線透 射路徑長度g2mm之低於20Onm波長透射性光學氟化物晶體 包含提供具有晶體光線透射路徑長度g lcm之低於20Onm波 長透射性光學氟化物晶體以及透射203至207nm範圍内之測 試波長經由低於200nm波長透射性光學氟化物-1cm之光線 透射路徑長度以及形成光學氟化物晶體為低於200nm波長 之光學元件,該光學元件吸收係數&lt;〇. 0016cm1。 1 3·依據申請專利範圍第11項之方法,其中提供晶體光線透 射路徑長度- 2mm之低於20Onm波長透射性光學氟化物晶體 包含提供具有晶體光線透射路徑長度glcin之低於200 nm波 長透射性光學氟化物晶體以及透射205nm範圍内之測試波 長經由低於20 0nm波長透射性光學氟化物$ 1 〇cm之光線透 射路徑長度以及在205nm下量測通過—10 cm路徑長度之吸 收係數以提供提供錯污染含量小於20ppb之量測,以及形成 光學氟化物晶體為低於20Onm波長之光學元件,該光學元件 在205nm下吸收係數〈0.0017cm1。 14·依據申請專利範圍第11項之方法,其中提供低於2QQnffl 波長透射性光學氟化物晶體包含提供氟化鈣晶體。 15.依據申請專利範圍第11項之方法,其中提供低於2〇〇11111 波長透射性光學氟化物晶體包含提供氟化鋇晶體。 16· —種製造低於2〇〇nm波長透射光學氟化物晶體之方法, 該方法包含: 提供預先熔融氟化鈣晶體固體;Page 33 200305715 VI. Application for patents Passing the optical transmission path length of iCH1 below 20 Onm wavelength and the transmission path length of iCH1 and measuring the absorption coefficient through the $ lcin path length at the test wavelength of 203 to 207 nm to provide lead pollution The absorption coefficient of the content &lt; 0.016 cm 1 〇9. The method according to item 7 of the patent application range, wherein the test wavelength in the range of 200 to 2100 nm includes the test wavelength of 205 nm in transmission through less than 200. The light transmission path length of the nm wavelength transmissive optical fluoride cm and the absorption coefficient measured through the -1 cjq path length at a test wavelength of 20 5nm to provide an absorption coefficient &lt; 0.001 5cm1 of the lead pollution content. 10. The method according to item 7 of the scope of patent application, wherein providing a crystal light transmission path length of $ lcm below 200 nm is a wavelength-transmissive optical fluoride crystal including providing a crystal light transmission path length gl0 cm to provide less than 50 ppb lead impurities Content measurement. U · —A method for manufacturing an optical element with a wavelength below 200 nm, the method comprising: providing a transmissive optical fluoride crystal with a wavelength below 200 nm, which has a crystal light transmission path length, and the transmissive optical with a wavelength below 200 nm The transmission path length of the fluoride crystal is -2mm, and a 200-210 nm transmission spectrum analyzer is provided, which has a light source to generate a test wavelength in the range of 200 to 21 nm and a transmission sensor to measure the transmission at the test wavelength. The transmission wavelength of the test wavelength in the range of 20G to 210nm is transmitted through the optical transmission path length of the optical fluoride below 200nm, and the transmittance of the test wavelength of 2000 to 210nm through the path length is measured. Measure that the content of miscontamination is less than 100 ppb, and the optical fluoride crystal is formed to be less than 2000njn wave. Page 34 200305715 6. The optical element with a long patent application scope, the optical element absorption coefficient &lt; 0.001 Tcnr1. 1 2. The method according to item 11 of the scope of patent application, wherein the crystal optical transmission path length g2mm is less than 20 Onm wavelength transmissive optical fluoride crystal includes providing a crystal optical transmission path length g lcm of less than 20 Onm wavelength transmission optical Fluoride crystals and transmission wavelengths in the range of 203 to 207 nm. Transmit optical path lengths of -1 cm through wavelengths below 200 nm. Transmit optical path lengths of -1 cm and form optical elements whose optical fluoride crystals have wavelengths below 200 nm. The absorption coefficient of the optical elements &lt; 0.016cm1. 1 3. The method according to item 11 of the scope of patent application, wherein the crystal light transmission path length is provided-a wavelength of less than 20 Onm wavelength transmissive optical fluoride crystal of 2 mm includes providing a wavelength transmission of crystal light transmission path length glcin below 200 nm wavelength Optical fluoride crystals and transmission wavelengths in the range of 205 nm are transmitted through a wavelength of less than 200 nm, the transmission path length of the optical fluoride $ 100 cm, and the absorption coefficient measured at 205 nm through a path length of -10 cm is provided. Measured with a contamination content of less than 20 ppb, and formed an optical element with an optical fluoride crystal having a wavelength of less than 20 Onm. The optical element has an absorption coefficient <0.0017 cm1 at 205 nm. 14. The method according to item 11 of the scope of patent application, wherein providing a wavelength-transmissive optical fluoride crystal below 2 QQnffl includes providing a calcium fluoride crystal. 15. The method according to item 11 of the patent application scope, wherein providing a wavelength-transmissive optical fluoride crystal below 200011111 comprises providing a barium fluoride crystal. 16. · A method of manufacturing a transmission optical fluoride crystal having a wavelength below 200 nm, the method comprising: providing a pre-fused solid of calcium fluoride crystal; 第35頁 200305715 六、申請專利範園 熔融預先熔融氟化鈣晶體固體以形成氟化鈣熔融物以及 由熔融物成長出氟化鈣晶體以提供光學氟化鈣晶體以透射 低於20Onm波長; 提供光線透射頻譜儀,其具有光源以產生在2〇〇至21〇11範 圍内透射測試波長以及透射感測器以量測該測試波長之透 射度以及利用20G至21 Onm範圍内透射測試波長量測在氟化 两路控長度中錯污染量,該成長出光學氟化鈣晶體作為透 射低於200nm波長,其在2〇〇至210 nm下吸收係數&lt;〇.〇〇17 cm-1 ° 17·依據申請專利範圍第16項之方法,其中利用光線透射 20 0至21 Onm頻譜儀量測氟化鈣路徑長度中鉛污染量包含 量測預先炼融氟化角晶體固體中鉛污染量。 1 8·依據申請專利範圍第丨6項之方法其中利用光線透射 20 0至21 Onm頻譜儀量測氟化鈣中鉛污染量包含量測由在氟 化弼熔融物成長出氟化躬晶體中錯污染量。 19·依據申請專利範圍第16項之方法其中透射低於2〇〇njn 波長之成長出光學氟化鈣晶體在200至21 Onm下吸收係數&lt; 0· 001 Tcnr1。 2〇·依據申請專利範圍第16項之方法,其中透射低於20 Onm 波長之成長出光學氟化鈣晶體在20 3至20 7nm下吸收係數&lt; 0.0017cm-1。 21·依據申請專利範圍第16項之方法其中透射低於2〇〇ηιη 波長之成長出光學氟化鈣晶體在20 5nm下吸收係數&lt;0· 0017 cm'1 〇Page 35 200305715 VI. Applying for a patent Fan Yuan Melt the calcium fluoride crystal solids in advance to form a calcium fluoride melt and grow calcium fluoride crystals from the melt to provide optical calcium fluoride crystals to transmit wavelengths below 20 nm; provide Light transmission spectrum analyzer having a light source to generate a transmission test wavelength in the range of 2000 to 2101 and a transmission sensor to measure the transmittance of the test wavelength and to measure using the transmission test wavelength in the range of 20G to 21 Onm The amount of contamination in the two-way length of fluorination is wrong, and the grown optical calcium fluoride crystal has a transmission wavelength below 200 nm, and its absorption coefficient at 200 to 210 nm &lt; 0.007 cm-1 ° 17 · The method according to item 16 of the patent application, wherein measuring the amount of lead pollution in the path length of calcium fluoride by using a light transmission 200 to 21 Onm spectrum analyzer includes measuring the amount of lead pollution in the solids of pre-melted fluorinated horn crystals. 1 · 8. The method according to item 6 of the scope of patent application, wherein the transmission of light through a 20 to 21 Onm spectrum analyzer is used to measure the amount of lead contamination in calcium fluoride. Wrong amount of pollution. 19. The method according to item 16 of the patent application range, wherein an optical calcium fluoride crystal having a wavelength of less than 2000njn is grown and an absorption coefficient &lt; 0. 001 Tcnr1 at 200 to 21 Onm. 20. The method according to item 16 of the scope of patent application, wherein the growth of the optical calcium fluoride crystal having a wavelength below 20 Onm has an absorption coefficient &lt; 0.0017 cm-1 at 20 3 to 20 7 nm. 21 · The method according to item 16 of the scope of patent application, wherein an optical calcium fluoride crystal having a wavelength of less than 200 nm is grown and the absorption coefficient at 20 5 nm &lt; 0,0171 cm'1. 第36頁 200305715 六、申請專利範圍 22· —種低於20Onm波長透射性光學氟化物晶體,該光學氟 化物晶體由氟化鈣所構成,其低於2 00nm透射度大於99%/cm 以及鉛污染值含量小於50ppb以及在200至21 Onm下鉛污染 吸收係數&lt;0. 0017cm1。 23·依據申請專利範圍第22項之光學氟化物晶體,其中氟化 鈣晶體在203至207nm下鉛污染吸收係數&lt;〇. 0017cm1。 24·依據申請專利範園第22項之光學氟化物晶體,其中氟化 鈣晶體在205nm下鉛污染吸收係數〈0.0016cm1。 25. —種製造低於200 nm波長透射光學氟化物晶體之方法, 該方法包含: 提供預先熔融氟化鋇晶體固體; 熔融預先熔融氟化鋇晶體固體以形成氟化鋇熔融物以及 由熔融物成長出氟化鋇晶體以提供光學氟化鋇晶體以透射 低於20Onm波長; 提供光線透射頻譜儀,其具有光源以產生在2〇〇至21 〇nm 耗圍内透射測試波長以及透射感測器以量測該測試波長之 透射度以及利用2 0 0至210nm範圍内透射測試波長量測在氟 化鋇路徑長度中絡污染量,該成長出光學氟化鋇晶體作為 透射低於200nm波長,其在200至210nm下吸收係數〈〇 001? cm'1 ° 2 6·依據申請專利範圍第25項之方法,其中利用光線透射頻 譜儀量測氟化鋇路徑長度中錯污染量包含量測預先溶融氣 化鎖晶體固體中錯污染量。 27·依據申請專利範圍第25項之方法,其中利用光線透射Page 36 200305715 6. Application patent scope 22 · —A kind of transmissive optical fluoride crystal with a wavelength of less than 20 nm. The optical fluoride crystal is composed of calcium fluoride, which has a transmittance below 200 nm greater than 99% / cm and lead. 0017cm1。 Contamination value content is less than 50ppb and lead pollution absorption coefficient &lt; 0. 0017cm1 at 200 to 21 Onm. 23. The optical fluoride crystal according to item 22 of the scope of the patent application, wherein the calcium fluoride crystal has an absorption coefficient of lead pollution at 203 to 207 nm &lt; 0.017 cm1. 24. The optical fluoride crystal according to Item 22 of the patent application park, wherein the calcium fluoride crystal has an absorption coefficient of lead pollution at 205 nm of <0.0016 cm1. 25. A method of manufacturing a transmission optical fluoride crystal with a wavelength below 200 nm, the method comprising: providing a pre-melted barium fluoride crystal solid; melting the pre-melted barium fluoride crystal solid to form a barium fluoride melt; and Grow barium fluoride crystals to provide optical barium fluoride crystals to transmit wavelengths below 20 nm; provide a light transmission spectrometer with a light source to generate transmission test wavelengths and transmission sensors within a range of 200 to 2100 nm By measuring the transmittance of the test wavelength and measuring the amount of median contamination in the path length of the barium fluoride using the transmission test wavelength in the range of 200 to 210 nm, the grown optical barium fluoride crystal has a transmission below 200 nm, Absorption coefficient at 200 to 210 nm <0.001? Cm'1 ° 2 6 · The method according to item 25 of the scope of patent application, wherein the measurement of the amount of miscontamination in the path length of barium fluoride using a light transmission spectrum analyzer includes measurement of pre-melting Amount of miscontamination in gasification lock crystal solids. 27. Method according to item 25 of the scope of patent application, in which light transmission is used 第37頁 200305715 六、申請專利範圍 頻譜儀量測氟化鋇中鉛污染量包含量測由在氟化鋇熔融物 成長出氣化鎖晶體中錯污染量。 28·依據申請專利範圍第25項之方法,其中透射低於2〇 〇nm 波長之成長出光學氟化鋇晶體在2〇〇至21 〇nm下吸收係數&lt; 0· 00 1 7CJIT1。 29·依據申請專利範圍第25項之方法,其中透射低於20 Onm 波長之成長出光學氟化鋇晶體在2〇 3至207nm下吸收係數&lt; 0· 001 7cm-1 〇 30·依據申請專利範圍第25項之方法,其中透射低於200nm 波長之成長出光學氟化鋇晶體在2〇 5nm下吸收係數&lt;0· 0017 cm1 ° 31· —種低於20Onm波長透射性光學氟化物晶體,該光學氟 化物晶體由氟化鋇所構成,其低於2〇〇ηιη透射度大於99%/cm 以及錯污染值含量小於50ppb以及在200至21 Onm下鉛污染 吸收係數&lt;0. 0017CHT1。 32·依據申請專利範圍第31項之光學氟化物晶體,其中氟化 鋇晶體在203至207nm下鉛污染吸收係數&lt;〇· 0017cm1。 33·依據申請專利範園第31項之光學氟化物晶體,其中氟化 鋇晶體在205nm下鉛污染吸收係數&lt;〇e〇〇16cm-i。Page 37 200305715 6. Scope of patent application The spectrum analyzer for measuring the amount of lead pollution in barium fluoride includes measuring the amount of wrong pollution in the gasification lock crystals grown from the barium fluoride melt. 28. The method according to item 25 of the scope of patent application, wherein the growth of the optical barium fluoride crystal having a wavelength of less than 2000 nm has an absorption coefficient &lt; 0.0017 7CJIT1 at 200 to 2100 nm. 29. The method according to item 25 of the scope of patent application, in which the growth of optical barium fluoride crystals with transmission below 20 Onm wavelengths has an absorption coefficient at 203 to 207 nm &lt; 0 · 001 7cm-1 〇30 · according to the patent application The method of the 25th item, in which the growth of optical barium fluoride crystals with transmission wavelengths below 200 nm has an absorption coefficient at 0.05 nm &lt; 0 · 0017 cm1 ° 31 ·-a transmission optical fluoride crystal with a wavelength below 20 nm, The optical fluoride crystal is composed of barium fluoride, which has a transmittance of less than 200 nm, a transmittance of more than 99% / cm, a content of miscontamination value of less than 50 ppb, and an absorption coefficient of lead pollution at 200 to 21 Onm &lt; 0.017CHT1. 32. The optical fluoride crystal according to item 31 of the scope of the patent application, wherein the barium fluoride crystal has an absorption coefficient of lead pollution at 203 to 207 nm &lt; 0,017 cm1. 33. The optical fluoride crystal according to item 31 of the patent application park, wherein the barium fluoride crystal has an absorption coefficient of lead pollution at 205 nm &lt; 〇e〇16cm-i. 第38頁Page 38
TW091136639A 2001-12-13 2002-12-13 UV optical fluoride crystal elements for λ < 200nm laser lithography and methods therefor TW200305715A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0116097A FR2833704B1 (en) 2001-12-13 2001-12-13 METHOD FOR TESTING A FLUORIDE CRYSTAL IN REFERENCE TO ITS PURITY WITH RESPECT TO THE LEAD

Publications (1)

Publication Number Publication Date
TW200305715A true TW200305715A (en) 2003-11-01

Family

ID=8870421

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091136639A TW200305715A (en) 2001-12-13 2002-12-13 UV optical fluoride crystal elements for λ < 200nm laser lithography and methods therefor

Country Status (2)

Country Link
FR (1) FR2833704B1 (en)
TW (1) TW200305715A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337638B2 (en) * 1997-03-31 2002-10-21 キヤノン株式会社 Method for producing fluoride crystal and method for producing optical component
JP3631063B2 (en) * 1998-10-21 2005-03-23 キヤノン株式会社 Method for purifying fluoride and method for producing fluoride crystal

Also Published As

Publication number Publication date
FR2833704A1 (en) 2003-06-20
FR2833704B1 (en) 2004-03-12

Similar Documents

Publication Publication Date Title
US6699408B2 (en) Method of making a fluoride crystalline optical lithography lens element blank
KR19980080264A (en) Image forming optical system for ultraviolet laser
US6320700B2 (en) Light-transmitting optical member, manufacturing method thereof, evaluation method therefor, and optical lithography apparatus using the optical member
Letz et al. Temperature-dependent Urbach tail measurements of lutetium aluminum garnet single crystals
US6603547B2 (en) Method for determination of the radiation stability of crystals
US6894284B2 (en) UV optical fluoride crystal elements for λ &lt; 200nm laser lithography and methods therefor
US5978070A (en) Projection exposure apparatus
JPH1059799A (en) Photolithographic device
JPWO2005005694A1 (en) Artificial quartz member, exposure apparatus, and method of manufacturing exposure apparatus
EP1050754B1 (en) Method of measuring the transmittance of optical members for ultraviolet use
Molchanov et al. Study of the oxygen incorporation during growth of large CaF2-crystals
TW200305715A (en) UV optical fluoride crystal elements for λ &lt; 200nm laser lithography and methods therefor
KR20040044918A (en) Photolithographic UV transmitting mixed fluoride crystal
US6838681B2 (en) Detection and making of ultralow lead contaminated UV optical fluoride crystals for &lt;200nm lithography
JP4859436B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography
US20040031436A1 (en) Scatter-free UV optical fluoride crystal elements for &lt;200NM laser lithography and methods
JPH01197343A (en) Element for producing optical system with laser
JP3572425B2 (en) Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance
JP2002047097A (en) Optical material, and measurement method for internal transmittance and absorption coefficient thereof
Sakuragi et al. Evaluation of high-quality CaF2 single crystals for ultraviolet laser applications
DE20221705U1 (en) Detection of low lead impurity level in transmitting optical fluoride crystal for manufacturing integrated circuit chips, by measuring transmission test wavelength through optical fluoride crystal light transmission path length
JP2004307289A (en) Method for manufacturing crystal