TW200301268A - Polymer and polymer production method - Google Patents

Polymer and polymer production method Download PDF

Info

Publication number
TW200301268A
TW200301268A TW091132225A TW91132225A TW200301268A TW 200301268 A TW200301268 A TW 200301268A TW 091132225 A TW091132225 A TW 091132225A TW 91132225 A TW91132225 A TW 91132225A TW 200301268 A TW200301268 A TW 200301268A
Authority
TW
Taiwan
Prior art keywords
polymer
group
weight
content
scope
Prior art date
Application number
TW091132225A
Other languages
Chinese (zh)
Inventor
Tetsuo Itoh
Tatsuya Ohsumi
Takehisa Matsuda
Original Assignee
Sanyo Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Ind Ltd filed Critical Sanyo Chemical Ind Ltd
Publication of TW200301268A publication Critical patent/TW200301268A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/046Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • C08G18/5015Polyethers having heteroatoms other than oxygen having halogens having fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5072Polyethers having heteroatoms other than oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/773Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The purpose of the present invention is to provide a polymer with high moisture bonding strength (water resistance bonding strength) suitable for the use as medical adhesive. The employed polymer is the polymer capable of forming hardened skin film for medical adhesive purpose, which is characterized in that its viscosity is 0.5-2000 Pa.s at 37 DEG C, its saturated water absorption is 0.2-5 m1/g, its water absorption rate at early stage is preferably to be 0.1-0.5 ml/g.min, the moisture extension rate of its hardened skin film is preferably to be 100-1500%, and 100% moisture modulus of its hardened skin film is preferably to be 0.01-10 MPa. And it contains ethylene oxide group, and the content of the ethylene oxide group is preferably to be 30-100 weight % with reference to the weight of the polymer.

Description

玖、發明說明 〔發明所屬之技術領域〕 本發明係關於聚合物及聚合物之製造方法。更詳細言 之’係關於耐水接合強度優異,尤其是在對肺、動脈及心 臟等濕潤狀態活體組織的接合特別有效之適於作爲醫療用 接著劑之聚合物與聚合物之製造方法。 〔先前技術〕 以往,作爲醫療用接著劑已知有:經由含氟聚異氰酸 酯與親水性聚醚多元醇反應所得之親水性胺基甲酸乙酯預 聚物(日本特開平1-227762公報)。 然而,於習用的醫療用接著劑中,起因於含氟聚異氰 酸酯成分與親水性聚醚多元醇的高反應性高,而發生不均 一反應之結果,於預聚物製造中或可見到異常的增黏,或 預聚物的組成容易不均一,易發生接合強度參差之問題。 而且,這樣的預聚物之濕潤接合強度低是其問題。 〔發明內容〕 亦即,本發明以提供濕潤接合強度(耐水接合強度)高而 適於作爲醫療用接著劑之聚合物爲目的。 本發明者等,爲達成上述目的深入硏究,發現若使用 具有特定的黏度與初期吸水速度的聚合物,可得到濕潤接 合強度優異的醫療用接著劑,進而到達本發明之完成。 亦即,本發明之聚合物之特徵’係可形成硬化皮膜之 醫療用接著劑用之聚合物,於37°C之黏度爲0.5〜2000Pa · s ,且飽和吸水量爲0.2〜5ml/g。 20j30I£68 發明之詳細揭示 本發明之聚合物於37°C之黏度(Pa· s)以0.5以上爲佳 ,而以1以上更佳,尤以3以上爲特佳,更以5以上爲最 佳,且以2000以下爲佳,而以⑺⑻以下更佳,尤以500以 下爲特佳’更以50以下爲最佳。在此範圍內,則接著劑的 塗佈性有變佳的傾向。 <聚合物黏度之測定法> 依照JIS K71 17-1987中規定之「使用旋轉黏度計的液 狀樹脂之黏度試驗方法」所記載的D法,用DA型黏度計 籲 測定。作爲旋轉黏度計,可使用德基美g(股)公司製BH型 黏度計等。 本發明之聚合物的飽和吸水量(ml/g)以0.2以上爲佳, 而以0.3以上更佳,尤以0.4以上爲特佳,更以0.5以上爲 最佳,且,以5以下爲佳,而以3以下更佳,尤以1以下 爲特佳,更以0.7以下爲最佳。在此範圍內,則接合強度( 尤其是初期接合強度)有變高的傾向。 <飽和吸水量的測定法 > 籲 於JIS K7224-1996「高吸水性樹脂的吸水速度試驗方法 」中的解說圖1中所記載的D/W法吸水速度測定裝置(量管 的容量:25ml,長度:55cm,小孔的直徑:2mm)中,在25 t、濕度50%的室內,設置有以直徑3.7cm的濾紙(瓦特曼 公司製玻璃微纖維濾紙GF/A等)代替不織布及內徑3.7cm 的聚碳酸酯製的圓筒者,使用其進行測定。首先,在將各 閥關閉的狀態下,將試驗液(生理食鹽水)25ml放入量管中 7 2003ϋΙ^6δ 後,經由將各閥打開將試驗液塡充到量管至閥之間。接著 ,將橡皮拴裝上後,將量管下的閥打開,把自濾紙溢出的 試驗液擦除,讀取量管的刻度U1)。然後,將聚合物l.Og 加到圓筒中的濾紙上,經由將直徑3.7cm的圓柱往圓筒內 壓擠,使聚合物均一地設定妥,於30分鐘後讀取量管的刻 度(a2),以(a2)減(al)所得之値作爲飽和吸水量(ml/g)。 初期吸水速度(ml/g · min),以0.01以上爲佳,而以 0.02以上更佳,尤以〇.〇3以上爲特佳,更以0.04以上爲最 佳,且,以0.5以下爲佳,而以0.3以下更佳,尤以0.2以 下爲特佳,更以0·1以下爲最佳。在此範圍內,接合強度( 尤其是初期接合強度)會更高。 <初期吸水速度的測定法> 以與飽和吸水量同樣的方法,於使聚合物設定妥當之2 分鐘後讀取刻度(a3),以(a3)減(al)所得之値的1/2作爲初期 吸水速度(ml/g · min)。 本發明之聚合物的硬化皮膜的濕潤延伸率(%),以1〇〇 以上爲佳,而以200以上更佳,尤以300以上爲特佳,更 以400以上爲最佳,且,以15〇〇以下爲佳,而以1200以下 更佳,尤以1000以下爲特佳,更以800以下爲最佳。在此 範圍內,接合強度(尤其是耐水接合強度)會更高。 又,硬化皮膜的濕潤100%模數(MPa),以〇.〇1以上爲 佳,而以0.05以上更佳,尤以〇·!以上爲特佳,更以〇.4以 上爲最佳,且,以10以下爲佳,而以5以下更佳,尤以2 以下爲彳寸佳,更以0.7以下爲最佳。在此範圍內,接合強度 (尤其是耐水接合強度)會更高。 <硬化皮膜的濕潤延伸率及濕潤100%模數的測定法〉 硬化皮膜的濕潤延伸率及濕潤100%模數測定用的測定 試料,係在玻璃板上以塗佈器塗佈聚合物成厚度約l〇〇//m 、10cm見方的大小,在25°C、58%相對濕度的條件下放置 48小時使其硬化,然後,用JIS K6251-1993中所記載的啞 鈴狀3號形狀,經由衝壓,備妥試料。然後,將此經衝壓 的試料保持於生理食鹽水中1小時,使用紗布將水分去除 後,正確地測定其厚度,於5分鐘內,依照JIS K625M993 ,在25°C、50%相對濕度的環境下,以拉伸速度300mm/min ,測定其切斷時延伸率及顯示100%延伸時的拉伸張力。又 ,拉伸試驗機,可使用〗IS K6850-1999中規定之試驗機(島 津製作所製,自動繪圖機AGS-500B等)。 於本發明中,作爲形成硬化皮膜之聚合物,包含具有 官能基的聚合物[聚醚、聚酯、聚醯胺、聚脲、聚氨酯及乙 烯系聚合物(丙烯酸聚合物、聚苯乙烯、聚烯烴、聚二烯及 天然橡膠等)]等。作爲反應性官能基,可舉出:異氰酸基、 環氧基(縮水甘油基及2,3-氧代環己基等)、(甲基)丙烯醯基 、氰基(甲基)丙烯醯基、烷氧矽烷基(三甲氧矽烷基及三乙 氧矽烷基等)等及此等的前驅物[阻隔異氰酸基(苯氧基胺基 甲醯等)等]等。 本發明之聚合物的數量平均分子量(Μη),以500以上 爲佳,而以800以上更佳,尤以1000以上爲特佳,更以 1200爲最佳,並以500000以下爲佳,而以100000以下更 佳,尤以10000以下爲特佳,更以5000以下爲最佳。在此 範圍內,接合強度(尤其是濕潤接合強度)會更高。又,數量 平均分子量可用凝膠滲透層析法(GPC : Gel Permeation Chromatography),以聚乙二醇或聚苯乙烯作爲標準物質來 求出。 作爲本發明之聚合物,由接合強度(尤其是初期接合強 度)等的觀點考量,以親水性聚合物爲佳。作爲親水性聚合 物,意指在1分子中,含有氧化乙烯基30重量%以上者、 及與該聚合物對水的親和性具有同等的對水親和性者。聚 合物中的氧化乙烯基的含有量(重量%),以聚合物的重量爲 基準,以30以上爲佳,而以40以上更佳,尤以45以上爲 特佳,更以50以上爲最佳,且以100以下爲佳,而以90 以下更佳,尤以80以下爲特佳,更以75以下爲最佳。在 此範圍內,聚合物的接合強度(尤其是初期接合強度)會更高 〇 有關本發明之聚合物,就反應性的觀點考量,以具有 異氰酸基來作爲反應性官能基之含異氰酸基的聚合物爲佳 。於具有異氰酸基之場合,聚合物中的異氰酸基含有量(重 量%),以聚合物的重量爲基準,以0.1以上爲佳,而以0.5 以上更佳,尤以1以上爲特佳,更以2以上爲最佳,且以 20以下爲佳,而以15以下更佳,尤以10以下爲特佳,更 以5以下爲最佳。在此範圍內,聚合物的接合強度(尤其是 初期接合強度及耐水接合強度)會更高。又,異氰酸基含有 量,藉由將聚合物溶解於過剩的胺類(二丁基胺等)之溶劑( 甲苯、二甲基甲醯胺、二甲亞楓等)溶液中,使其反應後, 將未反應的胺以鹽酸之甲醇溶液等進行滴定,求出每單位 重量之異氰酸基的莫耳數,將該莫耳數乘以42之値作爲異 氰酸基含有量(重量%)。 作爲含有異氰酸基之聚合物,包含:具有由聚異氰酸 酯(A)與含有活性氫之聚合物(B)反應而成的構造之胺基甲酸 乙酯預聚物(UP);及未使用聚異氰酸酯之聚合物(NUP),係 將含有活性氫之聚合物(B)中的1個以上官能基轉變成異氰 酸基而成。 _ 爲得到胺基甲酸乙酯預聚物(UP)所使用之聚異氰酸酯 (A),可使用:碳數(NCO基中的碳除外,以下同)6〜19的芳 香族聚異氰酸酯、碳數1〜22的脂肪族聚異氰酸酯、碳數 6〜19的脂環族聚異氰酸酯、碳數8〜16的芳香脂肪族聚異氰 酸酯、此等之變性體及此等之至少2種的混合物等。 作爲芳香族聚異氰酸酯,可舉出:1,3-或1,4-苯撐二異 氰酸酯(PDI)、2,4-或2,6-甲苯撐二異氰酸酯(TDI)、粗製TDI 、2,4’-或4,4’-二苯基甲烷二異氰酸酯(MDI)、粗製MDI、 · 15-萘二異氰酸酯、4,4’,4”-三苯基甲烷三異氰酸酯、間-或 對-異氰酸基苯磺醯基異氰酸酯及此等的混合物等。 作爲脂肪族聚異氰酸酯,可使用不含氟之脂肪族聚異 氰酸酯及含氟之脂肪族聚異氰酸酯等。 作爲不含氟之脂肪族聚異氰酸酯,可舉出:甲撐二異 氰酸酯、乙撐二異氰酸酯、四甲撐二異氰酸酯、六甲撐二 異氰酸酯(HDI)、十二甲撐二異氰酸酯、1,6,11-十一烷三異 11 氰酸酯、2,2,4-三甲基六甲撐二異氰酸酯、賴氨酸二異氰酸 酯、2,6-二異氰酸基甲酸己酯、雙(2-異氰酸基乙基)反式丁 烯二酸酯、雙(2-異氰酸基乙基)碳酸酯、2-異氰酸基乙基-2,6-二異氰酸基己酸酯,及此等之混合物等。 作爲含氟脂肪族聚異氰酸酯,可使用:以〇CN-RrNC〇 代表者、以〇CN-CH2-Rf_CHrNC〇代表者、以〇CN-CF2-R-CF2-NC〇代表者、以〇CN-CH2-CF2-R-CF2-CH2-NC〇代表者 、以OCN-CHCCF+R-CIKCF+NCO代表者及此等之混合物 等。惟’式中之心代表可含有醚鍵之碳數1〜20的全氟烷撐 _ 基’ R代表可含有醚鍵之碳數1〜18的烷撐基。 作爲以〇CN-RrNC〇代表者,可舉出:二氟甲撐二異 氰酸酯、全氟二甲撐二異氰酸酯、全氟三甲撐二異氰酸酯 '全氟二十烷二異氰酸酯、雙(異氰酸基全氟乙基)醚及雙( 二異氰酸基全氟丙基)醚等。 作爲以〇CN-CH2-RrCHrNCO代表者,可舉出:雙(異 氰酸基甲基)二氟甲烷、雙(異氰酸基甲基)全氟乙烷、雙(異 氰酸基甲基)全氟丙烷、雙(異氰酸基甲基)全氟丁烷(FHMDI) φ 、雙(異氰酸基甲基)全氟戊烷、雙(異氰酸基甲基)全氟己烷 、雙(異氰酸基甲基)全氟二十烷及雙(異氰酸基甲基全氟乙 基)酸等。 作爲以〇CN-CF2-R-CF2-NC〇代表者,可舉出:雙(異氰 酸基二氟甲基)甲烷、雙(異氰酸基二氟甲基)丙烷、雙(異氰 酸基二氟甲基)十八烷及2,2,-雙(異氰酸基二氟甲基乙基)醚 等。 12 2ϋϋ30Ι£6Β 作爲以〇cn-ch2_cf2-r-cf2-ch2-nc〇代表者,可舉出 :雙(2-異氰酸基-1,1-二氟乙基)甲烷、雙(2-異氰酸基-1,1-二 氟乙基)丙烷、雙(2-異氰酸基-1,1-二氟乙基)十六烷及雙(2-異氰酸基-1,1-二氟乙基乙基)醚等。 作爲以〇CN-CH(CF3)_R-CH(CF3)-NC〇代表者,可舉出 :二異氰酸基-1,1,1,4,4,4-六氟戊烷及雙(異氰酸基-3,3,3-三 氟丙基)醚等。 作爲脂環族聚異氰酸酯,可使用不含氟之脂環族聚異 氰酸酯及含氟之脂環族聚異氰酸酯等。 籲 作爲不含氟之脂環族聚異氰酸酯,可舉出:異佛爾酮 二異氰酸酯(IPDI)、二環己基甲烷-4,4’-二異氰酸酯(氫化 MDI)、環己撐二異氰酸酯、甲基環己撐二異氰酸酯(氫化 HDI)、4,4’,4”-三環己基甲烷三異氰酸酯、雙(2-異氰酸基乙 基)-4-環己烯-12-二羧酸酯、2,5-或2,6-降冰片烷二異氰酸酯 及此等之混合物等。 作爲含氟脂環族聚異氰酸酯,可舉出:二異氰酸基全 氟環己烷、二異氰酸基四氟環己烷、雙(異氰酸基甲基)全氟 籲 環己烷、雙(異氰酸基甲基)四氟環己烷、雙(異氰酸基甲基) 全氟二甲基環己烷、雙(異氰酸基甲基)二甲基四氟環己烷、 雙(異氰酸基二氟甲基)環己烷、雙(異氰酸基全氟環己基)、 雙(異氰酸基四氟環己基)、雙(異氰酸基全氟環己基)全氟丙 烷、雙(異氰酸基四氟環己基)全氟丙烷、雙(異氰酸基甲基 全氟環己基)全氟丙烷、雙(異氰酸基甲基四氟環己基)全氟 丙院、雙(2 -異氯酸基-1,1-二氣乙基)¾己院、雙(2 -異氨酸基 13 -1,1-二氟乙基)環己烷及此等的混合物等。 作爲芳香脂肪族聚異氰酸酯,可使用不含氟之芳香脂 肪族聚異氰酸酯及含氟之芳香脂肪族聚異氰酸酯。 作爲不含氟之芳香脂肪族聚異氰酸酯,可舉出:間-或對-二甲苯二異氰酸酯(XDI)、α,α,α’,α’-四甲基二甲 苯二異氰酸酯(TMXDI)、α,α,α’,α’-四乙基二甲苯二異氰 酸酯(TEXDI)及此等之混合物等。 作爲含氟芳香脂肪族族聚異氰酸酯,可舉出:雙(異氰 酸基甲基)全氟苯、雙(異氰酸基甲基)二甲基全氟苯、雙(異 _ 氰酸基全氟苯基)全氟丙烷、雙(異氰酸基甲基全氟苯基)全 氟丙烷、雙(2-異氰酸基2,2-二氟乙基)苯、雙(2-異氰酸基 1,1-二氟乙基)苯及此等之混合物等。 作爲此等之變性體,可舉出:變性HDI(胺基甲酸乙酯 變性HDI、碳化二亞胺變性HDI及三烴基磷酸酯變性HDI 等)、變性FHMD(胺基甲酸乙酯變性FHMDI、碳化二亞胺變 性FHMDI及三烴基磷酸酯變性FHMDI等)、變性MDI(胺基 甲酸乙酯變性MDI、碳化二亞胺變性MDI及三烴基磷酸酯 修 變性MDI等)、變性TDI(胺基甲酸乙酯變性TDI、碳化二亞 胺變性TDI及三烴基磷酸酯變性TDI等)、及此等之混合物 等。 又,作爲上述以外的聚異氰酸酯(A),以使用下述者爲 佳:含有第3級胺基之聚異氰酸酯[N,N-雙(異氰酸基乙基) 甲胺及Ν,Ν-雙(4-異氰酸基環己基)甲胺等]及含有第4級氨 合基之聚異氰酸酯[氯化Ν,Ν-雙(異氰酸基乙基)二乙基銨及 14 氯化N,N-雙(4-異氰酸基環己基)二乙基銨等]。藉由使用此 等聚異氰酸酯,可提高硬化反應性。 作爲聚異氰酸酯(A),就(A)的安全性的觀點考量,以脂 肪族聚異氰酸酯、脂環族聚異氰酸酯、含有第3級胺基之 聚異氰酸酯及含有第4級氨合(ammonio)基之聚異氰酸酯爲 佳,就反應性等的觀點考量,更佳者爲,含氟之脂肪族聚 異氰酸酯、含氟之脂環族聚異氰酸酯、含有第3級胺基之 聚異氰酸酯及含有第4級氨合基之聚異氰酸酯;特佳者爲 ,含氟之脂肪族聚異氰酸酯及含氟之脂環族聚異氰酸酯; · 最佳者爲,以〇CN-CH2-Rf-CH2-NC〇代表者。 作爲含有活性氫之聚合物(B),包含:聚醚{含有羥基之 聚醚(B1)、含有硫醇基之聚醚(B2)、含有1級及/或2級胺 基之聚醚(B3)及含有羧基之聚醚(B4)}、聚酯{含有羥基之聚 酯(B5)、含有硫醇基之聚(硫)酯(B6)、含有1級及/或2級胺 基之聚酯(B7)及含有羧基之聚酯(B8)}、及聚醯胺{含有羥基 之聚醯胺(B9)、含有硫醇基之聚醯胺(B10)、含有1級及/或 2級胺基之聚醯胺(B11)及含有羧基之聚醯胺(B12)}等。 鲁 作爲含有羥基之聚醚(B1),可使用具有至少2個活性氫 之化合物(b)的氧化烯烴之(共)加成物等。 作爲氧化烯烴,可舉出:碳數2〜8的氧化烯烴(氧化乙 烯、氧化丙烯、氧化丁烯、四氫呋喃及苯基氧化乙烯等)、 及碳數2〜8的氟代氧化烯烴(1,1-二氟代氧化乙烯、四氟代 氧化乙烯、3,3,3-三氟代氧化丙烯、全氟氧化丙烯、全氟氧 化丁烯、全氟四氫呋喃及全氟苯基氧化乙烯)等。作爲氧化 15 烯烴,以氧化乙烯及氧化丙烯爲佳,而以氧化乙烯單獨及 氧化乙烯與氧化丙烯的混合物爲佳。 又,於共加成物的場合,其加成形式可爲無規、嵌段 及此等之組合之任一者皆可,惟以無規的形式爲佳。 於使用氟代氧化乙烯及/或氟代氧化烯烴的場合,以在 使氧化乙烯及/或氧化烯烴反應之後,此等的氟代氧化乙烯 及/或氟代氧化烯烴進行加成反應爲佳。經由末端有氟化合 物的存在,可使含有異氰酸基之聚合物的硬化反應性更加 提高。氟代氧化乙烯及氟代氧化烯烴之中,以1,1-二氟氧 籲 化乙烯、全氟氧化乙烯及3,3,3-三氟氧化丙烯爲佳,尤以 3,3,3_三氟氧化丙烯更佳。 於共加成物的場合,氧化乙烯的含有量(重量%),以共 加成物的重量爲基準,以30以上爲佳,而以50以上更佳 ’尤以60以上爲特佳,更以70以上爲最佳,且以100以 下爲佳,而以98以下更佳,尤以95以下爲特佳,更以90 以下爲最佳。在此範圍內,聚合物的接合強度(尤其是初期 接合強度)會更高。 _ 作爲具有至少2個活性氫之化合物(b),可使用水、二 元醇、3〜6價或以上的多元醇、二羧酸、3〜4價或以上的聚 羧酸、單胺、聚胺及聚硫醇等。又,於使用具有2個活性 氫之化合物的場合,可得到2價的多元醇,於使用具有3 個以上活性氫之化合物的場合,可得到3價以上的多元醇 〇 作爲二元醇,可使用:碳數2〜30的烷撐二醇(乙二醇 16 2ϋϋ30Ι26Β 、12-丙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇、辛二 醇、癸二醇、十二烷二醇、季戊二醇及2,2-二乙基-1,3-丙 二醇等);碳數6〜24的脂環型二醇(1,4-環己烷二甲醇及加氫 之雙酚A等);碳數15〜30的雙酚(雙酚A、雙酚F及雙酚 S);二羥基苯(兒茶酚及氫醌等);重量平均分子量 (Mw)100〜5000的聚酯二醇[聚內酯二醇(聚ε -己內酯二醇等) 、脂肪族聚酯二醇(乙二醇及己二酸的聚酯二醇、及丁二醇 及己二酸的聚酯二醇等)、芳香族聚酯二醇(聚乙二醇及對苯 二甲酸的聚酯二醇等)等]及MwlOOO〜20000的聚丁二烯二醇 籲 等。又,Mw係用凝膠滲透層析法(GPC)以聚乙二醇或聚苯 乙烯作爲標準物質來求出。 作爲3〜6價的多元醇,可用3〜6價的碳數3〜8的脂肪 族多元醇(甘油、三甲醇乙烷、三甲醇丙烷、季戊四醇、山 梨糖醇酐及山梨醇等)等。 作爲二羧酸,可使用碳數4〜32的鏈烷二羧酸(琥珀酸 、己二酸、癸二酸、十二碳烯琥珀酸、壬二酸、癸二酸、 十二烷二羧酸、十八烷二羧酸、十二烷基琥珀酸及十八烷 籲 基琥珀酸等);碳數4〜32的鏈烯二羧酸(順式丁烯二酸、反 式丁烯二酸、甲基順丁烯二酸、甲基反丁烯二酸、二聚酸 ,十二碳烯琥珀酸及十五碳烯琥珀酸等);碳數8〜20的芳 香族二羧酸(苯二甲酸、間苯二甲酸、對苯二甲酸及萘二羧 酸等)等。 作爲3〜4價或以上的聚羧酸,可用碳數9〜20的芳香族 聚羧酸(偏苯三酸、均苯四甲酸等)等。 17 20ϋ30Ι£6δ 又,亦可使用此等二羧酸或聚羧酸的酸酐及低級烷基 酯等。作爲此等二羧酸或聚羧酸的酸酐,可舉出:順丁烯 二酸酐、反丁烯二酸酐、偏苯三酸酐及均苯四甲酸酐等。 又,作爲低級烷基,可使用碳數1〜4的烷基,可舉出:甲 基、乙基、異丙基及特丁基等。 作爲單胺,可用:氨及碳數1〜20的脂肪族胺{碳數 1〜20的烷基胺(甲胺、乙胺、丙胺、己胺、十二胺及二十胺 等)等};碳數4〜15的脂環型胺(胺基環己烷、異佛爾酮單胺 及4-甲撐環己烷單胺);碳數4〜15的雜環型胺(派啶及Ν-胺 _ 基乙基吡啶等);碳數6〜15的含有芳香環之脂肪族胺(胺基 甲基苯);碳數6〜15的芳香族胺(苯胺等)等。 作爲聚胺,可用:碳數2〜18的脂肪族聚胺{碳數2〜12 的烷撐二胺(乙撐二胺、丙撐二胺、三甲撐二胺、六甲撐二 胺及十一碳烯二胺等)及聚烷撐(碳數2〜6)聚胺(二乙撐三胺 、二丙撐三胺、三乙撐四胺及五乙撐六胺等)等}、碳數 4〜15的脂環型聚胺(1,3_二胺基環己烷、異佛爾酮二胺及 4,4,-甲撐二環己烷二胺);碳數4〜15的雜環型聚胺(呃嗪、 籲 Ν-胺基乙基呢嗪及1,4-二胺基乙基呢嗪等);碳數8〜15的含 有芳香環之脂肪族胺(苯撐二甲基二胺及四氯對苯撐二甲基 二胺等);碳數6〜20的芳香族聚胺(苯撐二胺、雙(胺基苯基 )甲烷、4-胺基苯基-2-氯苯胺及1-甲基-2-甲基胺基_4_胺基 苯等)等。 作爲聚硫醇,可用··硫化氫、碳數1〜24的聚硫醇(甲 烷二硫醇、乙烷二硫醇、1,4-丁烷二硫醇及1,6-己烷二硫醇 18 、12,3-丙烷三硫醇)等。 作爲此等化合物以外之具有至少2個的活性氫之化合 物(b),亦可使用:胺基羧酸、氧代羧酸及胺基醇等。 在此等具有至少2個的活性氫之化合物(b)之中,以二 醇爲佳,而以烷撐二醇更佳,尤以碳數2〜30的烷撐二醇更 佳,而以碳數2〜4的烷撐二醇(乙二醇、12_丙二醇、1,3-丙 二醇、1,4-丁二醇等)爲最佳。 又,作爲具有至少2個的活性氫之化合物(b),可使用 具有胺基且具有至少2個的活性氫之化合物(bl)及含有第4 · 級氨合基且至少具有至少2個的活性氫之化合物(b2)及此等 的混合物等爲較佳。於使用(bl)或(b2)的場合,聚合物的反 應性可更加提高。 作爲化合物(bl),可使用單胺及聚胺等。作爲單胺可舉 出:氨及碳數1〜20的單胺化合物[脂肪族胺(甲胺、乙胺、 丙胺、己胺、十二烷胺、及二十烷胺等);脂環型胺(環己胺 、異佛爾酮單胺、4-環己基甲基環己基胺及4-二環己基甲 基環己基胺等);雜環型胺(呢啶及N-胺基乙基吡啶等);含 · 有芳香環之脂肪族胺(胺基甲基苯等);芳香族胺(苯胺等)等] 等。 作爲聚胺,可舉出:碳數2〜18的聚胺{脂肪族聚胺[烷 撐二胺(乙撐二胺、丙撐二胺、三甲撐二胺、六甲撐二胺及 十一碳烯二胺等);二烷基胺基烷基胺(二甲基胺基乙胺、二 乙基胺基丙胺、二丙基胺基丙胺、甲基乙基胺基丙胺、及 二-十八烷基胺基乙胺);N,N’-二烷基烷撐二胺(N,N’_二乙基 19 乙撐二胺等)等及多烯烴聚胺(二乙撐三胺、二丙撐三胺、三 乙撐四胺及五乙撐六胺等)等];脂環型聚胺(1,3_二胺基環己 烷、異佛爾酮二胺及4,4’-甲撐二環己烷二胺);雜環型聚胺 (呢嗪、N-胺基乙基呢嗪及1,4-二胺基乙基顿嗪等);含有芳 香環之脂肪族胺(苯撐二甲基二胺及四氯對苯撐二甲基二胺 等);芳香族聚胺(苯撐二胺、雙(胺基苯基)甲烷、4-胺基苯 基-2-氯苯胺及1_甲基-2-甲基胺基-4-胺基苯等)等}等。 又,作爲化合物(bl),較佳者亦可使用:具有第3級胺 基之多元醇(2-二甲基胺基丙二醇、2-二乙基胺基乙基丙二 籲 醇及二甲基胺基乙基環己二醇等);具有第3級胺基之聚硫 醇[雙(硫醇基乙基)甲胺等];及具有第3級胺基之聚羧酸(2-二甲基胺基乙基己二酸等)等。使用此等之場合,可使聚合 物的反應性更加提高。 作爲化合物(bl),以脂肪族胺、脂環型胺、二烷基胺基 烷基胺及N,N’-二烷基烷撐二胺爲佳,而以脂肪族胺、二烷 基胺基烷基胺及N,N’-二烷基烷撐二胺更佳,尤以二烷基胺 基烷基胺爲特佳。 _ 作爲含有第4級氨合基且具有至少2個活性氫之化合 物(b2),可舉出:將含有胺基且具有至少2個活性氫之化合 物(bl)的胺基作成爲銨鹽者{第1級胺及第2級胺時係以路 易士酸作成爲鹽者、第3級胺時係以布連斯特德酸作成爲 鹽者[單胺鹽(二甲基銨·氯及N-甲基-化環己基銨·甲基硫 酸鹽等)、聚胺鹽(四甲基乙撐二銨·雙硝酸鹽等)、具有第 3級胺基之多元醇的4級化物(2-三甲基氨合丙二醇·氯等) 20 、具有第3級胺基之聚硫醇的4級化物[雙(硫醇基乙基)二 乙基銨氯化物等;1}及具有第3級胺基之聚羧酸的4級化物 (2-三甲基氨合乙基己二酸氯化物等)等]等。 又,作爲布連斯特德酸,可舉出:鹽酸、硝酸、硫酸 、蟻酸、醋酸及苯曱酸等;作爲路易士酸,可舉出:布連 斯特德酸以外之烷基(碳數1〜20)鹵化物(氯甲烷、溴甲烷、 氯乙烷、氯癸烷、溴癸烷、氯二十烷、苄基氯、苄基溴及 環氧氯丙烷等)、無機酸烷基(碳數1〜7)化物(二甲基硫酸及 苄基硫酸等)及二烷基(碳數1〜7)碳酸酯(二甲基碳酸酯及二 籲 苄基碳酸酯等)等。 作爲含有羥基之聚醚(B1)的數量平均分子量,以200以 上爲佳,而以300以上更佳,尤以400以上爲特佳,且, 以10000以下爲佳,而以8000以下更佳,尤以6000以下爲 特佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會更 高。 作爲含有硫醇基之聚醚(B2),可使用具有使含有羥基 之聚醚(B1)的羥基的至少1個轉變成硫醇基之構造者,可舉 · 出:具有使含有羥基之聚醚(B1)以環氧鹵丙烷(環氧氯丙烷 等)反應,繼以硫化氫反應所得之構造者、及具有使含有羥 基之聚醚(B1)以環狀硫醚(乙撐亞硼等)直接反應所得之構造 者等。 含有硫醇基之聚醚(B2)的數量平均分子量,以200以上 爲佳,而以300以上更佳,尤以400以上爲特佳,且,以 10000以下爲佳,而以8000以下更佳,尤以6000以下爲特 21 佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會更高 〇 作爲含有1級及/或2級胺基之聚醚(B3),可使用:使 含有羥基之聚醚(B1)的羥基、或含有硫醇基之聚醚(B2)的硫 醇基之至少1者轉變成1級及/或2級胺基之構造者;可舉 出:使(B1)或(B2)與環狀胺(乙抱亞胺、N-甲基乙抱亞胺等) 等反應所得之構造者,使含有羥基之1級胺(乙醇胺等)與酮 所製得之酮亞胺(ketimine)化合物以氧化嫌烴進行(共)加成 聚合後,進行水解將酮除去作成爲1級胺之構造者。 _ 含有1級及/或2級胺基之聚醚(B3)的數量平均分子量 ,以200以上爲佳,而以300以上更佳,尤以400以上爲 特佳,且,以10000以下爲佳,而以8000以下更佳,尤以 6000以下爲特佳。在此範圍內,則接合強度(尤其是濕潤接 合強度)會更高。 作爲含有羧基之聚醚(B4),可使用:使含有羥基之聚 醚(B1)的羥基之至少1個、或含有硫醇基之聚醚(B2)的硫醇 基之至少1個轉變成羧基之構造者等;可舉出:使(B1)或 鲁 (B2)以上述羧酸或聚羧酸的酸酐或烷基酯等反應所得之構 造者,使(B1)在氧化劑(鉑化合物、鉻混酸及高錳酸鹽等)的 存在下進行氧化使羥基轉變成羧基之構造者,使羥基酸低 級醇酯(乳酸甲基酯等)使用以氧化乙烯爲必須成分之氧化烯 烴進行(共)加成聚合之後水解除去醇作成爲羧基之構造者。 含有羧基之聚醚(B4)的數量平均分子量,以200以上爲 佳,而以300以上更佳,尤以400以上爲特佳,且,以 22 10000以下爲佳,而以8000以下更佳,尤以6000以下爲特 佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會更高 〇 作爲含有羥基之聚酯(B5),可使用:(B1)與上述的二羧 酸、二羧酸酐及/或二羧酸低級烷基酯所形成的聚酯等。此 等聚酯的末端爲羥基。又,亦可使用聚羧酸、聚羧酸酐及 聚羧酸低級烷基醚等,於使用此等的場合,此等的使用量( 莫耳%),以全羧酸的莫耳數爲基準,以0.1〜10爲佳,0.1〜5 更佳,尤以0.1〜2爲特佳。作爲用以製得(B5)所使用的(B1) · ,數量平均分子量以100以上、5000以下爲佳。 含有羥基之聚酯(B5)的數量平均分子量,以200以上爲 佳,而以300以上更佳,尤以400以上爲特佳,且,以 10000以下爲佳,而以8000以下更佳,尤以6000以下爲特 佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會更高 〇 作爲含有硫醇基之聚(硫)酯(B6),可使用:使含有羥基 之聚酯(B5)的羥基之至少1個轉變成硫醇基之構造者[使含 籲 有羥基之聚酯(B5)以環氧鹵丙烷反應繼以硫化氫反應所得 之構造者,使含有羥基之聚酯(B5)以環狀硫醚直接反應所 得之構造者等],及由含有硫醇基之聚醚(B2)與上述的羧酸 、二羧酸的酸酐及/或二羧酸低級烷基酯所製得之聚硫酯(末 端之至少1個爲硫醇基)等。作爲用以製得(B6)所使用的 (B2),數量平均分子量以100以上、5000以下爲佳。 含有硫醇基之聚(硫)酯(B6)的數量平均分子量,以200 23 以上爲佳,而以300以上更佳,尤以400以上爲特佳,且 ,以10000以下爲佳,而以8000以下更佳,尤以6000以下 爲特佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會 更高。 作爲含有1級及/或2級胺基之聚酯(B7),可使用:使 含有羥基之聚酯(B5)的羥基之至少1個轉變成1級及/或2 級胺基之構造者等;可舉出:使含有羥基之聚酯(B5)以環 狀胺反應所得之構造者等。 含有1級及/或2級胺基之聚酯(B7)的數量平均分子量 ® ,以200以上爲佳,而以300以上更佳,尤以400以上爲 特佳,且,以10000以下爲佳,而以8000以下更佳,尤以 6000以下爲特佳。在此範圍內,則接合強度(尤其是濕潤接 合強度)會更高。 作爲含有羧基之聚酯(B8),可使用:使含有羥基之聚 酯(B5)的羥基之至少1個轉變成羧基之構造者[使含有羥基 之聚酯(B5)與上述的二羧酸及/或二羧酸的酸酐等進行反應 所得之構造者,使含有羧基之聚醚(B4)與上述之多元醇等 鲁 進行反應所得之構造(至少1個末端基爲羧酸基)者等]等。 作爲用以製得(B8)所使用之(B4),以數量平均分子量爲100 以上、5000以下者爲佳。 作爲含有羥基之聚醯胺(B9),可使用:使含有1級及/ 或2級胺基之聚醚(B3)與上述之二羧酸、二或聚狻酸的酸酐 及/或二羧酸低級烷基酯所形成之聚醯胺、或使含有羧基之 聚醚(B4)與上述聚胺所形成之聚醯胺等中、至少1個胺基或 24 羧基轉變成羥基之構造者[使聚醯胺以氧化烯烴反應所得之 構造者,使聚醯胺以環鹵氧化丙烷反應繼以水解所成之構 造者等]等。作爲用以製得(B9)所使用之(B3)及(B4),以數量 平均分子量爲100以上、5000以下者爲佳。 含有羥基之聚醯胺(B9)的數量平均分子量,以200以上 爲佳,而以300以上更佳,尤以400以上爲特佳,且,以 10000以下爲佳,而以8000以下更佳,尤以6000以下爲特 佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會更高 • 作爲含有硫醇基之聚醯胺(B10),可使用:使含有1級 及/或2級胺基之聚醚(B3)與上述的二羧酸、二或聚羧酸的 酸酐及/或二羧酸低級烷基酯所形成之聚醯胺、或使含有羧 基之聚醚(B4)與上述聚胺所形成之聚醯胺等中、至少1個胺 基或羧基轉變成硫醇基之構造者[使聚醯胺以環氧鹵丙烷反 應繼以硫化氫反應所得之構造者,使聚醯胺以環狀硫醚直 接反應所得之構造者等]等。作爲用以製得(B10)所使用之 (B3)及(B4),以數量平均分子量爲100以上、5000以下者爲 鲁 佳。 含有硫醇基之聚醯胺(B10)的數量平均分子量,以200 以上爲佳,而以300以上更佳,尤以400以上爲特佳,且 ,以10000以下爲佳,而以8000以下更佳,尤以6000以下 爲特佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會 更高。 作爲含有1級及/或2級胺基之聚醯胺(B11),可使用: 25 使含有1級及/或2級胺基之聚醚(B3)與上述的二羧酸、二 或聚羧酸的酸酐及/或二羧酸低級烷基酯進行反應所得之構 造者(至少1個末端基爲1級及/或2級胺基),使含有羧基 之聚醚(B4)與上述之聚胺反應所得之構造者(至少1個末端 基爲1級及/或2級胺基)等。作爲用以製得(B11)所使用之 (B3)及(B4),以數量平均分子量爲100以上、5000以下者爲 佳。 含有1級及/或2級胺基之聚醯胺(B11)的數量平均分子 量,以200以上爲佳,而以300以上更佳,尤以400以上 修 爲特佳,且,以10000以下爲佳,而以8000以下更佳,尤 以6000以下爲特佳。在此範圍內,則接合強度(尤其是濕潤 接合強度)會更高。 作爲含有羧基之聚醯胺(B12),可使用:使含有1級及/ 或2級胺基之聚醚(B3)與上述二羧酸、二或聚羧酸的酸酐及 或二羧酸低級烷基酯進行反應所得之構造者(至少1個末端 基爲羧基),使含有羧基之聚醚(B4)與上述之聚胺反應所得 之構造者(至少1個末端基爲羧基)等。作爲用以製得(B12) · 所使用之(B3)及(B4),以數量平均分子量爲100以上、5000 以下者爲佳。 含有铵基之聚醯胺(B12)的數量平均分子量,以200以 上爲佳,而以300以上更佳,尤以400以上爲特佳,且, 以10000以下爲佳,而以8000以下更佳,尤以6000以下爲 特佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會更 高。 26 2ϋϋ30Ι£68 作爲含有活性氫之聚合物(Β),較佳者爲具有羥基或硫 醇基者{含有羥基之聚醚(Β1)、含有硫醇基之聚醚(Β2)、含 有羥基之聚酯(Β5)、含有硫醇基之聚(硫)酯(Β6)、含有羥基 之聚醯胺(Β9)及含有硫醇基之聚醯胺(Β10)} ’而以(Β1)、 (Β2)、(Β5)及(Β6)更佳,尤以(Β1)及(Β5)爲特佳。 作爲含有活性氫之聚合物(Β),具有酯鍵者{含有羧基之 聚醚(Β4)、含有羥基之聚酯(Β5)、含有硫醇基之聚(硫)酯 (Β6)、含有1級及/或2級胺基之聚酯(Β7)及含有羧基之聚 酯(88)等},由於具有易水解性,於本發明之聚合物用於活 _ 體組織的接著劑之場合時在活體內長時間存在下有不適之 場合,以使用此等具有酯鍵之聚合物爲佳。又,作爲含有 活性氫之聚合物(Β),於使用具有以-MCH^n-COO-所表示 之鍵結者之場合,易水解性會更高,爲較佳者。又,η爲 0〜2的整數,R1表示羰基或有電子吸引誘導效果之特性基· C(X) (Υ)-{Χ 表示 F、Cl、Br、Ν〇2 或 CN,Υ 表示 Η、F、C1 、Br或CN}。若使用具有如此的鍵結之含有活性氫之聚合 物(B),則於將本發明之聚合物用於活體組織接著用之場合 _ 可發揮更良好的水解性。作爲這樣的含有活性氫之聚合物 (B),可舉出:α -氧代戊二酸與聚乙二醇所形成的酯(特開 平2-327392號公報或特開平3-163590號公報)等。 作爲含有活性氫之聚合物(Β),就接合強度(尤其是初期 接合強度)等之觀點考量,以親水性者爲佳。所謂親水性者 ’意指在1分子中,含有聚氧化乙烯基30重量%以上者及 具有與此聚合物顯示之對水的親和性有同等的對水的親和 27 性者。於使用非親水性的含有活性氫之聚合物的場合,此 活性氫之聚合物的含有量(重量%),就接合強度(尤其是初 期接合強度)等之觀點考量,以含有活性氫之聚合物(B)全體 的重量爲基準,以1以上爲佳,而以2以上更佳,尤以5 以上爲特佳,更以8以上爲最佳,且,以70以下爲佳,而 以50以下更佳,尤以20以下爲特佳,更以15以下爲最佳 。含有活性氫之聚合物(B)中的氧化乙烯之含有量(重量%), 以(B)的重量爲基準,以30以上爲佳,而以50以上更佳, 尤以60以上爲特佳,更以70以上爲最佳,且以100以下 鲁 爲佳,而以98以下更佳,尤以95以下爲特佳,更以90以 下爲特佳。非親水性的含有活性氫之聚合物的含有量及氧 化乙烯基的含有量若在上述的範圍內,則接合強度(初期接 合強度)會更高。 含有活性氫之聚合物(B)的活性氫當量(每一當量活性氫 的分子量),就接合強度(尤其是初期接合強度)等的觀點考 量,以50以上爲佳,而以100以上更佳,尤以200以上爲 特佳,且以5000以下爲佳,而以4000以下更佳,尤以 _ 3000以下爲特佳。又,活性氫當量,係於以過量的羧酸酐( 醋酸酐等)處理之後,將未反應的羧酸酐以氫氧化鉀等水溶 液滴定,可經由求出每單位的官能基之莫耳數來算出。 又,含有活性氫之聚合物(B)的數量平均分子量,以 200以上爲佳,而以300以上更佳,尤以400以上爲特佳, 更以1000以上爲最佳,且,以10000以下爲佳,而以8000 以下更佳,尤以6000以下爲特佳,更以4000以下爲特佳 28 2ϋϋ30ΙΕ68 。在此範圍內’則接合強度(尤其是濕潤接合強度)會更高。 作爲含有活性氫之聚合物(Β),就接合強度(尤其是初期 接合強度)等的觀點考量,以氧化乙烯及氧化丙烯的無規共 聚物’及氧化乙烯及氧化丙烯的無規共聚物與氧化丙烯聚 合物的混合物爲佳,尤以氧化乙烯及氧化丙烯的無規共聚 物與氧化丙烯聚合物的混合物更佳。該氧化乙烯及氧化丙 烯的共聚物中,以使用水、乙二醇及/或丙二醇作爲具有活 性氫之化合物,且數量平均分子量爲10 0 0~6 0 0 0、氧化乙 烯基的含有量爲60〜90重量’%者爲特佳。 _ 作爲含有活性氫之聚合物(Β),於使用3價以上者的場 合,此等之含有量(重量%),以聚異氰酸酯(Α)爲基準,以 0.01以上爲佳,而以0.1以上更佳,尤以0.2以上爲特佳, 且,以5以下爲佳,而以1以下更佳,尤以〇.8以下爲特佳 。在此範圍內,則接合強度(尤其是濕潤接合強度)會更高。 含有活性氫之聚合物(Β)中的鹼金屬及鹼土類金屬的含 有量(mmol/kg),以(Β)的重量爲基準,以0或未滿0.07爲佳 ,而以0或未滿0.04更佳,尤以0或未滿0.02爲特佳,更 _ 以〇或未滿0.01爲最佳。在此範圍內,則容易防止聚異氰 酸酯(A)與含有活性氫之聚合物(B)的反應中之異常反應。 又,含有活性氫之聚合物(B)中之鹼金屬及鹼土類金屬 的含有量,可經由:將(B)的30重量%甲醇溶液、或將 (B)10g在白金盤中進行加熱灰化溶解於l〇g的水中所成之 水溶液,以離子層析法進行分析的方法,或將(B)30g溶解 於甲醇100ml所成的溶液以1/100當量的鹽酸水溶液進行滴 29 2ϋϋ30Ι26Β 定的方法來求出。 鹼金屬及鹼土類金屬,主要係作爲聚酯多元醇之合成 時的觸媒所混入者。作爲如此的觸媒,可舉出:氫氧化物( 氫氧化鉀、氫氧化鈉、氫氧化鋸、氫氧化鋇及氫氧化鎂等) 、醇鹽(甲醇鋰、乙醇鈉、丁醇鉀及己醇鎂等)及金屬單體( 鉀、鈉、鋰、鎂及鈣等)等。於含有活性氫之聚合物(Β)中, 此等觸媒多殘存有0.1〜〇.3mmol/kg。因而,若使含有活性氫 之聚合物(B)中之鹼金屬及鹼土類金屬的含有量作成爲在上 述範圍,則亦可使用鹼金屬及鹼土類金屬的含有量少的聚 鲁 醚多元醇等。 鹼金屬及鹼土類金屬的含有量少的聚醚多元醇,可經 由:在上述般觸媒之存在下,使具有活性氫的化合物以氧 化烯烴進行加成聚合得到粗製聚醚多元醇後,再將鹼金屬 及鹼土類金屬去除的方法;揭示在特開平8-104741號公報 中之複合金屬氰化錯合物(六氰鈷酸鋅與聚醚所形成的錯合 物觸媒等)、有機硼化合物[三氟化硼及三(五氟苯基)硼烷等] 、及過渡金屬錯合物觸媒等的不含鹼金屬及鹼土類金屬觸 春 媒之存在下,以氧化烯烴進行加成聚合的方法等製得。作 爲由粗製聚醚多元醇除去鹼金屬及鹼土類金屬的方法,可 舉出:以吸附劑處理的方法、及以離子交換劑處理的方法 等。 作爲吸附劑,可舉出:矽酸鹽(矽酸鎂、滑石、皂石、 塊滑石、矽酸鈣、鋁矽酸鎂及鋁矽酸鈉等)、白土(活性白土 及酸性白土等)、水滑石、矽膠、矽藻土及活性氧化鋁等。 30 2ϋϋ301£6δ 此等吸附劑中,以矽酸鹽爲佳,而以矽酸鎂更佳。 於矽酸鎂之中,以合成矽酸鎂爲佳,而以揭示於特開 平7-258403號公報般的鈉含有量爲0.5重量%以下的矽酸鎂 更佳。 作爲吸附處理方法,如記載於特開平7-258403號公報 中般,可將粗製聚醚多元醇添加水與矽酸鎂加以混合作成 〇 水的添加量,以對粗製聚醚多元醇爲0.01〜50重量%爲 佳,矽酸鎂的量,同樣地以0.01〜50重量%爲佳。吸附處理 _ 溫度,並無特別限定,以60〜200°C爲佳,氣相的氧濃度以 lOOppm爲佳。吸附處理時間,並無特別限定,以0.5〜24小 時爲佳。經由於吸附處理後,以濾紙、濾布或玻璃過濾器 等過濾裝置進行過濾,必要時並進行脫水,可製造鹼金屬 及鹼土類金屬的含有量少的含有活性氫之聚合物(B)。又, 即使進行吸附處理,鹼金屬及鹼土類金屬的含有量仍超過 上述範圍之時,經由再度進行吸附處理,可將鹼金屬及鹼 土類金屬的含有量降低。 鲁 作爲離子交換劑,可舉出:強陽離子交換樹脂、弱陽 離子交換樹脂及螯合樹脂等。作爲用離子交換劑之處理方 法,可舉出:對粗製聚醚多元醇添加水,使其與離子交換 劑混合攪拌後,經由過濾將離子交換劑除去的方法,或使 其通過塡充有離子交換劑之管柱中的方法。水的添加量(重 量%),以粗製聚醚多元醇的重量爲基準,以0.01以上爲佳 ,而以1以上更佳,且以80以下爲佳,而以60以下更佳 31 2ϋϋ30Ι26Β 。離子交換劑的使用量,以水溶液的重量爲基準’以ο·1重 量%以上爲佳,而以1重量%以上更佳,且,以50重量%以 下爲佳,而以30重量%以下更佳。作爲混合溫度(°C) ’以5 t以上爲佳,而以20°C以上更佳,且,以80°C以下爲佳, 而以40°C以下更佳。又,混合時間(小時),以1小時以上 爲佳,而以5小時以上更佳,尤以24小時以下爲特佳。 過濾,可用濾紙、濾布或玻璃過濾器等之過濾裝置。 於通過塡充有離子交換劑之管柱中之場合,液溫,以5 °<3以上爲佳,而以20°C以上更佳,且,以80°C以下爲佳, 鲁 尤以40°C以下更佳。又,可通過管柱內1次,亦可通過管 柱內2〜50次。作爲必要時所施行之脫水方法,可舉出:在 50〜150°C、O.OOlhPa〜常壓下,必要時,於一邊通以氮氣等 之惰性氣體之下,進行1〜10小時之水分蒸餾的方法等。 又,含有活性氫之聚合物(B)爲含有第3級胺基及/或第 4級氨合基之場合,此等基的含有個數(個/g),就聚合物之 硬化反應性等的觀點考量,以(B)的重量爲基準,以1 X 1017個/g以上爲佳,而以1 X 1018個/g以上更佳,尤以1 _ X1019個/g以上爲特佳,且,以1 X1023個/g以下爲佳,而 以1 X 1022個/g以下更佳,尤以1 X1021個/g以下爲特佳 。又,第3級胺基及/或第4級氨合基之含有個數,可自 iH-NMR的數據算出,或將試料以過量的氫氧化鈉水溶液處 理之後,經由以N/100的鹽酸水溶液進行電位差滴定求出 〇 作爲含有第3級胺基及/或第4級氨合基的含有活性氫 32 之聚合物,可舉出:具有使具有胺基且具有至少2個活性 氣之化合物(b 1)及含有弟4級氣合基且具有至少2個活性氫 之化合物(b2)及此等之混合物以氧化烯烴基成所得之構造者 等。 胺基甲酸乙酯預聚物(UP),可由聚異氰酸酯(A)與含有 活性氫之聚合物(B)反應而製得。聚異氰酸酯(a)與含有活性 氫之聚合物(B)的使用量比,以(A)的異氰酸基與(B)的活性 氫基的當量比(A/B)計,以1.5以上爲佳,而以1.8以上更佳 ,尤以1.9以上爲特佳,更以1.95以上尤佳,且,以5·0以 籲 下爲佳,而以3.0以下更佳,尤以2·3以下爲特佳,更以 2.1以下尤佳,又以2.0以下爲最佳。在此範圍內,則接合 強度(尤其是初期接合強度)會更高。 作爲用以製造胺基甲酸乙酯預聚物(UP)的方法,可用 習知的方法’使聚異氰酸酯(A)與含有活性氫之聚合物(B)混 合,在50〜100°c下,進行1〜10小時之反應的方法等。由於 (A)的異氰酸基弱與水分反應會變成胺基,故於製程中’必 須極力地將反應容器及原材料中的水分加以去除。因而’春 以先對(B)進行脫水後再與(A)反應爲佳。作爲脫水方法’可 使用在50〜150X:、〇.〇〇lhPa〜常壓下,必要時,於一邊通以 氮氣等之惰性氣體之下,進行1〜1〇小時之水分蒸餾的方法 等。 作爲聚異氰酸酯(A)與含有活性氫之聚合物(B)之混合方 法,可爲:①一次混合的方法、②使(B)徐徐地滴下的方法 、③將(A)與部分的(B)混合進行既定時間的反應後,再將剩 33 餘的(B)滴下或一次加入混合的方法。此等之中’就反應操 作容易進行的觀點考量,以①方法及②方法爲佳’而以①方 法更佳。又,就可減少未反應的聚異氰酸酯成分的量之觀 點考量,以③方法爲佳。 又,此反應,亦可在觸媒(二丁基氧化錫、二丁基錫二 月桂酸酯等之有機金屬化合物、醋酸銷等之有機酸金屬鹽 等)存在下進行,尤其是在使用脂肪族異氰酸酯的場合甚有 效。 胺基甲酸乙酯預聚物(UP)的數量平均分子量,以500 φ 以上爲佳,而以800以上更佳,尤以1000以上爲特佳,更 以1200以上爲最佳,且,以500000以下爲佳,而以 100000以下更佳,尤以10000以下爲特佳,更以5000以下 爲最佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會 更高。且,數量平均分子量爲500〜500000之胺基甲酸乙酯 預聚物的含有率(重量%),以(UP)的重量爲基準,以98以上 100以下爲佳,而以98.5以上更佳,尤以99以上爲特佳, 更以99.5以上爲最佳。在此範圍內,則接著劑的接合強度 籲 會更高。 胺基甲酸乙酯預聚物(UP)中之具有特定分子量的胺基 甲酸乙酯預聚物(具有異氰酸基之胺基甲酸乙酯聚合物)的含 有量之定量方式如下:使其與會吸收紫外線區域的波長、 且具有1個1級或2級胺基的胺(4-胺基吡啶、胺基萘等)反 應所成者、經由附有紫外線檢測器的GPC求出(標準物質: N-甲基胺基吡啶的氧化乙烯加成物)數量平均分子量 34 6 0j30I; 500〜500000的胺基甲酸乙酯預聚物的分子量分布曲線,使 其與不吸收紫外線區域的波長且具有1個1級或2級胺基 之胺(乙胺、一丁胺等)進行反應者、經由附有折射率檢測器 的GPC求出(標準物質:聚乙二醇)分子量分布曲線,將兩 分布曲線作比較而定量。亦即,就聚合物的官能基作考量 ,可依①〜⑤的順序進行操作來定量。 ① 將(up)、與不吸收紫外線波長且具有丨個1級胺基 或2級胺基的胺(乙胺、二丁胺等)混合,使胺基與異氰酸基 反應所成者,藉由附有折射率檢測器的GPC求出數量平均 春 分子量(Μη)。 ② 自異氰酸基含有量(重量%)求出每一分子的異氰酸酯 之平均個數(AN)。 ③ 使(UP)、與會吸收紫外線區域的波長且具有1個1級 胺基或2級胺基的胺(4-胺基吡啶、胺基萘等)混合,使胺基 與異氰酸基反應’導入會吸收紫外線區域的波長之官能基 (UVF)所成者,將其以附有紫外線檢測器之GPC測定,經由 與標準物質比較求出分子量分布。 鲁 ④ 自此分子量分布,算出數量平均分子量爲500〜 500000的胺基甲酸乙酯預聚物中的官能基(uvF)的數目。 ⑤ 由所得之數目與平均個數(AN)求出胺基甲酸乙酯預 聚物(UP)中所含有之數量平均分子量爲500〜500000之胺基 甲酸乙酯預聚物的含有量。又,標準物質,可將N-甲基胺 基毗啶等以氧化乙烯加成所成者,用分級GPC,經由將相 當於各分子量者分級取出而得到。 35 作爲用以製得數量平均分子量爲500〜500000之胺基甲 酸乙酯預聚物的含有率爲98重量%〜1〇〇重量%的聚合物之 方法’亦可經由將(A)與部分的(B)混合進行既定時間的混合 後’再將剩餘的(B)滴下或一次加入混合的方法之外,於反 應完成後,將未反應的(A)除去,而製得數量平均分子量 500〜500000之胺基甲酸乙酯預聚物的含有率作成爲98重量 %〜100重量%。作爲用以除去未反應的(A)之方法,可舉出 =Φ用GPC進行分級取出的方法、②用半透膜進行透析的 方法、及③蒸餾除去的方法等,就容易進行的觀點考量, _ 以③蒸餾除去的方法爲佳。作爲蒸餾除去的方法,可舉出 :經由減壓蒸餾(在50〜15(TC、O.OOlhPa〜常壓下,必要時, 於一邊通以氮氣等之惰性氣體之下,進行1〜10小時之蒸餾 )進行蒸餾除去的方法等。 在含有異氰酸基之聚合物中,作爲具有將含有活性氫 之聚合物中的官能基中1個以上轉變成異氰酸基之構造的 未使用聚異氰酸酯之聚合物(NUP),包含具有經由後述方法 所製得之構造者:將上述的含有活性氫之聚合物(B)的官能 鲁 基1個以上直接轉變成異氰酸基的方法,及介在著醚鍵及/ 或酯鍵將異氰酸基導入的方法等。 作爲將含有活性氫之聚合物(B)的官能基(羥基、硫醇基 、羧基及胺基等)之至少1個轉變成異氰酸基的方法,可使 用公知的方法,於1級羥基或1級硫醇基的場合,可舉出 :①使官能基氧化轉變爲羧基’再作成醯基鹵之後,使其 與迭氮化合物反應進行熱分解’經由醯基迭氮轉變成異氰 36 2ϋϋ30ΙΕ6δ 酸基的方法(特開昭57-108055號公報等)、及②使官能基氧 化轉變成羧基之後,使羧基經由迭氮化合物轉變成胺基再 轉變成異氰酸基的方法等;又,於2級羥基或2級硫醇基 的場合’可舉出:③使官能基氧化轉變成羰基,使其與氨 反應、同時進行氫還原作成爲胺基之後,再轉變成異氰酸 基的方法等;又,於1級或2級羥基或1級或2級硫醇基 的場合’可舉出:④使官能基轉變成胺基之後,經由使其 與光氣反應轉變成異氰酸基的方法,及⑤使(Β)與含有異氰 酸基之不飽和化合物反應的方法等。又,於官能基爲羧基 籲 的場合,可使用經由①或②的方法中之轉變成羧基之後的製 程。又,亦可經由⑤的方法。於官能基爲胺基的場合,可 使用③或④的方法中之轉變成胺基之後的製程。 作爲使(Β)的官能基(羥基)轉變成羧基的方法,可舉出 :經由羧甲基酯化的方法[使含有活性氫之聚合物(Β)與鹵化 羧酸(氯醋酸、氯二氟醋酸、3-氯丙酸、3-氯-2,2-二氟丙酸 、4-氯丁酸、氯甲基苯甲酸等)在鹼性觸媒存在下進行反應 的方法等]及經由氧化的方法[於高錳酸鉀等存在下在鹼性水 鲁 溶液中加熱的方法、於弱鹼性化合物(碳酸氫鈉及碳酸鉀)存 在下使用鈾觸媒(鉑-活性碳及鉑黑等)進行空氣氧化的方法 ’及在6價鉻化合物存在下,硫酸的酸性條件下進行加熱 的方法等]等。作爲使羧基轉變成醯基鹵的方法,可舉出: 與鹵化磷(5氯化磷等)反應的方法,及與鹵化亞硫醯基(氯 化亞硫醯基等)反應的方法等。作爲使鹵氧化物與迭氮化合 物反應的方法,可舉出:將鹵氧化物與迭氮化合物(迭氮酸 37 2ϋϋ30ΐ£68 及迭氮化鈉等)在低溫下混合的方法等,將此等加熱到 60〜150°C,則可轉變成異氰酸基。作爲使羧基與迭氮化合 物反應作成爲胺基的方法,可舉出:使迭氮化金屬(迭氮化 鈉等)與濃硫酸一起反應的方法、及與二苯基迭氮磷酸鹽、 氧肟酸(hydroxamic acid)或羥基胺鹽酸鹽一起進行加熱的方 法等。作爲使胺基轉變成異氰酸基的方法,可舉出:與光 氣反應的方法[將胺滴入到光氣(光氣及乙二醯氯等)的溶液 的方法等]、與N,N’-羰基二咪唑反應之後使其在室溫下分 解的方法、在過渡金屬錯合物觸媒(氯化鈀、氯化鍺及氯鉑 籲 酸等)的存在下與一氧化碳反應的方法、與次氯酸鈉或次溴 酸鈉反應再進行鹼處理的方法等。作爲使2級羥基轉變成 羰基的方法,可舉出:經由氧化的方法[在高錳酸鉀等之存 在下於鹼性水溶液中加熱的方法、使用鉑觸媒(鉑-活性碳及 鉑黑)進行空氣氧化的方法及在6價鉻化合物的存在下於硫 酸的酸性條件下進行反應的方法等]等。作爲在羰基與氨反 應之同時進行氫還原將羰基作成爲胺基的方法,可舉出: 在氨的存在下,以氫氣進行加壓,在氫化觸媒的存在下進 鲁 行反應的方法等。作爲對羥基導入胺基的方法,可舉出: 使羥基與乙抱亞胺(乙抱亞胺及N-甲基乙抱亞胺等)反應的 方法。作爲不含異氰酸基之不飽和化合物,可舉出:異氰 酸基甲基(甲基)丙烯酸酯及異氰酸基曱基烯丙基醚等。 未使用聚異氰酸酯之聚合物(NUP)的數量平均分子量, 以500以上爲佳,而以800以上更佳,尤以1000以上爲特 佳,更以1200以上爲最佳,且,以500000以下爲佳,而以 38 0ϋ30Ι£68 100000以下更佳,尤以10000以下爲特佳,更以50⑻以下 爲最佳。在此範圍內,則接合強度(尤其是濕潤接合強度)會 更局。 未使用聚異氰酸酯之聚合物(NUP)之中,以使用末端存 在含有氟原子之有機基的含有活性氫之聚合物(B),聚合物 的反應性較高,爲較佳。亦即,作爲轉變成異氰酸基之末 端構造’以由-Rf-NCO(Rf爲碳數1〜4的全氟烷烯基)所代表 及/或由-CH(CF3)-NC〇所代表者爲佳,尤以由-CH(CF3)-NC〇 所代表者更佳。 春 本發明之聚合物中的鹼金屬及鹼土類金屬的含有量 (mmol/kg),以聚合物的重量爲基準,以〇或未滿〇.〇4爲佳 ’而以0或未滿0.03更佳,尤以0或未滿〇.〇2爲特佳,更 以0或未滿0.01爲最佳。在此範圍內,則本發明之聚合物 的經時安定性會更高。又,聚合物中的鹼金屬及鹼土類金 屬的含有量,可經由:將聚合物的30重量%的甲苯、二甲 基甲醯胺或二甲亞硼等的溶劑之溶液、或將聚合物l〇g在 白金盤中進行加熱灰化溶解於10g的水中等之前處理所成 春 之試料,以離子層析法進行分析的方法,或將聚合物30g 溶解於甲苯、二甲基甲醯胺或二甲亞硼等的溶劑100ml所 成的溶液以1/100當量的鹽酸水溶液進行滴定的方法來求出 〇 本發明之聚合物中之異氰酸基含有量,換算成脲基甲 酸酯·縮二脲(allophanate· biuret)含有量(重量%)(AB含有 量),以聚合物的重量爲基準,就耐水接合強度的觀點考量 39 ,以0或未滿0.6爲佳,而以0或未滿0.4更佳,尤以0或 未滿0.2爲特佳,更以0或未滿0.1爲最佳。在此範圍內, 則本發明之聚合物的經時安定性會更高。 ΑΒ含有量,可經由將試料100毫g,加入到含有二正 丁胺(0.1重量%)及萘(0.1重量%)之無水二甲基甲醯胺溶液 5ml中,在70°C下使其反應40分鐘後,加入醋酸酐10//1 ,於10分鐘後以氣相層析儀分析,求出二正丁基乙醯胺與 萘的峰値面積比(SA),將作爲空白組之試料100毫g加入到 含有二正丁胺(0.1重量%)及萘(0.1重量%)之無水二甲基甲 醯胺溶液5ml中,在25°C下使其反應40分鐘後,加入醋酸 酐10// 1,於10分鐘後以氣相層析儀分析,求出二正丁基 乙醯胺與萘的峰値面積比(SB),可由下式求出異氰酸基含 有量換算値: AB 含有量(重量 %) = [(SB-SA)/SB] Χ0·613 (1) 於本發明之聚合物爲含有第3級胺基及/或第4級氨 合基的場合,此等基的含有個數(個/g),就聚合物的反應性 等的觀點考量,以聚合物的重量爲基準,以1 X1017個/g 以上爲佳,而以1 Χΐ01δ個/g以上更佳,尤以1 X1019個 /g以上爲特佳,且,以1 Χ 1023個/g以下爲佳,而以1 X 1 022個/g以下更佳,尤以1 X1021個/g以下爲特佳。含有 第3級胺基及/或第4級氨合基的聚合物,作爲含有活性氫 之聚合物(B),可經由使用含有第3級胺基及/或第4級氨合 基的聚異氰酸酯(A)及/或含有活性氫之聚合物(B)製得。 作爲於聚合物中使其含有第3級胺基及/或第4級氨合 2ϋϋ30ΙΕ6δ 基之替代,於本發明的聚合物中,必要時亦可含有不含活 性氫與異氰酸基的胺(C)。含有(C),則接合強度(尤其是初 期接合強度)會更佳。 作爲不含活性氫及異氰酸基的胺(C),可使用第3級胺 (C1)及第4級銨鹽(C2)等。 作爲第3級胺(C1),可使用碳數1〜36的,脂肪族胺、 脂環型胺、雜環型胺、含有芳香環之脂肪族胺及芳香族胺 等。作爲脂肪族胺,可舉出:脂肪族單胺(三甲胺、三乙胺 、三丙胺、三己胺、三月桂胺、Ν-甲基二環己胺、Ν,Ν-二 春 甲基環己胺、Ν-甲基-Ν,Ν-雙(3-二甲基胺基丙基)胺及Ν,Ν-二甲基二十烷基胺等)、脂肪族聚胺[Ν,Ν,Ν-三(3-二甲基胺基 丙基)胺、四烷基烷撐二胺(Ν,Ν,Ν,Ν-四甲基乙撐二胺、 Ν,Ν,Ν,Ν-四乙基丙撐二胺及Ν,Ν,Ν,Ν-四乙基十一烷撐二胺 等)]、及多烷基多烷撐聚胺(五甲基二乙撐三胺、五乙基二 丙撐三胺、六甲基三乙撐四胺及八甲基五乙撐六胺等)等。 作爲脂環型胺,可舉出:脂環型單胺(三環己胺、Ν,Ν-二甲 基異佛爾酮單胺及Ν,Ν-二乙基-4-二環己基甲基環己胺等)、 · 及脂環型聚胺(四甲基-U-二胺基環己烷等)等。作爲雜環型 胺,可舉出:雜環型單胺(Ν-甲基呃啶、Ν-二甲基胺基乙基 吡啶、吡啶、喹啉、Ν-甲基嗎啉及Ν-甲基-2,6-二甲基嗎啉 等)、及雜環型聚胺[Ν,Ν’,Ν”_三(二甲基胺基丙基)六氫三吖 嗪、Ν,Ν’-二甲基派啶、1,4-雙(二甲基胺基乙基)派啶、噠嗪 、嘧啶、甲基嘌呤、二氮雜環壬烯、雙(嗎啉基乙基)醚、雙 (嗎啉基丙基)醚、雙(2,6-二甲基嗎啉基乙基)醚、12-雙(2,6- 41 20j30I268 二甲基嗎啉基乙氧基)乙烷、雙(2,6-二甲基嗎啉基乙氧基乙 基)醚、及2,2’-雙(2,6-二甲基嗎啉基乙氧基乙基)二乙基醚 等]等。作爲含有芳香族之脂肪族胺,可舉出:Ν,Ν-二甲基 胺基甲基苯及四甲基苯撐二甲基二胺等;作爲芳香族胺, 可舉出:Ν,Ν-二甲基苯胺及四甲基苯撐二胺等。 作爲第4級銨鹽(C2),可使用具有(C1)的胺基以4級化 劑經4級化的構造者等,可舉出:脂肪族銨鹽(四甲基銨碳 酸酯等);脂環型銨鹽(甲基三環己基銨甲基硫酸鹽等);雜 環型銨鹽(Ν,Ν-二甲基派啶鎗碳酸酯及Ν,Ν-二甲基-2,6-二甲 · 基嗎啉鎗碳酸酯等);含有芳香環之脂肪族銨鹽(Ν,Ν,Ν-三甲 基銨甲基苯氯等);芳香族銨鹽(Ν,Ν,Ν-三甲基苯胺鑰碳酸酯 等)、脂肪族多銨鹽[六烷基烷撐二銨鹽(Ν,Ν,Ν,Ν’,Ν’,Ν’-六 甲基乙撐二胺二碳酸酯等)及多烷基多烷撐多銨鹽(五甲基二 乙撐三胺三碳酸酯)等];脂環型多銨鹽(四甲基_1,3_二銨環 己烷二氯等);雜環型多銨鹽(Ν,Ν,Ν’,Ν’-四甲基呃啶錄二碳 酸酯等);含有芳香環之脂肪族多銨鹽(六甲基苯撐二甲基 二銨二氯等);芳香族多銨鹽(六甲基苯撐二銨二氯等)等]等 鲁 〇 此等之中,以脂肪族胺、脂環型胺、雜環型胺及此等 的碳酸酯4級銨鹽爲佳,而以脂肪族胺、雜環型胺及此等 的碳酸酯4級銨鹽更佳,尤以雜環型聚胺爲特佳,更以含 有嗎啉環之雜環型聚胺爲最佳。 於使用不含活性氫及異氰酸基的胺(C)之場合,本發明 之聚合物中的(C)之含有量(重量%),以聚合物的重量爲基準 42 ,以0.05以上爲佳,而以〇·1以上更佳,尤以〇·5以上爲特 佳,且以20以下爲佳’而以10以下更佳尤以5以下爲特 佳。在此範圍內,則接合強度(尤其是初期接合強度)會更高 。又,聚合物中的(C)之含有量,可經由將聚合物以甲醇等 處理,使異氰酸基反應之後,以氣相層析儀或液相層析儀 等進行分析來測定。(C)的配合方法並無特別限定,可舉出 :於聚合物之合成前(含合成中途)或合成後加入反應裝置中 進行混合的方法,或於要使用接著劑之前,加入到由本發 明之聚合物所構成的接著劑中進行混合的方法等。 籲 本發明之聚合物之中,作爲具有環氧基(縮水甘油基及 2,3-氧雜環己基等)作爲反應性官能基者,包含於1分子中 具有至少1個環氧基者(ΕΡ)等。(ΕΡ),可經由使前述含有活 性氫之聚合物(Β)與含有環氧基之化合物反應而製得。作爲 含有環氧基之化合物,可舉出:環氧氯丙烷、2,3-氧雜環己 基氯、烯丙基縮水甘油基醚及異氰酸基乙基縮水甘油基醚 等。此等之中,就反應容易進行的觀點考量,以環氧氯丙 烷及2,3-氧雜環己基氯爲佳,尤以環氧氯丙烷爲特佳。 籲 本發明之聚合物之中,作爲具有(甲基)丙烯醯基作爲反 應性官能基者,包含有於1分子中具有至少1個的(甲基)丙 烯醯基者(ΜΑ)。(ΜΑ),可藉由使前述含有活性氫之聚合物 (Β)與含有(甲基)丙烯醯基之化合物反應而製得。作爲含有( 甲基)丙烯醯基之化合物,可舉出:(甲基)丙烯酸、(甲基)丙 烯酸氯、(甲基)丙烯酸縮水甘油酯及異氰酸基(甲基)丙烯 酸乙酯等。此等之中,就反應容易進行的觀點考量,以(甲 43 2ϋ J30I2.63 基)丙烯酸及(甲基)丙烯酸縮水甘油酯爲佳’尤以(甲基)丙烯 酸縮水甘油酯爲特佳。 本發明之聚合物之中,作爲具有氰基(甲基)丙烯醯基作 爲反應性官能基者,包含有於1分子中具有至少1個的氰 基(甲基)丙烯醯基者(CMA)等。(CMA),可經由使前述含有 活性氫之聚合物(Β)與含有氰基(甲基)丙烯醯基之化合物反 應而製得。作爲含有氰基(甲基)丙烯醯基之化合物,可舉出 :氰基(甲基)丙烯酸、氰基(甲基)丙烯酸氯、氰基(甲基)丙 烯酸縮水甘油酯及異氰酸基氰基(甲基)丙烯酸乙酯等。此等 _ 之中,就反應容易進行的觀點考量,以氰基(甲基)丙烯酸及 氰基(甲基)丙烯酸縮水甘油酯爲佳,尤以氰基(甲基)丙烯酸 縮水甘油酯爲特佳。 本發明之聚合物之中,作爲具有烷氧矽烷基(三甲氧矽 烷基及三乙氧矽烷基)作爲反應性官能基者,包含有於1分 子中具有至少1個的烷氧矽烷基者(AS)。(AS),可經由前述 含有活性氫之聚合物(B)與含有烷氧矽烷基之化合物反應而 製得。作爲含有烷氧矽烷基之化合物,可舉出:烷氧矽烷 鲁 基氯(三甲氧矽烷基氯、甲基二甲氧矽烷基氯及三乙氧矽烷 基氯等)、烷氧矽烷基縮水甘油醚(三甲氧矽烷基縮水甘油醚 、甲基二甲氧基甲基縮水甘油醚及三乙氧矽烷基縮水甘油 醚等)等。此等之中,就反應容易進行的觀點考量,以烷氧 矽烷基氯及烷氧矽烷基縮水甘油醚爲佳,尤以烷氧矽烷基 縮水甘油醚爲特佳。 於本發明之聚合物中,必要時,可更進一步配合其他 44 200301268 的成分。作爲其他的成分,可舉出:具有生理活性的藥物( 中樞神經用樂、過敏性用藥、循環器官用藥、呼吸器官用 藥、消化器官用藥、荷爾蒙製劑、代謝性藥品、抗惡性腫 瘍劑、抗生素製劑及化學療法劑等)、塡充劑(碳黑、氧化鐵 、矽酸鈣、矽酸鈉、二氧化鈦、丙烯酸系樹脂及各種陶瓷 粉末等)、可塑劑(DBP、DOP、TCP、三丁氧基乙基磷酸酯 及其他各種酯類等)、及安定劑(三甲基二氫醌、苯基_ ^ _萘 胺、對異丙氧基二苯胺及二苯基-對-苯撐二胺等)等。於配 合其他的成分之場合,此等的配合量(重量%),以本發明之 鲁 聚合物的重量爲基準,以0.001以上爲佳,而以〇el以上更 佳,且,以20以下爲佳,而以5以下更佳。 爲了賦予更快速的硬化性,於本發明之聚合物中,可 配合以具有聚合性雙鍵且在形成此雙鍵的任一個碳原子上 鍵合有氰基的化合物(D)。作爲如此的化合物(D),可舉出: 氰基(甲基)丙烯酸、氰基(甲基)丙烯酸甲酯及氰基(甲基)丙 烯醯胺(特開平1-227762號公報)等。 於使用化合物(D)之場合,(D)的使用量,以聚合物的重 籲 量爲基準,以0.001以上爲佳,而以0.1以上更佳,且以50 以下爲佳,尤以20以下更佳。 本發明之聚合物,因於微量的水分的存在會急速地發 生聚合,形成強韌的皮膜,故於配合其他的成分之場合, 其他的成分必須不含水分。又,製得之本發明之聚合物, 藉由裝塡到密閉容器(小玻璃瓶(ample)等)中,可作長時間保 存。作爲保存溫度,以-20CTC以上爲佳,而以-100°C以上更 45 0ϋ30ί£6δ 佳,尤以-80°C以上爲特佳,且以100°C以下爲佳,而以50 ^:以下更佳,尤以30°C以下爲特佳。 本發明之聚合物,適用於作爲自活體組織之流體洩漏 防止用及/或活體組織的接著用,亦即,適合作爲醫療用接 著劑。尤其是,由於本發明之聚合物具有高的耐水接合強 度,故爲較佳之使用於肝臟、腎臟、脾臟、胰臟、心臟、 肺、血管(動脈、靜脈、微血管等)、氣管、支氣管、消化道 (食道、胃、十二指腸、小腸、大腸、直腸等)及神經等的活 體組織之接合、出血阻止、自消化器官等的內容物、酵素 春 或消化液等的流體洩漏防止、縫合前的暫時固定、及接合 部(縫合部及吻合部)等的補強等。作爲活體組織,以肺、血 管及心臟等之柔軟且動作較大的組織爲適,尤以肝臟及肺 爲最適。又,由本發明之聚合物所構成之醫療用接著劑, 不只在活體組織的接合方面有效用,於作爲用於血管瘤的 被覆材料、塡縫材料的用途,及作爲手術時的癒合防止用 材料的用途等亦有效。而且,亦可有效地使用於創傷面及 切傷部等的接合及齒科之接合治療方面。 春 於外科手術中,作爲使用由本發明之聚合物所構成的 醫療用接著劑進行接合的方法,可舉出:於切開部直接塗 佈接著劑的直接接合法;先將接著劑塗佈到矽薄膜及氟薄 膜等之剝離性高的薄膜上,對切開部連同薄膜一起被覆上 去,再將反應後的薄膜去除之轉印接合法;將由達柯綸 (dacron :聚對甲酸乙二酯纖維)、氧化纖維素、殼多糖 (clndn)、聚氨酯、聚酯或聚乙烯醇等所作成的布或不織布 46 、及靜脈、肌膜及肌肉等的活體組織片抵住患部,塗佈以 接著劑的被覆接合法;對活體組織的一部份以縫合線縫合 ,其餘的接合部則以接著劑使其密合的方式塗佈之縫合固 定法等。 作爲塗佈方法,可舉出:使用毛筆、鑷子或刮刀等的 方法,及使用氟代烴類(freon)之噴塗法等。 用以實施發明之最佳形態 下面揭示實施例就本發明更詳細地加以說明,惟,本 發明並非僅限定於此等實施例之中。又,若未另作標明, _ 「份」係指「重量份」。 (製造例1) 將乙二醇15.5份、氫氧化鉀3.8份置入高壓釜中,於 經氮氣取代後,在120°C下,進行60分鐘真空脫水。然後 ,於100〜130°C下,將氧化乙烯784.5份與氧化丙烯200份 之混合物以約10小時加壓送入,於130°C下繼續反應直到 揮發份成爲0.1%以下,得到氧化乙烯基的含有量爲80%的 粗製聚醚(c_EPRA)。 春 (製造例2) 將粗製聚醚(c-EPRA)lOOO份置入高壓釜中,經由氮氣 取代使氣相的氧濃度作成爲450ppm,加入30份的離子交換 水’然後加入合成矽酸鎂(鈉含有量0.2%)10份,經由再度 進行氮氣取代,使氣相部的氧濃度保持於450ppm,於90°C 下以攪拌速度300rpm進行45分鐘的攪拌。然後,用玻璃 過濾器(GF-75 :東洋濾紙製)在氮氣下進行過濾,得到氧化 47 乙烯/氧化丙烯無規共聚物(EPRA1)。又,EPRA1的氧化乙 嫌基含有量爲80%,鹼金屬及/或鹼土類金屬的含有量爲 0.02mmol/kg,數量平均分子量爲4000。 (製造例3) 將粗製聚醚(c-EPRA) 1000份置入高壓釜中,經由氮氣 取代使氣相的氧濃度作成爲450ppm,將30份的離子交換水 與8份的合成矽酸鎂(鈉鹽的含有量0.2%)在另外的容器中 進行混合脫氧,然後加入高壓釜中,測定氣相部的氧濃度 確定成爲450ppm後,於90°C下以攪拌速度300rpm進行90 Φ 分鐘的攪拌。然後,用玻璃過濾器(GF-75 :東洋濾紙製)在 氮氣下進行過濾,得到氧化乙烯/氧化丙烯無規共聚物 (EPRA2)。又,EPRA2的氧化乙烯基含有量爲80%,鹼金屬 及/或鹼土類金屬的含有量爲0.04mm〇l/kg,數量平均分子量 爲 4000。 (製造例4) 將粗製聚醚(c-EPRA)lOOO份置入高壓釜中,經由氮氣 取代使氣相的氧濃度作成爲450ppm,加入30份的離子交換 春 水,然後加入矽酸鎂(鈉含有量3%)12份,經由氮氣取代, 使氣相部的氧濃度作成爲450ppm,於90°C下以攪拌速度 300rpm進行240分鐘的攪拌。然後,用玻璃過濾器(GF-75 :東洋濾紙製)在氮氣下進行過濾,得到氧化乙烯/氧化丙烯 無規共聚物(EPRA3)。又,EPRA3的氧化乙烯基含有量爲 80%,鹼金屬及/或鹼土類金屬的含有量爲0.08mmol/kg,數 量平均分子量爲4000。 48 (製造例5) 將丙二醇320份、氫氧化鉀3.8份置入高壓釜中,於經 氮氣取代後,在120°C下,進行60分鐘真空脫水。然後, 於100〜130°C下,將氧化乙烯680份於約10小時內加壓送 入,於13(TC下繼續反應直到揮發份成爲0.1%以下,得到 粗製聚醚(c-PA)。 (製造例6) 將粗製聚醚(c-PA)lOOO份置入高壓釜中,經由氮氣取 代使氣相的氧濃度作成爲450ppm,加入30份的離子交換水 參 ,然後加入合成矽酸鎂(鈉含有量0.2%)10份,經由再度進 行氮氣取代,使氣相部的氧濃度保持於450ppm,於90°C下 以攪拌速度300rpm進行45分鐘的攪拌。然後,用玻璃過 濾器(GF-75 :東洋濾紙製)在氮氣下進行過濾,得到氧化丙 烯聚合物(PA1)。又,PA1的氧化乙烯基含有量爲0%,鹼金 屬及/或鹼土類金屬的含有量爲〇.〇3mmol/kg,數量平均分子 量爲2000。 (製造例7) · 將粗製聚醚(c-PA)lOOO份置入高壓釜中,經由氮氣取 代使氣相的氧濃度作成爲45Oppm,加入30份的離子交換水 ,然後加入矽酸鎂(鈉含有量3%)12份,經由氮氣取代,使 氣相部的氧濃度保持於450ppm,於90°C下以攪拌速度 300rpm進行240分鐘的攪拌。然後,用玻璃過濾器(GF-75 :東洋濾紙製)在氮氣下進行過濾,得到聚丙二醇(PA2)。又 ,PA2的氧化乙烯基含有量爲0%,鹼金屬及/或鹼土類金屬 49 的含有量爲0.08mmol/kg,數量平均分子量爲200。 (製造例8) 將二甲基胺基乙胺22.0份加入到高壓釜中,經氮氣取 代後,在100〜130°C下,將氧化乙烯400份與氧化丙烯78 份的混合物於約3小時內加壓送入,在130T:下繼續反應3 小時。再將氫氧化鉀3.8份加入反應液中’經氮氣取代後, 於120°C下進行60分鐘真空脫水。然後,於1〇〇〜13(TC下, 將氧化乙烯400份與氧化丙烯100份之混合物於約7小時 內加壓送入,於130°C下繼續反應5小時’得到粗製聚醚 鲁 (C-3AEPRA)。對此粗製聚醚(C-3AEPRA)加入30份的離子交 換水,然後加入矽酸鎂(鈉含量0.2重量%)1〇份,經由氮氣 取代使氣相部的氧濃度作成爲450ppm以下’於90°C下,以 攪拌速度300rpm進行45分鐘的攪拌。然後,用玻璃過濾 器(GF-75 :東洋濾紙製)在氮氣下進行過濾,得到含有第3 級胺基之氧化乙烯/氧化丙烯的無規共聚物(3AEPRA)。又, 3AEPRA的氧化乙烯基含有量爲80%,鹼金屬及/或鹼土類 金屬的含有量爲〇.〇2mmol/kg,第3級胺基之含有個數爲 春 3.0 X102()個/g,數量平均分子量爲4000。 (製造例9) 將N,N,N’,N’-四甲基乙撐二銨·雙硝酸鹽60.5份加入 到高壓釜中,經氮氣取代後,於100〜130°C下,將氧化乙烯 400份與氧化丙烯39.5份之混合物於約3小時內加壓送入 ,於130°C下繼續反應3小時。再將氫氧化鉀3.8份加入反 應液中,經氮氣取代後,於120°C下進行60分鐘真空脫水 50 。然後,於100〜130°c下,將氧化乙烯400份與氧化丙烯 100份之混合物於約7小時內加壓送入,於130°C下繼續反 應5小時,得到粗製聚醚(C-4AEPRA)。其後的處理,以與 製造例2同樣的做法,得到含有第4級氨合基之氧化乙烯/ 氧化丙烯的無規共聚物(4AEPRA)。又,4AEPRA的氧化乙 烯基含有量爲80%,鹼金屬及/或鹼土類金屬的含有量爲 0.02mm〇l/kg,第4級氨合基之含有個數爲3.1 X102()個/g, 數量平均分子量爲4000。 (製造例10) · 對製造例1中所製得之c-EPRA 1112份,混合以環氧 氯丙烷27.8份與苄基三甲基銨氯2.22份之後,於保持在30 °C之下於5小時之間將58.9份的粒狀氫氧化鈉加入,於30 °C下進行3小時的熟成。於減壓下將殘存的環氧氯丙烷蒸 餾除去後,加入33.4份的離子交換水與矽酸鎂(鈉含量0.2 重量%)111份,於9(TC下攪拌45分鐘。然後,用玻璃過濾 器(GF-75 :東洋濾紙製)在氮氣下進行過濾,得到環氧化物 (EP-EPRA)。將甲醇800份、三乙胺20份投入到經氮氣取 春 代的高壓釜中之後,將EP-EPRA 1112份與800甲醇份的溶 解物及硫化氫10份,自分別的進料口,在一邊保持於反應 溫度25°C、壓力4kg/cm2 —邊攪拌下投入。於投入後,在 該狀態的溫度下再進行3小時的熟成,之後,經由通入氮 氣,將容器內的殘存硫化氫導入30%的苛性鈉水溶液中將 其除去。再於使氮氣流通於液中之下,於l〇〇°C X20mmHg X4小時之間,將甲醇、三乙胺蒸餾除去,得到含有硫醇基 51 之氧化乙烯/氧化丙烯無規共聚物(SEPRA)。又,SEPRA的 氧化乙烯基含有量爲80%,鹼金屬及/或鹼土類金屬的含有 量爲0.02mmol/kg,數量平均分子量爲4000。 (製造例11) 除了用製造例5中所得之c-PA 55.6份代替c-EPRA 1112份之外,其餘係以與製造例10同樣的作法,製得含有 硫醇基之聚丙二醇(SPA)。又,SPA的氧化乙烯基含有量爲 0%,鹼金屬及/或鹼土類金屬的含有量爲0.03mmol/kg,數 量平均分子量爲200。 籲 (製造例12) 將乙二醇15.5份、氫氧化鉀3.8份置入高壓釜中,於 經氮氣取代後,於100〜130°C下,將氧化乙烯784.5份與氧 化丙烯190份之混合物於約10小時內加壓送入,於130°C 下進行反應8小時後,將3,3,3-三氟氧化丙烯10份加壓送 入,於130°C下進行反應5小時,得到含有氟之粗製聚醚 (c-EPRFA)。對粗製聚醚(c-EPRFA)lOOO份加入30份的離子 交換水,然後加入矽酸鎂(鈉含量0.2重量%)10份,經由氮 春 氣取代,使氣相部的氧濃度作成爲45Oppm,於90°C下以攪 拌速度300rpm進行45分鐘的攪拌。然後,用玻璃過濾器 (GF-75 :東洋濾紙製)在氮氣下進行過濾,得到含有氟之氧 化乙烯/氧化丙烯的無規共聚物(EPRFA)。又,EPRFA的氧 化乙烯基含有量爲80%,鹼金屬及/或鹼土類金屬的含有量 爲0.02mmol/kg,數量平均分子量爲4000。 (製造例13) 52 2ϋϋ30Ι268 將丙二醇320份、氫氧化鉀3.8份置入高壓釜中,於經 氮氣取代後,在120°C下,進行60分鐘真空脫水。然後, 於100〜13(TC下,將氧化丙烯670份於約10小時內加壓送 入,於130°C下繼續反應8小時後,將3,3,3-三氟氧化丙烯 10份加壓送入,於130°C下進行反應5小時,得到含有氟 之粗製聚醚(c_PFA)。其後的處理係以與製造例12同樣的作 法,製得含有氟之丙二醇(PFA)。又,PFA的氧化乙烯基含 有量爲0%,鹼金屬及/或鹼土類金屬的含有量爲 0.03mmol/kg,數量平均分子量爲200。 鲁 (實施例1) 將製造例2中所得之(EPRA1)400份,於90°C下進行8 小時的減壓下脫水之後,於25t下加入〇CN-CH2 (CF2)4-CH2-NC〇 93.6份(NC〇基/〇H基比:3/1),均一地攪拌之後 ,以30分鐘的時間昇溫到8(TC,在8(TC下進行反應8小 時,得到胺基甲酸乙酯預聚物(UP1)。於反應中,未見到異 常增黏之情形,(UP1)的NCO含有量,係與理論値相同。 (實施例2) · 將製造例2中所得之(EPRA1)124.1份與製造例7中所 得之(PA2)13.8份的混合物,於9〇°C下進行減壓下脫水之後 ,於 25°C 下加入〇CN-CH2(CF2)2_CH2-NC〇 42.4 份(NCO 基 /OH基比:2/1),均一地攪拌之後,以30分鐘的時間昇溫 到80°C,在80°C下進行反應8小時,得到胺基甲酸乙酯預 聚物(UP2)。於反應中,未見到異常增黏之情形,(UP2)的 NCO含有量,係與理論値相同。 53 (實施例3) 將製造例3中所得之(EPRA2)124.1份與製造例7中所 得之(PA2)13.8份的混合物,於90°C下進行減壓下脫水之後 ,於 25°C 下加入〇CN-CH2(CF2)6-CH2-NC〇 82.4 份(NCO 基 /〇H基比:2/1),均一地攪拌之後,以30分鐘的時間昇溫 到80°C,在80°C下進行反應8小時,得到胺基甲酸乙酯預 聚物(UP3)。於反應中,未見到異常增黏之情形,(UP3)的 NCO含有量,較理論値略低。 (實施例4) · 將製造例2中所得之(EPRA1)194.9份與製造例7中所 得之(PA2)10.3份的混合物,經由在9(TC下進行減壓下脫水 之後,於25°C下加入甲苯撐二異氰酸酯(TDI)34.8份(NCO 基/OH基比:2/1),均一地攪拌之後,以30分鐘的時間昇 溫到80°C,在8(TC下進行反應8小時,得到胺基甲酸乙酯 預聚物(UP4)。 (實施例5) 將實施例4中所得之(UP4),經由在減壓下,昇溫到 _ 120°C,再於ImmHg的減壓下,以8小時的時間將未反應 的TDI除去,製得胺基甲酸乙酯預聚物(UP5)。 (實施例6) 將實施例4中所得之(UP4)調溫成80°C後,經由在90 分鐘之間將製造例7中所得之(PA2)4.8份滴入其中,再於 80°C下進行反應90分鐘,製得胺基甲酸乙酯預聚物(UP6)。 (實施例7) 54 將製造例2中所得之(EPRA1)124.1份與製造例7中所 得之(PA2)13.8份,於90°C下進行減壓下脫水之後,經由於 25°C下加入二苯基甲烷二異氰酸酯(MDI)50.0份(NCO基/〇H 基比:2/1),均一地攪拌之後,以30分鐘的時間昇溫到80 °C,在8(TC下進行反應8小時,得到胺基甲酸乙酯預聚物 (UP7)。 (實施例8) 將實施例7中所得之(UP7),經由在減壓下,昇溫到 120°C,再於ImmHg的減壓下,在一邊使微量的氮氣通氣 鲁 到液相之下,以12小時的時間將未反應的MDI除去,製得 胺基甲酸乙酯預聚物(UP8)。 (實施例9) 將製造例8中所得之(3AEPRA)194.9份與製造例7中所 得之(PA2)10.3份的混合物,經由在90°C下進行減壓下脫水 之後,於25°C下加入六甲撐二異氰酸酯(HDI)33.6份(NCO 基/OH基比:2/1),均一地攪拌之後,以30分鐘的時間昇 溫到80°C,在80°C下進行反應8小時,得到胺基甲酸乙酯 春 預聚物(UP9)。 (實施例10) 除了使用異佛爾酮二異氰酸酯(IPDI)44.4份代替六甲撐 二異氰酸酯(HDI)33.6份之外,其餘係以與實施例9同樣的 作法,製得胺基甲酸乙酯預聚物(UP10)。 (實施例11) 除了使用製造例9中所得之(4AEPRA)代替(3AEPRA)之 55 外,其餘係以與實施例9同樣的作法,製得胺基甲酸乙酯 預聚物(UP11)。 (實施例12) 除了使用製造例4中所得之(EPRA3)97.5份與製造例2 中所得之(EPRA1)97.4份的混合物代替(3AEPRA)之外,其餘 以與實施例9同樣的作法,製得胺基甲酸乙酯預聚物 (UP12)。 (實施例13) 將製造例2中所得之(EPRA1)194.9份與製造例7中所 籲 得之(PA2)10.3份的混合物,經由在90°C下進行減壓下脫水 之後,於25°C下加入六甲撐二異氰酸酯(HDI)33.6份(NC〇 基/〇H基比:2/1),均一地攪拌之後,以30分鐘的時間昇 溫到80°C,在80°C下進行反應14小時,得到胺基甲酸乙 酯預聚物(UP13)。 (實施例14) 將實施例13中所得之(UP13)100重量份與二氮雜雙環 十一烯0.6重量份混合,製得胺基甲酸乙酯預聚物(UP14)。 _ (實施例15) 將實施例13中所得之(UP13)100重量份與雙(2,6-二甲 基嗎啉基乙基)醚5重量份混合,製得胺基甲酸乙酯預聚物 (UP15)。 (實施例16) 將實施例13中所得之(UP13)100重量份與N,N’,N”-三( 二甲基胺基丙基)六氫三吖嗪0.6重量份混合,製得胺基甲 56 酸乙酯預聚物(UP16)。 (實施例17) 將實施例13中所得之(UP13)100重量份與N,N,N’,N’-四甲基哌啶鑰二碳酸酯2重量份混合,製得胺基甲酸乙酯 預聚物(UP17)。 (實施例18) 除了使用異佛爾酮二異氰酸酯(IPDI)44.4份代替六甲撐 二異氰酸酯(HDI)33.6份之外,其餘係以與實施例13同樣的 作法,製得胺基甲酸乙酯預聚物(UP18)。 _ (實施例19) 將實施例18中所得之(UP18)100重量份與二氮雜雙環 十一烯0.6重量份混合,製得胺基甲酸乙酯預聚物(UP19)。 (實施例20) 將製造例10中所得之(SEPRA)400份,於90°C下進行8 小時的減壓下脫水之後,於25°C下加入〇CN_CH2 (CF2)4-CH2-NC〇 93.6份(NC〇基/〇H基比:3/1),均一地攪拌之後 ,以30分鐘的時間昇溫到80°C,在8(TC下進行反應8小 春 時,得到胺基甲酸乙酯預聚物(UP20)。 (實施例21) 將製造例10中所得之(SEPRA)124.1份與製造例11中 所得之(SPA)13.8份的混合物,於90°C下進行減壓下脫水之 後,於 25°C 下加入〇CN-CH2(CF2)4-CH2-NC〇 62.4 份(NC〇基 /OH基比:2/1),均一地攪拌之後,以30分鐘的時間昇溫 到80°C,在80°C下進行反應8小時,得到胺基甲酸乙酯預 57 2ϋϋ30Ι£6δ 聚物(UP21)。 (實施例22) 對製造例12中所得之(EPRFA)IOO份加入鉑黑10份, 於攪拌下,於一邊通空氣於氣相之下,在60°C下反應10小 時之後,用玻璃過濾器(GF-75 ··東洋濾紙製)進行過濾,得 到導入羰基之聚醚。然後,加壓送入10份的氨氣,於251 下反應2小時後,加入1份的蘭尼鎳(Raney Ni),於25 它下以氫氣加壓到90氣壓。徐徐升高溫度,先於40°C下反 應5小時,再於70°C下反應5小時。於減壓下,將過剩的 春 氨、氫及生成的水除去之後,用玻璃過濾器(GF-75 :東洋 濾紙製)進行過濾,得到導入胺基的聚醚。對其加入0.5份 的氯化鈀後,於一邊通以一氧化碳之下,在65°C下反應3 曰,再於減壓下,將過剩的一氧化碳除去後,用玻璃過濾 器(GF-75 :東洋濾紙製)進行過濾,得到末端官能基轉變成 異氰酸基的聚合物(NUP1)。 (實施例23) 除了用製造例12中得到之無規共聚物(EPRFA)95份與 春 製造例13中得到之(PFA)5份的混合物代替(EPRFA)IOO份 之外,其餘以與實施例22同樣的作法,製得末端官能基經 轉變成異氰酸基的聚合物(NUP2)。 (比較例1) 將製造例4中所得之(EPRA3)400份,於90°C下進行減 壓下脫水之後,於25t下加入〇CN-CH2(CF2)4-CH2-NC〇 93.6份(NCO基/〇H基比:3/1),均一地攪拌之後,以30分 58发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a polymer and a method for producing the polymer. In more detail, it relates to a method for producing polymers and polymers suitable for use as medical adhesives, especially for bonding to moist living tissues such as lungs, arteries, and hearts, which are excellent in water-resistant bonding strength. [Prior art] Conventionally, as a medical adhesive, a hydrophilic urethane prepolymer obtained by reacting a fluorinated polyisocyanate with a hydrophilic polyether polyol (Japanese Patent Application Laid-Open No. 1-227762) has been known. However, in conventional adhesives for medical use, due to the high reactivity of the fluorinated polyisocyanate component and the hydrophilic polyether polyol, a heterogeneous reaction occurs, and abnormalities may be seen in the manufacture of prepolymers. The thickening or the composition of the prepolymer is easy to be uneven, and the problem of uneven bonding strength is easy to occur. In addition, such a prepolymer has a low wet bonding strength, which is a problem. [Disclosure of the Invention] That is, the present invention aims to provide a polymer having a high wet bonding strength (water-resistant bonding strength) and being suitable as a medical adhesive. The present inventors have intensively studied to achieve the above-mentioned object, and found that if a polymer having a specific viscosity and an initial water absorption rate is used, a medical adhesive having excellent wet bonding strength can be obtained, and the present invention has been completed. That is, the feature of the polymer of the present invention is a polymer for medical adhesives capable of forming a hardened film, having a viscosity at 37 ° C of 0.5 to 2000 Pa · s and a saturated water absorption of 0.2 to 5 ml / g. 20j30I £ 68 Detailed disclosure of the invention The viscosity (Pa · s) of the polymer of the present invention at 37 ° C is preferably 0.5 or more, more preferably 1 or more, especially 3 or more, and 5 or more is the most preferable. It is better to be less than 2000, and more preferably to less than 500, especially to 500 or less. It is more preferable to be less than 50. Within this range, the applicability of the adhesive tends to be improved. < Measurement method of polymer viscosity > The measurement was performed with a DA type viscometer in accordance with the D method described in "Viscosity Test Method of Liquid Resin Using a Rotary Viscometer" specified in JIS K71 17-1987. As the rotary viscometer, a BH type viscometer manufactured by Degemei g Co., Ltd. can be used. The saturated water absorption (ml / g) of the polymer of the present invention is preferably 0.2 or more, more preferably 0.3 or more, particularly preferably 0.4 or more, more preferably 0.5 or more, and more preferably 5 or less. It is more preferably 3 or less, especially 1 or less is particularly preferable, and 0.7 or less is the most preferable. Within this range, the bonding strength (especially the initial bonding strength) tends to be high. < Measurement method of saturated water absorption > The explanation in JIS K7224-1996 "Test method for water absorption speed of super absorbent resin" is explained in the D / W method water absorption speed measuring device (capacity of measuring tube: 25ml, length: 55cm, small hole diameter: 2mm), in a room of 25 t and 50% humidity, filter paper (glass microfiber filter paper GF / A, made by Watman Company, etc.) with a diameter of 3.7 cm is provided instead of non-woven fabric and A cylindrical cylinder made of polycarbonate having an inner diameter of 3.7 cm was used for measurement. First, in a state where each valve is closed, 25 ml of a test solution (physiological saline) is put into a burette. 7 2003ϋ1 ^ 6δ, the test solution is filled between the burette and the valve by opening each valve. Next, after attaching the rubber stopper, open the valve under the burette, wipe the test solution overflowing from the filter paper, and read the scale U1 on the burette). Then, 1.0 g of polymer was added to the filter paper in the cylinder, and the polymer was uniformly set by squeezing a 3.7 cm diameter cylinder into the cylinder, and the scale of the burette was read after 30 minutes (a2 ), Take (a2) minus (al) as the saturated water absorption (ml / g). The initial water absorption rate (ml / g · min) is preferably 0.01 or more, more preferably 0.02 or more, particularly preferably 0.03 or more, more preferably 0.04 or more, and more preferably 0.5 or less. It is more preferably 0.3 or less, particularly 0.2 or less is particularly preferable, and 0.1 or less is the most preferable. Within this range, the joint strength (especially the initial joint strength) will be higher. < Measurement method of initial water absorption rate > In the same method as the saturated water absorption amount, read the scale (a3) after 2 minutes of setting the polymer properly, and subtract (a3) from (a3) to 1 / 2 is taken as the initial water absorption rate (ml / g · min). The wet elongation (%) of the cured film of the polymer of the present invention is preferably 100 or more, more preferably 200 or more, particularly preferably 300 or more, and more preferably 400 or more. It is preferably below 1500, more preferably below 1200, particularly preferably below 1,000, and most preferably below 800. Within this range, the joint strength (especially the water-resistant joint strength) will be higher. The 100% modulus (MPa) of the wetness of the hardened film is preferably 0.001 or more, more preferably 0.05 or more, particularly preferably 0.00 or more, and more preferably 0.4 or more. In addition, 10 or less is preferable, 5 or less is more preferable, 2 or less is more preferable, and 0.7 or less is more preferable. Within this range, the joint strength (especially the water-resistant joint strength) will be higher. < Measurement method of wet elongation and wet 100% modulus of hardened film> Wet elongation and wet 100% modulus of hardened film are used as test samples for coating polymer on a glass plate with a coater. The thickness is about 100 / m, 10 cm square, and it is left to harden under the conditions of 25 ° C and 58% relative humidity for 48 hours. Then, it is shaped like a dumbbell No. 3 as described in JIS K6251-1993. Prepare the sample by pressing. Then, hold the punched sample in physiological saline for 1 hour, remove the moisture with gauze, and measure the thickness accurately. Within 5 minutes, in accordance with JIS K625M993, at 25 ° C and 50% relative humidity At a tensile speed of 300 mm / min, the elongation at cutting and the tensile tension at 100% elongation were measured. As the tensile testing machine, the testing machine specified in IS K6850-1999 (Shimadzu Corporation, automatic drawing machine AGS-500B, etc.) can be used. In the present invention, as the polymer forming the hardened film, a polymer having a functional group [polyether, polyester, polyamide, polyurea, polyurethane, and a vinyl polymer (acrylic polymer, polystyrene, poly Olefins, polydiene, natural rubber, etc.)]. Examples of the reactive functional group include an isocyanate group, an epoxy group (such as glycidyl group and 2,3-oxocyclohexyl group), a (meth) acryl group, and a cyano (meth) acryl group Base, alkoxysilyl (trimethoxysilyl, triethoxysilyl, etc.), etc., and precursors of these [blocking isocyanato (phenoxyaminomethylammonium, etc.), etc.] and the like. The number average molecular weight (Μη) of the polymer of the present invention is preferably 500 or more, more preferably 800 or more, particularly preferably 1,000 or more, more preferably 1200, and most preferably 500,000 or less. Below 100,000 is more preferred, especially below 10,000 is particularly preferred, and below 5,000 is most preferred. Within this range, the joint strength (especially the wet joint strength) will be higher. The number average molecular weight can be determined by gel permeation chromatography (GPC: Gel Permeation Chromatography) using polyethylene glycol or polystyrene as a standard material. The polymer of the present invention is preferably a hydrophilic polymer from the standpoint of bonding strength (particularly, initial bonding strength). The hydrophilic polymer means one containing 30% by weight or more of an oxyethylene group and one having a water affinity equivalent to that of the polymer. The content (wt%) of the oxyethylene group in the polymer is based on the weight of the polymer, preferably 30 or more, more preferably 40 or more, particularly preferably 45 or more, and more preferably 50 or more. It is better to be 100 or less, more preferably 90 or less, especially 80 or less, and 75 or less is the best. Within this range, the bonding strength (especially the initial bonding strength) of the polymer will be higher. Regarding the polymer of the present invention, from the viewpoint of reactivity, an isocyanate group is used as a reactive functional group containing an isocyanate. A cyanate-based polymer is preferred. In the case of having an isocyanate group, the content of the isocyanate group in the polymer (% by weight) is based on the weight of the polymer and is 0. 1 or more is preferred, and 0. 5 or more is preferred, 1 or more is particularly preferred, 2 or more is most preferred, and 20 or less is preferred, and 15 or less is more preferred, 10 or less is particularly preferred, and 5 or less is most preferred . Within this range, the bonding strength of the polymer (especially the initial bonding strength and water-resistant bonding strength) will be higher. The isocyanate content is adjusted by dissolving the polymer in a solution of an excessive amount of amines (such as dibutylamine) in a solvent (toluene, dimethylformamide, dimethylmethylene maple, etc.). After the reaction, the unreacted amine is titrated with a methanol solution of hydrochloric acid or the like, and the molar number of the isocyanate group per unit weight is determined. The molar number is multiplied by 42 to obtain the isocyanate content ( weight%). The isocyanate-containing polymer includes an urethane prepolymer (UP) having a structure obtained by reacting a polyisocyanate (A) with an active hydrogen-containing polymer (B); and an unused polymer The polymer of polyisocyanate (NUP) is obtained by converting one or more functional groups in the polymer (B) containing active hydrogen into an isocyanate group. _ In order to obtain the polyisocyanate (A) used in the urethane prepolymer (UP), it can be used: carbon number (except carbon in NCO group, the same applies hereinafter) 6 to 19 aromatic polyisocyanate, carbon number Aliphatic polyisocyanates of 1 to 22, alicyclic polyisocyanates of 6 to 19 carbons, aromatic aliphatic polyisocyanates of 8 to 16 carbons, modified ones thereof, and a mixture of at least two of these. Examples of the aromatic polyisocyanate include 1,3- or 1,4-phenylene diisocyanate (PDI), 2,4- or 2,6-toluene diisocyanate (TDI), crude TDI, 2,4 '-Or 4,4'-diphenylmethane diisocyanate (MDI), crude MDI, 15-naphthalene diisocyanate, 4,4', 4 "-triphenylmethane triisocyanate, m- or p-isocyanate Acid benzenesulfonyl isocyanate and mixtures thereof, etc. As the aliphatic polyisocyanate, a fluorine-free aliphatic polyisocyanate and a fluorine-containing aliphatic polyisocyanate can be used. As a fluorine-free aliphatic polyisocyanate, Examples include: methylene diisocyanate, ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecyl diisocyanate, 1,6,11-undecane triiso11 cyanate , 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, hexyl 2,6-diisocyanate, bis (2-isocyanatoethyl) trans-butene di Acid esters, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, and mixtures thereof, etc. As the fluorine-containing aliphatic polyisocyanate, it can be represented by 〇CN-RrNC〇, represented by 〇CN-CH2-Rf_CHrNC〇, represented by 〇CN-CF2-R-CF2-NC〇, and represented by 〇CN- Representative of CH2-CF2-R-CF2-CH2-NC〇, representative of OCN-CHCCF + R-CIKCF + NCO and mixtures thereof, etc. However, the "heart" in the formula represents the number of carbons which may contain ether bonds 1 ~ A perfluoroalkylene group of 20 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond. Examples represented by 〇CN-RrNC〇 include difluoromethylene diisocyanate and perfluorodiisocyanate. Methylene diisocyanate, perfluorotrimethylene diisocyanate 'perfluoro eicosane diisocyanate, bis (isocyanate perfluoroethyl) ether, bis (diisocyanate perfluoropropyl) ether, etc. 〇CN-CH2-RrCHrNCO Representatives include bis (isocyanatomethyl) difluoromethane, bis (isocyanatomethyl) perfluoroethane, and bis (isocyanatomethyl) all Fluoropropane, bis (isocyanatomethyl) perfluorobutane (FHMDI) φ, bis (isocyanatomethyl) perfluoropentane, bis (isocyanatomethyl) perfluorohexane, bis (Isocyanatomethyl) Perfluoro eicosane and bis (isocyanatomethylperfluoroethyl) acid, etc. As representative of 〇CN-CF2-R-CF2-NC〇, bis (isocyanatodifluoro) Methyl) methane, bis (isocyanatodifluoromethyl) propane, bis (isocyanatodifluoromethyl) octadecane, and 2,2, -bis (isocyanatodifluoromethylethyl) ) Ether, etc. 12 2ϋϋ30 1 £ 6B As representative of 0cn-ch2_cf2-r-cf2-ch2-nc〇, bis (2-isocyanato-1,1-difluoroethyl) methane, Bis (2-isocyanato-1,1-difluoroethyl) propane, bis (2-isocyanato-1,1-difluoroethyl) hexadecane, and bis (2-isocyanato -1,1-difluoroethylethyl) ether and the like. Representatives of 〇CN-CH (CF3) _R-CH (CF3) -NC〇 include diisocyanate-1,1,1,4,4,4-hexafluoropentane and bis ( Isocyanato-3,3,3-trifluoropropyl) ether and the like. As the alicyclic polyisocyanate, a fluorine-free alicyclic polyisocyanate, a fluorine-containing alicyclic polyisocyanate, and the like can be used. As the non-fluorine-containing alicyclic polyisocyanate, examples include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexyl diisocyanate, and formazan Cyclohexyl diisocyanate (hydrogenated HDI), 4,4 ', 4 "-tricyclohexylmethane triisocyanate, bis (2-isocyanatoethyl) -4-cyclohexene-12-dicarboxylate , 2,5- or 2,6-norbornane diisocyanate and mixtures thereof, etc. Examples of the fluorinated alicyclic polyisocyanate include diisocyanate perfluorocyclohexane, diisocyanate Tetrafluorocyclohexane, bis (isocyanatomethyl) perfluorocyclohexane, bis (isocyanatomethyl) tetrafluorocyclohexane, bis (isocyanatomethyl) perfluorodi Methylcyclohexane, bis (isocyanatomethyl) dimethyltetrafluorocyclohexane, bis (isocyanatodifluoromethyl) cyclohexane, bis (isocyanatoperfluorocyclohexyl) , Bis (isocyanatotetrafluorocyclohexyl), bis (isocyanatoperfluorocyclohexyl) perfluoropropane, bis (isocyanatotetrafluorocyclohexyl) perfluoropropane, bis (isocyanatomethyl Perfluorocyclohexyl Perfluoropropane, bis (isocyanatomethyltetrafluorocyclohexyl) perfluoropropane, bis (2-isochloroacid-1,1-digasethyl) ¾, bis (2-isoamine Acid group 13 -1,1-difluoroethyl) cyclohexane and mixtures thereof, etc. As the aromatic aliphatic polyisocyanate, fluorine-free aromatic aliphatic polyisocyanate and fluorine-containing aromatic aliphatic polyisocyanate can be used. Examples of the aromatic aliphatic polyisocyanate which does not contain fluorine include m- or p-xylene diisocyanate (XDI), α, α, α ', α'-tetramethylxylene diisocyanate (TMXDI), α, α, α ', α'-tetraethylxylene diisocyanate (TEXDI) and mixtures thereof, etc. Examples of the fluorinated aromatic aliphatic polyisocyanate include bis (isocyanatomethyl) Perfluorobenzene, bis (isocyanatomethyl) dimethylperfluorobenzene, bis (iso_cyanoperfluorophenyl) perfluoropropane, bis (isocyanatomethylperfluorophenyl) perfluorobenzene Fluoropropane, bis (2-isocyanato2,2-difluoroethyl) benzene, bis (2-isocyanato1,1-difluoroethyl) benzene, and mixtures thereof, etc. Examples of the modified body include denatured HDI (urethane-modified HDI, carbodiimide-modified HDI, and trihydrocarbyl phosphate-modified HDI), and modified FHMD (urethane-modified FHMDI, carbodiimide-modified). FHMDI and trihydrocarbyl phosphate modified FHMDI, etc.), denatured MDI (urethane modified MDI, carbodiimide denatured MDI and trihydrocarbyl phosphate modified MDI, etc.), denatured TDI (urethane modified TDI, Carbodiimide-denatured TDI, trihydrocarbyl phosphate-denatured TDI, etc.), and mixtures thereof, etc. As the polyisocyanate (A) other than the above, it is preferable to use the following: Polyisocyanates [N, N-bis (isocyanatoethyl) methylamine, N, N-bis (4-isocyanatocyclohexyl) methylamine, etc.]] and polyisocyanates containing a 4th level amino group [ N, N-bis (isocyanatoethyl) diethylammonium chloride and 14 N, N-bis (4-isocyanatocyclohexyl) diethylammonium etc.]. By using these polyisocyanates, the curing reactivity can be improved. As the polyisocyanate (A), from the viewpoint of the safety of (A), an aliphatic polyisocyanate, an alicyclic polyisocyanate, a polyisocyanate containing a tertiary amine group, and a tertiary ammonio group are included. Polyisocyanates are preferred. From the viewpoint of reactivity, etc., more preferred are: fluorine-containing aliphatic polyisocyanates, fluorine-containing alicyclic polyisocyanates, polyisocyanates containing a third-stage amine group, and polyisocyanates containing a fourth-stage Polyamine isocyanate; especially preferred are fluorine-containing aliphatic polyisocyanate and fluorine-containing alicyclic polyisocyanate; · The best is represented by 〇CN-CH2-Rf-CH2-NC〇. The polymer (B) containing active hydrogen includes polyether {polyether (B1) containing a hydroxyl group, polyether (B2) containing a thiol group, and polyether containing a primary and / or secondary amine group ( B3) and carboxyl-containing polyether (B4)}, polyester {hydroxyl-containing polyester (B5), thiol-containing poly (thio) ester (B6), and 1- and / or 2-level amine groups Polyester (B7) and carboxyl-containing polyester (B8)}, and polyamine {polyhydroxyamine-containing polyamine (B9), thiol group-containing polyamine (B10), containing grade 1 and / or 2 Polyamines (B11) of higher amine groups and polyamines (B12)} containing carboxyl groups. As the hydroxyl-containing polyether (B1), a (co) adduct of an olefin oxide of the compound (b) having at least two active hydrogens can be used. Examples of the olefin oxide include olefin oxides having 2 to 8 carbon atoms (ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, phenylethylene oxide, etc.), and fluorinated olefin oxides having 2 to 8 carbon atoms (1, 1-difluoroethylene oxide, tetrafluoroethylene oxide, 3,3,3-trifluoropropylene oxide, perfluoropropylene oxide, perfluorobutene oxide, perfluorotetrahydrofuran, and perfluorophenylethylene oxide), etc. As the oxidized olefin, ethylene oxide and propylene oxide are preferable, and ethylene oxide alone and a mixture of ethylene oxide and propylene oxide are preferable. In addition, in the case of a co-adduct, the addition form may be random, block, or any combination thereof, but the random form is preferable. In the case of using fluorinated ethylene oxide and / or fluorinated olefin oxide, it is preferable that the fluorinated ethylene oxide and / or fluorinated olefin oxide are subjected to an addition reaction after the ethylene oxide and / or olefin oxide are reacted. The presence of a fluorinated compound at the terminal can further increase the hardening reactivity of the polymer containing an isocyanate group. Of the fluorinated ethylene oxides and fluorinated olefins, 1,1-difluorooxyethylene, perfluoroethylene oxide and 3,3,3-trifluoropropylene oxide are preferred, and 3,3,3_ Trifluoropropylene oxide is more preferred. In the case of co-adducts, the content (wt%) of ethylene oxide is based on the weight of the co-adducts, preferably 30 or more, and more preferably 50 or more, particularly 60 or more. 70 or more is preferable, and 100 or less is preferable, 98 or less is more preferable, 95 or less is particularly preferable, and 90 or less is more preferable. Within this range, the joint strength (especially the initial joint strength) of the polymer will be higher. _ As the compound (b) having at least two active hydrogens, water, diols, polyhydric alcohols of 3 to 6 or more, dicarboxylic acids, polycarboxylic acids of 3 to 4 or more, monoamines, Polyamines and polythiols. When a compound having two active hydrogens is used, a divalent polyol can be obtained, and when a compound having three or more active hydrogens is used, a trivalent or more polyol can be obtained. As a diol, Uses: Alkylene glycols with 2 to 30 carbons (ethylene glycol 16 2 to 30 I26B, 12-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, octanediol, decane Diol, dodecanediol, pentapentyl glycol, 2,2-diethyl-1,3-propanediol, etc.); alicyclic diols (1,4-cyclohexanedi) having 6 to 24 carbon atoms Methanol and hydrogenated bisphenol A, etc.); bisphenols (bisphenol A, bisphenol F, and bisphenol S) with a carbon number of 15 to 30; dihydroxybenzene (catechol and hydroquinone, etc.); weight average molecular weight ( Mw) 100 to 5000 polyester diols [polylactone diols (polyε-caprolactone diols, etc.), aliphatic polyester diols (polyester diols of ethylene glycol and adipic acid, and butane Diols and polyester diols of adipic acid, etc.), aromatic polyester diols (polyethylene glycol and polyester diols of terephthalic acid, etc.), etc.] and polybutadiene diols of Mw1000 to 20,000 Call on. The Mw was determined by gel permeation chromatography (GPC) using polyethylene glycol or polystyrene as a standard substance. As the 3- to 6-valent polyol, 3 to 6-valent aliphatic polyhydric alcohols (glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitan, sorbitol, etc.) can be used. As the dicarboxylic acid, an alkanedicarboxylic acid having 4 to 32 carbon atoms (succinic acid, adipic acid, sebacic acid, dodecene succinic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid can be used. Acid, octadecane dicarboxylic acid, dodecyl succinic acid, octadecyl succinic acid, etc.); alkenyl dicarboxylic acids (cis-butenedioic acid, trans-butenedioic acid, 4 to 32 carbon atoms) Acid, methyl maleic acid, methyl fumaric acid, dimer acid, dodecene succinic acid and pentadecene succinic acid, etc.); aromatic dicarboxylic acids with 8 to 20 carbon atoms ( Phthalic acid, isophthalic acid, terephthalic acid, naphthalene dicarboxylic acid, etc.). As the polycarboxylic acid having a valence of 3 to 4 or more, an aromatic polycarboxylic acid (such as trimellitic acid, pyromellitic acid, etc.) having a carbon number of 9 to 20 can be used. 17 20ϋ30 1 £ 6δ These dicarboxylic acid or polycarboxylic acid anhydrides and lower alkyl esters can also be used. Examples of the acid anhydrides of these dicarboxylic acids or polycarboxylic acids include maleic anhydride, fumaric anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. As the lower alkyl group, an alkyl group having 1 to 4 carbon atoms can be used, and examples thereof include methyl, ethyl, isopropyl, and tert-butyl. As the monoamine, ammonia and aliphatic amines having 1 to 20 carbons {alkylamines having 1 to 20 carbons (methylamine, ethylamine, propylamine, hexylamine, dodecylamine, eicosamine, etc.), etc.} ; 4 to 15 carbon alicyclic amines (amino cyclohexane, isophorone monoamine and 4-methylcyclohexane monoamine); 4 to 15 carbon heterocyclic amines (Pyridine and (N-amine_ylethylpyridine, etc.); aliphatic amines (aminomethylbenzene) containing 6 to 15 carbon atoms; aromatic amines (aniline, etc.) having 6 to 15 carbon atoms. As the polyamine, it can be used: aliphatic polyamines having 2 to 18 carbon atoms {alkylene diamines having 2 to 12 carbon atoms (ethylene diamine, propylene diamine, trimethylenediamine, hexamethylenediamine, and eleven Carbene diamine, etc.) and polyalkylene (carbon number 2-6) polyamine (diethylene triamine, dipropylene triamine, triethylene tetraamine, pentaethylene hexaamine, etc.), etc.}, carbon number 4- to 15-alicyclic polyamines (1,3-diaminocyclohexane, isophoronediamine, and 4,4, -methylenedicyclohexanediamine); Cyclic polyamines (erzine, N-aminoethylethrazine, 1,4-diaminoethylmorphazine, etc.); aliphatic amines (phenylene dimethyl groups) containing aromatic rings with 8 to 15 carbon atoms Diamine and tetrachloro-p-phenylene dimethyl diamine, etc.); aromatic polyamines (phenylene diamine, bis (aminophenyl) methane, 4-aminophenyl-2) having 6 to 20 carbon atoms -Chloroaniline and 1-methyl-2-methylamino-4-aminobenzene, etc.). As the polythiol, hydrogen sulfide, polythiol having 1 to 24 carbon atoms (methanedithiol, ethanedithiol, 1,4-butanedithiol, and 1,6-hexanedisulfide can be used. Alcohols 18, 12,3-propanetrithiol) and the like. As the compound (b) having at least two active hydrogens other than these compounds, an aminocarboxylic acid, an oxocarboxylic acid, an amino alcohol, and the like can also be used. Among these compounds (b) having at least two active hydrogens, diols are preferred, and alkylene glycols are more preferred, and alkylene glycols having 2 to 30 carbon atoms are more preferred. Alkylene glycols (ethylene glycol, 12-propylene glycol, 1,3-propanediol, 1,4-butanediol, etc.) having 2 to 4 carbon atoms are most preferred. Further, as the compound (b) having at least two active hydrogens, a compound (bl) having an amine group and at least two active hydrogens, and a compound containing a fourth-order amino group and having at least two can be used. The active hydrogen compound (b2) and mixtures thereof are preferred. When (bl) or (b2) is used, the reactivity of the polymer can be further improved. As the compound (bl), a monoamine, a polyamine, or the like can be used. Examples of the monoamine include ammonia and monoamine compounds having 1 to 20 carbon atoms [aliphatic amines (methylamine, ethylamine, propylamine, hexylamine, dodecylamine, and eicosylamine); alicyclic type Amines (cyclohexylamine, isophorone monoamine, 4-cyclohexylmethylcyclohexylamine, 4-dicyclohexylmethylcyclohexylamine, etc.); heterocyclic amines (morphine and N-aminoethyl) Pyridine, etc.); aliphatic amines (aminomethylbenzene, etc.) containing aromatic rings; aromatic amines (aniline, etc.), etc.]. Examples of the polyamine include polyamines having 2 to 18 carbon atoms {aliphatic polyamines [alkylene diamines (ethylene diamine, propylene diamine, trimethylenediamine, hexamethylenediamine, and eleven carbons) Alkenyl diamine, etc.); dialkylaminoalkylamines (dimethylaminoethylamine, diethylaminopropylamine, dipropylaminopropylamine, methylethylaminopropylamine, and di-18 Alkylaminoethylamine); N, N'-dialkylalkanediamine (N, N'_diethyl19 ethylenediamine, etc.), etc. and polyolefin polyamines (diethylenetriamine, diamine Propylene triamine, triethylene tetraamine and pentaethylene hexaamine, etc.)]; alicyclic polyamines (1,3-diaminocyclohexane, isophorone diamine and 4,4'- Methylenedicyclohexanediamine); heterocyclic polyamines (morphazine, N-aminoethylmorphazine and 1,4-diaminoethyltonazine, etc.); aliphatic amines containing aromatic rings ( Phenylene dimethyl diamine and tetrachloro-p-phenylene dimethyl diamine, etc.); aromatic polyamines (phenylene diamine, bis (aminophenyl) methane, 4-aminophenyl-2-chloro Aniline and 1-methyl-2-methylamino-4-aminobenzene, etc.) etc.}. As the compound (bl), a polyhydric alcohol having a tertiary amine group (2-dimethylaminopropylene glycol, 2-diethylaminoethylpropylene glycol, and dimethyl alcohol) can also be preferably used. Aminoaminoethylcyclohexanediol, etc.); polythiols having a tertiary amine group [bis (thiol ethyl) methylamine, etc.]; and polycarboxylic acids having a tertiary amine group (2- Dimethylaminoethyl adipic acid, etc.). In these cases, the reactivity of the polymer can be further improved. As the compound (bl), aliphatic amines, alicyclic amines, dialkylaminoalkylamines, and N, N'-dialkylalkylenediamines are preferred, and aliphatic amines and dialkylamines are preferred. Alkylamines and N, N'-dialkylalkylenediamines are more preferred, and dialkylaminoalkylamines are particularly preferred. _ Examples of the compound (b2) containing a fourth-order amino group and having at least two active hydrogens include an amine group containing an amine group and having at least two active hydrogens (bl) as an ammonium salt. {1st and 2nd amines are those with Lewis acid as the salt, and 3rd amines are Bronsted acid as the salt [monoamine salt (dimethylammonium chloride and N-methyl-cyclohexyl ammonium, methyl sulfate, etc.), polyamine salts (tetramethylethylene diammonium, dinitrate, etc.), quaternary compounds of polyhydric alcohols having a tertiary amine group (2 -Trimethylaminopropanediol · chlorine, etc.) 20, quaternary compounds of polythiols having tertiary amine groups [bis (thiolethyl) diethylammonium chloride, etc .; 1} and having tertiary Polyamine quaternary compounds (2-trimethylaminoethyl adipate chloride, etc.) etc.] etc. Examples of the Bronsted acid include hydrochloric acid, nitric acid, sulfuric acid, formic acid, acetic acid, and benzoic acid. Examples of the Lewis acid include alkyls (carbons other than Bronsted acid). Numbers 1 to 20) Halides (chloromethane, bromomethane, chloroethane, chlorodecane, bromodecane, chloroicosane, benzyl chloride, benzyl bromide, epichlorohydrin, etc.), inorganic acid alkyl ( Carbon number 1 to 7) compounds (such as dimethyl sulfuric acid and benzyl sulfuric acid) and dialkyl (carbon number 1 to 7) carbonates (such as dimethyl carbonate and dibenzyl carbonate). The number average molecular weight of the hydroxyl-containing polyether (B1) is preferably 200 or more, more preferably 300 or more, particularly 400 or more, and preferably 10,000 or less, and more preferably 8,000 or less. Especially preferably below 6000. Within this range, the joint strength (especially the wet joint strength) is higher. As the thiol group-containing polyether (B2), a structure having at least one hydroxyl group of a hydroxy group-containing polyether (B1) converted to a thiol group can be used. Examples include: The ether (B1) is a structure obtained by reacting epihalohydrin (epichlorohydrin, etc.) and then reacting with hydrogen sulfide, and having a polyether (B1) containing a hydroxyl group as a cyclic sulfide (ethylene boron, etc.) ) Constructors and so on that are directly reflected. The number average molecular weight of the thiol group-containing polyether (B2) is preferably 200 or more, more preferably 300 or more, particularly preferably 400 or more, and preferably 10,000 or less, and more preferably 8,000 or less. , Especially below 6000 is particularly good. Within this range, the bonding strength (especially the wet bonding strength) will be higher. As a polyether (B3) containing a first and / or a second amine group, it is possible to use: a polyether (B1) containing a hydroxyl group Structures in which at least one of a thiol group of a hydroxyl group or a thiol group-containing polyether (B2) is converted into a primary and / or secondary amine group; examples include (B1) or (B2) and a ring Structures obtained by the reaction of amines (eg, ethyleneimine, N-methylethyleneimine, etc.), the ketimine compounds prepared by primary amines (ethanolamine, etc.) containing hydroxyl groups and ketones are The oxidized hydrocarbon is subjected to (co) addition polymerization, and then hydrolyzed to remove the ketone as a structure of a primary amine. _ The number average molecular weight of the polyether (B3) containing first and / or second amine groups is preferably 200 or more, more preferably 300 or more, particularly 400 or more, and preferably 10,000 or less , And preferably below 8000, especially below 6000. Within this range, the joint strength (especially the wet joint strength) will be higher. As the carboxyl group-containing polyether (B4), at least one of the hydroxy groups of the hydroxy group-containing polyether (B1) or at least one of the thiol groups of the thiol group-containing polyether (B2) can be used. Examples of the structure of the carboxyl group include structures obtained by reacting (B1) or (B2) with the above-mentioned carboxylic acid or polycarboxylic acid anhydride or alkyl ester, etc. Those who oxidize in the presence of chromium mixed acid, permanganate, etc.) to convert the hydroxyl group into a carboxyl group, and use lower alcohol esters of hydroxy acid (methyl lactate, etc.) using an olefin oxide containing ethylene oxide as an essential component (co) After addition polymerization, the alcohol is hydrolyzed to remove the alcohol as a carboxyl group. The number average molecular weight of the polyether (B4) containing a carboxyl group is preferably 200 or more, more preferably 300 or more, particularly 400 or more, and 22 10,000 or less, and 8,000 or less, Especially preferably below 6000. Within this range, the bonding strength (especially the wet bonding strength) will be higher. As the hydroxyl-containing polyester (B5), (B1) can be used with the dicarboxylic acid, dicarboxylic anhydride, and / or dicarboxylic acid described above. Polyesters formed from acid lower alkyl esters. The ends of these polyesters are hydroxyl groups. In addition, polycarboxylic acids, polycarboxylic anhydrides, and polycarboxylic lower alkyl ethers can also be used. When these are used, these amounts (mole%) are based on the molar number of the total carboxylic acid. To 0. 1 ~ 10 is better, 0. 1 ~ 5 is better, especially 0. 1 to 2 are particularly preferred. As (B1) · used to obtain (B5), the number average molecular weight is preferably 100 or more and 5000 or less. The number average molecular weight of the hydroxyl-containing polyester (B5) is preferably 200 or more, more preferably 300 or more, especially 400 or more, and preferably 10,000 or less, and more preferably 8,000 or less, particularly It is particularly preferred to be below 6000. Within this range, the bonding strength (especially the wet bonding strength) will be higher. As the poly (thio) ester (B6) containing a thiol group, it is possible to use at least at least the hydroxyl group of the polyester (B5) containing a hydroxyl group. 1 structure converted into a thiol group [a structure obtained by reacting a polyester containing hydroxyl group (B5) with epoxy halopropane followed by a reaction with hydrogen sulfide, and causing a polyester containing hydroxyl group (B5) to form a ring Structures obtained by direct reaction of thioethers, etc.], and polysulfides prepared from thiol group-containing polyethers (B2) and the above-mentioned carboxylic acids, dicarboxylic acid anhydrides, and / or lower dicarboxylic acid dialkyl esters Esters (at least one of the terminals is a thiol group) and the like. As (B2) used to obtain (B6), the number average molecular weight is preferably 100 or more and 5,000 or less. The number average molecular weight of the poly (thio) ester (B6) containing a thiol group is preferably 200 23 or more, more preferably 300 or more, particularly preferably 400 or more, and more preferably 10,000 or less. It is preferably below 8000, especially below 6000. Within this range, the joint strength (especially the wet joint strength) will be higher. As the polyester (B7) containing a primary and / or secondary amine group, a structure capable of converting at least one of the hydroxyl groups of the polyester (B5) containing a hydroxyl group into a primary and / or secondary amine group can be used. Examples include structures obtained by reacting a hydroxyl-containing polyester (B5) with a cyclic amine. The number average molecular weight ® of the polyester (B7) containing 1 and / or 2 amine groups is preferably 200 or more, more preferably 300 or more, particularly 400 or more, and 10,000 or less , And preferably below 8000, especially below 6000. Within this range, the joint strength (especially the wet joint strength) will be higher. As the carboxyl group-containing polyester (B8), a structure that converts at least one of the hydroxyl groups of the hydroxyl group-containing polyester (B5) into a carboxyl group [the hydroxyl group-containing polyester (B5) and the above-mentioned dicarboxylic acid can be used. And / or a structure obtained by reacting an acid anhydride of a dicarboxylic acid, etc., a structure obtained by reacting a polyether (B4) containing a carboxyl group with the above-mentioned polyol, etc. (at least one terminal group is a carboxylic acid group), etc. ]Wait. As (B4) used to obtain (B8), a number average molecular weight of 100 or more and 5000 or less is preferred. As the polyamine (B9) containing a hydroxyl group, a polyether (B3) containing a primary and / or secondary amine group and the above-mentioned dicarboxylic acid, di- or polyacid anhydride and / or dicarboxylic acid can be used. Polyamines formed from acid lower alkyl esters, or structures in which at least one amine group or 24 carboxyl group is converted into a hydroxyl group in a polyamine (B4) containing a carboxyl group and a polyamine formed from the above polyamine [ A structure obtained by reacting polyamine with olefin oxide, a structure obtained by reacting polyamine with epoxidized propane, followed by hydrolysis, etc.]. The (B3) and (B4) used to obtain (B9) are preferably those having a number average molecular weight of 100 or more and 5000 or less. The number average molecular weight of the hydroxyl-containing polyamine (B9) is preferably 200 or more, more preferably 300 or more, particularly 400 or more, and preferably 10,000 or less, and more preferably 8,000 or less. Especially preferably below 6000. Within this range, the bonding strength (especially the wet bonding strength) will be higher. • As the polyamine (B10) containing a thiol group, a polyether containing a first-class and / or a second-class amine group ( B3) Polyamine formed with the above-mentioned dicarboxylic acid, anhydride of di- or polycarboxylic acid, and / or lower alkyl dicarboxylic acid ester, or formed with polyether containing carboxyl group (B4) and the above-mentioned polyamine Structures in which at least one amine group or carboxyl group is converted into a thiol group in polyamines, etc. [structures obtained by reacting polyamines with epihalohydrin followed by hydrogen sulfide reactions, and using polyamines with cyclic sulfur Ethers, etc.]. As (B3) and (B4) used to obtain (B10), those having a number average molecular weight of 100 or more and 5000 or less are preferred. The number average molecular weight of the thiol-containing polyamidoamine (B10) is preferably 200 or more, more preferably 300 or more, especially 400 or more, and preferably 10,000 or less, and more preferably 8,000 or less. Good, especially below 6000. Within this range, the joint strength (especially the wet joint strength) will be higher. As the polyamine (B11) containing a primary and / or secondary amine group, it is possible to use: 25 A polyether (B3) containing a primary and / or secondary amine group and the above-mentioned dicarboxylic acid, di or poly A structure obtained by reacting a carboxylic acid anhydride and / or a lower alkyl dicarboxylic acid (at least one terminal group is a primary and / or secondary amine group), and the polyether (B4) containing a carboxyl group and the above Structures obtained by the polyamine reaction (at least one terminal group is a first-order and / or a second-order amine group) and the like. As (B3) and (B4) used to obtain (B11), those having a number average molecular weight of 100 or more and 5000 or less are preferred. The number average molecular weight of polyamidoamine (B11) containing grade 1 and / or grade 2 amine groups is preferably 200 or more, more preferably 300 or more, especially 400 or more, and particularly preferably 10,000 or less. It is better to be below 8000, especially below 6000. Within this range, the joint strength (especially the wet joint strength) will be higher. As the polyamine (B12) containing a carboxyl group, a polyether (B3) containing a primary and / or secondary amine group and the above-mentioned dicarboxylic acid, an anhydride of a di- or polycarboxylic acid, and a lower dicarboxylic acid can be used. A structure obtained by reacting an alkyl ester (at least one terminal group is a carboxyl group), a structure obtained by reacting a polyether (B4) containing a carboxyl group with the above-mentioned polyamine (at least one terminal group is a carboxyl group), and the like. The (B3) and (B4) used to obtain (B12) are preferably those having a number average molecular weight of 100 or more and 5000 or less. The number average molecular weight of the ammonium-containing polyfluorene (B12) is preferably 200 or more, more preferably 300 or more, especially 400 or more, and preferably 10,000 or less, and more preferably 8,000 or less. , Especially below 6000 is particularly good. Within this range, the joint strength (especially the wet joint strength) is higher. 26 2ϋϋ30 1 £ 68 As the polymer (B) containing active hydrogen, it is preferably one having a hydroxyl group or a thiol group {polyether containing a hydroxyl group (B1), polyether containing a thiol group (B2), Polyester (B5), thiol-containing poly (thio) ester (B6), hydroxyl-containing polyamidoamine (B9), and thiol-containing polyamidoamine (B10)} 'and (B1), ( B2), (B5) and (B6) are more preferred, and (B1) and (B5) are particularly preferred. As the polymer (B) containing active hydrogen, those having an ester bond {polyether (B4) containing carboxyl group, polyester (B5) containing hydroxyl group, poly (thio) ester (B6) containing thiol group, containing 1 Polyesters (B7) and / or Polyesters (88) containing carboxyl groups, etc., are easily hydrolyzed, and when the polymer of the present invention is used as an adhesive for living tissues In the case of discomfort in the living body for a long time, it is preferable to use these polymers having an ester bond. In addition, as the polymer (B) containing active hydrogen, when it has a bond represented by -MCH ^ n-COO-, it is more easily hydrolyzable, which is preferred. In addition, η is an integer of 0 to 2, R1 represents a carbonyl group or a characteristic group having an effect of inducing an electron attraction. C (X) (Υ)-{× represents F, Cl, Br, No 2 or CN, and Υ represents Η, F, C1, Br or CN}. When the active hydrogen-containing polymer (B) having such a bond is used, when the polymer of the present invention is used for living tissue subsequent use, it can exhibit better hydrolyzability. Examples of such an active hydrogen-containing polymer (B) include an ester of α-oxoglutaric acid and polyethylene glycol (Japanese Patent Application Laid-Open No. 2-327392 or Japanese Patent Application Laid-Open No. 3-163590). Wait. As the polymer (B) containing active hydrogen, hydrophilicity is preferred in terms of bonding strength (especially initial bonding strength) and the like. The term "hydrophilic" means that one molecule contains 30% by weight or more of polyoxyethylene group and has the same affinity for water as that exhibited by this polymer. When a non-hydrophilic active hydrogen-containing polymer is used, the content of the active hydrogen polymer (% by weight) is considered from the viewpoint of bonding strength (especially initial bonding strength), and polymerization is carried out with active hydrogen-containing polymer. The weight of the object (B) as a reference is preferably 1 or more, more preferably 2 or more, especially 5 or more, more preferably 8 or more, and 70 or less and 50 The following is more preferred, especially below 20 is particularly preferred, and below 15 is most preferred. The content (wt%) of ethylene oxide in the polymer (B) containing active hydrogen is preferably 30 or more based on the weight of (B), more preferably 50 or more, and particularly preferably 60 or more. , More preferably 70 or more, and preferably 100 or less, and more preferably 98 or less, particularly preferably 95 or less, and more preferably 90 or less. If the content of the non-hydrophilic active hydrogen-containing polymer and the content of the oxyethylene group are within the above ranges, the bonding strength (initial bonding strength) will be higher. The active hydrogen equivalent (molecular weight of each equivalent of active hydrogen) of the active hydrogen-containing polymer (B) is preferably 50 or more, and more preferably 100 or more from the viewpoint of the bonding strength (especially the initial bonding strength). It is especially preferred that it is more than 200, and preferably 5,000 or less, and more preferably 4,000 or less, and especially _ 3000 or less. The active hydrogen equivalent is calculated by calculating the molar number of functional groups per unit after titration of an unreacted carboxylic anhydride with an aqueous solution such as potassium hydroxide after treatment with an excess of carboxylic anhydride (acetic anhydride, etc.). . The number average molecular weight of the active hydrogen-containing polymer (B) is preferably 200 or more, more preferably 300 or more, particularly preferably 400 or more, most preferably 1,000 or more, and 10,000 or less. It is better to be below 8000, especially below 6000 is particularly preferred, and below 4000 is especially preferred 28 2ϋϋ30ΙΕ68. Within this range ', the joint strength (especially the wet joint strength) will be higher. As a polymer (B) containing active hydrogen, from the viewpoints of bonding strength (especially initial bonding strength) and the like, random copolymers of ethylene oxide and propylene oxide and random copolymers of ethylene oxide and propylene oxide and Mixtures of propylene oxide polymers are preferred, especially random copolymers of ethylene oxide and propylene oxide and propylene oxide polymers. In the copolymer of ethylene oxide and propylene oxide, water, ethylene glycol, and / or propylene glycol are used as the compound having active hydrogen, and the number average molecular weight is 100 to 600, and the content of ethylene oxide is 60 to 90% by weight are particularly preferred. _ As a polymer (B) containing active hydrogen, in the case of using a trivalent or more, the content (% by weight) of these, based on the polyisocyanate (A), is 0. More than 01 is preferred, and 0. Above 1 is better, especially 0. 2 or more is particularly preferable, and 5 or less is preferable, and 1 or less is more preferable, especially 0. 8 is the best. Within this range, the joint strength (especially the wet joint strength) is higher. The content of the alkali metal and alkaline earth metal in the polymer (B) containing active hydrogen (mmol / kg), based on the weight of (B), 0 or less than 0. 07 is better, and 0 or less than 0. 04 is better, especially 0 or less than 0. 02 is particularly good, more _ is 0 or less than 0. 01 is the best. Within this range, it is easy to prevent an abnormal reaction in the reaction between the polyisocyanate (A) and the polymer (B) containing active hydrogen. The content of the alkali metal and alkaline earth metal in the active hydrogen-containing polymer (B) can be obtained by heating a 30% by weight methanol solution of (B) or 10g of (B) in a platinum dish. An aqueous solution prepared by dissolving in 10 g of water and analyzed by ion chromatography, or (B) a solution of 30 g dissolved in 100 ml of methanol is dripped with 1/100 equivalent hydrochloric acid solution 29 2ϋϋ30Ι26B Method to find out. Alkali metals and alkaline earth metals are mainly mixed as catalysts for the synthesis of polyester polyols. Examples of such a catalyst include hydroxides (potassium hydroxide, sodium hydroxide, hydroxide hydroxide, barium hydroxide, and magnesium hydroxide), alkoxides (lithium methoxide, sodium ethoxide, potassium butoxide, and Magnesium alcohol, etc.) and metal monomers (potassium, sodium, lithium, magnesium, calcium, etc.). In the polymer (B) containing active hydrogen, most of these catalysts have 0. 1 ~ 〇. 3mmol / kg. Therefore, if the content of the alkali metal and the alkaline earth metal in the polymer (B) containing active hydrogen falls within the above range, a polyether polyol having a small content of the alkali metal and the alkaline earth metal may also be used. Wait. Polyether polyols with a low content of alkali metals and alkaline earth metals can be obtained by subjecting a compound having active hydrogen to addition polymerization with an olefin oxide to obtain a crude polyether polyol in the presence of the above-mentioned catalyst. Method for removing alkali metals and alkaline earth metals; disclosed in JP-A-8-104741, complex metal cyanide complexes (complex catalyst formed by zinc hexacyanocobaltate and polyether, etc.), organic In the presence of boron compounds [boron trifluoride and tris (pentafluorophenyl) borane, etc.] and transition metal complex catalysts, alkali metal and alkaline earth metal catalysts are not used. It is prepared by a method such as polymerization. Examples of a method for removing alkali metals and alkaline earth metals from crude polyether polyols include a method of treating with an adsorbent and a method of treating with an ion exchanger. Examples of the adsorbent include silicates (magnesium silicate, talc, soapstone, block talc, calcium silicate, magnesium aluminosilicate, sodium aluminosilicate, etc.), white clay (active clay, acid clay, etc.), Hydrotalcite, silica gel, diatomaceous earth and activated alumina. 30 2ϋϋ301 £ 6δ Among these adsorbents, silicate is preferred, and magnesium silicate is more preferred. Among the magnesium silicates, synthetic magnesium silicate is preferred, and the sodium content disclosed in Japanese Patent Application Laid-Open No. 7-258403 is 0. Magnesium silicate is more preferably 5% by weight or less. As an adsorption treatment method, as described in Japanese Patent Application Laid-Open No. 7-258403, a crude polyether polyol can be added with water and magnesium silicate to be mixed to make an addition amount of water, so that the crude polyether polyol is 0. 01 ~ 50% by weight is preferred, the amount of magnesium silicate is similarly 0. It is preferably from 01 to 50% by weight. Adsorption treatment _ The temperature is not particularly limited, preferably 60 to 200 ° C, and the oxygen concentration in the gas phase is preferably 100 ppm. The adsorption treatment time is not particularly limited, and it is 0. 5 to 24 hours is preferred. After the adsorption treatment, filtration is performed with a filtering device such as filter paper, filter cloth, or glass filter, and dehydration is performed as necessary to produce an active hydrogen-containing polymer (B) having a low content of alkali metals and alkaline earth metals. When the content of alkali metals and alkaline earth metals exceeds the above range even after the adsorption treatment is performed, the content of alkali metals and alkaline earth metals can be reduced by performing the adsorption treatment again. Examples of the ion exchanger include strong cation exchange resins, weak cation ion exchange resins, and chelating resins. Examples of the treatment method using an ion exchanger include a method in which water is added to the crude polyether polyol, mixed with the ion exchanger and stirred, and then the ion exchanger is removed by filtration, or the ion is filled with ions. Method in a column of exchangers. The amount of water added (% by weight), based on the weight of the crude polyether polyol, was 0. 01 or higher is preferred, 1 or higher is preferred, and 80 or lower is preferred, and 60 or lower is preferred 31 2ϋϋ30Ι26B. The amount of the ion exchanger used is based on the weight of the aqueous solution. It is more preferably ο · 1% by weight or more, more preferably 1% by weight or more, and more preferably 50% by weight or less, and more preferably 30% by weight or less. good. The mixing temperature (° C) 'is preferably 5 t or more, more preferably 20 ° C or more, more preferably 80 ° C or less, and even more preferably 40 ° C or less. The mixing time (hour) is preferably 1 hour or more, more preferably 5 hours or more, and particularly preferably 24 hours or less. For filtration, filter devices such as filter paper, filter cloth, or glass filter can be used. When passing through a column filled with ion exchangers, the liquid temperature is 5 ° < 3 or more is preferable, and 20 ° C or more is more preferable, and 80 ° C or less is preferable, and 40 ° C or less is more preferable. In addition, it can pass through the column once, or it can pass through the column 2 to 50 times. As a dehydration method to be carried out when necessary, there may be mentioned: at 50 ~ 150 ° C, O. 001 hPa to atmospheric pressure, and if necessary, a method of distilling water under an inert gas such as nitrogen for 1 to 10 hours. When the active hydrogen-containing polymer (B) contains a tertiary amine group and / or a tertiary amine group, the number (g / g) of these groups contains the polymer's hardening reactivity. From the perspective of other considerations, based on the weight of (B), it is preferably 1 X 1017 pieces / g or more, and more preferably 1 X 1018 pieces / g or more, especially 1_X1019 pieces / g or more. In addition, 1 X 1023 pieces / g or less is preferable, 1 X 1022 pieces / g or less is more preferable, and 1 X 1021 pieces / g or less is particularly preferable. In addition, the number of third-order amine groups and / or fourth-order amino groups can be calculated from iH-NMR data, or the sample can be treated with excess sodium hydroxide aqueous solution, and then passed through N / 100 hydrochloric acid. Potential difference titration of the aqueous solution to obtain 0. Examples of the polymer containing active hydrogen 32 containing a third amine group and / or a fourth amine group include compounds having an amine group and at least two active gases. (B 1) and a compound (b2) containing a 4th-order gaseous group and having at least two active hydrogens, and a structure obtained by oxidizing an olefin group with the mixture thereof. The urethane prepolymer (UP) is prepared by reacting a polyisocyanate (A) with a polymer (B) containing active hydrogen. The ratio of the amount of polyisocyanate (a) to the active hydrogen-containing polymer (B) is based on the equivalent ratio (A / B) of the isocyanate group of (A) to the active hydrogen group of (B), and 1. 5 or more is preferred, while 1. Above 8 is better, especially 1. Above 9 is especially good, even more 1. Above 95 is preferred, and below 5.0 is preferred, and above 3. Below 0 is better, especially below 2.3 is especially good, and even more preferably 2. Below 1 is better, and then 2. 0 is the best. Within this range, the joint strength (especially the initial joint strength) is higher. As a method for producing the urethane prepolymer (UP), a conventional method can be used to mix the polyisocyanate (A) and the polymer (B) containing active hydrogen at 50 to 100 ° C. A method for performing a reaction for 1 to 10 hours, and the like. The weak isocyanate group (A) reacts with water to become an amine group. Therefore, it is necessary to remove the water in the reaction container and raw materials as much as possible during the process. Therefore, it is preferable to dehydrate (B) before reacting with (A). As a method of dehydration, it can be used at 50 ~ 150X :, 〇. 〇lhPa ~ Under normal pressure, a method of carrying out moisture distillation under an inert gas such as nitrogen gas for 1 to 10 hours if necessary. The mixing method of the polyisocyanate (A) and the active hydrogen-containing polymer (B) may be: ① a one-time mixing method, ② a method of slowly dripping (B), ③ a method of (A) and part of (B) ) Mix and carry out the reaction for a predetermined time, and then add the remaining 33 (B) dropwise or add the mixture at a time. Among these, 'from the viewpoint that the reaction operation is easy to perform, ① method and ② method are preferable' and ① method is more preferable. From the viewpoint of reducing the amount of the unreacted polyisocyanate component, the method (3) is preferred. This reaction can also be carried out in the presence of catalysts (organic metal compounds such as dibutyltin oxide and dibutyltin dilaurate, and organic acid metal salts such as acetate), especially when an aliphatic isocyanate is used. The occasion is very effective. The number-average molecular weight of the urethane prepolymer (UP) is preferably 500 φ or more, more preferably 800 or more, particularly preferably 1,000 or more, more preferably 1200 or more, and more preferably 500,000. The following is preferred, and preferably 100,000 or less, particularly 10,000 or less is particularly preferred, and 5,000 or less is most preferred. Within this range, the joint strength (especially the wet joint strength) will be higher. And, the content ratio (wt%) of the urethane prepolymer having a number average molecular weight of 500 to 500,000 is based on the weight of (UP), preferably 98 or more and 100 or less, and 98. 5 or better, especially 99 or better, more preferably 99. 5 or more is the best. Within this range, the bonding strength of the adhesive is higher. The urethane prepolymer (UP) has a specific molecular weight urethane prepolymer (urethane polymer having an isocyanate group) and is quantified in the following manner: Calculated by reacting with an amine (4-aminopyridine, aminonaphthalene, etc.) having a wavelength of the ultraviolet region and having one primary or secondary amine group (4-aminopyridine, amine naphthalene, etc.). : Ethylene oxide adduct of N-methylaminopyridine) Number average molecular weight 34 6 0j30I; Molecular weight distribution curve of urethane prepolymer of 500 ~ 500000, which has a wavelength that does not absorb ultraviolet region and has A 1st- or 2nd-level amine (ethylamine, monobutylamine, etc.) reacts, and obtains a molecular weight distribution curve (standard material: polyethylene glycol) through GPC with a refractive index detector. The distribution curves are compared and quantified. That is, considering the functional group of the polymer, the quantity can be determined by performing operations in the order of ① to ⑤. ① Mixing (up) with an amine (ethylamine, dibutylamine, etc.) which does not absorb ultraviolet wavelengths and has one or two primary amine groups, and reacts the amine group with the isocyanate group, The number average spring molecular weight (Mη) was determined by GPC with a refractive index detector. ② Determine the average number of isocyanates per molecule (AN) from the isocyanate content (% by weight). ③ (UP) is mixed with an amine (4-aminopyridine, aminonaphthalene, etc.) having a primary or secondary amine group at a wavelength that can absorb ultraviolet rays, and the amine group is reacted with the isocyanate group. 'A product made by introducing a functional group (UVF) capable of absorbing a wavelength in the ultraviolet region was measured by GPC with an ultraviolet detector, and the molecular weight distribution was determined by comparison with a standard substance. Lu ④ From this molecular weight distribution, calculate the number of functional groups (uvF) in the urethane prepolymer having a number average molecular weight of 500 to 50000. ⑤ From the obtained number and the average number (AN), the content of the urethane prepolymer (UP) contained in the urethane prepolymer (UP) having an average molecular weight of 500 to 500,000 is calculated. The standard material can be obtained by adding N-methylaminopyridine and the like with ethylene oxide, using a graded GPC, and taking out a fraction corresponding to each molecular weight. 35 As a method to obtain a polymer having a content average molecular weight of 500 to 500,000 and a urethane prepolymer having a content of 98% to 100% by weight, it is also possible to use (A) and a part After the (B) is mixed for a predetermined time, the remaining (B) is dropped or added to the mixing method at one time. After the reaction is completed, the unreacted (A) is removed to obtain a number average molecular weight of 500. The content of the urethane prepolymer of ~ 500,000 is 98% to 100% by weight. Examples of the method for removing unreacted (A) include: a method of fractional extraction with GPC, a method of dialysis with a semi-permeable membrane, and a method of ③ removal by distillation. , _ Is better removed by distillation. Examples of the method of distillation include: distillation under reduced pressure (50 to 15 (TC, O. 001 hPa to atmospheric pressure, and if necessary, a method of distilling off under an inert gas such as nitrogen for 1 to 10 hours. Isocyanate-containing polymers include non-polyisocyanate-containing polymers (NUP) having a structure that converts one or more of the functional groups in the polymer containing active hydrogen into an isocyanate group. The structure produced by the method described below: a method of directly converting one or more of the functional groups of the polymer (B) containing active hydrogen described above to an isocyanate group, and interposing an ether bond and / or an ester bond Methods of introducing isocyanate groups, and the like. As a method for converting at least one of the functional groups (such as a hydroxyl group, a thiol group, a carboxyl group, and an amine group) into an isocyanate group of the polymer (B) containing active hydrogen, a known method can be used for the primary hydroxyl group. In the case of a first-order thiol group, ① oxidatively convert a functional group to a carboxyl group, and then convert it to a fluorenyl halide, and then react with an azide compound to thermally decompose. 2ϋϋ30ΙΕ6δ acid group method (Japanese Laid-Open Patent Publication No. 57-108055, etc.), and ② a method of converting a functional group to a carboxyl group, and then converting the carboxyl group to an amine group via an azide compound, and then to an isocyanate group; In the case of a secondary hydroxyl group or a secondary thiol group, 'can be cited as: ③ oxidatively convert a functional group into a carbonyl group, react it with ammonia, and simultaneously perform hydrogen reduction to form an amine group, and then convert it into an isocyanate group. In addition, in the case of a 1st or 2nd hydroxy group or a 1st or 2th thiol group, it can be cited as follows: ④ After the functional group is converted into an amine group, it is converted into isocyanide by reaction with phosgene. Method of acid group, and ⑤ combining (B) with isocyanate group Methods for reacting unsaturated compounds. When the functional group is a carboxyl group, a process after conversion to a carboxyl group by the method of ① or ② can be used. It is also possible to use the method of ⑤. When the functional group is an amine group, the process after converting to an amine group in the method of ③ or ④ can be used. As a method for converting the functional group (hydroxyl) of (B) into a carboxyl group, a method of esterifying with carboxymethyl [the active hydrogen-containing polymer (B) and a halogenated carboxylic acid (chloroacetic acid, chlorodi) (Fluoroacetic acid, 3-chloropropionic acid, 3-chloro-2,2-difluoropropionic acid, 4-chlorobutanoic acid, chloromethylbenzoic acid, etc.) Method for performing a reaction in the presence of a basic catalyst, etc.] and via Oxidation method [Method of heating in alkaline water solution in the presence of potassium permanganate and the like, using uranium catalyst (platinum-activated carbon and platinum black in the presence of weakly alkaline compounds (sodium bicarbonate and potassium carbonate) Etc.) A method of performing air oxidation 'and a method of heating under acidic conditions of sulfuric acid in the presence of a hexavalent chromium compound, etc.] and the like. Examples of the method for converting a carboxyl group to a fluorenyl halide include a method of reacting with a phosphorus halide (phosphorus chloride, etc.), and a method of reacting with a halogenated thiosulfinyl group (such as sulfinyl chloride). Examples of a method for reacting an oxyhalide with an azide compound include a method of mixing an oxyhalide and an azide compound (azide 37 2ϋϋ30ΐ £ 68, sodium azide, etc.) at a low temperature. When heated to 60 ~ 150 ° C, it can be converted into isocyanate. Examples of a method for reacting a carboxyl group with an azide compound to form an amine group include a method of reacting a metal azide (such as sodium azide) with concentrated sulfuric acid, and a reaction with a diphenyl azide phosphate and oxygen. A method of heating together hydroxamic acid or hydroxylamine hydrochloride, and the like. Examples of the method for converting an amine group into an isocyanate group include a method of reacting with phosgene [a method of dropping an amine into a solution of phosgene (phosgene, ethylene dichloride, etc.)], and N , Method for decomposing at room temperature after N, -carbonyldiimidazole reaction, Method for reacting with carbon monoxide in the presence of transition metal complex catalysts (palladium chloride, germanium chloride, chloroplatinic acid, etc.) A method of reacting with sodium hypochlorite or sodium hypobromite and then performing alkali treatment. Examples of the method for converting a secondary hydroxyl group into a carbonyl group include a method via oxidation [a method of heating in an alkaline aqueous solution in the presence of potassium permanganate, etc., and the use of a platinum catalyst (platinum-activated carbon and platinum black). ) A method of performing air oxidation and a method of performing a reaction under the acidic condition of sulfuric acid in the presence of a hexavalent chromium compound, etc.] and the like. Examples of a method for performing hydrogen reduction while reacting a carbonyl group with ammonia to make the carbonyl group into an amine group include a method of pressurizing with hydrogen in the presence of ammonia, and performing a reaction in the presence of a hydrogenation catalyst. . Examples of the method for introducing an amine group to a hydroxyl group include a method of reacting a hydroxyl group with ethyleneimine (eg, ethyleneimine, N-methylethyleneimine, etc.). Examples of the isocyanate-free unsaturated compound include isocyanate methyl (meth) acrylate and isocyanatofluorenyl allyl ether. The number average molecular weight of the polymer without using polyisocyanate (NUP) is preferably 500 or more, more preferably 800 or more, particularly preferably 1,000 or more, more preferably 1200 or more, and 500,000 or less as It is more preferably 38 0ϋ30 1 £ 68 100000 or less, particularly preferably less than 10,000, and most preferably less than 50⑻. Within this range, the joint strength (especially the wet joint strength) will be more intact. Among the polymers without polyisocyanate (NUP), an active hydrogen-containing polymer (B) containing an organic group containing a fluorine atom at the terminal is preferably used because the polymer has high reactivity and is preferred. That is, the terminal structure converted into an isocyanate group is represented by -Rf-NCO (Rf is a perfluoroalkenyl group having 1 to 4 carbon atoms) and / or by -CH (CF3) -NC. Representatives are preferred, especially those represented by -CH (CF3) -NC〇. The content of the alkali metal and alkaline earth metal in the polymer of the present invention (mmol / kg) is based on the weight of the polymer and is 0 or less. 〇4 is better ′ and 0 or less than 0. 03 is better, especially 0 or less. 〇2 is particularly good, more preferably 0 or less than 0. 01 is the best. Within this range, the stability of the polymer of the present invention over time will be higher. The content of the alkali metal and alkaline earth metal in the polymer can be obtained by dissolving 30% by weight of the polymer in a solvent such as toluene, dimethylformamide or dimethylboron, or by polymer lOg is heat-ashed in a platinum dish and dissolved in 10g of water, etc. The sample prepared before treatment is processed by ion chromatography, or 30g of polymer is dissolved in toluene, dimethylformamide or A solution of 100 ml of a solvent such as dimethylboron and the like was titrated with a 1/100 equivalent aqueous hydrochloric acid solution to determine the content of the isocyanate group in the polymer of the present invention, and converted to the urethane format. Biuret (allophanate · biuret) content (% by weight) (AB content), based on the weight of the polymer, from the viewpoint of water-resistant bonding strength 39, to 0 or less than 0. 6 is better, and 0 or less than 0. 4 is better, especially 0 or less than 0. 2 is particularly good, more preferably 0 or less than 0. 1 is best. Within this range, the stability of the polymer of the present invention over time will be higher. ΑΒ content, can be added to the sample containing 100 milligrams containing di-n-butylamine (0. 1% by weight) and naphthalene (0. (1% by weight) in 5 ml of anhydrous dimethylformamide solution, reacted at 70 ° C for 40 minutes, then added acetic anhydride 10 // 1, and analyzed by gas chromatography after 10 minutes to determine The peak-to-peak area ratio (SA) of di-n-butylacetamide and naphthalene was added as a blank sample to 100 mg of di-n-butylamine (0. 1% by weight) and naphthalene (0. 1% by weight) in 5 ml of anhydrous dimethylformamide solution, reacted at 25 ° C for 40 minutes, then added acetic anhydride 10 // 1, and analyzed by gas chromatography after 10 minutes to determine The peak-to-peak area ratio (SB) of di-n-butylacetamidamine to naphthalene can be calculated from the isocyanate content conversion by the following formula: AB content (wt%) = [(SB-SA) / SB] χ0 · 613 (1) When the polymer of the present invention contains a tertiary amine group and / or a tertiary amine group, the number of these groups (number / g), in terms of polymer reactivity, etc. Based on the weight of the polymer, 1 X1017 particles / g or more is preferred, and 1 × 10δ particles / g or more is more preferred, and 1 X1019 particles / g or more is particularly preferred, and 1 X 1023 pieces / g or less is preferable, and 1 X 1 022 pieces / g or less is more preferable, and 1 X1021 pieces / g or less is particularly preferable. The polymer containing a third-stage amine group and / or a fourth-stage amino group can be used as the polymer (B) containing an active hydrogen by using a polymer containing a third-stage amine group and / or a fourth-stage amino group. Isocyanate (A) and / or polymer (B) containing active hydrogen. Instead of the polymer containing a tertiary amine group and / or a tertiary amine 2ϋϋ30ΙΕ6δ group, the polymer of the present invention may contain an amine containing no active hydrogen and isocyanate if necessary. (C). When (C) is contained, the bonding strength (especially the initial bonding strength) is better. Examples of the amine (C) containing no active hydrogen and isocyanate include a tertiary amine (C1) and a tertiary ammonium salt (C2). As the tertiary amine (C1), aliphatic amines, alicyclic amines, heterocyclic amines, aromatic ring-containing aliphatic amines, and aromatic amines can be used. Examples of the aliphatic amines include aliphatic monoamines (trimethylamine, triethylamine, tripropylamine, trihexylamine, trilaurylamine, N-methyldicyclohexylamine, N, N-dichloromethyl ring). Hexylamine, N-methyl-N, N-bis (3-dimethylaminopropyl) amine and N, N-dimethyl eicosylamine, etc.), aliphatic polyamines [N, N, N-tris (3-dimethylaminopropyl) amine, tetraalkylalkylenediamine (N, N, N, N-tetramethylethylenediamine, Ν, Ν, N, N-tetraethyl Propylene diamine and N, N, N, N-tetraethylundecane diamine, etc.]], and polyalkyl polyalkylene polyamines (pentamethyldiethylenetriamine, pentaethyldiamine Propylene triamine, hexamethyltriethylenetetramine and octamethylpentaethylenehexaamine, etc.). Examples of the alicyclic amine include alicyclic monoamines (tricyclohexylamine, N, N-dimethylisophorone monoamine, and N, N-diethyl-4-dicyclohexylmethyl). Cyclohexylamine, etc.), and alicyclic polyamines (tetramethyl-U-diaminocyclohexane, etc.). Examples of heterocyclic amines include heterocyclic monoamines (N-methyluridine, N-dimethylaminoethylpyridine, pyridine, quinoline, N-methylmorpholine, and N-methyl -2,6-dimethylmorpholine, etc.), and heterocyclic polyamines [N, N ', N "_tris (dimethylaminopropyl) hexahydrotriazine, N, N'-di Methylpyridine, 1,4-bis (dimethylaminoethyl) pyridine, pyridazine, pyrimidine, methylpurine, diazacyclononene, bis (morpholinylethyl) ether, bis ( Morpholinylpropyl) ether, bis (2,6-dimethylmorpholinylethyl) ether, 12-bis (2,6-41 20j30I268 dimethylmorpholinylethoxy) ethane, bis ( 2,6-dimethylmorpholinylethoxyethyl) ether, and 2,2'-bis (2,6-dimethylmorpholinylethoxyethyl) diethylether] etc.]. Examples of the aromatic-containing aliphatic amines include Ν, Ν-dimethylaminomethylbenzene and tetramethylphenylenedimethyldiamine. Examples of the aromatic amine include Ν, Ν -Dimethylaniline, tetramethylphenylene diamine, etc. As the fourth-stage ammonium salt (C2), a structure in which the amine group having (C1) has been quaternized with a quaternary agent can be used Examples include: aliphatic ammonium salts (tetramethylammonium carbonate, etc.); alicyclic ammonium salts (methyltricyclohexylammonium methyl sulfate, etc.); heterocyclic ammonium salts (N, N-dimethylformate) Pyridine carbonate and N, N-dimethyl-2,6-dimethyl · morpholine gun carbonate, etc.); aliphatic ammonium salts containing aromatic rings (N, N, N-trimethylammonium Methylbenzene chloride, etc.); aromatic ammonium salts (N, N, N-trimethylaniline key carbonate, etc.), aliphatic polyammonium salts [hexaalkylalkylene diammonium salts (N, N, N, N ', N', N'-hexamethylethylene diamine dicarbonate, etc.) and polyalkyl polyalkylene polyammonium salts (pentamethyl diethylene triamine tricarbonate), etc.]; alicyclic type Ammonium salts (tetramethyl_1,3-diammonium cyclohexane dichloride, etc.); heterocyclic polyammonium salts (N, N, N ', N'-tetramethyluridine dicarbonate, etc.); Aliphatic polyammonium salts (hexamethylphenylene diammonium dichloride, etc.) containing aromatic rings; aromatic polyammonium salts (hexamethylphenylene diammonium dichloride, etc.); etc. Among them, aliphatic amines, alicyclic amines, heterocyclic amines, and the like carbonate 4th ammonium salts are preferred. Aliphatic amines, heterocyclic amines, and these carbonate quaternary ammonium salts are more preferred, especially heterocyclic polyamines are particularly preferred, and heterocyclic polyamines containing a morpholine ring are most preferred. In the case of active hydrogen and isocyanate-free amine (C), the content of the polymer (C) in the present invention (% by weight), based on the weight of the polymer, 42 to 0. 05 or more is preferred, 0.001 or more is more preferred, 0.5 or more is particularly preferred, and 20 or less is preferred ' and 10 or less is more preferred, and 5 or less is particularly preferred. Within this range, the joint strength (especially the initial joint strength) will be higher. The content of (C) in the polymer can be measured by treating the polymer with methanol or the like, reacting the isocyanate group, and then analyzing the content with a gas chromatograph or liquid chromatograph. The compounding method of (C) is not particularly limited, and examples thereof include a method of mixing in a reaction device before or after synthesis of the polymer (including mid-synthesis), or adding the compound to the present invention before using an adhesive. The method of mixing with the adhesive which consists of a polymer, etc. Among the polymers of the present invention, those having an epoxy group (glycidyl group, 2,3-oxethanyl group, etc.) as a reactive functional group are included in a molecule having at least one epoxy group ( EP) and so on. (EP) can be produced by reacting the aforementioned active hydrogen-containing polymer (B) with an epoxy group-containing compound. Examples of the epoxy group-containing compound include epichlorohydrin, 2,3-oxetanyl chloride, allyl glycidyl ether, and isocyanatoethyl glycidyl ether. Among them, epichlorohydrin and 2,3-oxetanyl chloride are preferred, and epichlorohydrin is particularly preferred from the viewpoint of the ease of reaction. Among the polymers of the present invention, those having a (meth) acrylfluorenyl group as a reactive functional group include those having at least one (meth) acrylfluorenyl group (MA) in one molecule. (MA) can be produced by reacting the aforementioned active hydrogen-containing polymer (B) with a (meth) acrylfluorenyl group-containing compound. Examples of the (meth) acrylfluorenyl-containing compound include (meth) acrylic acid, (meth) acrylic acid chloride, glycidyl (meth) acrylate, and ethyl isocyanate (meth) acrylate. . Among these, from the standpoint of easy response, (A 43 2ϋ J30I2. 63-based) acrylic acid and glycidyl (meth) acrylate are preferred 'and glycidyl (meth) acrylic acid is particularly preferred. Among the polymers of the present invention, those having a cyano (meth) acrylfluorenyl group as a reactive functional group include those having at least one cyano (meth) acrylfluorenyl group (CMA) in one molecule. Wait. (CMA) can be produced by reacting the aforementioned active hydrogen-containing polymer (B) with a compound containing a cyano (meth) acrylfluorenyl group. Examples of the compound containing a cyano (meth) acryl group include cyano (meth) acrylic acid, cyano (meth) acrylic acid chloride, glycidyl cyano (meth) acrylate, and isocyanate Ethyl cyano (meth) acrylate and the like. Among these, cyano (meth) acrylic acid and glycidyl cyano (meth) acrylate are preferred from the viewpoint of the ease of reaction, especially glycidyl cyano (meth) acrylate good. Among the polymers of the present invention, those having an alkoxysilyl group (trimethoxysilyl group and triethoxysilyl group) as a reactive functional group include those having at least one alkoxysilyl group in one molecule ( AS). (AS) can be prepared by reacting the aforementioned active hydrogen-containing polymer (B) with a compound containing an alkoxysilyl group. Examples of the alkoxysilyl-containing compound include alkoxysilyl chloride (trimethoxysilyl chloride, methyldimethoxysilyl chloride, and triethoxysilyl chloride, etc.), and alkoxysilyl glycidol. Ethers (trimethoxysilyl glycidyl ether, methyldimethoxymethyl glycidyl ether, triethoxysilyl glycidyl ether, etc.) and the like. Among these, alkoxysilyl chloride and an alkoxysilyl glycidyl ether are preferable from the viewpoint of easy progress of the reaction, and alkoxysilyl glycidyl ether is particularly preferable. In the polymer of the present invention, if necessary, other 44 200301268 ingredients can be further blended. Examples of other ingredients include drugs having physiological activity (central nervous system, allergic drugs, circulatory organ drugs, respiratory organ drugs, digestive organ drugs, hormone preparations, metabolic drugs, anti-malignant ulcers, and antibiotic preparations). And chemotherapeutic agents), tincture fillers (carbon black, iron oxide, calcium silicate, sodium silicate, titanium dioxide, acrylic resins and various ceramic powders, etc.), plasticizers (DBP, DOP, TCP, tributoxy Ethyl phosphate and other various esters, etc.), and stabilizers (trimethyldihydroquinone, phenyl ^ -naphthylamine, p-isopropoxydiphenylamine, diphenyl-p-phenylenediamine, etc. )Wait. Where other ingredients are blended, these blending amounts (% by weight) are based on the weight of the polymer of the invention and are 0. 001 or more is preferable, 0el or more is more preferable, and 20 or less is more preferable, and 5 or less is more preferable. In order to impart more rapid curing, the polymer of the present invention may be compounded with a compound (D) having a polymerizable double bond and having a cyano group bonded to any carbon atom forming the double bond. Examples of such a compound (D) include cyano (meth) acrylic acid, methyl cyano (meth) acrylate, and cyano (meth) acrylamide (Japanese Patent Application Laid-Open No. 1-227762). Where compound (D) is used, the amount of (D) used is based on the weight of the polymer, and is 0. 001 or higher is preferred, and 0. 1 or more is preferable, and 50 or less is preferable, and 20 or less is more preferable. Since the polymer of the present invention rapidly aggregates due to the presence of a small amount of water to form a strong film, when other ingredients are blended, the other ingredients must be free of moisture. The polymer of the present invention can be stored in a closed container (ample, etc.) for a long period of time. As the storage temperature, a temperature of -20CTC or higher is preferred, and a temperature of -100 ° C or higher is more preferably 45 0ϋ30ί £ 6δ, particularly a temperature of -80 ° C or higher is particularly preferred, and a temperature of 100 ° C or lower is preferred, and 50 ^: The following is better, especially below 30 ° C. The polymer of the present invention is suitable for use in preventing fluid leakage from living tissue and / or adhesion of living tissue, that is, it is suitable as a medical adhesive. In particular, since the polymer of the present invention has high water-resistant bonding strength, it is preferably used for liver, kidney, spleen, pancreas, heart, lung, blood vessel (artery, vein, microvascular, etc.), trachea, bronchus, digestion Tract (esophagus, stomach, duodenum, small intestine, large intestine, rectum, etc.) and joints of living tissues such as nerves, bleeding prevention, contents of self-digestive organs, etc., fluid leakage prevention such as enzyme spring or digestive juice, temporary before suture Fixation and reinforcement of joints (sewing and anastomosis). As living tissues, soft, large-moving tissues such as lungs, blood vessels, and hearts are suitable, and liver and lungs are particularly suitable. In addition, the medical adhesive composed of the polymer of the present invention is effective not only for bonding of living tissues, but also as a covering material for hemangioma and a quilting material, and as a material for preventing healing during surgery. Is also effective. In addition, it can be effectively used in the treatment of wounds and wounds, and dental treatment. In the surgical operation, as a method of bonding using a medical adhesive made of the polymer of the present invention, a direct bonding method in which an adhesive is directly applied to an incision portion is applied; first, the adhesive is applied to silicon. Transfer bonding method in which a high-peelability film such as a film and a fluorine film is covered with a cut portion together with the film, and then the reaction film is removed; a dacron (polyacrylic acid fiber) Cloth, non-woven cloth46 made of oxidized cellulose, chitin (clndn), polyurethane, polyester, or polyvinyl alcohol46, and tissues of veins, myometrium, and muscles against the affected area, and coated with adhesive Cover joint method; a suture fixation method in which a part of the living tissue is sutured with sutures, and the remaining joints are coated with an adhesive to make them close. Examples of the coating method include a method using a writing brush, tweezers, a spatula, and the like, and a spray method using a fluorocarbon (freon). Best Mode for Carrying Out the Invention The present invention will be described in more detail with reference to the following embodiments. However, the present invention is not limited to these embodiments. Also, unless otherwise specified, _ "parts" means "parts by weight". (Production Example 1) Ethylene glycol 15. 5 parts, potassium hydroxide 3. Eight portions were placed in an autoclave, and after being replaced with nitrogen, vacuum dehydration was performed at 120 ° C for 60 minutes. Then, at 100 ~ 130 ° C, ethylene oxide will be 784. A mixture of 5 parts and 200 parts of propylene oxide was fed under pressure for about 10 hours, and the reaction was continued at 130 ° C until the volatile content became 0. 1% or less, to obtain a crude polyether (c_EPRA) having an oxyethylene content of 80%. Chun (Manufacturing Example 2) 1,000 parts of crude polyether (c-EPRA) was placed in an autoclave, and the oxygen concentration in the gas phase was changed to 450 ppm via nitrogen substitution, 30 parts of ion-exchanged water was added, and then synthetic magnesium silicate was added. (Sodium content is 0. 2%) 10 parts, nitrogen substitution was performed again to maintain the oxygen concentration in the gas phase part at 450 ppm, and stirring was performed at 90 ° C for 45 minutes at a stirring speed of 300 rpm. Then, it was filtered under nitrogen with a glass filter (GF-75: manufactured by Toyo Filter Paper) to obtain an oxidized 47 ethylene / propylene oxide random copolymer (EPRA1). In addition, the content of ethylene oxide in EPRA1 is 80%, and the content of alkali metals and / or alkaline earth metals is 0. 02mmol / kg, number average molecular weight is 4000. (Production Example 3) 1000 parts of crude polyether (c-EPRA) was placed in an autoclave, and the oxygen concentration in the gas phase was changed to 450 ppm by nitrogen substitution. 30 parts of ion-exchanged water and 8 parts of synthetic magnesium silicate were used. (The content of sodium salt is 0. 2%) was mixed and deoxidized in another container, and then charged into an autoclave. After measuring the oxygen concentration in the gas phase to 450 ppm, it was stirred at 90 ° C for 90 Φ minutes at a stirring speed of 300 rpm. Then, it was filtered with a glass filter (GF-75: manufactured by Toyo Filter Paper) under nitrogen to obtain an ethylene oxide / propylene oxide random copolymer (EPRA2). Also, EPRA2 has an oxyethylene content of 80% and an alkali metal and / or alkaline earth metal content of 0. 04mm〇l / kg, the number average molecular weight is 4,000. (Manufacturing Example 4) 1,000 parts of crude polyether (c-EPRA) was placed in an autoclave, and the oxygen concentration in the gas phase was changed to 450 ppm by nitrogen substitution. 30 parts of ion-exchange spring water was added, and then magnesium silicate (sodium The content was 3%) 12 parts, and the nitrogen concentration was changed to 450 ppm through nitrogen substitution, and the stirring was performed at 90 ° C. and a stirring speed of 300 rpm for 240 minutes. Then, it filtered with nitrogen using a glass filter (GF-75: Toyo filter paper), and obtained the ethylene oxide / propylene oxide random copolymer (EPRA3). Also, EPRA3 has an oxyethylene content of 80% and an alkali metal and / or alkaline earth metal content of 0. 08 mmol / kg, and the number average molecular weight was 4,000. 48 (Production Example 5) 320 parts of propylene glycol and potassium hydroxide 3. Eight portions were placed in an autoclave, and after being replaced with nitrogen, vacuum dehydration was performed at 120 ° C for 60 minutes. Then, at 100 ~ 130 ° C, 680 parts of ethylene oxide was fed in under pressure for about 10 hours, and the reaction was continued at 13 ° C until the volatile content became 0. 1% or less to obtain a crude polyether (c-PA). (Production Example 6) 1,000 parts of crude polyether (c-PA) was placed in an autoclave, and the oxygen concentration in the gas phase was changed to 450 ppm through nitrogen substitution. 30 parts of ion-exchanged water ginseng was added, and then synthetic magnesium silicate was added (Sodium content is 0. 2%) 10 parts, and the nitrogen gas was replaced again to maintain the oxygen concentration in the gas phase part at 450 ppm, and stirred at 90 ° C for 45 minutes at a stirring speed of 300 rpm. Then, it was filtered under nitrogen with a glass filter (GF-75: manufactured by Toyo Filter Paper) to obtain a propylene oxide polymer (PA1). The content of oxidized vinyl of PA1 is 0%, and the content of alkali metals and / or alkaline earth metals is 0. 〇3mmol / kg, the number average molecular weight is 2000. (Manufacturing Example 7) · 1,000 parts of crude polyether (c-PA) was placed in an autoclave, and the oxygen concentration in the gas phase was changed to 450,000 ppm by nitrogen substitution. 30 parts of ion-exchanged water was added, and then magnesium silicate ( Sodium content: 3%) 12 parts. The nitrogen concentration was maintained at 450 ppm by substitution with nitrogen, and stirring was performed at 90 ° C. and a stirring speed of 300 rpm for 240 minutes. Then, it filtered with nitrogen using a glass filter (GF-75: Toyo filter paper), and obtained the polypropylene glycol (PA2). Also, the content of oxidized vinyl of PA2 is 0%, and the content of alkali metal and / or alkaline earth metal 49 is 0. 08 mmol / kg, the number average molecular weight is 200. (Production Example 8) Dimethylaminoethylamine 22. 0 parts was added to the autoclave, and after being replaced by nitrogen, a mixture of 400 parts of ethylene oxide and 78 parts of propylene oxide was fed under pressure at about 100 to 130 ° C within about 3 hours, and the reaction was continued at 130T: 3 hour. Add potassium hydroxide 3. Eight portions were added to the reaction solution and replaced with nitrogen, followed by vacuum dehydration at 120 ° C for 60 minutes. Then, at 100 ~ 13 ° C, a mixture of 400 parts of ethylene oxide and 100 parts of propylene oxide was fed in under pressure for about 7 hours, and the reaction was continued at 130 ° C for 5 hours to obtain a crude polyether ( C-3AEPRA). To this crude polyether (C-3AEPRA) was added 30 parts of ion-exchanged water, and then magnesium silicate (sodium content of 0. 2% by weight) 10 parts, and the oxygen concentration in the gas phase portion was reduced to 450 ppm or less' by nitrogen substitution. The stirring was performed at 90 ° C for 45 minutes at a stirring speed of 300 rpm. Then, it was filtered under nitrogen with a glass filter (GF-75: manufactured by Toyo Filter Paper) to obtain a random copolymer of ethylene oxide / propylene oxide (3AEPRA) containing a tertiary amino group. In addition, the content of 3AEPRA's oxyethylene group is 80%, and the content of alkali metal and / or alkaline earth metal is 0. 〇2mmol / kg, the content of the third amine group is spring 3. 0 X102 () pieces / g, the number average molecular weight is 4000. (Production Example 9) N, N, N ', N'-tetramethylethylene diammonium dinitrate 60. 5 parts were added to the autoclave, after nitrogen substitution, at 100 ~ 130 ° C, 400 parts of ethylene oxide and propylene oxide 39. 5 parts of the mixture was fed under pressure in about 3 hours, and the reaction was continued at 130 ° C for 3 hours. Add potassium hydroxide 3. Eight parts were added to the reaction solution, and after being replaced with nitrogen, vacuum dehydration was performed at 120 ° C for 60 minutes 50. Then, a mixture of 400 parts of ethylene oxide and 100 parts of propylene oxide was fed under pressure at about 100 to 130 ° C within about 7 hours, and the reaction was continued at 130 ° C for 5 hours to obtain a crude polyether (C-4AEPRA ). Subsequent treatment was carried out in the same manner as in Production Example 2 to obtain a random copolymer of ethylene oxide / propylene oxide (4AEPRA) containing a fourth-stage amino group. In addition, 4AEPRA has an ethylene oxide content of 80% and an alkali metal and / or alkaline earth metal content of 0. 02mm〇l / kg, the number of the 4th level of amino group is 3. 1 X102 () pieces / g, the number average molecular weight is 4000. (Manufacturing Example 10) 1112 parts of c-EPRA obtained in Manufacturing Example 1 were mixed with epichlorohydrin 27. 8 parts with benzyltrimethylammonium chloride 2. After 22 servings, keep 58 at 5 ° C for 5 hours. Nine parts of granular sodium hydroxide were added, and ripening was performed at 30 ° C for 3 hours. After the remaining epichlorohydrin was distilled off under reduced pressure, 33. 4 parts of ion-exchanged water and magnesium silicate (sodium content 0. 2 parts by weight) 111 parts, and stirred at 9 (TC for 45 minutes. Then, filtered with a glass filter (GF-75: made by Toyo filter paper) under nitrogen to obtain an epoxide (EP-EPRA). 800 methanol Parts and 20 parts of triethylamine were put into an autoclave of nitrogen generation using nitrogen, and then 1112 parts of EP-EPRA and 800 parts of methanol dissolved and 10 parts of hydrogen sulfide were kept from the respective inlets and kept at Reaction temperature: 25 ° C, pressure: 4kg / cm2-Stir in. After the infusion, ripen for another 3 hours at the temperature of this state, and then introduce the remaining hydrogen sulfide in the container to 30% by introducing nitrogen It was removed from the caustic soda aqueous solution. After passing nitrogen gas through the liquid, methanol and triethylamine were distilled off at 100 ° C X20mmHg X 4 hours to obtain ethylene oxide containing thiol group 51. / Propylene oxide random copolymer (SEPRA). Moreover, the content of oxidized vinyl in SEPRA is 80%, and the content of alkali metals and / or alkaline earth metals is 0. 02mmol / kg, number average molecular weight is 4000. (Production Example 11) Except using c-PA 55 obtained in Production Example 5. Instead of 612 parts of c-EPRA, 6 parts were prepared in the same manner as in Production Example 10 to obtain a mercaptan-containing polypropylene glycol (SPA). Also, the SPA has an oxyethylene content of 0% and an alkali metal and / or alkaline earth metal content of 0. 03 mmol / kg, and the number average molecular weight was 200. (Manufacturing Example 12) Glycol 15. 5 parts, potassium hydroxide 3. 8 parts were placed in an autoclave, after being replaced by nitrogen, at 100 ~ 130 ° C, ethylene oxide 784. A mixture of 5 parts with 190 parts of propylene oxide was fed in under pressure for about 10 hours, and after reacting at 130 ° C for 8 hours, 10 parts of 3,3,3-trifluorooxypropylene was fed in under 130 pressure. The reaction was carried out at ° C for 5 hours to obtain a crude polyether (c-EPRFA) containing fluorine. To 1000 parts of crude polyether (c-EPRFA) was added 30 parts of ion-exchanged water, and then magnesium silicate (sodium content of 0. 2 parts by weight) 10 parts, replaced by nitrogen spring gas, the oxygen concentration in the gas phase part was set to 45 Oppm, and stirred at 90 ° C for 45 minutes at a stirring speed of 300 rpm. Then, it was filtered under nitrogen with a glass filter (GF-75: manufactured by Toyo Filter Paper) to obtain a fluorine-containing ethylene oxide / propylene oxide random copolymer (EPRFA). In addition, EPRFA has an oxyethylene content of 80% and an alkali metal and / or alkaline earth metal content of 0. 02mmol / kg, number average molecular weight is 4000. (Production Example 13) 52 2 30 1 268 320 parts of propylene glycol, potassium hydroxide 3. Eight portions were placed in an autoclave, and after being replaced with nitrogen, vacuum dehydration was performed at 120 ° C for 60 minutes. Then, at 100 ~ 13 ° C, 670 parts of propylene oxide was fed in under pressure for about 10 hours, and the reaction was continued at 130 ° C for 8 hours. Then, 10 parts of 3,3,3-trifluoropropylene oxide was added. It was pressure-fed and reacted at 130 ° C. for 5 hours to obtain a crude polyether (c_PFA) containing fluorine. The subsequent treatment was performed in the same manner as in Production Example 12 to obtain fluorine-containing propylene glycol (PFA). , PFA content of oxyethylene is 0%, the content of alkali metals and / or alkaline earth metals is 0. 03 mmol / kg, the number average molecular weight is 200. Lu (Example 1) 400 parts of (EPRA1) obtained in Production Example 2 were dehydrated under reduced pressure at 90 ° C for 8 hours, and then added at 25t. CN-CH2 (CF2) 4-CH2-NC 〇93. 6 parts (NCo group / OH group ratio: 3/1), after uniformly stirring, the temperature was raised to 8 ° C over 30 minutes, and the reaction was performed at 8 ° C for 8 hours to obtain urethane Polymer (UP1). In the reaction, no abnormal thickening was observed, and the NCO content of (UP1) was the same as the theoretical value. (Example 2) · (EPRA1) 124 obtained in Production Example 2 . 1 part obtained with (PA2) 13. After 8 parts of the mixture was dehydrated under reduced pressure at 90 ° C, 〇CN-CH2 (CF2) 2-CH2-NC was added at 25 ° C. 42. 4 parts (NCO group / OH group ratio: 2/1), after uniformly stirring, the temperature was raised to 80 ° C in 30 minutes, and the reaction was performed at 80 ° C for 8 hours to obtain a urethane prepolymer (UP2). In the reaction, no abnormal thickening was seen, and the NCO content of (UP2) was the same as that of the theoretical 値. 53 (Example 3) Manufacturing Example 3 (EPRA2) 124. 1 part obtained with (PA2) 13. After 8 parts of the mixture was dehydrated under reduced pressure at 90 ° C, 〇CN-CH2 (CF2) 6-CH2-NC was added at 25 ° C 82. 4 parts (NCO group / OH group ratio: 2/1), after uniformly stirring, the temperature was raised to 80 ° C in 30 minutes, and the reaction was performed at 80 ° C for 8 hours to obtain urethane prepolymerization.物 (UP3). In the reaction, no abnormal thickening was seen, and the NCO content of (UP3) was slightly lower than the theoretical value. (Example 4) · Will be obtained in Production Example 2 (EPRA1) 194. 9 parts (PA2) obtained in Manufacturing Example 7 10. After 3 parts of the mixture was dehydrated under reduced pressure at 9 ° C, toluene diisocyanate (TDI) 34 was added at 25 ° C. 8 parts (NCO group / OH group ratio: 2/1), after uniformly stirring, the temperature was raised to 80 ° C in 30 minutes, and the reaction was performed at 8 ° C for 8 hours to obtain a urethane prepolymer. (UP4). (Example 5) The (UP4) obtained in Example 4 was heated to _120 ° C under reduced pressure, and then the unreacted TDI was removed to obtain a urethane prepolymer (UP5). (Example 6) The temperature of (UP4) obtained in Example 4 was adjusted to 80 ° C, and then Production Example 7 was prepared in 90 minutes. (PA2) 4. Eight parts were added dropwise thereto, and the reaction was performed at 80 ° C. for 90 minutes to obtain a urethane prepolymer (UP6). (Example 7) 54 will be obtained in Production Example 2 (EPRA1) 124. 1 part obtained with (PA2) 13. 8 parts, after dehydration under reduced pressure at 90 ° C, by adding diphenylmethane diisocyanate (MDI) 50 at 25 ° C. 0 parts (NCO group / OH group ratio: 2/1), after uniformly stirring, the temperature was raised to 80 ° C in 30 minutes, and the reaction was performed at 8 ° C for 8 hours to obtain a urethane prepolymer (UP7) (Example 8) The temperature (UP7) obtained in Example 7 was raised to 120 ° C under reduced pressure, and then a small amount of nitrogen was aerated under reduced pressure of 1mmHg. Under the liquid phase, the unreacted MDI was removed in a period of 12 hours to obtain a urethane prepolymer (UP8). (Example 9) Production Example 8 (3AEPRA) 194. 9 parts (PA2) obtained in Manufacturing Example 7 10. After 3 parts of the mixture was dehydrated under reduced pressure at 90 ° C, hexamethylene diisocyanate (HDI) 33 was added at 25 ° C. 6 parts (NCO group / OH group ratio: 2/1), after uniformly stirring, the temperature was raised to 80 ° C in 30 minutes, and the reaction was performed at 80 ° C for 8 hours to obtain urethane prepolymer (UP9). (Example 10) In addition to the use of isophorone diisocyanate (IPDI) 44. 4 parts instead of hexamethylene diisocyanate (HDI) 33. Except for 6 parts, the rest was prepared in the same manner as in Example 9 to obtain a urethane prepolymer (UP10). (Example 11) A urethane prepolymer (UP11) was prepared in the same manner as in Example 9 except that (4AEPRA) obtained in Production Example 9 was used instead of (3AEPRA). (Example 12) In addition to using Production Example 4 (EPRA3) 97. 5 parts and obtained in Production Example 2 (EPRA1) 97. A urethane prepolymer (UP12) was prepared in the same manner as in Example 9 except that 4 parts of the mixture was replaced with (3AEPRA). (Example 13) Production Example 2 (EPRA1) 194. Nine copies were obtained in accordance with manufacturing example 7 (PA2) 10. After 3 parts of the mixture was dehydrated under reduced pressure at 90 ° C, hexamethylene diisocyanate (HDI) 33 was added at 25 ° C. 6 parts (NCo group / OH group ratio: 2/1), after uniformly stirring, the temperature was raised to 80 ° C over a period of 30 minutes, and the reaction was carried out at 80 ° C for 14 hours. Polymer (UP13). (Example 14) 100 parts by weight of (UP13) obtained in Example 13 and diazabicyclo undecene 0.1. 6 parts by weight were mixed to prepare a urethane prepolymer (UP14). _ (Example 15) 100 parts by weight of (UP13) obtained in Example 13 was mixed with 5 parts by weight of bis (2,6-dimethylmorpholinylethyl) ether to obtain a urethane prepolymer物 (UP15). (Example 16) 100 parts by weight of (UP13) obtained in Example 13 and N, N ', N "-tris (dimethylaminopropyl) hexahydrotriazine 0. 6 parts by weight were mixed to prepare an amino methyl 56-ester prepolymer (UP16). (Example 17) 100 parts by weight of (UP13) obtained in Example 13 was mixed with 2 parts by weight of N, N, N ', N'-tetramethylpiperidine key dicarbonate to obtain ethyl urethane Prepolymer (UP17). (Example 18) In addition to the use of isophorone diisocyanate (IPDI) 44. 4 parts instead of hexamethylene diisocyanate (HDI) 33. Except for 6 parts, the rest was prepared in the same manner as in Example 13 to obtain a urethane prepolymer (UP18). _ (Example 19) 100 parts by weight of (UP18) obtained in Example 18 and diazabicyclo undecene 0.1. 6 parts by weight were mixed to obtain a urethane prepolymer (UP19). (Example 20) After 400 parts of (SEPRA) obtained in Production Example 10 were dehydrated under reduced pressure at 90 ° C for 8 hours, CN_CH2 (CF2) 4-CH2-NC was added at 25 ° C. 93. 6 parts (NCo group / OH group ratio: 3/1), after uniformly stirring, the temperature was raised to 80 ° C in 30 minutes, and the reaction was performed at 8 ° C. 8 Koharu, ethyl urethane was obtained Prepolymer (UP20). (Example 21) Production Example 10 (SEPRA) 124. 1 part and (SPA) 13. After 8 parts of the mixture was dehydrated under reduced pressure at 90 ° C, 〇CN-CH2 (CF2) 4-CH2-NC was added at 25 ° C. 62. 4 parts (NC0 group / OH group ratio: 2/1), after uniformly stirring, the temperature was raised to 80 ° C in 30 minutes, and the reaction was performed at 80 ° C for 8 hours to obtain urethane pre57 2ϋϋ30 1 £ 6δ polymer (UP21). (Example 22) 100 parts of (EPRFA) obtained in Production Example 12 was added with 10 parts of platinum black, and the mixture was allowed to react with air at 60 ° C for 10 hours while being stirred, and then filtered through glass. Filter (GF-75 ·· made by Toyo filter paper) to obtain carbonyl-introduced polyether. Then, 10 parts of ammonia gas was fed under pressure, and after reacting at 251 for 2 hours, 1 part of Raney Ni was added, and the pressure was increased to 90 atm with hydrogen gas at 25 degrees. Raise the temperature slowly, first react at 40 ° C for 5 hours, and then react at 70 ° C for 5 hours. After removing the excess vermin, hydrogen and generated water under reduced pressure, it was filtered through a glass filter (GF-75: made by Toyo Filter Paper) to obtain an amine-introduced polyether. Add 0 to it. After 5 parts of palladium chloride, pass carbon monoxide on one side, and react at 65 ° C for 3 days, and then remove excess carbon monoxide under reduced pressure, and then use a glass filter (GF-75: made by Toyo filter paper) ) Filtration was performed to obtain a polymer (NUP1) having a terminal functional group converted into an isocyanate group. (Example 23) Except replacing 100 parts of (EPRFA) 100 parts with a mixture of 95 parts of random copolymer (EPRFA) obtained in Production Example 12 and 5 parts of (PFA) obtained in Spring Production Example 13, the rest were performed in accordance with In the same manner as in Example 22, a polymer (NUP2) having a terminal functional group converted into an isocyanate group was obtained. (Comparative Example 1) 400 parts of (EPRA3) obtained in Production Example 4 was dehydrated under reduced pressure at 90 ° C, and then CN-CH2 (CF2) 4-CH2-NC was added at 25 t. 93. 6 parts (NCO group / OH group ratio: 3/1), after uniformly stirring, 30 minutes 58

20030IE6B 鐘的時間昇溫到80°C,在80°C下進行反應8小時,得到比 較用之胺基甲酸乙酯預聚物(HUP1)。 (比較例2) 將製造例4中所得之(EPRA3)124.1份與製造例7中所 得之(PA2) 13.8份的混合物(混合物的鹼金屬及鹼土類金屬的 含有量=0.08mmol/kg),於90°C下進行減壓下脫水之後,於 25°C 下加入〇CN-CH2(CF2)6-CH2-NC〇 82.4 份(NCO 基/〇H 基 比:2/1),均一地攪拌之後,以30分鐘的時間昇溫到80°C ,在80°C下進行反應8小時,得到比較用之胺基甲酸乙酯 籲 預聚物(HUP2)。 (比較例3) 將製造例2中所得之(EPRA1)2.2份與製造例6中所得 之(PA1)19.9重量份的混合物,於90°C下進行減壓下脫水之 後,於 25°C 下加入〇CN-CH2(CF2)6-CH2-NC〇 82.4 份(NC〇基 /OH基比:2/1),均一地攪拌之後,以30分鐘的時間昇溫 到80°C,在8(TC下進行反應8小時,得到比較用之胺基甲 酸乙酯預聚物(HUP3)。 · (比較例4) 除了使用(ΡΑ1)20·0 份代替(EPRA1)2.2 份與(PA1) 19.9 重量份的混合物之外,其餘以與比較例3同樣的作法’得 到比較用之胺基甲酸乙酯預聚物(HUP4)。 就各聚合物進行下述的評價,其結果示於表1及表2 中。 &lt;黏度&gt; 59 依循JIS K71 17-1987中所規定的D法,用DA型黏度 計進行測定。 &lt;飽和吸水量&gt; 於JIS K7224-1996中的說明圖1中所記載的D/W法吸 水速度測定裝置(量管容量:25ml ;長度:55cm ;試驗液: 生理食鹽水;小孔的直徑:2cm)中,在2VC、濕度50%的 室內,使用設置有直徑爲3.7mm的瓦特曼公司製玻璃纖維 濾紙GF/A濾紙及內徑爲3.7mm的聚碳酸酯製的圓筒者來代 替不織布,經由讀取lg聚合物裝妥後30分鐘的吸水量, _ 進行測定。 &lt;初期吸水速度&gt; 以與飽和吸水量同樣的方法,測定裝妥後2分鐘後的 吸水量,將其値乘以1/2來算出。 &lt;濕潤延伸率&gt; 在玻璃板上,以塗佈機塗佈厚度約100//m之10cm見 方的大小,於25°C、50%相對濕度的條件下放置48小時使 其硬化,然後,將其靜置於25°C的生理食鹽水浴中,於24 · 小時後取出,用記載於JIS K6251-1993中的啞鈴狀3號形 狀,經由打孔得到試料,使其在生理食鹽水中保持1小時 ,用紗布將水分除去後,正確地測定其厚度,於5分鐘內 依循JIS K6251-1993,在25°C、50%相對濕度的環境下,以 拉伸速度300mm/mm,測定斷開時的延伸率。拉伸試驗機 係使用島津製作所製之自動繪圖機AGS-500B。 &lt;濕潤100%模數&gt; 60 於測定濕潤延伸率之同時,亦測定延伸率成爲100%時 張力,將該値除以試料的截面積來算出。 &lt;氧化乙烯基含有量&gt; 由1H-NMR數據來算出。 &lt;異氰酸基含有量&gt; 使聚合物溶解到二丁胺之0.5M濃度的甲苯溶液中進行 30分鐘攪拌後,經由鹽酸爲0.5N濃度的甲醇溶液進行滴定 ,求出每單位重量之異氰酸基的莫耳數,將該莫耳數乘以 42而算出。 籲 &lt;換算成異氰酸基含有量之脲基甲酸酯·縮二脲的含有量&gt; 將樣品100毫g加入到含有二正丁胺0.1重量%與萘 0.1重量%之無水二甲基甲醯胺溶液5ml中,於70°C下反應 40分鐘後,加入醋酸酐10// 1,於10分鐘後,經由氣相層 析儀進行分析,求出二正丁基乙醯胺與萘的峰値面積比 (SA),將作爲空白組之試料100毫g加入到含有二正丁胺 (〇.1重量%)及萘(〇.1重量%)之無水二甲基甲醯胺溶液5ml 中,在25°C下使其反應40分鐘後,加入醋酸酐10/zl,於 _ 10分鐘後以氣相層析儀分析,求出二正丁基乙醯胺與萘的 峰値面積比(SB),藉由[(SB-SA)/SB] X0.613算出。 &lt;鹼金屬及鹼土類金屬的含有量〉 將樣品10g在白金盤中進行加熱灰化溶解於10g的水 中所成之水溶液,以離子層析法進行分析而測定。 &lt;數量平均分子量(Mn)&gt; 以聚乙二醇作爲標準物質,用氣相層析儀(GPC)進行測 61 定。 &lt;數量平均分子量爲500〜500000之含有異氰酸基之聚合物 的含有量&gt; 使聚合物溶解到二丁胺的二甲基甲醯胺溶液中所成之 溶液,經由附有折射率檢測器的氣相層析儀(GPC)求出之( 標準物質:聚乙二醇)分子量分布曲線,與使聚合物溶解到 4-胺基吡啶的二甲基甲醯胺溶液所成之溶液,經由附有紫 外線檢測器的氣相層析儀求出之(標準物質:N-甲基胺基吡 啶的氧化乙烯加成物)數量平均分子量爲500〜500000的胺基 _ 甲酸乙酯預聚物的分子量分布曲線,由上述二個分布曲線 來算出。 &lt;第3級胺基及/或第4級氨合基的含有個數〉 由1H-NMR數據來算出。 &lt;胺(C)的含有量〉 使聚合物分散於甲醇中,於室溫下進行攪拌1小時後 ,對溶液部分進行氣相層析分析而測定。 &lt;接著劑外觀〉 _ 將聚合物lg裝入10ml的螺旋管中,依下述的基準就 25°C下之流動性及均一性進行評價。 〇:有流動性且均一。 △:流動性稍差,惟,係均一的。 X :流動性差,有部分性的結塊。 &lt;塗佈性&gt; 將2片膠原薄膜(1 X5cm)浸漬於生理食鹽水中24小時 62 200301268 後,以擦除表面的水的狀態下,在一方的薄膜的邊端部分1 Xlcm的面上,將約O.lml的聚合物使用聚氟化乙烯製的刮 刀塗佈。此時的塗佈性係以下述的基準進行評價。 〇:容易擴展,作業性良好。 X :不易擴展,作業性差。 &lt;初期接合強度&gt; 將2片膠原薄膜(1 X5cm)浸漬於生理食鹽水中24小時 後,以擦除表面的水的狀態下,在一方的薄膜的邊端部分1 Xlcm的面上,將約O.lml的聚合物使用聚氟化乙烯製的刮 鲁 刀塗佈,將另一方的薄膜的邊端的部分1 Xlcm黏合上去 ,作成試驗片。在此試驗片的接合部分(1 Xlcm)上載置 l〇〇g的載重,於37°C、相對濕度98%的環境下放置5分鐘 後,卸下載重之後,依〗IS K6850(1999年),在37°C、相對 濕度98%的環境下測定拉伸強度,以斷裂時的荷重作爲初 期接合強度。又,拉伸試驗機係使用島津製作所製之自動 繪圖機AGS-500B,拉伸速度爲300mm/min。 〈耐水接合強度〉 _ 將2片膠原薄膜(1 X5cm)浸漬於生理食鹽水中24小時 後,以擦除表面的水,在一方的薄膜的邊端部分1 Xlcm 的面上,將約O.lml的聚合物使用聚氟化乙烯製的刮刀塗佈 ,將另一方的薄膜的邊端的部分1 X 1 cm黏合上去,作成 試驗片。在此試驗片的接合部分(1 X lcm)上載置100g的載 重,於37°C下放置30分鐘。然後,卸下載重,使用在生理 食鹽水中浸漬48小時的試驗片,依JIS K6850(1999年),在 63 37°C、相對濕度98%的環境下測定拉伸強度,以斷裂時的 荷重作爲初期接合強度。又,拉伸試驗機係使用島津製作 所製之自動繪圖機AGS-500B,拉伸速度爲300mm/min。 &lt;反覆彎折之接合強度&gt; 將2片膠原薄膜(1 X5cm)浸漬於生理食鹽水中24小時 後,擦除表面的水,在一方薄膜的邊端部分1 Xlcm大小 處,將約0.1ml的聚合物使用聚氟化乙烯製的刮刀塗佈,將 另一方薄膜的邊端部分1 Xlcm黏合上去,作成試驗片。 在此試驗片的接合部分(1 xlcm)上載置100g的載重,於 籲 37t下放置30分鐘。然後,卸下載重,使用在生理食鹽水 中浸漬48小時的試驗片,依JIS K6850(1999年),用設置在 37°C、相對濕度95%的環境下之彎折試驗機,以使接合的 部分(1 X lcm)的中央可彎折的方式將接合部分的兩端固定 住而安裝,彎折頻率:1次/分,彎折角度:以90/270°反 覆進行彎折達1週的時間。用此經反覆彎折的試驗片,依 JIS K6850(1999年),在37Ό、相對濕度98%的環境下測定 拉伸強度,以斷裂時的荷重作爲初期接合強度。又,拉伸 _ 試驗機係使用島津製作所製之自動繪圖機AGS-500B,拉伸 速度爲 300mm/min。 64 2ϋϋ30Ι£68 £ 寸 UP14 | m od | 0.60 I | 0.06 I 1 700 1 1 _ 1 to Ό ro 1 0.020 1 0.06 1 1 97.0 1 &lt;0.01 Ό 〇· 〇 〇 0's 〇 ON o m | UP13 I 寸 od | 0.50 I 0.04 900 1 °·35 1 … rn 1 0.020 1 1 0.06 1 1 97.0 1 &lt;0.01 1 &lt;0·1 1 〇 〇 ro d VO o rs o CN T-H UP 12 15.3 0.70 0.05 800 0.65 νο ro 0.020 0.07 1 1 98.5 1 1.2 ΧΙΟ20 L^o.1 I 〇 〇 00 〇· (N t-H o t-H UP11 14.7 1 0.65 | | 0.06 | 800 0.65 1 寸 rn 1 0.020 1 1 0.07 1 1 98.5 1 2.5 X ΙΟ20 1 &lt;〇·! 1 〇 〇 &lt;N T-H OO 〇· O UP10 r-H r-H 0.60 0.05 700 0.60 (Ν cn cn 0.019 0.06 1 1 98.5 1 2.3 X ΙΟ20 1 &lt;〇i 1 〇 〇 t-H 〇\ o C\ d ON | UP9 I in t-H | 0.60 | | 0.05 1 800 Γ心1 ^T) rn [0.020 0.06 L—98.5 1 2.4 ΧΙΟ20 Γ^Π 〇 〇 (N o f-H 00 UP8 17.0 0.60 0.06 600 0.55 (Ν (N 寸· 0.019 0.07 1 98.5 1 &lt;0.01 1 &lt;〇·ι 1 〇 〇 q t-H 寸 &lt;N T-H 卜 UP7 I 11.4 0.50 0.07 1 400 0.30 m — 0.019 1 [0.07 1 1 97.2 1 &lt;0.01 1 &lt;0.1 1 〇 〇 寸 d d rn d Ό UP6 14.4 0.60 0.06 600 0.60 0.019 1 0.06 1 [98.6 1 &lt;0.01 1 1 〇 〇 r-H 寸 r-H i—H r-H UP5 1 (N 0.60 | 0.05 600 0.65 1 Ό 0.020 1 Γ 0.06 1 1—99.5 1 &lt;0.01 1 &lt;〇.ι 1 〇 〇 q t-H q r-H 寸 UP4 10.5 0.60 0.06 400 0.35 Ό rn 0.020 0.06 1 1 97.0 1 &lt;0.01 1 &lt;〇.ι 1 〇 〇 d d (N d cn UP3 90.1 0.45 0.03 300 0.80 卜 rn 0.028 Q·^ 1 1 98.5 1 &lt;0.01 丨 &lt;〇·ι 1 〇 &lt;] vo d oo d d (N | UP2 | 1讥2 1 | 0.65 | | 0.06 | 800 0.60 m 1 0.020 1 1 0.07 1 1 98.5 1 &lt;0.01 1 &lt;〇·ι 1 〇 〇 q oo d T-H UP1 1 11.0 0.60 | 0.05 | 600 0.65 1 寸 ro 1 0.016 1 1 0.06 1 1 98.0 &lt;0.01 1 &lt;〇^ 1 〇 〇 r—H t-H 〇\ d 〇&gt; d 聚合物 黏度(Pa · s) 飽和吸水量(g/g) 初期吸水速度(g/g ·分) 濕潤延伸率(%) 濕潤100%模數(MPa) 氧化乙烯基含有量(重量%) NCO含量”(重量%) 金屬含量”(mmol/kg) ΑΒ含量#2(重量%) 聚合物含量、重量%) 胺基含量”(個/g) 胺含有量(重量%) 接著劑外觀 塗佈性 初期接合強度 耐水接合強度 反覆彎折接合強度In 20030IE6B, the temperature was raised to 80 ° C, and the reaction was performed at 80 ° C for 8 hours to obtain a comparative urethane prepolymer (HUP1). (Comparative Example 2) A mixture of 124.1 parts of (EPRA3) obtained in Production Example 4 and 13.8 parts of (PA2) obtained in Production Example 7 (contents of alkali metal and alkaline earth metal of the mixture = 0.08 mmol / kg), After dehydration under reduced pressure at 90 ° C, 〇CN-CH2 (CF2) 6-CH2-NC (82.4 parts (NCO group / 〇H group ratio: 2/1)) was added at 25 ° C, and stirred uniformly. Thereafter, the temperature was raised to 80 ° C over a period of 30 minutes, and the reaction was performed at 80 ° C for 8 hours to obtain a comparative urethane prepolymer (HUP2). (Comparative Example 3) A mixture of 2.2 parts of (EPRA1) obtained in Production Example 2 and 19.9 parts by weight of (PA1) obtained in Production Example 6 was dehydrated at 90 ° C under reduced pressure, and then at 25 ° C. 〇CN-CH2 (CF2) 6-CH2-NC〇82.4 parts (NC0 group / OH group ratio: 2/1) was added, and after stirring uniformly, the temperature was raised to 80 ° C in 30 minutes, and the temperature was 8 ° C The reaction was carried out for 8 hours to obtain a comparative urethane prepolymer (HUP3). (Comparative Example 4) In addition to using (PARA) 20.0 parts instead of (EPRA1) 2.2 parts and (PA1) 19.9 parts by weight Except for the mixture, the same procedure as in Comparative Example 3 was used to obtain a comparative urethane prepolymer (HUP4). The following evaluations were performed on each polymer, and the results are shown in Tables 1 and 2 &Lt; Viscosity &gt; 59 Measured with a DA viscometer in accordance with the D method specified in JIS K71 17-1987. &Lt; Saturated water absorption &gt; The description in JIS K7224-1996 is shown in Figure 1. D / W method water absorption speed measuring device (burette capacity: 25ml; length: 55cm; test solution: physiological saline solution; small hole diameter: 2cm) in a room with 2VC and 50% humidity Instead of a non-woven fabric, a glass fiber filter paper GF / A filter paper made by Watman Corporation with a diameter of 3.7 mm and a polycarbonate cylinder with an inner diameter of 3.7 mm were used, and 30 minutes after reading the lg polymer after loading The amount of water absorbed by _ is measured. &Lt; Initial water absorption rate &gt; In the same manner as the saturated water absorption amount, the water absorption amount after 2 minutes from the completion of the measurement is measured and multiplied by 1/2 to calculate it. &Lt; Wet extension Rate> On a glass plate, a size of 10 cm square with a thickness of about 100 // m is applied by a coater, and it is left to harden under conditions of 25 ° C and 50% relative humidity for 48 hours, and then it is allowed to stand still. Put it in a 25 ° C saline solution bath, take it out 24 hours later, use the dumbbell-shaped shape No. 3 described in JIS K6251-1993, obtain a sample by punching, and keep it in the saline solution for 1 hour. After removing the moisture from the gauze, the thickness was accurately measured, and the elongation at break was measured at a tensile speed of 300 mm / mm in an environment of 25 ° C and 50% relative humidity in accordance with JIS K6251-1993 within 5 minutes. .Tensile testing machine uses automatic drawing machine AGS-5 manufactured by Shimadzu Corporation 00B. &Lt; Wet 100% modulus &gt; 60 While measuring the wet elongation, the tension at which the elongation becomes 100% is also measured, and this mass is divided by the cross-sectional area of the sample to calculate. &Lt; Content of oxyethylene content & gt Calculated from 1H-NMR data. &Lt; Isocyanate content &gt; The polymer was dissolved in a 0.5 M solution of toluene in dibutylamine and stirred for 30 minutes, and then a 0.5 N solution of methanol was passed through hydrochloric acid. The titration was performed to determine the molar number of the isocyanate group per unit weight, and the molar number was multiplied by 42 to calculate. <Contained Urea Format and Biuret Content as Equivalent to Isocyanate Content> 100 mg of a sample was added to anhydrous dimethyl ether containing 0.1% by weight of di-n-butylamine and 0.1% by weight of naphthalene. In 5ml of methylformamide solution, react at 70 ° C for 40 minutes, then add acetic anhydride 10 // 1, and after 10 minutes, analyze by gas chromatography to obtain di-n-butylacetamide and The peak-to-peak area ratio (SA) of naphthalene was added to 100 mg of a blank sample as a blank group to anhydrous dimethylformamide containing di-n-butylamine (0.1% by weight) and naphthalene (0.1% by weight). In 5 ml of the solution, it was allowed to react at 25 ° C for 40 minutes, and then acetic anhydride 10 / zl was added. After -10 minutes, it was analyzed by a gas chromatograph to obtain the peak 値 of di-n-butylacetamidamine and naphthalene. The area ratio (SB) was calculated from [(SB-SA) / SB] X0.613. &lt; Contents of alkali metals and alkaline earth metals> An aqueous solution prepared by dissolving 10 g of a sample in a platinum dish and dissolving it in 10 g of water was analyzed by ion chromatography and measured. &lt; Number average molecular weight (Mn) &gt; The measurement was performed with a gas chromatograph (GPC) using polyethylene glycol as a standard substance. &lt; Content of isocyanate-containing polymer having a number-average molecular weight of 500 to 500,000 &gt; A solution prepared by dissolving a polymer in a solution of dibutylamine in dimethylformamide through a refractive index The solution of the molecular weight distribution curve (standard material: polyethylene glycol) obtained by the gas chromatograph (GPC) of the detector and the solution of the polymer dissolved in 4-aminopyridine dimethylformamide solution , Determined by a gas chromatograph with a UV detector (standard material: ethylene oxide adduct of N-methylaminopyridine) with an average molecular weight of 500 to 500,000 amines_ethyl formate prepolymerization The molecular weight distribution curve of the product was calculated from the above two distribution curves. &lt; Number of contents of third-order amino group and / or fourth-order amino group> Calculated from 1H-NMR data. &lt; Content of amine (C) &gt; After dispersing the polymer in methanol and stirring at room temperature for 1 hour, the solution portion was measured by gas chromatography analysis. &lt; Appearance of Adhesive> _ A polymer lg was charged into a 10 ml spiral tube, and the fluidity and uniformity at 25 ° C were evaluated according to the following criteria. 〇: Liquidity and uniformity. △: The liquidity is slightly inferior, but it is uniform. X: Poor fluidity and partial agglomeration. &lt; Coatability &gt; After immersing two collagen films (1 X5cm) in physiological saline for 24 hours 62 200301268, the surface of one of the films was wiped on a surface of 1 Xlcm with the surface water removed. About 0.1 ml of the polymer was applied using a doctor blade made of polyvinyl fluoride. The applicability at this time was evaluated based on the following criteria. 〇: Easy to expand and workability is good. X: Difficult to expand and poor workability. &lt; Initial bonding strength &gt; After immersing two collagen films (1 X5cm) in physiological saline for 24 hours, the surface of one of the films was wiped on the surface of 1 Xlcm with the surface water wiped off. Approximately 0.1 ml of a polymer was applied using a squeegee made of polyvinyl fluoride, and an edge portion of the other film, 1 × 1 cm, was adhered to prepare a test piece. A load of 100 g was placed on the joint portion (1 Xlcm) of this test piece, and it was left to stand at 37 ° C and 98% relative humidity for 5 minutes. After the load was unloaded, it was subjected to IS K6850 (1999) The tensile strength was measured in an environment of 37 ° C and a relative humidity of 98%, and the load at break was used as the initial joint strength. The tensile tester was an automatic plotter AGS-500B manufactured by Shimadzu Corporation, and the tensile speed was 300 mm / min. <Water-resistant joint strength> _ After immersing two collagen films (1 X5cm) in physiological saline for 24 hours, the surface water was wiped off. On the side of one film, 1 Xlcm of the film, about 0.1 ml The polymer was coated with a doctor blade made of polyvinyl fluoride, and the edge portion of the other film was adhered to 1 X 1 cm to prepare a test piece. A 100 g load was placed on the joint portion (1 X lcm) of this test piece, and it was left at 37 ° C for 30 minutes. Then, the load was unloaded, and a test piece immersed in physiological saline for 48 hours was used to measure the tensile strength in an environment of 63 37 ° C and 98% relative humidity in accordance with JIS K6850 (1999), and the load at break was used as the load. Initial bonding strength. The tensile tester was an automatic plotter AGS-500B manufactured by Shimadzu Corporation, and the tensile speed was 300 mm / min. &lt; Joint strength of repeated bending &gt; After immersing two collagen films (1 X5cm) in physiological saline for 24 hours, wipe off the surface water, and place about 0.1ml on the edge of one film at a size of 1 Xlcm. The polymer was coated with a doctor blade made of polyvinyl fluoride, and the edge portion of the other film was adhered to each other by 1 × 1 cm to prepare a test piece. A 100 g load was placed on the joint portion (1 x lcm) of this test piece, and it was left to stand at 37 t for 30 minutes. Then, the test piece was unloaded and immersed in physiological saline for 48 hours. According to JIS K6850 (1999), a bending tester set at 37 ° C and a relative humidity of 95% was used to make the bonded The central part of the part (1 X lcm) can be bent to fix the two ends of the joint part and installed. The bending frequency: 1 time / minute, the bending angle: 90/270 ° repeated bending for 1 week. time. Using this repeatedly bent test piece, the tensile strength was measured in an environment of 37 ° F and a relative humidity of 98% in accordance with JIS K6850 (1999), and the load at break was used as the initial joint strength. The tensile tester was an automatic plotter AGS-500B manufactured by Shimadzu Corporation, and the tensile speed was 300 mm / min. 64 2ϋϋ30Ι £ 68 £ inch UP14 | m od | 0.60 I | 0.06 I 1 700 1 1 _ 1 to Ό ro 1 0.020 1 0.06 1 1 97.0 1 &lt; 0.01 Ό 〇 · 〇〇0's 〇ON om | UP13 I inch od | 0.50 I 0.04 900 1 ° · 35 1… rn 1 0.020 1 1 0.06 1 1 97.0 1 &lt; 0.01 1 &lt; 0 · 1 1 〇〇ro d VO o rs o CN TH UP 12 15.3 0.70 0.05 800 0.65 νο ro 0.020 0.07 1 1 98.5 1 1.2 ΧΙΟ20 L ^ o.1 I 〇〇00 〇 · (N tH o tH UP11 14.7 1 0.65 | | 0.06 | 800 0.65 1 inch rn 1 0.020 1 1 0.07 1 1 98.5 1 2.5 X ΙΟ20 1 &lt; 〇 ·! 1 〇〇 &lt; N TH OO 〇 · O UP10 rH rH 0.60 0.05 700 0.60 (N cn cn 0.019 0.06 1 1 98.5 1 2.3 X 1020 1 &lt; 〇i 1 〇〇tH 〇 \ o C \ d ON | UP9 I in tH | 0.60 | | 0.05 1 800 Γ heart 1 ^ T) rn [0.020 0.06 L—98.5 1 2.4 ΧΙΟ20 Γ ^ Π 〇〇 (N o fH 00 UP8 17.0 0.60 0.06 600 0.55 (Ν (N (N Inch 0.019 0.07 1 98.5 1 &lt; 0.01 1 &lt; 〇 · ι 1 〇〇q tH inch &lt; N TH BU7 I 11.4 0.50 0.07 1 400 0.30 m — 0.019 1 [0.07 1 1 97.2 1 &lt; 0.01 1 &lt; 0.1 1 00 inch dd rn d Ό UP6 14.4 0. 60 0.06 600 0.60 0.019 1 0.06 1 [98.6 1 &lt; 0.01 1 1 〇rH inch rH i-H rH UP5 1 (N 0.60 | 0.05 600 0.65 1 Ό 0.020 1 Γ 0.06 1 1-99.5 1 &lt; 0.01 1 &lt; 〇.ι 1 〇〇q tH q rH inch UP4 10.5 0.60 0.06 400 0.35 Ό rn 0.020 0.06 1 1 97.0 1 &lt; 0.01 1 &lt; 〇.ι 1 〇〇dd (N d cn UP3 90.1 0.45 0.03 300 0.80 Bu rn 0.028 Q · ^ 1 1 98.5 1 &lt; 0.01 丨 &lt; 〇 · ι 1 〇 &lt;] vo d oo dd (N | UP2 | 1 讥 2 1 | 0.65 | | 0.06 | 800 0.60 m 1 0.020 1 1 0.07 1 1 98.5 1 &lt; 0.01 1 &lt; 〇 · ι 1 〇〇q oo d TH UP1 1 11.0 0.60 | 0.05 | 600 0.65 1 inch ro 1 0.016 1 1 0.06 1 1 98.0 &lt; 0.01 1 &lt; 〇 ^ 1 〇 〇r—H tH 〇 \ d 〇> d Polymer viscosity (Pa · s) Saturated water absorption (g / g) Initial water absorption rate (g / g · min) Wet elongation (%) Wet 100% modulus ( MPa) Vinyl oxide content (wt%) NCO content "(wt%) Metal content" (mmol / kg) AB content # 2 (wt%) Polymer content, wt%) Amine content "(a / g) Amine content (% by weight) Bonding strength of the bonding strength water repeatedly bent joining strength

2ϋϋ30Ι£68 992ϋϋ30Ι £ 68 99

(N« 比較例 寸 HUP4 | 卜 &lt;N | o.io | 0.01 100 ί 0.80 i &lt;Q1 (N 00 1 0.006 1 1 °·14Ί 1 99.0 1 &lt;0.01 | &lt;0.01 | 〇 &lt; 1 &lt;qi 1 1-H d &lt;0.1 m HUP3 cn in 0.15 0.02 150 0.70 00 Ο 00 1 0.006 1 1 Q·12 1 99.0 1 &lt;0.01 | &lt;0.01 | 〇 &lt; (N d o (N HUP2 2840 I 0.40 0.02 300 1 0.75 JO r-H ΓΟ 1 0.050 1 | 0.70 1 98.0 &lt;0.01 | &lt;0.01 | X X (Ν 〇 d &lt;0.1 τ-Η HUP1 1 |2510 0.40 0.02 1 200 1 0.80 1 ίη vo 00 &lt;Ν 1 0.065 1 | 0.64 1 1 98.0 ] &lt;0.01 Γ^Π X X &lt;Ν 〇 m d &lt;0.1 實施例 ro (N NUP2 rn 0.55 0.05 600 0.55 (Ν ΓΟ 0.020 &lt;0.01 99.5 &lt;0.01 1 &lt;0.01 1 〇 〇 (Ν r-H τ-Η τ-Η (N τ-Η (N (N NUP1 1 寸 'sd 0.60 0.05 | 700 1 0.60 00 卜 (Ν 0.020 1 &lt;0.01 | 99:5 &lt;0.01 &lt;0.01 Π 〇 〇 (Ν i-H q i-H r-H T-H &lt;N UP21 10.5 0.55 0.05 600 1 0.55 (Ν 1 0.014 1 1 0.05 1 | 98.0 I &lt;0.01 1〈ο.οι 〇 〇 寸· ΓΠ q UP20 r-H 0.50 0.05 800 f 0.55 寸 rn 1 0.016 1 0.06 | 98.0 | &lt;0.01 1 &lt;〇.〇! 1 〇 〇 rn ▼-H 0\ r—H UP19 iT) 〇\ | 0.60 | | 0.06 | 700 1⑽1 m m rn [0.019 I | 0.05 I | 97.0 | &lt;0.01 丨〈0·1 1 〇 〇 &lt;N (N O) d 00 UP18 m On Γ 0.50 0.04 | 900 1 0-35 1 m Ό CO ΓΟ j 0.019 1 | 0.05 I | 97.0 I &lt;0.01 Ιο.1 1 〇 〇 rn d d (N d 卜 UP17 0.60 0.06 800 0.45 iT) rn 0.019 0.06 I | 97.0 I &lt;0.01 ο (Ν 〇 〇 〇〇 d 00 d Ό d UP16 m 〇6 0.60 0.06 700 1 0.50 1 ID rn [0.020 | 0.06 | 97.0 I &lt;0.01 ο 〇 〇 Os d oo d in r-H UP15 O 卜’ 0.60 0.06 700 0.45 rn 0.019 0.06 J | 97.0 I &lt;0.01 00 寸 〇 〇 (N q q 聚合物 黏度(Pa · S) 飽和吸水量(g/g) 初期吸水速度(g/g ·分) 濕潤延伸率(%) 濕潤100%模數(MPa) 氧化乙烯基含有量(重量%) NCO含量”(重量%) 二 1 rn *_ &lt;rn AB含量、重量%) 聚合物含量、重量%) 胺基含量、個/g) 胺含有量(重量%) 接著劑外觀 塗佈性 初期接合強度 耐水接合強度 反覆彎折接合強度 * 1 :異氰酸基含有量 *2 :換算成異氰酸基含有量之脲基甲酸酯·縮二脲含有量 *3 ·驗金屬及驗土類金屬的含重 * 4 : Mn=500〜500000的含有量 * 5 :第3級胺基及或第4級氨合基的含有個數 用(UP1)〜(UP3)及HUP1、2,進行下述的評價,其結果 示於表3。 〈活體內(In-Vivo)之接合性試驗〉 對成年山羊的頸動脈(外徑約4cm)於相隔約5cm的兩處 _ 以2支血管鉗子作暫時性封住,些管沿血管的長軸方向切 開約3cm的切痕,用聚氟化乙烯製的塗抹板將本發明之聚 合物0.1 ml塗佈其上。於5分鐘後經由鬆開2支血管鉗子使 血流再流出,於5分鐘後以目視判定出血之有無,就其接 著性作評價。 表3 聚合物 評價結果 實施例1 UP1 未見到出血 實施例2 UP2 未見到出血 實施例3 UP3 未見到出血 比較例1 HUP1 見到自周緣部有出血 比較例2 HUP2 見到自周緣部有出血 產業上之可利用性 本發明之聚合物具有極優異的外觀、耐水接合強度、 反覆彎折接合強度、塗佈性及初期接合強度。因而,適於 活體組織的接合等,最適於使用在肝臟、腎臟、脾臟、胰 臟、心臟、肺、血管(動脈、靜脈、微血管等)、氣管、支氣 管、消化道(食道、胃、十二指腸、小腸、大腸、直腸等)及 67 神經等的活體組織之接合、出血阻止、自消化器官等的內 容物、酵素或消化液等的流體洩漏防止、縫合前的暫時固 定、及接合部(縫合部及吻合部)等的補強等之醫療用接著劑 。而且’於創傷面及切傷部等的接合及齒科之接合治療方 面亦可發揮高可靠性及高性能。(N «Comparative Example: HUP4 | bu &lt; N | o.io | 0.01 100 ί 0.80 i &lt; Q1 (N 00 1 0.006 1 1 ° · 14Ί 1 99.0 1 &lt; 0.01 | &lt; 0.01 | 〇 &lt; 1 &lt; qi 1 1-H d &lt; 0.1 m HUP3 cn in 0.15 0.02 150 0.70 00 〇 00 1 0.006 1 1 Q · 12 1 99.0 1 &lt; 0.01 | &lt; 0.01 | 〇 &lt; (N do (N HUP2 2840 I 0.40 0.02 300 1 0.75 JO rH ΓΟ 1 0.050 1 | 0.70 1 98.0 &lt; 0.01 | &lt; 0.01 | XX (Ν 〇d &lt; 0.1 τ-Η HUP1 1 | 2510 0.40 0.02 1 200 1 0.80 1 ίη vo 00 &lt; N 1 0.065 1 | 0.64 1 1 98.0] &lt; 0.01 Γ ^ Π XX &lt; N 〇md &lt; 0.1 Example ro (N NUP2 rn 0.55 0.05 600 0.55 (N ΓΟ 0.020 &lt; 0.01 99.5 &lt; 0.01 1 &lt; 0.01 1 〇〇 (Ν rH τ-Η τ-Η (N τ-Η (N (N NUP1 1 inch'sd 0.60 0.05 | 700 1 0.60 00 BU (N 0.020 1 &lt; 0.01 | 99: 5 &lt; 0.01 &lt; 0.01 Π 〇〇 (N iH q iH rH TH &lt; N UP21 10.5 0.55 0.05 600 1 0.55 (N 1 0.014 1 1 0.05 1 | 98.0 I &lt; 0.01 1 <ο.οι 〇〇inch · ΓΠ q UP20 rH 0.50 0.05 800 f 0.55 inch rn 1 0.016 1 0.06 | 98.0 | &lt; 0.01 1 &lt; 〇.〇! 1 〇〇 rn ▼ -H 0 \ r—H UP19 iT) 〇 \ | 0.60 | | 0.06 | 700 1⑽1 mm rn [0.019 I | 0.05 I | 97.0 | &lt; 0.01 丨 <0 · 1 1 〇〇 &lt; N (NO) d 00 UP18 m On Γ 0.50 0.04 | 900 1 0-35 1 m Ό CO ΓΟ j 0.019 1 | 0.05 I | 97.0 I &lt; 0.01 Ιο.1 1 〇〇rn dd (N d BU17 0.60 0.06 800 0.45 iT) rn 0.019 0.06 I | 97.0 I &lt; 0.01 ο (N 〇〇〇〇〇d 00 d Ό d UP16 m 〇6 0.60 0.06 700 1 0.50 1 ID rn [0.020 | 0.06 | 97.0 I &lt; 0.01 ο 〇〇Os d oo d in rH UP15 O BU '0.60 0.06 700 0.45 rn 0.019 0.06 J | 97.0 I &lt; 0.01 00 inch 〇〇 (N qq Polymer viscosity (Pa · S) Saturated water absorption (g / g) Initial water absorption rate (g / g · min) Wet elongation (%) Wet 100% modulus (MPa) Vinyl oxide content (wt%) NCO content "(wt%) 2 1 rn * _ &lt; rn AB content, wt%) polymer Content, weight%) amine content, per gram) amine content (% by weight) appearance of the adhesive, initial coating strength, water-resistant bonding strength, repeated bending bonding strength * 1: isocyanate content * 2: conversion Isocyanate Amount of urethane, biuret content * 3Weight of metal test and soil test metal * 4: Mn = 500 ~ 500000 content * 5: Grade 3 amine group and / or 4 The content of the secondary amino group was evaluated by (UP1) to (UP3) and HUP1 and 2 as follows. The results are shown in Table 3. <In-Vivo Bonding Test> Carotid arteries (outer diameter of about 4 cm) of adult goats were placed at two places separated by about 5 cm. _ They were temporarily sealed with 2 vascular forceps, and the tubes along the length of the blood vessel A cut of about 3 cm was cut in the axial direction, and 0.1 ml of the polymer of the present invention was coated thereon with a polyvinyl fluoride coating plate. After 5 minutes, the blood flow was re-flowed by releasing two vascular forceps. After 5 minutes, the presence or absence of bleeding was visually judged, and the continuity was evaluated. Table 3 Polymer evaluation results Example 1 No bleeding was seen in UP1 Example 2 No bleeding was seen in UP2 Example 3 No bleeding was seen in UP3 Comparative example 1 HUP1 Seeing bleeding from the peripheral edge Comparative Example 2 HUP2 Seeing from the peripheral edge Applicability in the bleeding industry The polymer of the present invention has extremely excellent appearance, water-resistant bonding strength, repeated bending bonding strength, coatability, and initial bonding strength. Therefore, it is suitable for the joining of living tissues. It is most suitable for use in the liver, kidney, spleen, pancreas, heart, lung, blood vessels (arteries, veins, microvessels, etc.), trachea, bronchus, digestive tract (esophagus, stomach, duodenum, Small intestine, large intestine, rectum, etc.) and 67 nerves and other living tissues, prevention of bleeding, self-digestive organ contents, prevention of fluid leakage of enzymes and digestive fluids, temporary fixation before suture, and joints (sutures And anastomosis) and other medical adhesives. In addition, it also exhibits high reliability and high performance in the joint treatment of wound surfaces, cut wounds, etc. and in dental joint treatment.

6868

Claims (1)

拾、申請專利範圍 1. 一種聚合物,係可形成硬化皮膜之醫療用接著劑用之 聚合物;其特徵在於,於37°C之黏度爲0.5〜2000Pa · s,且 飽和吸水量爲0.2〜5ml/g。 2. 如申請專利範圍第1項之聚合物,其初期吸水速度爲 0.01 〜0.5ml/g · min 〇 3. 如申請專利範圍第1或第2項之聚合物,其硬化皮膜 之濕潤延伸率爲100〜1500%。 4. 如申請專利範圍第1〜3項中任一項之聚合物,其硬化 籲 皮膜之濕潤100%模數爲0.01〜lOMPa。 5. 如申請專利範圍第1〜4項中任一項之聚合物,其含有 氧化乙烯基,氧化乙烯基的含有量相對聚合物的重量爲 30〜100重量%。 6. 如申請專利範圍第1〜5項中任一項之聚合物,其係含 有異氰酸基之聚合物。 7. 如申請專利範圍第6項之聚合物,其中,異氰酸基含 有量相對聚合物的重量爲0.1〜20重量%。 籲 8. 如申請專利範圍第6或第7項之聚合物,其中,換算 成異氰酸基含有量之脲基甲酸酯·縮二脲(allophanate · biuret)含有量,相對聚合物的重量爲0或0.6重量%未滿。 9. 如申請專利範圍第6〜8項中任一項之聚合物,其中, 鹼金屬及鹼土類金屬的含有量,相對聚合物的重量爲0或 0.04mmol/kg 未滿。 10. 如申請專利範圍第6〜9項中任一項之聚合物,其中 69 ,數量平均分子量爲500〜500000之含有異氰酸基之聚合物 的含有量,相對聚合物的重量爲98〜100重量%。 11. 如申請專利範圍第6〜10項中任一項之聚合物,其係 含有第3級胺基及/或第4級氨合基,第3級胺基及第4級 氨合基的含有個數,相對聚合物的重量爲1 X1017〜1 X 1 023 個 /g。 12. 如申請專利範圍第6〜11項中任一項之聚合物,其係 含有不帶活性氫及異氰酸基的胺(C)。 13. 如申請專利範圍第6〜12項中任一項之聚合物,係由 春 聚異氰酸酯(A)、與含有活性氫之聚合物(B)所衍生成之含有 異氰酸基的聚合物所構成; 該含有活性氫之聚合物(B)係擇自:含有羥基之聚醚 (B1)、含有硫醇基之聚醚(B2)、含有1級及/或2級胺基之 聚醚(B3)、含有羧基之聚醚(B4)、含有羥基之聚酯(B5)、含 有硫醇基之聚(硫)酯(B6)、含有1級及/或2級胺基之聚酯 (B7)、含有羧基之聚酯(B8)、含有羥基之聚醯胺(B9)、含有 硫醇基之聚醯胺(B10)、含有1級及/或2級胺基之聚醯胺 鲁 (B11)、以及含有铵基之聚醯胺(B12)所構成的群中。 14. 如申請專利範圍第13項之聚合物,其中,聚異氰酸 酯(A),係由含氟脂肪族聚異氰酸酯及/或含氟脂環族聚異氰 酸酯所構成。 15. 如申請專利範圍第13或第14項之聚合物,其中, 含有活性氫之聚合物(B)中之鹼金屬及/或鹼土類金屬的含有 量,相對(B)的重量爲0或0.07mmol/kg未滿。 70 16. 如申請專利範圍第13〜15項中任一項之聚合物,其 中,含有活性氫之聚合物(B),爲氧化乙烯及氧化丙烯之無 規共聚物。 17. 如申請專利範圍第6〜12項中任一項之聚合物,其係 具有:將擇自聚醚、聚酯及聚醯胺所構成群中之含有活性 氫之聚合物(B)中之至少1個官能基轉變成異氰酸基之構造 〇 18. 如申請專利範圍第1〜17項中任一項之聚合物,其係 防止自活體組織之流體洩漏用及/或活體組織的接著用者。 鲁 19. 如申請專利範圍第18項之聚合物,其中,活體組織 ,係擇自肝臟、腎臟、脾臟、胰臟、心臟、肺、血管、氣 管、支氣管、消化道及神經所構成群中之至少1種組織。 20. —種聚合物之製造法,係用以製造可形成硬化皮膜 之醫療用接著劑用之含有異氰酸基之聚合物者;其特徵在 於,係將鹼金屬及/或鹼土類金屬的含有量爲0或 0.07mmc)l/kg未滿的含有活性氫之聚合物(B),轉變成含有異 氰酸基之聚合物。 鲁 拾壹、圖式 如次頁 71 2ϋϋ30Ι£68 陸、(一)、本案指定代表圖爲:無 (二)、本代表圖之元件代表符號簡單說明: &gt;ήτΓ. 1111: j \ \\ 柒、本案若有化學式時,請揭示最能顯示發明特徵的化學 式··Scope of patent application 1. A polymer, which is a polymer for medical adhesives that can form a hardened film; characterized in that the viscosity at 37 ° C is 0.5 ~ 2000Pa · s, and the saturated water absorption is 0.2 ~ 5ml / g. 2. If the polymer in the scope of patent application No. 1 has an initial water absorption rate of 0.01 to 0.5 ml / g · min 〇3. If the polymer in the scope of patent application No. 1 or 2 has its wet elongation rate It is 100 to 1500%. 4. If the polymer in any of items 1 to 3 of the scope of application for a patent, the cured 100% modulus of the wet film is 0.01 to 10 MPa. 5. The polymer according to any one of items 1 to 4 of the scope of patent application, which contains ethylene oxide, and the content of the ethylene oxide relative to the weight of the polymer is 30 to 100% by weight. 6. The polymer according to any one of claims 1 to 5, which is a polymer containing an isocyanate group. 7. The polymer according to item 6 of the patent application, wherein the content of the isocyanate group is 0.1 to 20% by weight relative to the weight of the polymer. Call 8. If the polymer in item 6 or 7 of the scope of patent application is applied, the content of uretate · biuret converted to the content of isocyanate group is relative to the weight of the polymer It is 0 or 0.6% by weight or less. 9. The polymer according to any one of items 6 to 8 of the scope of patent application, wherein the content of the alkali metal and alkaline earth metal is less than 0 or 0.04 mmol / kg relative to the weight of the polymer. 10. If the polymer of any one of claims 6 to 9 of the scope of patent application, 69, the content of the isocyanate-containing polymer having a number average molecular weight of 500 to 500,000, relative to the weight of the polymer is 98 to 100% by weight. 11. If the polymer of any one of claims 6 to 10 of the scope of the patent application, it is a polymer containing a third-order amino group and / or a fourth-order amino group, a third-order amino group and a fourth-order amino group. The content is 1 X1017 ~ 1 X 1 023 pieces / g relative to the weight of the polymer. 12. The polymer according to any one of claims 6 to 11 of the scope of patent application, which contains an amine (C) without active hydrogen and isocyanate groups. 13. The polymer according to any one of claims 6 to 12 of the scope of patent application is an isocyanate group-containing polymer derived from a polyisocyanate (A) and an active hydrogen-containing polymer (B). Composition: The active hydrogen-containing polymer (B) is selected from the group consisting of a polyether (B1) containing a hydroxyl group, a polyether (B2) containing a thiol group, and a polyether containing a primary and / or secondary amine group (B3), a polyether (B4) containing a carboxyl group, a polyester (B5) containing a hydroxyl group, a poly (thio) ester (B6) containing a thiol group, and a polyester containing a first and / or a second amine group ( B7), polyester containing carboxyl group (B8), polyamine containing hydroxyl group (B9), polyamine containing thiol group (B10), polyamine containing polyamine group 1 and / or 2 ( B11), and a group consisting of ammonium-containing polyamidoamine (B12). 14. The polymer according to item 13 of the application, wherein the polyisocyanate (A) is composed of a fluorinated aliphatic polyisocyanate and / or a fluorinated alicyclic polyisocyanate. 15. As for the polymer in the scope of claim 13 or 14, the content of the alkali metal and / or alkaline earth metal in the polymer (B) containing active hydrogen is 0 or less relative to the weight of (B) Less than 0.07 mmol / kg. 70 16. The polymer according to any one of claims 13 to 15 of the scope of patent application, wherein the polymer (B) containing active hydrogen is a random copolymer of ethylene oxide and propylene oxide. 17. The polymer according to any one of claims 6 to 12 of the scope of the patent application, which comprises: an active hydrogen-containing polymer (B) selected from the group consisting of polyether, polyester and polyamide. A structure in which at least one functional group is converted into an isocyanate group. 18. The polymer according to any one of claims 1 to 17 of the scope of application for a patent is for preventing fluid leakage from living tissues and / or living tissues. Followers. Lu 19. The polymer according to item 18 of the scope of patent application, wherein the living tissue is selected from the group consisting of liver, kidney, spleen, pancreas, heart, lung, blood vessels, trachea, bronchus, digestive tract and nerves At least 1 organization. 20. —A method for producing polymers, which is used to produce polymers containing isocyanate groups for medical adhesives that can form hardened films; it is characterized by the use of alkali metals and / or alkaline earth metals. The active hydrogen-containing polymer (B) at a content of 0 or 0.07 mmc) 1 / kg is converted into a polymer containing an isocyanate group. Lu Shiyi, the diagram is as shown on the next page 71 2ϋϋ30Ι £ 68 Lu, (1), the designated representative figure in this case is: None (two), the component representative symbols of this representative figure are simply explained: &gt; ήτΓ. 1111: j \ \\柒 、 If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention ... 44
TW091132225A 2001-12-18 2002-10-30 Polymer and polymer production method TW200301268A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2001384099 2001-12-18
JP2002121259 2002-04-23
JP2002121820 2002-04-24
JP2002127117 2002-04-26
JP2002151283 2002-05-24
JP2002156352 2002-05-29
JP2002179514 2002-06-20
JP2002179498 2002-06-20

Publications (1)

Publication Number Publication Date
TW200301268A true TW200301268A (en) 2003-07-01

Family

ID=27573780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091132225A TW200301268A (en) 2001-12-18 2002-10-30 Polymer and polymer production method

Country Status (5)

Country Link
JP (1) JPWO2003051952A1 (en)
AU (1) AU2002343788A1 (en)
GB (1) GB2399345B (en)
TW (1) TW200301268A (en)
WO (1) WO2003051952A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761904B (en) * 2020-08-10 2022-04-21 臺灣塑膠工業股份有限公司 Superabsorbent polymer and method for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273847B2 (en) 2004-03-29 2012-09-25 Sanyo Chemical Industries, Ltd Medical adhesive
DE102008009407A1 (en) * 2008-02-15 2009-08-20 Bayer Materialscience Ag adhesive
JP6040149B2 (en) 2011-03-22 2016-12-07 三洋化成工業株式会社 Medical adhesive
JP6193067B2 (en) * 2012-09-20 2017-09-06 三洋化成工業株式会社 Surgical hemostatic material substrate and surgical hemostatic material
EP3620187A4 (en) * 2017-04-28 2021-01-13 Sanyo Chemical Industries, Ltd. Sealing agent for genitals

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691722B2 (en) * 1988-03-07 1997-12-17 旭硝子株式会社 Surgical adhesive
JPH03109076A (en) * 1989-03-23 1991-05-09 Sanyo Chem Ind Ltd Surgical adhesive sheet
EP0390481B1 (en) * 1989-03-23 1996-02-28 Sanyo Chemical Industries Ltd. Surgical adhesive sheet
JPH03195728A (en) * 1989-12-25 1991-08-27 Mitsui Toatsu Chem Inc Method for purifying polyoxyalkylenepolyol
JP2928892B2 (en) * 1990-11-27 1999-08-03 三洋化成工業株式会社 Surgical adhesive
JPH0826145B2 (en) * 1992-11-18 1996-03-13 三洋化成工業株式会社 Purification method of crude polyoxyalkylene compound
JP2003038634A (en) * 2001-07-27 2003-02-12 Sanyo Chem Ind Ltd Surgical adhesive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761904B (en) * 2020-08-10 2022-04-21 臺灣塑膠工業股份有限公司 Superabsorbent polymer and method for producing the same
US11673116B2 (en) 2020-08-10 2023-06-13 Formosa Plastics Corporation Method for producing superabsorbent polymer

Also Published As

Publication number Publication date
GB0414424D0 (en) 2004-07-28
AU2002343788A1 (en) 2003-06-30
JPWO2003051952A1 (en) 2005-04-28
GB2399345B (en) 2006-02-01
WO2003051952A1 (en) 2003-06-26
GB2399345A (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US4994542A (en) Surgical adhesive
AU2003287204B2 (en) Fast curing compositions
JP2928892B2 (en) Surgical adhesive
US9339583B2 (en) In situ bonds
US20050131192A1 (en) Polymer and process for producing polymer
JP4895816B2 (en) Polyurethane dispersions with improved isopropanol resistance, flexibility and softness
US8273847B2 (en) Medical adhesive
TW200301268A (en) Polymer and polymer production method
JP4256855B2 (en) Medical adhesive
JP6040149B2 (en) Medical adhesive
CN101392048A (en) Method for preparing developing polyurethane
JP2005124808A (en) Medical adhesive
JP7269786B2 (en) medical adhesive
JP2004261590A (en) Adhesive for medical treatment
JP2005118381A (en) Medical adhesive
JP2005124809A (en) Medical adhesive
JPS62148666A (en) Surgical adhesive
JP2021006140A (en) Medical adhesive
JP5044602B2 (en) Expanded PTFE adhesive
JP2003038634A (en) Surgical adhesive
JPS62290465A (en) Surgical adhesive