TR2023013177U5 - INNOVATION IN MOLTEN COPPER TRANSITION ROD USED IN COPPER UP-CASTING COOLING SYSTEM - Google Patents

INNOVATION IN MOLTEN COPPER TRANSITION ROD USED IN COPPER UP-CASTING COOLING SYSTEM

Info

Publication number
TR2023013177U5
TR2023013177U5 TR2023/013177 TR2023013177U5 TR 2023013177 U5 TR2023013177 U5 TR 2023013177U5 TR 2023/013177 TR2023/013177 TR 2023/013177 TR 2023013177 U5 TR2023013177 U5 TR 2023013177U5
Authority
TR
Turkey
Prior art keywords
copper
molten
graphite
molten copper
transition rod
Prior art date
Application number
TR2023/013177
Other languages
Turkish (tr)
Inventor
Argun Fulya
Golcu Mustafa
Original Assignee
Proton Otomasyon Elektri̇k Maki̇na İnşaat Taahhüt Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇
Filing date
Publication date
Application filed by Proton Otomasyon Elektri̇k Maki̇na İnşaat Taahhüt Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ filed Critical Proton Otomasyon Elektri̇k Maki̇na İnşaat Taahhüt Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇
Publication of TR2023013177U5 publication Critical patent/TR2023013177U5/en

Links

Abstract

Buluş konusu ürün, sürekli yukarı bakır döküm sisteminde, oksijensiz bakır filmaşin üretimi için gerekli olan çekme sistemindeki bakır soğutma boruları ve bakır soğutucu kafada (5) kullanılan (düz ve konik şeklindeki boru) eriyik bakır geçiş çubuğunun (4) grafit yerine seramik veya silisyum karbür (SiC) olması hakkındadır.The product of the invention is made of ceramic or silicon carbide instead of graphite in the molten copper transition rod (4) used in the copper cooling head (5) and copper cooling pipes in the drawing system required for the production of oxygen-free copper wire rod in the continuous upward copper casting system. It is about being (SiC).

Description

TARIFNAME BAKIR YUKARI DÖKÜM SOGUTMA SISTEMINDE KULLANILAN ERIYIK BAKIR GEÇIS ÇUBUGUNDA YENILIK Bulus konusu ürün, sürekli yukari bakir döküm sisteminde, oksijensiz bakir filmasin üretimi için gerekli olan çekme sistemindeki bakir sogutma borulari ve bakir sogutucu kafada kullanilan (düz ve konik seklindeki boru) eriyik bakir geçis çubugunun grafit yerine seramik veya silisyum karbür (SiC) olmasi hakkindadir. OksijensiZ bakir filmasin üretimi için sürekli yukari bakir döküm sisteminin ana bilesenleri; kanalli indüksiyon firini, çekme sistemi ve toplayicidir. Kanalli indüksiyon firini; isiya dayanikli refrakter tuglalarla örülmüs bir firin ve bu firinin alt kismina bagli indüktörden meydana gelmektedir. Indüktör ise; bakir template, bakirdan sarilmis bobin ve silisli sac ihtiva eden nüveden olusmaktadir. Çekme sistemi, sogutucu borular, motor, redüktör ve servo motorun bulundugu bir sistemdir. Toplayici ise, bu sistem vasitasi ile üretilen bakir filmasinlerin sanldigi sistemdir. indüksiyon firinlannda ergitilmektedir. Kanalli indüksiyon firininda ergitilen 1160-1180 0C sicakligina sahip eriyik bakir, baslangiçta metolastatik basinçla ve sonrasinda çekme sisteminde bulunan servo motor sayesinde yukari dogru çekilip sogutucu borularin içinden soguyarak elde edilen filmasin, toplayiciya sarilir. Yüksek isi iletkenligine sahip olmasindan dolayi sogutucu malzemesi olarak bakir kullanilmaktadir. Sogutucu boru içinden geçen eriyik bakir, akiskanla temas etmemektedir. Sogutucu boru bir tür isi degistiricisidir. Iç içe geçmis bakir borulardan olusmaktadir. Sogutucu bakir boru giris ve çikis sicaklik farki 5-10 0C arasinda degismektedir. Baslangiçta metalostatik basinç sonrasinda da servo motor araciligi ile yukari dogru çekilen eriyik bakir, sogutucu çikisinda 50-80 0C ye soguyarak filmasin seklinde çikar ve toplayiciya sarilir. Sürekli yukari bakir döküm sisteminden elde edilen oksijensiz bakir filmasin çapi 0 8- 0 25 mm araliginda degisim göstermektedir. Mevcut sistemlerde en içteki bakir borunun içine içi bos boru seklindeki grafit yerlestirilmektedir. Grafit kullanilmadigi takdirde yukari dogru katilasarak hareket eden eriyik bakir, en içteki bakir borunun iç yüzeyine temas ettiginden dolayi üretilen filmasinin yüzey kalitesi bozulmaktadir. Bu sikintiyi gidermek için mevcut sistemlerde düz boru seklinde grafit kullanilmaktadir. Grafit, yumusak malzeme olmasi nedeni ile zamanla asinmaktadir. Asinan grafit de filmasinin yüzey kalitesini bozmaktadir. Bu yüzden bu grafitin 2-3 ayda bir degistirilmesi gerekmektedir. Mevcut sistemlerde bakir sogutucu borunun içine geçtigi ve alt tarafinda yine bakirdan yapilmis sogutucu kafa bulunmaktadir. Bu sogutucu kafa 1160-1185 0C deki eriyik bakirla temas etmektedir. Bu durumda bakir sogutucu kafa erimektedir. Bunu önlemek için bakir sogutucu kafa önce seramik kaseye, seramik kase de seramik potaya geçirilmistir. Bu sekilde sogutucu kafa muhafaza altina alinarak erimesi önlenmistir. Eriyik bakiri sogutarak (kati halde) yukari dogru çekmek için sogutucu kafaya monte edilen 125-135 mm uzunlugundaki içi bos konik grafitin 20-40 mm,lik kismi eriyik bakirla temas etmektedir. Sürekli eriyik bakirla temas ettiginden ve sogumanin ilk basladigi yer oldugundan konik grafit çok kisa sürede asinmaktadir. Bu durum filmasinin yüzey kalitesini bozmaktadir. Bu yüzden konik grafitin 3-5 günde bir degistirilmesi gerekmektedir. Mevcut sistemlerde konik grafitin çok kisa bir sürede degismesi gerektiginden dolayi üretim durmaktadir. Konik grafitin degisimi ve sogutucunun devreye alinmasi 20-30 dakika sürmektedir. Bu süre, üretim hizinin düsmesine neden olup 24 sogutuculu bir kanalli indüksiyon firininda 5-6 ton/ay üretim kaybi olmaktadir. maliyeti olusturmaktadir. Iç bakir borunun uzunlugu boyunca tüm grafitlerin degismesi gerektiginden 1200-1300 Euro da ek düz grafit maliyeti olusmaktadir. Sogutucu borularda kullanilan grafit (eriyik bakir geçis çubugu), her ne kadar isi iletim katsayisi yüksek olsa da asinmaya karsi dayanikli bir malzeme degildir. Bu yüzden asinmaya basladiginda degistirilmesi gerekmektedir. Bu bulusun temel amaci, sogutucu bakir borularda düz boru grafit, sogutucu kafada ise konik boru grafit yerine asinmaya karsi dayanikli silisyum karbür (SiC) veya seramik malzeme kullanarak sik sik eriyik bakir geçis çubugunun degistirilmesinin önüne geçmek, üretim maliyetini düsürmek ve üretim hizinin da düsmesine engel olmaktir. Diger bir amaç ise asinma nedeni ile kalitesiz bir yüzeye sahip filmasin yerine kaliteli yüzey kalitesine sahip filmasin elde edilmesidir. Bulusun amacina ulasabilmesi için yapilan sistem ekteki sekillere atif yapilarak, asagida açiklanmistir. Bu sekiller; Sekil 1- Bakir yukari döküm sogutma sistemi sagdan görünümü Sekil 2- Bakir yukari döküm sogutma sistemi sagdan A-A kesit görünümü Sekil 3- Eriyik bakir geçis çubugu sagdan görünümü Sekil 4- Eriyik bakir geçis çubugu sagdan B-B kesit görünümü Sekildeki parçalar tek tek numaralandirilmis olup bu numaralarin karsiligi olan parçalar asagida açiklanmistir: 1- Sari pirinç malzeme 2- Orta bakir boru 3- Iç bakir boru 4- Eriyik bakir geçis çubugu - Bakir sogutucu kafa 6- Dis bakir boru 7- Seramik kase 8- Seramik pota 9- O-ring Bulus konusu, sürekli yukari bakir döküm sisteminde oksijensiz bakir filmasin üretimi için gerekli olan çekme sistemindeki bakir sogutma borulari ve bakir sogutucu kafada (5) kullanilan (düz boru ve konik seklindeki) eriyik bakir geçis çubugunun grafit yerine seramik veya silisyum karbür (SiC) kullanilmasi ile ilgilidir. Sari pirinç malzeme (1) iki su kanalina sahiptir. Birinden soguk su girisi, digerinden ise sicak su çikisi olmaktadir. Soguk su orta bakir borunun (2) içerisine girer ve içi seramik dolu iç bakir boruyu (3) sogutur. Eriyik bakir geçis çubugunun (4) içinden geçen eriyik bakir sogur ve soguk su isinir. Eriyik bakir geçis çubugunda (4) malzeme olarak seramik veya silisyum karbür kullanilmaktadir. Eriyik bakir geçis çubugunun (4) seramik veya silisyum karbür maddesinden imal edilerek kullanilmasinin amaci; sik sik degistirilmesinin önüne geçmek, üretim maliyetini düsürmek ve üretim hizinin da düsmesine engel olmaktir. Diger bir amaç ise asinma nedeni ile kalitesiz bir yüzeye sahip filmasin yerine kaliteli yüzey kalitesine sahip filmasin elde edilmesidir. Isinan suyun tahliyesi, bakir sogutucu kafanin (5) boslugundan dis bakir boruya (6) geçisi ile olur ve daha sonra pirinç malzemenin su tahliye kanalindan çikisi saglanir, islem bu sekilde tekrarlanir. Bakir sogutucu kafanin (5) üzerine seramik kase (7) siki bir sekilde geçirilir. Seramik kase (7) üzerine ise seramik pota (8) geçirilir. Bu islem eriyik halde olan bakir firinin içerisine giren alt sogutma bakir borunun zarar görmemesi için yapilan bir islemdir. O-ringler (9) ise sizdirmazlik elemanlaridir. Sistemden gelen suyun kaçak yapmasini engellemektedir. TR DESCRIPTION INNOVATION IN THE MOLTEN COPPER TRANSITION ROD USED IN THE COPPER UP CASTING COOLING SYSTEM The product of the invention is the copper cooling pipes in the drawing system required for the production of oxygen-free copper filament in the continuous up copper casting system and the molten copper transition rod (straight and conical shaped pipe) used in the copper cooling head. It is about having ceramic or silicon carbide (SiC) instead of graphite. The main components of the continuous upward copper casting system for the production of oxygen-free copper filament; channel induction furnace, drawing system and collector. Channeled induction furnace; It consists of a furnace built with heat-resistant refractory bricks and an inductor connected to the bottom of this furnace. If the inductor; It consists of a copper template, a coil wrapped in copper and a core containing silicone sheet metal. It is a system that includes the traction system, coolant pipes, motor, reducer and servo motor. The collector is the system in which the copper wire rods produced through this system are wrapped. It is melted in induction furnaces. Molten copper with a temperature of 1160-1180 0C, melted in the channel induction furnace, is initially pulled upwards by metolastatic pressure and then thanks to the servo motor in the drawing system, and the wire rod obtained by cooling through the cooling pipes is wound on the collector. Copper is used as a heatsink material due to its high thermal conductivity. The molten copper passing through the refrigerant pipe does not come into contact with the fluid. The refrigerant pipe is a type of heat exchanger. It consists of intertwined copper pipes. The temperature difference between the refrigerant copper pipe inlet and outlet varies between 5-10 0C. The molten copper, which is initially pulled upwards by the servo motor after the metallostatic pressure, cools to 50-80 0C at the cooler outlet and comes out in the form of wire rod and is wound on the collector. The diameter of the oxygen-free copper wire obtained from the continuous upward copper casting system varies between 0 8 - 0 25 mm. In current systems, graphite in the form of a hollow pipe is placed inside the innermost copper pipe. If graphite is not used, the surface quality of the film produced deteriorates because the molten copper, which solidifies and moves upwards, comes into contact with the inner surface of the innermost copper tube. To eliminate this problem, graphite in the form of straight pipes is used in existing systems. Graphite wears out over time because it is a soft material. Corroded graphite also deteriorates the surface quality of the film. Therefore, this graphite needs to be changed every 2-3 months. In existing systems, there is a cooling head made of copper at the bottom, into which the copper cooler pipe passes. This cooling head comes into contact with molten copper at 1160-1185 0C. In this case, the copper heatsink head melts. To prevent this, the copper cooling head was first transferred to the ceramic bowl, and the ceramic bowl was transferred to the ceramic crucible. In this way, the cooling head is protected and prevented from melting. In order to cool the molten copper (solid state) and draw it upwards, 20-40 mm of the 125-135 mm long hollow conical graphite mounted on the cooling head comes into contact with the molten copper. Tapered graphite wears out in a very short time because it constantly comes into contact with molten copper and is where cooling first begins. This situation deteriorates the surface quality of the film. Therefore, conical graphite needs to be changed every 3-5 days. In current systems, production stops because the conical graphite must be changed in a very short time. It takes 20-30 minutes to replace the conical graphite and put the cooler into operation. This period causes the production rate to decrease, resulting in a production loss of 5-6 tons/month in a channel induction furnace with 24 coolers. constitutes the cost. Since all graphite along the length of the inner copper pipe must be replaced, an additional plain graphite cost of 1200-1300 Euros occurs. Although the graphite (molten copper transition rod) used in cooler pipes has a high heat conduction coefficient, it is not a material resistant to abrasion. Therefore, it needs to be replaced when it starts to wear out. The main purpose of this invention is to prevent the frequent replacement of the molten copper transition rod by using wear-resistant silicon carbide (SiC) or ceramic material instead of straight pipe graphite in the cooler copper pipes and tapered pipe graphite in the cooler head, to reduce the production cost and prevent the production speed from decreasing. is to be. Another aim is to obtain wire rod with a high quality surface quality instead of wire rod with a poor quality surface due to wear. The system designed to achieve the purpose of the invention is explained below, with reference to the attached figures. These shapes; Figure 1- Copper up-casting cooling system view from the right. Figure 2- Copper up-cast cooling system, A-A sectional view from the right. Figure 3- Molten copper transition bar, right-side view. Figure 4- Molten copper transition bar, B-B sectional view from the right. The parts in the figure are numbered one by one and these numbers indicate The corresponding parts are explained below: 1- Yellow brass material 2- Middle copper pipe 3- Inner copper pipe 4- Molten copper transition rod - Copper cooler head 6- Outer copper pipe 7- Ceramic bowl 8- Ceramic crucible 9- O-ring Invention The subject is about the copper cooling pipes in the drawing system required for the production of oxygen-free copper filament in the continuous upward copper casting system and the use of ceramic or silicon carbide (SiC) instead of graphite in the molten copper transition rod (in the form of a straight pipe and cone) used in the copper cooling head (5). . The yellow brass material (1) has two water channels. There is cold water inlet from one and hot water outlet from the other. Cold water enters the middle copper pipe (2) and cools the ceramic-filled inner copper pipe (3). The molten copper passing through the molten copper transition rod (4) absorbs and the cold water heats up. Ceramic or silicon carbide is used as the material in the molten copper transition bar (4). The purpose of using the molten copper transition rod (4) by manufacturing it from ceramic or silicon carbide; To prevent frequent changes, to reduce production costs and to prevent the production speed from decreasing. Another aim is to obtain wire rod with a high quality surface quality instead of wire rod with a poor quality surface due to wear. The heated water is discharged by passing from the cavity of the copper cooling head (5) to the outer copper pipe (6), and then the brass material is discharged from the water discharge channel, and the process is repeated in this way. The ceramic bowl (7) is placed tightly on the copper cooling head (5). The ceramic crucible (8) is placed over the ceramic bowl (7). This process is carried out to prevent damage to the subcooling copper pipe entering the molten copper furnace. O-rings (9) are sealing elements. It prevents the water coming from the system from leaking. TR

TR2023/013177 2023-10-17 INNOVATION IN MOLTEN COPPER TRANSITION ROD USED IN COPPER UP-CASTING COOLING SYSTEM TR2023013177U5 (en)

Publications (1)

Publication Number Publication Date
TR2023013177U5 true TR2023013177U5 (en) 2024-01-22

Family

ID=

Similar Documents

Publication Publication Date Title
EP1836015B1 (en) Launder for casting molten melts
JP5564150B2 (en) Cold crucible induction melting furnace integrated with induction coil and melting furnace
FI107789B (en) Casting mold for producing a cooling element and forming cooling element in the mold
BRPI0619050A2 (en) COOLING ELEMENT AND MANUFACTURING METHOD
CN100457923C (en) Low thermal resistance cast-iron cooling wall and manufacturing method thereof
TR2023013177U5 (en) INNOVATION IN MOLTEN COPPER TRANSITION ROD USED IN COPPER UP-CASTING COOLING SYSTEM
JP3265148B2 (en) Blast furnace water-cooled slag gutter
KR20120017439A (en) Method for producing a cooling element for pyrometallurgical reactor and the cooling element
RU2487946C2 (en) Method of making cooling element for pyrometallurgical reactor and cooling element
CN102109278A (en) Method for manufacturing cooling water jacket and cooling water jacket for high temperature furnace
US6928869B2 (en) Stick for measuring the level of a molten metal bath
KR101229273B1 (en) Cooling plate of a blast furnace having excellent thermal conductivity and high-abrasion resistance, and method for manufacturing the same
CN101633036A (en) Bimetal continuous casting crystallization device and bimetal continuous casting crystallization method
CN102656415A (en) Electrode for direct current continuous arc furnace
PL196439B1 (en) Method of making combined cooling element for metallurgical reactor melting zone, and combined cooling element made thereby
KR101481610B1 (en) Cooling apparatus for furnace and method for changing flow passages thereby
KR101117262B1 (en) Lance head having excellent thermal conductivity and high-abrasion resistance and method for manufacturing the same
CN202254858U (en) Water-cooling water jackets
JP2020098088A (en) Cooling structure of tapping port section of melting furnace and manufacturing method of metallic plate block used therefor
KR101109655B1 (en) Stave cooler of a blast furnace having excellent thermal conductivity and high-abrasion resistance, and method for manufacturing the same
CA2538618C (en) Industrial furnace and associated jet element
CN200995265Y (en) Controlling system in continuous casting solid-liquid interval space
CN215365829U (en) Novel cooling wall for furnace belly and furnace waist part of blast furnace
CN218380484U (en) Smelting furnace slag hole water jacket chute
WO2002081757A1 (en) Cooling plate for a metallurgical furnace and method for manufacturing such a cooling plate