TR2023008388A2 - METHOD OF OBTAINING EAR TISSUE MATERIAL WITH THE HELP OF MELTING ELECTROPRINTER FOR THE PROBLEM OF EAR DEVELOPMENT DELAY AND DEFORMITY. - Google Patents

METHOD OF OBTAINING EAR TISSUE MATERIAL WITH THE HELP OF MELTING ELECTROPRINTER FOR THE PROBLEM OF EAR DEVELOPMENT DELAY AND DEFORMITY.

Info

Publication number
TR2023008388A2
TR2023008388A2 TR2023/008388 TR2023008388A2 TR 2023008388 A2 TR2023008388 A2 TR 2023008388A2 TR 2023/008388 TR2023/008388 TR 2023/008388 TR 2023008388 A2 TR2023008388 A2 TR 2023008388A2
Authority
TR
Turkey
Prior art keywords
ear
tissue
electroprinter
help
melting
Prior art date
Application number
TR2023/008388
Other languages
Turkish (tr)
Inventor
Bulu Erdi̇
Sakarya Bulu Gulseren
İm Muge Ahi̇n Ye
Original Assignee
Tc İstanbul Arel Üni̇versi̇tesi̇
Filing date
Publication date
Application filed by Tc İstanbul Arel Üni̇versi̇tesi̇ filed Critical Tc İstanbul Arel Üni̇versi̇tesi̇
Publication of TR2023008388A2 publication Critical patent/TR2023008388A2/en

Links

Abstract

Buluş, biyouyumlu kulak üretimi sağlayan, erime elektroyazıcı yardımıyla kulak doku materyali eldesi yapılan, insan vücudunun yapısına göre kişiye özel üretim sağlayan, uygun maliyetli ve kolay üretim olanağı sunan, doğal kaynaklardan üretilen kulak gelişme geriliği ve şekil bozukluğu problemi için erime elektroyazıcı yardımıyla kulak doku materyali elde etme yöntemi ile ilgilidir.The invention provides biocompatible ear production, ear tissue material is obtained with the help of a melting electroprinter, provides personalized production according to the structure of the human body, offers cost-effective and easy production, is produced from natural resources, ear tissue material is produced with the help of a melting electroprinter for the problem of ear development retardation and deformity. It's about the method of obtaining it.

Description

TARIFNAME KULAK GELISME GERILIGI VE SEKIL BOZUKLUGU PROBLEMI IçIN ERIME ELEKTROYAZICI YARDIMIYLA KULAK DOKU MATERYALI ELDE ETME YÖNTEMI Teknik Alan Bulus, kulak gelisme geriligi ve sekil bozuklugu problemi yasayan kisilere yönelik erime elektroyazici yardimiyla kulak doku materyali eldesi gerçeklestirilen kulak gelisme geriligi ve sekil bozuklugu problemi için erime elektroyazici yardimiyla kulak doku materyali elde etme yöntemi ile ilgilidir. Bulusun Altyapisi Kulak gelisimi sorunlari: genetik faktörler, bazi ilaçlara veya maddelere dogum öncesi maruz kalma, hamilelik sirasinda enfeksiyonlar veya diger faktörler nedeniyle kulak gelisimi sorunlari olusabilir. Bu sorunlar, hatali biçimlendirilmis kulaklar, isitme kaybi veya yapisal anormallikler gibi çesitli durumlarla sonuçlanabilir. Uygun bir degerlendirme ve rehberlik için kulak burun bogaz uzmani veya çocuk doktoru gibi bir tip uzmanina danismak çok önemlidir. Kulak bozukluklari: Bazi bireyler, sekilsiz kulaklar, belirli kulak yapilarinin yoklugu veya asimetri gibi kulak bozukluklari veya anormallikleri ile dogabilirler. Bu fiziksel farkliliklarin siddeti degisebilir ve bir kisinin kendi imajini ve güvenini etkileyebilir. Kulak gelisimi sorunlari bazen isitme bozukluguna veya tam isitme kaybina yol açabilir. Bu, bir kisinin iletisim kurma, konusmayi anlama ve çevresiyle iliski kurma yetenegini etkileyebilir. Isitme kaybinin egitim, istihdam ve sosyal etkilesimler üzerinde etkisi olabilir. Kulak gelisimi sorununun ciddiyetine ve buna bagli isitme kaybina bagli olarak, bireyler konusma ve dil gelisiminde zorluklarla karsilasabilirler. Bu, etkili iletisim kurma, baskalariyla etkilesim kurma ve günlük etkinliklere katilma becerilerini etkileyebilir. Kulak gelisimi sorunlarini gidermek için çesitli tibbi müdahaleler mevcut olabilir. Bunlar, kulak kusurlarini yeniden yapilandirmak veya düzeltmek için cerrahi prosedürleri, isitmeyi iyilestirmek için isitme cihazlarini veya koklear implantlari ve iletisim ve dil gelisimini desteklemek için terapileri içerebilir. Kulak gelisimi sorunlari olan bireyler, düsük benlik saygisi, sosyal izolasyon veya kaygi gibi psikolojik ve duygusal etkiler yasayabilir. Bu endiseleri gidermek için duygusal destek, anlayis ve danismanlik veya terapiye erisim saglamak önemlidir. Kulak gelisimi sorunu olan bireylerin özel ihtiyaçlarina bagli olarak, odyoloji klinikleri, konusma terapisi, destek gruplari ve ihtiyaçlarina göre hazirlanmis egitim programlari gibi hizmet ve kaynaklardan faydalanabilirler. Her insanin deneyiminin benzersiz oldugunu ve kulak gelisimi sorunlarinin etkisinin büyük ölçüde degisebilecegini unutmamak çok önemlidir. Saglik uzmanlari ve alandaki uzmanlardan uygun tibbi bakim, destek ve rehberlik istemek, bireylerin kendi özel zorluklarini asmalarina ve uygun çözümler bulmalarina yardimci olabilir. Kulak sekil bozuklugu problemi yasayan kisiler, genellikle kulaklarinin fiziksel görünümünde anormallikler veya istenmeyen degisikliklerle karsilasirlar. Bu durum çesitli nedenlere bagli olarak ortaya çikabilir. Iste kulak sekil bozuklugu problemi yasayan kisilerin karsilasabilecegi bazi durumlar: Mikrotiya, kulaklarin normalden daha küçük veya tamamen gelismemis oldugu bir durumdur. Bu durum, bir veya her iki kulagi etkileyebilir ve kulaklarin normal dis görünümünü etkileyebilir. Protrüzyon, kulaklarin normalden daha fazla disari dogru çikinti yapmasi durumudur. Bu durum genellikle kisinin kulaginin normal yerine göre daha önde veya daha yukarida olmasina neden olur. Asimetri: Kulak sekil bozuklugu olan kisilerde kulaklar arasinda simetri eksikligi görülebilir. Bir kulak digerinden farkli bir sekle veya boyuta sahip olabilir. Dar kulak yarigi: Dar kulak yarigi, kulak kepçesinde normalden daha küçük veya dar bir yarigin bulunmasi durumudur. Bu durum kulak kepçesinin seklini etkileyebilir. Kulak sekil bozuklugu problemi yasayan kisiler, genellikle estetik ve psikolojik etkilerle karsilasabilirler. Bu durum özgüven eksikligi, özsaygi sorunlari veya sosyal etkilesimde zorluklar gibi sonuçlara yol açabilir. Kulak büyüme geriligi için tedavi seçenekleri, altta yatan nedene ve durumun ciddiyetine baglidir. Göz önünde bulundurulabilecek bazi potansiyel tedaviler sunlardir: Cerrahi müdahaleler: Kulak büyüme geriliginin ileri derecede oldugu ve fonksiyonel ya da estetik kaygilara yol açtigi durumlarda cerrahi müdahaleler önerilebilir. Bu prosedürler, görünümünü iyilestirmek ve islevselligini geri kazanmak için kulagi yeniden sekillendirmeyi veya yeniden yapilandirmayi amaçlar. Cerrahi teknikler arasinda kulak rekonstrüksiyonu (kulak rekonstrüksiyonu), kulak memesi rekonstrüksiyonu veya bireyin özel ihtiyaçlarina dayali diger düzeltici prosedürler yer Protez cihazlar: Cerrahi müdahalenin mümkün olmadigi veya istenmedigi durumlarda protez cihazlar düsünülebilir. Normal bir kulagin görünümünü taklit etmek için özel yapim kulak protezleri veya kulak kaliplari olusturulabilir. Bu protezler tipik olarak silikondan veya diger uygun malzemelerden yapilir ve estetik görünümü iyilestirmek için etkilenen bölgeye takilabilir. Danismanlik ve psikolojik destek: Kulak büyüme geriligi, özellikle yaratabilecegi gözle görülür fark nedeniyle bireyler üzerinde psikolojik ve duygusal etkiler birakabilmektedir. Danismanlik veya terapi seanslari, beden imaji sorunlari, benlik saygisi endiseleri ve sosyal etkilesimlerle basa çikmada destek saglayabilir. Görünümle ilgili sorunlari olan bireylerle çalisma konusunda deneyimli bir akil sagligi uzmani veya danismani rehberlik ve destek saglayabilir. Yardimci dinleme cihazlari: Kulak büyüme geriligi isitme kaybiyla iliskiliyse, isitme bozuklugunu gidermek için isitme cihazlari veya diger yardimci dinleme cihazlari önerilebilir. Bu cihazlar sesi yükseltebilir ve bireyin çevresiyle iletisim kurma ve etkilesim kurma yetenegini gelistirebilir. Kulak büyüme geriligi için en uygun tedavi yaklasimini belirlemek için bir kulak burun bogaz uzmani (kulak burun bogaz uzmani) veya kulak rekonstrüksiyonunda uzmanlasmis bir plastik cerrah gibi nitelikli bir saglik uzmanina danismak önemlidir. Spesifik durumu degerlendirecek, altta yatan nedenleri degerlendirecek ve bireyin ihtiyaçlarina göre kisisellestirilmis öneriler sunacaklardir. Mevut durumda yer alan kulak gelisimi ve sekil bozuklugu tedavilerinde çocuklarin kaburga kemiklerinden faydalanilmaktadir. Bu durumda enfeksiyon riski, uygun doner bulunamama gibi riskleri yer almaktadir. Thomas, 3 boyutlu biyoyazici yardimi ile insan mezankimal kökhücreleri yardimi ile kulak basimi islemi gerçeklestirmistir. Literatür arastirmalari sonuçlarina göre Thomas, 3 boyutlu biyoyazici yardimi ile insan mezankimal kök hücreleri yardimi ile kulak basimi islemi gerçeklestirmistir. Literatür arastirmalari sonuçlarina göre CN108888386A yayin numarali patent dokümaninda, lokal olarak güçlendirilmis bir gözenekli kulak iskelesi ve üretim yöntemi açiklanmaktadir. Kulak iskelesinin iyi yapisal sertlige sahip olmasi, deforme olmasi kolay degildir ve hastanin doku büyümesi ve iskele fiksasyonu için faydalidir. Kulak iskelesi bir kulak iskelesi gövdesi ve bir takviye ag yapisi içerir. Çok sayida küçük delik, kulak destegi gövdesinin dis çevresi boyunca esit olarak düzenlenmistir; Kulak braketi gövdesinin iç konturu, iç kontur sekline uyarlanmis bir takviye ag yapisina sahiptir; Kulak destek gövdesi silika jel malzemeden yapilmistir. Literatür arastirmalari sonuçlarina göre CN106137476A yayin numarali patent dokümaninda, kisisellestirilmis bir kulak kepçesi protezini açiklar. Kulak kemigi protezi, bir dis kulak kepçesi ve bir taban plakasi destegi içerir; burada dis kulak kepçesinin sekli, bir hastanin diger dis kulak kepçesi ile simetriktir, dis kulak kepçesinin iç tarafi, ilgili etkilenen kisinin yüzeyine tamamen baglanir hastanin bir kismi, taban plakasi destegi bir sabitleme tabani ve perçinleme cihazlarindan olusur, sabitleme tabani dis kulak kepçesinin iç tarafinin yüzeyinin altina gömülüdür ve perçinleme cihazlari, kulak kepçesinin etkilenenlerin epidermisi üzerine sabit bir sekilde düzenlenmesi için kullanilir. Bulusun bir somutlasmis örnegi ayrica, bireysellestirilmis kulak kemigi protezinin bir üretim yöntemini açiklar. Literatür arastirmalari sonuçlarina göre CN208989258U yayin numarali patent dokümaninda, yapisal sertlikte iyi olan, deformasyona egilimli olmayan ve bir hastanin doku büyümesi ve destek fiksasyonu için faydali olan ve bir kulak destek gövdesi ve bir güçlendirici ag yapisi içeren, lokal olarak güçlendirilmis gözenekli bir kulak destegi ile ilgilidir. Kulak braketi gövdesinde, kulak braketi gövdesinin dis konturu boyunca çok sayida küçük delikler esit olarak olusturulur; kulak destek gövdesinin iç konturunda sekil iç kontur ile eslesen bir takviye agi yapisi düzenlenmistir. Kulak destek gövdesi silika jel malzemelerden yapilmistir. CN103948457A yayin numarali patent dokümaninda, prefabrike bir disi kalip braketi ile rejenere sinir vaskülarize edilmis kemikler, kikirdaklar, eklemler veya vücut yüzey organlarinin olusturulmasi için bir yönteme iliskindir. Ilk olarak, arizali bir doku veya organin disi kalip braketi, bilgisayar destekli bir tasarim / imalat teknolojisi kullanilarak üç boyutlu bir sekilde basilir; daha sonra, bir ameliyatla bir vücutta bir periosteum ve / veya perikondriumun bir yüzeyi olusturulur, disi kalip braketi, kapali bir alan olusturmak için otolog periosteum ve / veya perikondriumun germinal bir tabakasi üzerine yerlestirilir ve sabit olarak dikilir; erkek kalip sekli bir disi kaliba karsilik gelen kemikler, kikirdaklar, eklemler veya vücut yüzeyi organlari, disi kalibin ve periosteum ve / veya perikondrium yüzeyinin germinal tabakasinin olusturdugu alanda rejenere edilir, yeni yenilenmis bir doku çikarildi, disi kalip braketi çikarilir ve doku, yeniden yapilandirilacak olan kusurlu doku veya organin pozisyonuna nakledilir. Otolog prefabrikasyon yoluyla hazirlanan yeni üretilen doku veya organ, zengin yeni damarlara ve sinirlere sahiptir, doku rejenerasyonuna katilan herhangi bir eksojen malzeme içermez, güvenligi yüksektir, ayni zamanda dogru sekle sahiptir ve normal doku veya organa oldukça benzerdir. CN103933613A yayin numarali patent dokümaninda, doku mühendisligi ve tibbi malzemeler alanina aittir ve özellikle bir ipek fibroin kikirdak kompleksi yapay kulagi, bunun bir hazirlama yöntemi ve bunun kulak kepçesi rekonstrüksiyonunda uygulanmasi ile ilgilidir. Ipek fibroin kikirdak kompleksi yapay kulak, bir destek malzemesi olarak bir ipek fibroin kikirdak kompleksi ve bir kaplama olarak ipek fibroinin benimsenmesi ile yapilir. Ipek fibroin kikirdak kompleksi yapay kulak anormal 35 mikrotinin kulak kepçesinin rekonstrüksiyonunda daha fazla kullanilabilir. Ipek fibroin kikirdak kompleksi yapay kulagin iyi biyouyumlulugu vardir, hücrelerin büyümesini tesvik eder, otolog kaburga aliminin neden oldugu yaralanmayi önleyebilir, komplikasyonlari azaltir ve uzun süreli veya kalici olarak etkili bir sekilde hayatta kalabilir; ipek fibroin kikirdak kompleksi yapay kulak, kulak kepçesi rekonstrüksiyonunda diger biyolojik materyallerin neden oldugu ret problemini çözer, ayrica otolog kaburga aliminin neden oldugu yaralanmayi önleyebilir ve klinik kulak kepçesi rekonstrüksiyonu ve uygulamasi için önemli bir referans saglar. görüntü islemenin teknik alanina aittir, tek bir üç boyutlu kulak kepçesi kilavuz plakasi için bir üretim yöntemiyle ilgilidir ve özellikle bölümleme ve yeniden yapilandirmadan kulak kepçesi plaka plakasi imalatina, özellikle bir üretime kadar bir ters mühendislik sistemi ile ilgilidir. Yüksek fitness dereceli üç boyutlu kulak kepçesi kilavuz plakasi için yöntemdir. Mikrotia hastasinin kafa BT tarama görüntü verileri, veri kaynagi, medyan sagital düzlem ve kilavuz plakasi olarak konumlandirilir, mikrotia üzerinde BT taramasi yapilarak elde edilen DlCOM formatinin görüntü verileri için kullanilir. Hasta, etkilenen bir yan kulak kepçesi ve bir STL dosya formatinda çikan üç boyutlu dijital model ve etkilenen yan kulak kepçesi ve kilavuz plaka üç boyutlu dogrudan ve hizli bir sekilde üretmek için Mimics yazilimi temelinde segmentlere ayrilir, ekstrakte edilir ve yeniden yapilandirilir. Dijital model, etkilenen bir yan kulak kepçesi ve kilavuz plakasi üç boyutlu varlik modelini üretmek için bir 3 boyutlu yazici ile baglanir, bu da kulak kepçesi rekonstrüksiyon kikirdaginin ince gravürü ve montaji için kullanilir ve ayrica etkilenen bir yan yeniden yapilandirilmis kulagin konumlandirilmasi için de kullanilabilir. Ameliyat öncesi kulak kepçesi sekillendirme etkisinin tahmini için kullanilabilir. Üç boyutlu kulak kepçesi kilavuz plakasi varlik modelinin üretimi dogrudur, üretim süreci kolay ve hizlidir, tüketilen süre kisadir. deformitesi anti-skar ortez hazirlama yöntemi asagidaki adimlari içerir: hedef kulak kepçesi verilerine göre bir baslangiç kulak kepçesi modeli olusturma; kalinlasmis bir kulak kepçesi modeli olusturmak için ilk kulak kepçesi modelinin kalinligini ayarlayin; bir kulak maskesi modeli ve bir arka kulak maskesi modeli olusturmak için bu kalinlasmis kulak kepçesi modeli kesti; bitmis bir kulak maskesi modeli elde etmek için bu kulak maskesi modelini ayarlayin ve bitmis bir kulak maskesi modeli elde etmek için kulak maskesi modelini ayarlayin; Adim 3 boyutlu (üç boyutlu) biyobaski yapan yapilir, bir ürün kulak kepçesi deformitesi anti-skar ortez elde edilir, üretilen anti-leke ortez, bu kullanim sirasinda hedef kulak kepçesine göre mükemmel eslesen leke ortezini üretebilir. (üç boyutlu) biyobaski yapan hidrojel malzemesini ve bunun bir uygulamasini açiklar. Hidrojel malzeme bir hücre büyüme faktörü, beslenme bilesenleri, su, termo-duyarli bir polimer ve biyomakromoleküller içerir. 3 boyutlu (üç boyutlu) biyobaski yapan malzeme, insan vücudu yumusak dokularininkine benzer mekanik özelliklere sahiptir, hücreleri sarabilir, yüksek hücre yapismasina sahiptir, immünolojik reddedmede düsüktür ve insan vücuduna in vivo uygulandiginda antialerjiktir, insan vücudunun iyilesmesine katkida bulunur. Saglik, biyolojik olarak parçalanabilirligi yüksektir ve güvenli ve toksik degildir. Hidrojel malzemenin ikincil operasyon yoluyla çikarilmasina gerek yoktur, böylece bir hastada ikincil yaralanmalar azalir. Bulus kapsaminda teknikte uygulanan cerrahi islemlere gerek kalmaksizin kisiye özel, biyouyumlu kulak üretimi saglanabilinecektir. Bulus kulak gelisme geriligi ve sekil bozuklugu problemi yasayan kisilere yönelik erime elektroyazici yardimiyla kulak doku materyali eldesi ile ilgilidir. Kulak gelisme geriligi ve sekil bozuklugu problemlerine karsi 3 boyutlu yazici sistemi ile kulak doku materyali üretilmektedir. Üç asamali sistem uygulanmistir. Elektrohidrodinamik atomizasyon teknigi ile kitosan biyopolimerine etken madde yüklenerek nanopartikül elde edilmistir. Elde edilen kitosan kapli nanopartiküller ana tasiyici polimere koaksiyel edilerek çekirdek kabuk etkilesimli erime elektroyazici da kulak baskisi alinmistir. Büyüme faktörü ve mezankimal hücre karisimi kulak üzerine ekilerek biyoreaktörde büyütülmüstür. Büyütme sonrasi hastaya uygulanacaktir. Kullanilan malzemeler: poliglikolik asit (PGA), sekil hafizali poliüretan (SHPU), Polivinil alkol (PVA), polivinilpirolidon (PVP), kitosan (KTS), TPP, ipek fibroin, egzozom, kenevir, tavuk tüyü proteini, selenyum, balik yagi, ozon yagi, A vitamini, C vitamini, E vitamini, B12 vitamini, biyocam, hyaluronik asit, örümcek agi, albümindir. Kulak gelisme geriligi ve sekil bozuklugu problemi yasayan kisilere yönelik erime elektroyazici yardimiyla kulak doku materyali eldesi gerçeklestirilmistir. Kulak eldesi sonrasi kisi mezankimal kök hücresi ve büyüme faktörü karisimi kulak üzerine ekilerek biyoreaktörde büyütülerek hastaya uygulanmasi ile ilgilidir. Bulus kapsaminda kulak gelisme geriligi ve sekil bozuklugu problemi yasayan kisilere yönelik erime elektroyazici yardimiyla kulak doku materyali eldesi gerçeklestirilmistir. Kulak eldesi sonrasi kisi mezankimal kök hücresi ve büyüme faktörü karisimi kulak üzerine ekilerek biyoreaktörde büyütülerek hastaya uygulanmasi olup, biyomimetik vücuda uyumlu kisiye özel kulak üretimi ve üretim yöntemi ile ilgili olup, mevcut tedavide yapilacak isleme göre genel veya lokal anestezi uygulanmaktadir. Kulak eger bastan tamamen yapilacaksa 2 veya 3 ameliyat gerektirebilmektedir. Bulus kapsaminda ikincil bir operasyona ihtiyaç duyulmamaktadir. Bulusun amaci vücudumuzda yer alan doku lifimizle biyolojik uyum saglayacak polimer ve maddelerin kullanilmasi saglanmaktadir. Bulusun amaci insan vücudunun yapisina göre kisiye özel üretim saglanmaktadir. Bulusun amaci ilaç yüklenebilme imkani ile tedaviye olanak saglamaktadir. Bulusun amaci uygun maliyetli ve kolay üretim olanagi sunmaktadir. Bulusun amaci kisiye özel kulak üretiminde kullanilan malzeme vücutta kullanilabilecek yapay organ ve doku üretimleri saglamaktadir. Bulusun amaci dogal kaynaklardan üretilmektedir. Bulusun amaci farkli polimer ve katki maddelerinin de tercih edilebilir olmasi sebebiyle hammadde sikintisi gibi olumsuzluklar yasanmamaktadir. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida yazilan ayrintili açiklama sayesinde daha net olarak anlasilacaktir ve bu nedenle bu degerlendirmenin de bu sekiller ve ayrintili açiklama göz önünde bulundurularak yapilmasi gerekmektedir. Bulusun Sanayiye Uygulanmasi Bulus dogustan kulak yoklugu (mikrotia) hastaliklarinin tedavisinde biyomimetik vücuda uyumlu kisiye özel kulak üretimi ile ilgilidir. Mikrotia hastaligina yönelik erime elektroyazici 3 boyutlu yazicilarin endüstriyel üretimleri saglanarak doku ve organ kayiplarinda olusacak ihtiyaçlara hizmet olanagi sunulacaktir. Kullandigimiz polimer ve katki maddelerinin özellikleri ile sinerjik özellikli hibrit malzemeler ile doku mühendisligi uygulamalarina olanak saglanacaktir. Bulusun Detayli Açiklanmasi Bulus, kapsaminda kulak gelisme geriligi ve sekil bozuklugu problemi yasayan kisilere yönelik erime elektroyazici yardimiyla kulak doku materyali eldesi gerçeklestirilmistir. Kulak eldesi sonrasi mezankimal kök hücresi ve büyüme faktörü karisimi kulak üzerine ekilerek biyoreaktörde büyütülerek hastaya uygulanmaktadir. Bulus konusu kulak gelisme geriligi ve sekil bozuklugu problemi için erime elektroyazici yardimiyla kulak doku materyali için toplam 100 gramda agirlikça oranlari asagidaki gibidir: 0 %30 Poliglikolik asit (PGA) o %30 Sekil hafizali poliüretan (SHPU) o %20 Polivinil alkol (PVA), o %2 Ipek fibroin, o % 1.5 Kenevir, 0 %3.5 Tavuk tüyü proteini, 0 %0.5 Selenyum, 0 %1.5 Balikyagi, 0 %2.5 Ozon yagi, 0 %OJAwwmW, o % 0.1 C vitamini, o %OJEwwmW, o % 0.1 812 vitamini, 0 %0.5 Biyocam, 0 %1.5 Hyaluronik asit, 0 %0.5 Örümcek agi, 0 %0.5 Albümin maddeleri içeren kulak malzemesinde bu maddelerin temel kullanim amaci, hücre yenilenmesi saglamasi, doku bütünlügü olusturmasi, nefes alabilmeyi ve hücre canliligi gerçeklestirmesi, dokuda muvakemet dayanim özelligi gerçeklestirmesi, vücudumuzda yer alan doku lifimiz olan kolajen saliniminin gerçeklestirilmesinde etki saglamasi, doku materyalinin esneklik özelligine sahip olmasi, kan ve proteinlerin geçisinde gözenekli bir morfolojiye sahiplik olusturmalari, kitosan biyopolimeri tasiyici özellik sagladigindan nanokapsülasyon ile birlikte etken maddeleri içerisinde barindiracagindan kontrollü salinim gerçeklestirmesi, dokunun hizli rejenerasyonunu saglamasi, doku reddi olusturacak tehdit unsuru etken maddeleri barindirmamasi gibi çesitli potansiyel etkiler barindirmaktadir. Tek bir malzeme tek basina bulus kapsaminda is yapmamaktadir. Formülümüzde yer alan tüm maddelerin kulak model üretiminde ve kulagin uygulanmasi safhalarinda doku yenileme, doku büyümesini destekleme, doku esnekligi saglama gibi çesitli fonksiyonel ve sinerjik etki saglamasidir. Elektrohidrodinamik atomizasyon teknigi ile nanopartikül elde edilmistir. Erime elektroyazici ile dis nozuldan besleme Poliglikolik asit (PGA)- Sekil hafizali poliüretan (SHPU) ve iç nozuldan besleme Polivinil alkol (PVA)-Polivinilpirolidon (PVP)- Kitosan (KTS)-ipek fibroin- egzozom-kenevir-tavuk tüyü proteini-Selenyum-balik yagi-ozon yagi-A vitamini-C vitamini-E vitamini-812 vitamini-biyocam-hyaluronik asit-örümcek agi-albümin nanopartikül saglanarak koaksiyel çekirdek Kabuk etkilesimli kulak elde edilmistir. Kulak eldesi sonrasi kisi mezankimal kök hücresi ve büyüme faktörü karisimi kulak üzerine ekilerek biyoreaktörde büyütülerek hastaya uygulanmasi için hazir hale getirilmistir. Erime elektroyazici ile elde ettigimiz yapi siki nanofiber dokusundan olusan paralel görüntüsündedir. Bu sekilde esnek kulak hem mukavemet özellikleri iyilestirilmis hem de istenilen islevselligi saglamaktadir. Baski kafasi hareket hizi (mm/s) 100, Tabaka sicakligi (°C) 90-225, Siringa nozul çapi (mm) 0.40 olarak kullanilmistir. Burada kullanilan malzemelere göre tabaka sicakligi degiskenlik göstermistir. Erime elektroyazici teknigi ile polimer ve farkli katki maddeleri kullanimi ile nanofiber dokusuna sahip paralel yapili 3 boyutlu doku materyali üretimi gerçeklestirilmistir. Nanofiberler tüm alana homojen bir sekilde yayilmis ve siki bir yapi formundadir. Fiberler farkli yönlenmelerde ve homojen halde oldugundan üretilen esnek kulak materyalinin mukavemet özelliklerini arttirmis ayrica kullanilan polimer ve katki maddeleri ile esnek yapili ve bir esnek kulak saglamasi gereken minimum elastikiyeti bu sayede rahatlikla saglamaktadir. Esnek kulak fiber çap ortalamasi 40-150 nanometre araligindadir. Bu ölçüm islemi için taramali elektron mikroskobu ile morfolojik görüntüler alinmistir. Alinan görüntülerde fibermetrik yazilim yardimi ile 200 adet fiber ölçümü saglanarak aritmetik nanofiber ortalamasi belirlenmistir. Esnek kulak nanofiber görüntüsü asagidaki gibidir. Esnek kulak fiber çap ortalamasi 40-150 nanometre araligindadir. Bu ölçüm islemi için taramali elektron mikroskobu ile morfolojik görüntüler alinmistir. Alinan görüntülerde fibermetrik yazilim yardimi ile 200 adet fiber ölçümü saglanarak aritmetik nanofiber ortalamasi belirlenmistir. ASTM ve lSO standartlarina göre statik ve dinamik testler gerçeklestirilmistir. Kulak modelimizin 15-35 MPa araliginda oldugu çekme testleri ile belirlenmistir. Bir insan TM serit örneginin Young modülü 10-20 MPa olarak görülmüstür. Otolog kikirdak kulak rekonstrüksiyonu için altin standardi saglamaktadir. Bununla birlikte, sentetik biyomalzemeler, kulak rekonstrüksiyonu için donör saha morbiditesinde azalma ve daha erken cerrahi dahil olmak üzere bir dizi avantaj sunar. Implant basarisi için kritik olan, biyouyumlulugu ve ekstrüzyonu etkiledigi için malzemenin mekanik özellikleridir. Bu çalismanin amaci, insan kulak kikirdaginin biyomekanik özelliklerini belirlemektir. On bes kadavradan alinan kulak kikirdagi, sikistirmada bir Young modülü elde etmek için 1 mm/s'lik yer degistirme ve 300 g'lik yük ile girintilendi. Kulak kepçesinin histolojik analizi glikoprotein, kolajen ve elastin içerigine göre yapildi. Tragus ile kulak kepçesinin her bölümü için kompresyon sarmaldan önemli ölçüde daha büyük bir Young Elastik Modülüne sahip oldugunu gösterdi (p < 0.05). Tablo 1. Kulak basim malzemeleri Kulak Basim Malzemeleri Dis Nozul Besleme Iç NOZUI Besleme (PGA) dökme film granülleri Polivinilpirolidon (PVP) %50-50 dökme film granülleri-50 mg kitosan (KTS) nanopartikül (SHPU)dökme film granülleri Polivinilpirolidon (PVP) %50-50 dökme film granülleri -50 mg kitosan (KTS) nanopartikül Sekil hafizali poliüretan (SHPU)PoIivinilpirolidon (PVP) %50-50 dökme film Sekil hafizali poliüretan (SHPU)PoIivinilpirolidon (PVP) %50-50 dökme film Sekil hafizali poliüretan (SHPU)PoIivinilpirolidon (PVP) %50-50 dökme film madde içeren nanopartikül (%1.6 Kitosan (KTS)-%2 ipek fibroin-%0.5 egzozom-% 1.5 kenevir-%35 tavuk tüyü proteini nanopartikül) Sekil hafizali poliüretan (SHPU)PoIivinilpirolidon (PVP) %50-50 dökme film madde içeren nanopartikül (%1.6 Kitosan (KTS)-%0.5 egzozom-% 1.5 kenevir -%3.5 tavuk tüyü proteini- %0.5 Selenyum-%1.5 Balik yagi-%2.5 Ozon yagi-% 0.1 A vitamini- hyaluronik asit nanopartikül) Sekil hafizali poliüretan (SHPU)PoIivinilpirolidon (PVP) %50-50 dökme film madde içeren nanopartikül (%1.6 Kitosan (KTS)-%1.5 Balik yagi-%2.5 Ozon yagi-% vitamini-% 0.1 812 vitamini-%05 Biyocam- nanopartikül) Sekil hafizali poliüretan (SHPU)PoIivinilpirolidon (PVP) %50-50 dökme film madde içeren nanopartikül (%1.6 Kitosan (KTS)-%2 ipek fibroin-%0.5 egzozom-% 1.5 kenevir-%3.5 tavuk tüyü proteini-%05 Selenyum-%1.5 Balik yagi-%2.5 Ozon yagi- vitamini-% 0.1 812 vitamini-%05 Biyocam- Albümin nanopartikül) Bulus kulak gelisme geriligi ve sekil bozuklugu problemi için erime elektroyazici yardimiyla kulak doku materyali elde etme yöntemi yöntemine ait islem basamaklari asagidaki gibidir: de 60 dakika isiticili manyetik yardimi ile karistirilmasi ve 48 saat çeker ocak altinda dinlendirilmesi, Etken maddelerin safsuda yikama islemi sonrasi sodyum hidroksit (NaOH) ile muamele edilmesi, Muamele islemi sonrasi safsu ile yikayarak durulanma isleminin saglanmasi, -20 °C de buzdolabinda dondurulan tüm etken maddeler liyofilizatöre konarak 48 saat kuruma islemine tabi tutulmasi, Kuruma islemi sonrasi kurumus etken maddelerin toz formuna getirilmesi, Hazirlanan kitosan çözeltisinden nanopartikül üretimi için kitosani çapraz baglayan % maddesi 50 °C de 60 dakika isiticili manyetik yardimi ile karistirilmasi ve 48 saat çeker ocak altinda dinlendirilmesi, Elektrohidrodinamik atomizasyon (EHDA) sistemimiz siringa pompasi, yüksek voltaj güç kaynagi ve toplayici hazneden olusmasi, Elektrohidrodinamik atomizasyon (EHDA) sistemimizde nanopartikül çalisma mesafesi uygulanmasi Elektrohidrodinamik atomizasyon (EHDA) sistemimiz ile %1.6 Kitosan (KTS)-%2 ipek fibroin-%0.5 egzozom-% 1.5 kenevir -%3.5 tavuk tüyü proteini nanopartikül üretilmesi, Elektrohidrodinamik atomizasyon (EHDA) sistemimiz ile %1.6 Kitosan (KTS)-%0.5 egzozom-% 1.5 kenevir -%3.5 tavuk tüyü proteini- %0.5 Selenyum-%1.5 Balik yagi-%2.5 Ozon yagi-% 0.1 A vitamini-% 0.1 C vitamini-% 0.1 E vitamini-%1.5 hyaluronik asit nanopartikül üretilmesi, Elektrohidrodinamik atomizasyon (EHDA) sistemimiz ile %1.6 Kitosan (KTS)-%1.5 Balik yagi-%2.5 Ozon yagi-% 0.1 A vitamini-% 0.1 C vitamini- Elektrohidrodinamik atomizasyon (EHDA) sistemimiz ile %1.6 Kitosan (KTS)-%2 ipek fibroin-%0.5 egzozom-% 1.5 kenevir-%35 tavuk tüyü proteini-%0.5 Selenyum-%1.5 Balik yagi-%2.5 Ozon yagi-% 0.1 A vitamini- hyaluronik asit-%0.5 Örümcek agi-%0.5 Albümin nanopartikül üretilmesi, Üretilen nanopartiküllere 14.000 rpm de 30 dakika 4 °C de santrifüj islemi uygulanmasi, Her bir adimda safsu ile yikama islemi saglanmasi, Yikama islemi sonrasi -20 0C de buzdolabinda dondurulma islemi uygulanmasi, Alinan donuk materyaller liyofilizatörde 48 saat süresince kurutulmus ve nanoformda partiküllerin elde edilmesi, içerisinde 60 °C de 60 dakika isiticili manyetik yardimi ile karistirilmasi ve 48 saat çeker ocak altinda dinlendirilmesi, (DMF) içerisinde 60 °C de 60 dakika isiticili manyetik yardimi ile karistirilmasi ve 48 saat çeker ocak altinda dinlendirilmesi, dakika isiticili manyetik yardimi ile karistirilmasi ve 48 saat çeker ocak altinda dinlendirilmesi, dakika isiticili manyetik yardimi ile karistirilmasi ve 48 saat çeker ocak altinda dinlendirilmesi, Elde edilen polimer çözeltileri alüminyum yüzeye dökülerek dökme film seklinde kurutma isleminin saglanmasi, Iki farkli polimer çözeltisi %50-50 blend edilerek alüminyum yüzeye dökülerek dökme film seklinde kurutma isleminin saglanmasi, Iki farkli polimer çözeltisi %50-50 blend edilerek, içerisine 50 mg kitosan nanopartikül takviye edilmesi ve 24 saat süresince manyetik karistirici da karisiminin saglanmasi, Iki farkli polimer çözeltisi %50-50 blend edilerek, içerisine 50 mg kitosan temelli etken madde içeren nanopartikül takviye edilmesi ve 24 saat süresince manyetik karistirici da karisiminin saglanmasi, Karisimlarin ayri ayri alüminyum yüzeye dökülerek dökme film seklinde oda sicakliginda kurutma isleminin saglanmasi, Dökme film numuneleri tek tek makas ile kesilerek yaklasik boyutlari 3-5 mm olacak sekilde parçalar haline getirilmesi, Kesilen parçalar erime elektroyazici içerisinde bulunan koaksiyel (iç içe geçmis-çekirdek kabuk) nozul sisteminde Tablo 1'de yer alan degerlere uygun iç ve dis nozul kismina ilave edilmesi, Kulak modelinin .stl datasinin erime elektroyaziciya tanitilmasi, Gerekli erime elektroyazici çalisma parametreleri ve sistem kontrolü, Baski kafasi hareket hizi (mm/s) 100, Tabaka sicakligi (°C) 90-225, Siringa nozul çapinin (mm) 0.40 üretim parametreleri uygulanmasi, 0 Üretilen kulak üzerine hücre ve büyüme faktörü eklenmesi ve üretilen kulak üzerine kisinin kendi mezankimal kök hücresine %0.025-0.07 BMP-2 rekombinant protein karisimi ilave edilerek biyoreaktörde hücre çogaltilmasidir. Kulak malzemesinde Tablo 1'de yer alan maddelerin temel kullanim amaci, hücre yenilenmesi saglamasi, doku bütünlügü olusturmasi, nefes alabilmeyi ve hücre canliligi gerçeklestirmesi, dokuda muvakemet dayanim özelligi gerçeklestirmesi, vücudumuzda yer alan doku lifimiz olan kolajen saliniminin gerçeklestirilmesinde etki saglamasi, doku materyalinin esneklik özelligine sahip olmasi, kan ve proteinlerin geçisinde gözenekli bir morfolojiye sahiplik olusturmalari, kitosan biyopolimeri tasiyici özellik sagladigindan nanokapsülasyon ile birlikte etken maddeleri içerisinde barindiracagindan kontrollü salinim gerçeklestirmesi, dokunun hizli rejenerasyonunu saglamasi, doku reddi olusturacak tehdit unsuru etken maddeleri barindirmamasi gibi çesitli potansiyel etkiler barindirmaktadir. Tek bir malzeme tek basina bulus kapsaminda is yapmamaktadir. Formülümüzde yer alan tüm maddelerin kulak model üretiminde ve kulagin uygulanmasi safhalarinda doku yenileme, doku büyümesini destekleme, doku esnekligi saglama gibi çesitli fonksiyonel ve sinerjik etki saglamasidir. Elektrohidrodinamik atomizasyon teknigi ile kitosan biyopolimerine etken madde yüklenerek nanopartikül elde edilmistir. Elde edilen kitosan kapli nanopartiküller ana tasiyici polimere koaksiyel edilerek çekirdek kabuk etkilesimli erime elektroyazici da kulak baskisi alinmistir. Büyüme faktörü ve mezankimal hücre karisimi kulak üzerine ekilerek biyoreaktörde büyütülmüstür. Büyütme sonrasi hastaya uygulanacaktir. Kullanilan malzemeler: poliglikolik asit (PGA), sekil hafizali poliüretan (SHPU), Polivinil alkol (PVA), polivinilpirolidon (PVP), kitosan (KTS), TPP, ipek fibroin, egzozom, kenevir, tavuk tüyü proteini, selenyum, balik yagi, ozon yagi, A vitamini, C vitamini, E vitamini, B12 vitamini, biyocam, hyaluronik asit, örümcek agi, albümindir. Kulak gelisme geriligi ve sekil bozuklugu problemi yasayan kisilere yönelik erime elektroyazici yardimiyla kulak doku materyali eldesi gerçeklestirilmistir. Kulak eldesi sonrasi kisi mezankimal kök hücresi ve büyüme faktörü karisimi kulak üzerine ekilerek biyoreaktörde büyütülerek hastaya uygulanmasi ile ilgilidir. Teknikte uzman bir kisinin bulusta ortaya konan yeniligi, benzer yapilanmalari kullanarak da ortaya koyabilecegi ve/veya bu yapilanmayi ilgili teknikte kullanilan benzer amaçli diger alanlara da uygulayabilecegi açiktir. Dolayisiyla böyle yapilanmalarin yenilik ve özellikle teknigin bilinen durumunun asilmasi kriterinden yoksun olacagi da asikârdir. TR TR TR DESCRIPTION METHOD OF OBTAINING EAR TISSUE MATERIAL FOR EAR DEVELOPMENTAL RETARDATION AND DEFORMATION PROBLEM BY MEANS OF MELTING ELECTROPRINTER Technical Field The invention relates to a method of obtaining ear tissue material by means of melting electroprinter for ear developmental delay and deformity problem in which ear tissue material is obtained by means of melting electroprinter for people having ear developmental delay and deformity problem. Background of the Invention Ear developmental problems: Ear developmental problems may occur due to genetic factors, prenatal exposure to certain drugs or substances, infections during pregnancy or other factors. These problems may result in various conditions such as malformed ears, hearing loss or structural abnormalities. It is very important to consult a medical professional, such as an otolaryngologist or pediatrician, for proper evaluation and guidance. Ear disorders: Some individuals are born with ear disorders or abnormalities, such as misshapen ears, the absence of certain ear structures, or asymmetry. These physical differences can vary in severity and can affect a person's self-image and confidence. Ear developmental problems can sometimes lead to hearing impairment or complete hearing loss. This can affect a person's ability to communicate, understand speech, and relate to their environment. Hearing loss can have an impact on education, employment, and social interactions. Depending on the severity of the ear developmental problem and the resulting hearing loss, individuals may experience difficulties with speech and language development. This can affect their ability to communicate effectively, interact with others, and participate in daily activities. A variety of medical interventions may be available to address ear developmental issues. These may include surgical procedures to reconstruct or correct ear defects, hearing aids or cochlear implants to improve hearing, and therapies to support communication and language development. Individuals with ear developmental issues may experience psychological and emotional impacts such as low self-esteem, social isolation, or anxiety. It is important to provide emotional support, understanding, and access to counseling or therapy to address these concerns. Depending on the specific needs of individuals with ear developmental issues, they may benefit from services and resources such as audiology clinics, speech therapy, support groups, and educational programs tailored to their needs. It is important to remember that each person’s experience is unique and the impact of ear developmental issues can vary greatly. Seeking appropriate medical care, support, and guidance from healthcare professionals and experts in the field can help individuals overcome their unique challenges and find appropriate solutions. Individuals with ear deformities often experience abnormalities or undesirable changes in the physical appearance of their ears. This can occur for a variety of reasons. Here are some of the conditions that individuals with ear deformities may experience: Microtia is a condition in which the ears are smaller than normal or not fully developed. This can affect one or both ears and affect the normal external appearance of the ears. Protrusion is a condition in which the ears protrude more than normal. This usually causes the person’s ear to be positioned further forward or higher than normal. Asymmetry: Individuals with ear deformities may experience a lack of symmetry between the ears. One ear may have a different shape or size than the other. Narrow ear cleft: A narrow ear cleft is a condition in which the pinna is smaller or narrower than normal. This can affect the shape of the pinna. People with ear deformities often experience aesthetic and psychological effects. This can lead to issues such as low self-confidence, low self-esteem, or difficulty interacting with others. Treatment options for ear growth retardation depend on the underlying cause and severity of the condition. Here are some potential treatments to consider: Surgical interventions: Surgical interventions may be recommended in cases where ear growth retardation is severe and causes functional or aesthetic concerns. These procedures aim to reshape or reconstruct the ear to improve its appearance and restore its functionality. Surgical techniques include ear reconstruction (ear reconstruction), earlobe reconstruction, or other corrective procedures based on the individual's specific needs. Prosthetic devices: Prosthetic devices may be considered when surgery is not possible or desired. Custom-made ear prostheses or ear molds can be created to mimic the appearance of a normal ear. These prostheses are typically made of silicone or other suitable materials and can be attached to the affected area to improve aesthetic appearance. Counseling and psychological support: Ear growth retardation can have a psychological and emotional impact on individuals, especially because of the visible difference it can create. Counseling or therapy sessions can help with body image issues, self-esteem concerns, and social interactions. A mental health professional or counselor who is experienced in working with individuals who have appearance-related concerns can provide guidance and support. Assistive listening devices: If ear growth retardation is associated with hearing loss, hearing aids or other assistive listening devices may be recommended to correct the hearing impairment. These devices can amplify sound and improve the individual's ability to communicate and interact with their environment. It is important to consult with a qualified health care professional, such as an otolaryngologist (ear, nose and throat specialist) or a plastic surgeon who specializes in ear reconstruction, to determine the most appropriate treatment approach for ear growth retardation. They will evaluate the specific condition, assess the underlying cause, and provide personalized recommendations based on the individual's needs. In the current case, children's rib bones are used in treatments for ear growth retardation and deformity. In this case, there are risks such as infection risk and the inability to find a suitable donor. Thomas performed ear printing process with the aid of human mesenchymal stem cells with the aid of 3D bioprinter. According to the results of the literature research, Thomas performed ear printing process with the aid of human mesenchymal stem cells with the aid of 3D bioprinter. According to the results of the literature research, a locally reinforced porous ear scaffold and its manufacturing method are disclosed in the patent document with publication number CN108888386A. The ear scaffold has good structural rigidity, is not easy to deform, and is beneficial for the patient's tissue growth and scaffold fixation. The ear scaffold includes an ear scaffold body and a reinforcement mesh structure. A plurality of small holes are evenly arranged along the outer circumference of the ear bracket body; The inner contour of the ear bracket body has a reinforcement mesh structure adapted to the inner contour shape; The ear support body is made of silica gel material. According to the results of literature research, the patent document with publication number CN106137476A discloses a personalized auricle prosthesis. The auricle prosthesis includes an external auricle and a base plate support, wherein the shape of the external auricle is symmetrical with the other external auricle of a patient, the inner side of the external auricle is completely attached to the surface of the affected person of the patient, the base plate support is composed of a fixation base and riveting devices, the fixation base is embedded under the surface of the inner side of the external auricle, and the riveting devices are used to fix the auricle on the epidermis of the affected person. An embodiment of the invention also discloses a manufacturing method of an individualized ear bone prosthesis. According to the results of literature searches, the patent document with publication number CN208989258U relates to a locally reinforced porous ear support that is good in structural rigidity, not prone to deformation, and beneficial for tissue growth and support fixation of a patient, and includes an ear support body and a reinforcing mesh structure. In the ear bracket body, a plurality of small holes are uniformly formed along the outer contour of the ear bracket body; a reinforcing mesh structure whose shape matches the inner contour is arranged on the inner contour of the ear support body. The ear support body is made of silica gel materials. The patent document with publication number CN103948457A relates to a method for forming regenerated neurovascularized bones, cartilages, joints or body surface organs with a prefabricated female mold bracket. First, a female mold bracket of a defective tissue or organ is printed in a three-dimensional manner using a computer-aided design/manufacturing technology; then, a surface of a periosteum and/or perichondrium is formed in a body by a surgery, the female mold bracket is placed on a germinal layer of autologous periosteum and/or perichondrium to form a closed space and is fixedly sutured; The bones, cartilages, joints or body surface organs corresponding to a female mold of male mold shape are regenerated in the area formed by the germinal layer of the female mold and the periosteum and/or perichondrium surface, a newly regenerated tissue is removed, the female mold bracket is removed and the tissue is transplanted to the position of the defective tissue or organ to be reconstructed. The newly produced tissue or organ prepared by autologous prefabrication has rich new vessels and nerves, does not contain any exogenous material participating in tissue regeneration, is highly safe, also has the correct shape and is quite similar to the normal tissue or organ. The patent document with publication number CN103933613A belongs to the field of tissue engineering and medical materials and particularly relates to a silk fibroin cartilage complex artificial ear, a preparation method thereof and its application in auricle reconstruction. The silk fibroin cartilage complex artificial ear is made by adopting a silk fibroin cartilage complex as a support material and silk fibroin as a coating. The silk fibroin cartilage complex artificial ear can be further used in the reconstruction of abnormal 35 microtilia auricle. The silk fibroin cartilage complex artificial ear has good biocompatibility, promotes the growth of cells, can prevent the injury caused by autologous rib harvesting, reduces complications, and can effectively survive for a long time or permanently; The silk fibroin cartilage complex artificial ear solves the problem of rejection caused by other biological materials in auricle reconstruction, can also prevent the injury caused by autologous rib harvesting, and provides an important reference for clinical auricle reconstruction and application. It belongs to the technical field of image processing, relates to a manufacturing method for a single three-dimensional auricle guide plate, and relates to a reverse engineering system from segmentation and reconstruction to auricle plate manufacturing, in particular, to a manufacturing. It is a method for a three-dimensional auricle guide plate with a high fitness degree. The head CT scan image data of a microtia patient is positioned as the data source, the median sagittal plane and the guide plate are used for the image data of the DlCOM format obtained by performing CT scanning on the microtia. The patient, an affected lateral auricle, and the three-dimensional digital model output in an STL file format, and the affected lateral auricle and the guide plate are segmented, extracted, and reconstructed on the basis of Mimics software to directly and quickly generate three-dimensional images of the affected lateral auricle and the guide plate. The digital model is connected with a 3D printer to produce an affected side auricle and guide plate three-dimensional existence model, which is used for fine engraving and assembly of the auricle reconstruction cartilage, and can also be used for positioning the affected side reconstructed ear. It can be used for estimating the effect of preoperative auricle shaping. The production of the three-dimensional auricle guide plate existence model is accurate, the production process is easy and fast, and the time consumed is short. The deformity anti-scar orthosis preparation method includes the following steps: establish an initial auricle model according to the target auricle data; adjust the thickness of the initial auricle model to form a thickened auricle model; cut this thickened auricle model to form an ear mask model and a posterior ear mask model; adjust this ear mask model to obtain a finished ear mask model, and adjust the ear mask model to obtain a finished ear mask model; Step 3-dimensional (three-dimensional) bioprinting is done, a product auricle deformity anti-scar orthosis is obtained, the produced anti-stain orthosis can produce the perfect matching stain orthosis according to the target auricle during use. describes the (three-dimensional) bioprinting hydrogel material and an application thereof. The hydrogel material contains a cell growth factor, nutritional components, water, a thermosensitive polymer and biomacromolecules. The 3D (three-dimensional) bioprinting material has mechanical properties similar to those of human body soft tissues, can surround cells, has high cell adhesion, is low in immunological rejection and is antiallergic when applied to the human body in vivo, contributes to the healing of the human body. Health, biodegradability is high and safe and non-toxic. There is no need for secondary surgical removal of the hydrogel material, thus reducing secondary injuries in a patient. Within the scope of the invention, personalized, biocompatible ear production can be provided without the need for surgical procedures applied in the technique. The invention is related to the production of ear tissue material with the help of melting electroprinter for people experiencing ear developmental delay and deformity problems. Ear tissue material is produced with a 3D printer system against ear developmental delay and deformity problems. A three-stage system has been applied. Nanoparticles were obtained by loading active substance onto chitosan biopolymer with electrohydrodynamic atomization technique. The obtained chitosan coated nanoparticles were coaxialized to the main carrier polymer and ear printing was done with core-shell interaction melting electroprinter. Growth factor and mesenchymal cell mixture was planted on the ear and grown in bioreactor. It will be applied to the patient after growth. Materials used: polyglycolic acid (PGA), shape memory polyurethane (SHPU), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), chitosan (KTS), TPP, silk fibroin, exosome, hemp, chicken feather protein, selenium, fish oil, ozone oil, vitamin A, vitamin C, vitamin E, vitamin B12, bioglass, hyaluronic acid, spider web, albumin. Ear tissue material was obtained with the help of melting electroprinter for people who have ear developmental delay and deformity problems. After the ear is obtained, the mixture of human mesenchymal stem cells and growth factors is planted on the ear and grown in a bioreactor and applied to the patient. Within the scope of the invention, ear tissue material has been obtained with the help of melting electroprinter for people who have ear developmental delay and deformity problems. After ear acquisition, the person's mesenchymal stem cell and growth factor mixture is planted on the ear and grown in a bioreactor and applied to the patient, and it is related to the production and production method of a biomimetic body-compatible personalized ear, and general or local anesthesia is applied according to the procedure to be performed in the current treatment. If the ear is to be completely reconstructed from the beginning, it may require 2 or 3 surgeries. There is no need for a secondary operation within the scope of the invention. The purpose of the invention is to use polymers and substances that will provide biological compatibility with our tissue fiber in our body. The purpose of the invention is to provide personalized production according to the structure of the human body. The purpose of the invention is to enable treatment with the possibility of loading drugs. The purpose of the invention is to provide cost-effective and easy production. The purpose of the invention is to provide artificial organ and tissue production that can be used in the body with the material used in the production of personalized ears. The purpose of the invention is to produce from natural sources. Since the purpose of the invention is to prefer different polymers and additives, there are no negativities such as raw material shortages. The structural and characteristic features and all advantages of the invention will be understood more clearly thanks to the detailed explanation written below and therefore this evaluation should be made by considering these figures and detailed explanation. Application of the Invention to Industry The invention is related to the production of biomimetic body-compatible personalized ears in the treatment of congenital ear absence (microtia) diseases. By providing industrial production of 3D printers with melt electroprinting for microtia disease, it will be possible to serve the needs that will arise in tissue and organ losses. The properties of the polymers and additives we use will enable tissue engineering applications with synergistic hybrid materials. Detailed Description of the Invention Within the scope of the invention, ear tissue material has been obtained with the help of melt electroprinting for people who have ear developmental delay and deformity problems. After the ear is obtained, the mesenchymal stem cell and growth factor mixture is planted on the ear and grown in a bioreactor and applied to the patient. The weight ratios per 100 grams for the ear tissue material with the help of melt electroprinter for the problem of ear developmental delay and deformity in question are as follows: 0 30% Polyglycolic acid (PGA) o 30% Shape memory polyurethane (SHPU) o 20% Polyvinyl alcohol (PVA), o 2% Silk fibroin, o 1.5% Hemp, 0 3.5% Chicken feather protein, 0 0.5% Selenium, 0 1.5% Fish oil, 0 2.5% Ozone oil, 0 %OJAwwmW, o 0.1% Vitamin C, o %OJEwwmW, o 0.1% Vitamin 812, 0 0.5% Bioglass, 0 1.5% Hyaluronic acid, 0 0.5% Spider web, 0 0.5% Albumin are the basic usage of these substances in the ear material containing these substances. Its purpose is to provide cell renewal, to create tissue integrity, to provide breathability and cell vitality, to provide strength and durability in the tissue, to provide an effect in the release of collagen, which is our tissue fiber in our body, to have the elasticity of the tissue material, to create a porous morphology in the passage of blood and proteins, to provide controlled release since it will contain the active ingredients together with nanocapsulation since the chitosan biopolymer provides a carrier feature, to provide rapid regeneration of the tissue, to not contain the active ingredients that may pose a threat to tissue rejection. It contains various potential effects such as a single material does not work within the scope of the invention. All substances in our formula provide various functional and synergistic effects such as tissue renewal, tissue growth support, and tissue elasticity in ear model production and ear application stages. Nanoparticles were obtained with electrohydrodynamic atomization technique. Melting electroprinter with external nozzle feeding Polyglycolic acid (PGA) - Shape memory polyurethane (SHPU) and internal nozzle feeding Polyvinyl alcohol (PVA) - Polyvinylpyrrolidone (PVP) - Chitosan (KTS) - silk fibroin - exosome - hemp - chicken feather protein - Selenium - fish oil - ozone oil - vitamin A - vitamin C - vitamin E - vitamin 812 - bioglass - hyaluronic acid - spider web - albumin nanoparticles were provided and coaxial core shell interactive ear was obtained. After the ear is obtained, the mixture of human mesenchymal stem cells and growth factors is planted on the ear and grown in a bioreactor and made ready for application to the patient. The structure we obtained with the melting electroprinter is in the parallel image of tight nanofiber tissue. In this way, the flexible ear is both improved in terms of strength properties and provides the desired functionality. The printing head movement speed (mm/s) is 100, the layer temperature (°C) is 90-225, the syringe nozzle diameter (mm) is 0.40. The layer temperature varies according to the materials used here. With the melting electroprinter technique, the production of parallel structured 3D tissue material with nanofiber texture is achieved by using polymers and different additives. The nanofibers are homogeneously spread over the entire area and have a tight structure. Since the fibers are in different orientations and homogeneous, the strength properties of the produced flexible ear material have been increased and in addition, with the polymers and additives used, it has a flexible structure and thus easily provides the minimum elasticity required for a flexible ear. The flexible ear fiber diameter average is between 40-150 nanometers. For this measurement process, morphological images were taken with a scanning electron microscope. In the images taken, 200 fiber measurements were provided with the help of fibermetric software and the arithmetic nanofiber average was determined. The flexible ear nanofiber image is as follows. The flexible ear fiber diameter average is between 40-150 nanometers. For this measurement process, morphological images were taken with a scanning electron microscope. In the images taken, 200 fiber measurements were provided with the help of fibermetric software and the arithmetic nanofiber average was determined. Static and dynamic tests were performed according to ASTM and ISO standards. Our ear model was determined to be in the range of 15-35 MPa by tensile tests. A human TM strip sample showed a Young modulus of 10-20 MPa. Autologous cartilage provides the gold standard for ear reconstruction. However, synthetic biomaterials offer a number of advantages for ear reconstruction, including reduced donor site morbidity and earlier surgery. Critical to implant success are the mechanical properties of the material as they affect biocompatibility and extrusion. The purpose of this study was to determine the biomechanical properties of human ear cartilage. Ear cartilage from fifteen cadavers was indented with a displacement of 1 mm/s and a load of 300 g to obtain a Young modulus in compression. Histological analysis of the auricle was performed according to glycoprotein, collagen, and elastin content. The tragus showed a significantly greater Young Elastic Modulus than the compression coil for each section of the auricle (p < 0.05). Table 1. Ear Imaging Materials Ear Imaging Materials Outer Nozzle Feeding Inner NOZZI Feeding (PGA) cast film granules Polyvinylpyrrolidone (PVP) 50-50% cast film granules-50 mg chitosan (KTS) nanoparticle (SHPU) cast film granules Polyvinylpyrrolidone (PVP) 50-50% cast film granules-50 mg chitosan (KTS) nanoparticle Shape memory polyurethane (SHPU)Polyvinylpyrrolidone (PVP) 50-50% cast film Shape memory polyurethane (SHPU)Polyvinylpyrrolidone (PVP) 50-50% cast film Shape memory polyurethane (SHPU)Polyvinylpyrrolidone (PVP) 50-50% cast film containing material nanoparticle (1.6% Chitosan (KTS)-2% silk fibroin-0.5% exhaust-1.5% hemp-35% chicken feather protein nanoparticle) Shape memory polyurethane (SHPU)Polyvinylpyrrolidone (PVP) 50-50% cast film material containing nanoparticle (1.6% Chitosan (KTS)-0.5% exhaust-1.5% hemp-3.5% chicken feather protein-0.5% Selenium-1.5% Fish oil-2.5% Ozone oil-0.1% Vitamin A- hyaluronic acid nanoparticle) Shape memory polyurethane (SHPU)Polyvinylpyrrolidone (PVP) 50-50% cast film material containing nanoparticle (1.6% Chitosan (KTS)-1.5% Fish oil-2.5% Ozone oil-% Vitamin-0.1% Vitamin 812-% 05 Bioglass- nanoparticle) Shape memory polyurethane (SHPU)Polyvinylpyrrolidone (PVP) The process steps of the method of obtaining ear tissue material with the help of melting electroprinter for the problem of ear developmental retardation and deformity containing 50-50% cast film material containing nanoparticle (1.6% Chitosan (KTS) - 2% silk fibroin - 0.5% exosome - 1.5% hemp - 3.5% chicken feather protein - 05% Selenium - 1.5% Fish oil - 2.5% Ozone oil - vitamin - 0.1% 812 - 05% Bioglass - Albumin nanoparticle) are as follows: Mixing with the help of heated magnetic field for 60 minutes and resting under the fume hood for 48 hours, After the washing process of the active substances in pure water, treating them with sodium hydroxide (NaOH), After the treatment process, washing with pure water and rinsing, Keeping in the refrigerator at -20 ° C All frozen active ingredients are placed in a freeze dryer and subjected to a drying process for 48 hours, After the drying process, the dried active ingredients are brought to powder form, For the production of nanoparticles from the prepared chitosan solution, % chitosan cross-linking agent is mixed with the help of a heated magnetic field at 50 ° C for 60 minutes and rested under a fume hood for 48 hours, Our electrohydrodynamic atomization (EHDA) system consists of a syringe pump, a high voltage power supply and a collector chamber, Application of nanoparticle working distance in our electrohydrodynamic atomization (EHDA) system, Production of 1.6% Chitosan (KTS) - 2% silk fibroin - 0.5% exosome - 1.5% hemp - 3.5% chicken feather protein nanoparticles with our electrohydrodynamic atomization (EHDA) system, Production of 1.6% Chitosan (KTS) - 2% silk fibroin - 0.5% exosome - 1.5% hemp - 3.5% chicken feather protein nanoparticles with our electrohydrodynamic atomization (EHDA) system, (KTS) - 0.5% Exosome - 1.5% Hemp - 3.5% Chicken Feather Protein - 0.5% Selenium - 1.5% Fish Oil - 2.5% Ozone Oil - 0.1% Vitamin A - 0.1% Vitamin C - 0.1% Vitamin E - 1.5% Hyaluronic Acid Nanoparticle Production, 1.6% Chitosan (KTS) - 1.5% Fish Oil - 2.5% Ozone Oil - 0.1% Vitamin A - 0.1% Vitamin C - 1.6% Chitosan (KTS) - 2% Silk Fibroin - 0.5% Exosome - 1.5% Hemp - 35% Chicken Feather Protein - 0.5% Selenium - 1.5% Fish Oil - 2.5% Ozone Oil - 0.1% Vitamin A - Hyaluronic acid-%0.5 Spider web-%0.5 Albumin nanoparticle production, Centrifugation process applied to the produced nanoparticles at 14,000 rpm for 30 minutes at 4 ° C, Washing process with pure water at each step, Freezing process applied in the refrigerator at -20 0C after the washing process, The frozen materials taken were dried in the lyophilizer for 48 hours and nanoform particles were obtained, mixed in it at 60 ° C with the help of a heated magnetic element for 60 minutes and rested under a fume hood for 48 hours, Mixed in (DMF) at 60 ° C with the help of a heated magnetic element for 60 minutes and rested under a fume hood for 48 hours, Mixed with the help of a heated magnetic element for 10 minutes and rested under a fume hood for 10 minutes, Mixing with magnetic aid and resting under a fume hood for 48 hours, Pouring the obtained polymer solutions onto the aluminum surface and drying them as cast film, Blending two different polymer solutions 50-50% and pouring them onto the aluminum surface and drying them as cast film, Blending two different polymer solutions 50-50%, adding 50 mg chitosan nanoparticles and mixing them with a magnetic stirrer for 24 hours, Blending two different polymer solutions 50-50%, adding 50 mg chitosan-based active ingredient-containing nanoparticles and mixing them with a magnetic stirrer for 24 hours, Pouring the mixtures separately onto the aluminum surface and drying them as cast film at room temperature, Cutting the cast film samples one by one with scissors and cutting them into pieces with an approximate size of 3-5 mm Making the cut pieces into pieces, Adding the cut pieces to the inner and outer nozzle sections of the coaxial (intertwined-core-shell) nozzle system in the melt electroprinter according to the values in Table 1, Introducing the .stl data of the ear model to the melt electroprinter, Applying the necessary melt electroprinter operating parameters and system control, Print head movement speed (mm/s) 100, Layer temperature (°C) 90-225, Syringe nozzle diameter (mm) 0.40 production parameters, Adding cells and growth factors onto the produced ear and adding 0.025-0.07% BMP-2 recombinant protein mixture to the person's own mesenchymal stem cells onto the produced ear and multiplying the cells in the bioreactor. The main purpose of using the substances in Table 1 in ear material includes various potential effects such as providing cell renewal, creating tissue integrity, providing breathability and cell vitality, providing strength and durability in the tissue, providing effect in the release of collagen which is our tissue fiber in our body, having elasticity feature of tissue material, creating a porous morphology in the passage of blood and proteins, providing controlled release since chitosan biopolymer provides carrier feature and will contain active substances together with nanocapsulation, providing rapid regeneration of tissue, not containing active substances which may pose a threat to tissue rejection. A single material does not work within the scope of the invention on its own. All the substances in our formula provide various functional and synergistic effects such as tissue renewal, tissue growth support, and tissue flexibility in ear model production and ear application stages. Nanoparticles were obtained by loading the active substance onto chitosan biopolymer with electrohydrodynamic atomization technique. The obtained chitosan coated nanoparticles were coaxialized to the main carrier polymer and ear printing was performed with core-shell interaction melting electroprinter. The growth factor and mesenchymal cell mixture was planted on the ear and grown in the bioreactor. It will be applied to the patient after growth. Materials used: polyglycolic acid (PGA), shape memory polyurethane (SHPU), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), chitosan (KTS), TPP, silk fibroin, exosome, hemp, chicken feather protein, selenium, fish oil, ozone oil, vitamin A, vitamin C, vitamin E, vitamin B12, bioglass, hyaluronic acid, spider web, albumin. Ear tissue material was obtained with the help of melt electroprinter for people with ear developmental delay and deformity problems. After ear production, the person's mesenchymal stem cell and growth factor mixture is planted on the ear and grown in a bioreactor and applied to the patient. It is clear that a person skilled in the art can also demonstrate the novelty of the invention by using similar structures and/or can apply this structure to other areas with similar purposes used in the relevant technique. Therefore, it is also clear that such structures will lack the criteria of novelty and especially exceeding the known state of the art.TR TR TR

TR2023/008388 2023-07-17 METHOD OF OBTAINING EAR TISSUE MATERIAL WITH THE HELP OF MELTING ELECTROPRINTER FOR THE PROBLEM OF EAR DEVELOPMENT DELAY AND DEFORMITY. TR2023008388A2 (en)

Publications (1)

Publication Number Publication Date
TR2023008388A2 true TR2023008388A2 (en) 2024-05-21

Family

ID=

Similar Documents

Publication Publication Date Title
Baino et al. Orbital implants: State-of-the-art review with emphasis on biomaterials and recent advances
US6027744A (en) Guided development and support of hydrogel-cell compositions
Niechajev Facial reconstruction using porous high-density polyethylene (medpor): long-term results
EP1847277A1 (en) Sheet-shaped composition utilizing amnion and method of preparing the same
Wong et al. A quantitative assessment of the healing of intramembranous and endochondral autogenous bone grafts
CN107847633A (en) For strengthening the bi-layered device of healing
US20240245828A1 (en) 3D Printed Scaffold Structures and Methods of Fabrication
JPH09122227A (en) Medical material and manufacture thereof
RU2733387C2 (en) Resorbable cross-linked shape-stable membrane
KR101747326B1 (en) Graft consisting of bone tissue and cartilage tissue for augmentation rhinoplasty and method of augmentation rhinoplasty using the same
Zhu et al. Experimental study of nano-HA artificial bone with different pore sizes for repairing the radial defect
Liao et al. Auricle shaping using 3D printing and autologous diced cartilage
RU2367476C1 (en) Bioplastic material
Zhang Biomedical engineering for health research and development.
RINGENBERG et al. The fat graft in middle ear surgery
CN105536047A (en) Skull repair material and preparation method for same
TR2023008388A2 (en) METHOD OF OBTAINING EAR TISSUE MATERIAL WITH THE HELP OF MELTING ELECTROPRINTER FOR THE PROBLEM OF EAR DEVELOPMENT DELAY AND DEFORMITY.
US20080003205A1 (en) Tympanic Membrane Repair Constructs
Caypinar Eser et al. Evaluation of a well-known technique with ultrasound: dorsal grafting in rhinoplasty
CN113633827A (en) Silk woven meniscus implant and preparation method thereof
CN107029287A (en) A kind of purposes of nanoassemble hydrogel in artificial dura mater material
CN112120740A (en) Extremely-fast breast enhancement method
JP2021500214A (en) Reticular formation multi-cell dual system ocular implant
Bhamare Development of 3D printing for tissue engineering of Ear Pinna
RU2563992C2 (en) Composite matrices based on silk fibroin, gelatine and hydroxyapatite for bone tissue regeneration