TR2022015108A2 - ROBOT ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM - Google Patents

ROBOT ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM Download PDF

Info

Publication number
TR2022015108A2
TR2022015108A2 TR2022/015108A TR2022015108A TR2022015108A2 TR 2022015108 A2 TR2022015108 A2 TR 2022015108A2 TR 2022/015108 A TR2022/015108 A TR 2022/015108A TR 2022015108 A TR2022015108 A TR 2022015108A TR 2022015108 A2 TR2022015108 A2 TR 2022015108A2
Authority
TR
Turkey
Prior art keywords
skull
robot
brain
entry
vascular tree
Prior art date
Application number
TR2022/015108A
Other languages
Turkish (tr)
Inventor
Aydoğmuş Ömür
Fati̇h Talu Muhammed
Original Assignee
Firat Ueniversitesi Rektoerluegue
Inoenue Ueniversitesi Rektoerluegue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firat Ueniversitesi Rektoerluegue, Inoenue Ueniversitesi Rektoerluegue filed Critical Firat Ueniversitesi Rektoerluegue
Priority to TR2022/015108A priority Critical patent/TR2022015108A2/en
Publication of TR2022015108A2 publication Critical patent/TR2022015108A2/en
Priority to PCT/TR2023/051054 priority patent/WO2024076327A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B2010/0208Biopsy devices with actuators, e.g. with triggered spring mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Buluş, robot destekli çerçevesiz stereotaktik beyin biyopsi sistemi ile ilgilidir. Bu sistemde, kafa sabitleyiciyle ameliyat masasına sabitlenen hastadan sırayla Manyetik Rezonans Görüntüleme (MRI) ve Manyetik Rezonans Anjiografi (MRA) çekimleri alınmakta ve hasta direk ameliyathaneye sevk edilerek robotik biyopsisi yapılabilmektedir.The invention relates to a robot-assisted frameless stereotactic brain biopsy system. In this system, Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA) shots are taken respectively from the patient who is fixed on the operating table with a head stabilizer, and the patient can be directly referred to the operating room for a robotic biopsy.

Description

TARIFNAME ROBOT DESTEKLI ÇERÇEVESIZ STEREOTAKTIK BEYIN BIYOPSI SISTEMI TEKNIK ALAN Bulus, robot destekli çerçevesiz stereotaktik beyin biyopsi sistemi ile ilgilidir. Bu sistemde, kafa sabitleyiciyle ameliyat masasina sabitlenen hastadan sirayla Manyetik Rezonans Görüntüleme (MRl) ve Manyetik Rezonans Anjiografi (MRA) çekimleri alinmakta ve hasta direk ameliyathaneye sevk edilerek robotik biyopsisi yapilabilmektedir. ÖNCEKI TEKNIK Beyin biyopsisi oldukça önemli ve kritik bir islemdir. Stereotaktik çerçeve tabanli beyin biyopsisi, tümörlü/lezyonlu dokuyu elde etmede uzun yillardir tercih edilen bir yöntem olmustur. Burada çerçeve, genellikle hasta tiras yapilmadan ve dik pozisyondayken kafaya yerlestirilir ve sabitleme ignelerinin kafaya temas eden bölgelerine lokal anestezi uygulanir. Çerçeve yerlestirildikten sonra Bilgisayarli Tomografi (CT) veya Manyetik Rezonans Görüntüleme (MRl) bilgisi elde edilerek yörünge planlama asamasina geçilir. Bu asamada, tümörlü bölgenin alani ve giris noktasi belirlenir. Tümör hedefini belirlemede, yüksek dereceli gliomlarda genellikle yüksek kontrastli CT yeterli olurken, düsük dereceli gliomlarda, T2 agirlikli bir MRl daha iyi hedeflemeye izin verebilir. Giris noktasi belirlenirken, dural kan damari, kortikal kan damari veya sulkusa girilmesini önleyecek sekilde planlama yapilir. Genellikle pial veya ependimal yüzeyleri dikkate alan ve anlamli korteksten kaçinan en kisa mesafeli yörünge tercih edilir. Yörünge planlama safhasi tamamlandiktan sonra hasta ameliyathaneye yönlendirilir. Beyindeki bölgelere rahat erisim için genellikle hasta ameliyat masasina sirt üsttü yatirilir, çerçeve, ameliyat masasina sabitlenir ve biyopsiye baslanir. Giris noktasinin açilmasinda döner matkap veya frez deligi yöntemleri kullanilir. Döner matkap yönteminde, 11 veya 15 numarali nesterlerle maksimum 2,7 mm çapli dairesel bir giris açilir. Yüksek hizli frez deligi yaklasiminda, daha büyük çaplarda bir bölge açilir, ancak damar yapilarina girilme riski azalir. Delik açildiktan sonra biyopsi ignesi uygun derinlige kadar ilerletilir. Planlanan derinlikte igne yan kesme portu açik bir sekilde 180 derece döndürülür ve parça igne içerisine alinir. Tek operasyonda birden çok parça alinabilir. Alinan parçalar patolojik incelemeye gönderilir. Kafa derisi sütür ile kapatilir ve çerçeve çikarilir. Dolayisiyla, bilinen teknikteki sistemlerin dezavantajlar asagida listelenmistir; - Hasta kafasina çerçeve takilmasi, - Harici bir algilayici (kizil ötesi kamera) veya isaretleyici (kafa derisine yapistirilan veya ignelenen marker) kullanimina gerek duyulmasi, - Giris-Hedef ekseni boyunca damar girisi olmayacagini garanti etmemesi, - Giris kemik noktasinin dairesel kesi alaninin çapinin 2-3 cm olmasi, - Nihai ayarlamalarinin operatör tarafindan manuel olarak yapilmasi bu nedenle hedef noktaya (tümör merkezi) yüksek dogrulukta ulasilamamasi, - Geleneksel beyin biyopsi sistemi 1. gün MRl/CT çekimi ve inceleme süreci, 2. gün ise ameliyat sürecinin olmasi. BULUSUN KISA AÇIKLAMASI Bulus; kafa sabitleyiciyle ameliyat masasina sabitlenen hastadan sirayla MRl ve MRA çekimleri alinarak ve hasta direk ameliyathaneye sevk edilerek robot destekli çerçevesiz stereotaktik beyin biyopsi sistemi ile ilgilidir. MRl/MRA inceleme ve isaretleme süreçlerinin geleneksel yöntemlere göre hizli (yaklasik 20 dakika) oldugu bu sistemde, kafatasi kalinlik haritasi, beyin damar agaci segmentasyon birimi, giris noktasi bulma birimi ve robotik operasyon birimi karar destek sistemini "Robotik Biyopsi" adli tek bir çati altinda birlikte çalismasi saglanmaktadir. Böylece operatör hekimin karar almasi ve uygulamasina yardimci olmaktadir. Bu sistemle hasta kafatasina çerçeve takilmamakta, MRl-CT örtüstürmesi gibi kayipli operasyonlara gerek duyulmamakta, tek asamali ardisik bir sekilde devam etmekte, cerraha yardimci yazilimlar sayesinde Giris-Hedef ekseni kisa ve damar girisi içermemekte, Giris kemik kalinligi ince olmakta, dairesel kesi alani çapi 2-3 cm'den igne çapina (2 mm) düsürülmekte ve Robotik sistemle hedef noktaya (tümör merkezi) milimetre alti hassasiyetle ulasilmaktadir. Ayrica bu sistem diger birçok organ biyopsi uygulamalari için kullanilabilir bir yaklasim saglamaktadir. SEKIL LISTESI Sekil 1. Robot Destekli Çerçevesiz Stereotaktik Beyin Biyopsi Sistem Görünümü Sekil 2.Robot Destekli Çerçevesiz Stereotaktik Beyin Biyopsi Koordinat Sistem Görünümü Sekillerde Gösterilen Numaralarin Karsiliklari 1. Karar Destek Sistemi 1.1. Kafatasi kalinlik haritasi 1.2. Beyin damar agaci segmentasyon birimi 1.3. Giris noktasi bulma birimi 1.4. Robotik operasyon birim Robot kontrol ünitesi Biyopsi ignesi Kafa sabitleyici Ek acil buton NFDFT'PWN Koordinat sistemleri 7.1. Robot koordinat sistemi 7.2. Kafa giris noktasi koordinat sistemi 7.3. Tümör merkez koordinat sistemi 7.4. Kafa sabitleyici koordinat sistemi BULUSUN DETAYLI AÇIKLAMASI Bulus, karar destek sistemi (1) [kafatasi kalinlik haritasi (1 .1), beyin damar agaci segmentasyon birimi (1.2), giris noktasi bulma birimi (1.3), robotik operasyon birimi (1.4)], robot kontrol ünitesi (2), robot (3) biyopsi ignesi (4), kafa sabitleyici (5), ek acil buton (6) ve koordinat sistemleri (7) [robot koordinat sistemi (7.1) kafa giris noktasi koordinat sistemi (7.2), tümör merkez koordinat sistemi (7.3), kafa sabitleyici koordinat sistemi (74)] bilesenlerinden olusmaktadir. Kafatasi kalinlik haritasinin (1.1) olusturulmasi; MRl verisinin filtrelenmesini, kafatasi yapisinin çikarilmasi ve kafatasi üzerindeki her bir noktanin kalinlik degerlerinin hesaplanmasini içermektedir. Bu sayede kafatasi kemiginin nerelerde kalin nerelerde ince oldugu net bir sekilde anlasilabilmektedir Böylece delme islemi kafatasinin en ince kismindan gerçeklestirilebilmektedir. Kafatasi kalinlik haritasinin (1.1) belirlenmesi için algoritma bes asamali bir islem içermektedir. Bu asamalar MRl verisi bölütlenerek kafatasinin çikarilmasi, bölütlenmis kafatasindan LabelMap ve Model elde edilmesi, LabelMap verisi BinaryThinninglmageFilter kullanilarak medial yüzey elde edilmesi, DanielssonDistanceMaplmageFilter araciligiyla medial yüzeyden uzaklik haritasi (distance map) ve uzaklik haritasi "Probe Volume with Model" kullanilarak kafatasi kalinlik haritasinin (1.1) elde edilmesidir. Giris noktasinin belirlenmesinde, Giris-Hedef ekseninde damar yapisina girilip girilmemesinin belirlenmesi büyük bir önem olusturmaktadir. Bunun belirlenmesi için beyin damar agacinin tespit edilmesi gerekmektedir. Arteriyel beyin damarlarinin segmentasyonu için MRA verisi kullanilmaktadir. MRA çekimlerini girdi olarak ve çikti olarak beyin damar agacini üretecek beyin damar agaci segmentasyon birimi (1.2), robotik operasyon birimi (1.4) içerisine entegre edilebilmektedir. Bu beyin damar agaci segmentasyon birimi (1.2) MRA yogunluk degerlerini cerrahin alt ve üst kesme degerleriyle filtreleyebilmesini ve damar agaci modelinin üretilmesini içermektedir. Ayrica, MRA kullanilarak üretilecek beyin damar agaci modelinin MRl verisi içerisine aktarilmasi saglanmaktadir. Tümör merkezi, beyin damar agaci ve kafatasi kalinlik harita bilgilerini içeren tek bir model üretildikten sonra giris noktasinin model üzerinde nerede olacagina karar verilmis ve böylece Giris-Hedef ekseni net bir sekilde belirlenmistir. Giris-Hedef ekseni kisa ve damar girisi içermemekte, giris kemik kalinligi ince olmakta, dairesel kesi alani igne çapina (en az 1 mm) düsürülmekte ve robotik sistemle hedef noktaya (tümör merkezi) milimetre alti hassasiyetle ulasilmaktadir. Bu hassasiyet kullanilan robot kolun donanimina bagli olarak en az 0,05 mm'dir. Bunun için yapilan Giris Noktasi Bulma birimi (1.3) cerraha yardimci olmaktadir. Giris Noktasi Bulma birimi (1.3) ilk olarak cerrahtan girmeyi planladigi noktaya kabaca bir isaretçi koymasini istemektedir. Daha sonra sirasiyla isaretçi merkezli daire içerisindeki (yariçapi önceden en az 1 cm olarak belirlenen) modelin yüzey noktalari tespit edilmis ve bu noktalarin olusturdugu eksenlerin damara girip girmedigi belirlenmistir. Damar girisi olmayan noktalarin eksen uzunluk ve kafatasi kalinlik degerlerine göre uygunluk degerleri hesaplanmis ve cerrahin incelemesine sunulmustur. Bu uygunluk degeri, daire içeresindeki noktalarin hedefe olan uzakligi ve kafatasi kalinlik degerlerinin toplami ile hesaplanir. Daha sonra bu degerler siralanarak en küçük uygunluk degerine sahip nokta cerrahin incelemesine sunulmaktadir. Cerrah, uygunluk degerine veya tercihine göre nihai giris noktasini belirlemektedir. Tüm bu noktalar robotun (3) 3 boyutlu uzayi ile eslestirilerek robotun (3) otomatik olarak belirlenen noktalara operasyon yapmasini saglamaktadir. Böylece yari otonom ve tam kontrollü bir giris noktasi bulma yaklasimi saglanmistir. Kafatasi kalinlik haritasinin (1.1) olusturulmasi, beyin damar agaci segmentasyon biriminin (1.2) tespit edilmesi ve giris noktasi bulma birimi (1.3) asamalarindan sonra hesaplanan kafatasi giris noktasi ve tümör merkezi referans noktalari robotun (3) çalisma uzayi koordinat sistemine (7) dönüstürülür. Bu dönüstürme islemi hesaplanan kalibrasyon matrisi kullanilarak gerçeklestirilir. Böylece robotun (3) kendi çalisma uzayina göre giris noktasindan tümörün merkez noktasina dogru lineer bir çizgide hatasiz olarak ilerlemesi saglanir. Robot (3) "Basla" komutunu aldiktan sonra otomatik olarak referans giris noktasina hareket eder. Daha sonra cerrahin "Onay" komutunu aldiktan sonra giris islemini baslatir. Dolayisiyla, kafatasi kalinlik haritasinin (1.1) olusturulmasi ve tam kontrollü karar destek sistemi (1) ile robot kolunun entegre çalistigi bir sistem saglanmistir. Robotun (3) acil stop butonuna basildiginda tüm eksenler frenlenerek kilitlenir. Ancak bu durumda biyopsi ignesi (4) kafatasi içerisinde kalacagindan dolayi operasyon dogasina uygun degildir. Bu nedenle bulusumuzda ek bir acil buton (6) bulunmaktadir. Ek acil butona (6) basildiginda giris-hedef ekseninin tersi yönünde biyopsi ignesinin (4) kafatasindan çikmasi saglanmistir. TR TR TR TR DESCRIPTION ROBOT-ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM TECHNICAL FIELD The invention relates to a robot-assisted frameless stereotactic brain biopsy system. In this system, Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA) images are taken sequentially from the patient, who is fixed to the operating table with a head stabilizer, and the patient is transferred directly to the operating room and a robotic biopsy can be performed. BACKGROUND ART Brain biopsy is a very important and critical procedure. Stereotactic frame-based brain biopsy has been a preferred method for obtaining tumor/lesion tissue for many years. Here, the frame is placed on the head, usually without shaving, while the patient is in an upright position, and local anesthesia is applied to the areas of the fixation needles that contact the head. After the frame is placed, Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) information is obtained and the orbit planning phase begins. At this stage, the area and entry point of the tumor area are determined. In determining the tumor target, high-contrast CT is usually sufficient in high-grade gliomas, while in low-grade gliomas, a T2-weighted MRI may allow better targeting. When determining the entry point, planning is done to prevent entry into the dural blood vessel, cortical blood vessel or sulcus. Generally, the shortest distance trajectory that takes into account the pial or ependymal surfaces and avoids significant cortex is preferred. After the trajectory planning phase is completed, the patient is directed to the operating room. For easy access to areas in the brain, the patient is usually placed on his back on the operating table, the frame is fixed to the operating table, and the biopsy is started. Rotary drill or bur hole methods are used to open the entry point. In the rotary drill method, a circular entrance with a maximum diameter of 2.7 mm is opened with nesters number 11 or 15. In the high-speed bur hole approach, a larger diameter area is opened, but the risk of entering vascular structures is reduced. After the hole is made, the biopsy needle is advanced to the appropriate depth. At the planned depth, the needle is rotated 180 degrees with the side cutting port open and the part is taken into the needle. Multiple parts can be removed in a single operation. The taken pieces are sent for pathological examination. The scalp is closed with sutures and the frame is removed. Therefore, the disadvantages of prior art systems are listed below; - Attaching a frame to the patient's head, - Requiring the use of an external sensor (infrared camera) or marker (marker glued or pinned to the scalp), - It does not guarantee that there will be no vascular entry along the Entry-Target axis, - The diameter of the circular incision area of the entry bone point is 2 - 3 cm, - Final adjustments are made manually by the operator, so the target point (tumor center) cannot be reached with high accuracy, - Traditional brain biopsy system has MRI/CT imaging and examination process on the 1st day, and surgery process on the 2nd day. BRIEF DESCRIPTION OF THE INVENTION Invention; It involves a robot-assisted frameless stereotactic brain biopsy system by sequentially taking MRI and MRA images from the patient, who is fixed to the operating table with a head stabilizer, and transferring the patient directly to the operating room. In this system, where MRI/MRA examination and marking processes are faster (about 20 minutes) than traditional methods, the skull thickness map, cerebral vascular tree segmentation unit, entry point finding unit and robotic operation unit decision support system are under a single roof called "Robotic Biopsy". It is ensured that they work together. Thus, the operator helps the physician make and implement decisions. With this system, no frame is attached to the patient's skull, there is no need for lossy operations such as MRI-CT overlapping, it continues in a single-stage sequential manner, thanks to the software that assists the surgeon, the Entry-Target axis is short and does not contain vascular access, the entry bone thickness is thin, the diameter of the circular incision area is 2. -The needle diameter is reduced from 3 cm to (2 mm) and the target point (tumor center) is reached with sub-millimeter precision with the robotic system. Additionally, this system provides a usable approach for many other organ biopsy applications. LIST OF FIGURES Figure 1. Robot Assisted Frameless Stereotactic Brain Biopsy System View Figure 2. Robot Assisted Frameless Stereotactic Brain Biopsy Coordinate System View Correspondence of the Numbers Shown in the Figures 1. Decision Support System 1.1. Skull thickness map 1.2. Cerebral vascular tree segmentation unit 1.3. Entry point discovery unit 1.4. Robotic operation unit Robot control unit Biopsy needle Head stabilizer Additional emergency button NFDFT'PWN Coordinate systems 7.1. Robot coordinate system 7.2. Head entry point coordinate system 7.3. Tumor center coordinate system 7.4. Head stabilizer coordinate system DETAILED DESCRIPTION OF THE INVENTION Invention, decision support system (1) [skull thickness map (1.1), cerebral vascular tree segmentation unit (1.2), entry point finding unit (1.3), robotic operation unit (1.4)]. robot control unit (2), robot (3) biopsy needle (4), head stabilizer (5), additional emergency button (6) and coordinate systems (7) [robot coordinate system (7.1) head entry point coordinate system (7.2) , tumor center coordinate system (7.3), head stabilizer coordinate system (74)]. Creating the skull thickness map (1.1); It involves filtering the MRl data, extracting the skull structure and calculating the thickness values of each point on the skull. In this way, it can be clearly understood where the skull bone is thick and where it is thin. Thus, the drilling process can be performed from the thinnest part of the skull. The algorithm for determining the skull thickness map (1.1) includes a five-step process. These stages are removing the skull by segmenting the MRl data, obtaining a LabelMap and Model from the segmented skull, obtaining a medial surface using the LabelMap data BinaryThinninglmageFilter, creating a distance map from the medial surface via DanielssonDistanceMaplmageFilter, and creating a skull thickness map (1.1) using the distance map "Probe Volume with Model". ) is to be obtained. In determining the entry point, determining whether or not to enter the vascular structure on the Entry-Target axis is of great importance. To determine this, the cerebral vascular tree must be identified. MRA data is used for segmentation of arterial brain vessels. The cerebral vascular tree segmentation unit (1.2), which will produce MRA images as input and the cerebral vascular tree as output, can be integrated into the robotic operation unit (1.4). This cerebral vascular tree segmentation unit (1.2) includes the surgeon's ability to filter MRA density values with lower and upper cutoff values and the production of the vascular tree model. Additionally, the cerebral vascular tree model produced using MRA can be transferred into the MRI data. After a single model containing tumor center, cerebral vascular tree and skull thickness map information was produced, it was decided where the entry point would be on the model and thus the Entry-Target axis was clearly determined. The Entry-Target axis is short and does not include vascular access, the entry bone thickness is thin, the circular incision area is reduced to the needle diameter (at least 1 mm), and the target point (tumor center) is reached with sub-millimeter precision with the robotic system. This precision is at least 0.05 mm, depending on the hardware of the robotic arm used. The Entry Point Finding unit (1.3) built for this purpose helps the surgeon. The Entry Point Finding unit (1.3) first asks the surgeon to place a rough marker at the point he plans to enter. Then, the surface points of the model within the pointer-centered circle (the radius of which was previously determined as at least 1 cm) were determined, and it was determined whether the axes formed by these points entered the vein. The suitability values of the points without vascular access were calculated according to the axis length and skull thickness values and were presented to the surgeon for review. This fitness value is calculated by the sum of the distance of the points in the circle to the target and the skull thickness values. These values are then ranked and the point with the smallest suitability value is presented to the surgeon for examination. The surgeon determines the final entry point based on suitability or preference. All these points are matched with the 3-dimensional space of the robot (3), allowing the robot (3) to operate automatically at the determined points. Thus, an approach to finding a semi-autonomous and fully controlled entry point was provided. After the creation of the skull thickness map (1.1), the determination of the cerebral vascular tree segmentation unit (1.2) and the entry point finding unit (1.3), the calculated skull entry point and tumor center reference points are converted into the working space coordinate system (7) of the robot (3). This conversion process is performed using the calculated calibration matrix. Thus, the robot (3) is ensured to move error-free in a linear line from the entry point to the center point of the tumor, according to its own working space. Robot (3) automatically moves to the reference entry point after receiving the "Start" command. Then, the surgeon starts the login process after receiving the "Approval" command. Therefore, a system in which the robotic arm works integratedly with the creation of the skull thickness map (1.1) and the fully controlled decision support system (1) has been provided. When the emergency stop button of the robot (3) is pressed, all axes are braked and locked. However, in this case, the operation is not suitable for the nature of the biopsy needle (4) as it will remain in the skull. For this reason, there is an additional emergency button (6) in our invention. When the additional emergency button (6) is pressed, the biopsy needle (4) is allowed to exit the skull in the opposite direction of the entry-target axis. TR TR TR TR

Claims (1)

ISTEMLER 1. Robot destekli çerçevesiz stereotaktik beyin biyopsi karar destek sistemi (1) olup, özelligi; kafatasi kemiginin kalinliginin ve inceliginin net bir sekilde anlasilabilmesi için delme islemi kafatasinin en ince kismindan gerçeklestirilerek; MRl verisinin filtrelenmesini, kafatasi yapisinin çikarilmasi ve kafatasi üzerindeki her bir noktanin kalinlik degerlerinin hesaplanmasini saglayan kafatasi kalinlik haritasi (1.1), robotik operasyon birimi (1.4) içerisine entegre edilebilen, MRA çekimlerini girdi ve beyin damar agacini çikti olarak üreten ve beyin damar agaci modelinin MRl verisi içerisine aktarilmasi saglayan beyin damar agaci segmentasyon birimi (1.2), cerrahin manuel girmeyi planladigi noktayi merkeze alarak, yariçapi en az 1 cm olarak belirlenen modelin yüzey noktalari tespit edilerek ve bu noktalarin olusturdugu eksenlerin damara girip girmedigi belirlenerek cerraha yardimci olan yari otonom ve tam kontrollü giris noktasi bulma robotun (3) acil stop butonuna basildiginda tüm eksenlerin frenlenerek kilitlenmesi biyopsi ignesini (4) kafatasi içerisinde biraktigindan, giris- hedef ekseninin tersi yönünde biyopsi ignesini (4) kafatasindan çikmasini saglayan ek acil buton (6) içermesiyle karakterizedir.1. It is a robot-assisted frameless stereotactic brain biopsy decision support system (1), and its features are; In order to clearly understand the thickness and thinness of the skull bone, the drilling process is carried out from the thinnest part of the skull; The skull thickness map (1.1), which enables filtering of the MRl data, extraction of the skull structure and calculation of the thickness values of each point on the skull, can be integrated into the robotic operation unit (1.4), which produces the MRA images as input and the brain vascular tree as output and produces the MRl of the brain vascular tree model. Cerebral vascular tree segmentation unit (1.2), which allows data to be transferred into the brain, is a semi-autonomous and fully controlled device that helps the surgeon by centering the point where the surgeon plans to enter manually, by detecting the surface points of the model with a radius of at least 1 cm, and by determining whether the axes formed by these points enter the vein. The entry point finding is characterized by the fact that when the emergency stop button of the robot (3) is pressed, all axes are braked and locked, leaving the biopsy needle (4) inside the skull, and it contains an additional emergency button (6) that allows the biopsy needle (4) to exit the skull in the opposite direction of the entry-target axis.
TR2022/015108A 2022-10-03 2022-10-03 ROBOT ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM TR2022015108A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2022/015108A TR2022015108A2 (en) 2022-10-03 2022-10-03 ROBOT ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM
PCT/TR2023/051054 WO2024076327A1 (en) 2022-10-03 2023-10-02 Robot-assisted frameless stereotactic brain biopsy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/015108A TR2022015108A2 (en) 2022-10-03 2022-10-03 ROBOT ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM

Publications (1)

Publication Number Publication Date
TR2022015108A2 true TR2022015108A2 (en) 2022-10-21

Family

ID=85162396

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/015108A TR2022015108A2 (en) 2022-10-03 2022-10-03 ROBOT ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM

Country Status (2)

Country Link
TR (1) TR2022015108A2 (en)
WO (1) WO2024076327A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201006971D0 (en) * 2010-04-26 2010-06-09 Renishaw Ireland Ltd Apparatus and method for implanting a medical device
KR102201828B1 (en) * 2020-02-24 2021-01-26 (주)서한케어 Apparatus for position guide
AU2022262818A1 (en) * 2021-04-20 2023-12-07 Wyss Center For Bio And Neuro Engineering Automated drilling device and method
CN113349925A (en) * 2021-06-01 2021-09-07 浙江工业大学 Automatic auditory neuroma surgical path planning method based on full-automatic three-dimensional imaging

Also Published As

Publication number Publication date
WO2024076327A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
JP6568478B2 (en) Planning, guidance and simulation system and method for minimally invasive treatment
US11559290B2 (en) Navigable endobronchial tool to access tissue outside a bronchus
US10258413B2 (en) Human organ movement monitoring method, surgical navigation system and computer readable medium
EP2720636B1 (en) System for guided injection during endoscopic surgery
JP2966089B2 (en) Interactive device for local surgery inside heterogeneous tissue
US20150011866A1 (en) Probe for Surgical Navigation
US20080298660A1 (en) 3-dimensional diagnostic imaging system
US20010041835A1 (en) Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body
JP2002541885A (en) Method and system for guiding a diagnostic or therapeutic instrument towards a target area inside a patient's body
US20200345426A1 (en) Systems, methods, and devices for registering and tracking organs during interventional procedures
CN108135529A (en) For guiding the system and method for the insertion of medical instrument
JP2002526152A (en) Method and apparatus for positioning a device in the body
US20210196387A1 (en) System and method for interventional procedure using medical images
JP2000197630A (en) Tomographic apparatus
CN109758233A (en) A kind of diagnosis and treatment integrated operation robot system and its navigation locating method
US20050228251A1 (en) System and method for displaying a three-dimensional image of an organ or structure inside the body
JP2020096796A (en) Structure masking or unmasking for optimized device-to-image registration
US7734326B2 (en) Method and device for preparing a drainage
CN112566581A (en) System for ablation visualization
US20240050172A1 (en) Surgical pathway processing system, method, device, and storage medium
TR2022015108A2 (en) ROBOT ASSISTED FRAMELESS STEREOTACTIC BRAIN BIOPSY SYSTEM
CN116898572B (en) Cerebral hemorrhage puncture path setting method and system based on real-time traceable object
CN116236280B (en) Interventional therapy guiding method and system based on multi-mode image fusion
CN103957814B (en) The method of the assisted control of instrument and the assisted group piece installing of association
CN113876420B (en) Path planning method, system, device and medium for planning surgical path