TR2022021838A1 - Mixed core structure for split core inverter output transformers. - Google Patents

Mixed core structure for split core inverter output transformers.

Info

Publication number
TR2022021838A1
TR2022021838A1 TR2022/021838 TR2022021838A1 TR 2022021838 A1 TR2022021838 A1 TR 2022021838A1 TR 2022/021838 TR2022/021838 TR 2022/021838 TR 2022021838 A1 TR2022021838 A1 TR 2022021838A1
Authority
TR
Turkey
Prior art keywords
core
feature
transformers
transformer
magnetic flux
Prior art date
Application number
TR2022/021838
Other languages
Turkish (tr)
Inventor
Sefa İbrahi̇m
Altin Necmi̇
Battal Funda
Balci Selami̇
Ozdemi̇r Aban
Original Assignee
Bandirma Onyedi̇ Eylül Üni̇versi̇tesi̇
Gazi̇ Üni̇versi̇tesi̇ Rektörlüğü
Filing date
Publication date
Application filed by Bandirma Onyedi̇ Eylül Üni̇versi̇tesi̇, Gazi̇ Üni̇versi̇tesi̇ Rektörlüğü filed Critical Bandirma Onyedi̇ Eylül Üni̇versi̇tesi̇
Publication of TR2022021838A1 publication Critical patent/TR2022021838A1/en

Links

Abstract

Buluş, transformatörlerde oluşan ekstra sıcaklık artışı ve titreşimlerin önüne geçildiği bir karma nüve ile ilgilidir. Buluş özellikle, hava aralıklarının kaldırıldığı, aynı nüve malzemesinden üretilen nüvelerin birine farklı özellikteki nüve malzemesinin eklenmesi ile oluşturulan bir karma nüve yapısı ile ilgilidir.The invention relates to a mixed core that prevents extra temperature increases and vibrations that occur in transformers. The invention particularly relates to a mixed core structure formed by adding core material of different properties to one of the cores produced from the same core material, in which air gaps are removed.

Description

TARIFNAME AYRIK NÜVELI EVIRICI ÇIKIS TRANSFORMATÖRLERI içiN KARMA NÜVE Bulusun ilgili oldugu teknik alan: Bulus, transformatörlerde olusan ekstra sicaklik artisi ve titresimlerin önüne geçildigi bir karma nüve ile ilgilidir. DESCRIPTION MIXED CORE FOR SPLIT-CORE INVERTER OUTPUT TRANSFORMERS Technical field to which the invention relates: The invention prevents extra temperature increases and vibrations occurring in transformers. It is related to a mixed core.

Bulus özellikle, hava araliklarinin kaldirildigi, ayni nüve malzemesinden üretilen nüvelerin birine farkli özellikteki nüve malzemesinin eklenmesi ile olusturulan bir karma nüve yapisi ile ilgilidir. The invention is particularly aimed at products produced from the same core material, where air gaps are removed. A composite formed by adding core material with different properties to one of the cores. It is related to the core structure.

Teknigin bilinen durumu: Dogru akim (DA) elektrik enerjisini alternatif akim (AA) elektrik enerjisine dönüstürmek için statik evirici/çevirici devreleri kullanilmaktadir. Günümüzde dogru akimin alternatif akima dönüstürüldügü farkli amaçli uygulamalarda, fotovoltaik sistemlerde ve rüzgâr türbinlerinde üretilen DA enerjisinin AA sebekeye aktarilmasinda ve kesintisiz güç kaynaklarinda (KGK) bu dönüstürücüler yaygin olarak kullanilmaktadir. Bu uygulamalarda evirici çikis geriliminin dagitim sebekesi gerilim seviyesi ile uyumlu ve kontrol edilebilir aralikta olmasi istenilmektedir. Öte yandan, yenilenebilir enerji kaynaklari gibi düsük genlikli dogru gerilim uygulamalarinda alternatif akim (AA) çikis gerilimi transformatör ile artirilarak uyumlu hale getirilebilir. Transformatörlerin iki kaynak arasinda izolasyon saglamasinin yaninda iyi bir tasarimla anahtarlanmis güç sinyallerinin filtre edilmesi de bu transformatörler yardimi ile yapilabilir. Bu nedenle özellikle kesintisiz güç kaynaklarinda (KGK) kullanilan ve cihaz çikis performansina ve verimine etkisi büyük olan transformatörlerin tasarimi çok önemlidir. Bu transformatörler gerilim uygunlastirma, izolasyon saglama ve evirici çikisinda olusabilecek DA bilesenin kritik yüklere aktarilmasini önleme gibi görevleri üstlenmektedir. Known state of the technique: Converting direct current (DC) electrical energy into alternating current (AC) electrical energy Static inverter/converter circuits are used for Nowadays, direct current is an alternative It is used in different purpose applications, photovoltaic systems and wind turbines where it is converted into current. Transferring the DC energy produced in turbines to the AC grid and providing uninterrupted power These converters are widely used in sources (UPS). This In applications, the inverter output voltage is compatible with the distribution network voltage level and It is desired to be within a controllable range. On the other hand, renewable energy Alternating current (AC) output in low amplitude direct voltage applications such as welding It can be made compatible by increasing the voltage with a transformer. Two of the transformers In addition to providing isolation between the source, switched power with a good design Filtering of signals can also be done with the help of these transformers. Because It is especially used in uninterruptible power supplies (UPS) and is used to improve device output performance and The design of transformers, which have a great impact on efficiency, is very important. This Transformers are used for voltage matching, isolation and inverter output. Tasks such as preventing the DC component from being transferred to critical loads undertakes.

Evirici transformatörlerinin sebeke frekansinda çalisan standart transformatörlerden doyma ve giris empedansi gibi özellikleri dikkate alindiginda, yapisal özellikleri bakimindan önemli farklari oldugu görülmektedir. Evirici transformatörleri yapisal özellikleri bakimindan sebeke frekansinda çalisan standart transformatörlerden giris empedansi ve anahtarlama hatalari sebebiyle olusabilecek doyma etkisine önceden tedbir alinmasi gibi yönleriyle farklilik göstermektedirler. Bunun yani sira evirici devresinde bulunabilen transformatörler, izolasyon saglamasinin yaninda güç sinyallerinin filtre edilmesi görevini de üstlenmektedir. Evirici transformatörleri, standart transformatörlerden doyma ve giris empedansi gibi özellikleri bakimindan farklilasmaktadir [1]. Güç elektronigi devrelerinde darbe genisligi modülasyonu (PWM) ile yapilan anahtarlamada pozitif ve negatif alternanslarin esit olmamasi durumunda, evirici çikisinda bulunan transformatörün nüve kisimlari doyuma giderek ekstra sicaklik artislari ve titresimler olusturabilmektedir. Bu etkinin fazla olmasi, transformatörler yüksüz iken dahi asiri isinmasina sebep olmaktadir. PWM sinyalleri ile alternanslarin dengelenerek doyma etkisinin giderilmesi her zaman kolaylikla yapilamadigindan riskli bir durumdur. Kontrol sistemindeki olumsuzluklar, anahtarlarin gecikmesi, dogrusal olmayan davranislar bu etkiyi artirmaktadir. Fakat evirici transformatörünün nüve yapisinda yapilabilecek tasarim degisimleri ile doyma etkisi daha etkin bir sekilde engellenebilmektedir [2]. Inverter transformers are made of standard transformers operating at mains frequency. Considering the properties such as saturation and input impedance, structural properties It appears that there are significant differences in terms of Inverter transformers structural input from standard transformers operating at mains frequency in terms of their characteristics Pre-empt saturation effect that may occur due to impedance and switching errors. They differ in aspects such as taking precautions. Besides this, the inverter Transformers that can be found in the circuit, in addition to providing insulation, It also undertakes the task of filtering the signals. Inverter transformers, standard transformers in terms of their properties such as saturation and input impedance. differs [1]. Pulse width modulation (PWM) in power electronic circuits In case the positive and negative alternances are not equal in the switching made with The core parts of the transformer at the inverter output become saturated and cause extra It may cause temperature increases and vibrations. If this effect is too high, It causes transformers to overheat even when they are unloaded. PWM signals It is always easy to eliminate the saturation effect by balancing the alternances with It is a risky situation because it cannot be done. Negativities in the control system, switches delay and non-linear behavior increase this effect. But the inverter Saturation effect with design changes that can be made in the core structure of the transformer can be prevented more effectively [2].

Klasik tasarimlarda primer sarginin altta, sekonder sarginin ise üstte oldugu transformatörlerde reaktans yaklasik olarak %3-6 olmaktadir. Düsük reaktans (In classical designs, the primary winding is at the bottom and the secondary winding is at the top. Reactance in transformers is approximately 3-6%. Low reactance (

Claims (1)

STEMLER Iki veya daha fazla devre arasindaki elektrik enerjisi aktarimini elektromanyetik indüksiyonla saglayan transformatör olup, özelligi; 0 B nüvesi (2) ile ayrik yapida olan A nüvesi (1), 0 A nüvesine (1) göre daha düsük manyetik aki degeri ve geçirgenlik degerine sahip nüve malzemesinin (3) aralikli olarak eklendigi B nüvesi (2) içermesidir. Istem 1'deki gibi bir transformatör olup, özelligi; manyetik aki degeri 1.7 tesla olan silisyum alasimli çelikten mamul edilen A nüvesi (1) içermesidir. Istem 1'deki gibi bir transformatör olup, özelligi; manyetik aki degeri 1.7 tesladan düsük olan nüve malzemesi (3) içermesidir. Istem 1'deki gibi bir transformatör olup, özelligi; faz sayisi, akim, gerilim ve frekans gibi parametrelere göre, farkli uygulamalar için A nüvesi (1) ve B nüvesine (2) göre manyetik aki degeri ve malzemesi daha düsük olacak sekilde degistirilebilen nüve malzemelerinin (3) eklendigi B nüvesi (2) içermesidir. Istem 1'deki gibi bir transformatör olup, özelligi; nüve doyum karakteristigi ve olusacak aki degerine göre sayisi ve boyutu belirlenebilen, boyunduruk ve bacak kisimlari arasina daha düsük aki ve geçirgenlik degeri farkli bir nüve malzemesi (3) eklenmesi ile hibrit bir nüve olusturan B nüvesi (2) içermesidir.STEMS are transformers that provide electrical energy transfer between two or more circuits by electromagnetic induction, and their feature is; It contains the A core (1), which has a separate structure with the 0 B core (2), and the B core (2), to which the core material (3), which has a lower magnetic flux value and permeability value than the 0 A core (1), is added intermittently. It is a transformer as in Claim 1 and its feature is; It contains an A core (1) made of silicon alloy steel with a magnetic flux value of 1.7 tesla. It is a transformer as in Claim 1 and its feature is; It contains core material (3) with a magnetic flux value less than 1.7 tesla. It is a transformer as in Claim 1 and its feature is; It contains a B core (2) to which core materials (3) are added, which can be changed to have a lower magnetic flux value and material than the A core (1) and B core (2) for different applications, according to parameters such as number of phases, current, voltage and frequency. It is a transformer as in Claim 1 and its feature is; It contains a B core (2), the number and size of which can be determined according to the core saturation characteristic and the flux value to be formed, creating a hybrid core by adding a core material (3) with a lower flux and different permeability value between the yoke and leg parts.
TR2022/021838 2022-12-30 Mixed core structure for split core inverter output transformers. TR2022021838A1 (en)

Publications (1)

Publication Number Publication Date
TR2022021838A1 true TR2022021838A1 (en) 2024-03-21

Family

ID=

Similar Documents

Publication Publication Date Title
Jovcic et al. Lcl dc/dc converter for dc grids
Gohil et al. An integrated inductor for parallel interleaved VSCs and PWM schemes for flux minimization
Jothibasu et al. An improved direct AC–AC converter for voltage sag mitigation
Gohil et al. An integrated inductor for parallel interleaved three-phase voltage source converters
Salmon et al. PWM inverters using split-wound coupled inductors
Khamphakdi et al. A transformerless back-to-back (BTB) system using modular multilevel cascade converters for power distribution systems
RU2534027C2 (en) Device for electric parameter conversion with zero-point reactor
EP2270968A1 (en) Power Transmission Method and Power Transmission Apparatus
Chivite-Zabalza et al. A simple, passive 24-pulse AC–DC converter with inherent load balancing
Laka et al. Novel zero-sequence blocking transformer (ZSBT) using three single-phase transformers
TW200637125A (en) Switching power supply circuit
NZ744843A (en) An electrical power supply system and process
Karthikeyan et al. Core loss estimation of magnetic links in DAB converter operated in high-frequency non-sinusoidal flux waveforms
WO2017144430A1 (en) Modular multilevel converter and power electronic transformer
Bae et al. Series stacked modular DC–DC converter using simple voltage balancing method
Chattopadhyay et al. Modular isolated DC-DC converter with multi-limb transformer for interfacing of renewable energy sources
Suresh et al. An improved performance of cascaded multilevel inverter with single DC source by employing three-phase transformers
Sasitharan et al. Rating and design issues of DVR injection transformer
TR2022021838A1 (en) Mixed core structure for split core inverter output transformers.
Islam et al. 11-kV series-connected H-bridge multilevel converter for direct grid connection of renewable energy systems
Kahrobaee et al. Investigation and Mitigation of Transformer Inrush Current during Black Start of an Independent Power Producer Plant
Laka et al. IP-ZSBT magnetic configuration for parallelization–serialization of three-phase high power converters
US10083789B2 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
Haghbin Design of a 300 kW Compact and Efficient Fast Charger Station Utilizing High-Power SiC Modules and Nanocrystalline Magnetic Materials
Gandomi et al. High Efficiency Isolated 5-Level Dual Active DC–DC Converter Using Wide Band Gap Devices