TR2022013365A2 - KITOSAN BASED LAYER BLEEDING STOPPING GAUZE AND ITS PRODUCTION - Google Patents

KITOSAN BASED LAYER BLEEDING STOPPING GAUZE AND ITS PRODUCTION

Info

Publication number
TR2022013365A2
TR2022013365A2 TR2022/013365A TR2022013365A TR2022013365A2 TR 2022013365 A2 TR2022013365 A2 TR 2022013365A2 TR 2022/013365 A TR2022/013365 A TR 2022/013365A TR 2022013365 A TR2022013365 A TR 2022013365A TR 2022013365 A2 TR2022013365 A2 TR 2022013365A2
Authority
TR
Turkey
Prior art keywords
gauze
chitosan
blood
hemostatic
bleeding
Prior art date
Application number
TR2022/013365A
Other languages
Turkish (tr)
Inventor
Akyüz Lalehan
Duman Fati̇h
Original Assignee
Anda Biyoteknoloji Anonim Sirketi
Anda Bi̇yoteknoloji̇ Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anda Biyoteknoloji Anonim Sirketi, Anda Bi̇yoteknoloji̇ Anoni̇m Şi̇rketi̇ filed Critical Anda Biyoteknoloji Anonim Sirketi
Priority to TR2022/013365A priority Critical patent/TR2022013365A2/en
Publication of TR2022013365A2 publication Critical patent/TR2022013365A2/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

Buluş; hedef bölgeden çıkan kanın emiliminden ya da kanın akışının durdurulmasından sonra 1 ila 5 saate kadar bütünlüğü bozulmadan kalabilen ve ardından kolaylıkla bölgeden temizlenebilen kitosan temelli katmanlı kanama durdurucu gauze ve üretim yöntemi ile ilgilidir.Meet; It is related to the chitosan-based layered hemostatic gauze and its production method, which can remain intact for 1 to 5 hours after the blood coming out of the target area is absorbed or the blood flow is stopped, and then can be easily cleaned from the area.

Description

TARIFNAME KITOSAN TEMELLI KATMANLI KANAMA DURDURUCU GAUZE VE ÜRETIMI Teknik Alan Bulus yaralanmalarda kanamanin daha efektif sekilde yavaslatilarak durdurulmasi ve her bir katmanda pihtilasmanin saglanmasi üzere gelistirilen katmanli kanama Teknigin Bilinen Durumu Kan, vücuda besin ve oksijen dagitimini gerçeklestirirken, olusan atiklarin da uzaklastirilmasini saglayan sürekli dolasim halinde bir sividir. Bu hayati sivinin önemli miktarda kaybi sonucunda önce sok ve arkasindan ölüm gerçeklesebilir. Hayati kan kaybi durumlarinda sok ve ölüm, genellikle vücuttaki toplam kan hacminin kazalari gibi ciddi kanamali yaralanmalarda kanamanin 30 dakika içinde durdurulmasinin, yaralinin hayatta kalma oranini %85'e kadar arttirabilecegi bildirilmistir. Etkili bir hemostatik gazli bez/yara örtüsü gelistirilmesi, hayati tehlikeye neden olabilecek travmatik kanamanin hizli kanama kontrolü ile hayatta kalma oranini arttirmak açisindan kritik öneme sahiptir. Geleneksel olarak kanama kontrolünde turnikeler ve gazli bezler yaygin olarak kullanilmaktadir. Kol ve bacak gibi ekstremitelerde meydana gelen yaralanmalar için turnike uygulamasi kanama kontrolünde yeterli olamaz, dolayisiyla kanamayi durdurmak için özel hemostatik ajan (kan durdurucu) uygulamasi ve özel pansuman islemlerine ihtiyaç duyulur. Günümüzde bu amaçla toz, granül, sünger ve kan durdurucu uygulanmis gazli bez gibi farkli ürünler kullanilmaktadir. Son zamanlarda kitosan bazli kan durdurucular, biyouyumlu olmalari ve etkinliklerinin onaylanmasi gibi nedenlerle yaygin olarak kullanilmaktadirlar. Kitosan (poli-N-asetil glukozamin) dogada en çok bulunan ikinci biyopolimer olan kitinin deasetillenmis ürünüdür. Üzerindeki amin gruplari (NH) nedeniyle pozitif yüke sahiptir. Damar içerisinde kan akisi gerçeklesirken, trombositler ve eritrositler üzerindeki negatif yük elektrostatik bir itmeye neden olur ve bu nedenle pihtilasma olayi engellenir. Yaralanma halinde bu durumu tersine çevirmek ve kan pihtilasmasini saglamak için pozitif yüzey yüküne sahip ajanlar önemli bir rol oynayabilir. Daha önce bahsedildigi üzere mevcut teknikte kitosan yüzeyindeki pozitif yükler nedeniyle elektrostatik etkilesim meydana getirerek kan pihtilasmasina katki saglayabilir. Böylece çok daha kisa sürede kan pihtilasmasi gerçeklestirilebilir. Teknigin bilinen durumunda kitosan genellikle toz veya granül halinde satisa sunulmaktadir. Ancak, kitosan küçük partiküller halinde uygulandiginda damar içerisine kaçabilir ve orada tromboza neden olabilir. Bu durum özellikle acil müdahale sonrasi istenmeyen problemlere neden olabilir. Bu problemle basa çikmak adina, sünger formunda kitosan kan durdurucu ürünler gelistirilmistir. Ancak bunlar sivi absorbsiyonu ile birlikte hizla dagildiklari için kullanilabilirlikleri sinirlidir. Malzemenin uzun süre dagilmadan kalmasini saglamak amaciyla kullanilan glutaraldehit gibi çagraz baglayicilarin (crosslinker) toksik etkileri de olabilir ve ayrica kan hücrelerinin baglanacagi fonsiyonel (NH) gruplarin etkinligini de azaltabilir. Bu sebeple kitosanin gazli bezlere aplike edilerek kullanilmasi ön plana çikmistir. Bu durumda gazli beze veya farkli kaynaklardan elde edilmis yara örtülerine kitosanin tutturulmasi ve bez yüzeyinde kalarak kani emmesi ve pihtilasmayi hizlandirmasi istenmistir. Ancak, aplikasyonun kumasin her iki yüzeyine yapilmasi nedeniyle uygulama sirasinda önemli miktarda kitosan yüzeyden dökülebilmektedir. Bu durum granül boyutuna bagli olarak kitosanin damar içerisinde ilerleyerek pihti olusturmasina neden olabilir. Bu problemden yola çikarak, aplikasyon yönteminin, yapistirici ajanin ve ara baglayicinin degistirilmesi ile kitosanin neredeyse hiç dökülmeden kaldigi daha etkili bir yara örtüsü kanama durdurucu gelistirilebilir. Askeri ve saglik alanlarindaki ihtiyaçtan dolayi yüksek verimli hemostatik kanama durdurucu gelistirilmesine yönelik arastirma ve gelistirme faaliyetleri, hem akademi ve hem de medikal endüstriden oldukça ilgi görmektedir. Günümüzde jel, partikül ve sünger gibi farkli formlarda kanama durdurucular kullanilmaktadir. Ancak bunlarin her birinin kendine has pozitif ve negatif özellikleri mevcuttur. Örnegin küçük hacim nedeniyle, bir siringadan enjekte edilebilen hemostatikjel, büyük kanama alanlarinda uygulanamaz. Bu nedenle, yaygin olarak büyük veya küçük, yüzeysel veya derin kanamali yaralanmalar için gazli bez seklinde kan durdurucular tercih edilmektedir. Gazli bez formundaki kan durdurucularin da çesitleri mevcuttur. Örnegin, ipek veya polyester bir kumasa kaolin parçalari yapistirilarak bir ürün ortaya çikarilmistir. Benzer sekilde Zeolit ve pamuktan olusan kompozit liflerde ilgi görmektedir. Bunlara ek olarak hemostatik etkinligi bilinen, biyogüvenilirlik problemi olmayan "Kitosan" tabanli gazli bezlerde kullanilmaktadir. Kitosan, kirmizi kan hücreleri ve trombositlerle etkileserek pihti (trombus) olusturmasini kolaylastirir. Kitosan aplike edilmis gazli bezler, genellikle gazli bezin her iki yüzeyine kitosan granüllerinin fiziksel veya kimyasal yolla yapistirilmasi ile elde edilmektedir. Yapilan arastirmalarda tabakali (layer by layer) kan durdurucu gazli bez üretimine yönelik bir bilgiye ulasilamamistir. Yukarida da belirtildigi üzere gazli bez üzerine kanama durdurucu aplike edilmis farkli ürünler mevcuttur. Bu uygulamalarda farkli kaynaklardan üretilmis (pamuk, polipropilen, polietilen vs.) bir tasiyici ve onun üzerine aplike edilmis kanama durdurucu ajan (kitosan, kaolin vs.) kullanilmaktadir. Fakat buradaki en önemli sorun, yüzeye aplike yapildigindan kan durdurucu ajanin kolayca dökülebilmesidir. Küçük granüller halindeki kanama durdurucu ajan, damar içerisinde ilerleyerek pihtilasmaya neden olabilir ve bu durum kilcal kan damarlarda tikaniklik (tromboz) yaparak kangren, inme vs. gibi problemlere yol açabilir. Bu problemin çözümü için, tasiyici malzeme katmanlari arasinda ve yüzeyinde dökülmeden kalabilen, kani hizli bir sekilde absorbe edip pihtilasma saglayacak yeni bir kan durdurucu sisteme ihtiyaç Günümüzde kullanilan yara örtüsü seklindeki kan durdurucular genelde tek katmanli dokumasiz kumastan imal edilmektedir. Bu durum kan akisini engellemek için zayif bir bariyer özelligi göstermektedir. Buna alternatif olarak, katmanli (layer by layer) kan durdurucu sistemlerin gelistirilmesi durumunda kanamanin daha efektif sekilde yavaslatilarak durdurulmasi ve her bir katmanda pihtilasmanin saglanmasi gerçeklestirilebilir. Bulusun Kisa Açiklamasi Mevcut bulus, yukarida bahsedilen gereksinimleri karsilayan, tüm dezavantajlari ortadan kaldiran ve ilave bazi avantajlar getiren kitosan temelli katmanli kanama durdurucu gauze ve üretimi ile ilgilidir. Diger hemostatik ajanlarin avantaj ve dezavantajlari incelenmis, dezavantajlari bertaraf etmek üzere bir çalisma yürütülmüs ve eldeki veriler isiginda en verimli hemostatik ajan üretimi gerçeklestirilmistir. Kitosan gazli bez kanamali bir travmaya uygulandiginda, ilk olarak kanin fazlasi bez tarafindan emilir. Daha sonra emilen kan hücreleri kitosan ile elektriksel olarak etkilesime geçerek kanin pihtilasmasini saglar. Bulusun sagladigi en büyük avantaj kanin hem emilimini saglamasi hemde pihtilasmasini saglayarak hizlica kanamayi durdurmasidir. Katmanli sekilde dokumasiz kumaslarin arasina fonksiyonellendirilmis kitosan tabanli malzeme yerlestirilecektir. Böylece kan etkin bir sekilde emilirken, ayni zamanda kanamanin hizlica durdurulmasi da saglanacaktir. Bulusta sadece yüzeysel yapistirma olmayacagindan, kan durdurucu dökülmeyecektir. Böylece kan durdurucunun diger dokularla etkilesimi ve kan damari içerisine geçerek pihti olusturmasinin önüne geçilebilecektir. Bulusta bulunan bitkisel yapistirici olarak düsünülen malzeme, yüksek sivi emme kapasitesinin yaninda yüksek antioksidatif etkiye sahiptir. Temas ettigi noktalarda meydana gelmis olan zararli Reaktif Oksijen Türleri (ROS)'nin bertarafini da gerçeklestirebilecektir. Bu malzeme ayni zamanda antimikrobiyal ve antibakteriyel etkinlige de sahiptir. Bulusun bir diger avantajinin ise tasimasini kolaylastirmak adina hafif olmasidir. Ayni zamanda sterildir. Bulusun Detayli Açiklamasi Bu detayli açiklamada, kitosan temelli katmanli kanama durdurucu gauze ve üretimi tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Bulusta dokunmamis bir tasiyici malzemenin katmanlari arasina kan durdurucu ajan ekleneceginden yüzeysel uygulamaya göre daha fazla miktarda kan durdurucu uygulanabilecektir. Buda kanin çok daha hizli bir sekilde durdurulmasini saglar ve yaralinin acil yardim birimine en kisa zamanda ulasmasina katki saglayacaktir. Bulusa ayni zamanda analjezik, anestezik, antienflamatuar, antibiyotik gibi farmasötik ajanlarin, antimikrobiyal ajanlarin, antibakteriyel ajanlarin, enzimlerin ve/veya sitokinler gibi farkli ilaçlarin yapi içerisine katilmasiyla "kontrollü ilaç salinimi" gerçeklestirebilir. Mevcut bulus, kitosan bazli hemostatik bir ajan (gauze) elde etmek için hemostat bilesimin 20 g/m2 ila 120 g/m2 yüzey yogunluguna sahip dokunmamis bir tasiyici malzemeye emprenye edilmesi ile elde edilmektedir. Tasiyici malzeme bilesimin agirlikça %70 ila 95 ini olusturmaktadir. Kalan kisim ise hemostat bilesim ve yapistirici bilesimden olusur. Hemostat bilesim ve yapistirici bilesim tasiyici malzemenin katmanlari ve yüzeyinde bulunmaktadir. Buna ek olarak kan ile temas ettiginde hemostatik ajan yüzeyden ayrilmamaktadir. Bahsedilen hemostatik ajanin (gauze) % 70 ila %95 ini olusturan tasiyici malzeme selüloz, selüloz türevleri, viskon, polietilen, polipropilen ve polietilen tereftalat ve bunlarin iki ya da daha fazlasinin kombinasyonundan olusan dokunmamis bir malzemedir. Hemostatik ajanin % 5 ila %30 unu olusturan hemostat bilesiminin moleküler agirligi 150 ila 350 kDa arasinda olan kitosan, kitosan tuzu ya da kitosan türevlerinden ve/veya bunlarin iki ya da daha fazlasinin kombinasyonundan olusmaktadir. Burada kitosan türevleri O- ve N- karboksimetilkitosan, N-alkil kitosan, N-karboksi alkil (aril) kitosan, O-karboksialkil kitosan, N-metilen fosfonik kitosan, kitosanin seker türevleri olabilir. Hemostatik ajanin % 0,001 ila %1 ini olusturan yapistirici bilesim bitkisel içeriktedir ve dekstrin, Ingiliz zamki, müsilaj, aljinat, kitre ve selüloz türevleri ile bunlarin iki ya da daha fazlasinin kombinasyonunu içermektedir. Bahsesilen hemostat bilesimin içerisine analjezik, anestezik, antienflamatuar, antibiyotik gibi farmasötik ajanlarin, antimikrobiyal ajanlarin, antibakteriyel ajanlarin, enzimlerin ve sitokinler kolaylikla yerlestirilebilir ve kontrollü salim yapabilir. Bulusa konu kitosan temelli katmanli kanama durdurucu gauze (hemostatik ajan) üretim yöntemi su sekilde olur, hemostatik bilesiminin tasiyici malzemenin katmanlari arasina ve yüzeyine yapistirici bilesim kullanilarak yerlestirilir ve kurutulur. Hemostat bilesimin kurutulduktan sonra herhangi bir isil isleme maruz birakilmaz ve hemostat bilesimin sterilize edilir. Detayli üretim yöntemi o hemostatik ajanin (gauzenin) agirlikça %5 ila 30'unu olusturan hemostat bilesimi, hemostatik ajanin (gauzenin) agirlikça %001 ila %1' ini olusturan yapistirici bilesim ile karistirilarak hemostatik bir karisim olusturulmasi, o karisimin tasiyici malzemenin katmanlari arasinda ve yüzeyinde 25 ila 200 °C de, basinç altinda, 1 ila 3 saat kurutularak emprenye edilmesi, o hemostatik ajanin (gauzenin) sterilize edilmesi, o hemostatik ajan (gauze) insan vücudunda hedef bölgeden çikan kanin emiliminde ya da akisini durdurmada kullanilmasi islem adimlarini ihtiva etmektedir. Hemostatik ajanin (gauzenin) belirleyici özelligi hedef bölgeden çikan kanin emiliminden ya da kanin akisinin durdurulmasindan sonra 1 ila 5 saate kadar bütünlügü bozulmadan yarali bölgede kalabilir ve ardindan kolaylikla bölgeden temizlenebilir. TR TR TR TARIFNAME BCOsan -based layer bleeding stopper gauze and production of technical fields in the contamination injuries of bleeding more effectively by slowing down and the provision of the pihtoylasmanin in each layer of the known condition of the blood, the blood and oxygen distribution in the body, the body and oxygen distribution in the form of a continuous movement. It is liquid. As a result of significant loss of this vital fluid, shock and then death may occur. It has been reported that stopping bleeding within 30 minutes in serious bleeding injuries, such as shock and death in cases of vital blood loss, and accidents of the total blood volume in the body, can increase the survival rate of the injured person by up to 85%. The development of an effective hemostatic gauze/wound dressing is critical to increase the survival rate of potentially life-threatening traumatic bleeding through rapid bleeding control. Traditionally, tourniquets and gauze have been widely used to control bleeding. For injuries occurring in extremities such as arms and legs, tourniquet application cannot be sufficient to control bleeding, therefore, special hemostatic agent (blood stopper) application and special dressing procedures are needed to stop bleeding. Today, different products such as powder, granules, sponge and gauze with anticoagulant are used for this purpose. Recently, chitosan-based hemostatic agents have been widely used due to their biocompatibility and confirmation of their effectiveness. Chitosan (poly-N-acetyl glucosamine) is the deacetylated product of chitin, the second most abundant biopolymer in nature. It has a positive charge due to the amine groups (NH) on it. While blood flow occurs in the vessel, the negative charge on platelets and erythrocytes causes an electrostatic repulsion and therefore clotting is prevented. In case of injury, agents with positive surface charge can play an important role in reversing this situation and ensuring blood clotting. As mentioned before, in the current technique, chitosan can contribute to blood clotting by creating electrostatic interaction due to the positive charges on its surface. Thus, blood clotting can occur in a much shorter time. In the state of the art, chitosan is generally sold in powder or granule form. However, when chitosan is applied in small particles, it can leak into the vein and cause thrombosis there. This situation may cause unwanted problems, especially after emergency intervention. In order to cope with this problem, chitosan hemostatic products in sponge form have been developed. However, their usability is limited because they disperse rapidly with liquid absorption. Crosslinkers such as glutaraldehyde, which are used to ensure that the material remains without disintegration for a long time, may also have toxic effects and may also reduce the effectiveness of the functional (NH) groups to which blood cells will bind. For this reason, the use of chitosan by applying it to gauze has come to the fore. In this case, chitosan was requested to be attached to gauze or wound dressings obtained from different sources and to remain on the surface of the cloth, absorbing blood and accelerating coagulation. However, since the application is made on both surfaces of the fabric, a significant amount of chitosan may spill from the surface during application. Depending on the granule size, this may cause chitosan to move into the vein and form a clot. Based on this problem, by changing the application method, adhesive agent and intermediate binder, a more effective wound dressing hemostatic agent can be developed in which the chitosan remains almost without shedding. Due to the need in the military and healthcare fields, research and development activities for the development of highly efficient hemostatic hemostatic agents attract a lot of attention from both academia and the medical industry. Nowadays, bleeding stoppers are used in different forms such as gel, particle and sponge. However, each of these has its own positive and negative characteristics. For example, due to the small volume, hemostatic gel that can be injected from a syringe cannot be applied to large bleeding areas. For this reason, blood stoppers in the form of gauze are generally preferred for large or small, superficial or deep bleeding injuries. There are also various types of blood stoppers in the form of gauze. For example, a product was created by gluing kaolin pieces to a silk or polyester fabric. Similarly, composite fibers consisting of Zeolite and cotton are of interest. In addition, "Chitosan"-based gauze pads, which are known to have hemostatic activity and have no biosafety problems, are used. Chitosan interacts with red blood cells and platelets, facilitating the formation of clots (thrombus). Chitosan applied gauze is generally obtained by physically or chemically adhering chitosan granules to both surfaces of the gauze. In the research conducted, no information was found regarding the production of layer by layer hemostatic gauze. As mentioned above, there are different products with anti-bleeding appliqués on gauze. In these applications, a carrier produced from different sources (cotton, polypropylene, polyethylene, etc.) and a hemostatic agent (chitosan, kaolin, etc.) applied on it are used. However, the most important problem here is that the hemostatic agent can easily spill because it is applied to the surface. The haemostatic agent, which is in the form of small granules, may cause coagulation by moving through the vein, and this causes occlusion (thrombosis) in the capillary blood vessels, leading to gangrene, stroke, etc. It may cause problems such as: To solve this problem, a new hemostatic system is needed that can remain between the carrier material layers and on its surface without spilling, absorb blood quickly and provide coagulation. Today's hemostatic agents in the form of wound dressings are generally manufactured from single-layer non-woven fabric. This situation shows a weak barrier feature to prevent blood flow. Alternatively, if layer by layer hemostatic systems are developed, bleeding can be slowed and stopped more effectively and clotting can be achieved in each layer. Brief Description of the Invention The present invention is related to the production of chitosan-based layered haemostatic gauze that meets the above-mentioned requirements, eliminates all disadvantages and brings some additional advantages. The advantages and disadvantages of other hemostatic agents were examined, a study was conducted to eliminate the disadvantages, and the most efficient hemostatic agent was produced in the light of the available data. When chitosan gauze is applied to a bleeding trauma, excess blood is first absorbed by the cloth. The absorbed blood cells then interact electrically with chitosan, causing blood clotting. The biggest advantage provided by the invention is that it quickly stops bleeding by ensuring both the absorption and coagulation of blood. Functionalized chitosan-based material will be placed between the layered non-woven fabrics. Thus, while the blood is absorbed effectively, bleeding will also be stopped quickly. Since there will be no only superficial bonding in the invention, the blood stopper will not come off. In this way, the blood stopper can be prevented from interacting with other tissues and penetrating into the blood vessel and forming a clot. The material considered to be a vegetable adhesive in the invention has a high antioxidative effect as well as a high liquid absorption capacity. It will also be able to eliminate harmful Reactive Oxygen Species (ROS) that occur at the points of contact. This material also has antimicrobial and antibacterial activity. Another advantage of the invention is that it is lightweight to make it easier to carry. It is also sterile. Detailed Description of the Invention In this detailed explanation, chitosan-based layered haemostatic gauze and its preferred structures are explained only for a better understanding of the subject and in a way that does not create any limiting effect. Since the hemostatic agent will be added between the layers of a non-woven carrier material in the invention, a greater amount of hemostatic agent can be applied compared to superficial application. This allows the blood to stop much faster and will help the injured person reach the emergency unit as soon as possible. The invention can also achieve "controlled drug release" by incorporating pharmaceutical agents such as analgesics, anesthetics, anti-inflammatory, antibiotics, antimicrobial agents, antibacterial agents, enzymes and/or different drugs such as cytokines into the structure. The present invention is obtained by impregnating the hemostat composition into a non-woven carrier material with a surface density of 20 g/m2 to 120 g/m2 to obtain a chitosan-based hemostatic agent (gauze). The carrier material constitutes 70 to 95% by weight of the composition. The remaining part consists of hemostat composition and adhesive composition. Hemostat composition and adhesive composition are present in the layers and surface of the carrier material. In addition, the hemostatic agent does not separate from the surface when it comes into contact with blood. The carrier material, which constitutes 70% to 95% of the said hemostatic agent (gauze), is a non-woven material consisting of cellulose, cellulose derivatives, viscose, polyethylene, polypropylene and polyethylene terephthalate and a combination of two or more of these. The hemostat composition, which constitutes 5% to 30% of the hemostatic agent, consists of chitosan, chitosan salt or chitosan derivatives with a molecular weight between 150 and 350 kDa and/or a combination of two or more of these. Here, chitosan derivatives can be O- and N- carboxymethylchitosan, N-alkyl chitosan, N-carboxy alkyl (aryl) chitosan, O-carboxyalkyl chitosan, N-methylene phosphonic chitosan, chitosan sugar derivatives. The adhesive composition, which constitutes 0.001% to 1% of the hemostatic agent, contains herbal ingredients and includes dextrin, English gum, mucilage, alginate, tragacanth and cellulose derivatives and a combination of two or more of these. Pharmaceutical agents such as analgesics, anesthetics, anti-inflammatory, antibiotics, antimicrobial agents, antibacterial agents, enzymes and cytokines can be easily placed into the said hemostat composition and provide controlled release. The chitosan-based layered hemostatic gauze (hemostatic agent) production method, which is the subject of the invention, is as follows; the hemostatic composition is placed between the layers and on the surface of the carrier material using an adhesive composition and dried. After the hemostat composition is dried, it is not subjected to any heat treatment and the hemostat composition is sterilized. The detailed production method is to create a hemostatic mixture by mixing the hemostat composition, which constitutes 5 to 30% by weight of the hemostatic agent (gauze), with the adhesive composition, which constitutes 001 to 1% by weight of the hemostatic agent (gauze), and to form a hemostatic mixture between the layers of the carrier material and It includes the process steps of impregnating the surface by drying it at 25 to 200 °C, under pressure, for 1 to 3 hours, sterilizing that hemostatic agent (gauze), using that hemostatic agent (gauze) to absorb or stop the flow of blood coming out of the target area in the human body. . The defining feature of the hemostatic agent (gauze) is that it can remain in the injured area without losing its integrity for up to 1 to 5 hours after absorbing the blood coming out of the target area or stopping the blood flow, and then it can be easily cleaned from the area. TR TR TR

TR2022/013365A 2022-08-25 2022-08-25 KITOSAN BASED LAYER BLEEDING STOPPING GAUZE AND ITS PRODUCTION TR2022013365A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2022/013365A TR2022013365A2 (en) 2022-08-25 2022-08-25 KITOSAN BASED LAYER BLEEDING STOPPING GAUZE AND ITS PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/013365A TR2022013365A2 (en) 2022-08-25 2022-08-25 KITOSAN BASED LAYER BLEEDING STOPPING GAUZE AND ITS PRODUCTION

Publications (1)

Publication Number Publication Date
TR2022013365A2 true TR2022013365A2 (en) 2022-09-21

Family

ID=84603711

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/013365A TR2022013365A2 (en) 2022-08-25 2022-08-25 KITOSAN BASED LAYER BLEEDING STOPPING GAUZE AND ITS PRODUCTION

Country Status (1)

Country Link
TR (1) TR2022013365A2 (en)

Similar Documents

Publication Publication Date Title
Zhao et al. Synthetic poly (vinyl alcohol)–chitosan as a new type of highly efficient hemostatic sponge with blood-triggered swelling and high biocompatibility
Sun et al. Chitosan/kaolin composite porous microspheres with high hemostatic efficacy
Kheirabadi Evaluation of topical hemostatic agents for combat wound treatment.
Jin et al. Microspheres of carboxymethyl chitosan, sodium alginate, and collagen as a hemostatic agent in vivo
Fan et al. Rapid hemostatic chitosan/cellulose composite sponge by alkali/urea method for massive haemorrhage
Fan et al. Morphology-controllable cellulose/chitosan sponge for deep wound hemostasis with surfactant and pore-foaming agent
Kheirabadi et al. Clot-inducing minerals versus plasma protein dressing for topical treatment of external bleeding in the presence of coagulopathy
US20030225354A1 (en) Material delivery system
US20110288462A1 (en) Haemostatic wound care article
EP3258974A1 (en) Hemostatic composition and hemostatic device (variants)
Wang et al. Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings
CN104507507A (en) Hemostatic devices
MX2014005738A (en) In-situ cross-linkable polymeric compositions and methods thereof.
MX2014002909A (en) Composition and dressing for wound treatment.
AU2016317642A1 (en) Products and methods using a platelet-derived hemostatic agent for controlling bleeding and improving healing
Yang et al. Inherent antibacterial and instant swelling ε-poly-lysine/poly (ethylene glycol) diglycidyl ether superabsorbent for rapid hemostasis and bacterially infected wound healing
CN103800940A (en) Hemostatic application and preparation method thereof
US20230248772A1 (en) Products and methods using a platelet-derived hemostatic agent for controlling bleeding and improving healing
KR101693696B1 (en) Hemostatic porous structure and process for preparing the same
KR102656226B1 (en) Hemostatic material comprising calcium carboxymethyl cellulose powder and water-soluble chitosan compound powder and process for preparing the same
Mardani et al. Hemostatic efficacy of composite polysaccharide powder (starch-chitosan) for emergency bleeding control: An animal model study
Budko et al. Local hemostatic agents and ways of their improvement
TR2022013365A2 (en) KITOSAN BASED LAYER BLEEDING STOPPING GAUZE AND ITS PRODUCTION
CN105233326A (en) Preparation method and preparation of absorbable micropore vacuum polysaccharide particles
US20120282320A1 (en) Hemostatic dressing