TR2024001187U5 - NEW GENERATION HYBRID RAM FILTER AND HEAT RECOVERY SYSTEM - Google Patents

NEW GENERATION HYBRID RAM FILTER AND HEAT RECOVERY SYSTEM

Info

Publication number
TR2024001187U5
TR2024001187U5 TR2024/001187 TR2024001187U5 TR 2024001187 U5 TR2024001187 U5 TR 2024001187U5 TR 2024/001187 TR2024/001187 TR 2024/001187 TR 2024001187 U5 TR2024001187 U5 TR 2024001187U5
Authority
TR
Turkey
Prior art keywords
water
waste gas
exchanger
air
heat recovery
Prior art date
Application number
TR2024/001187
Other languages
Turkish (tr)
Inventor
Kari Li Huseyi̇n
Original Assignee
Erka Mühendi̇sli̇k Müşavi̇rli̇k İnşaat Elektri̇k Elektroni̇k Tarim İthalat İhracat Sanayi̇ Ve Ti̇cltdşti̇
Filing date
Publication date
Application filed by Erka Mühendi̇sli̇k Müşavi̇rli̇k İnşaat Elektri̇k Elektroni̇k Tarim İthalat İhracat Sanayi̇ Ve Ti̇cltdşti̇ filed Critical Erka Mühendi̇sli̇k Müşavi̇rli̇k İnşaat Elektri̇k Elektroni̇k Tarim İthalat İhracat Sanayi̇ Ve Ti̇cltdşti̇
Publication of TR2024001187U5 publication Critical patent/TR2024001187U5/en

Links

Abstract

Buluş, tekstil boyahaneleri ram makineleri (29), buhar ve kızgın su kazanı, seramik ve vitrifiye fırınları, metal kurutma ve ısıl işlem fırınları tarafından atılan baca atık sıcak hava ısısının geri kazanılması amacıyla kullanılan bir ısı geri kazanım sistemi ile ilgilidir.The invention relates to a heat recovery system used to recover the heat of the chimney waste hot air discharged by textile dyehouse stenter machines (29), steam and hot water boilers, ceramic and vitrified kilns, metal drying and heat treatment furnaces.

Description

TARIFNAME YENI NESIL HIBRIT RAM FILTRE VE ISI GERI KAZANIM SISTEMI Teknik Alan Bulus, tekstil boyahaneleri ram (germe ve kurutma) makineleri, buhar ve kizgin su kazani, seramik ve vitrifiye firinlari, metal kurutma ve isil islem firinlari tarafindan atilan baca atik sicak hava isisinin geri kazanilmasi amaciyla kullanilan bir isi geri kazanim sistemi ile ilgilidir. Bulus özellikle, geri kazanilan atik sicak hava isisi vasitasiyla temiz hava ve temiz suyun isitilarak kullanilmasi sayesinde isletmelerde enerji tasarrufu saglayan ve ayni zamanda baca gazindaki koku, TOC, VOC ve yagi yasal sinirlar limitlerinin altina düsüren ve elyaf ve partikülleri tutan bir isi geri kazanim sistemi ile ilgilidir. Teknigin Bilinen Durumu Özellikle tekstil boyahanelerindeki germe ve kurutma (Ram) makineleri, seramik ve vitrifiye firinlari, metal kurutma ve isil islem firinlari gibi sistemlerde gerçeklestirilen isil islemler neticesinde, içerisinde zehirli gazlar, kimyasallar, yag ve parçaciklar bulunan atik gazlar olusmaktadir. Olusan bu atik gazlar söz konusu sistemlerde yer alan bacalar yardimiyla dis ortama atilarak atmosfere karismaktadir. Atik gazlarin bu sekilde dogrudan atmosfer ortamina iletilmesi, içerdikleri zararli bilesenler nedeniyle doga ve insan sagligi açisindan oldukça büyük bir tehlike olusturmaktadir. Bu nedenle atik gazlarin iIetiIdigi bacalara çesitli gaz filtreleme sistemleri yerlestirilmekte ve böylece atik gaz içerisindeki zararli bilesenlerin atmosfer ortamina iletimi önlenmektedir. Günümüzde siklikla kullanilan gaz filtreleme sistemlerine bir örnek olarak elektrostatik filtreleme (ESF) sistemleri verilebilir. Bu sistemlerde, atik gaz elektriksel bir alan içerisinden geçirilerek gaz içerisindeki parçaciklarin elektriksel olarak yüklenmesi saglanmakta ve yüklü olan parçaciklarin zit yüke sahip plakalardan geçirilmesi esnasinda zit yüklerin birbirini çekme etkisi sonucunda parçaciklarin söz konusu plakalara tutunmasi saglanmaktadir. Ancak, ESF sistemlerinde gaz içerisindeki parçaciklarin elektrikle yüklenmesi için yüksek akim degerleri kullanilmakta ve olasi bir elektrik kaçagi veya ark durumunda atik gaz içerisindeki veya fiItreIenen yag ve elyaf parçaciklarinin tutusmasi sonucunda siddetli yangin durumlari olusabilmektedir. Ayrica, elektriksel yükleme ve filtreleme saglayan sistem parçalari metal malzemeden mamul olmakta ve ortamda bulunan su, buhar veya nem etkisiyle bu parçalar korozyona ugrayarak arizalara neden olmakta veya kullanim ömürleri oldukça kisa olmaktadir. Bu durum da islem maliyetlerinin artmasina neden olmaktadir. Ilaveten, atik gaz içerisinde bulunan elektriksel olarak yüklenemeyen gaz, buhar veya koIIoid haldeki bilesenlerin veya kimyasallarin filtrelenmesi verimli saglanamamaktadir. Bu sebeple koku veren veya zararli bilesenlerin yine atmosfer ortamina gönderilmesine neden olmaktadir. Literatürde yapilan arastirmada teknigin bilinen durumuna bir örnek olarak U89084964 numarali doküman gösterilebilir. Bahsi geçen dokümanda, yanma islemi sonucunda bacadan atilan gazin temizlenmesini saglayan bir radyal yapili filtreleme sistemi açiklanmaktadir. Bu sistem, atik gazin uzaklastirilmasini saglayan bacadan iletilen gaz içerisindeki parçaciklarin tutulmasini saglayan radyal yapili fiItreyi, bahsedilen filtre tarafindan toplanan parçaciklarin kurutulmasini saglayan kuru yikayiciyi ve gazinin iIerIetiIerek baca ve fiItreden geçirilmesine yardimci olan fani içermektedir. Söz konusu sistem içerisindeki birden fazla radyal filtreleme bölmesi sayesinde gazin içeresindeki parçaciklarin etkin bir sekilde ayristirilmasi ile gazin içesindeki zararli etkenlerin azaltilasi saglanmaktadir. Ancak söz konusu radyal yapili filtreleme sistemi ile atik gaz içerisinde bulunan gaz, buhar veya koIIoid haldeki bilesenlerin veya kimyasallarin filtrelenmesi saglanamamakta ve özellikle koku veren veya sagliga zararli olan bilesenlerin atmosfer ortamina iIetiImesinin önlenmesine yönelik bir çözüm elde edilememektedir. Sonuç olarak yukaridaki problemlerin varligi ve mevcut çözümlerin yetersizligi, ilgili teknik alanda bir gelistirme yapmayi zorunlu kilmistir. Bulusun Amaci Mevcut bulus yukarida bahsedilen dezavantajlari ortadan kaldiran ve ilgili teknik alana yeni avantajlar getiren yeni nesil hibrit ram filtre ve isi geri kazanim sistemi ile ilgilidir. Bulusun ana amaci, geri kazanilan atik sicak hava isisi vasitasiyla temiz hava ve temiz suyun isitilarak kullanilmasi sayesinde isletmelerde enerji tasarrufu saglayan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun amaci, baca gazindaki koku, TOC, VOC ve yagi yasal sinirlar Iimitlerinin altina düsüren ve elyaf ve partikülleri tutan bir isi geri kazanim sistemi ortaya koymakti r. Bulusun bir diger amaci, filtrasyon islemini su ile yaparak sistemde sürekli olarak su bulunmasini saglayan ve buna bagli olarak yangin riskini ortadan kaldiran bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, sistemin yogusma yapmasi sayesinde atik gaz üzerinde bulunan su buharini yogusturan ve böylece buharin gizli isisini alarak daha yüksek enerji kazandiran bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, atik gazin makineden çikip sisteme geldigi, sistemin içinde gittigi ve sistemden çiktigi bölümlerin tümünde sicaklik ölçerIer bulunmasi sayesinde sicaklik ölçerIer set ediIen yangin sicakligina ulastiginda yangin söndürme hatti üzerinde bulunan otomatik buhar vanalarini otomatik olarak açarak yangina müdahale edilmesini saglayan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, sistem içerisinden geçen atik gazin üzerinde tasimis oldugu kirIiIikIeri su ile tutulmasi sayesinde su ile gazin temas yüzeyi verimliliginin artmasini ve böylece temas yüzeyini artiran alüminyum profiller kullanan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, sistemin son noktasinda çikan atik gazin su ile temas etmesi ile üzerinde bugu olarak adlandirilan su buhari ve su zerrecikleri içeren ve bu zerreciklerin buharin ortama salinmasini engellemek için yogusmada kullanilmakta olan gaz geçisi sirasinda üzerindeki su zerreciklerini tutmak için alüminyum profillerden olusan damla tutucu sistem ile atik gazin üzerinde bulunan su zerrecikleri ve bugunun tutularak dis ortama salinmasinin önüne geçilmesini saglayan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, su zerreciklerinin tutulmasi için içerisine özel su tutucu bez konulmus olan bir damla tutucu teI eIek sistemine sahip olan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, koku giderimi için sisteme aktif karbon yerine zeolit kullanilan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, sistem girisindeki tek esanjör yerine çift kademeli paralel çalisan iki esanjör sistemi ile daha fazla isi geri kazanimi ve daha iyi bir sogutma saglayan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, su perdesi olusturan nozullara sahip olan ve bu nozullar sayesinde içerisinden gaz geçerken gazi yikayarak kirliliklerin çökmesini saglayan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, ozonun daha etkili ve verimli difüze olmasini saglayan nozul pompasina sahip olan bir isi geri kazanim sistemi ortaya koymaktir. Bulusun bir diger amaci, su sogutucu-chiller vasitasiyla daha verimli yogusma için gerekli olan soguk su elde edilmesini saglayan bir isi geri kazanim sistemi ortaya koymakti r. Bulusun bir diger amaci, temizlenen havanin tekrar kullanimini saglayarak sicak havanin ortama salinmasini engelleyen bir isi geri kazanim sistemi ortaya koymaktir. Yukarida belirtilen ve detayli anlatimdan çikabilecek tüm amaçlari yerine getirebilmek üzere bulus; tekstil boyahaneleri ram makineleri, buhar ve kizgin su kazani, seramik ve vitrifiye firinlari, metal kurutma ve isil islem firinlari tarafindan atilan baca atik sicak hava isisinin geri kazanilmasi amaciyla kullanilan bir isi geri kazanim sistemi olup, - ram makinesinden gelen atik gaz üzerinde bulunan partikül, toz parçaciklarini tutan ve otomatik olarak atik gaz temizlik buhar hattindaki buharla ve ardindan atik gaz temizlik su hattindaki ile temizlenen atik gaz filtre sistemi, - ram makinesinde yangin çikmasi durumunda otomatik olarak kapanan ve yanginin sisteme girisini engelleyerek sisteme zarar vermesini önleyen yangin önleme damperi, - atik gaz filtre sisteminde temizlenen havanin isitilmasini saglayan atik gaz- temiz hava esanjörü ile atik gaz-temiz su esanjörlerinden geçen ve sistem gelen atik gazin yogusmasini, atik gaz filtre sisteminden sonra kalan partikül, yag ve kimyasallarin gazdan ayrilmasi için sirkülasyon suyu ile temasini saglayan ve yüzeyi artirilmis damla tutucu alüminyum profiller ile donatilan yogusma esanjörü, yogusma esanjöründe atik gaz üzerinde bulunan su buhari ve zerreciklerinin dis ortama gitmesini engelleyen damla tutucu kumas, yogusma esanjöründe atik gaz üzerinde bulunan koku veren bilesenlerin tutulmasini saglayan zeolit bölümü, yogusma esanjörü içerisinde su perdesi olusturarak içerisinden geçen havayi yikayarak temizleyen su perdesi nozulu, sistem içerisinde sürekli olarak sirküle edilen sudaki yag ve kimyasallarin ayrismasini saglayan yag ayirici tank, atik gaz üzerinde bulunan koku veren bilesenlerin giderilmesini saglayan ozon jeneratörü, ozon jeneratöründe üretilen ozonu, yag ayirici tanka besleyen ozon pompasi, sistem çikisina yakin son bölümüne konumlandirilan ve sistemden çikan ve sogumus temiz havayi tekrar isitarak ram makinesine tekrar geri beslemek için isitan atik gaz temiz su esanjörü, atik gaz temiz su esanjöründe tekrar isitilan havanin çikis hava yönlendirme klapesi ile yönlendirilerek tekrar ram makinesine beslenmesini saglayan sicak hava geri besleme hatti, yag ayirici tank, sirkülasyon pompasi ve plakali esanjör ile sirküle eden suyun düsük sicakliga getirilmesini saglayan ve su sogutma chiIIer grubu, ram makinesinden çikan kismen sogumus havanin iki kere sogutulmasini saglayan çiftli gaz temiz su esanjörü içermesi ile ilgilidir. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir. Bu nedenle degerlendirmenin de bu sekiller ve detayli açiklama göz önüne alinarak yapilmasi gerekmektedir. Bulusun Anlasilmasina Yardimci Olacak Sekiller Sekil 1: Bulus konusu isi geri kazanim sisteminin sematik görünümüdür. Parça Referanslarinin Açiklanmasi Yangin söndürme hatti NmmhwmAomemmhumaowmummhwN-io Yönlendirme klapesi Atik gaz sistem girisi Atik gaz temizlik buhar hatti Atik gaz temizlik su hatti Yangin önleme damperi Temiz hava fani Otomatik temiz hava filtresi .Yogusma sirkülasyon hatti . Damla tutucu alüminyum profil . Damla tutucu kumas .Zeolit bölümü .Atik gaz fani .Atik gaz sistem çikis bacasi .Atik gaz filtre sistemi .Atik gaz-temiz su esanjörü .Yogusma esanjörü .Isitilmis temiz hava çikisi .Temiz su atik gaz-temiz su esanjör girisi .Yag ayirici tank . Sirkülasyon pompasi . Plakali esanjör .Yumusak su plakali esanjör girisi . Ram-firin atik gaz fani .Yag toplama tanki .Temizlik suyu drenaj baglantisi . Ram makinesi . Ozon esanjörü .Atik gaz temiz su esanjörü .Genlesme tanki . Su sirkülasyon pompasi .Su sogutma chiller grubu .Su perdesi nozul pompasi .Çikis hava yönlendirme klapesi 38. Çiftli gaz temiz su esanjörü 39. Su perdesi nozuIlari 40. Sicak hava geri besleme hatti 41. Ozon pompasi Bulusun Detayli Açiklamasi Bu detayli açiklamada, bulus konusu isi geri kazanim sisteminin tercih edilen alternatifleri, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Sekil 1'de bulusa konu isi geri kazanim sisteminin sematik görünümü verilmistir. Söz konusu isi geri kazanim sisteminde tekstil boyahaneleri ram makinesi (29), buhar ve kizgin su kazani, seramik ve vitrifiye firinlari, metal kurutma ve isil islem firinlari tarafindan atilan baca atik sicak hava, ram-firin atik gaz fani (26) vasitasiyla disari atilmaktadir. Bahsi geçen ram-firin atik gaz fanindan (26) atilan hava, yönlendirme klapesi (2) ve atik gaz sistem girisi (3) ile sisteme yönlendirilmektedir. Bulusa konu isi geri kazanim sisteminde yangin aninda kapanarak sistemi korumak için yangin önleme damperi (6) bulunmaktadir. Isi geri kazanim sisteminin bagli oldugu ram makinesinde (29) yangin çikmasi durumunda yangin önleme damperi (6) otomatik olarak kapanmakta ve yanginin sisteme girisi engellenerek sisteme zarar vermesi önlenmektedir. Yangin söndürme hatti (1), ram makinesi (29) bacalarinda yangin çikmasi durumunda sistemden aldigi komut ile üzerinde bulunan otomatik vanalari açmakta ve hattan gelen buhar ile yangini söndürmektedir. tutularak temizlenmektedir. Ram makinesinden (29) gelen atik gaz üzerinde bulunan partikül, toz vs. gibi parçaciklarin atik gaz filtre sisteminde (16) tutulmaktadir. Atik gaz filtre sistemi (16) otomatik çalismakta ve kendi kendini temizlemektedir. Otomasyon programinda bulunan ayarlama bölümünden girilen süre periyodunda kendini temizleme islemini yapmaktadir. Atik gaz filtre sistemi (16), otomatik olarak temizligini atik gaz temizlik buhar hattindaki (4) buharla ve ardindan atik gaz temizlik su hattindaki (5) su ile yapmaktadir. Temizlik sirasinda olusan atiklar, temizlik suyu drenaj baglantisi (28) ile drenaja gönderilmektedir. Söz konusu temizlik suyu drenaj baglantisi (28), sistemin kendini temizlemesinde kullanilan atik sularin aritma tesisine gönderilmesini saglayan drenaj baglantisidir. Atik gaz filtre sisteminde (16) temizlenen hava, temiz hava fani (7) ile otomatik temiz hava filtresinde (8) filtre edilerek atik gaz-temiz hava esanjörüne (17) girerek isinir. Ram makinesinden (29) çikan kismen sogumus hava, çiftli gaz temiz su esanjörüne (38) girer. Söz konusu çiftli gaz temiz su esanjörü (38) iki adet yapilmistir. Böylece atik gaz iki kere sogutulmakta ve daha fazla enerji tasarrufu saglamaktadir. Daha fazla soguyan gaz üzerindeki kirlilikler daha çabuk ve daha çok birakilmaktadir. Çiftli gaz temiz su esanjörünün (38) sekonder devresine genlesme tankindan (32) alinan su, su sirkülasyon pompasi (33) beslenir. Isinan su, isitilmis temiz sicak su depoya gidis hatti (9) ile çikistaki atik gaz temiz su esanjörüne (31) gider. Burada amaç geçen soguk gazi isitmaktir. Kismen sogumus olan hava, yogusma esanjörlerine (19) girer ve yüzeyi artirilmis damla tutucu alüminyum profillerden (11) geçerken yüzeylere gelen su ile hem enerjisini birakir hem de temizlenir. Yogusma esanjörleri (19), atik gaz-temiz hava esanjörü (17) ile atik gaz-temiz su esanjörlerinden (18) geçen ve sistem gelen atik gazin yogusmasini, atik gaz filtre sisteminden (16) sonra kalan partikül, yag ve kimyasallarin gazdan ayrilmasi için sirkülasyon suyu ile temasini saglayan ve yüzeyi artirilmis damla tutucu alüminyum profiller (11) ile donatilmis olan bölümdür. Yogusma esanjörlerinde (19) atik gaz üzerinde bulunan küçük partiküller ve asilitlar veya kolloid halde bulunan bilesenler su ile temas ederek çökelir. Gaza koku veren bilesenler de bu bölümde tutulmus olur. Atik gaz-temiz hava esanjöründe (17) kismen enerjisini kaybetmis olan atik gaz, atik gaz-temiz su esanjörlerine (18) gelmektedir. Isletmeden gelen ve önce plakali esanjörde (24) kismen isinmis olan temiz yumusak su, atik gaz-temiz su esanjörlerinde (18) isinir ve isletmede kullanilmak üzere depoya veya diger bir ram makinesine (29) gönderilir. Temiz su, atik gaz-temiz su esanjör girisi (21) vasitasiyla isitilmak üzere atik gaz-temiz su esanjörlerine (18) girmektedir. Yogusma sirkülasyon hatti (10), isi geri kazanim sistemine gelen atik gazi temizlemek için kullanilan suyun sürekli bir sekilde sirkülasyonunu saglayan hattir. Sistem çikisina yakin son bölümüne konumlandirilan atik gaz temiz su esanjörü (31), sistemden çikan ve sogumus temiz havayi tekrar isitarak isi kaynagi olan ram makinesine (29) tekrar geri beslemek için isitmaktadir. Isinan hava tekrar sistem beslendigi için enerji tasarrufu saglanmistir. Çevre kirliginden dolayi fosil yakitlar giderek azaltilmasi ve bir zaman sonra kati yakitlarin kullanilmasi yasaklanacagi için isitma islemi artik elektrikle olacaktir. Elektrikle isitma yapilan sistemlerde atik baca yanma gazlari olmayacagindan çikan temiz hava temizlenerek tekrar kullanilacaktir. Böylece bacasiz isitma sistemleri kullanilacaktir. Sistemden çikan temiz hava, atik gaz temiz su esanjöründe (31) tekrardan isinmakta, çikis hava yönlendirme klapesi (37) ile yönlendirilerek sicak hava geri besleme hatti (40) ile tekrar ram makinesine (29) beslenmektedir. Yogusma esanjörleri (19) içerisinde bulunan su perdesi nozullari (39) karsilikli olarak su perdesi olusturmaktadir. Su perdesi nozullari (39) içerisinden geçen hava, yikanarak temizlenir ve kirlilikler çöker. Su perdesi nozullari (39), su perdesi sirkülasyon hatti (36) ile beslenmektedir. Su perdesi nozullarinin (39) su perdesi olusturabilmesi için basinçli su gerektiginden su perdesi nozul pompasi (35), su perdesi sirkülasyon hatti (36) ile su perdesi nozullarina (39) su göndermektedir. Bu döngü, sistem çalistigi sürece sonsuz tekrar etmektedir. Su perdesi nozullari (39) içerisinden geçen hava üzerinde su damlaciklari bulunmaktadir. Hava, damla tutucu alüminyum profillerden (11) geçerken üzerindeki damlaciklarin büyük bölümünü birakir. Ardindan damla tutucu kumaslara (12) temas ederek su zerreciklerini birakir. Sonrasinda hava, zeolitlerin bulundugu zeolit bölümüne (13) girerek gaz üzerinde bulunan toplam organik karbon (TOC) ve uçucu organik karbon (VOC) tutularak dis ortama gitmesi engellenir. Sogumus ve temizlenmis hava tekrar atik gaz temiz su esanjörüne (31) girer. Hava, giristeki çiftli temiz gaz temiz su esanjöründen (38) isitilmis genlesme tankindan (32) su sirkülasyon pompasi (33) çekilen su ile isinir. Isinmis temiz hava, atik gaz fani (14) yardimi ile atik gaz sistem çikis bacasina (15) gönderilir ve çikis hava yönlendirme klapesi (37) ile ram makinesine (29) yönlendirilir. Sicak havanin sicak hava geri besleme hatti (40) ile ram makinesine (29) girisi saglanir. Bahsi geçen atik gaz fani (14), sisteme giren sogutulmus, filtre edilmis, temizlenmis gazin dis ortama gönderilmesini saglamaktadir. Atik gaz fani (14), ram makineleri (29) üzerinde bulunan fanlarla senkronize çalismaktadir. Ram makinesi (29) üzerinde bulunan fanin/fanlarin hizi/hizlari artarsa hizini artirir, azaltirsa kendi hizini azaltir. Böylece ram makinesi (29) veya firinlarin iç basincinin dengeli olmasini saglar. Böylece makinenin durmasini ve verimsiz çalismasini engeller. Yag ayirici tankta (22) fazlarina ayrilmis ve kismen sicak su, sirkülasyon pompasi (23) yardimi ile plakali esanjörün (24) primer devresine girer. Plakali esanjörün (24) sekonder devresine ise su sogutma chiIIer grubundan (34) gelen soguk su girerek suyu sogutur ve sogutulmus olarak tekrar sisteme beslenir. Suda çözünmüs olan koku veren bilesiklerin parçalanmasi, kokunun azaltilmasi için ozon jeneratöründe (30) üretilen ozon, ozon pompasi (41) yardimi yag ayirici tanka (22) beslenir. Ozon pompasi (41) suyu yüksek basinçla hattan geçirirken bir vakum olusur ve ozon gazi daha iyi bir sekilde yag ayirici tanka (22) gider. Basinçli yag ayirici tank (22) içerisinde homojen dagildigi için verim artar. Yumusak su plakali esanjör girisi (25), isletmeden gelen temiz yumusak suyun plakali esanjöre (24) girmesini saglamaktadir. Yag ayirici tankindan (22) gelen konsantre yag ve kimyasallar yag toplama tankinda (27) toplanmakta ve ticari olarak geri dönüsüm tesislerine gönderilmektedir. Yag ayirici tank (22), sistem içerisinde sürekli olarak sirküIe edilen sudaki yag ve kimyasallarin ayrismasini saglamaktadir. Gaz üzerinde bulunan yag ve kimyasallar, yogunluk farki prensibine göre daha az yogun olan yag ve kimyasallar suyun üzerinde toplanir, su alt fazda kalir. Yag ayirici tank (22) içerisinde bulunan diskler sürekli olarak dönmektedir. Diske yapisan yaglar bir noktada siyiriciya gelir ve burada siyrilarak konsantre toplama bölümüne gelir. Disk temizlenmis ve yag ve kimyasallar ayrilmis Ozon jeneratörü (30), ozon pompasina (41) bir ventüri ile baglanmistir. Ozon pompasi (41) suyu sirküIe ederken ventüride vakum olusturmakta ve ozon jeneratöründen (30) çikan ozon gazi çok güçlü bir sekilde çekilmektedir. Ozon pompasi (41) ozon jeneratöründen (30) çekmis oldugu ozonu, basincini yükseltmis oldugu su ile yag ayirici tanka (22) verdigi için daha yüksek basinçla ozon gazi vererek daha iyi ve daha homojen bir dagilim saglamaktadir. Sistemde atik gaz veya atik hava ne kadar soguk olursa o kadar iyi temizlenecegi için yag ayirici tank (22), sirkülasyon pompasi (23) ve plakali esanjör (24) ile sirküle eden suyun daha soguk olmasi için plakali esenjörün (24) sekonder devresinden geçirilmesi ve su sogutma chiller grubu (34) yardimi ile çok düsük sicakliklara getirilmesi saglanmaktadir. TR DESCRIPTION NEW GENERATION HYBRID RAM FILTER AND HEAT RECOVERY SYSTEM Technical Field The invention is used to recover the heat of chimney waste hot air thrown by textile dyehouses stenter (stretching and drying) machines, steam and hot water boilers, ceramic and vitrified kilns, metal drying and heat treatment furnaces. It is related to a heat recovery system used for heat recovery. The invention is particularly concerned with a heat recovery system that provides energy savings in businesses by heating and using clean air and clean water through the heat of recovered waste hot air, and at the same time reduces the odor, TOC, VOC and oil in the flue gas below the legal limits and retains fibers and particles. It is relevant. State of the Art: As a result of heat treatments carried out in systems such as stretching and drying (RAM) machines, ceramic and vitrified kilns, metal drying and heat treatment furnaces, especially in textile dyehouses, waste gases containing toxic gases, chemicals, oil and particles are formed. These waste gases are discharged to the outside environment through the chimneys in the systems in question and mixed into the atmosphere. Direct transmission of waste gases to the atmosphere in this way poses a great danger to nature and human health due to the harmful components they contain. For this reason, various gas filtering systems are placed in the chimneys through which the waste gases are conveyed, thus preventing the transmission of harmful components in the waste gas to the atmosphere. Electrostatic filtering (ESF) systems can be given as an example of gas filtering systems frequently used today. In these systems, the particles in the gas are electrically charged by passing the waste gas through an electrical field, and when the charged particles are passed through plates with opposite charges, the particles are held to the plates in question as a result of the attracting effect of the opposite charges. However, in ESF systems, high current values are used to electrically charge the particles in the gas, and in the event of a possible electrical leakage or arc, severe fire situations may occur as a result of the ignition of oil and fiber particles in the waste gas or filtered. In addition, the system parts that provide electrical charging and filtering are made of metal materials, and under the influence of water, steam or humidity in the environment, these parts corrode, causing malfunctions or their useful life is quite short. This situation causes transaction costs to increase. In addition, filtering of electrically non-chargeable gas, vapor or colloidal components or chemicals in the waste gas cannot be achieved efficiently. For this reason, it causes odorous or harmful compounds to be released into the atmosphere. In the research conducted in the literature, document number U89084964 can be cited as an example of the known state of the technique. The mentioned document describes a radial structure filtering system that cleans the gas discharged from the chimney as a result of the combustion process. This system includes a radial structure filter that ensures the retention of particles in the gas transmitted through the chimney, which ensures the removal of waste gas, a dry washer that ensures the drying of the particles collected by the said filter, and a fan that helps to move the gas and pass it through the chimney and filter. Thanks to the multiple radial filtering chambers in the system in question, the particles in the gas are effectively separated and the harmful factors in the gas are reduced. However, with the radial structure filtering system in question, it is not possible to filter the components or chemicals in gas, vapor or colloidal form in the waste gas, and a solution cannot be obtained to prevent the components that cause odor or are harmful to health from being transmitted to the atmosphere. As a result, the existence of the above problems and the inadequacy of existing solutions necessitated a development in the relevant technical field. Purpose of the Invention The present invention is related to a new generation hybrid ram filter and heat recovery system that eliminates the disadvantages mentioned above and brings new advantages to the relevant technical field. The main purpose of the invention is to introduce a heat recovery system that provides energy savings in businesses by heating and using clean air and clean water through the heat of the recovered waste hot air. The aim of the invention is to introduce a heat recovery system that reduces odor, TOC, VOC and oil in flue gas below legal limits and retains fibers and particles. Another aim of the invention is to introduce a heat recovery system that ensures the constant presence of water in the system by performing the filtration process with water and thus eliminates the risk of fire. Another aim of the invention is to introduce a heat recovery system that condenses the water vapor on the waste gas thanks to the condensation of the system and thus gains higher energy by taking the latent heat of the steam. Another purpose of the invention is to provide a heat recovery system that enables fire intervention by automatically opening the automatic steam valves on the fire extinguishing line when the temperature meters reach the set fire temperature, thanks to the presence of temperature meters in all sections where the waste gas leaves the machine and comes to the system, goes inside the system and exits the system. to reveal the system. Another aim of the invention is to introduce a heat recovery system that uses aluminum profiles to increase the efficiency of the contact surface of the water and gas by retaining the impurities carried by the waste gas passing through the system with water, thus increasing the contact surface. Another purpose of the invention is the drop catcher, which consists of aluminum profiles to hold the water particles on it during the passage of the gas, which contains water vapor and water particles, called mist, when the waste gas coming out at the last point of the system comes into contact with water, and is used in condensation to prevent the release of these particles into the environment. The aim of the system is to introduce a heat recovery system that prevents the water particles and residues on the waste gas from being released to the outside environment. Another aim of the invention is to provide a heat recovery system that has a drop catcher screen system in which a special water retaining cloth is placed to retain water particles. Another aim of the invention is to introduce a heat recovery system in which zeolite is used instead of activated carbon for odor removal. Another aim of the invention is to produce a heat recovery system that provides more heat recovery and better cooling with a double-stage parallel exchanger system instead of a single exchanger at the system entrance. Another aim of the invention is to introduce a heat recovery system that has nozzles that form a water curtain and, thanks to these nozzles, allows the pollution to collapse by washing the gas while passing through it. Another aim of the invention is to provide a heat recovery system with a nozzle pump that allows ozone to diffuse more effectively and efficiently. Another aim of the invention is to introduce a heat recovery system that enables obtaining cold water required for more efficient condensation through a water cooler-chiller. Another aim of the invention is to introduce a heat recovery system that prevents the release of hot air into the environment by enabling the reuse of cleaned air. The invention is designed to fulfill all the purposes stated above and that can be derived from the detailed explanation; It is a heat recovery system used to recover the heat of the chimney waste hot air emitted by textile dyehouses stenter machines, steam and hot water boilers, ceramic and vitrified kilns, metal drying and heat treatment furnaces. - Particles on the waste gas coming from the stenter machine, Waste gas filter system, which traps dust particles and is automatically cleaned with steam in the waste gas cleaning steam line and then with that in the waste gas cleaning water line, - Fire prevention damper, which automatically closes in case of a fire in the stenter machine and prevents the fire from entering the system and damaging the system, - Waste It provides the heating of the air cleaned in the gas filter system, the condensation of the waste gas passing through the waste gas-clean air exchanger and the waste gas-clean water exchangers and the system, and its contact with the circulation water to separate the remaining particles, oils and chemicals from the gas after the waste gas filter system. Condensation exchanger equipped with drop-retaining aluminum profiles, drop-retaining fabric that prevents the water vapor and particles on the waste gas in the condensation exchanger from going to the outside environment, zeolite section that ensures retention of odor-giving components on the waste gas in the condensation exchanger, forming a water curtain within the condensation exchanger and preventing the air passing through it. Water curtain nozzle that cleans by washing, oil separator tank that separates the oil and chemicals in the water that is constantly circulated within the system, ozone generator that ensures the removal of odorous components on the waste gas, ozone pump that feeds the ozone produced in the ozone generator to the oil separator tank, the end near the system exit. The waste gas clean water exchanger, which is positioned in the section and reheats the cooled clean air coming out of the system to feed it back to the stenter machine, the hot air feedback line, which ensures that the air reheated in the waste gas clean water exchanger is directed by the outlet air direction valve and fed back to the stenter machine, oil It is related to the separator tank, circulation pump and plate heat exchanger, which ensures that the circulating water is brought to a low temperature, and the water cooling chiller group contains a double gas clean water exchanger that allows the partially cooled air coming out of the stenter machine to be cooled twice. The structural and characteristic features and all the advantages of the invention will be understood more clearly thanks to the figures given below and the detailed explanation written by making references to these figures. For this reason, the evaluation should be made taking these figures and detailed explanation into consideration. Figures to Help Understand the Invention Figure 1: Schematic view of the heat recovery system that is the subject of the invention. Explanation of Part References Fire extinguishing line NmmhwmAomemmhumaowmummhwN-io Direction flap Flue gas system inlet Flue gas cleaning steam line Flue gas cleaning water line Fire prevention damper Fresh air fan Automatic fresh air filter. Condensate circulation line. Drop catcher aluminum profile. Drop-retaining fabric. Zeolite section. Waste gas fan. Waste gas system exit chimney. Waste gas filter system. Waste gas-clean water exchanger. Condensation exchanger. Heated fresh air outlet. Clean water waste gas-clean water exchanger inlet. Oil separator tank. Recirculation pump . Plate heat exchanger. Soft water plate heat exchanger inlet. Ram-furnace waste gas fan. Oil collection tank. Cleaning water drainage connection. Stenter machine. Ozone exchanger . Waste gas clean water exchanger. Expansion tank. Water circulation pump. Water cooling chiller group. Water curtain nozzle pump. Exit air direction valve 38. Double gas clean water exchanger 39. Water curtain nozzles 40. Hot air feedback line 41. Ozone pump Detailed Description of the Invention In this detailed explanation, the preferred alternatives of the heat recovery system of the invention are only for a better understanding of the subject. It is explained as such and in a way that does not create any limiting effect. Figure 1 shows the schematic view of the heat recovery system subject to the invention. In the heat recovery system in question, the flue waste hot air discharged by the textile dyehouse stenter machine (29), steam and hot water boiler, ceramic and vitrified kilns, metal drying and heat treatment furnaces is thrown out through the stenter-kiln waste gas fan (26). . The air discharged from the said ram-oven's waste gas fan (26) is directed to the system through the direction flap (2) and the waste gas system inlet (3). The heat recovery system subject to the invention has a fire prevention damper (6) to protect the system by closing in case of fire. In case of a fire in the stenter machine (29) to which the heat recovery system is connected, the fire prevention damper (6) is automatically closed and the fire is prevented from entering the system and damaging the system. In case of a fire in the chimneys of the stenter machine (29), the fire extinguishing line (1) opens the automatic valves on it with the command it receives from the system and extinguishes the fire with the steam coming from the line. is kept and cleaned. Particles, dust, etc. on the waste gas coming from the stenter machine (29). Particles such as are kept in the waste gas filter system (16). The waste gas filter system (16) works automatically and cleans itself. It performs self-cleaning within the time period entered in the adjustment section of the automation program. The waste gas filter system (16) is automatically cleaned with steam in the waste gas cleaning steam line (4) and then with water in the waste gas cleaning water line (5). The waste generated during cleaning is sent to the drain via the cleaning water drainage connection (28). The cleaning water drainage connection (28) in question is the drainage connection that ensures that the waste water used in the self-cleaning of the system is sent to the treatment plant. The air cleaned in the waste gas filter system (16) is filtered by the clean air fan (7) and the automatic clean air filter (8) and heated by entering the waste gas-fresh air exchanger (17). The partially cooled air coming out of the stenter machine (29) enters the double gas clean water exchanger (38). The double gas clean water exchanger (38) in question was made in two pieces. Thus, the waste gas is cooled twice and provides more energy saving. As the gas cools more, impurities are released more quickly and more abundantly. Water taken from the expansion tank (32) and the water circulation pump (33) are fed to the secondary circuit of the double gas clean water exchanger (38). The heated water goes to the heated clean hot water tank flow line (9) and the waste gas at the exit to the clean water exchanger (31). The purpose here is to heat the passing cold gas. Partially cooled air enters the condensation exchangers (19) and as it passes through the drop-catching aluminum profiles (11) with increased surface, it releases its energy and is cleaned by the water coming to the surfaces. Condensation exchangers (19) condense the waste gas passing through the waste gas-clean air exchanger (17) and waste gas-clean water exchangers (18) and coming into the system, to separate the remaining particles, oil and chemicals from the gas after the waste gas filter system (16). It is the section that provides contact with the circulation water and is equipped with drop catcher aluminum profiles (11) with increased surface. In condensation exchangers (19), small particles and acids or components in colloidal form on the waste gas precipitate upon contact with water. Components that give odor to the gas are also kept in this section. The waste gas, which has partially lost its energy in the waste gas-clean air exchanger (17), comes to the waste gas-clean water exchangers (18). The clean soft water coming from the facility, which was first partially heated in the plate heat exchanger (24), is heated in the waste gas-clean water exchangers (18) and sent to the tank or another stenter machine (29) to be used in the facility. Clean water enters the waste gas-clean water exchangers (18) to be heated through the waste gas-clean water exchanger inlet (21). The condensation circulation line (10) is the line that ensures continuous circulation of water used to clean the waste gas coming to the heat recovery system. The waste gas clean water exchanger (31), positioned in the last section near the system exit, heats the cooled clean air leaving the system and feeds it back to the stenter machine (29), which is the heat source. Since the heated air is fed back into the system, energy savings are achieved. Since fossil fuels will be gradually reduced due to environmental pollution and the use of solid fuels will be banned after a while, the heating process will now be done with electricity. Since there will be no waste flue combustion gases in electrically heated systems, the clean air released will be cleaned and reused. Thus, flueless heating systems will be used. The clean air coming out of the system is heated again in the waste gas clean water exchanger (31), the exit is directed by the air direction flap (37) and fed back to the stenter machine (29) via the hot air feedback line (40). The water curtain nozzles (39) located in the condensation exchangers (19) mutually form a water curtain. The air passing through the water curtain nozzles (39) is washed and cleaned and impurities settle. Water curtain nozzles (39) are fed by the water curtain circulation line (36). Since pressurized water is required for the water curtain nozzles (39) to form a water curtain, the water curtain nozzle pump (35) sends water to the water curtain nozzles (39) via the water curtain circulation line (36). This cycle repeats endlessly as long as the system operates. There are water droplets on the air passing through the water curtain nozzles (39). As the air passes through the drop catcher aluminum profiles (11), it leaves most of the droplets on it. Then, it contacts the drip catcher fabrics (12) and leaves water particles. Afterwards, the air enters the zeolite section (13) where the zeolites are located, and the total organic carbon (TOC) and volatile organic carbon (VOC) on the gas are retained and prevented from going to the outside environment. The cooled and cleaned air enters the waste gas clean water exchanger (31) again. The air is heated by the water drawn from the double clean gas clean water exchanger (38) at the inlet and the water circulation pump (33) from the heated expansion tank (32). Heated clean air is sent to the waste gas system outlet chimney (15) with the help of the waste gas fan (14) and is directed to the stenter machine (29) via the outlet air direction flap (37). Hot air is allowed to enter the stenter machine (29) via the hot air feedback line (40). The said waste gas fan (14) ensures that the cooled, filtered and cleaned gas entering the system is sent to the external environment. The waste gas fan (14) works synchronously with the fans on the stenter machines (29). If the speed(s) of the fan(s) on the stenter machine (29) increases, it increases its speed; if it decreases, it decreases its own speed. Thus, it ensures that the internal pressure of the stenter machine (29) or ovens is balanced. Thus, it prevents the machine from stopping and operating inefficiently. Partially hot water, separated into phases in the oil separator tank (22), enters the primary circuit of the plate heat exchanger (24) with the help of the circulation pump (23). Cold water from the water cooling chiller group (34) enters the secondary circuit of the plate heat exchanger (24), cools the water and is fed back into the system as cooled. In order to break down the odorous compounds dissolved in water and reduce the odor, the ozone produced in the ozone generator (30) is fed to the oil separator tank (22) with the help of the ozone pump (41). While the ozone pump (41) passes water through the line at high pressure, a vacuum is created and the ozone gas goes to the oil separator tank (22) in a better way. Since the pressurized oil is distributed homogeneously in the separator tank (22), the efficiency increases. The soft water plate heat exchanger inlet (25) allows clean soft water coming from the facility to enter the plate heat exchanger (24). Concentrated oil and chemicals coming from the oil separator tank (22) are collected in the oil collection tank (27) and sent to commercial recycling facilities. The oil separator tank (22) ensures the separation of oil and chemicals in the water continuously circulated within the system. The oil and chemicals on the gas, according to the density difference principle, the less dense oil and chemicals collect on the water, and the water remains in the lower phase. The discs in the oil separator tank (22) are constantly rotating. The oils adhering to the disc come to the scraper at some point, where they are scraped and transferred to the concentrated collection section. The disc was cleaned and oil and chemicals were separated. The ozone generator (30) was connected to the ozone pump (41) with a venturi. While the ozone pump (41) circulates the water, it creates a vacuum in the venturi and the ozone gas coming out of the ozone generator (30) is drawn very strongly. Since the ozone pump (41) delivers the ozone it has drawn from the ozone generator (30) to the oil separator tank (22) with the water whose pressure it has increased, it provides a better and more homogeneous distribution by giving ozone gas at a higher pressure. Since the colder the waste gas or waste air in the system, the better it will be cleaned, passing the water circulating through the oil separator tank (22), circulation pump (23) and plate heat exchanger (24) through the secondary circuit of the plate heat exchanger (24) to make it cooler and It is ensured that it is brought to very low temperatures with the help of the water cooling chiller group (34).TR

Claims (1)

1.STEMLER . Tekstil boyahaneleri ram makineleri (29), buhar ve kizgin su kazani, seramik ve vitrifiye firinlari, metal kurutma ve isil islem firinlari tarafindan atilan baca atik sicak hava isisinin geri kazanilmasi amaciyla kullanilan bir isi geri kazanim sistemi olup, özelligi; ram makinesinden (29) gelen atik gaz üzerinde bulunan partikül, toz parçaciklarini tutan ve otomatik olarak atik gaz temizlik buhar hattindaki (4) buharla ve ardindan atik gaz temizlik su hattindaki (5) ile temizlenen atik gaz filtre sistemi (16), ram makinesinde (29) yangin çikmasi durumunda otomatik olarak kapanan ve yanginin sisteme girisini engelleyerek sisteme zarar vermesini önleyen yangin önleme damperi (6), atik gaz filtre sisteminde (16) temizlenen havanin isitilmasini saglayan atik gaz-temiz hava esanjörü (17) ile atik gaz-temiz su esanjörlerinden (18) geçen ve sistem gelen atik gazin yogusmasini, atik gaz filtre sisteminden (16) sonra kalan partikül, yag ve kimyasallarin gazdan ayrilmasi için sirkülasyon suyu ile temasini saglayan ve yüzeyi artirilmis damla tutucu alüminyum profiller (11) ile donatilan yogusma esanjörü (19), yogusma esanjöründe (19) atik gaz üzerinde bulunan su buhari ve zerreciklerinin dis ortama gitmesini engelleyen damla tutucu kumas (12), yogusma esanjöründe (19) atik gaz üzerinde bulunan koku veren bilesenlerin tutulmasini saglayan zeolit bölümü (13), yogusma esanjörü (19) içerisinde su perdesi olusturarak içerisinden geçen havayi yikayarak temizleyen su perdesi nozqu (39), sistem içerisinde sürekli olarak sirküle edilen sudaki yag ve kimyasallarin ayrismasini saglayan yag ayirici tank (22), atik gaz üzerinde bulunan koku veren bilesenlerin giderilmesini ozon jeneratöründe (30) üretilen ozonu, yag ayirici tanka (22) besleyen ozon pompasi (41), sistem çikisina yakin son bölümüne konumlandirilan ve sistemden çikan ve sogumus temiz havayi tekrar isitarak ram makinesine (29) tekrar geri beslemek için isitan atik gaz temiz su esanjörü (31), - atik gaz temiz su esanjöründe (31) tekrar isitilan havanin çikis hava yönlendirme klapesi (37) ile yönlendirilerek tekrar ram makinesine (29) beslenmesini saglayan sicak hava geri besleme hatti (40), - yag ayirici tank (22), sirkülasyon pompasi (23) ve plakali esanjör (24) ile sirküle eden suyun düsük sicakliga getirilmesini saglayan ve su sogutma chiller grubu (34), - ram makinesinden (29) çikan kismen sogumus havanin iki kere sogutulmasini saglayan çiftli gaz temiz su esanjörü (38) içermesidir. Istem 1,e uygun bir isi geri kazanim sistemi olup, özelligi; bahsedilen isi geri kazanim sistemine gelen atik gazi temizlemek için kullanilan suyun sürekli bir sekilde sirkülasyonunu saglayan yogusma sirkülasyon hatti (10) içermesidir. Istem 1,e uygun bir isi geri kazanim sistemi olup, özelligi; bahsedilen su perdesi nozullarini (39) besleyen su perdesi sirkülasyon hatti (36) içermesidir. Istem 1,e uygun bir isi geri kazanim sistemi olup, özelligi; bahsedilen su perdesi (39) su perdesi olusturabilmesi için basinçli su saglayan su perdesi nozul pompasi (35) içermesidir. TR1.STEMS. It is a heat recovery system used to recover the heat of the chimney waste hot air emitted by textile dyehouse stenter machines (29), steam and hot water boilers, ceramic and vitrified kilns, metal drying and heat treatment furnaces, and its feature is; The waste gas filter system (16), which retains the particles and dust particles on the waste gas coming from the stenter machine (29) and is automatically cleaned with steam in the waste gas cleaning steam line (4) and then with the steam in the waste gas cleaning water line (5), is used in the stenter machine ( 29) fire prevention damper (6), which automatically closes in case of fire and prevents fire from entering the system and damaging the system, waste gas-clean air exchanger (17) that provides heating of the air cleaned in the waste gas filter system (16) and waste gas-clean water The condensation exchanger (19), which provides the condensation of the waste gas passing through the exchangers (18) and coming into the system, and its contact with the circulation water to separate the remaining particles, oils and chemicals from the gas after the waste gas filter system (16), and is equipped with drop catcher aluminum profiles (11) with increased surface. ), drop retaining fabric (12) that prevents water vapor and particles on the waste gas in the condensation exchanger (19) from going to the outside environment, zeolite section (13) that ensures the retention of odorous compounds on the waste gas in the condensation exchanger (19), condensation exchanger (19). ) the water curtain nozzle (39) which creates a water curtain and cleans the air passing through it, the oil separator tank (22) which ensures the separation of oil and chemicals in the water continuously circulated within the system, the ozone produced in the generator (30) which removes the odorous compounds on the waste gas. Ozone pump (41), which feeds ozone to the oil separator tank (22), waste gas clean water exchanger (31), which is positioned in the last section near the system exit and heats the cooled clean air coming out of the system to feed it back to the stenter machine (29), - Hot air feedback line (40), which ensures that the reheated air in the waste gas clean water exchanger (31) is directed by the outlet air direction flap (37) and fed back to the stenter machine (29), - oil separator tank (22), circulation pump (23). and the water cooling chiller group (34), which ensures that the water circulating through the plate heat exchanger (24) is brought to a low temperature, and - the double gas clean water exchanger (38), which ensures that the partially cooled air coming out of the stenter machine (29) is cooled twice. It is a heat recovery system in accordance with claim 1, and its feature is; It contains a condensation circulation line (10) that ensures a continuous circulation of the water used to clean the waste gas coming to the said heat recovery system. It is a heat recovery system in accordance with claim 1, and its feature is; It contains a water curtain circulation line (36) that feeds the said water curtain nozzles (39). It is a heat recovery system in accordance with claim 1, and its feature is; The said water curtain (39) contains a water curtain nozzle pump (35) that provides pressurized water to create a water curtain. TR
TR2024/001187 2024-02-01 NEW GENERATION HYBRID RAM FILTER AND HEAT RECOVERY SYSTEM TR2024001187U5 (en)

Publications (1)

Publication Number Publication Date
TR2024001187U5 true TR2024001187U5 (en) 2024-03-21

Family

ID=

Similar Documents

Publication Publication Date Title
US10612771B2 (en) Method and apparatus for commissioning power plants
US4284609A (en) Condensation cleaning of particulate laden gases
SU1573062A1 (en) Method of recuperation of solvents in chemical cleaning machines
KR101695473B1 (en) Waste heat recovery of exhaust gas and dehumidification device
KR102063748B1 (en) Waste heat recovery and dust elimination device for tenter equipment
KR101521622B1 (en) System to removing a white smoke
JP7145482B2 (en) Exhaust gas cleaning and heat recovery system and method for sludge treatment
CN101766943A (en) Method for treating flue gas of dyeing and finishing setter
KR101034006B1 (en) Dryer for removing plume and environment pollution and for recovering energy
KR102062060B1 (en) Cooling device for dust collector installed in fabric finishing facility
CZ20004013A3 (en) Method and apparatus of steam generator system
CN108568186A (en) A kind of high temperature fume purification device
CN210905523U (en) Flue gas dehumidifying device
TR2024001187U5 (en) NEW GENERATION HYBRID RAM FILTER AND HEAT RECOVERY SYSTEM
CN214270654U (en) Sludge drying device with spray dust removal function
JP2019173992A (en) Exhaust gas processing device and exhaust gas processing method
CN115667613A (en) Tenter equipment
JPH07507626A (en) Method for treating high-temperature pollutant gas discharged from a thermal reactor that involves combustion
US4237691A (en) Process of removing water-soluble impurities from the working medium of a steam power plant
KR20170016037A (en) Device for drying organic waste
WO2008118450A1 (en) Improved method and apparatus for commissioning power plants
KR101580679B1 (en) Waste heat recovery unit for sludge dryer
CN216295660U (en) Oil smoke clean system
CN109457428A (en) A kind of framing shaping machine waste-heat recovery device
JP7490186B1 (en) Waste treatment facility exhaust heat recovery system and method