TARIFNAME DOLANMIS PARASÜT IPINDEN KURTULMA SIMÜLATÖRÜ Bu basvuru, Parasütle Atlama Egitim Simülatörlerinde atlayis sonrasi olusabilecek parasüt iplerinin birbirine dolanmasi durumlarindan kurtulma senaryosu egitiminin verildigi simülatör ile Hazirlanan simülatör, egitim amaçli olarak havayolu sirketlerinde, üniversitelerde ya da özel sirketlerde kullanilmaktadir. Teknigin Bilinen Durumu Parasütle atlama egitim simülatörleri atlayacak kisilerin egitilmesine yönelik olarak yere monte, basvurusunda genel olarak bir parasütle atlama simülatörü ve egitim prosesi açiklanmistir. Bu simülatörde çevresel kosullar simüle edilerek, atlayacak kisinin uçak içinden yere inisine kadarki sürecin egitimi açiklanmistir. egitildigi bir simülasyon sistemi açiklanmistir. Bu sistemde daha çok pilotlarin karsilasabilecegi vertigo ve G-LOC tehlikelerinin nasil bertaraf edilebilecegi üzerinde durulmustur. basvurusunda açiklanmistir. Ancak bu buluslarin hiçbirisinde atlama sirasinda dolanmis bir ipten nasil kurtulabilindigine dair bir bilgi verilmemektedir. Teknigin bilinen durumunda parasütle atlama egitimi sirasinda dolanmis ipten kurtulmak için Ters Makas Lift Sistemi kullanilmaktadir. Mevcut bulus öncesi uygulanan bu teknigin daha iyi anlasilabilmesi için öncelikle parasütle atlamada dolanmis ipten kurtulma egitimi asagidaki paragraflarda ve Sekil-1 ve Sekil-2 yardimiyla açiklanmaktadir. Egitim baslangicinda personel yukarida asili halde olan sistemden asagiya dogru sarkmis olan parasütünü kusanarak kendisini sisteme baglamis olur. Sistemin toplam yüksekligi yaklasik 10 metredir. Egitim basladiginda personelin ayaklari yere basmaktadir ve personelin baglandigi parasütün ipleri (5) ideal sartlari saglayarak her biri mekanizmadan parasüte kadar düz bir sekilde sarkmaktadir. Egitim baslama komutu ile parasüt iplerinin yukarida bagli oldugu kanopi kismi (4) kendi etrafinda döndürme motoru (6) sayesinde 8-10 tur dönerek iplerin birbirine dolanmasini saglar. Dolanmis bu iplerden (5) sonra sistem yukariya dogru 50-100 cm hareket ederek personeli havaya kaldirir. Ve sonunda personel havada ve parasüt ipleri birbirine dolanmis halde kendini bulur. Asil egitim bundan sonra personelin dogru el ve ayak salinim hareketleri yaparak dolanmis ipleri havada iken çözmeye çalismasi olacaktir. Bu egitim simülatör sisteminde önceki uygulanan teknikte personeli yukariya kaldirmak için kullanilan mekanizma makas lift sisteminin (1) ters olarak tasarlanip yukarida rijit bir yapiya baglanmis hali ve elektrik motorlu ve çelik halatli sarim mekanizmasi (3), yani vinç sistemidir. Önceki uygulanan bu yapida sistemi yukari kaldirip asagiya indirme görevi tamamen motor ve bagli oldugu çelik halat sarim mekanizmasidir (3). Yani tüm yükü çelik halatlar (2) tasimaktadir. Kullanilan ters makas liftin (1) görevi yukari-asagi hareketin dogrusal bir sekilde yapilmasini saglamaktir. Ters Makas Lift Sistemin birçok sakincalari olup, asagida siralanmistir: o Makas lifti yukariya çelik halatlar kaldirmaktadir. Bu çelik halatlarin, baglanti noktalarindan kaçirmasi veya kopmasi durumunda makas lift asagiya dogru serbest bir sekilde kendini salacaktir. Personelin yere sert bir düsüs yapmasinin yani sira yaklasik 400 kilogramlik makas lift sisteminin de personelin üzerine yaklasik 10 metreden düsme riski vardir. o Ters makas lift sistemi, egitimi alan kisinin uygulayacagi salinim hareketlerinde çok fazla esnemekte ve sistemin kendisi de salinim hareketi yapmaktadir. Öncelikle egitim dogru bir sekilde simüle edilememektedir. Ayrica bu salinim hareketleri sonucunda bütün makas lift baglantilarina sürekli dinamik yükler gelmektedir. Bu dinamik yükler uzun vadede malzeme yorulmasina sebep olurken kirilma ve çatlamalar meydana gelebilir. 0 Uzun vadede halatlarda esneme riski vardir ve kaldirilan yükseklik hassas degildir. 0 Çok fazla parçadan olustugu için kompleks bir yapisi vardir. Bu da hem sistemdeki hata riskini arttirirken, hem de bakim süre ve maliyetlerini arttirmaktadir. Bulusun Amaci Bulusun amaci parasütle atlama egitim simülatörlerinde, dolanmis ipten kurtulma simülatöründe yükseklik degeri hassas, salinim hareketlerinden etkilenmeyen ve personelin stabil bir sekilde yukariya kaldirilmasini saglayan bir mekanizma gelistirilmesidir. Bulusun bir diger amaci, uzun vadede saglikli bir sekilde çalisan, güvenli, hassas, basit ve az maliyetli bir kaldirma mekanizmasi gelistirilmesidir. Sekillerin Agiklamasi Bulus konusu parasütle atlama egitim simülatörlerinde, dolanmis ipten kurtulma mekanizmasi ekli sekillerde gösterilmistir. Sekiller bulusun açiklanmasi için verilmekte olup bulus kapsami sekillerle sinirli degildir. Bulusun kapsami istemlerle belirlenmektedir. Sekil 1: Teknigin bilinen durumunda yer alan ters makas lift sisteminin önden görünüsü, Sekil 2: Teknigin bilinen durumunda yer alan ters makas lift sisteminde yer alan vinç mekanizmasinin üç boyutlu görünüsü, Sekil 3: Bulus konusu kaldirma mekanizma sisteminin önden görünüsü, Sekil 4: Bulus konusu kaldirma mekanizma sisteminin üç boyutlu görünüsü. Sekillerdeki Referanslarin Açiklamasi 1 Makas lift sistemi 2 Çelik halatlar 3 Sarim mekanizmasi 4 Kanopi kismi Parasütün ipleri 6 Döndürme motoru 7 Elektrik motoru 8 Lineer yataklama sistemi 9 Vidali mil Özel somun Bulusun Açiklamasi Önceki teknikteki makas lift sitemi (1), yukarida teknigin bilinen durumunda Sekil - 1 ve Sekil- 2 yardimiyla açiklanmisti. Bulusa konu olan parasütle atlama egitim simülatörlerinde, dolanmis ipten kurtulma simülatöründeki kaldirma mekanizma sistemi çok daha güvenlidir. Daha hassas hareketler sagladigi için yükseklik degerleri hassastir. Salinim hareketlerinden etkilenmeyerek stabil bir sekilde personelin yukariya kaldirilmasini saglamaktadir. Personel yukarida iken personelin salinim hareketlerinden etkilenmemektedir ve uzun vadede sistemin saglikli bir sekilde çalismasi saglanmaktadir. Parasütle atlama egitim simülatörlerinde, dolanmis ipten kurtulma simülatöründeki kaldirma mekanizma sistemi elektrik motoru (7), bu motora bagli vidaIi mil (9) ve dört adet lineer yataklama sisteminden (8) olusur. Kaldirma islemi için elektrik motoruna (7) dön komutu verildikten sonra motor mili dönmeye baslar. Motor miIine bagli olan vidaIi mil (9) motor mili ile birlikte dönmeye baslar. Vidali mil (9) kanopinin üst kisminda bulunan özel somun (10) içinde dönmeye basladikça kanopi kismi yukari dogru harekete geçer. Bu hareketle beraber personel de yukari dogru ipler vasitasi ile çekilmeye baslar. Hareket sirasinda sistemdeki dört adet lineer yataklama sistemi (8) hareketin dogrusal ve stabil bir sekilde gerçeklesmesini saglar. egitimi baslamis olur. Mevcut bulusta, kaldirma isini çelik halatlar yerine vidaIi mil (9) sistemi yapmaktadir. Vidali mil (9) sisteminde kaldirma isi yapilirken asagi kaçirma riski yoktur. Yaptigi is sebebi ile vidaIi miIIerde kullanilan malzeme dayanimlari oldukça yüksektir. Bulusta, egitim sirasinda yapilan salinim hareketlerinin mekanizma üzerinde olusacak etkisini sifirlamak için dört taraftan lineer yataklama yapilmaktadir. Lineer yataklama sistemleri üç boyutlu yazicilar gibi hassas makinalarda bile hareketlerin stabil halde yapilmasini saglamaktadir. Ayrica bu bulusta vidaIi mil (9) kullanildigindan kaldirilan yükseklik hassastir ve uzun vadede de bu hassasiyeti koruyacaktir. Son olarak, mevcut bulusta, kaldirma sistemin stabilitesini koruyan yataklama sistemi (8) ile vidali mil (9) sistemi kullanilarak sistem basite indirgenmistir. Önceki uygulamalarda kullanilan makas lift sisteminde (1) çok eklemli yapi ile beraber bir çok baglanti, çelik halatlar için bir çok makara sistemi ve baglanti parçalari bulunmaktadir. TR TR TR TR DESCRIPTION SIMULATOR FOR RESCUE FROM TANGLED PARACUTE ROPE This application is for the simulator in which training is given on the escape scenario from entangled parachute ropes that may occur after the jump in Parachute Jumping Training Simulators. The prepared simulator is used in airline companies, universities or private companies for training purposes. State of the Art Parachute jump training simulators are ground-mounted for the training of people who will jump. In the application, a parachute jump simulator and the training process are explained in general. In this simulator, environmental conditions are simulated and the training of the jumper from the aircraft to the ground is explained. A trained simulation system is described. In this system, the focus is mostly on how to eliminate the vertigo and G-LOC dangers that pilots may encounter. It was explained in the application. However, none of these inventions provide any information on how to get rid of a tangled rope while jumping. In the known state of the technique, the Reverse Scissor Lift System is used to get rid of the tangled rope during parachute jump training. In order to better understand this technique, which was applied before the present invention, first of all, the training to get rid of the tangled rope in parachute jumping is explained in the following paragraphs with the help of Figure-1 and Figure-2. At the beginning of the training, the personnel connects himself to the system by wearing the parachute hanging down from the system hanging above. The total height of the system is approximately 10 meters. When the training begins, the personnel's feet are on the ground and the parachute strings (5) to which the personnel are attached provide ideal conditions, each of them hanging straight from the mechanism to the parachute. With the training start command, the canopy part (4) to which the parachute ropes are attached above rotates 8-10 times around itself thanks to the rotation motor (6), allowing the ropes to become entangled. After these tangled ropes (5), the system moves 50-100 cm upwards and lifts the personnel into the air. And in the end, the personnel finds himself in the air with the parachute cords tangled together. From now on, the main training will be for the personnel to try to untangle the tangled ropes while in the air by making correct hand and foot swing movements. In this training simulator system, the mechanism used to lift the personnel up in the previous technique is the scissor lift system (1), designed in reverse and connected to a rigid structure above, and the electric motor and steel rope winding mechanism (3), that is, the crane system. In this previously implemented structure, the task of lifting and lowering the system is entirely the motor and the steel rope winding mechanism to which it is connected (3). In other words, steel ropes (2) carry the entire load. The function of the reverse scissor lift (1) used is to ensure that the up-down movement is performed in a linear manner. The Reverse Scissor Lift System has many drawbacks, listed below: o The scissor lift lifts steel ropes upwards. If these steel ropes escape from their connection points or break, the scissor lift will freely swing downwards. In addition to the personnel falling hard to the ground, there is also a risk of the approximately 400-kilogram scissor lift system falling onto the personnel from approximately 10 meters. o The reverse scissor lift system flexes too much during the oscillating movements applied by the person receiving the training, and the system itself also makes an oscillating movement. First of all, training cannot be simulated accurately. In addition, as a result of these oscillatory movements, dynamic loads are constantly imposed on all scissor lift connections. While these dynamic loads cause material fatigue in the long term, fractures and cracks may occur. 0 There is a risk of stretching in the ropes in the long run and the lifted height is not sensitive. 0 It has a complex structure because it consists of many parts. This not only increases the risk of error in the system, but also increases maintenance time and costs. Purpose of the Invention The purpose of the invention is to develop a mechanism that has a sensitive height value, is not affected by oscillatory movements, and allows the personnel to be lifted up in a stable manner in parachute jumping training simulators and entangled rope escape simulators. Another aim of the invention is to develop a safe, sensitive, simple and low-cost lifting mechanism that works healthily in the long term. Explanation of Drawings: In the parachute jumping training simulators that are the subject of the invention, the mechanism of getting rid of the entangled rope is shown in the attached figures. The figures are given to explain the invention and the scope of the invention is not limited to the figures. The scope of the invention is determined by the claims. Figure 1: Front view of the reverse scissor lift system in the state of the art, Figure 2: Three-dimensional view of the crane mechanism in the reverse scissor lift system in the state of the art, Figure 3: Front view of the lifting mechanism system subject to the invention, Figure 4: Invention Three-dimensional view of the lifting mechanism system in question. Explanation of References in the Figures 1 Scissor lift system 2 Steel ropes 3 Winding mechanism 4 Canopy part Parachute ropes 6 Rotation motor 7 Electric motor 8 Linear bearing system 9 Screw shaft Special nut Description of the Invention The scissor lift system (1) in the previous art is shown above in the state of the art. Figure - It was explained with the help of Figure 1 and Figure 2. In the parachute jumping training simulators that are the subject of the invention, the lifting mechanism system in the entangled rope escape simulator is much safer. Height values are precise as they provide more precise movements. It allows the personnel to be lifted up in a stable manner without being affected by oscillatory movements. While the personnel is up, they are not affected by the oscillatory movements of the personnel and the healthy operation of the system is ensured in the long term. In parachute training simulators, the lifting mechanism system in the entangled rope escape simulator consists of an electric motor (7), a screw shaft (9) connected to this motor and four linear bearing systems (8). After the turn command is given to the electric motor (7) for the lifting process, the motor shaft starts to rotate. The screw shaft (9) connected to the motor shaft starts to rotate with the motor shaft. As the screw shaft (9) begins to rotate in the special nut (10) located on the upper part of the canopy, the canopy part moves upwards. With this movement, the staff begins to be pulled upwards by means of the ropes. During the movement, four linear bearing systems (8) in the system ensure that the movement occurs in a linear and stable manner. education begins. In the present invention, the screw shaft (9) system does the lifting work instead of steel ropes. There is no risk of falling down during lifting work in the screw shaft (9) system. Due to the work it does, the strength of the materials used in screw shafts is quite high. In the invention, linear bearings are made from four sides in order to nullify the effect of oscillatory movements made during training on the mechanism. Linear bearing systems ensure stable movements even in sensitive machines such as three-dimensional printers. In addition, since the screw shaft (9) is used in this invention, the lifted height is sensitive and will maintain this sensitivity in the long term. Finally, in the present invention, the system is simplified by using the bearing system (8) and the screw shaft (9) system, which maintains the stability of the lifting system. The scissor lift system (1) used in previous applications has a multi-joint structure, many connections, many pulley systems and connection parts for steel ropes. TR TR TR TR