TR2023016104A2 - DEVELOPMENT OF SMART PACKAGING INCLUDING A COLOR-CHANGING INDICATOR TO MONITOR FRESHNESS/POISONATION OF PERISHABLE FOODS IN REAL TIME - Google Patents

DEVELOPMENT OF SMART PACKAGING INCLUDING A COLOR-CHANGING INDICATOR TO MONITOR FRESHNESS/POISONATION OF PERISHABLE FOODS IN REAL TIME

Info

Publication number
TR2023016104A2
TR2023016104A2 TR2023/016104 TR2023016104A2 TR 2023016104 A2 TR2023016104 A2 TR 2023016104A2 TR 2023/016104 TR2023/016104 TR 2023/016104 TR 2023016104 A2 TR2023016104 A2 TR 2023016104A2
Authority
TR
Turkey
Prior art keywords
indicator
color
smart
layer
feature
Prior art date
Application number
TR2023/016104
Other languages
Turkish (tr)
Inventor
Gulteki̇n Emre
Ayhan Zehra
Samir Lutfi Alobaidi Amal
Melda Karaca İrem
Haskaraca Guli̇z
Original Assignee
İspak Esnek Ambalaj Sanayi̇ Anoni̇m Şi̇rketi̇
Filing date
Publication date
Application filed by İspak Esnek Ambalaj Sanayi̇ Anoni̇m Şi̇rketi̇ filed Critical İspak Esnek Ambalaj Sanayi̇ Anoni̇m Şi̇rketi̇
Publication of TR2023016104A2 publication Critical patent/TR2023016104A2/en

Links

Abstract

Buluş, gıda sektöründe, ambalajlarda kullanılmak üzere, renk değiştiren akıllı indikatör (A) ile ilgilidir.The invention relates to a color-changing smart indicator (A) to be used in packaging in the food industry.

Description

TARIFNAME HIZLI BOZULAN GIDALARDA TAZELIGI/BOZULMAYI GERÇEK ZAMANLI IZLEMEK içiN RENK DEGISTIREN INDIKATÖR IÇEREN AKILLI AMBALAJ GELISTIRILMESI Teknik Alan Bulus, gida sektöründe, ambalajlarda kullanilmak üzere, renk degistiren akilli indikatör ile ilgilidir. Teknigin Bilinen Durumu Bir akilli indikatör çesidi olan tazelik indikatörleri, gidalarda mikrobiyal bozulma veya kimyasal degisiklikler sonucu meydana gelen metabolitlerin varliginda renk degistirme prensibiyle çalisan görsel araçlardir. Gidalarin kalitesi zaman alici, pahali ve tahribatli olan geleneksel analiz yöntemleri ile belirlenmektedir. Tazelik indikatörlerinin en büyük avantajlari; ambalajlanmis gidalarin kalitesi, tazeligi ve güvenliginin "renk degisimi" sayesinde tahribatsiz bir sekilde gerçek zamanli olarak çiplak gözle belirlenebilmesidir (Rukchon ve ark., 2014; Morsy ve ark, 2016; Lee ve ark.,2019; Öksüztepe ve Beyazgül, 2015). Gelistirilen bu görsel araçlar sayesinde son tüketim tarihi geçmeden bozulan veya tüketim tarihi geçmesine ragmen satisi devam eden ürünler tespit edilerek gida güvenligi saglanabilmektedir. Yalnizca gida güvenligini saglamak için degil ayni zamanda FAO (2020) verilerine göre her yil çöpe giden 1.3 milyar ton gida israfini önlemek için de büyük bir potansiyel tasimaktadir (Racionero et al., 2017). Literatürde yer alan tazelik indikatörü çalismalarinda, gidanin bozulmasina isaret eden renk degisiminin gözlemlenmesi için bromotimol mavisi, metil kirmizisi, bromokresol yesili ve bromokresol moru gibi çok sayida sentetik pH boyalarinin yani sira kurkumin, alizarin, klorofil, mor havuç, hibiskus (roselle) gibi farkli bitkilerden ekstrakte edilen dogal renk pigmentleri de Bhandari ve Yang, 2019). Dogal boyalar her ne kadar düsük toksisite, biyobozunur, genis renk skalasi gibi özelliklere sahip olsa da zayif renk stabilizasyonu nedeniyle tazelik indikatörü uygulamalarinda yeterli olmamaktadir. Bu baglamda sentetik pH boyalari, yüksek renk stabilizasyonu ve genis bir renk degisim araligi sunmalari ile asidik veya bazik türdeki farkli bozulma metabolitlerine duyarli indikatör üretimine daha fazla olanak saglamaktadir (Bao ve ark., 2022; Shao ve ark., 2021). Endüstriye uyarlanabilir bir indikatör tasarimi için iç ve dis katman olarak kullanilacak materyallerin nem, sicaklik, isik, UV gibi çevresel faktörlere dayanikli olmasi ve boya içeren renk degisim katmanini migrasyona karsi korumasi beklenmektedir. Ancak Iiteratürdeki çalismalarin bazilarinda iç katman bazilarinda ise arka plan olarak hidrofilik özellikteki filtre kagidi kullanilmistir. Katmanlarin birbirine tutunmasi ise Iaminasyon prosesi yerine bant yardimiyla ve ark., 2019; Ezati ve ark., 2019). Filtre kagidi yapisi ve özellikleri geregi hiçbir çevresel sarta dayanikli olmadigi gibi gida güvenligini saglayabilecek ve endüstriye uygulanabilecek nitelikte degiIdir. Literatürde yer alan akilli etiketIerin/indikatörlerin gida validasyon çalismalarinin çogunlugu petri ortaminda ve hava atmosferinde yapilmis olup, gerçek ambalajlama pratiginden uzaktir. Ayrica simülasyon çalismalari ve gida ambalajlama uygulamalari (malzeme ve atmosfer) gerçek ambalajlama kosullarini temsil etmemektedir (Chi et al., 2020; Franco, Cunha, & Bianch, 2021; Yildiz, Sumnu, & Kahyaoglu, 2021). Mevcut çalismalarda agirlikli olarak renk geçisi iki renk arasinda yer almakta olup, yalnizca tazeligi ve/veya bozulmuslugu ifade etmektedir. Patentli çok sayida TTI (Sicaklik zaman indikatörleri) olmasina ragmen bunlar gidanin içinde bulundugu ortamin sicakligina duyarli olup, renk degisimi sadece sicaklik dalgalanmalarina/degisimlerine bagli olarak ortaya çikmaktadir. Dolayisi ile sadece soguk zinciri takip edip, dolayli olarak gida kalitesi ve/veya tazeligi hakkinda bilgi edinmeyi saglamaktadir. Bizim gelistirdigimiz tazelik indikatörü ise ambalaj ortamindaki bozulma metaboliti ile reaksiyona girerek gidanin bozulmasi/tazeligi hakkinda dogrudan bilgi vermektedir. Sonuç olarak, yukarida anlatilan olumsuzluklardan dolayi ve mevcut çözümlerin konu hakkindaki yetersizligi nedeniyle ilgili teknik alanda bir gelistirme yapilmasi gerekli kiIinmistir. Bulusun Kisa Açiklamasi Mevcut bulus, yukarida bahsedilen gereksinimleri karsilayan, tüm dezavantajlari ortadan kaldiran ve ilave bazi avantajlar getiren, akilli indikatör ile ilgilidir. Bulus, mevcut durumlardan esinlenerek qusturqup yukarida belirtilen olumsuzluklari çözmeyi amaçlamaktadir. Bulus konusu akilli indikatör/tazelik indikatörü gida ambalajlama, gida güvenligi, gida kalite kontrol ve akilli ambalajlama alanlarinda kullanilabilecektir. Söz konusu indikatör ambalajli gida (tavuk) bozuldugunda olusan bozulma metabolitine (C02) duyarli ve bromotimol mavisi (BTB) boya içeren üç katmanli akilli indikatörün renk degistirme özelligi ile gidanin bozuldugunu gerçek zamanli olarak belirtecektir. Akilli ambalajlama teknolojisi sayesinde gidanin tasima, depolama, satis ve kullanim sirasinda ugradigi degisimler üretici, satici ve tüketici tarafindan izlenebilmektedir. Genel olarak gida ve ambalajlama endüstrisi tarafindan kullanilabilecek bir sistemdir. Bulusta, 3 katmanli akilli indikatör gelistirilmis olup; pH duyarli BTB boyasi metil selüloz matriskine baglanarak gida ambalajlama endüstrisinde yaygin olarak kullanilan iki plastik katman arasina yerlestirilmistir. Bunlardan üst katman olan seffaf PET film renk degisiminin izlenmesine, alt katman olan beyaz renkli LDPE film ise gaz geçirgenliginin (bozulma metaboliti olan COginin) saglanmasina ve ayrica rengin daha iyi ayirt edilebilmesi için renk degisim katmanina beyaz zemin olusturmasina olanak saglamaktadir. Önceki çalismalarda indikatörün yapisi geregi olusan beyaz renkli zemin kullanimina rastlanilmamistir. BTB bazli ve üç katmanli akilli indikatörün ambalajli tavukta C02 bozulma metabolitine duyarli olarak kullanilmasi hedeflenmistir. Bulus ile gelistirilen BTB bazli indikatörler simülasyon ve gida validasyon çalismalarinda gerçek ambalajlama kosullari kullanilarak test edilmistir. Bu amaçla ticari PA/PE ambalaj posetleri kullanilmis, hava ve %100 N2 atmosferlerinde test gerçeklestirilmistir. BTB bazli tazelik indikatörleri soguk depolama sürecinde üç asamali renk geçisi (parlak mavi- turkuaz-yesil) saglamis olup, C02 metabolitinin bozulma araligini temsil ettigi konsantrasyon (%10-15 (v/v)), mikrobiyolojik ve duyusal sonuçlarla da iliskilendirilmistir. Bu renk degisimi, tavuk etinin tazelik durumunu "taze (mavi), hala taze ama hemen tüketilmeli (turkuaz) ve bozulmus (yesiI)" olmak üzere görsel olarak üç farkli sekilde tüketiciye sunma avantaji saglamaktadir. Gelistirdigimiz tazelik indikatörü ambalaj ortamindaki bozulma metaboliti ile reaksiyona girerek gidanin bozulmasi/tazeligi hakkinda dogrudan bilgi vermektedir. Renk degisimi bozulma metaboliti olan C02 miktariyla dogru orantili olarak gelismektedir. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir ve bu nedenle degerlendirmenin de bu sekiller ve detayli açiklama göz önüne alinarak yapilmasi gerekmektedir. Bulusun Anlasilmasina Yardimci Olacak Sekiller Mevcut bqusun yapilanmasi ve avantajlarinin en iyi sekilde anIasiIabiImesi için asagida açiklamasi yapilan sekiller ile birlikte degerlendirilmesi gerekir. Sekil 1*de akilli indikatörün genel görünümü verilmektedir. Parça Referanslari A AkiIIi indikatör 1 Dis katman 2 Renk degisim katmani 3 Yapistirici katman 4 Iç katman Bulusun Detayli Açiklamasi Bu detayli açiklamada, bulusun tercih edilen yapilanmalari, sadece konunun daha iyi anIasiImasina yönelik olarak açiklanmaktadir. Bulus, gida sektöründe, ambalajlarda kullanilmak üzere, akiIIi indikatör (A) ile ilgilidir. Bulus konusu akiIIi indikatör (A) yapisinda, en dis kisimda en az bir dis katman (1) yer almaktadir. Söz konusu dis katman, tercihen seffaf PET film formunda qup, 13 um kaIinIigindadir. Söz konusu seffaf PET film renk degisiminin izlenmesini saglamaktadir. Renk degisim katmani (2) ise C02 metabolitine duyarIidir. Söz konusu renk degisim katmani (2), boya soIüsyonu, baglayici solüsyonu ve doping solüsyonu içermektedir. Bahsedilen bilesenlerin tercih edilen içerikleri ve agirlikça tercih edilen miktarlar asagida verilmektedir: Agirlikça Tercih Edilen Bilesen Miktar Boya squsyonu BromotimoI mavisi (BTB) Metil seIüIoz (MS) 2,86 (w/v) Polietilen glikol Baglayici (PEG)-4OO solusyonu Su 95,24 (v/v) - 2 M Sod um DOp'ng SO'usyonu hidroksity(NaOH) 095 MW Bulusta, %50,IIk Etil alkol, su ve Sodyum hidroksit (NaOH) hacimce toplam miktarlari %99,99,a ulasmaktadir. Kalan hacim agirlikça katilan Bromotimol mavisi (BTB), Metil selüloz (MS) ve Polietilen glikol (PEG)-4OO ile tamamlanmaktadir. Bulusta, akilli indikatör (A); en az bir adet iç katman (4) içermektedir. Iç katman (4); beyaz renkli LDPE olup, 50 um kalinligindadir. Beyaz renkli LDPE film; gaz geçirgenliginin (bozulma metaboliti olan COginin) saglanmasina ve ayrica rengin daha iyi ayirt edilebilmesi için renk degisim katmanina (2) beyaz zemin olusturmasina olanak saglamaktadir. Dis katman (1) ile iç katmani (4) lamine etmek üzere en az bir yapistirici katman (3) kullanilmaktadir. Tutkal formunda olan yapistirici katman (3); organik bilesenlerden elde edilmektedir ve yüksek kimyasal dayanimi ve polimer malzemeler ile lamine edilmeye uygun olmalidir. Bulus konusu yöntemde, ilk olarak, boya solüsyonu hazirlanmaktadir. Bunun için %50,IIk Etil alkol ve Bromotimol mavisi (BTB) kullanilmaktadir. Ardindan, baglayici solüsyonu hazirlanmaktadir. Yukarida belirtildigi gibi, bu solüsyonda, Metil selüloz (MS), Polietilen glikol (PEG)-4OO ve su bulunmaktadir. Bir sonraki islem adiminda, hazirlanan boya solüsyonu, baglayici solüsyonuna aktarilmaktadir. Elde edilen solüsyona doping solüsyonu eklenmektedir. Boya solüsyonu, baglayici solüsyonu ve doping solüsyonu karisimi akilli indikatörün dis katman (1) yüzeyine aktarilmakta ve boya katmani elde edilmektedir. Kurutma islemi sonrasi beyaz renkli LDPE film ile Iaminasyon yapilmakta ve kürleme islemi gerçeklestirilmektedir. Tercihen 4x4 cm2 boyutunda hazirlanan indikatörler gida uygulamasina hazir hale getirilmektedir. Gelistirilen renk degistirebilir indikatör dis katmanin (1) koronali yüzeyine transfer edilmektedir. PET filmin (dis katman (1)) indikatör transfer edilen yüzeyi, beyaz Polietilen film ile lamine edilmektedir. Bulusta gelistirilen akilli indikatörler sadece tavuk etinde bozulma ile olusan metabolitlerden C02*ye karsi duyarli olarak ve verilen ambalajlama kosullarinda valide edilmistir. Farkli pH boyalari ile benzer indikatör gelistirilebilir ancak indikatörün hedeflenen gidada belirlenen bozulma metabolitine karsi duyarliligi ve renk degisim mekanizmasi test edilmek zorundadir. Keza bu bulus indikatörde kullanilan boya çesidine, baslangiç pH düzeyine, boya katmaninin alt ve üst katindaki filmlerin teknik ve optik özelliklerine, test edildigi gidaya, gidanin depolama sicakligina, seçilen ambalajlama malzemeleri ve atmosferine bagli olarak degisebilecektir. Teknigin bilinen durumu uygulamalarinda, beyaz zemin kullanimi olmasina ragmen, bu beyaz zemin filtre kagidi ile saglanmaktadir. Oysa bulus konusu akilli indikatörde beyaz renk ticari bir malzeme olan LDPElnin kendi rengidir. Bulusta kullanilan bilesenlerin sagladigi islevler asagida özetlenmektedir: Etil alkol-Akilli indikatörde renk katmaninda kullanilan BTB boyasinin çözündürülmesi için kullanilmistir. BTB (bromotimol mavisi)-Indikatörde renk degisimini saglayan boya kaynagi olarak kullanilmistir. Metil selüloz (MS)-Boya solüsyonunun viskozitesini artirarak, boyanin sizmasina (migrasyonuna) engel olmak amaciyla baglayici matriks olarak kullanilmistir. Su bazli oldugu için solvent kullanimina gerek kalmadan suda çözündürülebilmektedir. PEG- katmaninin esnekligini artirmak amaciyla kullanilmistir. NaOH- Indikatör (boya) solüsyonunun baslangiç pH degerini ayarlamak amaciyla doping olarak kullanilmistir. Boya solüsyonunun baslangiç lesi yükseltilerek asidik karakterli C02 ile reaksiyona girdiginde renk degisiminin daha iyi izlenebilmesi/görülebilmesi amaciyla kullanilmistir. NaOH, indikatör solüsyonlarinin pH degerini yükselterek indikatörün baslangiç renginin daha belirgin hale gelmesini saglamistir. Bulusun tercih edilen bir uygulamasi için akilli indikatörlerin gelistirilmesi, yapisal ve islevsel özellikleri asagida açiklanmistir: 2 ml etanol içinde 30 dakika boyunca 500 rpmlde manyetik karistiricida çözündürülerek %1 (w/v) konsantrasyonunda boya solüsyonu hazirlanmistir. Baglayici solüsyonu için, 1,5 9 metil selüloz 50 ml distile suda (%3 w/v) 30 dakika boyunca 500 rpm hizinda manyetik karistiricida çözündürülerek hazirlanmistir. Yapiya elastikiyet kazandirmak için baglayici solüsyonuna ilave edilmis ve manyetik karistiricida 500 rpm hizinda karistirilmistir. BTB boyasi içeren indikatör solüsyonu hazirlamak için, metil selüloz bazli baglayici solüsyonuna boya solüsyonundan 2 ml eklenmis ve manyetik karistiricida 15 dakika boyunca karistirilarak boyanin homojen bir sekilde dagilimi saglanmistir. Indikatör solüsyonlarinin baslangiç pH degerini ayarlamak amaciyla doping olarak 2Mllik NaOHltan kullanilarak 5000 rpm'de 15 dakika süreyle homojenize edilmistir. Elde edilen indikatör solüsyonlarindan 1 ml alinarak PET film (solüsyonlarin iyice tutunmasi için korona islemi uygulanan yüzeyine) üzerinde 2 cm çapinda daireler seklinde yayilmis ve solüsyonlar gece boyunca 40"C'de etüvde (Ecocell kurutulmustur. Kuruyan filmler, boya migrasyonunu önlemek amaciyla laminasyon islemine tabi tutulmustur. Laminasyon islemi, PET yüzeyinde bulunan renk degisim katmani ve beyaz LDPE film (50 um, renk degisiminin daha iyi algilanmasini saglamak için beyaz olarak seçilmistir) arasina tutkal ve katalizör karisimi uygulanarak gerçeklestirilmistir. Lamine edilen indikatörlerin birbirine tutunmasini saglayan kürIeme islemi gerçeklestirilmistir. Bu sayede renk degisim katmanini içeren PET film ve iç katman olan LDPE film birbirine sizdirmaz bir sekilde yapistirilmistir. Tazelik indikatörleri tercihen 4x4 cm2 boyutlarinda hazirlanmistir. Tazelik indikatörü üretim akis semasi Sekil 1,de yer almaktadir. Bu metin içerisinde, indikatör boyutuna iliskin yapilan tüm açiklamalar, sadece bilgi verme amaciyla sunulmakta olup, herhangi bir kisitlayici anlam ihtiva etmemektedir. Indikatör her ne kadar bu boyutta hazirlanmis olsa da son uygulama bu boyut ile sinirli degildir. Farkli uygulamalarda, örnegin endüstriyel olarak üretim amacina uygun olarak boyutu degisebilmektedir. Gelistirilen renk degistirebilir indikatörün endüstriyel proseslerde boya haline getirilmesi sonrasi parsiyel olarak rotogravür veya flekso baski makine sistemlerinde, PET filmiin uygun yüzey gerilimine (koronali) sahip tarafina ters baski olarak transfer edilmektedir. PET filmin indikatör transfer edilen yüzeyi solventli ya da soIventsiz laminasyon makinesinde beyaz Polietilen film (HDPE, LDPE, MDPE, LLDPE) ile tutkal (tutkal solvenli ya da soIventsiz olabilir) yardimiyla lamine edilmektedir. Bulusun tercih edilen bir uygulamasinda, parametre araliklari asagida verilmektedir: Boya katmaninin PET yüzeyde kurutulmasi 40-42 °C*de gerçeklestirilebilir. Dis katman (1) olarak kullanilan seffaf polietilen tereftalat (PET) film 13-15 um kalinliginda, iç katman olarak kullanilan beyaz renkte düsük yogunluklu polietilen (LDPE) 40-50 um kalinliginda kullanilabilir. Ancak temel kriter gida bozulmasi asamasinda iç katmanin metabolit (C02) geçirgenliginin (COgTR of 17612 cms/mggünatm) renk degisimi için yeterli düzeyde olmasidir. Akilli indikatörlerin uygulandigi ambalajli tavuk etinin depolama sicakligi +4 ile +4.5 °C arasinda olmalidir. Bulus konusu akilli indikatörlerin uygulamasinda dikkat edilmesi gereken hususlar bulunmaktadir. Gelistirilen akilli indikatör tavuk etinde bozulmayi belirlemek için test edilmis olup, sadece yukarida verilen ambalajlama ve depolama kosullari için geçerlidir. Ambalaj malzemesi, atmosfer ve depolama sicakliginin degisimi gida bozulma mekanizmasini etkiler, bu nedenle akilli indikatör sadece verilen spesifik kosullarda açiklanan renk degistirme mekanizmasina sahiptir. Tavuk gögüs etinin 4°Cl de 10 gün süreyle iki farkli atmosfer altinda muhafazasinda olusan C02 orani depolama süresince artmis olup literatürde bildirilen C02 bozulma araligi degerlerinde (%10-15 C02) tazelik indikatörü hem gözle görülür hem de ölçülebilir renk degisimleri göstermistir. Depolama sirasinda BTB bazli tazelik göstergelerinde gözlenen üç asamali (parlak mavi-turkuaz- yesil) renk degisimleri, C02 metabolitinin bozulma araligi (%10-15 (v/v)), mikrobiyolojik ve duyusal sonuçlarla iliskilendirilmistir. Bu renk degisimi, tavuk etinin tazelik durumunu "taze, hala taze ama hemen tüketilmeli ve bozulmus" olmak üzere görsel olarak üç farkli sekilde tüketiciye sunma avantaji saglamaktadir. Gelistirilen kolorimetrik tazelik indikatörü sadece gidanin tazeligi hakkinda bilgi vermekle kalmayip ayni zamanda gida güvenligi, atik azaltma, izlenebilirlik ve sürdürülebilirlik gibi konular açisindan da gida ambalajlama endüstrisi için büyük bir önem tasimaktadir. Gelistirilen indikatörün depolama boyunca renk degisim süreçleri ambalajlanan gidanin baslangiç mikrobiyal yükü ile degisebilecektir. Bulus kapsaminda gerçeklestirilen çalismalarda, 0 Gida validasyonu çalismasi ile tavuk etindeki bozulma sonucu mikroorganizmalar tarafindan üretilen C02 metabolitini algilama hassasiyetine sahip kolorimetrik tazelik indikatörünün etkinligi test edilmistir. 0 Yerel bir marketten temin edilen ve pH degeri 5.9-6.5 olan taze kemiksiz tavuk gögsü örnekleri, steril sartlarda 200 g'lik porsiyonlar halinde kesildikten sonra BTB bazli kolorimetrik tazelik indikatörlerini içeren PA/PE ambalajlara (18 x 20 cm2) yerlestirilmistir. altinda MAP makinesi (Reepack, Italya) ile ambalajlanmistir. 0 Tavuk gögsü içeren tüm ambalajlar +4±0,5°C,de 10 gün boyunca depolanmis olup 0, 2, 4, 6, 8 ve 10. günlerde tepe boslugu gaz kompozisyonu (%C02 ve 02), pH, TVB-N, trimetilamin (TMA), toplam mezofilik bakteri ve Pseudomonas aeruginosa, duyusal degerlendirme ve tazelik indikatörlerinde renk analizleri gerçeklestirilmistir. 0 Her bir analiz gününde (0, 2, 4, 6, 8, 10. günlerde) tazelik indikatörlerinin renk degisimi delta E ve delta RGB ile belirlenmistir. TR TR TR DESCRIPTION DEVELOPMENT OF SMART PACKAGING CONTAINING A COLOR-CHANGING INDICATOR TO MONITOR FRESHNESS/POISONING IN REAL TIME IN PERISHABLE FOODS Technical Area The invention is related to a smart indicator that changes color for use in packaging in the food industry. State of the Art Freshness indicators, a type of smart indicator, are visual tools that work on the principle of changing color in the presence of metabolites that occur as a result of microbial spoilage or chemical changes in foods. The quality of food is determined by traditional analysis methods, which are time-consuming, expensive and destructive. The biggest advantages of freshness indicators are; The quality, freshness and safety of packaged foods can be determined non-destructively in real time with the naked eye, thanks to the "color change" (Rukchon et al., 2014; Morsy et al., 2016; Lee et al., 2019; Öksüztepe and Beyazgül, 2015). Thanks to these developed visual tools, food safety can be ensured by detecting products that spoil before their expiration date or that continue to be sold even after their expiration date. It has a great potential not only to ensure food security, but also to prevent 1.3 billion tons of food waste that goes to waste every year, according to FAO (2020) data (Racionero et al., 2017). In freshness indicator studies in the literature, many synthetic pH dyes such as bromothymol blue, methyl red, bromocresol green and bromocresol purple, as well as different plants such as curcumin, alizarin, chlorophyll, purple carrot, hibiscus (roselle) are used to observe the color change indicating spoilage of the food. extracted natural color pigments (Bhandari and Yang, 2019). Although natural dyes have features such as low toxicity, biodegradability, and wide color range, they are not sufficient for freshness indicator applications due to poor color stabilization. In this context, synthetic pH dyes provide greater opportunity for the production of indicators that are sensitive to different degradation metabolites of acidic or basic types, as they offer high color stabilization and a wide color change range (Bao et al., 2022; Shao et al., 2021). For the design of an industrially adaptable indicator, the materials to be used as the inner and outer layers are expected to be resistant to environmental factors such as humidity, temperature, light, UV and to protect the color change layer containing dye against migration. However, in some of the studies in the literature, hydrophilic filter paper was used as the inner layer and in some as the background. The layers are held together with tape aid instead of the lamination process et al., 2019; Ezati et al., 2019). Due to its structure and properties, filter paper is not resistant to any environmental conditions and is not capable of ensuring food safety and being applied to the industry. The majority of food validation studies of smart labels/indicators in the literature have been carried out in petri dishes and air atmosphere, and are far from real packaging practice. Additionally, simulation studies and food packaging applications (material and atmosphere) do not represent real packaging conditions (Chi et al., 2020; Franco, Cunha, & Bianch, 2021; Yildiz, Sumnu, & Kahyaoglu, 2021). In existing studies, the color transition is predominantly between two colors and only expresses freshness and/or spoilage. Although there are many patented TTI (Temperature Time Indicators), these are sensitive to the temperature of the environment in which the food is located, and color change only occurs due to temperature fluctuations/changes. Therefore, it only follows the cold chain and indirectly provides information about food quality and/or freshness. The freshness indicator we developed reacts with the spoilage metabolite in the packaging environment and provides direct information about the spoilage/freshness of the food. As a result, due to the negativities described above and the inadequacy of existing solutions on the subject, it has been deemed necessary to make a development in the relevant technical field. Brief Description of the Invention The present invention is related to a smart indicator that meets the above-mentioned requirements, eliminates all disadvantages and brings some additional advantages. The invention is inspired by current situations and aims to solve the above-mentioned drawbacks. The smart indicator/freshness indicator that is the subject of the invention can be used in the fields of food packaging, food safety, food quality control and smart packaging. The indicator in question will indicate in real time that the food is spoiled, with the color changing feature of the three-layer smart indicator, which is sensitive to the spoilage metabolite (C02) formed when the packaged food (chicken) spoils and contains bromothymol blue (BTB) dye. Thanks to smart packaging technology, the changes that food undergoes during transportation, storage, sale and use can be monitored by producers, sellers and consumers. It is a system that can be generally used by the food and packaging industry. In the invention, a 3-layer smart indicator has been developed; pH-sensitive BTB dye was bonded to a methyl cellulose matrix and placed between two plastic layers commonly used in the food packaging industry. The upper layer, the transparent PET film, allows the color change to be monitored, and the lower layer, the white colored LDPE film, allows gas permeability (CO, which is the degradation metabolite) and also provides a white background for the color change layer to better distinguish the color. In previous studies, the use of a white background due to the structure of the indicator was not encountered. It is aimed to use the BTB-based and three-layer smart indicator sensitive to the CO2 degradation metabolite in packaged chicken. BTB-based indicators developed with the invention were tested using real packaging conditions in simulation and food validation studies. For this purpose, commercial PA/PE packaging bags were used and tests were carried out in air and 100% N2 atmospheres. BTB-based freshness indicators provided a three-stage color transition (bright blue-turquoise-green) during the cold storage process, and the concentration at which the C02 metabolite represents the degradation range (10-15% (v/v)) was also associated with microbiological and sensory results. This color change provides the advantage of visually presenting the freshness of chicken meat to the consumer in three different ways: "fresh (blue), still fresh but should be consumed immediately (turquoise) and spoiled (green)". The freshness indicator we developed reacts with the spoilage metabolite in the packaging environment and provides direct information about the spoilage/freshness of the food. The color change develops in direct proportion to the amount of CO2, which is the degradation metabolite. The structural and characteristic features and all the advantages of the invention will be more clearly understood thanks to the figures given below and the detailed explanation written by making references to these figures, and therefore the evaluation should be made taking these figures and detailed explanation into consideration. Figures to Help Understand the Invention In order to best understand the structure and advantages of the current invention, it should be evaluated together with the figures explained below. Figure 1 shows the general view of the smart indicator. Part References A Intelligent indicator 1 Outer layer 2 Color change layer 3 Adhesive layer 4 Inner layer Detailed Description of the Invention In this detailed description, preferred embodiments of the invention are explained only for a better understanding of the subject. The invention relates to the intelligent indicator (A) to be used in packaging in the food industry. In the intelligent indicator (A) structure of the invention, there is at least one outer layer (1) in the outermost part. The outer layer in question, preferably in the form of a transparent PET film, is 13 µm thick. The transparent PET film in question allows the color change to be monitored. The color change layer (2) is sensitive to the C02 metabolite. The color change layer (2) in question contains dye solution, binder solution and doping solution. Preferred contents and preferred amounts by weight of the mentioned ingredients are given below: Preferred Component Amount by Weight Dye squeezing BromothymoI blue (BTB) Methyl cellulose (MS) 2.86 (w/v) Polyethylene glycol Binding (PEG)-4OO solution Water 95, 24 (v/v) - 2 M Sodium DOp'ng SO ion hydroxide (NaOH) 095 MW In the invention, the total amounts of 50% Ethyl alcohol, water and Sodium hydroxide (NaOH) by volume reach 99.99%. The remaining volume is completed by weight of Bromothymol blue (BTB), Methyl cellulose (MS) and Polyethylene glycol (PEG)-4OO. In the invention, smart indicator (A); It contains at least one inner layer (4). Inner layer (4); It is white colored LDPE and 50 um thick. White color LDPE film; It allows gas permeability (COg, which is the degradation metabolite) to be ensured and also to create a white background for the color change layer (2) for better color discrimination. At least one adhesive layer (3) is used to laminate the outer layer (1) and the inner layer (4). Adhesive layer (3) in glue form; It is obtained from organic components and must have high chemical resistance and be suitable for lamination with polymer materials. In the method of the invention, firstly, the dye solution is prepared. For this purpose, 50% Ethyl alcohol and Bromothymol blue (BTB) are used. Then, the binder solution is prepared. As mentioned above, this solution contains Methyl cellulose (MS), Polyethylene glycol (PEG)-4OO and water. In the next process step, the prepared dye solution is transferred to the binder solution. Doping solution is added to the resulting solution. The mixture of dye solution, binder solution and doping solution is transferred to the outer layer (1) surface of the smart indicator and the dye layer is obtained. After the drying process, lamination is done with white LDPE film and the curing process is carried out. Indicators, preferably prepared in 4x4 cm2 size, are made ready for food application. The developed color changeable indicator is transferred to the coronal surface of the outer layer (1). The indicator transferred surface of the PET film (outer layer (1)) is laminated with white Polyethylene film. The smart indicators developed in the invention were validated as sensitive only to C02, one of the metabolites formed by spoilage in chicken meat, and under the given packaging conditions. A similar indicator can be developed with different pH dyes, but the sensitivity of the indicator to the spoilage metabolite determined in the targeted food and the color change mechanism must be tested. Likewise, this invention may vary depending on the type of dye used in the indicator, the initial pH level, the technical and optical properties of the films on the lower and upper layers of the dye layer, the food it is tested on, the storage temperature of the food, the selected packaging materials and atmosphere. Although a white background is used in state-of-the-art applications, this white background is provided with filter paper. However, in the smart indicator that is the subject of the invention, the white color is the color of LDPEl, which is a commercial material. The functions provided by the components used in the invention are summarized below: Ethyl alcohol-It was used to dissolve the BTB dye used in the color layer of the smart indicator. BTB (bromothymol blue) was used as the dye source that provides the color change in the indicator. Methyl cellulose (MS) was used as a binding matrix to prevent the leakage (migration) of the dye by increasing the viscosity of the dye solution. Since it is water-based, it can be dissolved in water without the need to use solvents. It was used to increase the flexibility of the PEG- layer. NaOH- It was used as doping to adjust the initial pH value of the indicator (dye) solution. The initial content of the dye solution was increased and used to better monitor/visualize the color change when it reacted with acidic CO2. NaOH increased the pH value of the indicator solutions, making the initial color of the indicator more prominent. The development of smart indicators and their structural and functional properties for a preferred application of the invention are explained below: Dye solution was prepared at 1% (w/v) concentration by dissolving it in 2 ml of ethanol on a magnetic stirrer at 500 rpm for 30 minutes. For the binder solution, 1.5 9 methyl cellulose was prepared by dissolving it in 50 ml of distilled water (3% w/v) on a magnetic stirrer at 500 rpm for 30 minutes. In order to give elasticity to the structure, it was added to the binder solution and mixed at 500 rpm in a magnetic stirrer. To prepare the indicator solution containing BTB dye, 2 ml of the dye solution was added to the methyl cellulose-based binder solution and mixed for 15 minutes on a magnetic stirrer to ensure a homogeneous distribution of the dye. In order to adjust the initial pH value of the indicator solutions, 2 ml NaOHltan was used as doping and homogenized at 5000 rpm for 15 minutes. 1 ml of the obtained indicator solutions was taken and spread in 2 cm diameter circles on the PET film (on the surface of which corona treatment was applied to ensure that the solutions adhere well) and the solutions were dried in an oven (Ecocell) at 40 °C overnight. The dried films were subjected to the lamination process in order to prevent dye migration. The lamination process was carried out by applying a mixture of glue and catalyst between the color change layer on the PET surface and the white LDPE film (50 um was chosen as white to ensure better perception of the color change). In this way, the curing process was carried out, which ensured that the laminated indicators adhered to each other. The PET film containing the color change layer and the LDPE film, which is the inner layer, are sealed to each other. Freshness indicators are preferably prepared in 4x4 cm2 dimensions. The freshness indicator production flow chart is shown in Figure 1. All explanations regarding the indicator size in this text are only available. It is presented for informational purposes only and does not contain any restrictive meaning. Although the indicator is prepared in this size, the final application is not limited to this size. Its size may change in different applications, for example, in accordance with the industrial production purpose. After the developed color changeable indicator is turned into dye in industrial processes, it is partially transferred to the side of the PET film with appropriate surface tension (corona) as reverse printing in rotogravure or flexo printing machine systems. The indicator transferred surface of the PET film is laminated with white Polyethylene film (HDPE, LDPE, MDPE, LLDPE) with the help of glue (the glue can be with or without solvent) in a laminating machine with or without solvent. In a preferred embodiment of the invention, the parameter ranges are given below: Drying of the paint layer on the PET surface can be carried out at 40-42 °C. The transparent polyethylene terephthalate (PET) film used as the outer layer (1) can be used with a thickness of 13-15 um, and the white low-density polyethylene (LDPE) used as the inner layer can be used with a thickness of 40-50 um. However, the main criterion is that the metabolite (CO2) permeability (COgTR of 17612 cms/mgsunatm) of the inner layer at the stage of food spoilage is sufficient for color change. The storage temperature of packaged chicken meat to which smart indicators are applied should be between +4 and +4.5 °C. There are some points that need to be taken into consideration in the application of the smart indicators that are the subject of the invention. The developed smart indicator has been tested to determine spoilage in chicken meat and is only valid for the packaging and storage conditions given above. The change of packaging material, atmosphere and storage temperature affect the food spoilage mechanism, so the smart indicator only has the color changing mechanism described under the given specific conditions. The C02 rate formed when chicken breast meat was stored under two different atmospheres at 4°C for 10 days increased during storage, and the freshness indicator showed both visible and measurable color changes at the C02 degradation range values (10-15% C02) reported in the literature. The three-stage (bright blue-turquoise-green) color changes observed in BTB-based freshness indicators during storage were associated with the degradation range of the C02 metabolite (10-15% (v/v)), microbiological and sensory consequences. This color change provides the advantage of visually presenting the freshness of chicken meat to the consumer in three different ways: "fresh, still fresh but should be consumed immediately and spoiled". The developed colorimetric freshness indicator not only provides information about the freshness of the food, but also has great importance for the food packaging industry in terms of issues such as food safety, waste reduction, traceability and sustainability. The color change processes of the developed indicator during storage may vary with the initial microbial load of the packaged food. In the studies carried out within the scope of the invention, the effectiveness of the colorimetric freshness indicator, which has the sensitivity to detect the C02 metabolite produced by microorganisms as a result of spoilage in chicken meat, was tested in a food validation study. 0 Fresh boneless chicken breast samples, obtained from a local market and with a pH value of 5.9-6.5, were cut into 200 g portions under sterile conditions and then placed in PA/PE packages (18 x 20 cm2) containing BTB-based colorimetric freshness indicators. It is packaged with a MAP machine (Reepack, Italy) underneath. 0 All packages containing chicken breast were stored at +4±0.5°C for 10 days, and on days 0, 2, 4, 6, 8 and 10, headspace gas composition (%C02 and 02), pH, TVB-N Color analyzes were carried out on sensory evaluation and freshness indicators, trimethylamine (TMA), total mesophilic bacteria and Pseudomonas aeruginosa. 0 The color change of freshness indicators on each analysis day (days 0, 2, 4, 6, 8, 10) was determined by delta E and delta RGB.TR TR TR

Claims (1)

1.STEMLER . Gida sektöründe, ambalajlarda kullanilmak üzere, akilli indikatör (A) olup, özelligi; o dis kisimda, renk degisiminin izlenmesini saglamak üzere, seffaf formda en az bir dis o boya solüsyonu, baglayici solüsyon ve doping solüsyonu içeren ve C02 metabolitine duyarli en az bir renk degisim katmani (2), o gaz geçirgenliginin saglanmasi ve renk degisiminin algilanmasi amacina uygun olarak beyaz renkli olan en az bir iç katman (4), o dis katman (1) ile iç katmani (4) lamine etmek üzere en az bir yapistirici katman (3) içermesidir. Istem 1,e uygun bir akilli indikatör (A) olup, özelligi; söz konusu dis katmanin (1), seffaf PET film formunda olmasidir. Istem 1,e uygun bir akilli indikatör (A) olup, özelligi; söz konusu dis katmanin (1), 13 um kalinliginda olmasidir. Istem 1,e uygun bir akilli indikatör (A) olup, özelligi; söz konusu iç katmanin (4); beyaz renkli LDPE olmasidir. Istem 1,e uygun bir akilli indikatör (A) olup, özelligi; söz konusu iç katmanin (4); 50 um kalinliginda olmasidir. Istem 1,e uygun bir akilli indikatör (A) olup, özelligi; boya solüsyonunun o/<›50,lik Etil alkol ve Bromotimol mavisi (BTB) içermesidir. Istem 1,e uygun bir akilli indikatör (A) olup, özelligi; baglayici solüsyonun Metil selüloz (MS), Polietilen inkoI (PEG)-400 ve su içermesidir. Istem 1,e uygun bir akilli indikatör (A) olup, özelligi; doping solüsyonunun Sodyum hidroksit (NaOH) içermesidir. TR TR TR1.STEMS. It is a smart indicator (A) to be used in packaging in the food industry, and its features are; o at least one external color change layer (2) in transparent form, containing dye solution, binding solution and doping solution and sensitive to CO2 metabolite, to enable monitoring of color change on the outer part, o suitable for the purpose of ensuring gas permeability and detecting color change It contains at least one inner layer (4), which is white in color, and at least one adhesive layer (3) to laminate the outer layer (1) and the inner layer (4). It is a smart indicator (A) in accordance with claim 1, and its feature is; The outer layer (1) in question is in the form of a transparent PET film. It is a smart indicator (A) in accordance with claim 1, and its feature is; The outer layer (1) in question is 13 um thick. It is a smart indicator (A) in accordance with claim 1, and its feature is; said inner layer (4); It is white colored LDPE. It is a smart indicator (A) in accordance with claim 1, and its feature is; said inner layer (4); It is 50 um thick. It is a smart indicator (A) in accordance with claim 1, and its feature is; The dye solution contains 0/<›50% Ethyl alcohol and Bromothymol blue (BTB). It is a smart indicator (A) in accordance with claim 1, and its feature is; The binding solution contains Methyl cellulose (MS), Polyethylene incoI (PEG)-400 and water. It is a smart indicator (A) in accordance with claim 1, and its feature is; The doping solution contains Sodium hydroxide (NaOH). TR TR TR
TR2023/016104 2023-11-29 DEVELOPMENT OF SMART PACKAGING INCLUDING A COLOR-CHANGING INDICATOR TO MONITOR FRESHNESS/POISONATION OF PERISHABLE FOODS IN REAL TIME TR2023016104A2 (en)

Publications (1)

Publication Number Publication Date
TR2023016104A2 true TR2023016104A2 (en) 2024-01-22

Family

ID=

Similar Documents

Publication Publication Date Title
Lee et al. A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet and RGB color analysis
US20060057022A1 (en) Food quality indicator
Lee et al. Colorimetric array freshness indicator and digital color processing for monitoring the freshness of packaged chicken breast
Zhang et al. Colorimetric array indicator for NH3 and CO2 detection
Banerjee et al. High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors
Puligundla et al. Carbon dioxide sensors for intelligent food packaging applications
KR100743536B1 (en) Ink composition for sensing carbon dioxide gas, and carbon dioxide indicator using the same, and package provided with the carbon dioxide indicator
EP2047268A1 (en) Indicator system for determining analyte concentration
US10338048B2 (en) Food freshness indicator ink and method for the manufacture of a food freshness indicator ink
CN104568933A (en) Detection method for freshness of chilled fresh meat
Karaca et al. Development of real time-pH sensitive intelligent indicators for monitoring chicken breast freshness/spoilage using real packaging practices
Kelly et al. Extruded phosphorescence based oxygen sensors for large-scale packaging applications
JP2005054048A (en) Ink composition for detecting carbon dioxide, carbon dioxide indicator using the same, and package disposed with the carbon dioxide indicator
US20080070307A1 (en) Temperature History Indicator
US20220243085A1 (en) Ph-sensitive indicator label using ph-sensitive color-changing ink composition, and packaging material
TR2023016104A2 (en) DEVELOPMENT OF SMART PACKAGING INCLUDING A COLOR-CHANGING INDICATOR TO MONITOR FRESHNESS/POISONATION OF PERISHABLE FOODS IN REAL TIME
US10569514B2 (en) Packaging foil comprising a luminescent compound
EP4121757A1 (en) Indicator film
KR20200135222A (en) pH response color change Label using the pH response color change ink composition and pH response color change Packaging material using the pH response color change ink composition
Wen et al. Development, Characterization and Application of a three-layer intelligent ph-sensing indicator based on Bromocresol Green (BCG) for monitoring fish freshness
JP7444476B2 (en) Colorimetric sensor agent and its use
US20220081582A1 (en) Ph-sensitive variable-color ink composition, and ph-sensitive indicator label and packaging material using same
CN112659693B (en) Color sensor for indicating milk deterioration and preparation method thereof
Kelly Novel luminescent oxygen sensor systems for smart food packaging
US20230043581A1 (en) Method for manufacturing food indicator