TR2022021577A1 - TREATMENT SUPPORTING REHABILITATION HAND TOOL - Google Patents
TREATMENT SUPPORTING REHABILITATION HAND TOOLInfo
- Publication number
- TR2022021577A1 TR2022021577A1 TR2022/021577 TR2022021577A1 TR 2022021577 A1 TR2022021577 A1 TR 2022021577A1 TR 2022/021577 TR2022/021577 TR 2022/021577 TR 2022021577 A1 TR2022021577 A1 TR 2022021577A1
- Authority
- TR
- Turkey
- Prior art keywords
- treatment
- hand
- hand tool
- movement
- muscle
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 abstract description 46
- 210000003205 muscle Anatomy 0.000 abstract description 21
- 238000011161 development Methods 0.000 abstract description 7
- 210000005036 nerve Anatomy 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 12
- 230000000638 stimulation Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000000653 nervous system Anatomy 0.000 description 4
- 208000006011 Stroke Diseases 0.000 description 3
- 230000007383 nerve stimulation Effects 0.000 description 3
- 238000000554 physical therapy Methods 0.000 description 3
- 210000001364 upper extremity Anatomy 0.000 description 3
- 208000028389 Nerve injury Diseases 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 210000001640 nerve ending Anatomy 0.000 description 2
- 230000002232 neuromuscular Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 206010019468 Hemiplegia Diseases 0.000 description 1
- 208000029578 Muscle disease Diseases 0.000 description 1
- 208000023178 Musculoskeletal disease Diseases 0.000 description 1
- 206010073713 Musculoskeletal injury Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 208000021945 Tendon injury Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000003461 brachial plexus Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 230000007433 nerve pathway Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Abstract
Buluş, bir hastalık veya kaza neticesinde el fonksiyonu azalan veya tamamen kaybolan bireyler için kas ve sinir tedavisinde kullanılan, kas gelişimini analiz eden eldiven (1), güç kontrol ünitesi (2), dokunmatik ekran (3), hareket eklem bölümleri (4), elektrod (5), sensör (6), led (7) ve hoparlör (8) içeren tedavi destekleyici rehabilitasyon el aleti ile ilgilidir.The invention relates to a treatment-supporting rehabilitation hand tool, which includes a glove (1), power control unit (2), touch screen (3), movement joint sections (4), electrode (5), sensor (6), LED (7) and speaker (8) that analyzes muscle development and is used in muscle and nerve treatment for individuals whose hand function has decreased or completely disappeared as a result of an illness or accident.
Description
TARIFNAME TEDAVI DESTEKLEYICI REHABILITASYON EL ALETI Teknik Alan Bulus, bir hastalik veya kaza sebebiyle el fonksiyonu azalan veya tamamen kaybolan bireyler için kas ve sinir tedavisinde kullanilan, elektriksel sinir stimülasyonu ile vücuda verilen elektronik uyarilar sayesinde sinir sistemini uyaran, tedavi destekleyici el rehabilitasyonu etkisi vererek, telefon aplikasyonu ile egzersiz hareket takibi yapabilen ve grafiksel analiz sunarak kas gelisimini, tedavi sürecini gösteren üst ekstremite tedavi destekleyici rehabilitasyon el aleti ile ilgilidir. Bulusun Altyapisi Fizik tedavi kas iskelet hastaliklarinda ya da yaralanmalarinda uygulanan ilaç disi bir tedavi seklidir. Tedavide özel aletler kullanilir. En sik kullanilan tedavi sekilleri elektrik akimlari ile tedavi, yüzeysel ve derin sicak uygulamalari, soguk uygulamalari, traksiyon, masajdir. Bunlarin yaninda verilen egzersiz uygulamalari da tedavinin ayrilmaz bir parçasidir. Düzenli yapilan egzersizlerin iyilesme oranlarini artirmaktadir. Inmeye bagli felç rehabilitasyonunun odak noktasi da düzenli ve bol egzersiz yapmaktir. Normal egzersizler kaslari güçlendirmeye yöneliktir. Felç veya kaza sonrasi kas-sinir hasari egzersizleri ise kaslarin yani sira sinirleri uyararak beyninizi egitmeyi amaçlar. Yapilan arastirmalara göre belli duyulara ne kadar çok maruz kalir ve hareketleri yapmaya ne kadar çok çabalarsa o hareketi yapmayi saglayacak sinir devrelerinin kurulma sansi o derece artar. Bu nedenle kas-sinir hasari egzersizleri düzenli yapilmalidir. El egzersizlerinde tercih edilen yöntemlerden en günceli robotik el rehabilitasyonudur. Robotik el rehabilitasyonu, herhangi bir nedene bagli olarak elinde fonksiyon kaybi gelisen hastaya, özel bir bilgisayar programi ve mekanik bir cihaz yardimiyla uygulanan egitim ve egzersizlerden olusan bir tedavi yöntemidir. El robotlari, inme (Hemipleji), Omurilik yaralanmalari, Kas tendon yaralanmalari, Brakial Pleksus, Musculer Distrofi (Kas Hastaliklari), Multiple Skleroz (MS), Parkinson, Kirik sonrasi rehabilitasyon vb. hastaliklarin tedavisinde kullanilmaktadir. El robotlari, el veya parmaklarda hareket yetenegini kismen ya da tamamen kaybetmis hastalarda tedavi süresini kisaltan, iyilesme süresini hizlandiran, fonksiyonelligi arttiran, el ve parmaklari günlük yasaminda daha aktif kullanimini saglayan cihazlardir. Mevcut durumda kullanilan el robotlari; elektriksel sinyal, kavrama ve birakma, ayna nöronlari ile el hareketi gibi her islevi ayri ayri cihazlar ile yapmakta ve tek bir cihaz bünyesinde bu özellikleri bulundurmamaktadir. Teknigin bilinen durumunda yer alan robotik el aletleri, fizyoterapi cihazlari ve robotik el aletinin opsiyonlu kullanimi yani hem otomatik hem manuel hem de uzaktan kontrol edilmesi özelliklerini bir arada içeren bir cihaz bulunmamaktadir. Her özellik için ayri cihaz kullanimi gerekmekte ve kas hareketleri takibi gözlem ile yoruma açik olarak yapilmaktadir. Bulus, bahsedilen dezavantajlari ortadan kaldirmak amaciyla kullanilan tedavi destekleyici robotik el aleti kullanicinin kendi basina kolayca egzersiz yapabilecegi ve egzersiz sirasindaki verimliligi ölçebilecegi bir rehabilitasyon egzersiz el aletidir. Tedavi destekleyici robotik el aleti, fizyoterapist veya fizyoterapi teknikerine ihtiyaç duymadan egzersizlerini kendi basina yapabilmesini saglamaktadir ve bu egzersizlerden maksimum verim elde etmektedir. Bu bulus, bireyin ev ortami rahatliginda tedavisine imkân vermektedir. Söz konusu bulus, egzersizlerin saglik görevlilerince ve kullanicinin yakinlarinca uzaktan telefon ve bilgisayar aplikasyonu ile kontrol edilmesine olanak saglamaktadir. El aletinin açma, kapama, sikma gibi egzersizleri kullanicin manuel yapmasina ya da otomatik seçenegi ile cihazin kendi kas kuvvetini kullanmadan yaptirmasina veya bir elinin yaptiklarini el aleti olan elinin tekrarlamasina imkân sundugu üç seçenegi bulunmaktadir. Bu sayede kullanicinin saglik durumuna ve ihtiyacina göre modül seçilmekte ve tedavi sürecine en uygun hareket listesi planlanmaktadir. Bulus, içerisinde yer alan NMES (nöromusküler elektrik stimülasyonu) teknigi ile eldiven içinde bulunan küçük elektrotlar ile zayif siddetli elektriksel darbeler uygulamaktadir. Bu darbeler ile kisilerin sinir sistemi uyarilmaktadir. Bu elektriksel uyarilarin kullaniciya herhangi bir yan etkisi yoktur. Elektriksel uyarilar sinir uçlarini aktiflestirerek veri iletimi hizlandirmaktadir. Bu bulus, bir hastalik veya kaza neticesinde el fonksiyonu azalan veya tamamen kaybolan bireyler için kas ve sinir tedavisinde kullanilan, elektriksel sinir stimülasyonu ile vücuda verilen elektronik uyarilar sayesinde sinir sistemini uyaran, kullanimi kolay tedavi destekleyici el rehabilitasyonu saglayan, telefon aplikasyonu ile egzersiz hareket takibi yapabilen ve grafiksel analiz sunarak kas gelisimini, tedavi sürecini gösteren üst ekstremite robotik el aleti ile ilgilidir. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve yazilan ayrintili açiklama sayesinde daha net olarak anlasilacaktir ve bu nedenle bu degerlendirmenin de bu sekiller ve ayrintili açiklama göz önünde bulundurularak yapilmasi gerekmektedir. Bulusun Açiklanmasina Yardimci Sekiller Sekil 1: Tedavi destekleyici rehabilitasyon el aletine ait önden genel görünüm Sekil 2: Tedavi destekleyici rehabilitasyon el aletine ait iç yüzey görünümü Bulusun Açiklanmasina Yardimci Referans Numaralari 1. Eldiven 2. Güç kontrol ünitesi 3. Dokunmatik ekran 4. Hareket eklem bölümleri . Elektrod 6. Sensör 7. Led . Hoparlör Bulusun Detayli Açiklanmasi Bu detayli açiklamada, bulusun tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Bulus, bir hastalik veya kaza neticesinde el fonksiyonu azalan veya tamamen kaybolan bireyler için kas ve sinir tedavisinde kullanilan, elektriksel sinir stimülasyonu ile vücuda verilen elektronik uyarilar sayesinde sinir sistemini uyaran, telefon aplikasyonu ile egzersiz hareket takibi yapabilen ve grafiksel analiz sunarak kas gelisimini, tedavi sürecini, hareketlerin dogru yapilma oranini gösteren tedavi destekleyici üst ekstremite robotik el aleti ile ilgilidir. Tedavi destekleyici rehabilitasyon el aleti manuel kullanim, otomatik kullanim ve ayna modu olmak üzere üç çalisma moduna sahiptir. Bu çalisma modlari ile kullanici kendi ihtiyacina göre tercihen tek basina tercihen saglik personelleri tavsiyesi ile egzersiz programlarini belirleyebilmektedir. Bu egzersiz programlari akilli telefon, bilgisayar gibi cihazlar araciligiyla görüntülenen ekran üzerinden takip edilmektedir. Egzersizler ve hareket seçimi, mod seçimi gibi tercihler robotik el aletinin bilek kisminda bulunan dokunmatik ekran (3) üzerinden anlik olarak akilli cihazlara ihtiyaç duyulmadan seçilebilmektedir. Seçim yapilan hareketler; nesne kavrama, her parmak için ayri seçim yapilacak sekilde parmak indirme-kaldirma hareketi, el açma-kapama, bir konumdan bir konuma nesne tasima, belli kavrama kuvveti ile nesneyi tutma gibi el kaslarini gelistirmeye yönelik hareketleri içermektedir. Eldiven (1) üzerinde yer alan güç kontrol birimi (2) rehabilitasyon el aletinin çalismasini ve el hareketlerinden sensörler (6) yardimiyla alinan verilerin islenmesini saglamaktadir. Güç kontrol ünitesi (2) ve güç kontrol ünitesi içerisinde yer alan; sisteme enerji veren en az bir batarya, alinan verilerin hizli bir sekilde islenip ekrana yansimasini saglayan grafik islemci, baglanti ve veri aktariminin yapilmasini saglayan Bluetooth kisimlarindan olusmaktadir. Güç kontrol ünitesi (2), kullanicinin tutacagi nesnelere karsi elin ve parmaklarin yönelimindeki açi, sekli ve durusuna göre eli algilayan, her parmak ucunda yer alan sensörler (6) ile elin kasilmasina ve açilmasina yardimci olan hareket eklem bölümü (4) ile baglantili çalismaktadir. Güç kontrol ünitesi (2) üzerinde bulunan dokunmatik ekran (3), mod seçimi, egzersiz hareketlerinin belirlenmesi, hareket sürelerinin ayarlanmasi ve eldiven (1) üstünde yer alan hareket eklem bölümlerindeki (4) hareket direnç degeri gibi verilerin deger araliklarinin belirlenmesini saglamaktadir. Ayrica bulustaki dokunmatik ekran (3) üzerinden girilen bu veriler kullanicinin istegine bagli olarak güç kontrol ünitesine (2) uzaktan bagli akilli cihazlar üzerinden de giris yapilarak deger girilmesini ve istatistik gibi çiktilarin gözlenmesini saglamaktadir. Dokunmatik ekran (3) ilk açildiginda kullanim için tanimlanan en az üç farkli kullanim modu belirlenmekte ve belirlenen moda göre süre, mukavemet, hareket seçimi gibi kullanicinin belirlemesi gereken degerler islenmektedir. Hareket eklem bölümleri (4), güç kontrol ünitesi (2) ile sensörler (6) arasinda bulunan baglantidir. Bu bölüm el hareketlerinin yapilabilmesi için ele hareket kabiliyeti saglamakta ve eklem bölümleri arasinda bulunan pistonlar ile mukavemet direnci saglanmasina olanak vermektedir. Hareket eklem bölümleri (4) kavrama, sikma, çekme, parmak indirme kaldirma gibi hareketleri yapabilmek için ele hareket özgürlügü saglamaktadir. Bu bölüm ayni zamanda eklemler arasindaki piston ile de dijital ekran veya akilli cihazlar (telefon, bilgisayar...) üzerinden girilen mukavemet degeri ile direnç seviyeleri ayarlanmaktadir. Bu sayede kullanicilarin hareket yaparken gelisimlerine göre parmaklarini oynatma zorluk seviyeleri ayarlanabilecektir. Zorluk seviyeleri kullanicilarin duragan egzersiz yerine gelisimlerine göre ayarlanabilen seviyeler ile kisiye göre özellestirme imkâni sunmaktadir. Tedavi destekleyici rehabilitasyon el aleti içerisinde bulunan üç mod seçenekleri manuel, otomatik ve ayna modlaridir. Manuel mod, kullanicilarin aktif egzersiz yapmasina olanak saglamaktadir. Aktif egzersiz kullanicinin kendi kas aktivitesiyle bir dereceye kadar eklem ve kas hareketi sagladigi durumdur. Kullanici hareket eklem bölümlerinde (4) bulunan eklem arasi pistonlarin mukavemet derecelerini ayarlar, hareketi tekrarlama süresini seçer, cihaz içerigine önceden kaydedilen hareket listesinden yapmak istedigi hareketleri seçer ve belirledigi hareketleri yapmaya baslar. Ve robotik el cihazinin iç yüzeyinde bulunan en az 5 sensör (6) algiladiklari verileri güç kontrol ünitesine (2) iletir. Sensörler (6) sayesinde nabiz, yapilan hareket sayisi, kasin uyguladigi kuvvet, el sikma harekinde uygulanan basinç gibi degerleri ölçmektedir. Güç kontrol ünitesi (2) algiladigi bu verileri isler. Bu veriler güç kontrol ünitesindeki (2) veri aktarim özelligi ile dokunmatik ekran (3) ve/veya akilli cihazlara aktarilarak bu cihazlardan erisilmesini saglar. Çikti olarak belirlenen seçili hareketin ne kadar süre yapildigi, istenilen kuvvette yapilip yapilmadigi, çekme veya sikma hareketleri esnasindaki el kaslarinin uyguladigi basinç, el kaslarinin verdigi tepki gibi verilerin istatistikleri tutulur ve rapor olarak sunulur. Düzenli kullanimda kullanici isterse bu verilerin yer aldigi istatistikleri günlük aylik olarak raporlayip gelisimine göre yeni bir program belirleyebilir. Yanlis yapilan hareketler algilandiginda ise kullaniciya dokunmatik ekran (3) araciligi ile yazili, eldiven (1) üzerinde bulunan led (7) ile isikli veya eldiven (1) üzerindeki hoparlör (8) ile sesli olarak uyari verilebilir. Uyari esnasinda dokunmatik ekran (3) ve akilli cihazlara hareketin nasil yapilmasi gerektigi ile ilgili bilgilendirme yazisi iletilir. Kullanici diger seçenek olan otomatik modu seçtiginde yetkili saglik personeli veya kullanici tarafindan olusturulan egitim modellerinden bir paket seçmekte ve her hareket model içinde tanimlanan siraya ve süreye göre otomatik olarak yapilmaktadir. Otomatik modda manuel modun aksine daha önceden ayarlanmis piston mukavemet dirençleri, belirlenen süre ve belirlenen hareket listesine göre hareket etmektedir. Bu mod kullanildigi esnada kisi kendi kas kuvvetini kullanmadan pasif egzersiz olarak cihaz araciligiyla hareketleri yapmaktadir. Bu modda hareketlerin belirlenen süreden az veya fazla sürede yapilmasi, atlanmasi, hareketin aksi yönünde bir kuvvet uygulanmasi (elin kapanmasi gerekirken açmaya çalismak gibi) gibi durumlarda dokunmatik ekranda (3) ve akilli cihazlarda uyari bildirimi, ledin (7) yanip sönmesi ve hoparlörden (8) sesli ikaz verilmesi gibi uyarilar verilmektedir. Ayna modu ise kullanicinin bir eline robotik eldivenin (1) takilmasi, diger eline ise sinyalleri almak için elektrodlarin takilmasi ile çalisan bir moddur. Bu modda kisi bir elinin yaptigi hareketleri algilayan cihaz araciligiyla diger eline de ayni hareketleri tekrarlatabilmektedir. Tekrarlayan hareketler kisinin ilgili bölümlerdeki sinir uçlarinin uyarilmasini saglamakta ve taklit yöntemi ile yeni sinir yollarinin olusturulmasi saglanmaktadir. Tedavi destekleyici rehabilitasyon el aleti, kullanildigi üç farkli mod ile bulus içerisinde yer alan nöromüsküler elektrik stimülasyonu (NMES) teknigi ile zayif siddetteki deriye yerlestirilen eldivenin (1) iç yüzeyinde yer alan elektrotlardan (5) gelen elektrik akimlari ile sinir ve kas gibi dokular uyarilir. Bulusta kullanilan elektrik stimülasyonu, ayri olarak tek basina çalistirilabilirken manuel, otomatik ve ayna modlari esnasinda da kullanilabilmektedir. TRDESCRIPTION TREATMENT SUPPORTING REHABILITATION HAND TOOL Technical Field The invention is related to upper extremity treatment supporting rehabilitation hand tool, which is used in muscle and nerve treatment for individuals whose hand function is reduced or completely lost due to an illness or accident, stimulates the nervous system by means of electronic stimuli given to the body with electrical nerve stimulation, provides treatment supporting hand rehabilitation effect, can follow exercise movements with phone application and shows muscle development and treatment process by providing graphical analysis. Invention Background Physical therapy is a non-drug treatment method applied in musculoskeletal diseases or injuries. Special tools are used in treatment. The most frequently used treatment methods are treatment with electric currents, superficial and deep heat applications, cold applications, traction, massage. In addition to these, given exercise applications are an inseparable part of the treatment. Regular exercises increase recovery rates. The focus of stroke-related paralysis rehabilitation is to do regular and abundant exercise. Normal exercises are aimed at strengthening the muscles. Muscle-nerve damage exercises after a stroke or accident aim to train your brain by stimulating the nerves as well as the muscles. According to research, the more you are exposed to certain sensations and the more you try to make movements, the higher the chance of establishing the nerve circuits that will enable you to make that movement. Therefore, muscle-nerve damage exercises should be done regularly. The most current method preferred in hand exercises is robotic hand rehabilitation. Robotic hand rehabilitation is a treatment method consisting of training and exercises applied to a patient who has developed a loss of function in their hand due to any reason, with the help of a special computer program and a mechanical device. Hand robots are used in the treatment of diseases such as stroke (hemiplegia), spinal cord injuries, muscle tendon injuries, brachial plexus, muscular dystrophy (muscle diseases), multiple sclerosis (MS), Parkinson's, rehabilitation after fractures, etc. Hand robots are devices that shorten the treatment period, accelerate the recovery period, increase functionality, and enable more active use of hands and fingers in daily life in patients who have partially or completely lost their ability to move in their hands or fingers. Hand robots currently used perform each function such as electrical signal, grasping and releasing, mirror neurons and hand movement with separate devices and do not have these features in a single device. There is no device that includes the optional use of robotic hand tools, physiotherapy devices and robotic hand tools, that is, automatic, manual and remote control features in the known state of the art. A separate device is required for each feature and muscle movement tracking is done with observation and open to interpretation. The invention is a rehabilitation exercise hand tool that is used to eliminate the disadvantages mentioned, and the treatment supporting robotic hand tool allows the user to easily do exercises on their own and measure the efficiency during the exercise. The treatment supporting robotic hand tool allows the user to do their exercises on their own without needing a physiotherapist or physiotherapy technician and achieves maximum efficiency from these exercises. This invention allows the individual to receive treatment in the comfort of their home environment. The invention in question allows the exercises to be controlled remotely by healthcare professionals and the user's relatives via a phone and computer application. The hand tool has three options, allowing the user to do exercises such as opening, closing, squeezing manually or to have the device do it without using its own muscle strength with the automatic option or to have the hand, which is the hand tool, repeat what one hand does. In this way, the module is selected according to the user's health status and needs and the most appropriate movement list for the treatment process is planned. The invention applies weak and intense electrical pulses with the NMES (neuromuscular electrical stimulation) technique in it with small electrodes in the glove. The nervous system of the person is stimulated with these pulses. These electrical stimulations have no side effects on the user. Electrical stimulations accelerate data transmission by activating nerve endings. This invention is related to the upper extremity robotic hand tool used in muscle and nerve treatment for individuals whose hand function has decreased or completely disappeared as a result of a disease or accident, which stimulates the nervous system thanks to electronic stimulations given to the body with electrical nerve stimulation, provides easy-to-use treatment-supporting hand rehabilitation, can follow exercise movements with a phone application and shows muscle development and treatment process by providing graphical analysis. The structural and characteristic features of the invention and all its advantages will be understood more clearly thanks to the figures given below and the detailed explanation written, and therefore this evaluation should be made considering these figures and the detailed explanation. Figures Helping to Explain the Invention Figure 1: General front view of the treatment supporting rehabilitation hand tool Figure 2: Internal surface view of the treatment supporting rehabilitation hand tool Reference Numbers Helping to Explain the Invention 1. Glove 2. Power control unit 3. Touch screen 4. Motion joint sections . Electrode 6. Sensor 7. LED . Speaker Detailed Explanation of the Invention In this detailed description, the preferred embodiments of the invention are explained only for a better understanding of the subject and in a way that will not create any limiting effects. The invention is related to a treatment-supporting upper extremity robotic hand tool used in muscle and nerve treatment for individuals whose hand function has decreased or completely disappeared as a result of an illness or accident, stimulating the nervous system through electronic stimuli given to the body with electrical nerve stimulation, being able to track exercise movements with a phone application and showing muscle development, treatment process and correct performance rate of movements by providing graphical analysis. The treatment-supporting rehabilitation hand tool has three operating modes: manual use, automatic use and mirror mode. With these operating modes, the user can determine exercise programs according to his/her own needs, preferably alone or preferably with the advice of healthcare personnel. These exercise programs are followed on the screen displayed through devices such as smart phones and computers. Exercises and movement selection, mode selection, etc. can be selected instantly without the need for smart devices via the touch screen (3) located on the wrist part of the robotic hand tool. The selected movements are; It includes movements aimed at developing hand muscles such as grasping an object, raising and lowering the finger with a separate selection for each finger, opening and closing the hand, carrying an object from one position to another, holding an object with a certain grip strength. The power control unit (2) located on the glove (1) enables the rehabilitation hand tool to operate and the data obtained from hand movements with the help of sensors (6) to be processed. The power control unit (2) and the power control unit consist of at least one battery that provides energy to the system, a graphic processor that allows the received data to be processed quickly and reflected on the screen, and Bluetooth sections that provide connection and data transfer. The power control unit (2) works in connection with the movement joint section (4) that helps the hand to contract and open with the sensors (6) located at the tip of each finger that detect the angle, shape and posture of the hand and fingers towards the objects that the user will hold. The touch screen (3) located on the power control unit (2) enables the selection of mode, determination of exercise movements, adjustment of movement times and determination of the value ranges of data such as the movement resistance value in the movement joint sections (4) located on the glove (1). In addition, these data entered via the touch screen (3) in the invention can be entered via smart devices remotely connected to the power control unit (2) upon the user's request, and enables the entry of values and observation of outputs such as statistics. When the touch screen (3) is first opened, at least three different usage modes are defined for use and values such as duration, strength, and movement selection that the user must determine are processed according to the determined mode. The movement joint sections (4) are the connection between the power control unit (2) and the sensors (6). This section provides the hand with the ability to move and allows the pistons between the joint sections to provide resistance. The movement joint sections (4) provide the hand with freedom of movement to perform movements such as grasping, squeezing, pulling, lowering and lifting the finger. This section also adjusts the resistance levels with the piston between the joints and the resistance value entered via the digital screen or smart devices (phone, computer, etc.). In this way, the difficulty levels of moving the fingers of the users while performing the movement can be adjusted according to their development. Difficulty levels offer the opportunity to customize according to the development of the users instead of static exercise. The three mode options in the treatment supportive rehabilitation hand tool are manual, automatic and mirror modes. Manual mode allows users to do active exercise. Active exercise is the situation where the user provides joint and muscle movement to a certain extent with his/her own muscle activity. The user adjusts the resistance levels of the inter-joint pistons located in the movement joint sections (4), selects the movement repetition time, selects the movements he/she wants to do from the movement list previously recorded in the device content and starts to do the movements he/she determines. And at least 5 sensors (6) located on the inner surface of the robotic hand device transmit the data they detect to the power control unit (2). Thanks to the sensors (6), it measures values such as pulse, number of movements made, force applied by the muscle, pressure applied in the handshake movement. The power control unit (2) processes the data it detects. This data is transferred to the touch screen (3) and/or smart devices with the data transfer feature in the power control unit (2) and allows access from these devices. Statistics of the data such as how long the selected movement determined as output was made, whether it was made with the desired force, the pressure applied by the hand muscles during pulling or squeezing movements, the reaction given by the hand muscles are kept and presented as a report. In regular use, the user can report the statistics including this data on a daily or monthly basis if desired and determine a new program according to its development. When incorrect movements are detected, the user can be given a written warning via the touch screen (3), a light warning via the LED (7) on the glove (1) or an audible warning via the speaker (8) on the glove (1). During the warning, an information text is sent to the touch screen (3) and smart devices regarding how the movement should be made. When the user selects the other option, automatic mode, he/she selects a package from the training models created by the authorized health personnel or the user, and each movement is performed automatically according to the order and duration defined in the model. In automatic mode, unlike the manual mode, the previously set piston resistances move according to the determined duration and the determined movement list. When this mode is used, the person performs the movements through the device as passive exercises without using his/her own muscle strength. In this mode, in cases where the movements are performed for less or more than the determined duration, skipping, applying a force in the opposite direction of the movement (such as trying to open the hand when it should be closed), warnings are given on the touch screen (3) and smart devices, such as a warning notification, flashing of the LED (7) and an audible warning from the speaker (8). Mirror mode is a mode that works by attaching the robotic glove (1) to one hand of the user and attaching electrodes to the other hand to receive the signals. In this mode, the person can repeat the same movements with the other hand through the device that detects the movements made by one hand. Repetitive movements ensure that the nerve endings in the relevant sections of the person are stimulated and new nerve pathways are created with the imitation method. The treatment supporting rehabilitation hand tool stimulates tissues such as nerves and muscles with the electrical currents coming from the electrodes (5) located on the inner surface of the glove (1) placed on the weak skin with the neuromuscular electrical stimulation (NMES) technique included in the invention with three different modes. The electrical stimulation used in the invention can be operated separately and can also be used during manual, automatic and mirror modes. TR
Publications (1)
Publication Number | Publication Date |
---|---|
TR2022021577A1 true TR2022021577A1 (en) | 2024-07-22 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10405764B2 (en) | Brain-controlled body movement assistance devices and methods | |
Looned et al. | Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation | |
Cronin et al. | Task-specific somatosensory feedback via cortical stimulation in humans | |
Bouteraa et al. | Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation | |
US20220187913A1 (en) | Neurorehabilitation system and neurorehabilitation method | |
Cardoso et al. | Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: a narrative review, clinical guidelines and future directions | |
Krebs et al. | Forging mens et manus: The mit experience in upper extremity robotic therapy | |
US20230366347A1 (en) | Portable and wearable hand-grasp neuro-orthosis | |
TR2022021577A1 (en) | TREATMENT SUPPORTING REHABILITATION HAND TOOL | |
Caramenti et al. | Challenges in neurorehabilitation and neural engineering | |
Cho et al. | Simultaneous Sensory Feedback Strategy for Force and Position of Gripper Based on TENS | |
Marquez-Chin et al. | Brain–Computer Interfaces: Neurorehabilitation of Voluntary Movement after Stroke and Spinal Cord Injury | |
De Mongeot et al. | Combining FES and Exoskeletons in a Hybrid Haptic System for Enhancing VR Experience | |
AU2021283972B2 (en) | Portable and wearable hand-grasp neuro-orthosis | |
Kutlu | A home-based functional electrical stimulation system for upper-limb stroke rehabilitation | |
Roman et al. | Clinical Tests of a New Device Aiming to Assess and Rehabilitate the Hand in Stroke People | |
Arantes | Development and validation of a novel adaptive assist-as-needed controller for robot-assisted rehabilitation of the upper-extremity following stroke | |
Ranzani | Towards minimally-supervised robot-assisted therapy of hand function to increase therapy dose after stroke | |
CN118718242A (en) | Method, control device and control system for controlling rehabilitation training | |
LOFRESE | SPINE FINE: a new software application for assessing the fine movements of the hands in patients with cervical spinal cord injury | |
Ambrosini et al. | Sensors for motor neuroprosthetics: current applications and future directions | |
Zariffa et al. | Armin Curt, and Sukhvinder Kalsi-Ryan ID | |
Tan et al. | Arm flexion and extension exercises using a brain-computer interface and functional electrical stimulation | |
Wijethunga | Free hand interaction therapy for Parkinson’s disease using leap motion | |
CA2910406C (en) | Methods of using an enhanced therapeutic stimulus for non-nutritive suck entrainment system |