TW200302395A - Photomask and method for manufacturing the same - Google Patents

Photomask and method for manufacturing the same Download PDF

Info

Publication number
TW200302395A
TW200302395A TW92101492A TW92101492A TW200302395A TW 200302395 A TW200302395 A TW 200302395A TW 92101492 A TW92101492 A TW 92101492A TW 92101492 A TW92101492 A TW 92101492A TW 200302395 A TW200302395 A TW 200302395A
Authority
TW
Taiwan
Prior art keywords
substrate
heat treatment
deposition
photomask
patent application
Prior art date
Application number
TW92101492A
Other languages
Chinese (zh)
Other versions
TW557409B (en
Inventor
Laurent Dieu
Franklin D Kalk
Original Assignee
Dupont Photomasks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dupont Photomasks Inc filed Critical Dupont Photomasks Inc
Publication of TW200302395A publication Critical patent/TW200302395A/en
Application granted granted Critical
Publication of TW557409B publication Critical patent/TW557409B/en

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A photomask and method for manufacturing the same are disclosed. A first material is deposited on at least a portion of a substrate to form a first material layer. Before completion of the deposition of the first material, a thermal treatment is applied to the substrate at a temperature greater than approximately 300 degrees Celsius.

Description

200302395 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) L W j^fr Λ j 發明領域 本發明一般係有關光微影領域,且更特別在於一種光 5 罩以及其製造方法。 L先前技術;3 發明背景 隨著半導體元件製造商不斷生產愈來愈小之元件,對 於用以製造這些元件之光罩的需求亦持續緊密。光罩(亦 10熟知為標線reticle或遮罩mask)典型係由基質(例如高純度 石英或是熔矽)所構成,其具有一吸收劑層(例如鉻或鉬係 化物)形成於該基質之上。吸收劑層包括一顯出電路影像 之圖案,其能夠在一光微影系統中轉印到半導體晶圓之上 。隨著半導體元件輪廓之尺寸減少,位於光罩上之對應電 15路影像亦變得越小且越複雜。結果,光罩之品質變成建立 一耐用且可靠之半導體製造程序的最重要因素之一。 今曰半^r體製造商不斷哥求技術,以便延伸使用光 學微影製造具有小於130奈米極限尺寸之高密度積體電路 (1C)。然而,隨著輪廓尺寸減少,以特定曝光波長在晶圓 20上顯現一最小輪廓尺寸的解析度係由於光線繞射而有所限 制。因此,欲在晶圓上顯現更細微的輪廓係需要較短之曝 光波長(例如小於400奈米)。下一代之光學微影的波長目標 包括248奈米(KrF氟化氪雷射波長)、193奈米(ArF氟化氬 雷射波長),以及157奈米(f2氟雷射波長)。 6 200302395 玖、發明說明 波長小於400奈米時,光罩基材與所產生光罩之平坦 度係為一重點。在半導體製造程序中,任何的平坦度變化 可能導致校準誤差。由於可能使用大量的光罩(例如先進 設計最多高達50個)製造一單獨的積體電路,故應將單一 5光罩之校準誤差保持在最低程度。儘管工具準確度能夠有 助於板準誤差,已經證明吸收劑層之應力能夠使基質捲曲 ,並因而產生校準誤差。 一種用以降低吸收劑層應力之技術包括:於基質上形 成吸收劑層以後使光罩基材退火。然而,此技術具有一些 10缺點。首先,退火步驟係於基質上形成吸收劑層以後方加 以貫施,故對於光罩製造程序增加了 一個步驟與額外的時 間。再者’退火程序期間所使用之熱量改變了吸收劑層相 關的光學性質,如果需要一特定的傳遞且/或相位偏移時 ’則並不希望產生如此情況。 15 【内 】 發明概要 依照本發明之技術,已經大體上降低或是消除製造光 罩有關的該等缺點與問題。在一特定實施例中,一種製造 一光罩之方法包括在材料沈積(其用以在一基質上形成一 2〇材料層)完成之前,實施溫度高於約攝氏300度的熱處理。 依照本發明之一實施例,一種製造一光罩之方法包括 將一第一材料沈積於至少一部份的基質之上,以形成一第 一材料層。於基質上完成該第一材料層之沈積以前,對基 貝貫施溫度两於約攝氏3〇〇度的熱處理。 200302395 玖、發明說明 依照本發明之另一實施例,一種製造一光罩之方法包 括使用離子束沈積,將至少一材料沈積於至少一部份的基 質之上,以便形成至少一材料層。在將該材料沈積於基質 期間’對基質貫施溫度南於約攝氏3 0 0度之熱處理,甘能 5 夠降低該材料層中之應力。 依照本發明之另一實施例,一光罩總成包括一護膜總 成,其部份係藉由將一保護薄膜附接到一護膜框架所形成 、以及一與該保護薄膜相對結合到護膜總成之光罩。光罩 包括一形成於一基質上之圖案層,其藉著將至少一材料沈 10積於至少一部份的基質之上,以便形成該圖案層。在將材 料沈積於基質之上期間,實施溫度高於約攝氏300度的熱 處理,其能夠降低該圖案層中之應力。 本發明之某些實施例的重要技術優點包括一種沈積技 術,其能夠避免光罩基質產生捲曲。在沈積完成之前,對 15 於一基質實施熱處理。該熱處理降低了存在於材料層中之 固有應力,其能夠降低光罩中之整體應力,並避免該光罩 產生捲曲。 本發明之某些實施例的其他技術優點包括一種沈積技 術’其降低了一半導體製造程序中產生校準誤差之可能性 20 。在一光罩基材之製造程序期間,對於一基質實施熱處理 ’以便降低該材料中之固有應力。由於該材料層中具有較 少的應力,故降低了由於材料層所導致之基質彎曲量。因 此’由於維持該光罩之平坦度,故亦降低了在一晶圓之表 面上形成一 1C時產生校準誤差之可能性。 8 200302395 玖、發明說明 本發明之某些實施例的另一重要技術優點包括一種沈 積技術’其能夠降低將不需要之顆粒沈積於一基質的表面 上之數量。藉著對於該基質實施熱處理,在沈積工具與基 質的壁部之間形成一溫度梯度。加熱之基質排斥不需要的 5 顆粒,其容許將一層具有低缺陷密度之材料形成於該基質 之上。 在本發明之不同實施例中可能顯示出這些技術優點的 所有、某些部份(或沒有顯示任何技術優點)。對於熟諸此 技藝之人士而言,其立即能夠從以下之圖式、說明與申請 10 專利範圍顯見其他的技術優點。 圖式簡單說明[CHNC1] 由以下之說明並結合所附圖式,能夠獲得本發明之實 施例及其優點更為完整與透徹的了解,其中相同的參考數 字代表相同的特徵,其中: 15 第1圖顯示一光罩總成之橫剖面圖,該光罩總成包括 一個依照本發明之學說,由一光罩基材製造之光罩; 第2A〜2C圖顯示依照本發明之學說,一光罩基材之製 造程序的不同階段之橫剖面圖; 第3圖顯示依照本發明之學說,一用以將材料沈積於 20 一基質上之離子束沈積裝置; 第4圖顯示依照本發明之學說,一種用以藉著傳導方 式使沈積於一基質上之材料退火的範例裝置; 第5圖顯示依照本發明之學說,一種用以藉著對流方 式使沈積於一基質上之材料退火的範例裝置; 9 200302395 玖、發明說明 第6圖顯示依照本發明之學說,一種用以藉著輻射方 式使沈積於一基質上之材料退火的範例裝置。 L實施方式3 較佳實施例之詳細說明 藉著參考第1到第6圖能夠最為了解本發明之較佳實施 例與其優點,其中相同之參考數字係指示相同與對應之部 件0 10 15 弟1圖顯示光罩總成10之一橫剖面圖。在所顯示之實 她例中,光罩總成1 〇包括光罩12,其結合到護膜總成14。 基質16與圖案層18形成光罩12(另外亦熟知為遮罩或標線) ,其能夠具有許多尺寸與形狀,包括(但非限定於)圓形、 矩形或正方形。光罩12亦能夠為任何不同之光罩種類,包 括(但非限定於)-單次主光罩、五英忖標線、六英忖標線 、九英时標m任何其他能夠將—電路圖案影像投影到 一半導體晶圓上之適當尺寸的標線。光罩12進一可為 個二元遮罩、一相位偏移遮罩(PSM)、一光學微距校正 (OPC)光罩’或疋任何其他適合用於一微影系統中之光罩 類型。 /光罩12包括形成於基㈣上之圖案層18,當其在一微 影系統中曝露於電磁能量時’會將—圖案投影到一半導體 晶圓(未明顯顯示)之表面上。對於某些應用而言,基質16 可為一透明材料,諸如 ^ 央 口成石央、熔矽、氟化鎂 料^㈣弓(CaF2),或是任何其他的適當材料,該材 /、、/又約10奈米(nm)與450奈米之間的入射光線至少 10 20 200302395 玖、發明說明 具有百分之七十五(75%)之透明度。再一另擇實施例中, 基質16可為一反射性材料,諸如矽或是任何其他適當的材 料,該材料對於波長約10奈米與450奈米之間的入射光線 反射大於約百分之五十(50%)的光線量。 5 圖案層18可為一金屬材料,諸如鉻、氮化鉻、一金屬 性氧-碳-氮(M-0_C-N),其中該金屬係由鉻、鈷、鐵、鋅 、鉬、鈮、钽、鈦、鎢、鋁、鎂與矽,或是任何其他的適 當材料所組成之群組中選出,其能夠吸收波長為紫外線 (UV)範圍、深紫外線(DUV)範圍、真空紫外線(VUV)範圍 10 以及極限紫外線(EUV)範圍的電磁能量。在一另擇實施例 中,圖案層18可為一部分透明之材料,諸如矽化鉬(MoSi) 化合物,其對於UV、DUV、VUV與EUV波長範圍具有約 百分之一(1%)到百分之三十(30%)的透明度。 框架20與保護薄膜22可形成護膜總成14。儘管框架能 15 夠另擇由不鏽鋼、塑膠或是其他適當材料(當其在微影系 統中曝露於電磁能量時並不會衰減或是除氣)所形成,框 架20典型係由電鍍鋁所形成。保護薄膜22可為一薄膜,其 係由一材料所形成,諸如硝棉、醋酸纖維素、一非晶氟聚 合物,諸如 E.I. du Pont de Nemours and Company所製造之 20 鐵氟龍TEFLON® AF或是Asahi Glass所製造的 CYTOP®, 或是其他適合的薄膜,其對於UV、DUV、EUV且/或VUV 範圍之波長透明。保護薄膜22能夠藉由一習用技術(諸如 旋轉鑄模)加以製備。 保護薄膜22保護光罩12,使其免於污染(諸如灰塵顆 11 200302395 玖、發明說明 粒確保將污染物維持在距光罩12訂定之距離。在一微 影系統中此事係尤其重要,在微影程序期間,光罩總成1〇 係曝露於電磁能量,該電磁能量係藉由微影系統中之-輻 射能量來源所產生。電磁能量可包括不同波長之光線,諸 5如波長約在水銀弧燈之1線與G線之間的光線,或是DUV、 νυν或EUV光、線。於操作方面,保護薄膜22係設計成容許 大量百分比之電磁能量通過該保護薄膜。收集在保護薄膜 22上之污染物將合乎要求地脫離位於加工晶圓表面處之焦 點,且因此晶圓上之曝露影像應該相當清晰。依照本發明 1〇之學說所形成的保護薄膜22能夠滿意地用於所有種類之電 磁能量,且並不限定於如本應用中所說明的光波。 光罩12可由一光罩基材加以製造。在一實施例中,光 罩基材可包括至少一層不透光或部分透明之材料形成於一 基質上。該材料能夠使用物理蒸汽沈積(PVD)、化學蒸汽 15沈積(CVD)、離子束沈積(IBD),或是任何其他適當的沈積 技術沈積於基質16之上。在一習用沈積程序中,該沈積材 料中之固有應力能夠降低基質之平坦度,從而導致基質捲 曲。此捲曲在一半導體製造程序中可能導致校準誤差,其 可旎損壞製造中之1C。在一實施例中,能夠對於基質實施 20 一熱處理,以便降低該沈積材料中之應力。因此,此熱處 理能夠避免基質產生捲曲,並降低半導體製造程序中產生 校準誤差之可能性。此熱處理另外能夠在基質與沈積工具 的壁部之間產生一溫度梯度,以致於使該加熱之基質排除 污染物。 12 200302395 玖、發明說明 光罩12能夠使用一標準微影程序,由該熱處理光罩基 材所形成。在一微影程序中,一包括供圖案層18使用之資 料的光罩圖案檔可由一光罩佈置檔產生。該光罩佈置檔可 包括代表電晶體與一積體電路之電子接點的多邊形,在光 5罩佈置檔中,當在一半導體晶圓上製造積體電路時,該等 多邊形可進一步代表該積體電路之不同層。例如,一電晶 體能夠形成於一半導體晶圓上,該晶圓具有一擴散層以及 一聚矽層。因此,光罩佈置檔可包括一個或更多晝在擴散 層上之多邊形、以及一個或更多晝在聚矽層上之多邊形。 10各層之該等多邊形能夠轉換成為一光罩圖案,其代表積體 電路之一層。各個光罩圖案檔可用以產生特定層所使用之 ~光罩。 所需圖案能夠藉由一雷射、電子束或乂射線微影系統 將其成像於光罩基材之一抗蝕層中。在一實施例中,一雷 15射微影系統使用氬離子雷射(其發出具有約364奈米波長之 光線)。在另擇實施例中,該雷射微影系統使用發射波長 從約150奈米到300奈米之光線的雷射。光罩12可藉著顯影 與蝕刻該抗蝕層之曝露區域,以便產生一圖案、蝕刻圖案 層18沒有抗钱劑覆蓋的部分,以及移除未顯影之抗姓劑以 20便於基質16上產生圖案層18加以製造。 第2A到2C圖顯示一光罩基材製造程序期間之不同步 驟的光罩基材30之橫剖面圖。在第2A圖中係設置基質16。 如以上參考第旧之說明,基質16可為―透明材料,、諸如 石英、合成石英、熔石夕、氟化鎖、氣化舞,或是一反射性 13 200302395 玖、發明說明 材料,諸如矽。在第2B圖中,材料層32係形成於基質16之 上。在一實施例中,光罩基材3〇可用以製造一個二元光罩 。在此範例中,材料層32可為一金屬性氧-碳-氮 (MaObCcNd),其中]VI係為一種從群組IV、v與IV所選出之 5金屬’且b、c與d係在0與1之間變換,且a = i_(b+c+d),或 疋任何適當的材料,其能夠提供足夠的光線衰減,且當該 材料之尽度係根據材料相關的光學性質(例如η與k)調整時 會產生至少為2的光學密度。材料層3 2能夠以均質、分 級或疋多層形式加以沈積。 10 在另一實施例中,光罩基材30可用以製造一相位偏移 光罩(PSM),包括(但未限定)一另擇PSM、一衰減psM,以 及一多調PSM。在此範例中,材料層32可為Msix〇yNz之均 貝或分級構造,其中Μ係為一種從群組IV、v與iv所選出 之金屬,且x+y+z=l、或是MAaNb/N^OcNd之多層構造, 15其中Ml係為鋁(A1)或矽(Si),]^2係為一種從群組w、v與 IV所選出之金屬,且&在〇與1之間變化、bs〇與之間變 化、C在〇與1之間變化,且d在〇與丨^之間變化。該多声構 造可為上述材料之混合物,以致於使至少一層對於曝光波 長不透明,且其他層對於曝光波長則能夠部分傳遞。 20 材料層32能夠使用PVD、CVD、IBD,或是任何其他 適合的沈積技術加以沈積。如果使用IBD,則材料層32比 藉著其他噴濺方法所形成之材料具有較高的密度。因為沈 積顆粒或是用於噴濺氣體中之顆粒具有高能量,故材料層 32亦可具有高本質應力。這些高能量顆粒在基質16上產生 14 200302395 玖、發明說明 材料層32,其可能具有高壓縮應力,如此致使該層中具有 高應力。 在一實施例中,材料層32中之應力能夠藉著在完成沈 積程序之前對基質16實施熱處理而加以降低。該熱處理能 5夠透過輻射、對流、傳導或是任何其他能夠將材料層32且 /或基質16加熱,使其溫度達到一特定溫度以上之技術加 以實施。熱處理能夠連續或間斷地實施,以便達到約攝氏 300度(例如約600度絕對溫度)或更高之溫度。熱處理之優 點在於不會改變材料層32的光學性質,因為該熱處理係在 10 材料層32沈積完成以前實施。 在一實施例中,其能夠在沈積程序開始之前對於基質 16實施熱處理。基質16一旦達到適當溫度以後,便能夠將 基質16置於一沈積工具之中。由於工具中之真空防止熱量 自基質16散發,故基質16能夠在沈積工具之中維持適當溫 15度。在另一貫施例中,其能夠在沈積程序期間對基質丨6實 施熱處理。另外,該熱處理亦能夠加熱沈積於基質16上之 材料。在另一實施例中,其能夠在沈積開始與沈積期間實 施熱處理,以確保將基質16維持在一適當溫度,以便降低 材料層32中之應力,並排除不需要的顆粒,使其不會包入 20 材料層32中。 如以下公式所示,如果在沈積期間加熱基質16且/或 材料層32 ’則能夠降低光罩12中之熱應力200302395 发明 Description of the invention (The description of the invention should state: the technical field to which the invention belongs, the prior art, the content, the embodiments, and the drawings) LW j ^ fr Λ j Field of the invention The present invention is generally related to the field of photolithography, and More specifically, a light 5 cover and a method for manufacturing the same. L Prior Art; 3 Background of the Invention As semiconductor component manufacturers continue to produce smaller and smaller components, the demand for photomasks used to make these components continues to be tight. The photomask (also known as reticle or mask) is typically composed of a substrate (such as high-purity quartz or fused silicon), which has an absorbent layer (such as chromium or molybdenum compounds) formed on the substrate Above. The absorbent layer includes a pattern showing a circuit image, which can be transferred onto a semiconductor wafer in a photolithography system. As the size of the outline of the semiconductor element decreases, the corresponding 15-channel image located on the photomask also becomes smaller and more complex. As a result, the quality of the photomask becomes one of the most important factors in establishing a durable and reliable semiconductor manufacturing process. Today, manufacturers of semiconductors continue to seek technology to extend the use of optical lithography to manufacture high-density integrated circuits (1C) with a limit size of less than 130 nanometers. However, as the profile size decreases, the resolution at which a minimum profile size appears on the wafer 20 at a particular exposure wavelength is limited due to the diffraction of light. Therefore, a shorter exposure wavelength (for example, less than 400 nanometers) is required to show a finer profile on the wafer. Wavelength targets for the next generation of optical lithography include 248 nm (KrF hafnium fluoride laser wavelength), 193 nm (ArF argon fluoride laser wavelength), and 157 nm (f2 fluorine laser wavelength). 6 200302395 发明, description of the invention When the wavelength is less than 400 nanometers, the flatness of the mask substrate and the generated mask is an important point. Any changes in flatness during the semiconductor manufacturing process may cause calibration errors. Since it is possible to use a large number of photomasks (for example, up to 50 advanced designs) to make a single integrated circuit, the calibration error of a single 5 photomask should be kept to a minimum. Although tool accuracy can contribute to plate alignment errors, it has been shown that the stress of the absorbent layer can cause the substrate to curl and thus cause calibration errors. One technique to reduce the stress of the absorbent layer includes annealing the photomask substrate after forming the absorbent layer on the substrate. However, this technique has some disadvantages. First, the annealing step is to form an absorbent layer on the substrate and apply it later, so it adds a step and extra time to the mask manufacturing process. Furthermore, the heat used during the 'annealing process changes the optical properties associated with the absorber layer, which is not desirable if a specific transfer and / or phase shift is required'. 15 [Inside] Summary of the Invention According to the technology of the present invention, these disadvantages and problems related to the manufacture of photomasks have been substantially reduced or eliminated. In a particular embodiment, a method of fabricating a photomask includes performing a heat treatment at a temperature above about 300 degrees Celsius before material deposition (which is used to form a layer of 20 materials on a substrate) is completed. According to an embodiment of the present invention, a method for manufacturing a photomask includes depositing a first material on at least a portion of a substrate to form a first material layer. Before the deposition of the first material layer is completed on the substrate, the substrate is subjected to a heat treatment at a temperature of two to about 300 degrees Celsius. 200302395 (ii) Description of the invention According to another embodiment of the present invention, a method for manufacturing a photomask includes depositing at least one material on at least a portion of a substrate using ion beam deposition to form at least one material layer. During the deposition of the material on the substrate, a heat treatment applied to the substrate at a temperature of about 300 degrees Celsius can reduce the stress in the material layer. According to another embodiment of the present invention, a photomask assembly includes a protective film assembly, a part of which is formed by attaching a protective film to a protective film frame, and a relatively opposite to the protective film. Mask of protective film assembly. The photomask includes a pattern layer formed on a substrate by depositing at least one material on at least a portion of the substrate to form the pattern layer. During the deposition of the material on the substrate, a thermal treatment at a temperature higher than about 300 degrees Celsius can reduce the stress in the pattern layer. Important technical advantages of certain embodiments of the present invention include a deposition technique that prevents curling of the photomask substrate. Prior to completion of the deposition, heat treatment is performed on a substrate. This heat treatment reduces the inherent stress existing in the material layer, which can reduce the overall stress in the photomask and avoid curling of the photomask. Other technical advantages of certain embodiments of the present invention include a deposition technique ' which reduces the possibility of calibration errors in a semiconductor manufacturing process. During the manufacturing process of a photomask substrate, a substrate is subjected to a thermal treatment 'in order to reduce the inherent stress in the material. Since the material layer has less stress, the amount of matrix bending caused by the material layer is reduced. Therefore, since the flatness of the photomask is maintained, the possibility of a calibration error when a 1C is formed on the surface of a wafer is also reduced. 8 200302395 (ii) Description of the invention Another important technical advantage of some embodiments of the present invention includes a deposition technique 'which reduces the amount of unwanted particles deposited on the surface of a substrate. By applying heat treatment to the substrate, a temperature gradient is formed between the sedimentation tool and the wall portion of the substrate. The heated substrate repels unwanted 5 particles, which allows a layer of material with a low defect density to be formed on the substrate. All or some of these technical advantages may be shown in different embodiments of the invention (or no technical advantage is shown). For those skilled in the art, they can immediately see other technical advantages from the scope of the following drawings, descriptions and applications. Brief description of the drawings [CHNC1] From the following description combined with the attached drawings, a more complete and thorough understanding of the embodiments of the present invention and their advantages can be obtained, in which the same reference numerals represent the same features, of which: FIG. 1 shows a cross-sectional view of a photomask assembly, which includes a photomask made of a photomask substrate in accordance with the teachings of the present invention; FIGS. 2A to 2C show a photomask according to the teachings of the present invention. Cross-sectional views of different stages of the manufacturing process of the photomask substrate; FIG. 3 shows an ion beam deposition apparatus for depositing material on a substrate according to the teachings of the present invention; FIG. 4 shows an ion beam deposition apparatus according to the present invention; Doctrine, an example device for annealing materials deposited on a substrate by conduction; Figure 5 shows an example of annealing materials deposited on a substrate by convection in accordance with the teachings of the present invention Apparatus; 9 200302395 (ii) Description of the invention Fig. 6 shows an exemplary apparatus for annealing a material deposited on a substrate by means of radiation in accordance with the teachings of the present invention. L Embodiment 3 Detailed Description of the Preferred Embodiment The best embodiment of the present invention and its advantages can be best understood by referring to FIGS. 1 to 6, wherein the same reference numerals indicate the same and corresponding parts. 0 10 15 Brother 1 The figure shows a cross-sectional view of one of the photomask assemblies 10. In the example shown, the mask assembly 10 includes a mask 12 which is coupled to the pellicle assembly 14. The substrate 16 and the pattern layer 18 form a photomask 12 (also known as a mask or a reticle), which can have many sizes and shapes, including (but not limited to) circles, rectangles, or squares. The photomask 12 can also be any of various photomask types, including (but not limited to) -single-time main photomask, five-inch mark line, six-inch mark line, nine-inch time mark. Any other capable-circuit The pattern image is projected onto an appropriately sized reticle on a semiconductor wafer. The mask 12 can be a binary mask, a phase shift mask (PSM), an optical macro correction (OPC) mask 'or any other type of mask suitable for use in a lithography system. The photomask 12 includes a pattern layer 18 formed on a substrate, and when it is exposed to electromagnetic energy in a lithographic system, the pattern is projected onto the surface of a semiconductor wafer (not clearly shown). For some applications, the matrix 16 may be a transparent material, such as ^ 口 口 石 石, fused silicon, magnesium fluoride ^ ㈣ arch (CaF2), or any other suitable material, the material / ,, / The incident light between about 10 nanometers (nm) and 450 nanometers is at least 10 20 200302395 玖, the invention description has a transparency of 75% (75%). In yet another alternative embodiment, the substrate 16 may be a reflective material, such as silicon or any other suitable material, which reflects more than about one percent of incident light with a wavelength between about 10 nm and 450 nm. Fifty (50%) amount of light. 5 The pattern layer 18 may be a metal material, such as chromium, chromium nitride, a metallic oxygen-carbon-nitrogen (M-0_C-N), wherein the metal is composed of chromium, cobalt, iron, zinc, molybdenum, niobium, Selected from the group consisting of tantalum, titanium, tungsten, aluminum, magnesium, and silicon, or any other suitable material, which can absorb wavelengths in the ultraviolet (UV) range, deep ultraviolet (DUV) range, and vacuum ultraviolet (VUV) Electromagnetic energy in the range 10 and extreme ultraviolet (EUV) range. In an alternative embodiment, the pattern layer 18 may be a partially transparent material, such as a molybdenum silicide (MoSi) compound, which has a wavelength range of about one percent (1%) to 100% for the UV, DUV, VUV, and EUV wavelength ranges. Thirty (30%) transparency. The frame 20 and the protective film 22 may form a protective film assembly 14. Although the frame 15 can alternatively be made of stainless steel, plastic, or other suitable materials (which will not decay or outgas when exposed to electromagnetic energy in a lithography system), the frame 20 is typically formed of electroplated aluminum . The protective film 22 may be a film formed of a material such as nitrocellulose, cellulose acetate, an amorphous fluoropolymer such as 20 Teflon® AF manufactured by EI du Pont de Nemours and Company or CYTOP® manufactured by Asahi Glass, or other suitable films, which are transparent to wavelengths in the UV, DUV, EUV and / or VUV range. The protective film 22 can be prepared by a conventional technique such as a rotary mold. The protective film 22 protects the photomask 12 from contamination (such as dust particles 11 200302395), the description of the invention ensures that the pollutants are maintained at a predetermined distance from the photomask 12. This is particularly important in a lithography system, During the lithography process, the photomask assembly 10 is exposed to electromagnetic energy, which is generated by a source of radiant energy in the lithography system. The electromagnetic energy can include light of different wavelengths, such as about a wavelength of about The light between line 1 and line G of the mercury arc lamp, or DUV, νυν, or EUV light, line. In terms of operation, the protective film 22 is designed to allow a large percentage of electromagnetic energy to pass through the protective film. Collected in protection The contaminants on the film 22 will desirably deviate from the focal point located on the surface of the processed wafer, and therefore the exposed image on the wafer should be quite clear. The protective film 22 formed according to the theory of the invention 10 can be satisfactorily used All kinds of electromagnetic energy and are not limited to light waves as described in this application. The photomask 12 may be manufactured from a photomask substrate. In one embodiment, the photomask substrate may be At least one layer of opaque or partially transparent material is formed on a substrate. The material can be deposited using physical vapor deposition (PVD), chemical vapor deposition (CVD), ion beam deposition (IBD), or any other suitable deposition The technology is deposited on the substrate 16. In a conventional deposition process, the inherent stress in the deposition material can reduce the flatness of the substrate, which can cause the substrate to curl. This curl can cause calibration errors in a semiconductor manufacturing process, which can Damage 1C in manufacturing. In one embodiment, a heat treatment can be performed on the substrate to reduce the stress in the deposited material. Therefore, this heat treatment can avoid curling of the substrate and reduce the possibility of calibration errors in the semiconductor manufacturing process. In addition, this heat treatment can generate a temperature gradient between the substrate and the wall of the sedimentation tool, so that the heated substrate excludes contaminants. 12 200302395 玖, description of the invention The photomask 12 can use a standard lithography procedure, The heat-treated photomask substrate is formed. In a lithography process, a pattern layer 18 is provided. The mask pattern file of the used information can be generated by a mask layout file. The mask layout file can include a polygon representing the electronic contact of the transistor and an integrated circuit. In the photomask layout file, a semiconductor When manufacturing an integrated circuit on a wafer, the polygons can further represent different layers of the integrated circuit. For example, a transistor can be formed on a semiconductor wafer having a diffusion layer and a polysilicon layer. Therefore, the mask layout file may include one or more polygons on the diffusion layer and one or more polygons on the polysilicon layer. 10 The polygons of each layer can be converted into a mask pattern, which represents One layer of integrated circuit. Each mask pattern file can be used to generate a mask for a specific layer. The required pattern can be imaged on the mask substrate by a laser, electron beam or holographic lithography system. In a resist. In one embodiment, a laser 15-lithography system uses an argon ion laser (which emits light with a wavelength of about 364 nanometers). In an alternative embodiment, the laser lithography system uses a laser that emits light having a wavelength from about 150 nanometers to 300 nanometers. The photomask 12 can develop and etch the exposed area of the resist layer in order to generate a pattern, etch the portion of the pattern layer 18 that is not covered by the anti-money agent, and remove the un-developed anti-name agent 20 to facilitate production on the substrate 16 The pattern layer 18 is manufactured. Figures 2A to 2C show cross-sectional views of a mask substrate 30 that are not synchronized during a mask substrate manufacturing process. The substrate 16 is provided in FIG. 2A. As described above with reference to the oldest description, the substrate 16 may be a "transparent material, such as quartz, synthetic quartz, lava stone, fluorite lock, gasification dance, or a reflective 13 200302395 玖, invention illustrative material, such as silicon . In FIG. 2B, a material layer 32 is formed on the substrate 16. As shown in FIG. In one embodiment, the mask substrate 30 can be used to make a binary mask. In this example, the material layer 32 may be a metallic oxygen-carbon-nitrogen (MaObCcNd), where] VI is a 5 metal selected from the group IV, v, and IV, and b, c, and d are Change between 0 and 1, and a = i_ (b + c + d), or 疋 any suitable material, which can provide sufficient light attenuation, and when the degree of the material is based on the optical properties of the material (such as η and k) adjustment results in an optical density of at least 2. The material layers 32 can be deposited in the form of homogeneous, graded or pseudo-multilayers. 10 In another embodiment, the mask substrate 30 can be used to manufacture a phase shift mask (PSM), including (but not limited to) an alternative PSM, an attenuation psm, and a multi-tone PSM. In this example, the material layer 32 may be a homogeneous or hierarchical structure of MsixOyNz, where M is a metal selected from the groups IV, v, and iv, and x + y + z = 1, or MAaNb / N ^ OcNd multilayer structure, 15 where Ml is aluminum (A1) or silicon (Si), and 2 is a metal selected from the groups w, v and IV, and & between 0 and 1 Change between, bs0 and between, C between 0 and 1, and d between 0 and ^^. The multi-acoustic structure may be a mixture of the above materials, so that at least one layer is opaque to the exposure wavelength, and the other layers are partially transmitted to the exposure wavelength. The material layer 32 can be deposited using PVD, CVD, IBD, or any other suitable deposition technique. If IBD is used, the material layer 32 has a higher density than the material formed by other sputtering methods. Because the deposited particles or the particles used in the spray gas have high energy, the material layer 32 may also have a high intrinsic stress. These high-energy particles produce 14 200302395 on the substrate 16, a description of the material layer 32, which may have a high compressive stress, which results in a high stress in the layer. In one embodiment, the stress in the material layer 32 can be reduced by applying heat treatment to the substrate 16 before completing the deposition process. The heat treatment is capable of transmitting radiation, convection, conduction, or any other technique capable of heating the material layer 32 and / or the substrate 16 so that the temperature thereof exceeds a specific temperature. The heat treatment can be performed continuously or intermittently to reach a temperature of about 300 degrees Celsius (for example, about 600 degrees absolute temperature) or higher. The advantage of the heat treatment is that the optical properties of the material layer 32 are not changed because the heat treatment is performed before the material layer 32 is deposited. In one embodiment, it is possible to perform heat treatment on the substrate 16 before the sedimentation procedure begins. Once the substrate 16 has reached the appropriate temperature, the substrate 16 can be placed in a deposition tool. Since the vacuum in the tool prevents heat from being radiated from the substrate 16, the substrate 16 is able to maintain an appropriate temperature of 15 degrees in the sedimentation tool. In another embodiment, it is capable of applying heat treatment to the substrate 6 during the deposition process. In addition, the heat treatment can also heat the material deposited on the substrate 16. In another embodiment, it can perform a heat treatment at the beginning of deposition and during deposition to ensure that the matrix 16 is maintained at an appropriate temperature in order to reduce the stress in the material layer 32 and exclude unwanted particles so that they do not wrap Into 20 material layer 32. As shown in the following formula, if the substrate 16 and / or the material layer 32 ′ are heated during the deposition, the thermal stress in the photomask 12 can be reduced.

Sthermal=(aF-^)xEFxAT 其中(XF與α分別係為材料層32與基質16之平均膨脹係 15 200302395 玖、發明說明 數,Ef係為材料層32之楊氏模數,且ΔΤ則為沈積期間之基 質溫度減去測量時之基質16溫度。 如以下公式所示,降低材料層32中之固有應力亦會降 低基質16的曲率半徑(R),其在微影程序中改進了由光罩 土材30所形成之光罩I]的準確性㈣扣丨加丨⑽)。 6α/ (1今 其中Α係為材料層32中之固有應力,es係為基質16之 楊氏模數,2; s係為基質16之柏松比(P〇isson ratio),心係 為材料層32之厚度,且心則為基質16之厚度。 土於上述公式’溫度大於約攝氏3〇〇度(例如約6〇〇度 絕對溫度)能夠有效地降低材料層32中之應力,並因而防 止基質16之平坦度降低,而不會改變光罩基材30之任何光 學性質。 於沈積期間實施熱處理亦能夠在沈積工具中產生一熱 5冰效應,當溫度梯度存在時會發生該熱泳效應,其在沈積 形成材料層32的顆粒與周遭氣體分子之間產生不均勻的互 動換&之’由於溫度梯度所導致之熱泳效應,將顆粒自 一加熱表面排除,並將其吸附到一冷卻表面。藉著加熱基 質16 ’沈積室之壁部將較基質16的表面冷,且多餘之顆粒 等自基貝16之表面排除。此效應亦能夠抵銷在沈積程序期 間作用於顆粒上之其他力量,諸如重力與流體動量,並提 供更為乾淨之沈積材料層。因此,由於不需要的顆粒( 例如可能存在於沈積工具中之污染物)係自基質16與材料 16 200302395 10 15 20 玖、發明說明 層32排除,故材料層32能夠具有低缺陷密度。 如第2C圖中所不,光罩基材3〇係藉由在材料層”上形 成抗蝕層34所完成。儘管第2B與2C圖顯示光罩基材30具 有-單層材料,其能夠形成兩層或更多層之材料,以致於 楚接貝層化成於先月ί』層之上。抗餘層34接著能夠形成於最 上層的材料之上,接著能夠使用一標準微影程序,由光罩 基材30製造光罩12。 弟3圖顯示一種離子束沈積(IBD)裝置,其能夠用以沈 積材料層32。在-励程序中,將_電漿放電器(另外熟知 為離子搶或離子源)容納於一室中,且藉由施加在該離子 搶之出口接口處的一系列方格之電位將離子抽出,並使盆 加速。㈣程序較從一表面上之目標使用噴濺沈積材料的 其他沈積程序具有許多優點。首先,IBD程序在一基質之 沈積表面提供較為清潔的程序(例如較少的不需要顆粒), 因為擄獲並運送帶電顆粒到之基質電漿並沒有緊鄰形成於 該基質上的材料層。再者,⑽程序在總氣遷較低的環境 下運作’其導致降低化學污染的強度。第三,则程序同 樣具有獨立控制沈積通量、反應氣體離子通量⑻,以及 能量之能力。最後’在雙聰程序中’材料目標、基質以 及離子搶之間的角度能夠加以調整,以便使薄膜均勾度盥 薄膜應力最佳化。 、在-早IBD程序中,—激化之離子束(通常藉由一電子 源加以中和)係由沈積搶4〇導引到位於一目標固持器(未明 Ί頁不)上之目標42。當來自於沈積搶4〇之衝擊離子的能 17 200302395 玖、發明說明 量大於特定目標材料之噴濺閾能量時,便自目標42噴濺材 料。在一實施例中,閾能量大約5〇 ev。 儘管亦能夠使用反應氣體,諸如氧氣、氮氣、二氧化 石炭、氟、CH3或其混合物,來自於沈積搶4〇之離子能夠由 5 一鈍氣源產生,諸如氦氣(He)、氖氣(Ne)、氬氣(Ar)、氪 氣(Kr)、氣氣(Xe)。當這些離子係由鈍氣源產生時,來自 於目標42之材料係噴濺且在基質16上沈積成材料層32。當 這些離子係由一反應氣體所產生時,該等離子能夠與來自 目標42之材料結合,且此化學混合物之生成物係噴錢且在 10基質16上沈積成材料層3 2。在一實施例中,衝擊離子所具 有之能量約在200 ev與l〇KeV之間,且離子通量或離子流 能夠大於約1013離子/平方公分/秒,以便維持實用的沈積 率(例如大於0.1奈米/分鐘)。室中之加工壓力可在於約1〇·3 到1(Γ5托耳(Torr)之間,目標42可由一基礎材料所構成,諸 15如石夕(Si)、鈦(Ti)、鉬(Mo)、鉻(Cr),或者該材料可為一化 合物,諸如M〇xSiy或是二氧化矽(Si〇2),其中父以與^^之範 圍為何)。基質16能夠相對於目標42距一距離與方位加以 放置,以便其能夠使薄膜性質(諸如厚度與均勻性)最佳化 ’並將應力減到最低。 2〇 在一個雙IBD程序中離子,除了來自於沈積搶40以外 ,尚有來自於輔助搶44之離子,該等離子係藉由一電子源 加以中和,並導向基質16之表面。在操作方面,輔助搶44 提供一可調整通量之低能量離子(例如低於約1〇〇 eV),其 能夠在基質16之表面與來自於目標42的原子反應,以便形 18 200302395 玖、發明說明 成材料層32。該等輔助搶44產生之離子能夠源自於一反應 氣體’諸如氧氣(〇2)、氮氣(N2)、二氧化碳(C02)氧化亞氮 (n2o)、水(h2〇)、氨氣(Nh3)、四i化碳(Cf4)、三氣甲烷 (chf3)、氟(f2)、曱烷(Ch4)或乙炔(C2H2)、一鈍氣,諸如 5氖氣(Ne)、氬氣(Ar)、氪氣(Kr)、氙氣(xe),或是其混合物 。在一實施例中,來自於輔助搶44之離子的能量能夠低於 來自於沈積搶40之離子的能量。 典型而言,一雙IBD程序係用於製造更為複雜之構造 ,其能夠有助於形成相位偏移光罩,該等光罩係用於曝光 10波長在DUV、VUV與EUV範圍之微影系統,且產生約18〇。 之相位偏移。例如,多層之以队與丁⑻〆其中X之範圍約為 到1 ·3且y之範圍約為1 .〇)能夠另擇藉由從個別目標沈 積元素石夕(Si)與鈦(Ti),而基質16係藉由來自於輔助搶44之 反應氮氣加以衝擊。然而,一單獨IBD程序亦能夠藉由使 15用約800 V之束電壓,用以沈積複雜之構造。例如,能夠 使用單獨或是雙IBD程序沈積材料,其包括(但非限定於 )SlsN4、TiN,以及多層之複合材料,諸如氮化硅/氮化鈦 (Si3N4/TiN)、Ta2〇5/Si〇2、二氧化石夕 / 氮化鈦(Si〇2/TiN)、 氮化硅/二氧化矽(Si3N4/Si〇2)或三氟化鉻/三氟化鋁 20 (CrF3/AlF3) 〇 單獨或雙IBD程序亦能夠用以具有另擇光學吸收層 以及光學傳播層構造之形式沈積材料層。該吸收成分之 特徵為對於波長小於約彻奈米㈣光係數k>Qi(例如約從 i 3.5)而傳播成分之特徵為為對於波長小於約彻奈 19 200302395 玖、發明說明 及收成分對於波長小於4〇〇奈米之 米的消光係數k<<1.0。 折射率可為約〇·5到3.0左右 折射率可為約1.2到3.5左右。 且傳播成分對於相同波長之 材料層32之光學傳播成分能夠從一適當之金屬氧化物 5 、金屬氮化物或是金屬氟化物,以及光學傳播形式之碳加 以選出。材料層32以氧化物為主之光學傳播成分可由光學 頻帶隙能量大於約3 eV之氧化物中選出,其包括(但未限 定於)矽、鋁、鍺(Ge)、鈕(Ta)、鈮(Nb)、铪(Hf)與鍅(Zr) 。材料層32以氮化物為主之光學傳播成分可由光學頻帶隙 1〇能量大於約3 eV之氧化物材料中選出,其包括(但未限定 於)鋁、矽、硼(B)與鈣(C)之氮化物。材料層32以氟化物為 主之光學傳播成分可由光學頻帶隙能量大於約3 eV之氧化 物中選出,其包括(但未限定於)群組!!元素或鑭系元素(例 如原子序在57與71之間的元素)之氟化物。光學傳播碳可 15包括具有一鑽石構造之碳,有時稱之為具有sp3 C-C結合之 石反,同%•亦熟知為似鑽碳(DLC)。由於其具有廣泛之光學 性質,故DLC能夠作為吸收層或是傳播層之功用。一種或 更多氧化物、氟化物、氮化物,以及DLC之混合物亦能夠 以單獨或雙IBD程序加以沈積。 20 材料層32之光學吸收成分可由金屬元素、金屬氮化物 、氧化物與其混合物所選出。材料層32以氧化物為主之光 學吸收成分可由光學頻帶隙能量小於材料層32傳播成分的 材料中選出,其包括(但未限定於)群組IHB、IVB、VB與 VIB之氧化物。材料層32以氮化物為主之光學吸收成分可 20 200302395 玖、發明說明 由光學頻帶隙能量小於約3 eV之材料中選出,其包括(但 未限定於)群組ΠΒ、IVB、VB與之氮化物。一種或更 多金屬、氧化物亦能夠以單獨或雙IBD程序加以沈積。 材料層32之光學吸收層與光學傳播層能夠使用離子束 5以週期性或不定期的佈置方式加以沈積。在一實施例中, 薄膜之光學吸收層與薄膜之光學傳播層係以一另擇佈置方 式加以沈積。 一單獨或雙IBD程序亦能夠用以製造一用於微影波長 小於約400奈来之雙元光罩。例如,一 mD程序能夠用以沈 1〇積單層或多層之,其中Μ係由鉻、鉬、鎢、鈦, 或疋其任何混合物中所選出,χ之範圍約從〇到3 〇,y之範 圍約為0到1.0,且Z之範圍則約為0到2 0。在一實施例中, 邊MOxCyNz材料能夠具有約大於兩個單位的光學密度。 一般而言,該形成材料層32之IBD材料在水晶化學結 15構中能夠分類成雙元化合物:ΑΧ、AX2、A2X以及AmXz, 或是其混合物,其中111與2係為整數,且A代表陽離子,χ 代表陰離子。可以在(Α,χ)此二位址進行包括缺位的部分 化學取代作用’同時維持化學中性。 第4圖顯示一種範例裝置,該裝置用以在基質16上沈 2〇積材料之前或期間,藉著使用傳導方式使材料層32退火。 基質16能夠藉著夾持檔板5〇固持於其側面,該夾持檔板係 位於基質16之相反側上。位於熱板54中之電組線52能夠結 合到藉由電腦58控制的可調式發電機56。熱板54内之熱電 耦56對電腦54提供一溫度回傳。加熱程序(例如熱處理)能 21 200302395 玖、發明說明 夠在將材料層32沈積於基質16上之前或期間進行,以便降 低材料層32中之應力。 第5圖顯示一種範例裝置,該裝置用以在基質16上沈 積材料之前或期間,藉著使用對流方式使材料層32退火。 5圍繞基質16之底表面周圍放置的〇形環60能夠用以分隔基 質16與對流裝置,線圈62能夠用以加熱氣體63,該氣體在 基質16之下方流動。在一實施例中,氣體63可為任何適當 之氣體,其提供良好的熱傳特性,且其不會將外界顆粒引 入沈積程序中所使用的氣體,以污染材料層32。氣體63能 1〇夠藉著調整閥64釋放進入一對流裝置中,該調整閥係由電 腦66所控制。接著氣體63從基質16之下方通過,並透過排 氣接口 68離開。氣體63在材料層32沈積之前或期間溫暖基 質16,以便降低沈積材料中之固有應力。 第6圖顯示一種範例裝置,該裝置用以在基質16上沈 15積材料之前或期間,藉著使用輻射方式使材料層32退火。 其能夠將一個或更多提供紅外線或紫外線範圍輻射之燈泡 7〇朝向基質16,該等燈泡70能夠包括未聚焦之反射器72, 其以基質16之方向導引輻射熱。在基質16上沈積一材料之 則或期間,能夠點亮燈泡70,以便對基質16實施一熱處理 〇 ,並降低材料層32中之應力。在一實施例中,該等燈泡能 夠朝向基質16之背側。 儘管已經詳細說明本發明,應理解的是,能夠從其進 行改變、替代與變更,而不脫離本發明藉由所附申請專利 範圍界定之領域與範疇。 22 200302395 玖、發明說明 【圖式簡单税明3 由以下之說明並結合所附圖式,能夠獲得本發明之實 施例及其優點更為完整與透徹的了解,其中相同的參考數 字代表相同的特徵,其中: 5 第1圖顯示一光罩總成之橫剖面圖,該光罩總成包括 一個依照本發明之學說,由一光罩基材製造之光罩; 弟2A〜2C圖顯示依照本發明之學說,一光罩基材之製 造程序的不同階段之橫剖面圖; 第3圖顯示依照本發明之學說,一用以將材料沈積於 10 一基質上之離子束沈積裝置; 第4圖顯示依照本發明之學說,一種用以藉著傳導方 式使沈積於一基質上之材料退火的範例裝置; 第5圖顯示依照本發明之學說,一種用以藉著對流方 式使沈積於一基質上之材料退火的範例裝置; 15 第6圖顯示依照本發明之學說,一種用以藉著輕射方 式使沈積於一基質上之材料退火的範例裝置。 【圈式之主要元件代表符號表】 10…光罩總成 3 0…光罩基材 12…光罩 3 2…材料層 14…護膜總成 3 4…抗蚀層 16…基質 40…沈積搶 18…圖案層 42…g標 20…框架 44…輔助搶 22…保護薄膜 50···夾持槽板 23 200302395 玖、發明說明 52…電阻線 54…熱板 55…熱電耦 56…可調式發電機 58 、 66···電月甾 6 0…Ο形環 62…線圈 63…氣體 64…調整閥 68…排氣接口 7 0…燈泡 72…反射器 24Sthermal = (aF-^) xEFxAT where (XF and α are the average expansion system of material layer 32 and matrix 16 respectively 15 200302395 玖, the number of invention descriptions, Ef is the Young's modulus of material layer 32, and ΔΤ is The substrate temperature during deposition is subtracted from the substrate 16 temperature during the measurement. As shown in the following formula, reducing the intrinsic stress in the material layer 32 will also reduce the radius of curvature (R) of the substrate 16, which is improved in the lithography process by light The accuracy of the reticle I] formed by the cover earth material 30 is deducted (plus 丨 ⑽). 6α / (1 where A is the intrinsic stress in the material layer 32, es is the Young's modulus of the matrix 16, 2; s is the Poisson ratio of the matrix 16, and the heart is the material The thickness of the layer 32, and the core is the thickness of the matrix 16. The temperature in the formula above is greater than about 300 degrees Celsius (for example, about 600 degrees absolute temperature) can effectively reduce the stress in the material layer 32, and thus Prevents the flatness of the substrate 16 from being reduced without changing any optical properties of the mask substrate 30. Performing a heat treatment during the deposition can also produce a hot 5 ice effect in the deposition tool, which occurs when a temperature gradient is present Effect, which creates an uneven interaction between the particles of the deposition-forming material layer 32 and the surrounding gas molecules & 'the thermal swimming effect due to the temperature gradient, removes the particles from a heated surface, and adsorbs them to A cooling surface. By heating the wall of the substrate 16 ', the wall of the deposition chamber will be colder than the surface of the substrate 16, and excess particles will be eliminated from the surface of the substrate 16. This effect can also offset the effect on the particles during the deposition process. Of its Forces, such as gravity and fluid momentum, and provide a cleaner layer of deposited material. As a result, unwanted particles (such as contaminants that may be present in the deposition tool) are derived from the matrix 16 and material 16 200302395 10 15 20 玖, The layer 32 of the invention is excluded, so the material layer 32 can have a low defect density. As shown in FIG. 2C, the mask substrate 30 is completed by forming a resist layer 34 on the material layer. Although 2B and Figure 2C shows that the photomask base material 30 has a single-layer material, which can form two or more layers of materials, so that the cladding layer is formed on top of the first moon layer. The anti-residue layer 34 can then be formed on the most On top of the material, the mask 12 can then be manufactured from a mask substrate 30 using a standard lithography process. Figure 3 shows an ion beam deposition (IBD) device that can be used to deposit a material layer 32. In- In the excitation program, a plasma discharger (also known as an ion trap or ion source) is housed in a chamber, and the ions are extracted by a series of grid potentials applied at the outlet interface of the ion trap, and Speed up the basin. There are many advantages over other deposition procedures that use sputtering deposition material from a target on a surface. First, the IBD procedure provides a cleaner procedure (eg less unwanted particles) on the deposition surface of a substrate because it is captured and shipped The matrix plasma to which the charged particles are located is not immediately adjacent to the material layer formed on the matrix. Furthermore, the plutonium process operates in an environment where the total gas migration is low, which leads to a reduction in the intensity of chemical pollution. Third, the program also has Independent control of deposition flux, reactive gas ion flux⑻, and energy capabilities. Finally, the angles between the material target, the substrate, and the ion grabbing can be adjusted in the Satoshi procedure in order to make the film uniform and stress the film. Optimization.-In the early IBD procedure, the stimulated ion beam (usually neutralized by an electron source) was guided by Shen Jiqiu 40 to a target holder (not shown on the title page). Objective 42. When the energy of the impact ion from the deposition grabbing 40 is 17 200302395, description of the invention, the material is sprayed from the target 42 when the amount is greater than the sputtering threshold energy of the specific target material. In one embodiment, the threshold energy is about 50 ev. Although it is also possible to use reactive gases such as oxygen, nitrogen, carbon dioxide, fluorine, CH3 or mixtures thereof, the ions from the deposition can be generated by a passive source such as helium (He), neon ( Ne), argon (Ar), krypton (Kr), and gas (Xe). When these ions are generated from a source of inert gas, the material from the target 42 is sprayed and deposited on the substrate 16 as a material layer 32. When these ions are generated by a reactive gas, the ions can be combined with the material from the target 42 and the product of this chemical mixture is sprayed and deposited on the substrate 16 as a material layer 32. In one embodiment, the energy of the impact ions is between about 200 ev and 10 KeV, and the ion flux or ion current can be greater than about 1013 ions / cm 2 / s in order to maintain a practical deposition rate (for example, greater than 0.1 nm / min). The processing pressure in the chamber may be between about 10.3 to 1 (Γ5 Torr), and the target 42 may be composed of a basic material, such as Shi Xi (Si), titanium (Ti), and molybdenum (Mo ), Chromium (Cr), or the material may be a compound, such as MoxSiy or silicon dioxide (SiO2), where the range of parent and ^^). The substrate 16 can be placed at a distance and orientation relative to the target 42 so that it can optimize film properties such as thickness and uniformity 'and minimize stress. 20 In a dual IBD procedure, in addition to the ions from the deposition 40, there are ions from the auxiliary 44, which are neutralized by an electron source and directed to the surface of the substrate 16. In terms of operation, the auxiliary grab 44 provides an adjustable flux of low energy ions (for example, less than about 100 eV), which can react with the atom from the target 42 on the surface of the substrate 16 in order to shape 18 200302395 玖,发明 描述 成 材料 层 32 The invention is described as a material layer 32. The ions generated by the auxiliary rush 44 can be derived from a reactive gas such as oxygen (〇2), nitrogen (N2), carbon dioxide (C02), nitrous oxide (n2o), water (h2〇), ammonia (Nh3) , Carbon tetrafluoride (Cf4), three gas methane (chf3), fluorine (f2), pinane (Ch4) or acetylene (C2H2), an inert gas such as 5 neon (Ne), argon (Ar), Krypton (Kr), xenon (xe), or a mixture thereof. In one embodiment, the energy from the ions from the auxiliary grab 44 can be lower than the energy from the ions from the deposition grab 40. Typically, a pair of IBD procedures is used to make more complex structures that can help form phase shift masks. These masks are used to expose lithography at 10 wavelengths in the DUV, VUV, and EUV ranges. System, and produces about 180. Phase shift. For example, multi-layers and Ding Yi (where X ranges from about 1.3 to y and y ranges from about 1.0)) the elements Shi Xi (Si) and titanium (Ti) can be optionally deposited from individual targets The substrate 16 is impinged by the reaction nitrogen from the auxiliary grab 44. However, a separate IBD procedure can also be used to deposit complex structures by using a beam voltage of about 800 V. For example, materials can be deposited using single or dual IBD procedures, including (but not limited to) SlsN4, TiN, and multilayer composite materials such as silicon nitride / titanium nitride (Si3N4 / TiN), Ta205 / Si 〇2, stone dioxide / titanium nitride (Si〇2 / TiN), silicon nitride / silicon dioxide (Si3N4 / Si〇2) or chromium trifluoride / aluminum trifluoride 20 (CrF3 / AlF3). Single or dual IBD procedures can also be used to deposit material layers in the form of alternative optical absorption layer and optical transmission layer structures. The absorption component is characterized by a wavelength of less than about Chernamy's optical coefficient k> Qi (e.g., from about 3.5), and the propagation component is characterized by a wavelength of less than about Chernai 19 200302395. The invention's description and the receiving component are wavelength The extinction coefficient k < < 1.0 of the rice smaller than 400 nm. The refractive index may be about 0.5 to 3.0. The refractive index may be about 1.2 to 3.5. And the propagation component for the optical propagation component of the material layer 32 of the same wavelength can be selected from an appropriate metal oxide 5, metal nitride or metal fluoride, and carbon in the form of optical propagation. The oxide-based optical propagation component of the material layer 32 may be selected from oxides having an optical band gap energy greater than about 3 eV, including (but not limited to) silicon, aluminum, germanium (Ge), button (Ta), and niobium (Nb), 铪 (Hf) and 鍅 (Zr). The nitride-based optical propagation component of the material layer 32 may be selected from oxide materials having an optical band gap 10 with an energy greater than about 3 eV, including (but not limited to) aluminum, silicon, boron (B), and calcium (C ) Of nitride. The optical propagation component of the material layer 32 mainly composed of a fluoride may be selected from an oxide having an optical band gap energy greater than about 3 eV, which includes (but is not limited to) a group! !! Fluorides of elements or lanthanides (such as those with atomic numbers between 57 and 71). Optically propagating carbon 15 includes carbon with a diamond structure, sometimes called stone with sp3 C-C bonding, and is also known as diamond-like carbon (DLC). Due to its extensive optical properties, DLC can function as an absorption layer or a propagation layer. Mixtures of one or more oxides, fluorides, nitrides, and DLC can also be deposited in a single or dual IBD process. The optical absorption component of the material layer 32 can be selected from metal elements, metal nitrides, oxides, and mixtures thereof. The oxide-based optical absorption component of the material layer 32 may be selected from materials having an optical band gap energy smaller than the propagation component of the material layer 32, and includes (but is not limited to) the oxides of the groups IHB, IVB, VB, and VIB. Material layer 32 is a nitride-based optical absorption component. 20 200302395 395, invention description is selected from materials with optical band gap energy less than about 3 eV, which includes (but is not limited to) groups ΠB, IVB, VB and nitride. One or more metals, oxides can also be deposited in a single or dual IBD procedure. The optical absorption layer and the optical transmission layer of the material layer 32 can be deposited using the ion beam 5 in a periodic or irregular arrangement. In one embodiment, the optical absorption layer of the thin film and the optical transmission layer of the thin film are deposited in an alternative arrangement. A single or dual IBD process can also be used to make a binary mask for lithographic wavelengths of less than about 400 nanometers. For example, an mD program can be used to deposit a single layer or multiple layers, where M is selected from chromium, molybdenum, tungsten, titanium, or any mixture thereof, and the range of χ is from about 0 to 3,0 The range is about 0 to 1.0, and the range of Z is about 0 to 20. In one embodiment, the edge MOxCyNz material can have an optical density of approximately greater than two units. In general, the IBD material forming the material layer 32 can be classified into binary compounds in the crystal chemical structure 15: AX, AX2, A2X, and AmXz, or a mixture thereof, where 111 and 2 are integers, and A represents Cation, χ stands for anion. It is possible to perform a partial chemical substitution including a vacancy at the two sites (A, χ) while maintaining chemical neutrality. FIG. 4 shows an exemplary device for annealing the material layer 32 by using a conductive method before or during the deposition of 20 material on the substrate 16. The substrate 16 can be held on its side by a clamping plate 50, which is located on the opposite side of the substrate 16. The power line 52 located in the hot plate 54 can be coupled to an adjustable generator 56 controlled by a computer 58. The thermocouple 56 in the hot plate 54 provides a temperature return to the computer 54. The heating procedure (such as heat treatment) can be carried out before or during the deposition of the material layer 32 on the substrate 16 in order to reduce the stress in the material layer 32. FIG. 5 shows an exemplary device for annealing the material layer 32 by using convection before or during the deposition of material on the substrate 16. The O-ring 60 placed around the bottom surface of the substrate 16 can be used to separate the substrate 16 from the convection device, and the coil 62 can be used to heat a gas 63 that flows below the substrate 16. In one embodiment, the gas 63 may be any suitable gas that provides good heat transfer characteristics and does not introduce foreign particles into the gas used in the deposition process to contaminate the material layer 32. The gas 63 can be released into the convection device through a regulating valve 64, which is controlled by a computer 66. The gas 63 then passes under the substrate 16 and exits through the exhaust port 68. The gas 63 warms the substrate 16 before or during the deposition of the material layer 32 in order to reduce the inherent stress in the deposited material. FIG. 6 shows an exemplary device for annealing the material layer 32 by using radiation before or during the deposition of material on the substrate 16. It is capable of directing one or more bulbs 70 that provide infrared or ultraviolet range radiation toward the substrate 16. The bulbs 70 can include unfocused reflectors 72 that direct radiant heat in the direction of the substrate 16. During or during the deposition of a material on the substrate 16, the bulb 70 can be turned on to perform a heat treatment on the substrate 16 and reduce the stress in the material layer 32. In one embodiment, the bulbs can face the back side of the substrate 16. Although the present invention has been described in detail, it should be understood that changes, substitutions, and alterations can be made therefrom without departing from the field and scope of the present invention as defined by the scope of the appended patents. 22 200302395 发明, description of the invention [Schematic simple tax declaration 3 From the following description combined with the attached drawings, you can obtain a more complete and thorough understanding of the embodiment of the invention and its advantages, where the same reference numerals represent the same The features are as follows: 5 Figure 1 shows a cross-sectional view of a photomask assembly, which includes a photomask made from a photomask substrate in accordance with the teachings of the present invention; 2A to 2C show In accordance with the teachings of the present invention, a cross-sectional view of different stages of a mask substrate manufacturing process; FIG. 3 shows an ion beam deposition apparatus for depositing materials on a substrate in accordance with the teachings of the present invention; Fig. 4 shows an exemplary device for annealing a material deposited on a substrate by conduction in accordance with the teachings of the present invention; Fig. 5 shows a method for annealing the material deposited on a substrate by convection in accordance with the teachings of the present invention Exemplary device for annealing material on a substrate; FIG. 6 shows an exemplary device for annealing a material deposited on a substrate by light shooting in accordance with the teachings of the present invention. [Representative symbolic table of the main elements of the ring type] 10 ... mask assembly 3 0 ... mask base 12 ... mask 3 2 ... material layer 14 ... coating assembly 3 4 ... resist layer 16 ... matrix 40 ... deposition Grab 18 ... Pattern layer 42 ... g mark 20 ... Frame 44 ... Auxiliary grab 22 ... Protective film 50 ... Gripping slot plate 23 200302395 玖, Description of the invention 52 ... Resistance line 54 ... Hot plate 55 ... Thermocouple 56 ... Adjustable Generator 58, 66 ... Electric moon 6 6 ... O-ring 62 ... coil 63 ... gas 64 ... regulating valve 68 ... exhaust connection 7 0 ... bulb 72 ... reflector 24

Claims (1)

200302395 拾、申請專利範圍 1· 一種用以製造一光罩之方法,其包含: 將一第一材料沈積於至少一部份之基質上,以便 形成一第一材料層;及 在完成第一材料之沈積以前,對基質實施一溫度 5 高於約攝氏300度之熱處理。 2·如申請專利範圍第1項之方法,其進一步包含能夠操作 用以降低該第一材料層中之應力的熱處理。 3·如申請專利範圍第1項之方法,其進一步包含在第一材 料沈積以前實施熱處理。 10 4·如申請專利範圍第1項之方法,其進一步包含在第—材 料沈積期間實施熱處理。 5·如申請專利範圍第4項之方法,其進一步包含能夠操作 用以降低在第一材料沈積期間沈積於基質上之污染物 的熱處理。 15 6.如中請專利範圍第4項之方法,其進—步包含在第—材 料沈積期間持續地實施該熱處理。 7.如申請專利範圍第4項之方法,其進—步包含在第_材 料沈積期間間歇地實施該熱處理。 8·如申请專利範圍第"之方法,其進—步包含藉由轉射 20 實施該熱處理。 9.如申请專利範圍第β之方法,其進—步包含藉由辦流 實施該熱處理。 1〇·如申請專利範圍第1項之方法,其進-步包含藉由傳導 實施該熱處理。 25 拾、申請專利範圍 η·=申請專利範圍第1項之方法,其進_步包含由化學蒸 & b積物理瘵A沈積與離子束沈積所組成之群組中 選出的沈積程序。 〜申明專利範圍第i項之方法,其進—步包含共同沈積 第一與第二材料,以便形成一分級材料層。 13·如申請專利範圍第1項之方法,其進-步包含: 將一第二材料沈積於至少一部份的第一材料上, 以形成一第二材料層;及 在完成該第二材料的沈積之前實施熱處理。 14·種用以製造一光罩之方法,其包含: 使用離子束沈積,將至少一種材料沈積於至少一 部份的基質之上,以形成至少一材料層;及 在該材料沈積期間,對於基質實施溫度高於約攝 氏300度之熱處理’該熱處理能夠用以降低材料層之中 的應力。 .如申明專利範圍第14項之方法,纟進一步包含能夠用 以在沈積程序期間降低沈積於基質上之污染物的熱處 理。 16.如申請專利範圍第14項之方法,其進一步包含藉由輻 射實施該熱處理。 17·如申請專利範圍第14項之方法,其進-步包含藉由對 流實施該熱處理。 .如申請專利範圍第14項之方法,其進一步包含藉由傳 導貫施该熱處理。 26 200302395 拾、申請專利範圍 19.如申請專利範圍第14項之方法,其進—步包含: 依序將複數種材料沈積於至少—部份的基質上, 以形成複數個材料層;及 在各材料沈積期間對基質實施熱處理。 20· —種光罩,其包含: 一基質;及 一圖案層,其形成於至少一部份之該基質上 法為: 10 將一材料沈積於至少一部份之基質上 案層;及 形成該圖 在完成該材料之沈積以前,對於基質實施溫度高 於約攝氏300度之熱處理。 〇 仏如申請專料圍第2G項之光罩,其進_步包含能夠降 低該圖案層中之應力的熱處理。 仏如申請專利範圍第20項之光罩,其進—步包含能夠在該 材料沈積期間降低沈積於基質上之污染物的熱處理。 23 ·如申請專利範圍第2〇項之光罩,其進一步包含: 依序將複數種材料沈積於至少一部份的基質上, 以形成複數個材料層;及 在各材料沈積期間對基質實施熱處理。 24· —種光罩,其包含·· 一護膜總成,其部份藉由一護膜框架以及一附接 於該框架之護膜加以界定;及 一光罩’其從薄膜總成對面結合到該薄膜總成, 27 200302395 拾、申請專利範圍 該光罩包括一形成於一基質上之圖案層,該圖案層係 藉由下列方法形成: 將至少一種材料沈積於至少一部份的基質上,形 成該圖案層; 在沈積完成之前,實施一溫度約高於攝氏3〇〇度之 熱處理。 25.如申請專利範圍第24項之光罩,其進—步包含能夠用 以降低圖案層中應力之熱處理。 ίο %·如申請專利範圍第24項之光軍,其進_步包含能夠用 以降低在材料沈積期間沈積於基質上之污染物的熱處 A如申請專利範圍第24項之光罩,以該光罩包含一相 位偏移光罩。 28200302395 Patent application scope 1. A method for manufacturing a photomask, comprising: depositing a first material on at least a part of a substrate to form a first material layer; and completing the first material Prior to deposition, the substrate is subjected to a heat treatment at a temperature of higher than about 300 degrees Celsius. 2. The method according to item 1 of the patent application scope, further comprising a heat treatment operable to reduce stress in the first material layer. 3. The method according to item 1 of the patent application scope, further comprising performing a heat treatment before depositing the first material. 10 4. The method according to item 1 of the patent application scope, further comprising performing heat treatment during the first material deposition. 5. The method of claim 4 further comprising a heat treatment operable to reduce contaminants deposited on the substrate during the deposition of the first material. 15 6. The method according to item 4 of the patent, further comprising the step of continuously performing the heat treatment during the deposition of the material. 7. The method of claim 4 in the patent application, further comprising performing the heat treatment intermittently during the deposition of the material. 8. The method according to the scope of patent application, which further includes performing the heat treatment by retransmission 20. 9. The method according to the scope of patent application, which further includes performing the heat treatment by processing. 10. The method according to item 1 of the scope of patent application, further comprising performing the heat treatment by conduction. 25. Patent application scope η · = The method of patent application scope item 1 further includes a deposition procedure selected from the group consisting of chemical vaporization & physical product A deposition and ion beam deposition. The method of claiming item i of the patent claims further includes co-depositing the first and second materials to form a graded material layer. 13. The method of claim 1 in the patent application scope, further comprising: depositing a second material on at least a portion of the first material to form a second material layer; and completing the second material A heat treatment is performed before the deposition. 14. A method for manufacturing a photomask, comprising: using ion beam deposition, depositing at least one material on at least a portion of a substrate to form at least one material layer; and during the material deposition, for The substrate is subjected to a heat treatment at a temperature higher than about 300 ° C. This heat treatment can be used to reduce the stress in the material layer. As stated in the method of claim 14 of the patent, the method further includes a thermal treatment that can be used to reduce contaminants deposited on the substrate during the sedimentation process. 16. The method of claim 14 further comprising applying the heat treatment by radiation. 17. The method according to item 14 of the patent application, further comprising performing the heat treatment by convection. The method of claim 14 further includes applying the heat treatment by conduction. 26 200302395 Patent application scope 19. The method of the patent application scope item 14, further comprising: sequentially depositing a plurality of materials on at least part of the substrate to form a plurality of material layers; and The substrate is heat-treated during the deposition of each material. 20 · —A photomask comprising: a substrate; and a pattern layer formed on at least a portion of the substrate by: 10 depositing a material on at least a portion of the substrate; and forming In this figure, before the deposition of the material is completed, a heat treatment is performed on the substrate at a temperature higher than about 300 degrees Celsius. 〇 If applying a photomask for item 2G, the steps include heat treatment that can reduce the stress in the pattern layer. For example, the photomask of the scope of application for patent No. 20 further includes a heat treatment capable of reducing the pollutants deposited on the substrate during the deposition of the material. 23. The photomask according to claim 20, further comprising: sequentially depositing a plurality of materials on at least a part of the substrate to form a plurality of material layers; and performing the substrates during the deposition of each material Heat treatment. 24 · —a photomask comprising: · a protective film assembly, a part of which is defined by a protective film frame and a protective film attached to the frame; and a photomask 'which is opposite to the film assembly Combined with the film assembly, 27 200302395, patent application scope The photomask includes a patterned layer formed on a substrate, the patterned layer is formed by: depositing at least one material on at least a portion of the substrate Before the deposition is completed, a heat treatment is performed at a temperature higher than about 300 ° C. 25. The photomask of claim 24, further comprising a heat treatment capable of reducing stress in the pattern layer. ίο% · If the light army of the scope of the patent application 24, its further steps include a hot place that can be used to reduce the pollutants deposited on the substrate during the deposition of the material A such as the photomask of the scope of the patent application 24, The mask includes a phase shift mask. 28
TW92101492A 2002-01-24 2003-01-23 Photomask and method for manufacturing the same TW557409B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US35153302P 2002-01-24 2002-01-24

Publications (2)

Publication Number Publication Date
TW200302395A true TW200302395A (en) 2003-08-01
TW557409B TW557409B (en) 2003-10-11

Family

ID=32298156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92101492A TW557409B (en) 2002-01-24 2003-01-23 Photomask and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW557409B (en)

Also Published As

Publication number Publication date
TW557409B (en) 2003-10-11

Similar Documents

Publication Publication Date Title
JP5762819B2 (en) MASK BLANK MANUFACTURING METHOD, TRANSFER MASK MANUFACTURING METHOD, MASK BLANK AND TRANSFER MASK
JP6133530B1 (en) Mask blank, phase shift mask, and semiconductor device manufacturing method
JP4462423B2 (en) Photomask blank manufacturing method
JP4650608B2 (en) Photomask blank and photomask manufacturing method
KR102254035B1 (en) Mask blanks, transfer masks, and manufacturing methods of semiconductor devices
TWI233534B (en) Photomask blank and methods of manufacturing photomask
JP6371221B2 (en) Mask blank manufacturing method and transfer mask manufacturing method
US7056623B2 (en) Photomask and method for manufacturing the same
CN111758071B (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
CN111902772A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
JP4371230B2 (en) Photomask blank manufacturing method
JP6964115B2 (en) Manufacturing method for mask blanks, transfer masks, and semiconductor devices
JP7337245B2 (en) BLANK MASK, BLANK MASK FORMING APPARATUS, AND BLANK MASK MANUFACTURING METHOD
JP3806711B2 (en) REFLECTIVE MASK BLANK, REFLECTIVE MASK MANUFACTURING METHOD, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2014209200A (en) Method of manufacturing mask blank and method of manufacturing transfer mask
US6830851B2 (en) Photolithographic mask fabrication
TW200302395A (en) Photomask and method for manufacturing the same
JPH07295203A (en) Production of blank for halftone phase shift mask
JP4687929B2 (en) Photomask blank and photomask manufacturing method
JP5629240B2 (en) Flash irradiation device
JP6153820B2 (en) Mask blank manufacturing method and transfer mask manufacturing method
TWI820729B (en) Lithography mask and methods for manufacturing the same
JP6336792B2 (en) Mask blank manufacturing method and transfer mask manufacturing method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees